catena-Poly[[bis(α-thenoyltrifluoroacetonato)copper(II)]-μ-1,4-di-4-pyridyl-2,3-diazabuta-1,3-diene]

William J. Perkins
Francis Marion University

Tamara Maxwell
Francis Marion University

Mark D. Smith
University of South Carolina - Columbia

LeRoy Peterson Jr.
Francis Marion University

Hans Conrad zur Loye
University of South Carolina - Columbia, zurloye@sc.edu

Follow this and additional works at: https://scholarcommons.sc.edu/chem_facpub

Part of the Chemistry Commons

Publication Info
Published in Acta Crystallographica Section E, Volume E61, Issue 10, 2005, pages m2047-m2049.
Copyright © International Union of Crystallography
DOI: 10.1107/S1600536805028631
Publisher’s Version: http://dx.doi.org/10.1107/S1600536805028631

This Article is brought to you by the Chemistry and Biochemistry, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact dillarda@mailbox.sc.edu.
catena-Poly[[bis(α-thenoyltrifluoroacetonato)copper(II)]-μ-1,4-di-4-pyridyl-2,3-diazabuta-1,3-diene]

William J. Perkins, Tamara Maxwell, Andrea M. Goforth, Mark D. Smith, LeRoy Peterson Jr and Hans-Conrad zur Loye
In the one-dimensional title polymer, [Cu(C₈H₄F₃O₂S)₂·(C₁₂H₁₀N₄)]ₙ or [Cu(L)_2(tta)_2] [tta is α-thenoyltrifluoroacetono and L is 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene], Cu²⁺ lies on a center of inversion. It is axially coordinated by two pyridyl N atoms from two different L ligands and equatorially coordinated by four O atoms from two chelating tta ligands. The ligand L propagates the one-dimensional chain structure by serving as a bridging ligand between two Cu octahedra via Cu—N coordinate bonds.

Comment

The synthesis of new coordination polymers has interested chemists and materials scientists because of the potential applications of these materials in a variety of areas, including catalysis, optical applications and gas sorption (Atto et al., 1999; Wang et al., 1995; Chen et al., 1998). Our group has been interested in the synthesis of new N,N⁰-type organic ligands for the construction of new inorganic–organic coordination polymers. To this end, we have been successful in the synthesis of several Schiff base ligands, such as 1,4-bis(3-pyridyl)-2,3-diaza-1,3-butadiene, which have resulted in the generation of many new coordination compounds (Dong et al., 2000; Dong et al., 2000a). The title compound, catena-poly[Cu(L)_2·(tta)_2] (tta is α-thenoyltrifluoroacetono), (I), is a new example of a one-dimensional coordination polymer that uses an N,N⁰-type Schiff base ligand in its construction.

Compound (I) was prepared by the room-temperature layering reaction of Cu(tta)_3 in dichloromethane with the ligand L in ethanol. Emerald-green crystals formed upon diffusion of the two solutions into one another over the course of several weeks, and a suitable single crystal was selected for the structure determination. In (I), Cu²⁺ centers are found in a
distorted octahedral coordination environment and they are located on sites of crystallographic inversion symmetry. Consequently, each Cu²⁺ center is coordinated by pairs of symmetry-related ligands. A symmetry-related pair of tta ligands occupies the equatorial positions, with each tta ligand coordinated through its O atoms in a bidentate fashion. Two pyridyl N donor atoms, one from each of two different symmetry-related L ligands, complete the octahedral coordination by occupying the axial positions. The average Cu—O bond length is 2.085 Å, the Cu—N bond distance is 2.1062 (19) Å, and the intrachain distance between successive Cu centers is approximately 15.4 Å. The Cu—O and Cu—N distances are typical (Yang et al., 2001; Lingafelter & Braun, 1966), and the Cu···Cu distance provides an estimate of the length of L. The octahedrally coordinated Cu²⁺ centers are linked into one-dimensional chains by L, with each N-atom donor of a single L coordinated to two different Cu centers.

Experimental

Synthesis of the ligand L was accomplished by minor variation of the published literature procedure, using 4-pyridine carboxaldehyde rather than 3-pyridine carboxaldehyde (Dong et al., 2000b). Cu(tta)₂ was prepared in bulk as follows: thenoyltrifluoroacetone (Htta, 10 mmol) and NaOH (10 mmol) were added to ethanol (50 ml) to deprotonate the tta ligand (tta/C0). CuCl₂·H₂O (5 mmol) was then added to the tta/C0 solution to produce Cu(tta)₂ as a light-green precipitate. The precipitate was harvested by vacuum filtration and washed with cold ethanol for use in the next step. The title compound was obtained by slow diffusion of a solution containing L (0.1 mmol) dissolved in ethanol (8 ml) into a solution of Cu(tta)₂ (0.1 mmol) dissolved in dichloromethane (8 ml). Initially, the two solutions were carefully layered, and emerald-green crystals appeared at the interface of the two solutions after several weeks.

Crystal data

[Cu(C₈H₄F₃O₂S)₂(C₁₂H₁₀N₄)]

Mr = 716.12

Triclinic, P1

a = 8.6890 (11) Å
b = 9.7518 (13) Å

c = 10.2035 (13) Å

α = 116.398 (2)°

β = 99.417 (2)°

γ = 97.919 (2)°

V = 741.99 (17) Å³

Z = 1

Dᵣ = 1.603 Mg m⁻³

Mo Kα radiation

Cell parameters from 4033 reflections

θ = 2.3–25.1°

μ = 0.96 mm⁻¹

T = 294 (2) K

Prism, green

0.30 × 0.24 × 0.20 mm

Data collection

Bruker SMART APEX CCD diffractometer

ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2001)

2577 independent reflections

2495 reflections with I > 2σ(I)

Rint = 0.027

θmax = 25.1°

h = −10 → 10

k = −11 → 11

l = −12 → 12

Refinement

Refinement on F²

wR(F²) = 0.095

R(F²) > 2σ(F²) = 0.036

S = 1.07

2577 reflections

218 parameters

H-atom parameters constrained

w = 1/[σ²(F⁰)² + (0.0508P)² + 0.2977P]

where P = (F⁰² + 2Fc²)/3

(Δ/σ)max < 0.001

Δρmax = 0.31 e Å⁻³

Δρmin = −0.36 e Å⁻³

Figure 2

View of the crystal packing in (I). H atoms have been omitted.
Selected geometric parameters (Å, °).

<table>
<thead>
<tr>
<th>Bond/Distance</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu1—O1</td>
<td>1.9759 (15)</td>
</tr>
<tr>
<td>Cu1—N1</td>
<td>2.1062 (19)</td>
</tr>
<tr>
<td>Cu1—O2</td>
<td>2.1950 (18)</td>
</tr>
<tr>
<td>N2—N2</td>
<td>1.404 (4)</td>
</tr>
<tr>
<td>O1—Cu1—O1</td>
<td>180</td>
</tr>
<tr>
<td>O1—Cu1—N1</td>
<td>90.97 (7)</td>
</tr>
<tr>
<td>N1—Cu1—O2</td>
<td>87.16 (7)</td>
</tr>
<tr>
<td>O2—Cu1—O2</td>
<td>88.01 (6)</td>
</tr>
<tr>
<td>N1—Cu1—N1</td>
<td>180</td>
</tr>
</tbody>
</table>

Symmetry codes: (i) −x, −y + 2, −z + 1; (ii) −x + 1, −y + 1, −z.

H atoms were placed in geometrically idealized positions and included as riding atoms with C—H distances fixed at 0.93 Å and \(U_{eq}(H) = 1.2 U_{eq}(C) \). The thiophene ring of the tta ligand is disordered, and the disorder was modeled as a two-component rotational disorder about the ipso carbon bond (C10—C11). The two disorder components lie essentially in the same plane. The geometry of the minor component (C7B—C10B/S1B) was restrained to be similar to that of the major component (C7A—C10A/S1A). The pivot atom C10A/B is common to both components, and atoms less than 0.5 Å from their disorder counterparts were assigned equal displacement parameters. The total occupancy was restrained to sum to unity. The final refined occupancies are \(A/B = 0.773 (3)/0.227 (3) \).

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Version 6.22) and SADABS (Version 2.05). Bruker AXS Inc., Madison, Wisconsin, USA.

Financial support was provided by the National Science Foundation through grant numbers CHE: 0314164 and CHE: 0315152.

References

Financial support was provided by the National Science Foundation through grant numbers CHE: 0314164 and CHE: 0315152.

References

