2-2007

catena-Poly[[bis(α-thenoyltrifluoroacetonato-κ²O,O'')copper(II)]-μ-1,4-di-3-pyridyl-2,3-diaza-1,3-butadiene-κ²N:N']

William J. Perkins
Francis Marion University

Tamar Maxwell
Francis Marion University

Ken B. Williams
Francis Marion University

Andrea M. Goforth
University of South Carolina - Columbia

Mark D. Smith
University of South Carolina - Columbia

See next page for additional authors

Follow this and additional works at: https://scholarcommons.sc.edu/chem_facpub

Part of the [Chemistry Commons](https://scholarcommons.sc.edu/chem_facpub)

Publication Info

Published in *Acta Crystallographica Section E*, Volume E63, Issue 2, 2007, pages m423-m425.

Copyright © International Union of Crystallography

DOI: 10.1107/S1600536807000311

Publisher’s Version: http://dx.doi.org/10.1107/S1600536807000311

This Article is brought to you by the Chemistry and Biochemistry, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact dillarda@mailbox.sc.edu.
catena-Poly[[bis(α-thenoyl trifluoroacetonato-κ^2O,Ο')copper(II)]-μ-1,4-di-3-pyridyl-2,3-diaza-1,3-butadiene-κ^2Ν:Ν']

William J. Perkins, Tamara Maxwell, Ken B. Williams, Andrea M. Goforth, Mark D. Smith, LeRoy Peterson Jr and Hans-Conrad zur Loye
Willam J. Perkins, a Tamara Maxwell, a Ken B. Williams, a Andrea M. Goforth, b Mark D. Smith, b LeRoy Peterson Jr a and Hans-Conrad zur Loye b, c

Chemistry Department, Francis Marion University, Florence, South Carolina 29501, USA, and Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA

Correspondence e-mail: lpeterson@fmarion.edu

Key indicators

Single-crystal X-ray study
T = 294 K
Mean σ(C−C) = 0.004 Å
Disorder in main residue
R factor = 0.045
wR factor = 0.131
Data-to-parameter ratio = 14.6

Received 20 December 2006
Accepted 4 January 2007

catena-Poly[[bis(α-thenoyltrifluoroacetonoato-κ²O,O')copper(II)]-μ-1,4-di-3-pyridyl-2,3-diaza-1,3-butadiene-κ²N,N']

The title compound, [Cu(C₈H₄F₃O₂S)(C₆H₄N₂)]ₙ or [Cu(tta)₂(L₂)₂]ₙ (L₂ = 1,4-di-3-pyridyl-2,3-diaza-1,3-butadiene and tta = α-thenoyltrifluoroacetonoate), consists of undulating chains containing two crystallographically distinct CuII centers that are each located on inversion centers. Each CuII center exhibits distorted octahedral coordination provided by two pyridyl N atoms from two equivalent L2 ligands and four O atoms from two equivalent tta ligands. The chains interact through weak C—F···H—C contacts.

Comment

The synthesis of coordination polymers is of current interest due to their potential applications in a variety of areas, including catalysis, gas storage and nonlinear optics (Chin et al., 1993; Kitagawa et al., 2004; Janiak, 2003). Our group has been interested in utilizing N,N'-bipyridine-type ligands for the construction of new inorganic–organic coordination polymers, and we have synthesized several Schiff base ligands such as 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene (L1) and 1,4-bis(3-pyridyl)-2,3-diaza-1,3-butadiene (L2) for this purpose (Curtin et al., 2001; Dong et al., 2000). These efforts have resulted in the generation of many new coordination polymers (Perkins et al., 2005; Davis et al., 2004; Khalil et al., 2005; Dong et al., 2000a,b) including the title compound, (I), which is an example of a one-dimensional coordination polymer that utilizes L2 and tta (tta = α-thenoyltrifluoroacetonoate) in its construction.

The structure of (I) contains two distinct CuII centers that are both located on inversion centers and both are octa-
metal-organic papers

Figure 1
The structure of (I), with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. Cu atom shown in turquoise; O, red; N, blue; F, green; S, yellow; C, black. H atoms have been omitted. Only the major disorder component is shown. [Symmetry code: (i) \(-x, 1-y, -z\), (ii) \(1-x, -y, 1-z\).]

Figure 2
View of the crystal packing in (I).

hedrally coordinated by donor atoms from \(L2\) and tta. For each center (Fig. 1), the axial positions are occupied by two pyridyl nitrogen donors from two equivalent \(L2\) ligands, and the equatorial positions are occupied by four oxygen donors from two chelating and equivalent tta ligands. The Cu—N and Cu—O bond distances as well as the angles are all normal (Table 1), and the two independent Cu centers display only minor differences in their corresponding values. For the two centers combined, the average distances are 2.0984 (1) \(\text{Å}\) for Cu—N and 2.0850 (1) \(\text{Å}\) for Cu—O. Successive Cu···Cu2 centers are bridged by \(L2\) to form one-dimensional, undulating chains running in the crystallographic [2\(T\)2] direction. The packing arrangement (Fig. 2) depicts this undulating pattern that arises by virtue of the two pyridyl N atoms occupying the 3-positions on the two pyridyl rings of \(L2\). In comparison, linear chains are observed in an analogous crystal structure (Perkins et al., 2005) employing \(L1\) instead, with its two pyridyl N atoms located in the 4-positions of the two pyridyl rings. As expected in (I), the intrachain Cu···Cu separation of 11.3376 (3) \(\text{Å}\) is shorter than the corresponding distance of 15.4463 (12) \(\text{Å}\) that is observed in the aforementioned crystal structure where the Cu centers within a chain are spaced by the \(L1\) isomer.

In the crystal structure of (I), the individual chains are connected through weak C—H···F—C contacts involving H11 and F1 (F1···H11 = 2.54 \(\text{Å}\), C11—H11··· F1 = 143°). Such interactions are known to exist (Perkins et al., 2005; Dong et al., 1999; Choudhury et al., 2002; Prasanna & Row, 2001) in a variety of crystal structures. In the case of (I), the H···F distance is less than the sum of the van der Waals radii of F and H (2.67 \(\text{Å}\); Bondi, 1964). Hence, this interaction may help to organize and stabilize the packing of the chains in the crystal structure.

Experimental
All chemicals and solvents were purchased from commercial sources and used without further purification. The \(L2\) ligand (Dong et al., 2000) and Cu(tta)\(_2\) (Perkins et al., 2005) were prepared as previously described. The title compound was obtained by slow diffusion of a solution containing 0.10 mmol of \(L2\) dissolved in ethanol (8 ml) into a solution of 0.10 mmol of Cu(tta)\(_2\) dissolved in dichloromethane (8 ml). Emerald-green crystals formed at the interface of the two solutions after several weeks.

Crystal data
\[
\begin{align*}
\text{[Cu(C}_{3}\text{H}_{4}\text{F}_{2}\text{O}_{6}\text{S})_{2}(\text{C}_{2}\text{H}_{6}\text{N}_{4})]}
\end{align*}
\]

\[
\begin{align*}
V &= 1490.19 (13) \text{Å}^3 \\
Z &= 2 \\
\text{Triclinic, } & \text{\(P\text{T}\)} \\
\alpha &= 9.7970 (5) \text{Å} \\
b &= 12.5007 (6) \text{Å} \\
c &= 13.9823 (7) \text{Å} \\
\alpha &= 98.453 (1)^{\circ} \\
\beta &= 105.171 (1)^{\circ} \\
\gamma &= 110.736 (1)^{\circ} \\

\text{Data collection}
\end{align*}
\]

Brookhaven SMART APEX CCD diffractometer
16194 measured reflections
6101 independent reflections
4938 reflections with \(I > 2\sigma(I)\)
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
\(I_{\text{min}} = 0.816, I_{\text{max}} = 1.000\)
(expected range = 0.700–0.859)
H atoms were placed in geometrically idealized positions and included as riding atoms with C–H distances fixed at 0.93 Å. Both independent thioephene rings were found to be rotationally disordered about the ipso carbon bonds (C16–C17 and C24–C25). The disorder components of each ring lie essentially in the same plane. For each ring, the geometry of the minor component (C17B–C20B/S1B and C25B–C28B/S2B) was restrained to be similar to that of the major (C17A–C20A/S1A and C25A–C28A/S2A). The pivot atom C10(A/B) is common to both components, and atoms less than 0.5 Å from their disorder counterparts were assigned equal displacement parameters. The total occupancy was restrained to sum to unity. The final refined occupancies are C17–C20/S1 (A/B) = 0.776 (4)/0.224 (4) and C25–C28/S2 (A/B) = 0.818 (4)/0.182 (4).

Data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-Plus-NT (Bruker, 2001); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL.

Financial support from the National Science Foundation, awards CHE-0314164 and CHE-0315152, is gratefully acknowledged.

References

Table 1
Selected geometric parameters (Å, °).

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
<th>Bond</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu1–O1</td>
<td>2.0225 (19)</td>
<td>Cu2–O4</td>
<td>2.0108 (18)</td>
</tr>
<tr>
<td>Cu1–N1</td>
<td>2.111 (2)</td>
<td>Cu2–N4</td>
<td>2.096 (2)</td>
</tr>
<tr>
<td>Cu1–O2</td>
<td>2.1426 (18)</td>
<td>Cu2–O3</td>
<td>2.164 (2)</td>
</tr>
<tr>
<td>O1–Cu1–N1</td>
<td>88.71 (8)</td>
<td>O4–Cu2–N4</td>
<td>89.81 (8)</td>
</tr>
<tr>
<td>O1–Cu1–O2</td>
<td>88.10 (7)</td>
<td>O4–Cu2–O3</td>
<td>88.84 (7)</td>
</tr>
<tr>
<td>O1–Cu1–O2</td>
<td>91.90 (7)</td>
<td>O4–Cu2–O3</td>
<td>91.16 (7)</td>
</tr>
<tr>
<td>O1–Cu1–O2</td>
<td>91.14 (7)</td>
<td>O4–Cu2–O3</td>
<td>91.16 (7)</td>
</tr>
</tbody>
</table>

Symmetry codes: (i) −x, −y + 1, −z; (ii) −x + 1, −y, −z + 1.

<table>
<thead>
<tr>
<th>Refinement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refinement on F^2</td>
</tr>
<tr>
<td>R[F^2] > 2σ(F^2) = 0.045</td>
</tr>
<tr>
<td>wR(F^2) = 0.131</td>
</tr>
<tr>
<td>S = 1.04</td>
</tr>
<tr>
<td>6101 reflections</td>
</tr>
<tr>
<td>435 parameters</td>
</tr>
<tr>
<td>H-atoms parameters constrained</td>
</tr>
</tbody>
</table>

w = 1/[σ^2(F^2) + (0.0817P)^2] + 0.2214P |
\[w = \frac{1}{\sigma^2(F^2) + (0.0817P)^2} + 0.2214P\]