5-1972

Notebook - May-June 1972

South Carolina Institute of Archaeology and Anthropology--University of South Carolina

Follow this and additional works at: https://scholarcommons.sc.edu/notebook

Part of the Anthropology Commons

Recommended Citation
University of South Carolina, ‘South Carolina Institute of Archaeology and Anthropology - Notebook, May-June 1972’.
http://scholarcommons.sc.edu/notebook/24/

This Newsletter is brought to you by the Archaeology and Anthropology, South Carolina Institute of at Scholar Commons. It has been accepted for inclusion in SCIAA Newsletter - Notebook by an authorized administrator of Scholar Commons. For more information, please contact dillarda@mailbox.sc.edu.
A monthly report of news and activities of mutual interest to the individuals and organizations within the framework of the Institute of Archeology and Anthropology at the University of South Carolina and for the information of friends and associates of the Institute.

ROBERT L. STEPHENSON, EDITOR
INSTITUTE OF ARCHEOLOGY AND ANTHROPOLOGY

The University of South Carolina
Columbia, South Carolina 29208
Ph. 777-8170

STAFF

Dr. Robert L. Stephenson, Director and State Archeologist
Mr. John D. Combes, Assistant Director
Mr. Stanley South, Archeologist
Dr. Leland G. Ferguson, Archeologist
Mr. Richard F. Carrillo, Archeologist
Mr. George A. Teague, Archeologist
Mr. Thomas M. Ryan, Archeologist
Mr. Richard R. Polhemus, Assistant Archeologist
Mr. Gordon H. Brown, Scientific Photographer
Miss Susan E. Coyne, Secretary
Mrs. Dianne N. Maroney, Clerk-Steno
Miss Myra L. Smith, Clerk-Steno
Mrs. Mary Jane G. Rhett, Research Laboratory Technician
Miss Carleen L. Reagal, Administrative Clerk

STUDENT LABORATORY STAFF

Steven G. Baker, Student Lab. Asst.
David M. Barton, Student Lab. Asst.
Timothy J. Blake, Student Lab. Asst.
Frances Brockington, Student Lab. Asst.
Nicolas C. Canizares, Student Lab. Asst.
James M. Frierson, Illustrator
Wm. Terry Gainey, Student Lab. Asst.
Tony E. Hawkins, Student Lab. Asst.
Leonard E. Henry, Student Lab. Asst.
G. Allen Hinnant, Student Lab. Asst.
Charles E. Jenks, Student Lab. Asst.
Willie Johnson, Student Lab. Asst.
R. Cecil Kimrey, Student Lab. Asst.
Michael W. Long, Student Lab. Asst.
Judy E. McClung, Typist
William H. Montieth, Student Lab. Asst.
Janice L. Moore, Student Lab. Asst.
M. Susan Reidy, Student Lab. Asst.
James C. Valver, Student Lab. Asst.
Belton T. Zeigler, Student Lab. Asst.

ASSOCIATED STAFF

Mr. William S. Ayres, Department of Anthropology and Sociology
Mr. George D. Buelow, Department of Anthropology and Sociology
Dr. Ted A. Rathbun, Department of Anthropology and Sociology
Dr. Donald R. Sutherland, Department of Anthropology and Sociology

Mr. James L. Michie, Research Affiliate, Columbia, South Carolina
Mr. Eugene G. Waddell, Research Affiliate, Columbia, South Carolina

See inside back cover for ARCHEOLOGICAL EXCAVATION CREWS
In May and June the Institute held a two-part Open House for the senior administrators of the University. On May 22 we had President Jones, the Vice Presidents, Deans and Department Heads with us on a tour of the laboratory and facilities. On June 13 we took a part of this same group on a field trip to visit the Blair Mound excavation.

The Institute was well represented at the annual meetings of the Society for American Archeology in Miami Beach on May 4-6 by Stanley South, John Combes, Bob Stephenson, Dick Carrillo, Dick Polhemus and George Teague. The meetings were excellent this year thanks, in large part, to the good management of Bill Sears and Leland Ferguson.

The last three days of May I spent as a consultant to the T.V.A. on archeological matters pertaining to several of the T.V.A. reservoirs in Tennessee. Stanley South and I lectured at the University of Georgia on May 1. Other talks to local groups, service clubs and schools occupied a portion of the staff time.

Field work was progressing well by the end of May. Richard Carrillo began a field season of excavation at Fort Dorchester (38DR4) near Summerville, on April 3. With a crew of 8-12 excavators, Dick began exploratory excavations at the mid-eighteenth century tabby fort that played a crucial part in the Revolutionary War. The tabby walls still stand and represent the only known such tabby fort remaining from that period. The excavations were completed for this season (the first of several seasons planned) on May 21. The work is being sponsored by the S.C. Department of Parks, Recreation and Tourism.

On May 15-19 George A. Teague began the excavation of a small rock shelter (38FA41) in the Parr Shoals Reservoir area on the Broad River a few miles northwest of Columbia and completed the work during the first two weeks of July. Teague also began excavation at the Blair Mound (38FA48) in the Parr Shoals Reservoir area on May 17 and brought that work to a close on July 4. The rock shelter excavation was sporadic over the period depending upon weather but work continued steadily on the Blair Mound with a crew of 6-10. This is a small, eroded mound of the late prehistoric period. The Parr Shoals work was sponsored by the South Carolina Electric and Gas Company.

Leland Ferguson began work on June 5 at the Scott's Lake Site (38CR1). This is the site previously known as the Santee Indian Mound and Fort Watson. It is a large temple mound of the late prehistoric period with an historic occupation of the Revolutionary War Period. Here the British fortified the top of the mound and were besieged by the Americans with the use of a "Mayham Tower". This season of work is exploratory to sort the historic from the prehistoric data and is anticipated to be the first of several seasons here. This work is sponsored by the South Carolina Department of Parks, Recreation and Tourism.

Two more reports from the Research Manuscript Series are published in this issue of the NOTEBOOK. These are number 7 by E. Thomas Hemmings and number 26 by Stanley South.
BOOK REVIEW

by Robert L. Stephenson

This is a reprint of the two "histories---" of the 1728 expedition of Virginians and North Carolinians to establish a dividing line between the two states. Byrd wrote one in detail that records an intimate account of the expedition and then revised this for publication. Both have been published before. The "public" version several times and the "secret" version at least twice, in 1928 and 1966. It is the 1928 version that is merely reproduced here. Why, I am not sure, since the 1928 edition, though probably out of print, is available in libraries. It may be to make more broadly available a piece of literature, though I doubt that this is any great piece of literature.

The new 1967 edition contains two introductions, one by William K. Boyd that accompanied the 1928 edition and one by Percy G. Adams written for this 1967 edition. The Boyd introduction is a good one and makes the Adams introduction superfluous. The Adams introduction emphasizes unnecessarily the sex and scandal that he reads into the "Secret History---" and sounds to me like it was designed only to increase sales of this edition. Perhaps it seemed "modern" to Mr. Adams to overstress the sensational.

I do not care for the style of interleaving of the two "Histories". It makes difficult reading and does not do what it intends to do, that is provide a paragraph by paragraph comparison of the two. It is only confusing.

The two "Histories---" are excellent documents and should be read by anyone interested in the description of this area in the early and middle eighteenth century. Both should be read as there is information in each that is not in the other. Byrd was a careful observer and detailed recorder and his style is very readable, assuming an acquaintance with eighteenth century phrasing. In addition to the story of the dividing line expedition Byrd also gives some very informative insights into a contemporary Virginian's attitudes about the earlier events of history in regard to the Virginia Colony.

In summary, I see little reason for this edition, none for the new introduction, and find the interleaving of the two documents confusing. The two documents, themselves, contribute much to an understanding of the area in the eighteenth century.

58
EMERGENCE OF FORMATIVE LIFE
ON THE
ATLANTIC COAST OF THE SOUTHEAST

by E. Thomas Hemmings

(Ed. Note: This paper was presented at the 27th Annual Southeastern Archeological Conference in Columbia, South Carolina by Dr. Hemmings, then of the Institute staff.)

INTRODUCTION

The purpose of this paper is two-fold: first, to present new information regarding an important group of archeological sites - the coastal shell rings of Georgia and South Carolina - which are known at present primarily from Waring's work (Williams 1968), and second, to comment on Ford's (1966, 1969) "Colonial Formative" theory, insofar as it deals with this part of the New World. The background for this discussion is a long, but sporadic, span of archeology on the Atlantic Coast of the Southeast, in part summarized by Caldwell (1952) and Williams (1968). Space will permit me only to outline these major conclusions of earlier workers, especially Waring:

(1) The earliest pottery in North America north of Mexico is apparently the fiber-tempered Stallings Island complex, dating at least to 2,000 B.C., and perhaps to 2,500 B.C. (Bullen 1961, Stoltman 1966).

(2) The distribution of early ceramic Stallings Island sites is the coastal strand from south Georgia to Port Royal, S.C., and the Savannah River from its mouth to just above Augusta. Stallings Island sherds occur in small numbers in the coastal plain beyond this zone (Williams 1968).

(3) At least nine, ring-shaped, shell middens survive on the coast, those in Georgia associated with Stallings Island pottery and those in South Carolina with less well-known Awendaw and Horse Island pottery, apparently partially contemporary with Stallings Island (Waddell 1965, Williams 1968).

(4) The shell rings are primary deposits of habitation refuse, but appear to be structures planned and constructed for communal or ceremonial purposes, a development unknown elsewhere in the United States at this early time (Waring and Larson 1968).

(5) The shell ring dwellers were coastal hunters and gatherers, especially mollusc collectors, without knowledge of agriculture (Waring and Larson 1968).

(6) Finally, it has been suggested that the entire complex of earliest ceramics, coastal subsistence, and shell ring structures was imported by seaborne colonists from South America, and that fiber-tempering and riparian existence were soon introduced to other areas of the Southeast (Ford 1966, 1969).
During the late winter and early spring of 1970 Gene Waddell of the Florence Museum, and I surveyed a 150-mile section of coast from Bull Bay, S.C., to Sapelo Island, Ga. We located remains of 18 shell rings on 14 sites in this area, and suspect that four or more remain to be visited. The environmental settings were analyzed and recorded, and tape-and-compass maps of the rings were produced so that intersite variation might be evaluated. Surface samples of sherds, shell and bone were collected to provide an approximate idea of site content. In the time available we were able to visit only a few early ceramic middens without ring structure, but such sites, usually relatively small, do occur near some rings. The results of earlier test excavations in shell rings by Edwards (1965), Calmes (1968), and Waring and Larson (1968), as well as our survey data, indicate an important role for these sites in the emergence of Southeastern Formative life.

All known shell ring sites are located on estuaries or tidal creeks within the Sea Island section of the Atlantic coastal plain. They occupy high ground immediately adjoining salt marsh, or occasionally are isolated in high marsh a few hundred feet offshore. The interiors are reasonably level, devoid of shell and elevated 3 to 13 feet above mean sea level. Interiors of low-lying sites are marshy, while the higher sites are usually heavily forested. The shell rims range from about 130 to 300 feet in outside diameter, 2 to 10 feet in maximum height and 25 to 70 feet in basal width. The rings are by no means all well preserved, as a number have been affected by the lateral cutting of tidal streams, or historic shell removal or both. However, in five nearly intact rings the rims closely approach uniform width, level summits and circular symmetry. Rim heights vary considerably between sites, probably due to length of occupation, but not within sites. Other rings, preserved only as segments, tend to corroborate these observations. Thus Waring was probably justified in emphasizing the monumental size and deliberate building of the ring structures.

It is also interesting to note that rings occur in complexes as well as isolated structures. The largest known ring at Sapelo Island is associated with two smaller rings nearby. The next largest ring (in diameter) at Fig Island on the North Edisto River is situated in marsh 75 feet from a smaller, eroded, ring segment. Small aprons of shell on each ring suggest that a causeway linked them at the nearest point of approach. At Skull Creek on Hilton Head Island the rims of two rings are superposed at one point. Because of extensive erosion in the Sea Island area, both isolated rings and ring complexes may have been destroyed during the last 4,000 years, but ring-building was assuredly widespread from the remaining evidence.

The rim stratigraphy is known both from excavation and from eroded faces or borrow pits. Hearths, crushed shell floors and heavily concentrated organic lenses have been interpreted as evidence of habitation on the rim summits, but these features are not always apparent or well-defined. Dwellings, if once present on shell rims, must have been flimsy and impermanent. The question of perishable structures in the
interior space is intriguing, and no conclusive excavation of this area in a shell ring site has been undertaken.

Bone and shell food remains are well preserved, as in most coastal middens. The bulk of all rings is American oyster, obviously a staple resource. Periwinkles, knobbled whelks and ribbed mussels are always present in lesser amounts, and clams and several other bivalves and univalves are more rare. Excavations have shown that fish remains are extremely numerous, and that certain species such as black drum were taken in large numbers. Mammal remains are less common, white-tailed deer, raccoon and opossum being present in all sizable collections. Crab, turtle and various bird remains are also usually present. Clearly the estuaries and nearby land habitats were being exploited, and especially their concentrated high-yield resources. However, significant differences in cultural ecology may exist between sites. For example, the Auld shell ring north of Charleston contains an abundance of juvenile knobbled whelks.

The survey sherd collections, not finally analyzed, tend to corroborate and extend Waring's and others' observations for the distribution of earliest coastal ceramics. Stallings Island fiber-tempered types are practically exclusive in Georgia shell rings. From the Savannah River estuary to Port Royal Sound, sand-tempered or untempered Horse Island Punctate is more common and is associated with fiber-tempered ware. Calmes (1968) has presented evidence from Hilton Head shell rings for Stallings Island superposed over Horse Island Punctate. On the North Edisto River shell rings, Horse Island pottery is greatly predominant and Stallings Island and Awendaw present in small amounts. Northward in Charleston County Awendaw increases in frequency, Horse Island decreases, and Stallings Island is absent. At this point it should be noted that seven radiocarbon dates from four shell rings in South Carolina and one in Georgia fall between 3,900 and 3,100 years ago (Calmes 1968, Williams 1968). As there exist several conflicting lines of evidence for the relative ages of these ceramic types, much more typological analysis, stratigraphic excavation and dating need to be done.

A homogeneous group of shell, bone and antler artifacts appears to characterize all the rings where test excavations have been carried out. These include shell disc beads, shell hoes or picks, antler projectile points, bone awls and distinctive Bilbo-type bone pins, often intricately engraved. Stone artifacts are relatively rare, but Savannah River Stemmed projectile points are present in most shell rings.

FIG ISLAND EXCAVATION

In late July-early August the Institute began excavating the largest shell ring on the South Carolina coast, known as Fig Island 2. It is located on high marsh adjacent to the North Edisto River estuary. A number of other shell rings and smaller early ceramic middens are known in this area. Fig Island 2 is about 260 feet in diameter and stands 3 to 5 feet above the marsh. The rim contains an estimated 375,000 bushels of shell, and surrounds a half-acre, flat, central area. The circular
symmetry of this well-preserved ring is impressive.

None of the analysis of collections has been completed, nor have dates yet been obtained. However, we expect especially fruitful results from analysis of the large invertebrate and vertebrate collections. Sherds recovered from the rim are predominantly Horse Island Punctate, a type which is not presently well described. Small numbers of Stallings Island fiber-tempered sherds are present throughout the midden. A small sample of bone and shell artifacts recovered from the rim includes the common types from early ceramic sites, such as engraved and plain bone pins. One object of particular interest is an elaborately engraved deer antler tine, possible on atlatl hook.

Although we carried one 125-foot trench from the center of the ring through its rim, the exploration of the interior for evidence of structures was not successful. The interior area is wet just beneath the surface, and is covered by salt water during highest tides, one of which we experienced while trenching at the center.

The final result of the Fig Island project should be a detailed view of the local environment at the time of occupation and the way Fig Islanders were exploiting it. The kinds of architectural evidence we were seeking will probably need to be ascertained from higher and dryer shell rings, of which there are, fortunately, several good candidates.

THE COLONIAL FORMATIVE

In his latest publications dealing with the spread of Formative culture in the Americas, Ford (1966, 1969) stated unequivocally that the earliest ceramic sites on the Atlantic Coast of the Southeast were established by coastal voyagers from Colombia and Ecuador. The making of pottery and sea-oriented subsistence techniques, which permitted a new degree of sedentism, perhaps true village life, were introduced by small groups of sea-borne colonists, traveling northward along the coasts.

The most striking evidence in support of this theory comes from a shell ring on the north coast of Colombia, S.A. Puerto Hormiga, excavated by Reichel-Dolmatoff (1965) in 1961 and 1963, is situated in marsh and has a form closely corresponding with Georgia-South Carolina shell rings. It is 280 feet in outside diameter and stands 4 feet above the surrounding marsh. The rim varies from 52 to 75 feet in width at the base and consists largely of clam shell. The interior is clean and level. The earliest ceramics known from Colombia are Puerto Hormiga fiber-tempered and sand-tempered types which in many respects compare with Stallings Island pottery. An assemblage of stone tools, including grinding equipment, occurs at Puerto Hormiga, but not in our coastal shell rings. A series of five radiocarbon dates places the occupation of Puerto Hormiga between 5,000 and 4,500 years ago (Reichel-Dolmatoff 1965).

Clearly, subsistence and settlement techniques, as well as the early ceramic complex, on the Atlantic Coast of the Southeast could have derived
from the Puerto Hormiga phase of coastal Colombia. The chronological relationship is credible, but the intervening distance exceeds 2,500 miles of Caribbean Sea, Gulf of Mexico and Atlantic waters. Ford suggests the voyage or voyages proceeded from the South American coast near the Isthmus, through the Yucatan and Florida straits west and north of Cuba, then northward to the Savannah River. Northbound currents of the Gulf Stream follow this route.

At the present time no shell rings or fiber-tempered ceramics are known on the Central American or Mexican Gulf Coasts and the Caribbean Islands. Furthermore, although they are reported to exist, no published descriptions of Colombian shell rings, other than Puerto Hormiga, are available. In this respect Ford's Colonial Formative theory remains to be proven—intervening archeological site-units on the proposed route of migration are undiscovered (Rouse 1958).

The appearance of sedentism and concomitant social changes prior to food producing, and the stimuli and consequences of these changes are little known aspects of emerging Formative life in the Southeast. Our coastal shell rings deserve special attention in approaching these problems.

BIBLIOGRAPHY

BULLEN, RIPLEY P.

CALDWELL, JOSEPH R.

CALMES, ALAN

EDWARDS, WILLIAM E.

FORD, JAMES A.

SOUTH CAROLINA FEDERATION
OF MUSEUMS

The Second Annual Meeting of the South Carolina Federation of Museums was held at Hilton Head Island on May 24-25, 1972. Twenty-seven members of the Federation were in attendance. The direction and purposes of the Federation were reviewed and plans were made for the coming year. A directory of all museums within the state is planned. All members who wish to include their own ideas in the directory should submit copy to Mr. Janson Cox by September 1.
PERFORATED SOAPSTONE DISCS:
A FUNCTIONAL TEST

by Johnny R. Dagenhardt

(Ed. Note: Mr. Dagenhardt is a May, 1972 graduate in geology from Catawba College, Salisbury, North Carolina. He has here prepared a most interesting and useful report of a brief experiment on soapstone. The work was done under the guidance of Mr. Peter P. Cooper, II, of the Museum of Anthropology at Catawba College.)

Catawba College anthropology students are testing various assumptions concerning the function of certain aboriginal artifacts found in archaeological sites. Among these are the uses attributed to certain soapstone or steatite perforated discs (Claflin 1931: Plates 51, 52; Miller 1949: Fig. 23H; Wauchope 1966: 191-192, Figs. 126, 252; Williams 1968: 175, 177, 254; South 1969: 22, 24; Brockington 1971: 37; Anonymous 1971: 29).

It has been assumed that these discs (often irregular rather than disc-shaped) were either "net weights", "sinkers" or "boiling stones" for stone boiling. This last assumption was tested because some Catawba College anthropology students questioned this function, and I could find no record that anyone had actually tested the hypothesis.

Stone boiling involves placing very hot stones in a skin, wooden basket, bark or stone container in order to bring its liquid contents to a boil and thereby cook. As the stones lose heat, they are replaced with freshly heated ones (Hodge 1907: 468; Driver 1969: 89-90).

The perforated discs in question are made of soapstone or steatite. Actually, soapstone and steatite are not interchangeable terms, despite their common use as synonyms (Pirsson 1947: 321). Economically and mineralogically, there is an important difference between the two. Steatite is a compact, massive type of pure talc. Soapstone is also a compact, massive and soft, but impure talcy rock containing 10 to 80 percent talc, plus one or more of the minerals chlorite, magnesite, serpentine, tremolite, diopside, actinolite, enstatite and occasionally some pyrite, quartz, or magnetite (Stuckey 1965). Often chlorite schist and chlorite phyllite are confused with steatite.

In this experiment, a disc was made of a "good" quality soapstone, that is, it had a relatively high percentage of talc, as observed macroscopically. Using a portion of such a disc from the Catawba College Museum of Anthropology as a guide, I made a disc 14 cm in diameter, 4 cm thick at the edge of its centered perforation, and 0.75 cm thick at its outer edge. The perforation was 2.5 cm in diameter, and the disc weighed 1137.2 grams.

The disc was heated in the open flame of a Bunsen burner (approx. 400°C) for an hour. It was then removed from the flame and quickly dropped into a five (5) gallon container of tap water. This procedure was repeated ten (10) times. There was no noticeable cracking, deteri-
oration or change in dimensions of the disc. It did, however, acquire a sheen on its surface.

During the test, the perforation or center hole made it possible to handle the disc when removing it from its heating position, placing into the water and removing it for re-heating.

During fabrication of the disc (and other objects from the same soapstone) it was observed that it was soft and "carvable", and easily broken upon minimum impact with a moderately hard surface.

Thus the observed properties of this soapstone object proved to include:

1) high fusion point
2) low shrinkage
3) low thermal conductivity
4) high specific heat
5) resistance to heat shock
6) softness and "carvability"
7) easily broken by impact

On the basis of this test, it seems that these objects could have been used for stone boiling. They seem able to withstand this use without damage whereas quartzite "boiling stones" in the Catawba College Museum displayed varying degrees of fracture and disintegration.

Since soapstone and steatite have high densities, they may seem suitable for use as net weights and sinkers, also. Their tendency to break easily upon moderate impact seems to mitigate the likelihood of their use in this manner, when they would be buffeted about against river rocks. Other lithic material would be more suitable and more readily available.

The function of a stone of tabular shape was not investigated. It is possible that the disc shape transferred heat more rapidly to a greater volume of liquid. Various shapes of soapstone objects, as well as objects of other materials would have to be investigated to test this hypothesis. Comments by anyone who has conducted related tests and observations are welcomed.

BIBLIOGRAPHY

ANONYMOUS

BROCKINGTON, PAUL
Fragment of soapstone disc used as one of the models for making disc shown in Fig. 2. This fragment is 8.8 cm long at its greatest dimension; 4.2 cm wide from edge of center hole to the outer edge; and, 1.22 cm thick at its greatest thickness. Portion of surface marked "x" is a cut bevel made by a plow or by aborigines after disc had been broken. Surface to left of "x" is a beveled center hole or perforation. All surfaces are not as smooth as indicated here, but are worn and somewhat "eroded".

Photo of soapstone disc used in experiments. It is 14 cm in diameter, 4 cm thick at edge of center hole which is 2.5 cm in diameter.
CLAFLIN, WILLIAM H., JR.

DRIVER, HAROLD E.

HODGE, FREDERICK W. (ed.)

MILLER, CARL F.

PIRSSON, LOUIS V.

SOUTH, STANLEY

STUCKEY, JASPER L.

WAUCHOPE, ROBERT

WILLIAMS, STEPHEN (ed.)
This is a report of the fourth season of excavation of the Holiday Inn Rock Shelter Site (31CD11). The four seasons of work have each been conducted by students of Wofford College in an Interim Project directed by Dr. John Harrington, Professor of Geology and with the general advice of the Institute of Archeology and Anthropology, University of South Carolina. Previous work was reported in the Notebook, Vol. I, No. 4, pp. 9-12 (1969); Vol. II, No. 4-5, pp. 4-9 (1970); Vol. III, No. 4, pp. 82-85 (1971). The Interim Projects permit a student or group of students to conduct a research project on their own during the month of January under the direction of a faculty member.

On January 6, 1972 work was begun on the removal of some four cubic yards of backfill, flood deposits and slope wash in this small rock shelter. Details of the location and general character of this shelter are given in the above cited reports and need not be repeated here.

A base reference line was established between two trees on either side of the shelter (Fig. 1) and a four foot by four foot test square was opened in the talus material in front of the shelter overhang (Fig. 1). Excavation of the pit removed approximately five feet of erosional deposits overlying the basic, ancient soils that, it was hoped, would yield an artifact-bearing layer. The results were negative and the pit was closed when the water table was reached.

General work zones were then established on the floor of the shelter for excavation control (Fig. 1). As the debris was removed it was carefully screened for the smallest objects. Work Zone I yielded approximately two pounds of quartz chips through a depth of ten inches. Many chips had smooth, round surfaces still intact as is characteristic of stream pebbles and presumably all or nearly all of this debris resulted from the chipping of stream pebbles.

In Work Zone II a Stanly projectile point, made of Carolina slate was uncovered at a depth of 38 inches. Also in Work Zone II was a close-fitted cluster of flat, angular rocks lying in several, well-defined planes. The origin and purpose of this cluster of rocks is unknown.

A test pit in the smaller portion of the shelter against back wall proved fruitless and nothing was found here. The project was closed on the 28th of January and the pits were backfilled. Despite the low yield of information and material in this season's effort, it still seems probable that this well-situated shelter could add to the picture of prehistory in the Piedmont.

(Ed. Note: Two other Wofford Interim Projects in archeology were conducted in January, 1972. Greer Falls, Bill Creeley, Roger Walker and Dicky Linn excavated at Rambler Rock Shelter (31PK3) and James H. Beheler, James T. Harrison, Jr., Douglas A. May and John A. Padgett excavated at the Traveler's Haven Rock Shelter (31PK4). Digging was limited and data recovery was minimal. Brief notes and photos are on file at the Institute.)
FIG. 1

TOP VIEW
HOLIDAY INN ROCK SHELTER SITE 1972
THE ROLE OF THE ARCHEOLOGIST IN THE CONSERVATION-PRESERVATION PROCESS
(Research Manuscript Series No. 26, May, 1972)
by Stanley South

As the interest in the conservation, preservation and interpretation of historic sites and structures continues to increase there is an increased awareness of the need for archeological research in addition to traditional historical documentation. In our efforts at perpetuating our historical heritage from the physical remains that have survived we are looking to the documentation lying beneath the surface to provide evidence not obtainable from written documents. Historians and architects are now looking to the archeological record for the reconstruction of specific architectural and historical clues in the form of structural and artifactual details. Anthropologists are examining patterns of archeological data and reconstructing the processes of cultural dynamics represented by the artifact, with more scientific rigor than ever before attempted. As a result there is an ever increasing emphasis on the complete examination of the total documentation relating to an historic property, architectural, historical and archeological, in order to properly execute the conservation-preservation process.

Archeology can contribute certain types of specific information relative to a particular place, such as the details of architectural features as well as pinpointing their exact location, their temporal relationship and something of the use to which the structure was put; but archeology is limited in its contribution outside the technological area. Archeology sometimes makes a considerable contribution to our understanding of the technology of particular crafts at various periods of time through the excavation of shops and industrial waste sites. The waste casting sprues and fragments of castings from a brass foundry or silversmith shop, or the kiln waster dump of a potter's shop, are valuable repositories for information relating to the evolutionary development of these technologies. Our attention tends to become focused on these sites due to their value to the archeologist. Such sites are those which he can "get his teeth into", as well as his trowel, in that they lend themselves to quantification and stratigraphic analysis as well as their basic "time capsule" character.

There are other sites which do not so dramatically yield positive results. For instance, at the town of Bethabara, in North Carolina, an eighteenth-century Moravian settlement, the maps and records revealed the location of the gunsmith shop, the Brothers' House, the blacksmith's shop, the millwright's house, the tailor shop, the Gemein Haus (church), the apothecary shop, the doctor's laboratory and the pottery shop. With the exception of the pottery shop, the excavation of all of these ruins did not reveal a single clue that would have been sufficient to allow the archeologist to properly interpret the use of these structures! This would appear to be a somewhat dismal record for archeology, were there not other questions of interest than the limited one involving the specific function a particular structure served within the community of which it was a part.
Architectural details such as walkways, doorways, outbuildings, drainage systems and landscaping can be determined through excavation around standing structures as well as in the sub-surface remains of historic ruins. The work at the Paca House, in Annapolis, Maryland, is an example of the use of research specialists in history, landscaping, architecture and archeology in an integrated manner to carry out the conservation-preservation-restoration-interpretation process.

One of the primary questions archeology can answer is that involving the temporal relationships between the various occupations on the historic site being examined. Studies of recovered artifacts in context from archeological sites are made emphasizing the association of certain artifact types with particular individuals or structures. This emphasis is frequently found in research for restoration, where concern is often with one historical figure associated with an historic site. There is a broader study, however, that is also of concern to the archeologist in terms of artifact analysis. This is his interest in establishing general relationships between artifacts in time and space which will be of value in future excavation interpretation by archeologists, and will have a feed-back value on a broader level than that relating to a specific individual or site. The one relates closer to history in its concern with specifics, and the other to science in its general application.

The scientific approach is seen in a recent study of ceramics recovered from eighteenth-century British American sites wherein a mathematical formula is used to determine a mean ceramic date for the ceramic sample. This data is then compared with the known occupation period of the site and in many cases has been found to correspond remarkably well with the known median occupation date (South 1972). This success in the application of a mathematical formula to archeological data is explained in terms of the horizon concept involving a broad and rapid spread of ceramics from British sources in the eighteenth century (Willey and Phillips 1958: 31-34). Studies such as this involving statistical treatment of archeological data are being undertaken with greater frequency than ever before to expand and test our data-recovery from historical sites, and to construct hypotheses for examining the processes of cultural dynamics.

Bone, seeds, pollen and cysts from human and animal parasites recovered from garbage dumps, privies and cesspools have just begun to reveal their data through archeological recovery and analysis. Questions relating to social and health conditions, disease, parasites, diet, the source and availability of food in relation to the ecology of the area, as revealed through archeology and correlated with the historical references, are increasingly being asked by social scientists. Archeologists are meeting this broader challenge, allowing a more penetrating view into some of the areas of past patterned human behavior than has hitherto been possible through dealing with the traditional archeological materials. The archeologist has an increasingly expanding responsibility to inquire beyond the mere validation of an historic site through correlation with documentary evidence; beyond merely listing the presence or absence of artifact types for establishing the temporal position of the site; beyond the revealing of architectural features for the purpose of reconstruction and restoration; beyond exposing ruins for the entertainment of the visiting public to
historic sites; and beyond the process of recovery and preservation of relics from the past hoarded into repositories and museums! His view must be as broad as the questions being asked by archeologists, sociologists, anthropologists, ecologists, biologists, archeo-parasitologists and other scientists who are increasingly turning to archeology to reflect some light on their special problems and spheres of interest. However, although archeology is broadening its scope, the primary emphasis will continue to be in the area of material culture where so much must still be explored on the basic level of typology and stratigraphy in order to arrive at a better understanding, definition and temporal position of artifacts of many types found on historical sites.

Our discussion here has emphasized the broader role and goals of archeology in the conservation-preservation process. These goals prevail regardless of the more limited objectives often motivating the sponsors of archeological research. Sponsors of archeological research are usually interested in:

1. the validation of the historic site in relation to documents
2. the discovery of architectural features
3. the determination of the occupation sequence of the site
4. the determination of the temporal occupation of the site
5. the recovery and preservation of artifacts associated with occupation of the site
6. the development of the site as an historical exhibit

Motivations for these interests are oriented toward restoration, and reconstruction or exposing ruins for public viewing and obtaining relics for exhibit purposes. In this activity the archeologist plays a major role if he is to fulfill his responsibility to the historic site he has researched. His report, and the suggestions in the form of site development guidelines, when combined with the historical and architectural documentation, form the foundation upon which the historic site is developed and interpreted. An important role for the archeologist is often one of public indoctrination in the importance of historical preservation (Harrington 1965: 8). He often finds that the archeological document he is revealing does not coincide with the preconceived plans made by the sponsors of the research on the historic property. To remain true to the archeological data revealing foundations for brick structures he may find himself embroiled in a fight to keep "typical" log cabins from being moved onto the site and this conflict is often with the group sponsoring the archeological research. However, if he disdains such involvement and limits his contribution strictly to his archeological report, then he is not completely fulfilling his role in the conservation-preservation process.

In our role as stewards of the past our efforts should be directed toward achieving the greatest degree of accuracy in our historical, architectural and archeological research, to insure the closest correlation between the reality of the past and our explanatory exhibits. These historic structures and sites, restored parapets and palisades, cabins and ruins, are the bridges leading the minds of men to a greater appreciation of our heritage. We must not fail in our role as historical engineers who are shaping the attitudes and understanding of generations yet unborn.
For it is only through what we do today, in developing our historic sites, that the future can know the past. If we, in our enthusiasm, and in the name of history and "restoration", damage, destroy and distort the clues that have survived, rather than competently interpreting them, we have burned the bridges behind us and the future can no longer build on the true evidence, but must forever depend on our interpretation. We, the researchers and developers of historic sites, are the only ones who have the opportunity of observing the maximum amount of historical, architectural and archeological evidence. Once the pages in the earth have been revealed through archeology, there is never another chance for those pages to be read, for the archeological process itself is a destructive force, erasing as it reveals. There is no second chance!

We should guard against first-impulse planning and development; against the log cabin syndrome, where the countryside is stripped of all log cabins, to be planted in a cluster like pseudo-historical mushroom towns springing up overnight, regardless of the historical focus or archeological merit a site might otherwise possess. Yet the minds of children and unsuspecting adults are shaped by such distortions, that are springing full-blown as creations of our own age rather than anchored in the past through research and archeology.

Let us guard against the pitfalls of creating "instant history", insufficiently rooted in the rich humus of our heritage of people, their things, and the historic sites that were the stage for their drama. Rather, as we engineer our explanatory exhibits in the form of parapets and palisades, ruins and cabins, restorations and reconstructions on historic sites, we should be constantly aware of our role as creators of historical images to become burned into the minds of men. If our efforts to interpret history on historic sites are insufficiently supported by research and archeology, and we find that the palisade we built must be taken down in favor of a more accurate presentation, the damage has already been done by false images carried away by all those who have viewed the bastard child.

Therefore, we should look closely at our responsibility. These are not games we are playing with history! Our involvement in the past is our investment in the future!

We turn now from the role of the archeologist in the broad view of the conservation-preservation process to conservation and preservation on the specific level of the conservator and the field archeologist. The archeologist is faced with the same conservation-preservation problems relating to treatment of archeologically recovered artifacts with which the conservator must deal. In many instances the archeologist must act as his own conservator and preservationist when his program cannot afford the luxury of a staff conservator. Our concern here will not be with those problems thus shared by the archeologist and the conservator, but with those unique challenges that face the archeologist in the field.

In many cases the archeologist can ruin data of value to the conservator through careless or uninformed handling of archeological materials. For instance an overglazed enamelled porcelain fragment taken from the wet earth can have its entire delicate pattern removed in an instant by an uninformed worker who "cleans" the soil from the sherd with his thumb. Sim-
ilarly, in removing a delft bowl fragment lying in damp soil the entire tin-enamelled glaze will sometimes separate from the sherd body as the sherd is lifted. In such cases immediate steps must be taken to bond the in situ glaze to tissue to allow it to be removed intact to be later restored to the body of the vessel. Some tinned sheet iron is so delicate and decayed in situ in the earth that steps must be immediately taken to bond the pie-crust type flakes of the object to strengthen it for removal to the laboratory for further treatment and preservation (South 1971: 60). Many similar examples of the need for care in the field can be mentioned.

Some of the archeological data is of such delicate nature, such as posthole, postmold and pit outlines, that traditionally these features have only been recorded, photographed and excavated. However, by means of polyurethane and fiber-glass resin, profiles of archeological features can be directly lifted from the earth and carried to the museum for exhibit purposes, or as teaching aids into the classroom, where students can have practice in drawing a true soil profile before ever going into the field (South 1970: 3).

Delicate charcoal features such as pits full of corncobs can be successfully removed intact from the field by excavating around the pit and removing it on a supporting framework after impregnating the carefully cleaned cobs with polyurethane resin and soaking this material into the soil matrix of the feature. Such techniques using various impregnating-solidifying solutions have long been used in archeology to remove delicate objects from a field matrix, particularly in removal of skeletal material. However, in this case the decision must be made by the archeologist as to whether he desires to obtain a radiocarbon date from the bones or the charcoal, since any solutions used to strengthen the bones will render them useless for obtaining radiocarbon dates. This caution is also in effect regarding the laboratory conservator who can easily contaminate a sample through careless or uninformed cleaning, treatment or storage of archeological materials that may eventually need to be dated through radiocarbon or other analysis.

The architect is aided in restoration studies through the archeological recovery of plaster and paint details from ruins, as well as iron hardware. The restorationist concerned with furnishings can derive a wealth of information regarding ceramic and glassware furnishings of the structure from archeological fragments. If a well or other feature below water is excavated, artifacts from this situation will survive very much intact, including wood, leather, cloth and other usually perishable objects. In such situations the archeologist and the conservator have their hands full with preservation problems both in the field and the laboratory. Underwater archeology presents an entire complex of problems of preservation that must be solved before such items can become part of an interpretive exhibit. In all cases, but especially in dealing with underwater sites, there must be sufficient funding before the work begins to provide for the proper recovery and preservation of important historic objects.

The role of the archeologist in the conservation-preservation process is a broad one, involving as it does an intimate involvement with the master planning, the basic historical research, architectural research,
artifact research, scientific analysis, artifact preservation and historic site development, as well as revealing the archeological document. However, the direction now is no longer that of a single individual attempting to handle all these aspects alone. Rather, the archeologist, the architect, the restoration specialist, the administrator, the historian and the conservator, as well as the contractor, are now working together on many projects to effect the same goal in the conservation-preservation process, "To preserve the physical remains of our past and to employ them in perpetuating our historical heritage" (Harrington 1965: 8).

The traditional training for archeologists has come through classics departments for classical archeology, and from anthropology departments for archeology of early man. Most American archeologists have received their training in anthropology departments, but more recently an interest in historical archeology has resulted in schools of American studies, and various history departments offering courses in historical archeology. Summer field schools and workshops are now being offered with greater frequency to help fill the ever expanding demand for competent archeologists able to deal with sites on both the prehistoric and historic levels.

The Society for American Archaeology is the primary American professional organization devoted to American archeology in the prehistoric period, and is the publisher of American Antiquity. The journal Archaeology, dealing with the antiquity of the world, is published by the Archaeological Institute of America. In 1960 The Conference on Historic Site Archaeology was founded to publish papers presented by archeologists dealing with historic sites. The papers from all conferences have been published, and are presently published as The Conference on Historic Site Archaeology Papers. In 1967 The Society for Historical Archaeology was begun, and this organization publishes the journal Historical Archaeology. Information concerning these publications follows:

Archaeology. For information and publications send to Archaeological Institute of America, 100 Washington Square East, New York, NY 10003.

Historical Archaeology. For information and publications send to Roderick Sprague, Secretary Treasurer, Department of Sociology/Anthropology, University of Idaho, Moscow, Idaho 83843.

The Conference on Historic Site Archaeology Papers. For information and publications send to Stanley South, Editor, Conference on Historic Site Archaeology, Institute of Archeology and Anthropology, University of South Carolina, Columbia, S.C. 29208.

BIBLIOGRAPHY

HARRINGTON, J. C.

76
SOUTH, STANLEY

WILLEY, GORDON R. AND PHILIP PHILLIPS

LELAND G. FERGUSON JOINS STAFF

Dr. Leland G. Ferguson joined the regular staff of the Institute of Archeology and Anthropology, University of South Carolina on March 20, 1972. Dr. Ferguson comes to us from Florida Atlantic University, in Boca Raton, Florida, where he has been teaching and doing research for the past two years. His research pertained mainly to the late prehistoric cultures of the central Carolinas and Georgia, a part of which he has been doing in conjunction with the Institute. He continued on this research at Boca Raton to provide additional data for the Institute files until May 10, 1972 when he reported for duty here in Columbia.

Dr. Ferguson is a native of Pinehurst, North Carolina where he was born on December 14, 1941. He received the B.S. degree in 1964 and the M.S. degree in 1966 from North Carolina State University in mechanical engineering. In the summer of 1966 he was an assistant to Dr. Joffre Coe in an archeological field project and turned his interest to archeology receiving his Ph.D. in Anthropology from the University of North Carolina in 1971. He has had five summers of field experience in archeology and two years of teaching experience in anthropology. He was the recipient of a Ford Foundation Fellowship in 1964–6 and of an N.D.E.A. Fellowship in 1966–69. The focus of his research has been on "Temple Mound Distribution and the South Appalachian Mississippian Development" which formed the basis of his dissertation as well as of his current research.

He was married to Annette Walker in September, 1963. Annette is also from North Carolina and is working on her M.A. thesis in history. Leland and Annette have purchased a home in Columbia and already have begun to settle in. Leland goes to the field for the summer and Annette will be teaching in the Columbia school system.

We welcome Leland and Annette to Columbia and look forward to a long and productive relationship.
The excavation of an irrigation ditch on the Bryers Plantation at the south end of John's Island disturbed a grave containing the remains of four individuals and associated trade goods. Mrs. Laurie Townsend and her father, Robert Berry, the present owner, discovered the grave, on February 6, 1971, and recovered the disturbed skeletal material and many glass beads from the back dirt pile. Dr. Robert L. Stephenson was contacted by Mrs. Townsend about the find and visited the site on May 24. Only a small portion of the burial pit extended beyond the limits of the irrigation ditch and the relative position of the four individuals and the associated material could not be determined in the field.

The material, loaned to the Institute by Mrs. Townsend, was cleaned and catalogued by the Institute staff prior to examination by myself and Dr. Ted A. Rathbun, physical anthropologist of the Department of Anthropology and Sociology, University of South Carolina.

INDIVIDUAL 1: A fragmentary, adult, Indian female of 105-107 cm (+ 4 cm) height. There are charred areas on most bones and distribution of these charred areas indicates disarticulation at time of partial cremation.

INDIVIDUAL 2: A fragmentary, adult, Indian male of 30-40 years of age. Height is indeterminate and bones were not charred.

INDIVIDUAL 3: A very fragmentary adult of possibly male sex and indeterminate height. Bones were not charred.

INDIVIDUAL 4: A few teeth and skull fragments of an infant. Bones were not charred.

Several suggestions may be made upon the relative disposition of the individuals in the grave. Mrs. Townsend described the grave as being two and one-half to three feet deep with the skeleton curled up on its left side with the head to the west. A large number of glass beads were concentrated in the neck and chest area. The individual described by Mrs. Townsend would appear to be Individual 2. Individual 1 was a secondary burial partially burned elsewhere as indicated by charred areas on the bones. It is not possible to determine the disposition of Individuals 3 and 4 although the small number of bones represented suggest additional secondary burials.

Associated with the skeletal material are 1,127 glass trade beads and 29 iron, square wrought nails. The square wrought nails all bear fragments of preserved wood from planks three-fourths inch thick indicating a box or other container was present, possibly containing the secondary burials. The glass trade beads are all of types prevalent in the second quarter of the eighteenth century. Kenneth Kidd's bead classification system was used in classifying the beads.
<table>
<thead>
<tr>
<th>FORM</th>
<th>COLOR</th>
<th>SIZE</th>
<th>NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire wound faceted</td>
<td>Translucent pale blue</td>
<td>2-4 mm</td>
<td>38</td>
</tr>
<tr>
<td>Wire wound spherical</td>
<td>Opaque black</td>
<td>10 mm</td>
<td>34</td>
</tr>
<tr>
<td>Wire wound faceted</td>
<td>Clear oyster white</td>
<td>10 mm</td>
<td>32</td>
</tr>
<tr>
<td>Wire wound spherical</td>
<td>Clear oyster white</td>
<td>10 mm</td>
<td>5</td>
</tr>
<tr>
<td>Wire wound faceted</td>
<td>Translucent light gold</td>
<td>10 mm</td>
<td>15</td>
</tr>
<tr>
<td>Tube drawn seed</td>
<td>Translucent bright blue</td>
<td>2-4 mm</td>
<td>38</td>
</tr>
<tr>
<td>Tube drawn spherical</td>
<td>Opaque white</td>
<td>4-6 mm</td>
<td>220</td>
</tr>
<tr>
<td>Tube drawn spherical</td>
<td>Opaque white</td>
<td>6-10 mm</td>
<td>366</td>
</tr>
<tr>
<td>Tube drawn spherical</td>
<td>Translucent pale blue</td>
<td>10 mm</td>
<td>3</td>
</tr>
<tr>
<td>Tube drawn spherical</td>
<td>Translucent bright blue</td>
<td>6-10 mm</td>
<td>1</td>
</tr>
<tr>
<td>Tube drawn spherical</td>
<td>Translucent bright mint</td>
<td>6-10 mm</td>
<td>10</td>
</tr>
<tr>
<td>Tube drawn spherical</td>
<td>Translucent pale blue</td>
<td>6-10 mm</td>
<td>157</td>
</tr>
<tr>
<td>Tube drawn spherical</td>
<td>Opaque pale blue</td>
<td>6-10 mm</td>
<td>3</td>
</tr>
<tr>
<td>Tube drawn spherical</td>
<td>Opaque red exterior with</td>
<td>6-10 mm</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>clear mint green core</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tube drawn spherical</td>
<td>Translucent robin's egg</td>
<td>6-10 mm</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>blue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tube drawn spherical</td>
<td>Opaque black with three</td>
<td>6-10 mm</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>spiral white stripes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tube drawn spherical</td>
<td>Translucent bright blue</td>
<td>6-10 mm</td>
<td>98</td>
</tr>
<tr>
<td>Tube drawn spherical</td>
<td>Opaque black with three</td>
<td>6-10 mm</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>red stripes centered on</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>three white stripes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tube drawn spherical</td>
<td>Opaque white with three</td>
<td>6-10 mm</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>mint green stripes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tube drawn spherical</td>
<td>Opaque white with three</td>
<td>6-10 mm</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>red stripes centered on</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>three bright blue stripes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tube drawn oblong</td>
<td>Opaque white with three</td>
<td>4-6 mm</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>red stripes centered on</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>three blue stripes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tube drawn oblong</td>
<td>Opaque white with three</td>
<td>6-10 mm</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>red stripes centered on</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>three blue stripes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tube drawn oblong</td>
<td>Opaque white with three</td>
<td>6-10 mm</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>bright blue stripes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The John's Island Burial was composed of a primary inhumation of an adult Indian male with three secondary burials and a quantity of glass beads. The types of glass beads present in the Indian burial suggest that the burial took place during the second quarter of the eighteenth century. The size and number or iron square wrought nails indicate a wooden box was present in the burial pit to contain one or more of the secondary burials. It is not possible to attribute the John's Island Burial to a particular group of Indians. Future work in the area may provide other more diagnostic features which will help determine which group made the burial.

The burial from John's Island provides one of the few samples of historic trade goods recorded for Charleston County and only through the interest and cooperation of concerned individuals could the remains be recovered and studied. It is through such help in all parts of the state that finds such as that reported by Mrs. Townsend can be brought to the attention of the archeologist and properly recorded.
INSTITUTE OF ARCHEOLOGY AND ANTHROPOLOGY
The University of South Carolina
Columbia, South Carolina 29208
Ph. 777-8170

DORCHESTER ARCHEOLOGICAL EXCAVATION
Richard F. Carrillo, Director
Dana G. Dunsieth
J. Baird Hoffmire
Willard B. Hoffmire
LeRoy F. Humphries
William L. Jackson
John H. Jameson
Phyllis J. Pringle
Cathryn D. Rubenstein
William C. Smith
Emily R. Tannenbaum

SANTEE-FT. WATSON ARCHEOLOGICAL EXCAVATION
Leland G. Ferguson, Director
R. Steven Abney
Frederick G. Dunning
Michael O. Hartley
Michael D. Kelley
Richard H. Kimmel
John E. Knill
William L. Jackson
John H. Jameson
T. Kurt Roeder
Gregory W. Seel
William C. Smith
Belton T. Zeigler

BLAIR MOUND ARCHEOLOGICAL EXCAVATION
George A. Teague, Director
Travis L. Bianchi
Richard T. Edwards
Holly H. Hook
Susan H. Jackson
Mary Page Luttrell
James D. Miller
David J. Mullis
Carol S. Weed