Sm$_2$NaIrO$_6$, a monoclinically distorted double perovskite

Samuel J. Mugavero III
University of South Carolina - Columbia

Irina V. Puzdrjakova
University of South Carolina - Columbia

Mark D. Smith
University of South Carolina - Columbia

Hans Conrad zur Loye
University of South Carolina - Columbia, zurloye@sc.edu

Follow this and additional works at: https://scholarcommons.sc.edu/chem_facpub
Part of the Chemistry Commons

Publication Info
Published in Acta Crystallographica Section E, Volume E61, Issue 1, 2005, pages i3-i5.
Copyright © International Union of Crystallography
DOI: 10.1107/S1600536804031836
Publisher's Version: http://dx.doi.org/10.1107/S1600536804031836

This Article is brought to you by the Chemistry and Biochemistry, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact dillarda@mailbox.sc.edu.
Sm$_2$NaIrO$_6$, a monoclinically distorted double perovskite

Samuel J. Mugavero III, Irina V. Puzdrjakova, Mark D. Smith and Hans-Conrad zur Loye
Sm$_2$NaIrO$_6$, a monoclinically distorted double perovskite

Single crystals of the lanthanide-containing iridate, disamarium sodium iridium hexaoxide, Sm$_2$NaIrO$_6$, were prepared via high-temperature flux growth and structurally characterized by single-crystal X-ray diffraction. The compound crystallizes in the monoclinic space group $P2_1/n$ and is a double perovskite, consisting of a 1:1 ordered rock-salt-type lattice of corner-shared NaO$_6$ and IrO$_6$ distorted octahedra. Samarium occupies the eightfold coordination site generated by the connectivity of the octahedra.

Comment

Recently the crystal growth and characterization of the double perovskites Ln$_2$LiIrO$_6$ (Ln = La, Pr, Nd, Sm and Eu) and Ln$_2$NaMO$_6$ (Ln = La, Pr and Nd, and M = Ru and Ir) from molten hydroxide fluxes was reported (Gemmill et al., 2004; Davis et al., 2004; Mugavero et al., 2005). High-temperature flux growth from molten hydroxides has proven to be an effective medium for oxide crystal growth. Sm$_2$NaIrO$_6$, a distorted double perovskite, was grown from a molten NaOH/CsOH flux at 923 K.

In its ideal form, the cubic perovskite ABO_3 consists of corner-sharing BO_6 octahedra with the A cation occupying the 12-fold coordination site formed in the middle of a cube of eight such octahedra (Mitchell, 2002). The ideal double perovskite structure of the general formula $A_2BB'O_6$ is obtained when the B cation is substituted by a B' cation in an ordered 1:1 fashion, doubling the unit cell. The $P2_1/n$ space group allows for a 1:1 ordered arrangement of the B and B' cations in a rock-salt-type lattice and the tilting of the BO_6 and $B'O_6$ octahedra to accommodate the small size of the A cation (Woodward, 1997a,b). The Glazer tilt system assigned to the $P2_1/n$ space group is $#10$, $a^-a^-b^+$ (Glazer, 1972). Sm$_2$NaIrO$_6$ is a monoclinically distorted structure of an ideal double perovskite where the Na$^+$ and Ir$^{5+}$ cations occupy the two crystallographically independent octahedral sites (site symmetry 1, Wyckoff symbol 2a; site symmetry 1, Wyckoff symbol 2b), while the Sm$^{3+}$ cations occupy the A site in an eightfold coordination environment (site symmetry 1, Wyckoff symbol 4e).

Experimental

Single crystals of Sm$_2$NaIrO$_6$ were grown from an ‘acidic’ high-temperature hydroxide melt. Sm$_2$O$_3$ (Alfa Aesar 99.9%, 0.75 mmol), Ir (Engelhard, 99.9%, 0.5 mmol), NaOH (Fisher, ACS reagent, 3.0 g) and CsOH (Alfa Aesar, 98%, 2.0 g) were loaded into a silver tube that had been previously flame-sealed at one end. The top of the tube was crimped and folded three times before being placed upright into a programmable box furnace. The tube was heated to 923 K over a...
Figure 1
Octahedral tilting in Sm₂NaIrO₆ with the [010] direction shown going into the page and displacement ellipsoids drawn at the 50% probability level. Sm⁺⁺ shown in blue, Ir⁵⁺ in black, Na⁺ in yellow and O²⁻ in red.

period of 1 h, held at that temperature for 24 h and then cooled to room temperature by shutting off the furnace. The black dodecahedral-shaped crystals were removed from the flux matrix by dissolving the flux in water and isolating the crystals by vacuum filtration.

Crystal data
Sm₂NaIrO₆
Mr = 611.89
Monoclinic, P2₁/n
a = 5.4656 (2) Å
b = 5.8880 (2) Å
c = 7.8714 (3) Å
β = 91.097 (1)°
V = 253.27 (2) Å³
Z = 2

Data collection
Bruker SMART APEX CCD diffractometer
ω scans
Absorption correction: multi-scan, (SADABS; Bruker, 2001)
Tmin = 0.075, Tmax = 0.140
4588 measured reflections

Refinement
Refinement on F²
R[F² > 2σ(F²)] = 0.026
wR(F²) = 0.052
S = 1.13
1112 reflections

1112 independent reflections
1049 reflections with I > 2σ(I)

Dab = 8.024 Mg m⁻³
Mo Kα radiation
Cell parameters from 3184 reflections
θ = 2.6–35.0°
µ = 49.13 mm⁻¹
T = 294 (1) K
Prism, black
0.06 × 0.04 × 0.04 mm

Selected geometric parameters (Å, °).

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Distance (Å)</th>
<th>Atoms</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sm1-O1</td>
<td>2.623 (4)</td>
<td>Na1-O1</td>
<td>2.254 (4)</td>
</tr>
<tr>
<td>Sm1-O2</td>
<td>2.340 (4)</td>
<td>Na1-O1si</td>
<td>2.255 (4)</td>
</tr>
<tr>
<td>Sm1-O3</td>
<td>2.348 (4)</td>
<td>Na1-O1sii</td>
<td>2.313 (4)</td>
</tr>
<tr>
<td>Sm1-O3si</td>
<td>2.552 (5)</td>
<td>Ir1-O2</td>
<td>1.965 (4)</td>
</tr>
<tr>
<td>Sml-O1</td>
<td>2.623 (4)</td>
<td>Ir1-O2</td>
<td>1.965 (4)</td>
</tr>
<tr>
<td>Sml-O1si</td>
<td>2.705 (4)</td>
<td>Ir1-O1</td>
<td>1.968 (4)</td>
</tr>
<tr>
<td>Sml-O3</td>
<td>2.896 (4)</td>
<td>Ir1-O1si</td>
<td>1.968 (4)</td>
</tr>
<tr>
<td>Na1-O2</td>
<td>2.254 (4)</td>
<td>Ir1-O3</td>
<td>1.970 (4)</td>
</tr>
<tr>
<td>Na1-O2si</td>
<td>2.254 (4)</td>
<td>Ir1-O3si</td>
<td>1.970 (4)</td>
</tr>
<tr>
<td>Ir1-O1-Na1</td>
<td>144.0 (2)</td>
<td>Ir1-O3-Na1</td>
<td>139.2 (2)</td>
</tr>
<tr>
<td>Ir1-O2-Na1si</td>
<td>137.7 (2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry codes: (i) -x+1, y-1/2, z-1/2; (ii) -x+1, y-1/2, z+1/2; (iii) x, y-1, z; (iv) x+1, y, z; (v) -x+1, y-1, z; (vi) x, y+1, z; (vii) x-1, y, z; (viii) x, -y+1, z; (ix) x+1, y+1/2, z+1/2; (x) x, y+1, z.

The highest residual electron density and the deepest hole are located approximately 1 Å from Sm1.

Data collection: SMART NT (Bruker, 2001); cell refinement: SAINT-Plus NT (Bruker, 2001); data reduction: SAINT-Plus NT: program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

This work was supported by the Department of Energy through grant DE-FG02-04ER46122 and the National Science Foundation through grant DMR:0134156. IVP acknowledges the 2004 NSF Summer Research Program in Solid State Chemistry (DMR:0303450) for financial support.

References

