Trisodium dicalcium bismuth hexaoxide

Irina V. Puzdrjakova
University of South Carolina - Columbia

Rene B. Macquart
University of South Carolina - Columbia

Mark D. Smith
University of South Carolina - Columbia

Hans Conrad zur Loye
University of South Carolina - Columbia, zurloye@sc.edu
Trisodium dicalcium bismuth hexaoxide

Irina V. Puzdrjakova, René B. Macquart, Mark D. Smith and Hans-Conrad zur Loye
Irina V. Puzdrjakova, René B. Macquart, Mark D. Smith and Hans-Conrad zur Loye*

Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA

Correspondence e-mail: zurloye@sc.edu

Trisodium dicalcium bismuth hexaoxide

Single crystals of the title compound, Na$_3$Ca$_2$BiO$_6$, were grown from a high-temperature reactive flux solution of Na$_2$CO$_3$. Na$_3$Ca$_2$BiO$_6$ crystallizes as an ordered rock-salt structure (space group Fddd), in which the octahedral holes in the oxide array are filled by an ordered 3:2:1 arrangement of Na$^+$, Ca$^{2+}$ and Bi$^{5+}$ cations. All atoms except for one O atom lie on special positions; site symmetries are as follows: Bi 222, Ca 2, Na 222 and 2, O 2.

Comment

The most common bismuth oxidation state found in oxides is BiIII as, for example, in BiNbO$_4$ (Keve$^{\text{et al.}}$, 1973) and Bi$_2$MoO$_6$ (Teller$^{\text{et al.}}$, 1984). However, some oxides, including NaBiO$_3$ (Kumada$^{\text{et al.}}$, 2000), KBiO$_3$ (Nguyen$^{\text{et al.}}$, 1993), LiSr$_2$BiO$_6$, NaSr$_3$BiO$_6$, Li$_6$KBiO$_6$, Li$_6$RbBiO$_6$ and Li$_2$Ba$_5$Bi$_2$O$_{11}$ (Carlson$^{\text{et al.}}$, 1992) contain Bi(V) cations.

Compound (I) also possesses a fully ordered arrangement of Na$^+$, Ca$^{2+}$ and Bi$^{5+}$ cations (Fig. 1). The metal-oxygen bond distances (Table 1) are normal and the octahedra are close to

Figure 1

The asymmetric unit of (I), expanded to show the metal coordination polyhedra. Displacement ellipsoids are drawn at the 75% probability level. Colour key: Ca yellow, Bi blue, Na green and O red. [Symmetry codes: (i) $\frac{1}{4} - x, \frac{1}{4} - y, \frac{1}{4} + z$; (ii) $x, y - \frac{1}{4}, \frac{1}{4} + z$; (iii) $x - \frac{1}{4}, y, z + \frac{1}{4}$; (iv) $\frac{3}{4} - x, \frac{1}{4} - y, \frac{1}{4} + z$; (v) $\frac{1}{4} - x, y, \frac{1}{4} - z$; (vi) $x - \frac{1}{4}, y, \frac{1}{4} - z$; (vii) $\frac{1}{4} + x, y - \frac{1}{4}, \frac{1}{4} - z$; (viii) $-x, \frac{1}{4} - y, \frac{1}{4} - z$; (ix) $x + \frac{1}{4} + y, \frac{3}{4} - z$; (x) $\frac{3}{4} - x, -y, \frac{1}{4} - z$; (xi) $\frac{3}{4} - x, \frac{1}{4} + y, \frac{1}{4} + z$; (xii) $\frac{3}{4} - x, y - \frac{1}{4} + z$; (xiii) $\frac{3}{4} - x, -y, \frac{1}{4} - z$; (xiv) $\frac{1}{4} - x, -y, \frac{1}{4} - z$.]

© 2007 International Union of Crystallography
All rights reserved
regular. The rock-salt-type structure contains edge- and corner-sharing NaO$_6$, CaO$_6$ and BiO$_6$ octahedra (Fig. 2), ordered so that the calcium and bismuth octahedra share an edge.

Experimental

Bi$_2$O$_3$ (Alfa Aesar, 99.975%, 2.0 mmol) and CaCO$_3$ (Alfa Aesar, 99.95%, 1.0 mmol) were ground under acetone in an agate mortar until dry. The mixture, along with excess Na$_2$CO$_3$ (Fisher, ACS reagent, 12.5 g), was loaded into an alumina crucible, covered with an alumina lid, and placed into a programmable tube furnace. The system was heated to 1323 K at a rate of 873 K h$^{-1}$ and held at the target temperature for 24 h. It was then cooled slowly to 1073 K at a rate of 15 K h$^{-1}$ and held at that temperature for 1 h, at which point the furnace was shut off and the reaction allowed to cool to room temperature. The excess flux was dissolved in water and yellow transparent crystals of (I) were isolated using sonication and vacuum filtration.

Crystal data

Na$_3$Ca$_2$Bi$_2$O$_6$
M_r = 454.11
Orthorhombic, Fdd2
a = 6.7039 (8) Å
b = 9.6251 (11) Å
c = 19.947 (2) Å

V = 1287.1 (3) Å3
Z = 8
Mo $K\alpha$ radiation
μ = 29.17 mm$^{-1}$
T = 294 (2) K
D$_\text{calc}$ = 4.05 g cm$^{-3}$

Data collection

Bruker SMART APEX CCD diffractometer
Absorption correction: multi-scan (SADABS, Bruker, 2003)
T_{min} = 0.778, T_{max} = 1.000
(expected range = 0.324-0.417)
5827 measured reflections
499 independent reflections
$R_{	ext{int}}$ = 0.047

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.013$
w$R(F^2) = 0.032$
$S = 1.08$
499 reflections
32 parameters
Δ,ρ_{max} = 0.92 e Å$^{-3}$
Δ,ρ_{min} = −0.65 e Å$^{-3}$

Table 1

Selected bond lengths (Å).

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi1–O1i</td>
<td>2.117 (3)</td>
</tr>
<tr>
<td>Bi1–O2i</td>
<td>2.138 (2)</td>
</tr>
<tr>
<td>Ca1–O1iii</td>
<td>2.340 (7)</td>
</tr>
<tr>
<td>Ca1–O2ii</td>
<td>2.378 (3)</td>
</tr>
<tr>
<td>Na1–O2</td>
<td>2.398 (2)</td>
</tr>
</tbody>
</table>

Data collection: SMART-NT (Bruker, 2003); cell refinement: SAINT-Plus-NT (Bruker, 2003); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL.

This work was supported by the Department of Energy through grant DE-FG02-04ER46122 and the National Science Foundation through grant DMR:0450103.

References