Simulation of the Polarization Curves for Oxygen Reduction at a Rotating Disk Electrode

P. K. Adanuvor
Texas A & M University - College Station

Ralph E. White
University of South Carolina - Columbia, white@cec.sc.edu

Follow this and additional works at: https://scholarcommons.sc.edu/eche_facpub

Part of the Chemical Engineering Commons

Publication Info

© The Electrochemical Society, Inc. 1987. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS). The archival version of this work was published in the Journal of the Electrochemical Society.
http://www.electrochem.org/
DOI: 10.1149/1.2100622
Publisher’s Version: http://dx.doi.org/10.1149/1.2100622
Simulation of the Polarization Curves for Oxygen Reduction at a Rotating Disk Electrode

P. K. Adanuor and R. E. White

Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843

ABSTRACT

The electrochemical reduction of oxygen is of special significance in electrochemical technology. It forms the basis of electrochemical combustion and so far, it has been one of the most promising methods for direct conversion of chemical energy into electrical energy. It has therefore become the focus of extensive research, particularly in relation to fuel cells. This reaction also plays a special role in the corrosion of metals. Other areas in which the reaction has attracted special attention are the production of hydrogen peroxide for use in the pulp and paper industry, the development of oxygen depolarizer cathodes for the replacement of hydrogen generating cathodes in the chlor-alkali industry, and the extraction of oxygen from air.

Cathodic reduction of oxygen is a complex electrochemical process that can proceed along two reaction paths, according to the nature of the electrode material and reaction conditions, as expressed by (i) a direct 4e- reaction, described by the overall equation

\[O_2 + 2H_2O + 4e^- = 4OH^- \quad U^\circ = +0.401V \quad [1] \]

or by (ii) two consecutive 2e- steps which can be expressed by the equations

\[O_2 + H_2O + 2e^- = HO_2^- + OH^- \quad U^\circ = -0.0649V \quad [2] \]
\[HO_2^- + H_2O + 2e^- = 3OH^- \quad U^\circ = +0.867V \quad [3] \]

Direct 4e- reduction of oxygen as expressed in Eq. [1] is known to occur, at least in part, on electrodes made of noble metals and pyrolyzed transition metal macrocycles (5-7). The 2e- reduction of oxygen by Eq. [2], proceeding with the formation of peroxide as a stable intermediate, occurs on mercury and some carbon electrodes (8, 9). With nondoped low ash carbons, and in the absence of any other catalysts, peroxide concentrations as high as 1M are attainable (10). The peroxide intermediate, occurring as an intermediate reduction product that underlies the formation of peroxide with direct application to porous and rotating ring disk electrodes. Diagnostic criteria based on the rotating ring disk electrode (RRDE) technique have been developed to distinguish between the consecutive and parallel pathways for oxygen reduction and to elucidate the mechanisms of the reduction process (17-19). Recently, Jakobs et al. (20) extended the theory of the RRDE to oxygen reduction at polypyrrole electrodes in the case where substantial amounts of hydrogen peroxide are present in the bulk of the electrolyte. With the exception of McIntyre’s simple model (13, 14) which provides analytical expressions to generate current/potential curves for a single electrode reaction and for consecutive electrochemical reactions coupled to a surface catalyzed chemical regenerative reaction, other models have dealt more or less with analysis of the role of intermediates, with provision of diagnostic criteria to distinguish between the various reaction pathways, and with the elucidation of the reaction mechanism for oxygen reduction. What these models are lacking is the capability to simulate the complex system of reactions of oxygen and the ability to predict the behavior of this system under various conditions of practical interest. In engineering applications, it is often necessary to predict the behavior of complex electrochemical systems by developing suitable mathematical models to simulate important features of the system over a wide range of a given variable. In this way, much more meaningful evaluation of the system can be made and a better understanding of the processes taking place can be gained.

In this paper, we simulate the complex system of reactions for oxygen reduction in alkaline electrolytes using the peroxide reaction is undesirable because it leads to a reduction in the operating cell efficiency. Peroxide also has a tendency to accelerate the oxidation of the catalyst and its support leading to early electrode failure. In other cases, the peroxide may be the desired end product in the electrochemical reduction of oxygen (2, 9). Of primary importance is the decomposition of peroxide by reaction [4]. This reaction is catalyzed by many substrates, the most effective being silver and platinum black. This reaction is electrochemically unproductive but can be very useful in suppressing the peroxide concentration formed at the electrode. Knowledge of the fraction of the total current involved in peroxide generation and the role of catalytic decomposition of peroxide are of special importance in electrokinetic studies of the oxygen electrode. Otherwise, it will not be possible to construct meaningful current-potential plots and to interpret them properly.

McIntyre (13, 14) developed a simple model at the rotating disk electrode (RDE) to elucidate the kinetics of an oxygen electrode reaction in which peroxide is formed as an intermediate reduction product that undergoes a surface catalyzed decomposition. Burton and McMullin (15) applied McIntyre’s model to elucidate the role of hydrogen peroxide in the reduction of oxygen on platinum and to analyze and measure the effect of peroxide decomposition on the limiting current. Appleby and Savvy (16) derived kinetic equations for oxygen reduction reactions involving catalytic decomposition of hydrogen peroxide with direct application to porous and rotating ring disk electrodes. Diagnostic criteria based on the rotating ring disk electrode (RRDE) technique have been developed to distinguish between the consecutive and parallel pathways for oxygen reduction and to elucidate the mechanisms of the reduction process (17-19). Recently, Jakobs et al. (20) extended the theory of the RRDE to oxygen reduction at polypyrrole electrodes in the case where substantial amounts of hydrogen peroxide are present in the bulk of the electrolyte. With the exception of McIntyre’s simple model (13, 14) which provides analytical expressions to generate current/potential curves for a single electrode reaction and for consecutive electrochemical reactions coupled to a surface catalyzed chemical regenerative reaction, other models have dealt more or less with analysis of the role of intermediates, with provision of diagnostic criteria to distinguish between the various reaction pathways, and with the elucidation of the reaction mechanism for oxygen reduction. What these models are lacking is the capability to simulate the complex system of reactions of oxygen and the ability to predict the behavior of this system under various conditions of practical interest. In engineering applications, it is often necessary to predict the behavior of complex electrochemical systems by developing suitable mathematical models to simulate important features of the system over a wide range of a given variable. In this way, much more meaningful evaluation of the system can be made and a better understanding of the processes taking place can be gained.

In this paper, we simulate the complex system of reactions for oxygen reduction in alkaline electrolytes using...
the general model developed previously for electrochemical reactions at the RDE (21) to obtain steady-state current/potential curves that represent the various mechanistic pathways for the oxygen cathode. The effect of changes in the kinetic parameters on the simulated polarization curves is demonstrated and special attention is focused on the production of peroxide and on the role of unwanted side reactions on the production process.

Model Equations

Under steady-state conditions the material balance equation for species i within the diffusion layer of a RDE is given by

$$\frac{Di}{Dr} c_i'' + 3\xi^2 c_i' + \frac{z_i u_i F}{Dr} [c_i \Phi'' + c_i \Phi'] + \frac{\delta_{i}^2}{Dr} - R_i = 0$$

where the primes denote differentiation with respect to ξ and the R_i term denotes the rate expression for the production of species i by a homogeneous reaction. For the oxygen electrode, R_i is assumed to be zero since the rate of decomposition of peroxide in solution is relatively slow (22). The electroneutrality condition

$$\sum z_i c_i = 0$$

completes the set of equations needed to solve for the c_i and Φ unknowns. The boundary conditions in the bulk solution and at the electrode surface are, respectively, at $\xi = 2$ $c_i = c_i_{\infty}$ and $\Phi = \Phi_{\infty}$

$$N_i |_{e-o} = \sum_{j=1}^{m} s_{ij} n_j F + s_{i} r_s$$

where r_s is the catalytic rate of decomposition of peroxide at the electrode surface and m is the number of charge-transfer reactions occurring at the electrode surface, s_{ij} is the stoichiometric coefficient of species i, and n_j the number of electrons transferred in reaction j, when written in the form

$$\sum s_{ij} M_i^{n_i} \rightarrow n_j e^-$$

Kinetic equations.—The kinetic rate equations for the electrochemical reactions at the electrode surface are approximated by the Butler-Volmer expression for the current density

$$i_j = i_{j,ref} \left[\exp \left(\frac{\alpha_j F}{RT} n_j \right) - \exp \left(- \frac{\alpha_j F}{RT} \eta \right) \right]$$

where

$$\eta = \Phi_{\text{met}} - \Phi_{\text{air}} - (\Phi_i - \Phi_{\text{air}}) - U_{j,ref}$$

The concentration dependence of the exchange current density is expressed as

$$i_{j,ref} = i_{j,ref} \prod_{i} \left(\frac{c_i}{c_{i,ref}} \right)^{\gamma_{ij}}$$

where the exponents take the values

$$\gamma_{ii} = -\alpha_j n_j$$

with $\gamma_{ij} = -s_{ij}$ for a cathodic reactant and zero for an anodic reactant. Also, the apparent transfer coefficients for reaction j sum up to the number of electrons transferred in that reaction, that is

$$\alpha_i + \gamma_{ij} = n_j$$

The open-circuit potential of reaction j at the reference concentrations relative to a standard reference electrode of a given kind is expressed as

$$U_{j,ref} = U_j^0 - U_{j,ref} - \frac{RT}{nF} \sum_{i} s_{ij} \ln \left(\frac{c_{i,ref}}{\rho_0} \right)$$

The total current density is the sum of the partial current densities

$$i = \sum_{j} i_j$$

The catalytic rate of decomposition of peroxide at the electrode surface is expressed as

$$r_s = -k_h c_i^{p_{o_2}}$$

where the reaction order, p, can be a fraction or a whole number (11, 23) and where the rate constant k_h is assumed to be independent of the applied potential.

The set of governing equations subject to the given boundary conditions can be solved numerically as described previously (21) to yield the values for c_i and Φ and thus, for $c_{i,\infty}$ and Φ_{∞} from which the reaction rates at specified values of the applied potential, E_{appl} (where $E_{\text{appl}} = \Phi_{\text{met}} - \Phi_{\text{air}}$) can be determined. The net current density is the sum of the partial current densities as expressed by Eq. [16].

Results and Discussion

Table I is a list of parameter values used to simulate the electrochemical reduction of oxygen in 1.0M NaOH solution at 25°C. Diffusion coefficient and solubility data for O$_2$ in KOH (24, 25) were used since literature values for NaOH were not readily available. The simulation was carried out for (i) the overall reaction scheme for the

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>α_0</td>
<td>0.5-1.5</td>
<td>0.8-1.6</td>
<td>0.10-0.20</td>
<td>10^-4-10^-6</td>
</tr>
<tr>
<td>$k_{0,ref}$ (A/cm²)</td>
<td>10^-4-10^-14</td>
<td>10^-4-10^-14</td>
<td>10^-4-10^-14</td>
<td>10^-4-10^-14</td>
</tr>
<tr>
<td>U_j^0 (V)</td>
<td>0.401</td>
<td>-0.0649</td>
<td>0.870</td>
<td>2</td>
</tr>
<tr>
<td>n_j</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>k_h (cm/s)</td>
<td>4</td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Solution properties

<table>
<thead>
<tr>
<th>$c_{i,ref}$ (mol/cm³)</th>
<th>O$_2$</th>
<th>HO$_2^-$</th>
<th>Na$^+$</th>
<th>OH$^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_i (cm²/s)</td>
<td>1.79 × 10^-4</td>
<td>5.00 × 10^-6</td>
<td>1.975 × 10^-14</td>
<td>1.200 × 10^-17</td>
</tr>
</tbody>
</table>

F	96,487.0 C/mol
R	8.314 J/K-mol
T	298.15 K
ρ_0	0.001 kg/cm³
n	0.012 cm²/s

a Values taken from (28).
b Values taken from (29).
c Values taken from Table 76-1 (30).
duction of O_2 as given by Eq. [1], [2], and [3], (ii) the parallel mechanism without peroxide decomposition, given by Eq. [1], [2], and [3], (iii) the direct 4e^- mechanism with and without peroxide decomposition given by Eq. [2], [3], and [4] and Eq. [2] and [3], respectively, (iv) the direct 4e^- mechanism given by Eq. [1] and the peroxide step, Eq. [2]. The results are presented below.

O_2 reduction to peroxide: $O_2 + H_2O + 2e^- = HO_2^- + OH^-$.—Figure 1 illustrates the case where peroxide is formed as an end product without undergoing further decomposition. A change in $i_{o2,ref}$ or c_{a2} for this reaction leads to a shift in the half-wave potential. A decrease in $i_{o2,ref}$ or c_{a2} shifts the half-wave potential further in the negative direction. The more cathodic the half-wave potential, the slower the rate at which limiting current conditions is attained. It must be borne in mind that the apparent transfer coefficient α_a or α_c affects the slope of the rising portion of the polarization curve (the Tafel region), while the exchange current density affects the slope of the linear region in the vicinity of the open-circuit potential. The direct 4e^- process for O_2 reduction is exactly analogous to the 2e^- reduction of O_2 to HO_2^- presented here; the only exception is that the limiting current density of the former is twice the magnitude of the latter.

O_2 reduction to HO_2^- with catalytic decomposition of HO_2^-.—

$O_2 + H_2O + 2e^- = HO_2^- + OH^-$

$$p_{HO_2^-} = \frac{p}{2} O_2 + pOH^-$$

Figure 2 shows the effect of catalytic decomposition of peroxide on the reduction of O_2 to HO_2^-. This situation normally occurs on carbon electrodes with a peroxide decomposition catalyst. First-order decomposition kinetics were assumed, although other orders (half and second) give similar results. At low peroxide decomposition rates, the decomposition process is too slow to cause any noticeable effect on the polarization curves, in which case, much of the peroxide could be lost to the solution by diffusion. As the decomposition rate increases, there is an increase in the limiting current density. At a very high peroxide decomposition rate $k_h \gg 10^9$, the limiting current becomes equal to that of the direct 4e^- process shown by the dashed curve. Under this condition, the peroxide decomposes very rapidly, possibly before it desorbs from the surface to diffuse into the solution. These results indicate that in cases where the 4e^- reduction of oxygen is the desired reaction, a good peroxide decomposition catalyst on a suitable substrate such as carbon, where the 2e^- process occurs, can accomplish the same results.

O_2 reduction to HO_2^- with electrochemical reduction of HO_2^-.—(series or consecutive process)

$O_2 + H_2O + 2e^- = HO_2^- + OH^-$

$$HO_2^- + H_2O + 2e^- = 3OH^-$$

The two-step reduction of oxygen to OH^- via peroxide intermediate commonly occurs on carbon electrodes at high overpotential values. Figures 3 and 4 present the polarization curves for this two-step model. The values of the kinetic parameters dictate the extent of coupling of the two reactions and thereby determine whether one or two limiting current regions are observed. In Fig. 3, the effect of changes in the kinetic parameters for reaction [2] on the polarization curves appears to be limited to the less negative potential regions. On the other hand, changes in the kinetic parameters for reaction [3] extend

![Fig. 1. O_2 reduction to stable HO_2^- species at $\Omega = 3600$ rpm](image-1)

![Fig. 2. O_2 reduction to HO_2^- with catalytic regenerative reaction. Comparison to the direct 4e^- process. Simulation parameters: $i_{o2,ref} = 1.0 \times 10^{-4} A/cm^2$, $\alpha_{a2} = 1.20$ for 2e^- process, and $i_{o2,ref} = 1.0 \times 10^{-12} A/cm^2$, $\alpha_{a2} = 1.00$ for 4e^- process, $\Omega = 3600$ rpm.](image-2)

![Fig. 3. O_2 reduction to OH^- via the two-step 2e^- series mechanism. Effect of $i_{o2,ref}$ and α_{a2} on the polarization curves. Simulation parameters: $i_{o2,ref} = 1.0 \times 10^{-12} A/cm^2$, $\alpha_{a2} = 0.15$, $\Omega = 3600$ rpm.](image-3)

![Fig. 4. O_2 reduction to OH^- via the two-step 2e^- series mechanism. Effect of $i_{o2,ref}$ and α_{a2} on the polarization curves. Simulation parameters: $i_{o2,ref} = 1.0 \times 10^{-8} A/cm^2$, $\alpha_{a2} = 1.20$, $\Omega = 3600$ rpm.](image-4)
over the whole range of the potential region, Fig. 4. This results in polarization curves characterized by a single wave with one limiting current region at lower values of \(\alpha_{c3} \) or \(i_{o2,ref} \), two limiting current regions at intermediate values of these parameters and another limiting current region at high values of the parameters, corresponding respectively to the reduction of \(O_2 \) to peroxide by reaction [2], the reduction of \(O_2 \) to \(OH^- \) via peroxide intermediate, reactions [2] and [3], and the direct reduction of \(O_2 \) to \(OH^- \) by reaction [1].

\[O_2 + H_2O + 4e^- = HO_2^- + OH^- \]
\[HO_2^- + H_2O + 2e^- = 3OH^- \]

This case is similar to the case in Fig. 2 where no electrolytic decomposition of peroxide occurs. As shown in Fig. 5, the increase in the catalytic rate of decomposition of peroxide results in an enhancement of the limiting current in the region where peroxide is generally produced (~0.35 to ~0.8V). At very high rates of peroxide decomposition, the limiting current density of the two-step model essentially coincides with that of the one-step direct 4e\(-\) model.

Parallel mechanism without catalytic decomposition of peroxide.—

\[O_2 + 2H_2O + 4e^- = 4OH^- \]
\[O_2 + H_2O + 2e^- = HO^- + OH^- \]
\[HO^- + 2H_2O + 2e^- = 3OH^- \]

This mechanism demonstrates the case where the direct 4e\(-\) process and the two-step 2e\(-\) process are competing for the \(O_2 \) species at the surface of the electrode. At certain values of the kinetic parameters, reaction [1] dominates the competition for \(O_2 \) at the electrode. Consequently, the fraction of \(O_2 \) going through the peroxide step by reactions [2] and [3], will be small compared to the former case. The direct 4e\(-\) process will prevail and as shown in Fig. 6-8, a single plateau corresponding to the limiting current density of the 4e\(-\) process is observed. On the other hand, if reaction [2] dominates the competition for \(O_2 \), the two-step 2e\(-\) process is likely to prevail, resulting in a polarization curve with a limiting current density corresponding to the 2e\(-\) process at lower values of the applied potential and possibly another limiting current density plateau corresponding to the 4e\(-\) process at higher values of the applied potential. Between these two extreme cases, polarization curves corresponding to the simultaneous participation of the direct 4e\(-\) process and the two-step 2e\(-\) process are observed. At certain values of the kinetic parameters, a hump is observed in the polarization curves at intermediate regions of the applied potential as demonstrated in Fig. 6 and 7. A close scrutiny of the kinetic parameters indicates that the humps occur when \(i_{o2,ref} \) and \(i_{o3,ref} \) are about the same order of magnitude. In other words, humps occur when reactions [1] and [2] compete for the \(O_2 \) species at the electrode at nearly the same rate. To understand further the phenomenon of hump formation, we examine the partial current density plot for a typical case in Fig. 6 where a hump is observed. The plots are displayed in Fig. 9. At lower values of the applied potential, \(O_2 \) is reduced mainly through reaction [1]. However,
as the potential increases, the fraction of O_2 reduced by reaction [1] attains a maximum and then decreases very rapidly while the proportion reduced by reaction [2] increases steadily. The combined effect of the two processes leads to a depression in the polarization curve in the intermediate potential region resulting in the hump. Such polarization curves have been observed experimentally (26).

Parallel mechanism with peroxide decomposition (comprehensive model).

Fig. 9. Partial current density plot for the parallel mechanism for the case where a hump is formed. Simulation parameters: $i_{o1,ref} = 2.0 \times 10^{-10} \text{A/cm}^2$, $\alpha_{o1} = 1.00$, $i_{o2,ref} = 1.0 \times 10^{-8} \text{A/cm}^2$, $\alpha_{o2} = 1.20$, $i_{o3,ref} = 1.0 \times 10^{-15} \text{A/cm}^2$, $\alpha_{o3} = 0.15$, $\Omega = 3600 \text{rpm}$.

In order to determine the effect of peroxide decomposition on the overall kinetics, the kinetic parameters were chosen so that the peroxide route would prevail over the direct 4e^- route. Figure 10 shows the effect of peroxide decomposition on the overall kinetics with the peroxide regenerative reaction assuming a half-, first-, and second-order kinetics, respectively. An enhancement of the limiting current is observed, but an enhancement of the side reactions on the production process.

In Fig. 11, the plain solid curve represents the production rate of peroxide in the absence of unwanted peroxide decomposition reactions. But as shown by the dotted curve, the peroxide can undergo further electrolytic reduction by reaction [3] particularly at higher overpotentials. The net effect is a reduction in the overall production rate of peroxide as indicated by the solid curve with the solid circles. The maximum production rate occurs in the vicinity of -0.4V vs. SCE, and in practice, this is the region in which the applied potential should be set.

Another unwanted reaction which provides a much greater problem in the preparation of hydrogen peroxide by this technique is reaction [4]. The explanation for this can be attributed to the fact that this reaction is considerably catalyzed by a variety of both homogeneous and heterogeneous catalysts including some impurities present in the reaction system. The dash curve in Fig. 12 rep-
resresents the rate of peroxide decomposition by reaction [4]. This decomposition reaction generates O_2 which is recyled and reduced again to peroxide, leading to an enhancement in the peroxide production rate as indicated by the solid curve. The net peroxide production rate, however, is considerably lower as a result of the loss of peroxide by reaction [4].

Summary

A general model that can be used to simulate the polarization curves of O_2 reduction in alkaline electrolytes has been presented. The nature of the curves demonstrates the complexity of the O_2 reduction reaction. The catalytic regenerative reaction enhances the polarization curves in the potential region where peroxide is produced. The hump that is sometimes observed in the polarization curves for O_2 reduction can be attributed to the competition for the O_2 species at the electrode surface between the direct 4e^- process and the consecutive 2e^- process.

LIST OF SYMBOLS

- \(c_i \): concentration of species \(i \), mol/cm\(^3\)
- \(D_i \): diffusion coefficient of species \(i \), cm\(^2\)/s
- \(F \): Faraday's constant, 96,487 C/mol
- \(i_{loc} \): local current density due to reaction \(j \), A/cm\(^2\)
- \(i_{ex} \): exchange current density due to reaction \(j \) at surface concentrations, A/cm\(^2\)
- \(i_{ex,ref} \): exchange current density due to reaction \(j \) at reference concentrations, A/cm\(^2\)
- \(i \): total current density, A/cm\(^2\)
- \(N_i \): flux of species \(i \), mol/cm\(^2\)/s
- \(n_j \): number of electrons transferred in reaction \(j \)
- \(p \): reaction order with respect to catalytic decomposition of HO_2^-
- \(R \): universal gas constant, 8.314 J/mol/K
- \(R \): homogeneous rate of consumption of species \(i \) in bulk solution, mol/s
- \(r_i \): catalytic rate of decomposition of HO_2^- at the electrode surface, mol/cm\(^2\)/s
- \(\alpha_i \): stoichiometric coefficient of species \(i \) in reaction \(j \)
- \(T \): absolute temperature, K
- \(U_j \): theoretical open-circuit potential, V
- \(U_j^{\text{ref}} \): standard electrode potential for reaction \(j \), V
- \(y \): distance from electrode surface into electrolyte, cm

Greek

- \(\alpha_{an} \): anodic transfer coefficient for reaction \(j \)
- \(\alpha_{cat} \): cathodic transfer coefficient for reaction \(j \)
- \(\delta \): diffusion layer thickness, cm
- \(\rho_o \): pure solvent density, kg/cm\(^3\)
- \(\Phi \): potential in the solution, V
- \(\Phi_{o,ref} \): potential of working electrode, V
- \(\eta_i \): overpotential of reaction \(j \) corrected for ohmic drop in the solution and measured with respect to a reference electrode of a given kind in a solution at the reference concentrations, V
- \(\nu \): kinematic viscosity, cm/s
- \(\xi \): dimensionless distance from electrode surface
- \(\Omega \): rotation speed of electrode, rad/s
- \(\gamma_i \): reaction order of species \(i \) in reaction \(j \)

References

17. A. Damjanovic, M. A. Genshaw, and J. O'M. Bockris, This Journal, 114, 1107 (1967).