Predicting Shunt Currents in Stacks of Bipolar Plate Cells with Conducting Manifolds

H. S. Burney

Ralph E. White

University of South Carolina - Columbia, white@cec.sc.edu

Publication Info
© The Electrochemical Society, Inc. 1988. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS). The archival version of this work was published in the Journal of the Electrochemical Society.
http://www.electrochem.org
10.1149/1.2096069
http://dx.doi.org/10.1149/1.2096069

Follow this and additional works at: http://scholarcommons.sc.edu/eche_facpub

Part of the Chemical Engineering Commons

This Article is brought to you for free and open access by the Chemical Engineering, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact SCHOLARC@mailbox.sc.edu.
Predicting Shunt Currents in Stacks of Bipolar Plate Cells with Conducting Manifolds

H. S. Burney*

The Dow Chemical Company, Texas Applied Science and Technology Laboratories, Freeport, Texas 77541

R. E. White*

Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122

ABSTRACT

A method is presented for predicting shunt currents in stacks of bipolar plate cells with conducting manifolds. The method is based on the requirement that the potential drop through the solution in a manifold be large enough to force current to leave the solution and to enter the conducting manifold. The current that leaves the solution in the manifold enters the conducting manifold at the anode end of the stack and returns to the solution at the cathode end. This could cause catastrophic failure of a manifold.

Shunt currents occur in stacks of bipolar plate electrolyzers because of the common electrolytic solutions. Previous work (1, 2) has shown how to determine shunt currents for electrolyzers that have nonconducting manifolds. The purpose of this paper is to present a method for determining shunt currents in electrolyzers with conducting manifolds. It is important to account for shunt currents in large stacks of bipolar plate cells with conducting manifolds because of the possibility of producing unwanted species in the manifolds (hydrogen gas in the chlorine gas/anolyte manifolds of chlor-alkali cells, e.g.) and the much worse possibility of failure of the manifolds due to dissolution. Conducting (metal) manifolds are often selected over other piping materials for economic reasons. For example, in the case of the membrane chlor-alkali process, titanium and nickel are highly corrosion resistant to the anolyte and catholyte, respectively. Plastic (i.e., PTFE) lined steel pipe is often used for the piping of this process. Unfortunately, a typical manifold does not have standard lined pipe dimensions; consequently, fabrication of a manifold with a plastic liner would be difficult.

Figures 1 and 2 show pictorially and schematically, respectively, how shunt current can enter a conductor in an electrolytic solution. As shown in the figures, current enters a brine solution by oxidation of chloride ions to form primarily chlorine gas, travels in the solution to a platinum foil, enters the foil by reduction of water to form hydrogen gas, and leaves the foil by oxidation of chloride ions. Finally, the current leaves the cell by reduction of water.

If the Pt foil in Fig. 2 were replaced with a commercially pure Ti foil, anodic current would cause dissolution of the titanium, which would occur at the end of the foil nearest the cathode. If the solution in Fig. 2 were changed to a sodium hydroxide solution and the foil changed to nickel, shunt current might leave the foil by oxidation of hydroxyl ions to form oxygen which would be an impurity gas in the hydrogen of a chlor-alkali cell. Consequently, it is desirable to be able to predict the location and extent to which shunt currents enter and leave conducting manifolds in electrolyzers. This can be done in a worst case sense by a simple extension of a previously published model (1, 2).

* Electrochemical Society Active Member.

Model

Figure 3 is a circuit analog model for shunt currents in a stack of bipolar cells with conducting manifolds. The circuit includes current paths through the wall of the manifold (I_w) and in the metal manifold (I_M). Values for these currents can be obtained by extending the set of equations presented earlier (1, 2), as shown in Part I of the Appendix, and solving these equations after values have been set for the input variables: N, I_T, V_0, R_m, R_w, R_m, and R_w. Values for N, I_T, V_0, R_m, and R_w are set in the same way as before (1, 2), and a value for the resistance of a segment of manifold (R_m) can be obtained in the usual manner by using the specific resistance of the metal (\(\rho\)), the length of the current path in the manifold segment (L), and the cross-sectional area of the current path (A).

\[
R_m = \frac{\rho L}{A}
\]

[1]

Values for the resistances R_m are determined in an iterative process that yields values for the branch currents and, consequently, the shunt currents. The first step in the process is to ignore the top half of the circuit in Fig. 3 and solve for I_M, I_w, and I_T as before (1, 2). The branch currents in the solution phase of the manifold (I_T) can then be used to predict the potential drop from point a to point b in Fig. 3.

\[
V_\text{SE} = \sum_{i=1}^{N} R_i I_i\text{ first step in iteration process}
\]

[2]

If \(V_\text{SE}\) is less than the decomposition potential, \(V_d\), for the electrochemical reactions associated with the shunt current entering and leaving the conducting manifold (\(V_d = \text{Nernst potential plus overpotentials}\)), no current will enter the wall of the manifold. If \(V_\text{SE}\) is larger than \(V_d\), current will enter the metal wall of the manifold because it would then offer the path of least resistance. For a worst case basis, the decomposition potential can be set equal to the Nernst potential (i.e., ignore the overpotentials) and the wall resistance set equal to zero. In a more realistic case for titanium and other valve metals, it may be desirable to include the pitting potential (4) in the decomposition potential. It is important to note that if the number of cells in the...
stack is small, as it may be in a pilot plant, then it is possible that no shunt current would enter the conducting manifold. However, this situation could change for a larger number of cells in a stack.

When \(V_d \) is found to be larger than \(V_{shunt} \), the next step in the iteration procedure is to determine where the shunt currents enter and leave the conducting manifold. Figure 4 shows schematically the steps to do this. The values of \(I_{4j} \) for \(j = 2 \) to \(N-1 \) are set equal to zero exactly by changing the resistive network to that shown in step 1 of Fig. 4 (see Part II of the Appendix). By removing branch currents \(I_{4j} \) for \(j = 2 \) to \(N-1 \) from the original network shunt current is allowed to enter and leave the manifold wall via \(I_{4,1} \) and \(I_{4,N} \), respectively. Next, the branch currents and \(V_{shunt} \) are recalculated. If the new value of \(V_{shunt} \) is still greater than \(V_{d} \), current paths and \(I_{4,2} \) and \(I_{4,N-1} \) are added to the network as shown in step 2 of Fig. 4. The branch currents and \(V_{shunt} \) are calculated again and the process continued until \(V_{shunt} \approx V_{d} \).

Results and Discussion

Table I presents the input values and shows the predicted branch currents for a case where the conducting manifold is made of Ti with a DSA coating on the inside of the manifold and the electrolyte in the manifold is an acidified brine solution. This method of protecting Ti pipe in chlor-alkali service has been described by others (5, 6). In this case the electrochemical reactions for current entering and leaving the metal manifold would be production of hydrogen and chlorine, respectively. The predicted shunt currents given in Table I can be used to calculate the current efficiency of the stack and the amounts of gases generated due to the shunt currents entering and leaving the conducting manifold. In this case, the current efficiency for the stack is high and the amount of gas generated is low. It is worth noting that when the brine becomes saturated with chlorine, hydrogen gas may not be evolved. However, during start up, shut down, and other transient periods the amount of \(H_2 \) produced due to shunt currents may lead to explosive gas mixtures. Depending on the electrolyte and material of construction of the manifold, a metal dissolution reaction might be possible instead of oxidation of chloride ions to chlorine. This type of reaction could lead to rapid failure of the manifold.

Figure 5 shows how the shunt current is distributed along the manifold for the case shown in Table I. Also shown in Fig. 5 is the shunt current distribution for the same case with a nonconducting manifold. It is interesting that the total shunt current (sum of the electronic path and ionic path shunt currents) is about 4% higher for the conducting manifold case. For a smaller number of cells it can be shown that no current would take the electronic path because the potential drop in the solution in the manifold would not be large enough to force current to enter the conducting manifold, as mentioned above.

The model presented here was also used to predict the shunt currents that were measured in a 60-cell membrane chlor-alkali demonstration plant located at The Dow Chemical Company’s plant site in Freeport, Texas. An example of the type of electrolyzer on which the measurements were made is shown in Fig. 6. The curved piping (tubes) extending from each cell in the electrolyzer is a Teflon type material which connects to the metallic manifolds. The manifolds are the larger straight piping members which are blind flanged at one end and lead away from the electrolyzer at the other end. The current flow in the anolyte and catholyte inlet tubes at each terminal cell and in each of the third inlet tubes from the terminal cells was measured with a clip-on ammeter as described in an earlier paper (2). The input variables, which reflect the operating conditions of the demonstration plant at the time that the shunt current measurements were made, are listed in Table II. The model was used separately to predict the shunt currents in the anolyte inlet manifold and the catho-
lyte inlet manifold. A value of 1.5V for V_d was selected for the anolyte inlet manifold case and is based on the reactions shown in Fig. 2. For the catholyte inlet manifold case, the reactions are oxidation of OH⁻ and reduction of H₂O in a strong caustic solution. For this case a value of 1.4V was used for V_d.

As shown in Table III the accuracy of the model predictions is within 96-100% of the measured values. Figures 7 and 8 show how the shunt currents are distributed along the anolyte and catholyte inlet manifolds, respectively. Note that the major portion of the shunt currents are conducted by the metal manifolds (electronic current paths). The magnitudes of the ionically conducted currents appear to be zero along much of the length of the manifolds, but are actually small values. The length of the manifold over which the value of $V_d = V_a$ is illustrated graphically by the center portions of each of the two curves in Fig. 7 and 8. This length was equal to the distance of 16 and 14 cell positions for the anolyte and catholyte inlet manifolds, respectively.

Summary

It has been shown how to extend and use a previously presented model to predict shunt currents in a bipolar plate stack of cells with conducting manifolds. The method consists of determining the new branch currents in the circuit analog model by using the concept that the

Table I. Branch currents for a DSA coated Ti manifold filled with acidified brine

<table>
<thead>
<tr>
<th>j</th>
<th>$I_{a,j}$</th>
<th>$I_{i,j}$</th>
<th>$I_{1,j}$</th>
<th>$I_{3,j}$</th>
<th>$I_{5,j}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.72915</td>
<td>0.00106</td>
<td>0.72807</td>
<td>0.72807</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.65088</td>
<td>0.00201</td>
<td>0.64993</td>
<td>1.37800</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.65088</td>
<td>0.00201</td>
<td>0.64993</td>
<td>1.37800</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.49437</td>
<td>0.00285</td>
<td>0.49722</td>
<td>1.94978</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.49437</td>
<td>0.00285</td>
<td>0.49722</td>
<td>1.94978</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.72915</td>
<td>0.00106</td>
<td>0.72807</td>
<td>0.72807</td>
<td></td>
</tr>
</tbody>
</table>

The accuracy of the model predictions is within 96-100% of the measured values. Figures 7 and 8 show how the shunt currents are distributed along the anolyte and catholyte inlet manifolds, respectively. Note that the major portion of the shunt currents are conducted by the metal manifolds (electronic current paths). The magnitudes of the ionically conducted currents appear to be zero along much of the length of the manifolds, but are actually small values. The length of the manifold over which the value of $V_d = V_a$ is illustrated graphically by the center portions of each of the two curves in Fig. 7 and 8. This length was equal to the distance of 16 and 14 cell positions for the anolyte and catholyte inlet manifolds, respectively.

Table III. Comparison of measured and predicted connecting tube currents ($I_{1,j}$)

<table>
<thead>
<tr>
<th>Tube location</th>
<th>Measured current, A</th>
<th>Predicted current, A</th>
<th>Percent of measured value, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anolyte inlet case</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.9</td>
<td>1.831</td>
<td>96</td>
</tr>
<tr>
<td>2</td>
<td>1.7</td>
<td>1.706</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>-1.7</td>
<td>-1.706</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>-1.9</td>
<td>-1.831</td>
<td>96</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catholyte inlet case</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4.3</td>
<td>4.2897</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>4.1</td>
<td>4.035</td>
<td>99</td>
</tr>
<tr>
<td>3</td>
<td>4.05</td>
<td>3.9971</td>
<td>99</td>
</tr>
<tr>
<td>4</td>
<td>-4.05</td>
<td>-3.9971</td>
<td>99</td>
</tr>
<tr>
<td>5</td>
<td>-4.3</td>
<td>-4.2897</td>
<td>100</td>
</tr>
</tbody>
</table>

\[E = \text{decomposition potential of reactions at manifold wall}, V \]

Fig. 4. Network changes in steps

Fig. 5. Comparison of predicted manifold currents with and without a conducting manifold.

Fig. 6. Illustration of a bipolar membrane electrolyzer with conducting manifolds.
the electrolytic reactions are known to cause dissolution of the manifold piping, the model could be used to determine the maximum number of cells in a stack that would prevent loss of the manifold walls due to dissolution by shunt currents.

Acknowledgment

The authors acknowledge gratefully that this work was supported by the Texas Applied Science and Technology Laboratories of Dow Chemical USA.

Manuscript submitted July 13, 1987; revised manuscript received Dec. 7, 1987.

The Dow Chemical Company assisted in meeting the publication costs of this article.

APPENDIX

Part I

The branch currents in Fig. 4 \(I_{1j}, I_{2j}, I_{3j}, I_{4j}, \) and \(I_{5j} \) can be obtained by using Kirchhoff's loop and node rules. The governing equations at the first node are

\[
\begin{align*}
I_x &= I_{1j} + I_{3j} \\
I_{2j} &= I_{4j} + I_{5j} \\
V_o &= -R_I I_{1j} + R I_{2j} + R_{m} I_{3j} - R_D I_{5j} \quad [A-4]
\end{align*}
\]

The governing equations for the middle nodes are

\[
\begin{align*}
I_{1j-1} &= I_{1j} + I_{3j} \\
I_{3j-1} &= I_{4j} + I_{5j} \\
V_o &= -R_I I_{1j} + R D I_{3j} + R D I_{4j} - R D I_{5j+1} \quad [A-9]
\end{align*}
\]

Finally, the governing equations at the last node are

\[
\begin{align*}
I_{1N-1} &= I_{2N} + I_{1N} \\
I_{3N-1} &= I_{4N} \\
I_{5N-1} &= I_{4N} \\
I_{5N} &= 0 \\
I_{3N} &= 0 \quad [A-14, A-15]
\end{align*}
\]

Equations \([A-1]\) through \([A-15]\) can be solved by using a simple extension of the method presented in Appendix A of Ref. (1). In this case, five unknowns exist at each node point instead of three.

Part II

The currents \(I_{4j} \) for \(1 < j < N \) in Fig. 3 can be set equal to zero exactly when using a computer program based on BAND(J) by removing \(I_{4j} \) from Eq. \([A-7]\) and \([A-8]\) and by replacing Eq. \([A-10]\) by the statement that

\[
I_{4j} = 0 \quad [A-16]
\]

That is, if \(I_{4j} \) is defined to be unknown number 4 \([C(4, j)]\) and Eq. \([A-7]\) and \([A-8]\) defined to be equation numbers 2 and 3, then in the program \(B(4, 4) = 0.0 \) and \(B(3, 4) = 0.0 \), and if Eq. \([A-16]\) is defined as equation numbers then \(B(5, 4) = 1.0 \) and \(G(5) = 0.0 \).

REFERENCES