3-1971

Notebook - March-April 1971

South Carolina Institute of Archaeology and Anthropology--University of South Carolina

Follow this and additional works at: https://scholarcommons.sc.edu/notebook

Part of the Anthropology Commons

Recommended Citation
University of South Carolina, “South Carolina Institute of Archaeology and Anthropology - Notebook, March-April 1971”.
http://scholarcommons.sc.edu/notebook/17/

This Newsletter is brought to you by the Archaeology and Anthropology, South Carolina Institute of at Scholar Commons. It has been accepted for inclusion in SCIAA Newsletter - Notebook by an authorized administrator of Scholar Commons. For more information, please contact dillarda@mailbox.sc.edu.
A monthly report of news and activities of mutual interest to the individuals and organizations within the framework of the Institute of Archeology and Anthropology at the University of South Carolina and for the information of friends and associates of the Institute.

ROBERT L. STEPHENSON, EDITOR
THE INSTITUTE OF ARCHEOLOGY AND ANTHROPOLOGY

The University of South Carolina
Columbia, South Carolina 29208
Ph. 777-8170

STAFF

Dr. Robert L. Stephenson, Director and State Archeologist
Mr. John D. Combes, Assistant Director (on leave)
Mr. Stanley South, Archeologist
Dr. E. Thomas Hemmings, Archeologist
Mr. Thomas M. Ryan, Archeologist
Mrs. Betty O. Williams, Secretary
Mr. Gordon H. Brown, Scientific Photographer
Mr. Richard Polhemus, Laboratory Supervisor
Mrs. Mary Jane Rhett, Laboratory Assistant
Miss Carleen Regal, Clerk-Typist

STUDENT LABORATORY STAFF

Mr. James Frierson, Illustrator
Mr. Frederick D. Hunt, Student Laboratory Assistant
Mr. John Jameson, Student Laboratory Assistant
Mr. Charles E. Jenks, Student Laboratory Assistant
Miss Karen Lindsay, Student Laboratory Assistant
Miss Pamela Morgan, Student Laboratory Assistant
Mr. Peter D. Reed, Student Laboratory Assistant
Mr. Alan H. Shoemaker, Student Laboratory Assistant
Mrs. Carol F. Thompson, Student Laboratory Assistant
Mr. Robert J. Thompson, III, Student Laboratory Assistant

ASSOCIATED STAFF

Mr. Donald R. Sutherland, Collaborator, Department of Anthropology and Sociology
Dr. Thomas J. Price, Collaborator, Department of Anthropology and Sociology
Mr. Ted A. Rathbun, Collaborator, Department of Anthropology and Sociology
Mr. William S. Ayres, Collaborator, Department of Anthropology and Sociology

Mr. James L. Michie, Research Affiliate, Columbia, South Carolina
Mr. Eugene G. Waddell, Research Affiliate, Florence, South Carolina
EDITOR'S PAGE

During March and April we made numerous trips around the state and one trip to Florida. We made talks to Sertoma Clubs, Rotary Clubs, and Optimist Clubs and a general lecture series at Wofford College as well as a couple of television interviews. Several out-of-state visitors stopped by and we were certainly pleased to have a chance to visit with them.

A Concurrent Bill was introduced in the South Carolina Legislature to create a Study Committee to consider the factors involved in the creating of a State Museum. This bill was introduced by Senators Zeigler, Owens, and Brockington. We appreciate the good offices of these gentlemen in introducing this measure.

On April 17, Stanley South, Dick Polhemus, and I went to the Augusta Museum to meet with Clemens deBailou, Woody Williams, Walt Joseph and others to discuss prospects for salvage archeology at the site of Fort Moore. Land clearing threatens a portion of the site and plans were made for a minor salvage operation on weekends, using volunteer labor. The following two weekends were devoted to this effort. An area was sampled showing the architectural features of what appears to be a trading post, associated with Fort Moore, of the first third of the eighteenth century. We will hear more of this in the next issue.

We met with the National Historic Preservation Review Board and added several new sites to the National Register of Historic Places.

The Archeological Society of South Carolina met on March 19th with Mr. Floyd Painter of Norfolk, Virginia speaking to us on the excavation of a well at Fort Boykin, Virginia. This well at the eighteenth-nineteenth century fort produced some interesting artifacts and the description of the method of excavation was of much interest. At the April 16th meeting, James Michie of Columbia spoke to us on further excavations at the Taylor Site. This is the site near Columbia that Jim has been excavating for nearly a year now and, with Dalton and Taylor Components, is becoming a very significant site. It is the only Early Man site within the state that has been excavated to date.

This issue brings us the first BOOK REVIEW that we have had. Mr. South reviews a most significant publication on eighteenth century ceramics that relates directly to some of the sites of that period in South Carolina.

Another agreement was signed on March 30th with the Star Fort Historical Commission for funding archeological research on the Ninety Six Project in 1971. The work will take place in June and July and again in September at the sites of Holmes' Fort and Williamson's Fort. The latter is the location of the first battle of the American Revolution in the South. Holmes' Fort is the site of part of the siege of Ninety Six in 1781. Slot trenching and tests here in 1970 located the outlines of Holmes' Fort but little or nothing of Williamson's Fort.

Robert L. Stephenson, Director
Institute of Archeology and Anthropology
University of South Carolina
Columbia, South Carolina
FEDERAL LEGISLATION OF ARCHEOLOGICAL IMPORTANCE

Federal legislation is now pending before both Houses of Congress that will, if passed, be the most far-reaching archeological legislation since the Federal Antiquities Act of 1906. Senate Bill 1245 was introduced by Senator Moss of Utah, and an identical bill, House Resolution 6257, was introduced by Congressman Bennett of Florida, on March 16, and 17 respectively.

The essence of these bills is to make it possible for any federal agency or any other agency using federal funds for construction that disturbs the surface of the ground, to use a portion of those funds for salvage of archeological materials in the construction area. This means that a Corps of Engineers Reservoir project, a federal highway project, an urban renewal project, an airfield construction, or any other such, earth-moving construction project can provide funds (up to 1% of the total project cost) for the salvage of any archeological values that might be endangered by that project.

This puts the responsibility for salvage of the archeological values squarely on the shoulders of the agency that is responsible for the destruction of the archeological site or sites. It removes a part of the cost burden from the local archeological agency and puts it on the construction agency. It also makes it imperative that the local archeologists work closely with the construction agencies and with the National Park Service. They must be aware of the site-destroying projects and maintain contact with the National Park Service through whom the funds are made available. The language of the bill is permissive, not mandatory. The construction agency need not make funds available if the archeologist does not provide evidence of the need. Thus, all must work together for the maximum salvage effort. If they do, there will be no reason for any archeological site to be destroyed without appropriate salvage in the future, except for those on private lands where no federal funds are involved.

These bills have numerous co-sponsors in both Houses and each has many supporters in Congress. This does not assure passage, though. Much public support is needed. Many Senators and Congressmen do not know the importance of this legislation. Each of us can play a part in getting these bills passed by writing our Senators asking them to support and to co-sponsor Senate Bill 1245 and by writing to our Congressmen to support and co-sponsor H.R. 6257. Hearings by the Interior and Insular Affairs Committees will be held on these bills and they should come to the floor of the House and Senate for vote sometime this summer.

If everyone interested in the preservation of our American Heritage will write one or two letters in support of these bills, especially to your Congressmen, they will be assured of passage. Without this public expression of concern, our Senators and Congressmen cannot know of the widespread interest in archeological preservation. They may look casually on a bill that appears unsupported. It is up to us! Let's write some letters, today!
A PRELIMINARY INVESTIGATION OF AN EARLY KNAPPING SITE IN SOUTHEASTERN GEORGIA

by Paul Brockington

(Ed. Note: Paul Brockington, now a graduate student at the University of Kansas, was a staff member of the Institute from 1966-1970. As a member of Dr. Edwards' crew at this site, he has experience with the excavations and in 1970 spent a full semester working with the specimens. It is hoped that at a later date, Dr. Edwards will prepare a full report of his work at the site. The present paper is simply an analysis of one aspect of the site. Since Dr. Edwards' work was completed, additional work has been done at the site by Mr. Gordon Midgette. We all look forward to Mr. Midgette's report and hope that this small contribution to the analysis of the site will be of use to him as well as to Dr. Edwards in fuller reports of their more extensive work. Mr. Midgette has renamed the site "The Waring Site". Since the name originally assigned by Dr. Edwards was "The Theriault Site" that name has been retained in this report.)

INTRODUCTION

In the summer of 1966, from mid-July to mid-September, preliminary excavations were made at the Theriault Site (39BK2), on Briar Creek, in Burke County, Georgia, by Dr. William E. Edwards, then South Carolina State Archeologist, with a small crew of students from the University of South Carolina. I was involved in the excavations as a member of the crew. The site is located on the eastern edge of a swamp that follows Briar Creek as it flows toward the Savannah River, about thirty miles away. (Fig. 1).

A survey of local amateurs' projectile point collections indicated the possible importance of the site, and a visit in July, 1966 showed the necessity of immediate salvage operations. The site had been vandalized to a great extent. There were large craters where the point-hunters had been working, and their activity was continuing. A surface collection of pottery from what I believe to be the same site has been mentioned previously in the literature (Phelps, 1968). The site is there referred to as the "Boy Scout Site." One of the most extensive collections from the site was made by Sgt. Reginald Theriault, then stationed at Fort Gordon near Augusta. Sgt. Theriault made his collections available to Dr. Edwards for inspection in 1966 and has subsequently made them available to the University of Georgia archeologists. It was for Sgt. Theriault that Dr. Edwards named the site in 1966.

A surface collection of the area produced a large number of chert flakes, and many chert bifaces, indicating that the site represented a large knapping locus. It was hoped that these specimens, and others turned up by collectors, had been stratigraphically deposited, but a
test pit in an undisturbed area showed no natural stratification of the cultural material. There was a topsoil or biotic zone of about six inches and a single occupation zone of medium, well-sorted sand about thirty-six inches deep, overlying a sterile clay matrix. Ground water was encountered three to four inches into the clay.

Although no cultural stratigraphy was found, excavation was continued, with the hope that a pattern of superposition of artifacts could be discovered in the homogeneous sand zone. A total of sixty-two five-foot squares was excavated, in three major areas of the site, and these were arbitrarily controlled in six-inch levels. Five features were discovered in the sand zone, but all were believed to have been tree root disturbances, as they were all irregular, all extended several levels in depth, and only one contained any artifacts. There were no faunal remains recovered from the site. Potsherds, both sand and fiber tempered, were found in all areas of the site, and, although these were concentrated in the top three levels, some were recovered from even the bottom level. Various projectile points and stone tools were also found, along with many chert bifaces. The most characteristic element of the site, however, was the tremendous quantity of chert flakes, which were found on the surface and in all levels.

At the close of excavations in September, 1966, all the bags of artifacts and flakes were shipped to the laboratory in Columbia, South Carolina, and stored. Because of the press of subsequent events, nothing more than the cataloging of a part of the material was done until September, 1969, when the present State Archeologist, Dr. Robert L. Stephenson, asked me to work with it in hopes of salvaging at least some information. A research proposal concerning the study of the material was submitted to a special committee governing a newly-created program of undergraduate independent study and research, at the University of South Carolina. This proposal was accepted, and work on the material began.

Some problems, however, soon presented themselves. During the three-year interval of storage, all notes and photographs of the site had been misplaced. All that remained were the provenience data on the specimen bags and a catalog for the material that had already been cataloged. After the remaining material had been cleaned and cataloged, all of the material was sorted by squares and levels. By this sorting procedure, through my own memory and the memories of others involved with the excavations, and through a visit to the site, the grid system used was reconstructed, and a general map of the site was made. (Fig. 2).

THE SPECIMENS

Chert Flakes

The quantity of chert flakes and flake fragments was tremendous. In all, there were over eleven hundred pounds of chertdebitage. Instead
FIGURE 2
SKETCH MAP OF
THE THERIAULT SITE 9BK2
BURKE CO., GEORGIA

FORESTED AREA
AREA 1
AREA 2
DISTURBANCES
AREA 3
DISTURBANCES
FORESTED AREA
DIRT ROAD

CA. 30 YDS. TO BRIER CREEK

0 SCALE-FEET
5 20 50
of counting these hundreds of thousands of chert flakes, the flakes from each square and each level were weighed, with the hope that a possibly meaningful index of occupational intensity could be computed, either through time (by comparing the various levels to each other), or in space (by comparing areas of the site, individual squares, and corresponding levels to each other). Both experiments were successful in part.

By comparing the flake-weight distribution in the various six-inch levels, it had been hoped that occupational intensity of the site through time could be measured. This seemed to be fairly successful. The flake-weight distribution by levels for the site as a whole was reflected in a positively skewed curve, approaching zero in the two deepest levels, and showing bimodal tendencies with a definite peak in the 6-12 inch level and another, although much less pronounced, in the 18-24 inch level. This seemed to indicate two major periods of habitation, one in the middle of the time-range of the site, and the primary one somewhat later. (Fig. 3).

By comparing the three areas of the site to each other, using this measure of occupational intensity through time, it was hoped that variations in the settlement pattern of the site through time could be inferred and measured. This seemed to be successful (Fig. 4). Area 2 had the highest flake-weight average, showing a positively skewed curve with bimodal tendencies. A primary peak occurred in the 6-12 inch level and a secondary one in the 24-30 inch level. Area 3 generally reflected a medium flake-weight average, having a curve that was highly positively skewed, with one definite peak, in the 6-12 inch level. Area 1 had a noticeably smaller flake-weight average, and the curve shown by it was constricted compared to Areas 2 and 3. Area 1 showed bimodal tendencies, with peaks in the 6-12 inch level and in the 18-24 inch level. The flake-weight averages of all three areas approached zero in the bottom most levels.

An interpretation of this set of data would be that Area 2 had the greatest occupation of the three, and that it was occupied continuously from early times, but with two periods of intensity, one in the middle and one late in the time range of the site. Area 1 corresponded to this general pattern. Its smaller flake-weight average and its constricted nature being a function of less intensive habitation than Area 2. Area 3 also showed continuous and increasing habitation, but did not show a secondary peak in the middle levels. The intensive occupations in the middle time range of the site that were reflected in Areas 1 and 2 did not occur in Area 3. Area 3 did, however, conform to the general pattern of showing the most intensive occupation as being late in the time range of the site.

Some work was done in attempting to compute a conversion factor to determine flake-count from flake-weight figures. The discovery of such a conversion factor, or patterns of conversion factors, using

FIGURE 3
TOTAL FLAKE-WEIGHT DISTRIBUTION BY LEVELS (9BK2)

FIGURE 4
COMPARISON OF AVERAGE 5' x 5' SQUARES IN 6" LEVELS IN EACH OF 3 AREAS (9BK2)
either horizontal or vertical provenience comparisons, could have been significant in indicating variations, through time or space, in the manufacturing of stone tools. It would have been interesting to trace changes from possibly a core to a flake tradition, or maybe from percussion to pressure chipping. However, no pattern could be determined, probably because the great majority of the flakes are actually flake fragments, not original flakes, and the conversion factors were related more to variations in fragmentation of original flakes than to variations in producing these flakes.

There is no evidence in the collection for the presence of a blade industry. There is, however, a considerable number of utilized and retouched flakes. These will be discussed later in the paper.

Projectile Points (Fig. 5, 10-13)

In all, one-hundred twenty, identifiable projectile points and projectile point fragments were found in the excavations, ten of which were in disturbed contexts. Three of the four major traditions of the Southeast, Paleo-Indian, Archaic, and Woodland, were represented in the projectile point assemblage of the site. There was no evidence for Mississippian occupation. (Fig. 5).

The Paleo-Indian tradition was represented by a single Clovis fluted point, found at 30 to 34 inches, just above the sterile clay matrix (Fig. 10a, a'). This Clovis point was unusually long—120 millimeters—and was 30 mm wide. The flute extends 30 mm from the base on one side and 48 mm on the other side. The sides and base were well ground. The Paleo-Indian tradition was also represented by two Dalton points (Bell 1958:18)—one found at 36 inches lying right on top of the clay matrix, and one in the 18-24 inch level (Fig. 10b, c). What is believed to be a transitional period between the ending of the Paleo-Indian tradition and the beginning of the Eastern Archaic is represented in the collection by one point that is very similar to what Joffre Coe has called, in North Carolina, the Hardaway Blade (Coe 1964:64); this point was found in the 18-24 inch level (Fig. 11, o).

A very early Archaic horizon is represented by seven points of the Taylor Point type (Michie 1966:123), found in South Carolina and Georgia. (Fig. 10, d-g). These points are probably spear or dart points that are beveled, side-notched, basally ground and thinned, and have a concave base. Two of these points came from the deepest level of the squares in which they were found (the 30-36 inch level), one came from the 24-30 inch level, one from the 12-18 inch level, and three were included in the collection donated by Sgt. Theriault.

There were eight Palmer Points (Coe 1964:67) concentrated in the 24-30 inch level (Fig. 11, f-m); eighteen Kirk Points (Coe 1964:69)
concentrated in the 18-24 inch level (Fig. 10, h-k and Fig. 11, a-e); but only two Stanly Points (Coe 1964:35) in the entire collection (Fig. 11, q-r). There were twelve Morrow Mountain Points (Coe 1964:37) fairly evenly distributed in all levels (Fig. 12, a-f), and nine Guilford Points (Coe 1964:43) found in the top four levels (Fig. 12, g-j). The presence of these several point types in The Briar Creek area, a considerable distance from their type stations in North Carolina, documents a wider distribution for those phases than has previously been established.

The Archaic tradition is also represented by two distinct point types, each including only one specimen, that do not seem to be common in South Carolina and Georgia. The first of these is the Webb Point type (Fig. 11, n) as defined in Louisiana (Ford and Webb 1956:66). The other is the Cypress Creek I Point type (Fig. 11, p) as defined in Tennessee (Lewis and Lewis 1961:37). There were nine Gary Points (Bell 1958:28) in the projectile point assemblage of the site (Fig. 13 a-d). These were fairly evenly distributed as to depth, but there was slight concentration in the two levels 6-18 inches. By far the most numerous group of projectile points were those of the Savannah River Stemmed type (Coe 1964:44). This point type included thirty-one specimens, which were found in all levels, the highest number in the 6-12 inch level (Fig. 12, k-n).

An unusual point type was represented in the projectile point collection by four specimens (Fig. 13, h). Although not extremely rare in the Southeast, it is not well-known in the literature. The points are typically well-made (more so than most Woodland points), and are similar to the Bradley Spike (Kneberg 1956:27) from Tennessee, and to the Thelma Point (South 1959:409) found in the Roanoke Rapids Basin of North Carolina. They are from 45 to 60 mm long, 15 to 20 mm wide, and 7 to 8 mm thick, having a straight base and squared stem and shoulders. The blades are triangular, and the sides are straight. The points seem to have been made almost entirely by percussion flaking. At present the four specimens in this category remain unclassified as to type, but they probably represent a transitional period from Archaic to Woodland, showing the shift from a large, stemmed, spear point to a smaller, triangular, arrow point.

The Woodland tradition at the Theriault Site is represented in the projectile point collection by twelve specimens of four different types (Fig. 13 e-g, i-o). These were all in the top four levels, but mostly concentrated in the top two levels. There are six Yadkin Points (Coe 1964:45), four Badin Points (Coe 1964:45), two Randolph Points (Coe 1964:49), and one Clarksville Small Triangular Point (Coe 1964:112).
Scrapers (Fig. 14)

In all, seventy-eight scrapers were found in the excavations, three of which deserve special mention. They are representatives of a type of scraper, known as the Edgefield Scraper (Michie 1968:30), that has been reported in South Carolina from surface sites that also yield Clovis and Dalton Points (Fig. 14 a). This type of scraper resembles the basal fragment of a large side-notched projectile point, such as the Big Sandy (Lewis and Lewis 1961:34) points of Tennessee, having a straight, concave, or sometimes slightly convex base, with large, deep side-notching. There is, however, on the Edgefield Scraper, an intentionally made scraping edge at a forty-five degree angle to the base. These scrapers are plano-convex, usually with only slight secondary chipping being bifacial, and they often exhibit basal grinding. Of the three Edgefield Scrapers found in the excavations, one was in the deepest six-inch level, one in the top six-inch level, and one in a disturbed context. There was also one donated to the collection by Mr. Buddy Theriault. The one found in the 36-42 inch level is evidence in support of their previously supposed antiquity, assuming redeposition of the one found in the 0-6 inch level, and ignoring the two with unknown proveniences.

Of the other seventy-five scrapers, two were small, stemmed, and presumed to have been hafted (Fig. 14 l). Both were found in the 30-36 inch level. The remaining seventy-three scrapers were end, side, and oval scrapers and fragments. All kinds were found in all levels—there was no apparent clustering of shape or wear patterns. However, there were concentrations in absolute number of scrapers in the 6-12 inch level and the 24-30 inch level.

Hammerstones (Fig. 15 a,e)

Twenty-eight hammerstones and hammerstone fragments were found at the site, of which half were found on the surface and in disturbed areas as rejects of the pothunters. Most were made from chert, but two were quartz and one was of a granitic material. (These last two minerals are not local to the area.) As with the scrapers, there were concentrations in the 6-12 inch level and in the 24-30 inch level.

Axes (Fig. 15 d)

Twenty-one chipped stone axes were found, three of which seemed to have notching as if for hafting. All three of these were found in the 6-12 inch level, but there was a marked concentration, ten of the total twenty-one, in the 12-18 inch level. No ground stone axes were recovered.
Miscellaneous Stone Tools (Fig. 14, 15)

Nine chipped stone drill fragments were found, all in the top 24 inches. All seemed to have been broken in manufacture, as there were no use marks. (Fig. 14d).

Four chipped stone shaft scrapers, or spoke shaves (Fig. 14e, i), were found in the excavations: two in the 24-30 inch level, and one each in the 30-36 inch level and the 36-42 inch level. These all showed some indications of utilization.

Four nutting or grinding stones (Fig. 15c) and three ground stone pestles were found. In addition, it appears as if several of the hammerstones were used alternatively as pestles. One large anvil stone was found in the 24-30 inch level.

A total of forty-eight utilized flakes has been separated from the thousands of flakes and flake fragments in the collection. These are definitely utilized flakes. There were many others that showed some wear, which could possibly be attributed to accidental crushing either underfoot, in the screening operation, or in the specimen bags. These utilized flakes were distributed randomly with respect to kinds and to levels. Most were utilized as scrapers, but there were many knives, three shaft scrapers, three perforators, and two gravers.

Bifaces

Nine hundred seventy-three bifaces and biface fragments were found in the excavations, only sixty-three of which showed any signs of utilization. Most of these sixty-three utilized bifaces had been used as scrapers, but a few showed wear as if they had been used as knives. The great majority of the bifaces showed no utilization marks at all. They seem to be rejected preforms for stone tools and/or projectile points. The fact that similar bifaces are very seldom found in village sites seems to support the notion that they are not finished products.

It was hoped that the preforms would be specialized enough to establish their relationship to a finished projectile point type or other tool type. Most, however, were irregular and inconsistent in shape or size, and many were fragmented. The further problem of the superposition of other artifacts being very imprecise made the establishment of relationships between preforms and finished products impossible. There were a few preforms, however, that could be classified into types known for the Southeast: Savannah River and Stanly (Coe 1964:50). Although there were only two Stanly projectile points, there were at least five Stanly preforms (or "quarry blades" as Coe calls them) in the collection. The Savannah River type of preform was associated with Savannah River Stemmed points in North Carolina, and
the abundance of this type at the Theriault Site indicates that the middle Archaic Savannah River phase was one of intensive occupation at the site. The remaining preforms and fragments, because of the previously mentioned reasons, could not be associated with any finished products, and so remain unclassified. The total distributional pattern of the bifaces by levels is substantially the same as that reflected by flake-weight (Fig. 6). That the biface distribution does not show two separate peaks may possibly be accounted for by the fact that the arbitrary six-inch levels do not always coincide with natural deposition units.

Pottery

The pottery collection from the Theriault Site is relatively meager (2,359 sherds), considering the total excavated area. Furthermore, many of the sherds are very small, and so heavily weathered as to render them indeterminable as to type. Some type names have, however, been associated with the pottery collection.

Fiber tempered pottery could all be grouped under the type names Stalling Island Plain, Stalling Island Punctate, Stallings Island Fine Incised, or Stallings Island Drag-jab. The sand tempered pottery was not so clear-cut as to typology. It was necessary to classify much of it as indeterminate. The next largest category was that of plain pottery. The decorated pottery seemed to be mostly of the various Thom's Creek types (most of the plain pottery is also undoubtedly Thom's Creek). Also present were a few sherds that were definitely Deptford, and Napier Simple Stamped was also represented by a few sherds (Wauchope 1966:48, 57). The tenuousness of typing the great majority of the sherds, however, forced the classification to be made on surface treatment alone. Discrete type names just could not be imposed on most of the pottery (Fig. 7 and 8).

A possibly meaningful analysis could be made using two fairly distinct categories—fiber tempering and sand tempering. The highest frequency of occurrence of fiber tempered pottery was in the 18-24 inch level, whereas that of sand tempered pottery was in the 0-6 inch level. This would seem to be in agreement with the prevalent theory that the inhabitants of the Southeast first used fibers to temper their pottery. It was also interesting to observe the variations in frequency among the three major areas of the site. Area 1 had a high frequency of fiber tempered pottery, especially high relative to the sand tempered pottery there. The frequency of fiber tempered pottery in Area 2 could be characterized as "medium," while Area 3 had a very low frequency of fiber tempered pottery (compared both to the other areas and to the sand tempered pottery in Area 3). This lack of fiber tempered pottery in Area 3 seems to correspond to the lack of a secondary "occupation" peak in the flake-weight distribution curve. The people using fiber for tempering seem to have inhabited the southeastern part of the site (Area 1), and, later, those using sand for
FIGURE 6
COMPARISON OF NON-UTILIZED BIFACES (PREFORMS) BY LEVELS (9BK2)

FIGURE 7 SAND TEMPERED POTTERY

<table>
<thead>
<tr>
<th>Levels in Inches</th>
<th>Indet.</th>
<th>Plain</th>
<th>Simple Stamp</th>
<th>Drag-jab</th>
<th>Net or Fabric Im.</th>
<th>Punct.</th>
<th>Check Stamp</th>
<th>Incised</th>
<th>Cord-Marked</th>
<th>Linear Check St.</th>
<th>TOTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-6</td>
<td>443</td>
<td>184</td>
<td>63</td>
<td>41</td>
<td>4</td>
<td>1</td>
<td>11</td>
<td>6</td>
<td>688</td>
<td>123</td>
<td>753</td>
</tr>
<tr>
<td>6-12</td>
<td>362</td>
<td>195</td>
<td>53</td>
<td>5</td>
<td>21</td>
<td>2</td>
<td>4</td>
<td>43</td>
<td>2</td>
<td>1</td>
<td>688</td>
</tr>
<tr>
<td>12-18</td>
<td>180</td>
<td>148</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>32</td>
<td>355</td>
</tr>
<tr>
<td>18-24</td>
<td>117</td>
<td>99</td>
<td>6</td>
<td>10</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>239</td>
</tr>
<tr>
<td>24-30</td>
<td>68</td>
<td>53</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>127</td>
</tr>
<tr>
<td>30-36</td>
<td>32</td>
<td>20</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>36-42</td>
<td>5</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>42-48</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>TOTALS</td>
<td>1207</td>
<td>711</td>
<td>134</td>
<td>22</td>
<td>69</td>
<td>16</td>
<td>8</td>
<td>57</td>
<td>14</td>
<td>1</td>
<td>2239</td>
</tr>
</tbody>
</table>
FIGURE 8
(STALLINGS ISLAND) FIBER TEMPERED POTTERY

<table>
<thead>
<tr>
<th>LEVELS IN INCHES</th>
<th>Plain</th>
<th>Punctate</th>
<th>Fine-Incised</th>
<th>Drag-Jab</th>
<th>TOTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 6</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>6 - 12</td>
<td>17</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>12 - 18</td>
<td>24</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>27</td>
</tr>
<tr>
<td>18 - 24</td>
<td>32</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>37</td>
</tr>
<tr>
<td>24 - 30</td>
<td>19</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>30 - 36</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>36 - 42</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>TOTALS</td>
<td>103</td>
<td>7</td>
<td>9</td>
<td>1</td>
<td>120</td>
</tr>
</tbody>
</table>

FIGURE 9
COMPARISON OF FIBER AND SAND TEMPERED POTTERY BY AREAS

<table>
<thead>
<tr>
<th></th>
<th>FIBER</th>
<th>SAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREA 1</td>
<td>59</td>
<td>73</td>
</tr>
<tr>
<td>AREA 2</td>
<td>66</td>
<td>1048</td>
</tr>
<tr>
<td>AREA 3</td>
<td>17</td>
<td>1118</td>
</tr>
<tr>
<td>TOTALS</td>
<td>142*</td>
<td>2239</td>
</tr>
</tbody>
</table>

*DISCREPANCY DUE TO GLUING TOGETHER SOME FIBER TEMPERED SHERDS AFTER PREPARATION OF THIS TABLE.
tempering inhabited the northwestern part of the site (Area 3). (Fig. 9).

Miscellaneous Artifacts

One steatite fragment was recovered in the excavations (Fig. 15f) and several were in the collections of amateurs that had collected from the site. Several very small clay lumps were recovered from Area 1. It is possible that these could be "clay ball" fragments (Ford and Webb 1956). The function of these steatite and clay ball artifacts is still being debated. The possibilities seem, however, to have been narrowed down to "boiling stones" or "net sinkers" (South 1970). Several small pieces of sandstone were found. These had grooves worn in them that indicated that they had been used to smooth or grind--possibly the bases of projectile points or wooden shafts. These sandstone "abraders" were found in the deeper six-inch levels, where also were found the projectile points that exhibited basal grinding.

Conclusions

Although the results of the excavations and material analyses are not as spectacular as was at first hoped, there are several contributions of the Theriault Site to Southeastern prehistory. Its heavy occupation in Archaic times was helpful in showing the distribution of certain established Archaic complexes. These were the Kirk, Palmer, and Guilford phases, as defined by Coe (1964:54, 81-82).

The presence of flakes and rejected preforms in such quantity certainly would indicate that the site was the locus of continual knapping activity. It would also indicate that, the chert of the site being almost completely uniform, the source of the chert is close to the site. Some time was spent in 1966 trying to locate the source, but this was unsuccessful. It may be under the water of Briar Creek or under several feet of aluvial deposition now. The workshop aspect of the site is very significant in that little has been established with respect to knapping techniques in the Southeast, their change through time, or their relationship to finished products. The tentative association of some of the many preforms with the Savannah River and Stanly phases is a step in the right direction.

The presence of pottery, of mortars and pestles, and of scrapers indicates that the site, in addition to having been a flint-knapping site, was a campsite (probably for short periods of time; no remains of houses; no bone ornaments or tools; and only a few very small fragments of steatite or clay which could have possibly been boiling stones or net sinkers.) It is difficult to assess the meaning of the relationship between the large quantity of chert flakes and rejected preforms, and the few finished tools and points. It seems reasonable,
however, to postulate that the local chert, being of high quality for knapping purposes, there were fewer mistakes made, and either some care was taken not to lose finished products, or single-group occupations were short, reducing the opportunity to misplace or otherwise leave behind finished products. The quantity of chert debitage is not necessarily inconsistent with this hypothesis—there could have been a continual succession of short-time habitations.

The primary importance of the site is that it provides a sample of the Briar Creek drainage of Georgia. Evidence of even a partially stratified site containing a Paleo-Indian component is significant in the Southeast area. This evidence should spur archeologists towards a more extensive survey of the area of the Briar Creek drainage in hopes of discovering a less disturbed site. Amateur collections from the area (reviewed by Waring, 1968) and some slight amount of site survey done in 1966 indicate that there are many other similar (on the surface) sites in the general area. Also, a more systematic search should be made for the source of the chert. It appears that this chert was traded over a wide area of Georgia and South Carolina. By pinpointing the origin of the material, perhaps we could understand more about native movements and trade routes.

The recommendations for more intensive work in the Briar Creek drainage, however, do not imply that the Theriault Site should be further investigated. The neat separation of different cultural components is not present there. The very heavy occupation (particularly in Archaic times) seemed to have been a disturbing influence on stratigraphic deposition, especially the early Paleo-Indian horizon. The collecting activity of local amateurs, particularly in the last three years, has reordered and destroyed what was before, at most, a general superposition. On a visit to the site in December, 1969, it appeared to have been largely destroyed.

REFERENCES CITED

Bell, Robert E.

Coe, Joffre L.

Ford, James A., and Clarence H. Webb
Kneberg, Madeline
1956 Some important projectile point types found in the Tennessee area. Tennessee Archaeologist, Volume 12, Number 1, pp. 17-28.

Lewis, T. M. N., and Madeline K. Lewis

Michie, James L.

1968 The Edgefield scraper. The Chesopiean, Volume 6, Number 2, pp. 30-31.

Phelps, David Sutton
1968 Thom's Creek ceramics in the central Savannah River area. The Florida Anthropologist, Volume 21, Number 1, pp. 17-30.

South, Stanley A.

1970 Baked clay objects from the site of the 1670 settlement at Charles Towne, South Carolina. NOTEBOOK, Volume 2, Number 1, Institute of Archeology and Anthropology, University of South Carolina.

Waring, A. J.

Wauchope, Robert
CAPTIONS FOR FIGURES 10-15, SPECIMENS FROM SITE 98K2

FIGURE 10
(a-a') Clovis Fluted Point, obverse and reverse
(b-c) Dalton Points
(d-g) Taylor Points
(h-k) Kirk Stemmed Points

FIGURE 11
(a-e) Kirk Corner Notched Points
(f-m) Palmer Points
(n) Webb Point
(o) Hardaway Blade
(p) Cypress Creek I Point
(q-r) Stanly Points

FIGURE 12
(a-f) Morrow Mountain Points
(g-j) Guilford Points
(k-n) Savannah River Stemmed Points

FIGURE 13
(a-d) Gary Stemmed Points
(e-g) Yadkin Points, variant I
(h) Unclassified
(i-j) Yadkin Points, variant II
(k) Clarksville Small Triangular Point
(l) Randolf Stemmed Point
(m-o) Badin Points

FIGURE 14
(a) Edgefield scraper
(b-c) End scrapers
(d) Base of a chipped stone drill
(e) Shaft scraper on a flake
(f-h) Oval scrapers, note graver on right edge of h
(i) Shaft scraper
(j) Side scraper
(k) "Thumbnail" end scraper
(l) Stemmed scraper
(m-n) Side scrapers

FIGURE 15
(a) Quartz hammerstone
(b) Sandstone abrader
(c) Grinding, of "nutting" stone
(d) Notched, chipped stone axe
(e) Chert hammerstone
(f) Perforated steatite fragment
FIGURE 12
FIGURE 13

44
CLAY BALLS FROM NORTHWEST FLORIDA

by Yulee W. Lazarus

(Ed. Note: Mrs. Lazarus, Director of the Indian Temple Mound Museum, Fort Walton Beach, Florida, has sent the following comments on baked clay objects from that area. "The Society for the Preservation of Baked Clay Objects" strikes again.)

Baked clay objects, or clay balls, as found in Northwest Florida, have been reported in four papers in the FLORIDA ANTHROPOLOGIST. Combining the evidence presented, the conclusion by Small (1966) that variation of execution in manufacture seems to be the rule rather than the exception is strongly supported by new data available from the same area. Although none similar to the curious baked clay objects with complete perforations and gear appearances have turned up, still the new material is evidence of wide distribution of sites where a variety were in use for some obscure reason. The following comments are offered to supplement that information already in the literature so far as Northwest Florida is considered.

Peach-shaped or pointed spheroidal clay balls are in the Elliotts Point Complex (Lazarus 1958). Spherical shapes are reported by Fairbanks (1959). Spheroidal and spherical decorated balls are presented by Small (1966). These specimens are from 7 sites in Okaloosa and Walton counties. There are a total of at least 18 known sites where clay balls have been recovered. Most of them are bordering Choctawhatchee Bay. From one site in neighboring Santa Rosa county the largest clay balls, at least 6 inches in length, have been found. These are peach shaped with shallow finger striations running longitudinally, of hard gray clay paste, and fire mottled. They are distinctive for their size. No provenience was available for the large 6 inch to 8 inch objects except that no other artifacts were found in the area. The site was a half-acre area where the upper 18 inches of topsoil had been scooped up to form a revetment around a spring to contain a shallow lake draining into Escambia Bay.

Decorated clay balls from a multi-component site on Choctawhatchee Bay have been recovered from the shallow waters, deposited as the result of a serious erosion condition. Some 15 to 20 almost whole decorated clay balls were recovered from a cache situation, by hand digging in dry land under the 'top shelf' of undergrowth at the shore where the erosion is still destroying aboriginal material. The cache was encased in thick humus described as 'greasy mud' which required overnight soaking before the artifacts could be cleaned for study. Over 300 fragments were also within the mud. The major portion are peach shaped though 4 or 5 are amorphous in shape. All are distinctly and elaborately decorated. Longitudinal finger marking is more deeply impressed on these than on the specimens from the type site Elliotts Point Complex.
Incising was executed with tools of both sharp and rounded points. Finger pinching is deep and close, sometimes punctated with sharp fingernails. Design is both random and zoned, with longitudinal, horizontal and overlap arrangement. Decoration of clay balls from this site have also included stick impressed, herringbone and diamond incising, and nail marked. Design elements are almost a forerunner of the much later (?) Weeden Island Keith incising and Carrabelle incising and punctating! Some particular reason must have prompted the craftsman to shape clay balls and add these elaborate decorations for other than simple utility in cooking.

In support of the skin-lined hole-in-the-ground manner of cooking at least two other caches were excavated in situ and produced spherical, spheroidal, and round biscuit shape clay balls, not clearly decorated. Some faintly show simple stamping and were, like the above cache en-cased in black muck. These were from a different site than the decorated ones. Paste is dark, grainy, and appears almost fibrous in texture.

REFERENCES

Fairbanks, Charles H.

Lazarus, William G.

Small, James F.
FIGURE 16

Baked Clay Objects from Site 80K54E, Fort Walton Temple Mound Museum, Fort Walton Beach, Florida.
BOOK REVIEW

Reviewed by Stanley South

The "Introduction" to this volume clearly reviews the challenge of historic site ceramics classification and cites earlier efforts at dealing with the problems. The taxonomic tools used by these authors are the class, group, and type, and from their use of these within this report, it is clear that their criteria provide a sensible, workable means of dealing with ceramic data from historic sites. The flexibility necessary for classification of historic site ceramics is built into their system, thus avoiding the use of inflexible, unworkable sets of diagnostic criteria such as have previously been proposed by others for classification of ceramics from historic sites. The authors freely acknowledge what they consider the weakness of their system, and offer it as a step in the process of developing an efficient set of tools for handling ceramics from historic sites.

This excellent work is composed of three chapters, the first dealing with the "History of Fort Michilimackinac and the Present Program of Archeology and Reconstruction", which clearly and competently does exactly what the chapter title promises. The footnotes are not only accurate, but also provide the reader with additional sidelights, comments, observations, and explanations that result in a conversational tone that is very pleasing as well as informative. Fine reproductions of early maps and excellent quality photographs provide the reader with a thorough background perspective from which to approach the "Ceramics at Fort Michilimackinac", the subject of the second chapter.

The ceramic chapter presents the data according to the three basic classes: earthenware, stoneware, and porcelain, with eight groupings within these classes composed of ceramics that share physical and/or stylistic properties. Types form the subdivision with the groups, based on decorative style and technique. This method is designed to "categorize the ceramics within the context of the eighteenth-century culture that produced them" (Miller and Stone 1970:25). The results are seen in the seventy outstanding pages to follow, comprising the major body of the book. These pages continue the readable, well-documented format of the first chapter, with the informative footnote asides. The photographic plates are outstandingly done and carefully planned to illustrate the exact criteria of value for sherd identification and classification. The scale of these illustrations is well chosen and the predominately black backgrounds allow for maximum
emphasis on the sherds.

One small bone could be picked with the authors on some of their groupings, such as Group II, "English Cream-Colored Earthenware" and Group IV, "Fine Earthenware". It would seem to me that "English Cream-Colored Earthenware" is a "Fine Earthenware", and that the polychrome Whieldon and Whieldon-Wedgwood Types should not be the only ones within the "Fine Earthenware" heading. My suggestion would be that under the "Fine Earthenware" would be three basic types, the "English Cream-Colored Earthenware" type, the "Whieldon and Whieldon-Wedgwood" type, and a "Red Paste" type (to be discussed below).

Group III, "Coarse Earthenware", has in it some very finely executed red, black, and brown-black earthenwares such as illustrated in Figure 24c. Such fine earthenware should be, it seems to me, much better placed under the "Fine Earthenware" group where it is surely more at home than with the "Coarse Earthenware" such as is illustrated in Figure 28c. Do we not recognize such a thing as "Fine Red Earthenware"? I think that once we overcome our creamware color-prejudice, we can come to admit that potters using the lowly red paste could, upon occasion, produce some ware that can only be classified as "Fine Earthenware", not "Coarse", and that red, brown, and black is beautiful too. The authors themselves list as a "Coarse Earthenware" criterion "crude pottery", which some of the red earthenware illustrated most certainly does not fit. They state that their study has convinced them that "considerable uncertainty exists in the identification of coarse earthenwares of the eighteenth century", proving that the problem is recognized by the authors (in their usual thorough manner). I would like to suggest that this English-ceramics-based cream-color prejudice has long played a role in that any ceramics with a red paste is automatically assigned to the category "Coarse Earthenware", or "The Common Redware", or "Crude Pottery", without a second thought to the fact that in thinness, hardness, form, glaze, and quality, some of this ware is every bit as "fine" as the identical form made with cream-colored paste. We should ask ourselves whether our distinguishing between "Coarse" and "Fine" ware is based on simple color prejudice. No such color awareness is seen in the Stoneware grouping where "Red Stoneware is listed as Type C. Suppose the sherds illustrated in Figure 45 were found, not in stoneware hardness, but as red earthenware, then they would have to fall under the "Coarse Earthenware" classification of this chapter. This question is not as hypothetical as it may seem, for finely made, engine-turned, red paste, clear, brown, or black glazed earthenware fragments are recovered from eighteenth century English sites such as the fragment seen in Figure 24c. A classification of ware such as this (regardless of paste color) as "Fine Earthenware" would go a long way toward solving one of the problems pointed out by the authors as being associated with the "Coarse Earthenware" group.

The final third chapter on "Interpretation of Historical Site Ceramics" is slightly over six pages long and discusses the various
interpretations having been presented in past literature in the light of "Temporal and Chronological Interpretations", "Stratigraphic Context", "Structural Elements", "Artifact Assemblages", "Socioeconomic Interpretations", "Trade and Transportation", "Sociocultural Change", "Status of Social Level", and "Functional Interpretations". A good "Bibliography" citing a number of lesser known, obscure works reflects the depth of research of these authors, a fact clearly evident throughout this book. Four "Appendices" provide parallel data in the form of sherd frequencies and ceramic type distributions, with illustrated materials from related sites. An index and cover fly-sheet with an interpretive drawing of Fort Michilimackinac provide the final touch to this most impressive accomplishment.

Perhaps the success of this volume is due in part to the fact that the approach of the art historian specializing in ceramics (Miller) and an anthropologically trained archeologist (Stone) have been combined to produce this happy result. As Edward Jelks has pointed out in his "Foreword", "Together they have demonstrated that archeological data from historic sites can be studied fruitfully by both the anthropologist and the historian." I would like to add that the quality of this book reflects clearly the necessity for an amalgamation of the concepts and approach of the art historian with the specific objectivity of the anthropological or historical archeologist. Art historians have published many volumes on ceramics without an awareness of the particular needs of the archeologist. Archeologists dealing with historic ceramics have sometimes proceeded as though nothing had ever been published on ceramic classification. Miller and Stone have successfully amalgamated their knowledge to produce a work of such superior quality that we might be led to suspect that any improvements must necessarily come from a similar amalgamation of disciplinary backgrounds.

So well have the authors defined and qualified their topic, and so well have they achieved their goals, that their own words can be used to conclude their review:

...we remain convinced that our work represents a worthwhile contribution to the respective disciplines of historical archeology, cultural history, and ceramics history. In terms of artifact description and interpretation, socioeconomic history, and comparative data, we have presented a large amount of heretofore unpublished information. Hopefully, the ensuing years will see a continuing program of publication on the artifact collections from many North American historical sites. Such a program should result in a more comprehensive understanding of eighteenth-century North America and in a clearer delineation of the complex social and economic patterns of the period.

(Miller and Stone 1970:5)

Hopefully, too, the ensuing years will see more published products as competently executed as this fine volume.