Enhanced Methanol Oxidation and CO Tolerance Using CeO$_2$-Added Eggshell Membrane-Templated Pd Network Electrocatalyst

Qunwei Tang
Zhengping Mao
University of South Carolina - Columbia, maozh@cec.sc.edu
Shuguo Ma
Kevin Huang
University of South Carolina - Columbia, huang46@cec.sc.edu

Follow this and additional works at: https://scholarcommons.sc.edu/emec_facpub

Part of the Mechanical Engineering Commons

Publication Info
©RCS Advances 2012, Royal Society of Chemistry.
This article cannot be redistributed or further made available.
This article was first published by the Royal Society of Chemistry and can be found at http://dx.doi.org/10.1039/C2RA21189K

This Article is brought to you by the Mechanical Engineering, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact dillarda@mailbox.sc.edu.
Enhanced methanol oxidation and CO tolerance using CeO$_2$-added eggshell membrane-templated Pd network electrocatalyst

Qunwei Tang,a Zhengping Mao,a Shuguo Mab and Kevin Huanga*

Received 15th June 2012, Accepted 25th September 2012
DOI: 10.1039/c2ra21189k

Macroporous Pd and CeO$_2$-added Pd network catalysts have been synthesized using eggshell membrane (ESM) as a template for enhanced methanol oxidation and CO tolerance. The microstructural characterization revealed a hierarchically ordered macroporous network of Pd reproducing the fibrous structure of ESM for a Pd-only catalyst, and a flower-like CeO$_2$-decorated Pd morphological architecture for the CeO$_2$-added Pd catalyst synthesized by a precipitation method. XRD patterns indicated Pd and CeO$_2$ phases with good crystallinity. The cyclic voltammetry studies showed an enhanced electrocatalytic activity for methanol oxidation in acidic aqueous medium. Because of the preferential formation of Ce–CO bonds over Pd–CO bonds, the incorporation of CeO$_2$ into Pd-based catalysts results in an increased CO tolerance, making it a robust catalyst for methanol oxidation in direct methanol fuel cells.

1. Introduction

Direct methanol fuel cells (DMFCs) are currently under commercial development for residential, transportation and portable power applications due to their inherently high-energy conversion density, efficiency and low emissions.1,2 However, the progress of DMFC commercialization has been challenged by the high cost and inferior performance of electrocatalysts for the methanol oxidation reaction (MOR).3,4 Pt-based metals, despite exhibiting high activity for MOR, are rare, expensive, and prone to dissolving and agglomerating in acidic conditions over time. These shortcomings call for development of alternative electrocatalysts with better electrochemical and economical performances.

Pd is known to be the second-best electrocatalyst for MOR. It resembles Pt in many aspects of its chemical and physical properties (e.g., the same group in the periodic table, same fcc crystal structure, similar atomic size, etc.), but with lower cost.$^{6-8}$ Unfortunately, like Pt, Pd-based electrocatalysts also suffer CO poisoning (although to a lesser degree), resulting in a rapid deterioration in performance of DMFCs. The CO poisoning mechanism can be understood in that the surface of Pd is preferentially covered by CO in the form of an intermediate compound Pd–CO, causing the loss of catalytic activity on methanol. If the Pd–CO bond can be effectively broken by oxidation of CO to CO$_2$, the surfaces that were covered by CO can then be freed for catalytic reaction.9 One approach to lifting CO from the surface of Pd is to expose it to an oxidizing environment.10 Oxygen-containing species such as OH$_{ad}$ can be generated from H$_2$O. However, the activation of H$_2$O on the Pd surface is difficult and requires relatively high potentials.11 An alternative is to combine the Pd-based catalyst with an oxide that can release oxygen facilely.

Cerium oxide (CeO$_2$) is one of the most versatile rare-earth oxides that finds applications in catalysis,12 sensors,13 fuel cells,14 and oxygen storage.15 Its ability to supply oxygen-containing species for CO transfer has been observed in promoting MOR of a DMFC.16 Therefore, combining Pd with CeO$_2$ becomes a natural choice in developing a new robust electrocatalyst for MOR. In fact, CeO$_2$/Pd composite has been shown to be a good catalyst for methanol synthesis from a CO hydrogenation process, mainly benefiting from the strong interaction between Pd and CeO$_2$. It is the spontaneous conversion of CO to methanol enhanced by CeO$_2$ can then effectively avoid CO poisoning of the Pd catalyst, thus retaining Pd’s electrocatalytic activity.

Making a unique microstructure that can best fulfill the functionalities of CeO$_2$ and Pd particles to effectively catalyze the MOR plays a vital role in the ultimate performance of a DMFC. Because of its bio-mineralization nature has garnered, using eggshell membrane (ESM) as a template to synthesize a variety of functional materials with controllable morphologies much attention in recent years.$^{17-20}$ ESM is a typical double-layer water-insoluble membrane with interwoven fibrous structure attached inside a natural eggshell. It is composed of highly cross-linked and cystine-abundant proteins decorated by amines, amides, and carboxylic groups that can interact with metal ions, forming metal-polymer complexes on the membrane fibers where in situ oxidation and reduction can occur.21 After being dried and calcined, the resultant products would retain the porous...
structure, providing a high specific surface area and active sites for the final electrocatalysts. Therefore, ESM has been widely used for metal ion recovery and fluorescent metal nanoclusters. In this study, we demonstrate the use of ESM as a template to synthesize a network-structured CeO2-added Pd catalyst. The composite catalyst is then thoroughly characterized to show its potential as an excellent robust electrocatalyst for MOR in DMFC.

2. Experimental

Synthesis of Pd backbone networks using ESM as a template

The first step to make the Pd backbone networks is to separate eggshell membranes from commercial organic eggs. A typical separation procedure is described as follows.

Commercial organic eggs are gently broken and emptied via the blunt end. After washing with deionized (DI) water, the inner shell membrane and the limiting membrane are carefully removed. The remaining eggshells are then immersed in a 1 M HCl aqueous solution for 2 days to dissolve CaCO3 in the shell, leaving behind only the organic outer shell membrane. The surfaces close to the shell and the egg white are called “back” and “front” surfaces in this study, respectively. The thus-obtained ESM is finally repeatedly washed with DI water and sealed in DI water for future use.

The Pd backbones were grown by complexing reactions between Pd2+ ions and functional groups such as –COOH and –NH2 in the ESM. A typical synthesis procedure is described as follows: fresh ESMs are first immersed into 10 mM PdCl2 (59% Pd, Acros Organics Co.) aqueous solution at room temperature. After about one week, the ESMs loaded with Pd are washed thoroughly with DI water to remove the residue solution. The cleaned Pd-ESMs are then dried at 60 °C for 12 h, followed by calcining at 500 °C for 6 h in air and then in H2 for 9 h to obtain the final CeO2-added Pd catalyst.

Electrochemical characterizations of CeO2-added Pd catalysts

Both Pd and CeO2-added Pd discs were prepared by uniaxially pressing 2 g of the powders under a pressure of 10 tons and sintering at 800 °C for 12 h to achieve the desired density. The electrocatalytic activity of the synthesized CeO2-added Pd catalyst was assessed using the cyclic voltammogram (CV) method carried out in a three-electrode configuration with a ZAHNER IM6 electrochemical station. During a typical CV measurement, Pd and CeO2-added Pd catalysts in a 2 cm diameter disc shape were used as the working electrodes, Pt wire as the counter electrode, and Ag/AgCl in saturated KCl solution as the reference electrode. The electrolyte contains a solution of 2–50 vol% methanol in 0.25 M H2SO4 solution. Each CV curve was scanned within a 1.0 V window either from 0 to 1.0 V and back to 0 V or from −0.5 to 1.5 V and back to −0.5 V at a scan rate of 50 mV s−1 or otherwise specified. Each CV curve was swept twice, but only the 2nd cycle was used for this study. To evaluate the stability of the catalyst upon cycling, up to 50 cycles of scanning were performed for an electrolyte solution of 20 vol% methanol in 0.25 M H2SO4.

Electrochemical impedance spectroscopy (EIS) was also performed in the frequency range from 0.1 to 105 Hz with an applied amplitude of 10 mV to study the underlying electrode reactions. All the experiments were carried out at room temperature. The electrodes and the electrolytes were the same as in the CV tests.

Other characterizations

The morphologies of the prepared ESM, Pd backbone networks and CeO2-added Pd structure were observed with a Zeiss Ultra plus field emission scanning electron microscopy (FESEM). The phases were identified by a Rigaku D/max-A X-ray diffractometer.

Fig. 1 FESEM images of the prepared ESM: (a) front surface; (b) back surface; (c) cross-section.
using Cu-Kα radiation (λ = 0.154 nm) from 2θ = 10–90°. The pore size distributions were analyzed by an AutoPore IV9500 mercury porosimeter (Micromeritics, USA) in a pressure range of 0.5–30000 psia.

3. Results and discussion

Microstructure of ESM-templated Pd-based electrocatalysts

The microstructure of the front surface of the natural ESM template prepared in this work is shown in Fig. 1a as FESEM images. The membrane consists of a macroporous network of interwoven and coalescing shell membrane fibers ranging in diameter from 1 to 3 μm. This is in striking contrast to the images of the back surface, Fig. 1b, where a layer of closely packed micron-scale particles is seen. The difference between the two surfaces implies that the ESM network is hierarchically ordered which can be further seen in the cross-sectional view shown in Fig. 1c. The analysis of ESM pore structure with mercury porosimetry reveals porosity and mean pore diameter of the ESM as 38.69% and 2.39 μm, respectively (Table 1).

The Pd catalyst network derived from the ESM template is shown in Fig. 2a–c as front surface, back surface and cross-sectional views. In comparison with the ESM template shown in Fig. 1, the resultant Pd network has clearly reproduced the fibrous structure of the ESM not only with a similar fiber diameter, but also a similar porosity (39%) and average pore diameter (2.33 μm), see Table 1. This characteristic is very important for the prepared ESM-Pd to be a good catalyst for MOR as the micropores can facilitate the mass transport and increase the reaction surface area in the catalyst layer.

The microstructure of the CeO2-added Pd catalyst synthesized via route (i) is shown in Fig. 3. The CeO2 nanoparticles appear to be homogeneously dispersed on the surfaces of the Pd networks. However, agglomeration of CeO2 nanoparticles is also observed on the front surface, Fig. 3a. In contrast, the back surface is densely covered by a layer of CeO2 nanoparticles, see Fig. 3b. The entire membrane becomes much denser than that of Pd-only membrane, as suggested by the cross-sectional view shown in Fig. 3c. The slightly increased effective porosity and decreased average pore size are apparently caused by the nano-structured CeO2.

The microstructure of the CeO2-added Pd catalyst synthesized via route (ii) is completely different. Fig. 4a shows that the precipitated CeO2 form flower-like structures on the surface of the macroporous Pd network. A single CeO2 flower, as shown in Fig. 4b, has a size of 17 μm and comprises of many nano-needles with a length of ~9 μm. These nano-needles appear to grow from a layer of CeO2 covered on Pd networks. The CeO2 hierarchical architectures of vertically aligned nano-needle arrays on the front surface of membrane are displayed in Fig. 4c. Large numbers of CeO2 nano-needles are also observed in Fig. 4d in a highly oriented and vertically aligned state with high density. The area of the cross-sectional surface is about 0.5 × 2 μm2 and has a length of 12 μm. Technically, nanostructured CeO2 have attracted great attention because of their remarkable chemical/physical properties and potential applications in catalysis and

<table>
<thead>
<tr>
<th>Parameters</th>
<th>ESM</th>
<th>Pd</th>
<th>CeO2-added Pd-(i)</th>
<th>CeO2-added Pd-(ii)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porosity (%)</td>
<td>39</td>
<td>39</td>
<td>41</td>
<td>43</td>
</tr>
<tr>
<td>Pore diameter (μm)</td>
<td>2.39</td>
<td>2.33</td>
<td>0.64</td>
<td>1.29</td>
</tr>
</tbody>
</table>

Table 1 Porosity and average pore diameter of ESM, macroporous Pd and CeO2-added Pd catalysts prepared via routes (i) & (ii)

Fig. 2 FESEM images of macroporous Pd catalyst network derived from ESM template: (a) front surface; (b) back surface; (c) cross-section.

Fig. 3 FESEM images of macroporous CeO2-added Pd catalyst synthesize in route (i): (a) front surface; (b) back surface; (c) cross-section.
energy conversion devices. Many recent efforts have also been devoted to hierarchically assembling nano-scale CeO$_2$ building blocks, such as nanorods and nanosheets, into ordered complex hierarchical architectures, to achieve novel catalytic properties. The synthesized flower-like CeO$_2$ architecture integrated within Pd-backbone networks in this study certainly presents a way of making abundant reactive sites in Pd–CeO$_2$–methanol triple-phase regions for high-performance catalysts for methanol oxidation.

Structural analysis

Crystal structure and crystallinity of the synthesized macroporous Pd and CeO$_2$-added Pd catalysts were examined by XRD and the results are shown in Fig. 5. The strong diffraction peaks of Pd catalyst are detected at $2\theta = 40.4$, 46.7, 68.1, and 82.3°, which corresponds to indices of (111), (200), (220), and (311) phases, respectively. For the CeO$_2$-added Pd catalysts synthesized by routes (i) & (ii), all the characteristic peaks of CeO$_2$ at $2\theta = 28.7$, 33.1, 47.5, 56.4, 59.2, 69.4, 76.9, 79.2, and 88.6°, can be indexed into (111), (200), (220), (311), (222), (400), (331), (420), and (422) of a fcc cubic structure, respectively. The XRD results confirm that the obtained catalysts are the only combination of CeO$_2$ and Pd. However, the element analysis from X-ray photoelectron spectra (XPS) show that there are carbon remnants in the Pd and CeO$_2$-added Pd catalysts (Table 2).

Electrocatalytic activities for methanol electro-oxidation

To examine the electrocatalytic activity of the macroporous Pd and CeO$_2$-added Pd catalysts for MOR, we also studied the effect of electrolyte solution at room temperature: (i) a mixture of methanol and H$_2$SO$_4$ (0.25 M) in which the volume fraction of methanol varies among 2, 5, 10, 20, 30, 40, 50 vol%, and (ii) a 0.3 M [MIm]$^+$$\text{H}_2\text{SO}_4$ methanol solution. Fig. 6a shows the CV curves using Pd catalyst as the working electrode and methanol-H$_2$SO$_4$ (0.25 M) mixture as the electrolyte solution. The forward peak at around ~ 0.16 V would feature the hydrogen desorption on metallic Pd, which is caused by a dissolution of the adsorbed hydrogen into the bulk of the Pd electrodes. The forward current-density peak, I_f, at ~ 0.4 V relates to the MOR whereas the backward weak current-density peak, I_b, corresponds to the oxidation of COads-like species, generated via incomplete oxidation of methanol during the forward scan. It is evident that both peak current densities depend on the concentration of methanol. Similar CV behaviors are also
observed on CeO$_2$-added Pd catalyst in Fig. 6b&c. Regardless of catalyst employed, the peak current density of MOR depends strongly on the methanol concentration in H$_2$SO$_4$ electrolyte solution. Fig. 6d shows I_f of MOR as a function of methanol concentration. It is interesting to see that I_f peaks at 5 vol% methanol. The observed critical concentration effect reflects the oxidation rate of each electrocatalyst, beyond which the accumulation of oxidation products adsorbed at the active sites of an electrode surface could hinder further oxidation. Evidently, CeO$_2$-added Pd-route (ii) has a higher capability to oxidize more methanol than the other two catalysts. The observation of critical concentration effect has also been confirmed by methanol oxidation using nickel impregnated silicalite.40 The highest I_f of the CeO$_2$-added Pd synthesized via route (ii) are probably a result of the formed high density of triple-phase boundary achieved by precipitation method. In ref. 17–20, it has been suggested that a strong chemical bonding such as Pd–O–Ce may exist at the interface between Pd and CeO$_2$, which can enhance electron transfer from Pd to CeO$_2$, leading to the acceleration of electrocatalytic kinetics.18

The preliminary stability of the studied catalysts in 20 vol% methanol and 0.25 M H$_2$SO$_4$ aqueous solution was examined by performing 50 cycles of CV scans from 0 to 1.0 V and back to 0 V at a scan rate of 50 mV s$^{-1}$. Fig. 7a shows all the 50 CV cycles while the stability as measured by the change in I_f is shown in Fig. 7b. A slight degradation is observed, indicating a high stability of the resultant electrocatalysts.

CO poisoning of precious metal electrocatalyst materials, such as Pd, is one of the key barriers to a successful commercialization of DMFC. The CO produced during the MOR occupies active sites on the Pd catalyst, thus hindering fuel oxidation. The CO$_{ads}$-like species are mostly in the form of linearly bonded Pd–C=O. Here we use the ratio of the forward anodic peak current density to the back anodic peak current density (I_f/I_b) as a factor to evaluate the CO poisoning tolerance of an electrocatalyst. A large I_f/I_b ratio represents a more complete MOR to CO$_2$, less accumulation of CO$_{ads}$-like species on the catalyst surface, and thus a better CO-poisoning tolerance of Pd catalysts, vice versa for low I_f/I_b ratio, which has been employed in the literature.41,42 The I_f/I_b ratios of the Pd catalyst in Fig. 8, ranging from 0.98 at 2

Table 2 Comparison of elemental composition values obtained from C 1s, Pd 3d, Ce 3d, and O 1s XPS peak analyse

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Pd 3d</th>
<th>CeO$_2$-added Pd-(i)</th>
<th>CeO$_2$-added Pd-(ii)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>37.96</td>
<td>51.49</td>
<td>24.15</td>
</tr>
<tr>
<td>Pd</td>
<td>12.14</td>
<td>1.93</td>
<td>15.45</td>
</tr>
<tr>
<td>O</td>
<td>49.88</td>
<td>42.01</td>
<td>4.18</td>
</tr>
<tr>
<td>Mass (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>17.91</td>
<td>28.95</td>
<td>29.98</td>
</tr>
<tr>
<td>Pd</td>
<td>50.76</td>
<td>9.61</td>
<td>31.46</td>
</tr>
<tr>
<td>O</td>
<td>31.33</td>
<td>31.46</td>
<td>8.48</td>
</tr>
</tbody>
</table>

Fig. 6 CV curves of the macroporous (a) Pd, and (b) & (c) CeO$_2$-added Pd network catalysts synthesized in route (i) and route (ii), respectively. The curves were recorded in x vol% methanol and 0.25 M H$_2$SO$_4$ aqueous solution and scanned from 0 to 1.0 V and back to 0 V at a scan rate of 10 mV s$^{-1}$. (d) Plots of peak current density versus concentration of methanol in 0.25 M H$_2$SO$_4$ electrolyte solution.
vol% and 0.37 at 50 vol%, are similar but little lower than Pd/C, Pt/C and PtRu/C in previous reports.\(^{41,42}\) The observed \(\sim 300\%\) enhancements on \(I_f/I_b\) values of CeO\(_2\)-added Pd catalysts synthesized in route (ii) over that of Pd catalyst suggests a significantly improved CO poisoning tolerance by the presence of CeO\(_2\). This is clearly attributed to the presence of CeO\(_2\). With CeO\(_2\) in the catalyst structure, CO molecules can preferentially react with CeO\(_2\) to form CO–Ce bonds rather than reacting with Pd to form Pd–CO bonds.\(^{43}\) Under a low potential, the electrochemical MOR on the surface of a Pd electrocatalyst can be generally described by

\[
Pd + CH_3OH \rightarrow Pd\text{–}CO + 4H^+ + 4e^- \quad (1)
\]

\[
Pd + H_2O \rightarrow Pd\text{–}OH + H^+ + e^- \quad (2)
\]

\[
Pd\text{–}CO + Pd\text{–}OH \rightarrow 2Pd + CO_2 + H^+ + e^- \quad (3)
\]

In the presence of CeO\(_2\), CO preferentially reacts with CeO\(_2\) to form a stronger CeO\(_2\)–CO bond than Pd–CO; therefore, the number of CeO\(_2\)–CO is much higher than Pd–CO, indicating that the reaction (7) has a larger contribution than reaction (6). The Pd–CO and CeO\(_2\)–CO can be depleted by reacting with oxygen-containing species such as Pd–OH generated from H\(_2\)O.

\[
Pd + CeO_2 + 2CH_3OH \rightarrow Pd\text{–}CO + CeO_2\text{–}CO + 8H^+ + 8e^- \quad (4)
\]

\[
Pd + H_2O \rightarrow Pd\text{–}OH + H^+ + e^- \quad (5)
\]

\[
Pd\text{–}CO + Pd\text{–}OH \rightarrow 2Pd + CO_2 + H^+ + e^- \quad \text{(minor)} \quad (6)
\]

\[
CeO_2\text{–}CO + Pd\text{–}OH \rightarrow CeO_2 + Pd + CO_2 + H^+ + e^- \quad \text{(major)} \quad (7)
\]

EIS has been a powerful and sensitive technique to study electrochemical kinetics, for instance, in the investigations of electro-oxidation process of methanol molecules in fuel cells.\(^{44-46}\) With the observed beneficial effect from CeO\(_2\) in CV studies, we have also performed EIS on the same cells for further elaboration of MOR mechanisms. Fig. 9 shows the impedance spectra measured on Pd, and CeO\(_2\)-added Pd catalysts in 20 vol% methanol–0.25 M H\(_2\)SO\(_4\) electrolyte from 10\(^5\) to 0.1 Hz. The semicircle appearing in the intermediate frequency region corresponds to the charge transfer process, the diameter of which, corresponding to charge-transfer resistance \(R_{ct}\), is lowest for CeO\(_2\)-added Pd-(ii), followed by CeO\(_2\)-added Pd-(i) and pure Pd for the electrolyte solution, indicating enhanced charge transfer by CeO\(_2\) for MOR. The 45° slope observed at low
frequency electrode spectrum in all the EIS suggests a semi-infinite diffusion process (Warburg impedance). All the observations are consistent with the results from CV measurements.

4. Conclusions
A new eggshell membrane (ESM)-templated approach to synthesizing macroporous network-structured electrocatalysts for enhanced methanol oxidation and CO tolerance has been demonstrated in this study. The synthesized Pd and CeO₂-added Pd catalysts were thoroughly characterized by SEM, pore analysis, XRD, XPS, and CV. It was found that the CeO₂ deposited in the ESM-templated porous Pd microstructure exhibited a flower-like morphology, resulting in large surface area for the electrochemical oxidation of methanol. Benefiting from the preferential formation of Ce–CO bond, the commonly encountered CO poisoning on Pd catalyst has been avoided and therefore a high electrocatalytic activity of Pd network has been retained for CeO₂-containing Pd-based electrocatalysts. Compared to the Pd catalyst, the CeO₂-added Pd catalyst synthesized by a precipitation method shows enhancement by a factor of two in current density of electro-MOR, a direct measure of electro-catalytic activity. The charge transfer kinetics is notably enhanced by combining CeO₂ with Pd catalyst. Due to the unique macroporous network structure, the synthesized catalysts also showed good long-term stability. In addition, the electro-MOR involved in the synthesized catalysts were found to follow a semi-infinite diffusion-controlled mechanism with methanol–H₂SO₄ as the electrolyte. Overall, it was shown that the integration of Pd with CeO₂ is a promising approach to synthesizing a high performance, highly stable and low-cost electrocatalyst with an excellent CO tolerance.

Acknowledgements
The authors would like to thank DARPA (W91CRB-10-1-0007) for financial support.

References