A Model of the Bromine/Bromide Electrode Reaction at a Rotating Disk Electrode

Ralph E. White
University of South Carolina - Columbia, white@cec.sc.edu

S. E. Lorimer
Texas A & M University - College Station

Follow this and additional works at: http://scholarcommons.sc.edu/eche_facpub

Part of the Chemical Engineering Commons

Publication Info
© The Electrochemical Society, Inc. 1983. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS). The archival version of this work was published in Journal of the Electrochemical Society.
http://www.electrochem.org/
DOI: 10.1149/1.2119890
Publisher's Version: http://dx.doi.org/10.1149/1.2119890
A Model of the Bromine/Bromide Electrode Reaction at a Rotating Disk Electrode

R. E. White* and S. E. Lorimer*

Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843

ABSTRACT

A mathematical model is presented for the Br/Br- electrode reaction at a rotating disk electrode. The model includes current density-overpotential expressions for the electrode reaction according to either the Volmer-Heyrovsky (V-H) or the Volmer-Tafel (V-T) mechanism and the transport equations including the effect of ionic migration. The model is used to predict current-overpotential curves for various cases of interest. Qualitative comparison of the model predictions to literature data shows that either the V-H or the V-T mechanism, with V controlling, may be acceptable for the Br/Br- reaction.

Essentially, four different methods have been used to study the kinetics of the Br/Br- electrode reaction. The four methods are: galvanostatic or potentiostatic, impedance, preexponential factor, and coulostatic. Three groups (1, 2, and 3, see Table I) used current density-potential curves produced either galvanostatically or potentiostatically to study the Br/Br- reaction. The kinetic mechanism was selected by comparing the experimentally determined slopes of Tafel curves and reaction orders to those values predicted for each possible electrode kinetic mechanism. Three other groups (4, 5, and 6) measured the impedance of the electrode as a function of the frequency of an applied alternating current and used this to determine the exchange current density. They then determined the dependence of the exchange current density on concentration and overpotential to select the electrode kinetic mechanism. Allard and Parsons (7) used experimentally determined values of the preexponential factor to study Br/Br- electrode kinetics. The order of magnitude of the experimental value of the preexponential factor, which can be determined from measurements of the exchange current density at

Table I presents a summary of the investigations of the kinetics of the Br/Br- electrode reaction. The three mechanisms that have been proposed frequently are the Volmer-Heyrovsky (V-H), Volmer-Tafel (V-T), and the Heyrovsky-Tafel (H-T), which can be written as follows

V-H mechanism

\[\text{V-H} \]

\[(V) \quad \text{Br}^- \rightleftharpoons \text{Br}_{ads} + e^- \quad [1] \]

\[(H) \quad \text{Br}_{ads} + \text{Br}^- \rightleftharpoons \text{Br}_2 + e^- \quad [2] \]

V-T mechanism

\[\text{V-T} \]

\[(V) \quad 2(\text{Br}^- \rightleftharpoons \text{Br}_{ads} + e^-) \quad [3] \]

\[(T) \quad 2\text{Br}_{ads} \rightleftharpoons \text{Br}_2 \quad [4] \]

H-T mechanism

\[\text{H-T} \]

\[(H) \quad 2(\text{Br}_2 + e^- \rightleftharpoons \text{Br}^- + \text{Br}_{ads}) \quad [5] \]

\[(T) \quad 2\text{Br}_{ads} \rightleftharpoons \text{Br}_2 \quad [6] \]

Table I includes the kinetic mechanism(s) proposed by each group, the type of electrode material, and the technique used to determine the kinetics. Also included in the table are comments concerning each group’s approach to handling the tribromide ion formation reaction

\[\frac{k_t}{k_b} \]

\[\text{Br}_2 + \text{Br}^- \rightleftharpoons \text{Br}_3^- \quad K_{eq} = \frac{k_t}{k_b} \quad [7] \]

and assumptions made concerning the degree of coverage of the electrode surface with adsorbed bromine (or) the rate of adsorption-desorption processes.

* Electrochemical Society Active Member.

Key words: battery, migration.

Table I. Summary of Br/Br- kinetic studies

<table>
<thead>
<tr>
<th>Investigator(s)</th>
<th>Technique</th>
<th>Electrode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ospov et al. (1)</td>
<td>Potentiostatic</td>
<td>Platinum RDE</td>
</tr>
<tr>
<td>2. Janssen and Hoogland (2)</td>
<td>Galvanostatic</td>
<td>Graphite Stationary</td>
</tr>
<tr>
<td>3. Falta, Flori, and Mussini</td>
<td>Potentiostatic</td>
<td>Platinumized Ti RDE</td>
</tr>
<tr>
<td>4. Llopis and Vazquez (4)</td>
<td>Impedance</td>
<td>Platinum Stationary</td>
</tr>
<tr>
<td>5. Cooper and Parsons (5)</td>
<td>Impedance</td>
<td>Platinum RDE</td>
</tr>
<tr>
<td>6. Albery et al. (6)</td>
<td>Impedance</td>
<td>Platinum BBDE</td>
</tr>
<tr>
<td>7. Allard and Parsons (7)</td>
<td>Preexponential</td>
<td>Platinum RDE</td>
</tr>
<tr>
<td>8. Rubinstein (8)</td>
<td>Coulostatic</td>
<td>Platinum Stationary</td>
</tr>
</tbody>
</table>
different temperatures, was then used to identify the rate-determining step of various mechanisms. Rubinstein (8) used the coulostatic method which consists of charge injection followed by an open-circuit transient analysis to obtain the kinetic parameters. As before, these parameters are then compared to those predicted by the proposed mechanisms to determine acceptable mechanisms.

As can be seen from Table I, no single electrode kinetic mechanism is supported by all of the investigators. The V-H and V-T mechanisms are, however, suggested more often than the H-T mechanism. Table I also shows that most workers neglected the formation of tribromide ion. This is unfortunate because at the very least this causes confusion concerning the bulk concentrations of the reacting species (Br₂ and Br⁻). Finally, Table I entries and other studies reveal that considerable confusion exists over the role of adsorbed bromine in the electrode reaction. Equilibrium values for the degree of coverage of platinum surfaces with adsorbed bromine indicate that as many as 55-60% of the available adsorption sites are covered (9, 10). Also, bromine is known to be strongly chemisorbed on platinum (11-13). On the other hand, the values of the preexponential factor for the bromine electrochemical reaction measured by Allard and Parsons (7) indicate that the degree of surface coverage is low and that the adsorbed species has a high degree of mobility across the electrode surface. Also, the impedance measurements made by Llopis and Vazquez (4) indicated that the rate of the bromine/tribromide reaction is not affected by adsorption. To explain these apparently conflicting results, Allard and Parsons (7) proposed that the electrode reaction involves a loosely adsorbed reactive bromine species existing in a sparsely filled layer on top of a layer of unreactive bromine adsorbed directly on the electrode surface. Albery et al. (6) and Rubinstein (8) support this proposal.

It is clear that there is still uncertainty concerning the Br₂/Br⁻ electrode reaction. The kinetic mechanism and associated issues such as the effect of the homogeneous tribromide formation reaction and the role of adsorption-desorption processes in the electrode reaction are still unresolved.

A model is presented here which may be useful for analysis of potentiostatic RDE data. The model includes rate expressions for either the V-H or the V-T mechanisms, the transport equations, and the boundary conditions for the RDE system. The model is presented by first listing the assumptions and then the equations.

Assumptions

1. The rates of the individual steps in each of the reaction mechanisms are equal (i.e., i₄ = i₄ and i₄ = i₄). Also, for the V-H mechanism, i = i₄ + i₄ and for the V-T mechanism, i = i₄ = i₄ (14).
2. The double layer is ignored by assuming that it is infinitely thin.
3. Equilibrium adsorption of the adsorbed bromine (Brads) follows the Langmuir isotherm and is very small (Θ ≤ << 1).
4. The rates of the adsorption-desorption process are rapid enough to not interfere with the rates of the charge transfer steps.
5. The electrolyte is an ideal solution (i.e., concentrations instead of activities are used).
6. Infinitely dilute solution theory (15) applies.
7. The RDE is an equipotential electrode and is uniformly accessible.
8. Steady-state conditions exist.
9. Isothermal conditions exist.

Table I. Summary of Br₂/Br⁻ kinetic studies

<table>
<thead>
<tr>
<th>Investigator(s)</th>
<th>Proposed mechanism</th>
<th>Rate-controlling step</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V-H</td>
<td>Both equally</td>
<td>Ignored tribromide ion formation and adsorption effects</td>
</tr>
<tr>
<td>2</td>
<td>V-H</td>
<td>V</td>
<td>Low surface coverage assumed; ignored tribromide ion formation</td>
</tr>
<tr>
<td>3</td>
<td>V-H</td>
<td>Both equally</td>
<td>Ignored tribromide ion formation; experimental data indicated adsorption did not affect electrode reaction rate</td>
</tr>
<tr>
<td>4</td>
<td>Slightly modified H-T</td>
<td>V</td>
<td>Ignored tribromide ion formation</td>
</tr>
<tr>
<td>5</td>
<td>V-H or V-T (Low surface coverage)</td>
<td>H</td>
<td>Reaction thought to occur in sparsely filled second layer on top of an electrode surface completely covered with a layer of unreactive bromine atoms</td>
</tr>
<tr>
<td>6</td>
<td>V-H or V-T (High surface coverage)</td>
<td>V</td>
<td>Corrections made for tribromide ion formation; estimate made of the degree of surface coverage</td>
</tr>
<tr>
<td>7</td>
<td>V-T</td>
<td>V</td>
<td>Used a combined isotherm approach to account for adsorption</td>
</tr>
<tr>
<td>8</td>
<td>V-T or V-H (Oxidized electrodes)</td>
<td>V</td>
<td>Used a combined isotherm approach to account for adsorption</td>
</tr>
<tr>
<td>(Reduced electrodes)</td>
<td>V-H</td>
<td>V</td>
<td>Used a combined isotherm approach to account for adsorption</td>
</tr>
</tbody>
</table>

Model

Figure 1 presents a schematic of the RDE system in which the position of the reference electrode is shown. The model presented here consists of current-overpotential expressions for either the V-H or the V-T mechanisms, the transport equations, and the boundary conditions for the RDE system. The model is presented by first listing the assumptions and then the equations.

Fig. 1. Schematic of a rotating disk electrode system

Downloaded 09 Jun 2011 to 129.252.106.20. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp
10. The electrolyte is Newtonian and the physical and transport properties are constants.

11. The Nernst-Einstein equation \(u_i = D_i/RT \) is a valid approximation.

12. The reaction orders are given by the stoichiometry of the individual steps of the overall reaction.

Kinetic Equations

The above assumptions and the rate expressions given by Jansson and Hoogland (14) for the Cl₂/Cl⁻
electrode reaction can be used to derive current density-potential expressions for the V-H and V-T mechanisms, as discussed by Lorimer (16). Essentially the method consists of using assumption 1 to obtain an expression for the current density \(i \) for each mechanism which depends on, among other things, the surface coverage and the equilibrium surface coverage of adsorbed bromine atoms. These equations can then be simplified by using assumption 3. The resulting expressions for the V-H and V-T mechanisms are as follows

V-H mechanism

\[
i = 2i_{oref,H} \exp \left(\frac{(1 + \alpha V)F}{RT} (\Phi_{ref} - \Phi_0 - U_{ref}) \right) \times \left[\frac{C_{Br^-} - C_{Br^0}}{C_{Br^0}} \right] \exp \left(\frac{-2F}{RT} (\Phi_{ref} - \Phi_0 - U_{ref}) \right)
\]

V-T mechanism

\[
i = A + \left[A^2 - \left(\frac{i_{oref,V}}{i_{oref,T}} \right)^2 \exp \left(\frac{\alpha V F}{RT} (\Phi_{ref} - \Phi_0 - U_{ref}) \right) \right]^{1/2} \exp \left(\frac{-2(1 - \alpha V)F}{RT} (\Phi_{ref} - \Phi_0 - U_{ref}) \right)^{1/2}
\]

where

\[
A = \frac{i_{oref,V}}{i_{oref,T}} \exp \left(\frac{\alpha V F}{RT} (\Phi_{ref} - \Phi_0 - U_{ref}) \right)
\]

The exchange current densities \(i_{oref,H}, i_{oref,V}, \) and \(i_{oref,T} \) are based on the reference concentrations used in the analysis. These reference exchange current densities are the values that would be obtained from comparison of the predicted and experimental current density-potential curves. Once values for \(i_{oref,j} \) have been determined they can be adjusted to a standard electrolyte composition by using the following expression

\[
i_{oref,j} = \frac{i_{oref,j}}{\eta_{ref}} \frac{C_{std}}{C_{ref}} \gamma_{ij}
\]

where the values of \(\gamma_{ij} \) used here are based on the stoichiometry of the reactions (15, 16) and are presented in Table II. Even though Br₂ does not participate in the Volmer reaction, Eq. [1], a value for \(\gamma_{Br_2V} \), as given in Table II, arises because of the use of assumption 3 in the derivation of Eq. [8] and [9]. The open-circuit potential \(U_{ref} \) is based on the reference concentrations and is given by

\[
U_{ref} = U^0 - U^\eta_{ref} = \frac{RT}{nF} \sum_i \gamma_i \ln \left(\frac{C_{i,ref}}{C_i} \right) + \frac{RT}{nF} \sum_i \gamma_i \ln \left(\frac{c_{i,ref}}{C_i} \right)
\]

where \(c_{i,ref} \) represents the concentration of species \(i \) in the reference electrode compartment and both \(c_{i,ref} \) and \(c_{i,ref} \) must be in mol/liter in Eq. [12]. This dependence of the open-circuit potential on the reference concentration instead of the surface concentration arises naturally in the derivation of Eq. [8] and [9] due to the concentration dependence of the exchange current density. Also, it should be pointed out that \(U_{ref} \) is the overall reaction \(2Br^- \rightarrow Br_2 + 2e^- \).

The above current density-potential expressions can be simplified by assuming that one of the steps is rate controlling or that both steps proceed at approximately the same rate. Table III presents the simplified forms of the rate equations where

\[
\eta_{ref} = \Phi_{ref} - \Phi_0 - U_{ref}
\]

Entries IA and IB can be obtained by considering the denominator of Eq. [8]. For \(i_{oref,H} \gg i_{oref,V} \) and \(|\eta_{ref}| \approx 0.1V \) the term containing the exponential is large relative to one; however, when \(|\eta_{ref}| \approx 0.1V \), the term containing the exponential is small relative to one. The reason for this depends on whether \(\eta_{ref} \) is negative or positive. When \(\eta_{ref} \) is negative and is made to be more and more negative, eventually the exponential becomes so small that the entire term is small relative to one. On the other hand, if \(\eta_{ref} \) is positive and is made more positive, eventually the surface concentration of the bromide ion (\(C_{Br^-} \)) becomes so small that the entire term is small relative to one. The system. However, the simplified equations are not necessary for determination of the kinetic rate constants. Again, the kinetic rate constants should be determined by comparison of the experimental data (current density at a set potential difference between the RDE and a reference electrode) to predicted values from the complete expressions.

Transport Equations

The steady state, no homogeneous reaction material balance equation for species \(i \) is

\[
\frac{d}{dt} [\text{species } i] = 0
\]
I. Volmer-Heyrovsky mechanism (Eq. \[8\])

A. Volmer reaction rate controlling, low \(\eta_{ref}\) (\(\eta_{ref} \gg \eta_{ref,H} \), \(\eta_{ref} \leq -0.1V\))

\[i = 2i_{ref,V} \left[\frac{c_{Br^+-0}}{c_{Br^+-ref}} \exp \left(\frac{avF}{RT} \eta_{ref} \right) - \left(\frac{c_{Br^+-0}}{c_{Br^+-ref}} \right)^2 \exp \left(\frac{-(2 - av)F}{RT} \eta_{ref} \right) \right] \]

B. Volmer reaction rate controlling, high \(\eta_{ref}\) (\(\eta_{ref} \gg \eta_{ref,V} \), \(\eta_{ref} \geq -0.1V\))

\[i = 2i_{ref,V} \left[\frac{c_{Br^+-0}}{c_{Br^+-ref}} \exp \left(\frac{(1 + aH)F}{RT} \eta_{ref} \right) - \left(\frac{c_{Br^+-0}}{c_{Br^+-ref}} \right)^2 \exp \left(\frac{-(1 - aH)F}{RT} \eta_{ref} \right) \right] \]

C. Heyrovsky reaction rate controlling (\(\eta_{ref,V} \gg \eta_{ref,H} \))

\[i = 2i_{ref,V} \left[\frac{c_{Br^+-0}}{c_{Br^+-ref}} \exp \left(\frac{(1 + aH)F}{RT} \eta_{ref} \right) - \left(\frac{c_{Br^+-0}}{c_{Br^+-ref}} \right)^2 \exp \left(\frac{-(1 - aH)F}{RT} \eta_{ref} \right) \right] \]

D. Both reactions approximately equally rate controlling (\(\eta_{ref,V} \approx \eta_{ref,H} \))

1. Cathodic overpotential (anodic back reaction neglected)

\[i = -2i_{ref,H} \left[\frac{c_{Br^+-0}}{c_{Br^+-ref}} \exp \left(\frac{(1 + aH)F}{RT} \eta_{ref} \right) \right] \]

2. Anodic overpotential (cathodic back reaction neglected)

\[i = -i_{ref,V} \left[\frac{c_{Br^+-0}}{c_{Br^+-ref}} \exp \left(\frac{avF}{RT} \eta_{ref} \right) \right] \]

II. Volmer-Tafel mechanism (Eq. \[9\] and \[10\])

A. Volmer reaction rate controlling (\(\eta_{ref,V} \gg \eta_{ref,T} \))

\[i = i_{ref,V} \left[\frac{c_{Br^+-0}}{c_{Br^+-ref}} \exp \left(\frac{avF}{RT} \eta_{ref} \right) - \left(\frac{c_{Br^+-0}}{c_{Br^+-ref}} \right)^2 \exp \left(\frac{-(1 - av)F}{RT} \eta_{ref} \right) \right] \]

B. Tafel reaction rate controlling (\(\eta_{ref,T} \gg \eta_{ref,V} \))

\[i = i_{ref,T} \left[\frac{c_{Br^+-0}}{c_{Br^+-ref}} \exp \left(\frac{2F}{RT} \eta_{ref} \right) - \left(\frac{c_{Br^+-0}}{c_{Br^+-ref}} \right)^2 \exp \left(\frac{-(1 - av)F}{RT} \eta_{ref} \right) \right] \]

C. Both reactions approximately equally rate controlling (\(\eta_{ref,T} \approx \eta_{ref,V} \))

1. Cathodic overpotentials (anodic back reaction neglected)

No simplified form of the V-T current density expression is available for this case except near limiting current where

\[i = -i_{ref,T} \left[\frac{c_{Br^+-0}}{c_{Br^+-ref}} \right] \]

2. Anodic overpotentials (cathodic back reaction neglected)

\[i = i_{ref,V} \left[\frac{c_{Br^+-0}}{c_{Br^+-ref}} \exp \left(\frac{avF}{RT} \eta_{ref} \right) \right] \]

\[\frac{dN_i}{dy} = 0 \quad [14] \]

where \(N_i\) is the flux of species i. The flux of species i occurs by three mass transfer processes: ionic migration, diffusion, and convection and is given by

\[N_i = -z_i \frac{D_i}{RT} \frac{d\Phi}{dy} - D_i \frac{dQ_i}{dy} + \nu_i \Phi_i \quad [15] \]

Newman (15), for example, shows that at high Schmidt numbers, the component of fluid velocity in

Table III. Simplified forms of the V-H and V-T current density expressions for limiting cases

<table>
<thead>
<tr>
<th>Kinetic mechanism</th>
<th>Rate-limiting step</th>
<th>2.303 Tafel slope (in volts)</th>
<th>Tafel line intercept (Q_{Br^-})</th>
<th>Reaction orders (\gamma_{Br^-})</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-H</td>
<td>Volmer, (\eta_{ref} \leq -0.1V)</td>
<td>(2 \eta_{ref,V}) (\frac{RT}{(2 - av)F})</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Volmer, (\eta_{ref} \leq -0.1V)</td>
<td>(2 \eta_{ref,H}) (\frac{RT}{(1 - av)F})</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Heyrovsky</td>
<td>(2 \eta_{ref,V}) (\frac{RT}{(1 - av)F})</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Approximately equal</td>
<td>(2 \eta_{ref,H}) (\frac{RT}{(1 - av)F})</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>V-T</td>
<td>Volmer</td>
<td>(2 \eta_{ref,V}) (\frac{RT}{(1 - av)F})</td>
<td>(\frac{RT}{2})</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tafel</td>
<td>(2 \eta_{ref,V}) (\frac{RT}{(1 - av)F})</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Approximately equal</td>
<td>(2 \eta_{ref,H}) (\frac{RT}{(1 - av)F})</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table IV. Electrode kinetic parameters from simplified forms of current density expressions for cathodic \(\eta_{ref} \)

<table>
<thead>
<tr>
<th>Kinetic mechanism</th>
<th>Rate-determining step</th>
<th>Tafel slope (in volts)</th>
<th>Reaction orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-H</td>
<td>Volmer, (\eta_{ref} \leq -0.1V)</td>
<td>(2 \eta_{ref,V}) (\frac{RT}{(2 - av)F})</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Volmer, (\eta_{ref} \leq -0.1V)</td>
<td>(2 \eta_{ref,H}) (\frac{RT}{(1 - av)F})</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Heyrovsky</td>
<td>(2 \eta_{ref,V}) (\frac{RT}{(1 - av)F})</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Approximately equal</td>
<td>(2 \eta_{ref,H}) (\frac{RT}{(1 - av)F})</td>
<td>1</td>
</tr>
</tbody>
</table>

Table V. Electrode kinetic parameters from simplified forms of current density expressions for anodic \(\eta_{ref} \)

<table>
<thead>
<tr>
<th>Kinetic mechanism</th>
<th>Rate-determining step</th>
<th>Tafel slope (in volts)</th>
<th>Reaction orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-H</td>
<td>Volmer, (\eta_{ref} \leq -0.1V)</td>
<td>(2 \eta_{ref,V}) (\frac{RT}{avF})</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Volmer, (\eta_{ref} \leq -0.1V)</td>
<td>(2 \eta_{ref,H}) (\frac{RT}{avF+1})</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Heyrovsky</td>
<td>(2 \eta_{ref,V}) (\frac{RT}{avF})</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Approximately equal</td>
<td>(2 \eta_{ref,H}) (\frac{RT}{avF})</td>
<td>1</td>
</tr>
</tbody>
</table>
the directional normal to the electrode surface is given by
\[\nu_y = -a \Omega (\Omega / \nu)^{1/2} y^2 \] \[(16) \]
where \(y \) is the distance from the electrode into the electrolyte in a direction normal to the electrode surface. This coordinate can be rewritten in dimensionless form as
\[\xi = y \left(\frac{\nu_y}{3D_R} \right)^{1/3} \left(\frac{\Omega}{\nu} \right)^{1/3} \] \[(17) \]
or
\[\xi = y / \delta_D \] \[(18) \]
where \(\delta_D \) is the diffusion layer thickness and is given by
\[\delta_D = \left(\frac{3D_R}{\nu_y} \right)^{1/3} \left(\frac{\nu}{\Omega} \right)^{1/3} \] \[(19) \]
Substitution of Eq. (18), (16), and (18) into Eq. (14) yields
\[D_i \frac{d^2 c_i}{d\xi^2} + 3D_R \frac{d c_i}{d\xi} + \frac{2D_i D_F}{RT} \left[c_i \frac{d^2 \phi}{d\xi^2} + \frac{d c_i}{d\xi} \frac{d \phi}{d\xi} \right] = 0 \] \[(20) \]
which is the material balance equation used here for species \(i \). The electroneutrality condition
\[\sum_{i} c_i = 0 \] \[(21) \]
completes the set of \(i + 1 \) equations to be solved subject to the boundary conditions to obtain \(c_i \) and \(\phi \).

Boundary Conditions in the Bulk Solution

Bulk solution conditions are assumed to exist at \(y = Y_{re} \) where \(Y_{re} \) is the normal distance from the RDE to the reference electrode (see Fig. 1). The concentration of species \(i \) in the bulk solution is designated as \(c_{i,ref} \) and the potential in the bulk solution at \(y = Y_{re} \) is designated as \(\phi_{re} \).

Thus, the boundary conditions in the bulk solution are:
\[\text{at } y = Y_{re}, \quad c_i = c_{i,ref} \] \[(22) \]
\[\phi = \phi_{re} = \text{a set value (0.01V, e.g.)} \] \[(23) \]
where \(c_{i,ref} \) must satisfy the electroneutrality condition (Eq. (21)).

Boundary Conditions at the Electrode Surface

The boundary conditions at the electrode surface are as follows:
\[\text{at } y = 0, \quad \frac{\partial c_i}{nF} = -N_i \] \[(24) \]
\[\sum_{i} c_i = 0 \] \[(25) \]
\[\phi_{met} = \text{a set value (0.1V, e.g.)} \] \[(26) \]
where \(N_i \) is given by Eq. (15) with \(v_y = 0 \) and \(i \) is given by either Eq. (8) or (9).

The potentials in the boundary conditions given by Eq. (26) are shown schematically in Fig. 2 for a rotating disk electrode being operated anodically. Note that the potential difference between the working electrode and the reference electrode \((\phi_{met} - \phi_{re}) \) is the quantity set by a potentiostat. In the model, however, both \(\phi_{met} \) and \(\phi_{re} \) are set independently such that their difference is equal to that set by the potentiostat.

Solution Technique

The \(i + 1 \) set of governing equations for \(c_i \) and \(\phi \) (Eq. (20) and (21)) can be solved numerically subject to the boundary conditions (Eq. (22)–(26)) once values have been specified for the following parameters: \(c_{i,ref}, D_i, \lambda, \nu, \nu_y, U^0, \alpha, n, \) type of reference electrode \(\phi_{i,ref}, c_{i,ref}, \nu_{i,ref}, \lambda_{i,ref}, U^0_{i,ref}, \alpha_{i,ref}, \) (if necessary) \(\Omega \), and \(\phi_{met} \), and \(\phi_{re} \) (again, only \(\phi_{met} - \phi_{re} \) is important). Newman’s (15) numerical technique (see also White (17)) can be used to solve this set of equations which yields values for the variable quantities \(\phi_{i,ref}, c_{i,ref}, \) and \(\phi_{re} \). These values together with either Eq. (8) or (9) and the values for \(\phi_{met} \) and \(\phi_{re} \) and the calculated value \(U_{i,ref} \) yield values for the current density \(i \) at a specified value of \(\phi_{met} - \phi_{re} \) or \(\phi_{i,ref} \) calculated according to Eq. (13).

Results and Discussion

The model presented above can be used to predict the current density for a set potential difference between the working electrode and a reference electrode \((\phi_{met} - \phi_{i,ref}) \) once the parameter values have been set. Alternatively, the model could be used to determine the kinetic parameters by comparing the predicted current density values to observed values and finding the parameter values that minimize the sum of the squares of the difference between the predicted and measured current densities. However, the model is used here to present predicted current density-potential curves which illustrate some of the capabilities of the model. Also, to simplify the presentation, the tri- bromide ion formation reaction is neglected completely (additional work which includes the formation of \(Br_3^- \) may be presented in the future).

Table VI presents the fixed parameter values used in the model to produce the predicted current-potential curves shown in Fig. 3–7. Figure 3 presents the effect of varying the magnitude of the exchange current densities in the V-H mechanism with \(i_{red,\text{Br}_2}/i_{red,V} = 1.0 \). As shown in Fig. 3, an order of magnitude change in the exchange current densities yields noticeably different cathodic current-potential curves. Figure 4 shows the effect of the magnitude of the exchange current densities for the V-H mechanism with \(i_{red,\text{Br}_2}/i_{red,V} = 0.01 \). Notice that the predicted limiting current densities depend on the magnitude of the exchange current densities even though the Volmer step rate controlling. Note also that the limiting current density predicted by Levich equation (15).

\[i_{LD} = -0.62F c_{Br_2,ref} (\Omega / \nu)^{1/2} D_{Br_2}^{1/3} \] \[(27) \]
Table VI. Fixed parameter values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference concentrations</td>
<td>$c_{K^+_{\text{ref}}} = 2.01 \times 10^{-3}$ mol/cm3</td>
</tr>
<tr>
<td>Diffusion and stoechiometric coefficients</td>
<td>$D_n^+ = 1.907 \times 10^{-6}$ cm2/sec</td>
</tr>
<tr>
<td>Miscellaneous:</td>
<td></td>
</tr>
<tr>
<td>Pure solvent density (ρ)</td>
<td>1.0 g/cm3</td>
</tr>
<tr>
<td>Kinematic viscosity (η)</td>
<td>1.0×10^{-5} cm2/sec</td>
</tr>
<tr>
<td>Temperature (T)</td>
<td>298.15 K</td>
</tr>
<tr>
<td>Equilibrium electrode potential (U_{ref})</td>
<td>0.904 V</td>
</tr>
<tr>
<td>Reference electrode position (Z_{ref})</td>
<td>0.01 cm</td>
</tr>
</tbody>
</table>

* Newman (15),
* Osipov et al. (1),
* Picked for convenience.

is not obtained until the values of the exchange current densities are larger than expected. This means that the exchange current density for the Tafel reaction is probably larger than the exchange current density for Volmer reaction by more than two orders of magnitude.

Figure 5 shows the effect of the Heyrovsky transfer coefficient (α_H) in the V-H mechanism for the case where the Heyrovsky step is rate controlling and Fig. 6 shows the effect of α_H when the Volmer step is controlling. Both figures show that transfer coefficients change the shape of the entire curve.

Figure 7 presents the effect of α_V on the predicted current density-potential curves for the V-T mechanism. Notice that the small exchange current density for the Tafel step indicating it is the rate-controlling step prevents a noticeable change in the curve when α_V is changed from 0.1 to 0.9.

Qualitative comparison of predicted current density-potential curves based on the model presented here to those given by Osipov et al. (1) reveals that either the V-H or the V-T mechanism with the Volmer step rate controlling may be an acceptable mechanism for the Br$_2$/Br$^-$ electrode reaction. Additional raw data are necessary for a complete comparison which may permit a more definitive statement about the Br$_2$/Br$^-$ mechanism.

Conclusion

The current density expressions presented here for the V-H and V-T mechanisms can be used to predict current density-overpotential curves which are similar to data. Qualitative comparison of the predictions of the model presented here to data shows that either the V-H mechanism or the V-T mechanism with the Volmer reaction controlling is an acceptable mechanism for the Br$_2$/Br$^-$ reaction.
Fig. 6. Effect of a change in Volmer transfer coefficient value on cathodic current density curves predicted with the model for V-H kinetics. Volmer reaction rate controlling. $i_{\text{Oref,V}} = 1 \times 10^{-3}$ A/cm², $i_{\text{Oref,H}} = 1 \times 10^{-1}$ A/cm², rotation speed = 1000 rpm.

Acknowledgments

This work was supported by NSF Grant Number ENG-7908071 and by the Center for Energy and Mineral Resources of Texas A&M University.

Manuscript submitted Oct. 14, 1982; revised manuscript received Jan. 3, 1983.

Any discussion of this paper will appear in a Discussion Section to be published in the December 1983 Journal. All discussions for the December 1983 Discussion Section should be submitted by Aug. 1, 1983.

LIST OF SYMBOLS

- a = standard concentration of species i (mol/cm³)
- $C_{i,\text{std}}$ = concentration of species i at distance y from electrode (mol/cm³)
- D_{i} = diffusion coefficient of species i (cm²/sec)
- F = Faraday’s constant, 96,487 C/mol
- F_{ref} = exchange current density for reaction j at reference concentration (A/cm²)
- $F_{\text{ref,i}}$ = exchange current density for reaction j at reference concentration (A/cm²)
- K_{eq} = equilibrium constant for homogeneous tribromide formation reaction (cm³/mol)
- k_{b} = backward reaction rate constant for tribromide homogenous reaction (sec⁻¹)
- k_{f} = forward reaction rate constant for tribromide homogenous reaction (sec⁻¹)
- N_{i} = flux of species i (mol/cm²/sec)
- n = number of electrons transferred in the overall electrode reaction ($n = 2$ here)
- $p_{\text{ref,i}}$ = anodic reaction order of species i
- $q_{\text{ref,i}}$ = cathodic reaction order of species i
- R = universal gas constant, 8.3143 J/mol K
- s_{i} = stoichiometric coefficient for species i in overall electrochemical reaction
- T = temperature (K)
- U_{std} = standard potential of an electrode reaction on hydrogen electrode scale (V)
- U_{ref} = standard potential of reference electrode reaction on hydrogen electrode scale (V)
- $U_{\text{ref,i}}$ = equilibrium potential difference between working electrode and reference electrode evaluated with chosen reference concentrations (V)
- u_{i} = mobility of species i (cm²-mol/J-sec)

Subscripts

- α identifies the value of a quantity associated with the Heyrovsky reaction
- β identifies the value of a quantity associated with the Tafel reaction
- γ identifies the value of a quantity associated with the Volmer reaction
- δ identifies the value of a quantity associated with the double layer
- Ω identifies the value of a quantity associated with the disk rotational speed (rad/sec)

Transfer Coefficients

$\Delta \alpha_{i} = 0.1$, $\alpha_{i} = 0.5$
$\Delta \alpha_{i} = 0.9$, $\alpha_{i} = 0.5$

c_{i} identifies the value of a quantity associated with a chosen set of concentrations ($<c_{i}, C_{i,\text{ref}}, F_{\text{ref,i}}>$)

Ω identifies the value of a quantity associated with the standard concentrations

Φ identifies the value of a quantity associated with the working electrode (RDE) with respect to the same thermodynamic potential scale as the reference electrode in the solution (V)

Ω identifies the value of a quantity associated with the limiting reactant

η_{ref} identifies the value of a quantity associated with the concentration adjacent to the electrode surface (except for η_{0} and Φ_{0})
A Technique for Calculating Shunt Leakage and Cell Currents in Bipolar Stacks Having Divided or Undivided Cells

E. A. Kominski and R. F. Savinell*

Department of Chemical Engineering, The University of Akron, Akron, Ohio 44325

The design of high-output voltage electrochemical batteries calls for series electrical connection of separate cells. Likewise, in scaling up electrosynthesis processes, simplicity of construction may warrant the building of reactors containing several cells arranged in series. A convenient design for supplying reactants to a cell assembly is to parallel feed the cells with electrolyte distributed by an inlet manifold and collected by an outlet manifold. The electrolyte-filled piping furnishes secondary series electrical connections among the cells. Consequently, the ionic currents generated by electrode processes are driven by the intercell potential gradients of the assembly through conductive paths in the piping. These ionic shunt or bypass currents short-circuit each cell in the assembly causing power loss, corrosion, current inefficiency, and nonuniform cell-to-cell current distribution. The magnitude of the bypass current in an assembly is a function of the number of cells in the assembly, cell voltage (which includes current dependent polarizations), conductivity of the electrolyte, and the geometry of the electrolyte feed system. Thus, bypass current is a parameter in the design of assemblies.

Analysis of bypass current proceeds by applying Kirchhoff's laws to electrical circuit analogs of assemblies. The analog circuits are devised to represent current flow paths by standard electrical components. Most investigators (1) model assemblies by linear, passive, d-c networks, the work of Katz (2) and Onishchuk (3) being exceptions. Katz incorporates into the analog imaginary Zener diodes with different polarization characteristics in the forward and backward current direction. The diodes account for the polarizations of the anodic and cathodic reactions which occur at the ends of the shunt paths. Onishchuk (3) models a cell by a voltage source in series with a nonlinear current dependent resistive element.

Analysis of the analog results in a large set of simultaneous linear or nonlinear equations. Two methods have usually been employed in obtaining solutions. One is simultaneous solution of the governing equations (1, 2, 4, 5). The other is approximating the system of equations by a single differential equation (3, 6). The continuous approximations apply to assemblies with a sufficiently large number of cells.

This study presents a treatment of bypass current based on the solution of finite difference equations. The formalism is applied to assemblies of divided and undivided cells. The analysis yields a set of compact equations for determining branch currents in the circuit analog. Implementation of this computational procedure requires a minimum of programming effort and computer storage as simultaneous solution of equations is avoided. The same equations can be used to simulate an assembly of cells operating as energy or substance producers.

Theory

Circuit analogs are constructed making the usual assumptions (2, 4, 5, 6). Surfaces of the electrolyte distribution system are nonconducting. The electrolyte flow paths are conducting and are represented by resistor elements. All resistance paths between the cells and a manifold are identical, and each manifold segment between a pair of branches is represented by an identical resistor. Cells of assemblies are assumed to have a linear polarization characteristic, while each cell is represented as an ideal voltage source in series with this resistor. Electrodes offer no resistance to current flow. The electrolyte in a cell compartment is assumed to be at a uniform potential throughout.

An analog circuit of an N cell assembly of two-compartment cells which incorporates these assumptions

REFERENCES

16. S. E. Lorimer, M.S. Thesis, Texas A&M University, College Station, TX (1982).