1992

Comparing Electrochemical Impedance Spectroscopy Methods for Estimating the Degree of Delamination of Organic Coatings on Steel

S. A. McCluney
Texas A & M University - College Station

S. N. Popova
Texas A & M University - College Station

Branko N. Popov
University of South Carolina - Columbia, popov@engr.sc.edu

Ralph E. White
University of South Carolina - Columbia, white@cec.sc.edu

R. B. Griffin
Texas A & M University - College Station

Follow this and additional works at: http://scholarcommons.sc.edu/eche_facpub

Part of the [Chemical Engineering Commons](http://scholarcommons.sc.edu/eche_facpub)

Publication Info

© The Electrochemical Society, Inc. 1992. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS). The archival version of this work was published in the Journal of the Electrochemical Society.

http://www.electrochem.org/

DOI: 10.1149/1.2069454

http://dx.doi.org/10.1149/1.2069454

This Article is brought to you for free and open access by the Chemical Engineering, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact SCHOLARC@mailbox.sc.edu.
Comparing Electrochemical Impedance Spectroscopy Methods for Estimating the Degree of Delamination of Organic Coatings on Steel

S. A. McCluney, S. N. Popova, B. N. Popov,* and R. E. White*

Center for Electrochemical Engineering, Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122

R. B. Griffin

Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843-3122

ABSTRACT

Electrochemical impedance spectroscopy (EIS) was used to evaluate the degree of delamination of the epoxy primer Uniprime ED-4 electrocoated on phosphate-treated cold-rolled steel in 3.5% NaCl exposed to air. Specimens with coating thicknesses of 20.3 and 20.8 µm and surface areas of 78.5 cm² were used. Coating parameters were obtained using a circuit-analog model. The area of delamination was estimated using several EIS parameters, including the pore resistance and the break point frequency. These values were compared to the corroded area determined visually. All methods considered exhibited a strong correlation over some or all of the range of exposure times.

Electrochemical impedance spectroscopy (EIS) has been used to predict the life of organic coatings used for corrosion protection (1). EIS has proven to be a powerful tool to obtain system specific parameters of coatings, especially for evaluating the early deviation of organic coatings from their initial capacitive behavior (1-4). An excellent paper by Kendig and Scully on this subject exists (5). It has been found that changes in the capacitance of the coating relate to the uptake of water (6, 7), while changes in resistance have been analyzed in terms of the penetration by ionic species from the environment (8-12). According to Mansfeld et al. (13) various parameters obtained from impedance data, such as the break point frequency fn, can be used to estimate the degree of delamination of organic coatings and the extent of corrosion of the metals under these coatings. More recently, Hack and Scully (14) have demonstrated that the break point frequency can be used to determine the electrochemically active area of a coated sample, comparing the EIS results with American Society of Testing and Materials (ASTM, Philadelphia, PA) visual methods.

REFERENCES

* Electrochemical Society Active Member.
1 PPG trademark.
It is the purpose of this paper to demonstrate the use of EIS to estimate the delaminated area of the epoxy primer Uniprime ED-4 electrocoated on phosphate-treated cold-rolled steel using various coating parameters and to compare these areas to the observed corroded area. It is desirable to have an accurate means of estimating the corroded area, especially during the initial stages of corrosion when this area may not be visible. Such a technique would allow the early detection and quantification of corrosion, and would lead to predictions of the useful life of the coating.

In this work, four parameters which are easily obtainable through EIS are used to predict the delaminated area at each exposure time, which is compared to a visually determined area. The different prediction methods are then compared to one another in order to choose the best method(s) to predict delaminated area.

Impedance data may be analyzed in two ways. In the graphical technique, coating parameters are determined directly from the impedance plots (Bode and complex plane plots). Alternatively, a model of the system may be fitted to the data to give the various parameters. The equivalent circuit (circuit-analog) model shown in Fig. 1 has been used to describe the ac behavior of polymer-coated electrodes (13). In the circuit-analog model, the resistances and capacitances are varied until the predicted ac behavior matches the experimental data as closely as possible. These electrical properties are then interpreted as the properties of the system: \(C_c \) is the capacitance of the coating, \(R_{co} \) is the pore resistance of the coating, \(C_d \) is the capacitance of the double layer at the metal substrate, \(R_p \) is the polarization resistance of the electrode, and \(R_o \) is the ohmic resistance of the electrolyte.

The pore resistance of a polymer coating has been related to the delaminated area, \(A_d \), according to the following (13-15)

\[
R_{po} = \frac{R_{po}^o}{A_d}
\]

where

\[
R_{po}^o = \rho d
\]

According to Haruyama et al. (15), the specific pore resistance, \(R_{po}^o \), is assumed to be essentially constant during the delamination process, and the pore resistance decreases as the delaminated area increases. This implies that the corrosion process does not significantly change the properties of the overlying coating. The specific coating resistivity, \(\rho \), represents the resistivity of a completely delaminated coating. This value may be estimated from long-term exposure data. Once it is obtained Eq. [1] above may be used to estimate delaminated area from the pore resistance according to the following

\[
A_d = \frac{\rho d}{R_{po}}
\]

Once the electrolyte has penetrated to the substrate, a double layer is formed beneath the coating with a capacitance proportional to the area of the substrate exposed to the electrolyte. The area exposed through the pores of the coating is assumed to be negligible compared to the disbonded area. Thus, the double layer capacitance is proportional to \(A_d \). The delaminated area may then be estimated from an experimental value of \(C_{dl} \) using the following (13, 15)

\[
A_d = \frac{C_{dl}}{C_{dl}^o}
\]

The specific double layer capacitance, \(C_{dl}^o \), is that of the underlying substrate. According to Juettner et al. (16), the experimental value of \(A_d \) could be determined from Eq. [3] under the assumption that \(C_{dl}^o \) is constant throughout the exposure time. In the above equation, it is assumed that the delaminated area is equal to the corroding area. This would not be true in the case of cathodic delamination in which the delaminated area may be much larger than the corroded area (17). In that case, the delaminated cathodic area will have a specific double layer capacitance which is different than the value for the corroding area. In this work, the value of \(C_{dl}^o \) is approximated by the double layer capacitance measured for an uncoated sample of the substrate. This implies that the environment at the corroding surface is not significantly altered by the presence of the coating. This would be true, for example, in the case where physical defects exist in the coating.

The polarization resistance (also known as the charge-transfer resistance) may also be used to estimate the delaminated area. Assuming once again that \(A_d \) is equal to the corroding area, one obtains the following relationship (15)

\[
A_d = \frac{R_p}{R_f}
\]

The specific polarization resistance, \(R_f \), is associated with the charge transfer behavior of the metal substrate, and can be estimated using the linear polarization of an uncoated sample of the substrate. The value of \(R_f^o \) is assumed to be constant, and it is again assumed that the corroding environment of a coated sample is similar to that of an uncoated sample.

A final method of estimating the delaminated area is that of Haruyama et al. (15). This technique uses the high frequency break point, \(f_b \), which is defined as the frequency at which the phase angle equals 45°. According to the theory, the delaminated area may be determined as follows

\[
A_d = \frac{f_b}{f_b^o} A
\]

The constant \(f_b^o \) represents the break point frequency for a totally delaminated coating and depends only on coating parameters which are assumed to be constant

\[
f_b^o = \frac{1}{2\pi\varepsilon_0\varepsilon}\]

The dielectric constant of the coating relative to that of free space, \(\varepsilon \), may be determined from a value of the coating capacitance, \(C_c \), using the following relationship

\[
\varepsilon = \frac{d}{\varepsilon_0 A C_c}
\]

Experimental

An electrochemical cell was designed in order to measure the coating characteristics using the EIS technique.
The area of the working electrode was 78.5 cm² so that the capacitance of the coating would be large enough to minimize measurement errors (5). The working electrode was a 4 in. by 12.6 in. panel of phosphate-treated cold-rolled steel with an epoxy primer (Uniprime KD-4) coating obtained by electrodeposition. The two samples had coating thicknesses of 20.3 and 20.8 μm. These were exposed under freely corroding conditions in 3.5% NaCl solution open to the air and unstirred. A platinum gauze and a SCE served as the counter and reference electrodes, respectively.

EIS data were obtained using a PAR Model 5301 A two-phase lock-in amplifier and a PAR Model 273 potentiostat. The data were stored and analyzed using PAR M378 software on an IBM PS/2. The frequency range of 1 mHz to 100 kHz was applied with an ac voltage varying by ±10 mV about the open-circuit potential. Experimental values of A_0 were determined visually according to ASTM D-610 and a modification of ASTM D-714 (18, 19).

Results

Figures 2 through 4 show representative samples of the observed behavior of the 20.3 μm coating over a 69 day exposure to 3.5% NaCl solution. The data are presented as Bode-magnitude plots (Fig. 2), Bode-phase plots (Fig. 3), and complex plane plots (Fig. 4), and are typical of coated electrode behavior. The data taken on day 2 for the 20.8 μm sample were fitted to the circuit-analog model shown in Fig. 1 using Macdonald's complex nonlinear least squares algorithm, CNLS (20). A coating capacitance of $C_C = 1.89 \times 10^{-9}$ F was obtained. Using this value and the coating thickness, the dielectric constant for this coating was calculated using Eq. (7) to be 5.06. This value is not significantly higher than the value expected for a dry coating.

The electrolyte is expected to have a dielectric constant of approximately 80, and absorption of a large quantity of electrolyte would increase ε accordingly. The low measured value of 5.06 indicates a relatively low amount of electrolyte absorption (5-7).

The time dependence of the complex plane plots is shown in Fig. 4. Initially, only the shape of one semicircle is seen (part of the data has been truncated in order to magnify the region near the origin). For a fully developed plot, we expect two semicircles because our coated specimen has two capacitances, one of the coating and one of the double layer on the substrate beneath the coating. After 10 days the beginning of the second semicircle is seen. The decrease of R_p may also be recognized by the decrease in the radius of the first (low frequency) semicircle. After 17 days, the second semicircle is almost developed.

Experimental values of R_{po}, R_p, and C_{po} determined by fitting the data to the equivalent circuit of Fig. 1, are given in Table I and are shown in Fig. 5 as a function of exposure time. Measured values of f_p are also included in Table I. The data fit is not sensitive to the value of R_0 since it is negligible compared to R_{po} and R_p. Also, it is assumed that the majority of electrolyte absorption occurs during the first two days of exposure, so that the value of C_f obtained after two days will be valid for the rest of the exposure period. Therefore, these two parameters, $R_0 = 20 \Omega$ and $C_f = 1.69 \times 10^{-8}$ F, were held constant when fitting the data.

As seen in Table I and Fig. 5, the polarization resistance R_p decreases rapidly at the beginning of exposure but levels off afterward. The coating resistance, R_{po}, exhibits a similar behavior. The double-layer capacitance at the metal substrate, C_{po}, increases rapidly, but stabilizes after 10 to 15 days. The value of R_{po} after 1 h of exposure is greater than $1 \times 10^6 \Omega$.

The delaminated area has been estimated according to Eq. (2) through (5). In order to do this, a value for the specific resistivity of the coating, ρ, is required. This value was estimated by using Eq. (2) and data for 75 days of exposure to the electrolyte. The pore resistance, R_p, was obtained using the circuit-analog method, and A_0 was estimated visually. Equation (2) was then used to obtain $\rho = 7.15 \times 10^6 \Omega \cdot cm$. This value is similar to that given by Mansfeld et al. (13) for polybutadiene coatings. The specific double-layer capacitance required in Eq. (3) was obtained by exposing
an uncoated specimen of phosphate-treated cold-rolled steel to 3% NaCl solution. The uncoated specimen was modeled as a simple Randles circuit and found to be $R_0 = 5.23 \times 10^{-12}$ cm$^{-1}$. Finally, as mentioned above, the dielectric constant of the coating relative to that of free space was found to be 5.06, using Eq. [7] and a value of ε_∞ in Table I. The specific polarization resistance exhibits the highest initial deviation, and the ratio $A_d(R_p)/A_d$ (observed) does not approach a constant value.

Discussion

Values for R_0, C_∞, and R_p were obtained by fitting the data represented in Fig. 2 through 4 and values for f_b were obtained by hand from the same data. The delaminated areas determined using the above values with Eq. [2] through [5], and the values of A_d observed visually, are shown in Table II. Figure 6 shows the ratio of predicted A_d to observed A_d for each method considered. Considering the inaccuracies associated with corrosion measurements, the agreement is good for exposure times greater than 20 days. Each method predicts values of A_d which are nearly proportional to the observed corroded area, and therefore closer to the predicted areas. It is also possible that some error resulted from holding C_∞ constant while fitting the data. A more accurate method would be to fit C_∞ for each exposure time along with the other parameters of the equivalent circuit.

The break-point frequency method, when applicable, offers several advantages over the other methods. First, it is not necessary to fit the entire data set to an equivalent circuit model in order to estimate f_b. Second, f_b can be determined from high-frequency data which can be obtained quickly. Therefore, an estimate of delaminated area can be found quite rapidly using f_b. On the other hand, this method does not make use of the full set of data. Because of this, it is possible that one of the other methods might be more appropriate in certain cases. Also, the break point frequency method alone does not provide any information beyond an estimate of the delaminated area.
In conclusion, EIS provides several methods to estimate the delaminated area of an organic coating on a phosphate-treated steel substrate. Each method considered showed good qualitative agreement with observation over some portion of the exposure range. The break point frequency and the double-layer capacitance provided the estimates of \(A_0 \) which were closest to the visually determined corroded area, with the best correlation obtained using the break point frequency. These results are in agreement with those found by Hack and Scully (14).

Acknowledgments

The authors are grateful for the support of this work by the Dow Chemical Company and the National Science Foundation through the Offshore Technology Research Center.

Manuscript submitted June 20, 1991; revised manuscript received Jan. 29, 1992.

Texas A&M University assisted in meeting the publication costs of this article.

LIST OF SYMBOLS

\[\begin{align*}
A & \quad \text{total specimen area, cm}^2 \\
A_0 & \quad \text{defect (delamination) area, cm}^2 \\
C & \quad \text{coating capacitance, F} \\
C_0 & \quad \text{specific coating capacitance, F/cm}^2 \\
C_{dl} & \quad \text{capacitance of the double layer, F} \\
C_{dl} & \quad \text{specific double-layer capacitance of the substrate, F/cm}^2 \\
d & \quad \text{coating thickness, cm} \\
\nu & \quad \text{frequency, Hz} \\
\nu_b & \quad \text{break-point frequency, Hz} \\
\nu_{b,fd} & \quad \text{break-point frequency for complete delamination, Hz} \\
R_p & \quad \text{polarization resistance, \(\Omega \)} \\
R_{p,sp} & \quad \text{specific polarization resistance of the substrate, \(\Omega \) cm}^2 \\
R_p & \quad \text{pore resistance, \(\Omega \)} \\
R_{p,sp} & \quad \text{specific pore resistance, \(\Omega \) cm}^2 \\
R_s & \quad \text{solution resistance, \(\Omega \)} \\
Z & \quad \text{coating impedance, \(\Omega \) cm}^2 \\
Z' & \quad \text{real component of impedance, \(\Omega \) cm}^2 \\
Z' & \quad \text{imaginary component of impedance, \(\Omega \) cm}^2 \\
C & \quad \text{dielectric constant of a coating relative to that of free space} \\
\varepsilon_{water} & \quad \text{dielectric constant of water relative to that of free space} \\
\varepsilon_0 & \quad \text{dielectric constant for free space} = 8.85 \times 10^{-14}, \text{ F/cm} \\
\rho & \quad \text{specific coating resistivity for complete delamination, \(\Omega \) cm} \\
\end{align*} \]

REFERENCES

19. Ibid., p. 124.

Corrosion Mechanism of Sputter-Deposited TbFe Thin Films in Aqueous Environment

Noboru Akao and Katsuhisa Sugimoto*

Department of Metallurgy, Faculty of Engineering, Tohoku University, Sendai 980, Japan

ABSTRACT

The corrosion mechanism of sputter-deposited TbFe thin films for magneto-optical recording material was investigated using electrochemical methods in aqueous environment with and without Cl⁻ ions. TbFe thin films with varying composition prepared by an ion beam sputtering method were used as specimens. TbFe tape alloys made by the rapid quench method of melting alloys were also used for comparison. In an acid buffer solution without Cl⁻ ions, the corrosion rate of the TbFe thin films and tape alloys decreased with increasing Tb content. In this solution, passive films composed of Tb oxide or hydroxide were formed on both the TbFe thin films and tapes and the selective dissolution of Fe through the passive films occurred. In neutral solutions with Cl⁻ ions, pitting corrosion occurred on both the TbFe thin films and tapes. The stoichiometric dissolution of the substrate at pitted sites and the selective dissolution through the passive films at nonpitted sites take place in these solutions.

Rare earth-transition metal (RE-TM) thin films represented by sputter-deposited TbFe thin films have been intensively investigated for erasable magneto-optical recording materials, because they have high coercivity, large Kerr rotation angle, suitably low Curie temperature, and large perpendicular uniaxial anisotropy (1, 2). RE-TM thin films used for magneto-optical recording materials, however, suffer from high-temperature oxidation by the irradiation of the reading-out Laser beam (3, 5) and corrosion by humidity in the environment (6, 7). As a result, the degradation of magnetic properties proceeds rapidly and error rates in reading-out increase (8). Among these problems, corrosion due to aqueous solutions from the environment is serious because it progresses quickly at room temperature.

Many studies have been reported on the corrosion of RE-TM thin films in aqueous solutions; the measurement of corrosion rates by using light transmittance through the...