Poly\{diaqua(\mu_4-3-fluorophthalato-\kappa^4O:O:O':O")cadmium(II)\}

Diana Rishmawi
Francis Marion University

Katie Lewis
Francis Marion University

Mark D. Smith
University of South Carolina - Columbia, mdsmith3@mailbox.sc.edu

LeRoy Peterson Jr.
Francis Marion University

Hans-Conrad zur Loye
University of South Carolina - Columbia, zurloye@mailbox.sc.edu

Follow this and additional works at: https://scholarcommons.sc.edu/chem_facpub

Part of the Chemistry Commons

Publication Info
Published in Acta Crystallographica Section E, Volume 63, Issue 3, 2007, pages m695-m697.
© Acta Crystallographica Section E 2007, International Union of Crystallography
Publisher’s version available here.

This Article is brought to you by the Chemistry and Biochemistry, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact digres@mailbox.sc.edu.
Poly[\text{diaqua}(\mu_4\text{-3-fluorophthalato-} \kappa^4 \text{O}^2\text{O} \cdot \text{O}^2\text{O})\text{cadmium(II)}]

Diana Rishmawi, Katie Lewis, Mark D. Smith, LeRoy Peterson Jr and Hans-Conrad zur Loye
Poly[diaqua(μ_4-3-fluorophthalato-$\kappa^4O:O':O''$)-cadmium(II)]

The crystal structure of the title compound, [Cd(C$_6$H$_7$FO$_4$)$_2$-(H$_2$O)$_2$], consists of polymeric sheets formed by the bridging of octahedrally coordinated CdII by carboxylate O atoms of the 3-fluorophthalate (3-fpt$^{2-}$) ligand. The layers exhibit hydrogen bonding between each of two coordinated water molecules and two O atoms of the ligand. Adjacent sheets are connected through π-π interactions.

Comment

Polycarboxylates represent a versatile class of ligands for the construction of metal-organic coordination polymers (Ye et al., 2005). Their versatility stems from the variety of bridging modes of the carboxylate group (Mehrotra & Bohra, 1983). Many of these solids exhibit properties such as gas absorption, catalytic activity, and luminescence (Rowsell et al., 2004; Wasuke et al., 2005; Kim et al., 2004). With this in mind, the title compound, (I), was prepared as a part of our ongoing efforts to construct new coordination polymers employing polycarboxylate ligands.

The asymmetric unit consists of one CdII ion, a 3-fluorophthalate (3-fpt$^{2-}$) dianion, and two coordinated water molecules. The CdII ion exhibits an all-oxygen coordination in a distorted octahedral environment (Fig. 1). The axial sites are defined by a water O atom and a 3-fpt$^{2-}$ O atom, while the equatorial sites are defined by a water O atom and three carboxylate O atoms from three equivalent 3-fpt$^{2-}$ ligands.

The Cd—O bond distances are normal (Table 1), with an average value of 2.3031 (18) Å. All other distances and angles are comparable with those in a similar CdII-phthalate coordination polymer (Vaz et al., 1996).

In (I) there are O—H···O hydrogen bonds involving three H atoms of the two water molecules and two O acceptor atoms of the 3-fpt$^{2-}$ ligand (Table 2). The remaining water H atom along with the other two 3-fpt$^{2-}$ O atoms are not involved in hydrogen bonding.
Experimental

All chemicals and solvents were purchased from commercial sources and used without further purification. 3-Fluorophthalic acid (3 mmol) was added to 100 ml of water and subsequently brought to pH 6.5 by the addition of 3 M NaOH with constant stirring. To this solution was added 10 ml of a 0.10 M solution of Cd(NO₃)₂·4H₂O. Single crystals of (I) were obtained in two weeks after slow evaporation of this solution.

Crystal data

\[
\begin{align*}
(Cd(C₆H₄FO₂)₁(H₂O)₂) & \quad V = 471.86 (6) \text{ Å}^3 \\
M_r & = 330.54 \\
\text{Triclinic, } P\overline{1} & \quad Z = 2 \\
a & = 6.9460 (5) \text{ Å} & \quad D_c = 2.326 \text{ Mg m}^{-3} \\
b & = 7.2330 (5) \text{ Å} & \quad \mu = 2.34 \text{ mm}^{-1} \\
c & = 10.8199 (8) \text{ Å} & \quad T = 294 (2) \text{ K} \\
\alpha & = 103.217 (1) & \quad \text{Irregular cleavage fragment, colorless} \\
\beta & = 93.351 (1)^{\circ} & \\
\gamma & = 115.066 (1)^{\circ} & 0.36 \times 0.22 \times 0.16 \text{ mm}
\end{align*}
\]

Table 1

Selected geometric parameters (Å, °).

<table>
<thead>
<tr>
<th></th>
<th>Cdl—O2⁺</th>
<th>2.3226 (15)</th>
<th>Cdl—O4⁻</th>
<th>2.2312 (16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cdl—O3</td>
<td>2.2591 (16)</td>
<td>Cdl—O5</td>
<td>2.2866 (17)</td>
<td></td>
</tr>
<tr>
<td>O₂⁻—Cdl—O₂⁺</td>
<td>75.64 (6)</td>
<td>O₄⁻—Cdl—O3</td>
<td>115.46 (6)</td>
<td></td>
</tr>
<tr>
<td>O₂⁻—Cdl—O6</td>
<td>167.55 (6)</td>
<td>O₄⁻—Cdl—O5</td>
<td>157.03 (6)</td>
<td></td>
</tr>
<tr>
<td>O₃—Cdl—O2⁺</td>
<td>109.30 (6)</td>
<td>O₅—Cdl—O2⁺</td>
<td>98.11 (7)</td>
<td></td>
</tr>
<tr>
<td>O₃—Cdl—O5</td>
<td>85.61 (6)</td>
<td>O₅—Cdl—O4⁻</td>
<td>82.76 (5)</td>
<td></td>
</tr>
<tr>
<td>O₃—Cdl—O6</td>
<td>82.16 (7)</td>
<td>O₅—Cdl—O6</td>
<td>93.58 (7)</td>
<td></td>
</tr>
<tr>
<td>O₄⁻—Cdl—O2⁺</td>
<td>81.61 (6)</td>
<td>O₆—Cdl—O2⁺</td>
<td>91.96 (6)</td>
<td></td>
</tr>
<tr>
<td>O₄⁻—Cdl—O4⁻</td>
<td>82.27 (6)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry codes: (i) x, –y, z; (ii) x, y, z; (iii) x, y, z.

Table 2

Hydrogen-bond geometry (Å, °).

<table>
<thead>
<tr>
<th></th>
<th>D—H—A</th>
<th>D—H</th>
<th>H—A</th>
<th>D···A</th>
<th>D···D—H···A</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₅—H₅A—O₄⁻</td>
<td>0.765 (18)</td>
<td>2.076 (19)</td>
<td>2.840 (2)</td>
<td>175 (3)</td>
<td></td>
</tr>
<tr>
<td>O₅—H₅B—O₁</td>
<td>0.758 (19)</td>
<td>1.994 (22)</td>
<td>2.749 (2)</td>
<td>175 (4)</td>
<td></td>
</tr>
<tr>
<td>O₆—H₆B—O₁</td>
<td>0.764 (19)</td>
<td>2.040 (19)</td>
<td>2.804 (2)</td>
<td>179 (5)</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry codes: (v) x, y, z; (w) x, y, z.

As is typical for metal phthalate-type complexes, the two carboxylate groups in (I) are not coplanar with the aromatic ring (Vat et al., 1996). One of the carboxylate groups makes a dihedral angle of 72.7 (1)°, while the other is twisted at an angle of 31.5 (1)°.

The 3-fpt⁻²⁻ ligand acts in a μ₄-bridging fashion that links four symmetrically related CdII centers. The result is the formation of a 14-membered ring, an eight-membered ring, and a four-membered ring with Cd···Cd distances of 5.6292 (4), 4.2213 (3), and 3.7270 (3) Å, respectively. The center of each ring corresponds to a crystallographic inversion center.

The aforementioned bridging of CdII centers in (I) results in the formation of thick polymeric sheets that are stacked along the c axis, with the benzene rings of the 3-fpt⁻²⁻ ligands projecting outward from each side (Fig. 2). Adjacent sheets are connected through π–π interactions involving the protruding aromatic rings of 3-fpt⁻²⁻ from successive layers, with a centroid–centroid distance of 3.67 (2) Å between rings.
H atoms bonded to C atoms were placed in geometrically idealized positions and included as riding atoms \([\text{C—H} = 0.95 \text{ Å} \text{ and } U_{eq}(\text{H}) = 1.2U_{eq}(\text{C})]\). The water H atoms were located in difference maps and refined with the six O—H distances restrained to be equal with an effective s.u. of 0.015 Å.

Data collection: SMART-NT (Bruker, 2003); cell refinement: SAINT-Plus-NT (Bruker, 2003); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2000).

Financial support from the National Science Foundation (awards CHE-0314164 and CHE-0315152) is gratefully acknowledged.

References