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ABSTRACT 

 Classification problems are tackled across various industries throughout 

multiple disciplines. A model used for classification attempts to predict the class of an 

outcome variable based on some predictors. There are number of classification models 

available. But as the underlying population distribution of the predictors is always 

unknown it is difficult to know which model fits the situation best. Several studies have 

been done on which supervised model performs better given specific datasets. But little 

work has been done to compare the models’ performance for predicting one or more 

outcomes under multivariate settings. 

 This study compares the performance of seven popular statistical learning 

models used for classification when the dataset is from a multivariate population. The 

models are: K-nearest neighbor, logistic regression, support vector machines, linear 

discriminant analysis, random forest, adaptive boosting and gradient boosting. We 

compare these methods under three different distribution settings, e.g., multivariate 

normal distribution, multivariate t distribution and multivariate log-normal 

distributions for both binary, k=2 and multiple outcomes, k=5. Three different sample 

sizes, n=100, 300, 500 are considered along with two different number of predictors, 

p=3,10 to check if the performance changes with sample size and number of predictors. 

We also compare the models for balanced and unbalanced datasets under these different 

settings.  The models are evaluated using two criteria: accuracy, which works best for 

balanced datasets and Cohen’s kappa coefficient, which gives good result under 

unbalanced datasets.
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 A 10-fold cross validation technique is used where the data is randomly split 

into 75% training set and 25 % testing set to test the models’ prediction skills on new 

data. The model parameters are tuned under each setting to get the best performing 

model. Boxplots are used to show the spread of performance metrics calculated from 

multiple iterations. It is found that for the multivariate normal distribution, boosting 

algorithms are superior to others, whereas for the multivariate t distribution, support 

vector machines are preferable. Lastly, for the multivariate log-normal distribution, all 

models perform well but the random forest algorithm was better than the rest in most 

cases. The preference of models changes with an increase in the number of classes 

depending on balanced and unbalanced datasets. But overall, the gradient boosting 

algorithm and random forest have good performance accuracies for all the settings. This 

is further implemented on a real dataset of heart disease patients to verify the results of 

the simulation. Gradient boosting produces the highest prediction accuracy among all 

seven models and the K-nearest neighbor had the narrowest spread of accuracies.
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CHAPTER 1 

INTRODUCTION     

 In recent years machine learning models have become one of the most appealing 

tools of choice for data analysis across different disciplines. Most machine learning 

models fall into three main categories: supervised learning, unsupervised learning and 

reinforcement learning. Among them, supervised learning is used in situations where 

each observation has a response measurement. Depending on whether the response is 

categorical or continuous we can further group supervised learning models into 

regression or classification models. This thesis presents a comparison study for some 

popular machine learning models used for classification. 

1.1 K- Nearest Neighbors  

 The K-nearest neighbor rule (Fix & Hodges, 1951) is the simplest method 

among all techniques. It is easy to interpret and has good predictive powers. A set of 

training data with n-dimensional attributes are represented in n-dimensional pattern 

space. A point in the space is a sample. The unknown sample is classified when the K-

nearest neighbor classifier finds a pattern in the space for K training samples that are 

closest to the unknown sample. They are instance-based or lazy learners since they store 

all the training data first and build a classifier only when a new or unlabelled sample 

needs to be classified. The closeness is defined by distance measures such as Euclidian 

distance, Manhattan distance, Chebyshev distance, etc for continuous variables and 

Hamming distance for categorical variables. The most popular distance used is the 

Euclidian distance. Standardization of  numerical variables is necessary if there is both 

numerical and categorical variables present in the dataset.
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 The Euclidian distance between two points, X= (𝑥1, 𝑥2,  ,𝑥𝑛) and Y= (𝑦1, 𝑦2, 

 ,𝑦𝑛) is     

𝐷(𝑋, 𝑌) = √∑(𝑋𝑖 − 𝑌𝑖)2

𝑛

𝑖

 

The key parameter in this method is naturally K. Careful consideration is required to 

select the value of K. It is selected such that validation error is minimum while 

maintaining a low training error rate. As the value of K decreases the prediction 

becomes less stable whereas a larger value of K will give a smoother fit. 

1.2 Logistic Regression Classifier 

 Logistic regression is a popular machine learning model used to determine the 

probability of an observation being in a certain class. The closer the probability is to 1 

the more likely it is the value is part of that class. The probability is calculated using 

the sigmoid function: 

𝑃(𝑥) =  
𝑒(𝛽𝑜+𝛽1𝑋)

1 + 𝑒(𝛽𝑜+𝛽1𝑋)
 

We can get the logit equation from this after some mathematical manipulation: 

log (
𝑝(𝑥)

1−𝑝(𝑥)
) = (𝛽𝑜 + 𝛽1𝑋)  

Since the logit equation is linear, for positive coefficients, a higher value of X results 

in higher probabilities. The coefficients can be estimated using the maximum likelihood 

method of estimation. 

1.3 Linear Discriminant Analysis 

 Linear Discriminant Analysis is a model-based classifier that uses statistical 

distances as the basis. It projects the data onto a new axis in a way to maximize the 

separation of the two categories when we have predefined response classes. The goal 

is to classify objects into different types of pattern recognition. It is more interpretable 
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and easier to predict than other classification algorithms. In this technique, each 

observation is treated as a point in a N-dimensional space, where N is the number of 

predictor variables. The points are labelled by classes. LAD divides the dimensional 

space into parts based on categories and has linear boundaries. It treats all points in the 

same part as one category. This algorithm assumes that the dependent variables have 

the same multivariate normal distribution where different classes have their class-

specific means and equal covariance. Mathematically, LAD uses input data to calculate 

group means and the probability of belonging to various groups. Then scoring function 

coefficients are computed for each category. The function is: 

𝛿�̂�(𝑋) = 𝑋 .
𝜇�̂�

𝜎2 −
𝜇�̂�

2𝜎2 + log (𝜋�̂�) , 

where, 𝛿�̂�(𝑋) is the discriminant function. 𝜋�̂� = 
𝑛𝑘

𝑛
  is the proportion of training 

observations that are in category K, 𝜇�̂� is the sample mean of class K and 𝜎2 is the 

weighted average of the sample variance for each class. The score calculated from each 

function uses the explanatory variables to get class-specific coefficients and a case is 

labelled with the class for which the score is highest. 

1.4 Support Vector Machines  

 Support vector machines is a discriminative classification technique that uses a 

hyperplane in multidimensional space to categorize objects. The hyperplane is a flat 

surface of (p-1) dimension in a p dimensional space. It splits the data in a way that the 

distance between support vectors or training points and the plane is farthest. The 

minimal distance from training observations to hyperplane is called the margins. This 

is a constrained optimization problem that tries to maximize this margin while 

maintaining that none of the points are on the plane. It can be solved using the Lagrange 

multiplier. The maximal margin classifier is the simplest form of classification when a 

perfectly separating hyperplane exists, and it is linear. For non-separable cases, soft 
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margins are used that almost separates the classes. This case is called the method of 

support vector classifiers or soft margin classifiers. Rather than finding the largest 

margin, it incorrectly classifies some points to get greater robustness. Sometimes the 

points can not only be on the wrong side of the margin but also on the wrong side of 

the hyperplane. In that case, soft margin classifiers misclassify the points. A tuning 

parameter, C, accounts for this misclassification, representing the amount of violation 

that will be tolerated. Thus, it controls the bias-variance trade-off since smaller C means 

low bias but high variance and vice versa. If C=0 then no violation will be allowed in 

the model. C > 0 means only C points will be allowed to be misclassified. C is generally 

chosen through cross-validation. The support vector machine is the generalization of 

the maximal margin classifier. Both regression and classification analyses are available 

with it and it can handle multiple qualitative and quantitative variables. It can be used 

when there is a non-linear hyperplane in the space by enlarging the feature space using 

quadratic, cubic and higher order polynomial functions of the predictors or kernels. A 

kernel is a function that quantifies the similarity between two observations. The 

different types of kernel functions are: 

 

Here, , that is the kernel function, represents a dot product of input data 

points mapped into the higher dimensional feature space by the transformation. The 

radial basis function (RBF) is the most popular kernel used in support vector machines. 

Gamma is the kernel coefficient when using RBF, polynomial or Sigmoid as the 

function. A larger value of gamma will lead to overfitting of data since it will then try 

to exactly fit the training set. A higher value of gamma takes into account only the 

closest points while ignoring the points far from the decision boundary. More weight is 
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given to the closest points and this results in more wiggly line. Cross validation is used 

to find an optimum combination of gamma and the tuning parameters. 

1.5 Random Forest Algorithm 

 The random forest is a bagging ensemble method that uses the decision trees by 

decorrelating the decision trees. This is a robust and powerful model. Instead of 

selecting all the predictors, it chooses m features out of p features each time a split is 

considered. This increases predictive accuracy without substantially increasing bias 

error. Since the random forest is a collection of trees, features that were not included in 

one tree are present in others. An aggregated result of all trees is presented in the end. 

The predictors are chosen randomly, otherwise the same one might get chosen as the 

base for many trees. In this case error due to variance will still be high. The basics of a 

random forest are: 

1) Choosing the number of trees in the forest (M) 

2) Choosing the number of samples in each tree (n) 

3) Choosing the number of features in each tree (f) 

4) For each tree in M:  

a) Select n samples with replacement from all observations 

b) Select f features at random 

c) Train a decision tree using the data set of n samples with f features 

d) Save the decision tree 

The model does not overfit if M is large. So, a sufficiently large value of M is taken to 

reduce the error rate. 

1.6 Adaptive Boosting Algorithm 

 The adaptive boosting (Freund & Schapire, 1999) is a boosting algorithm that 

uses a set of weak classifiers and aggregates them to make a stronger prediction. The 
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weaker models are generated sequentially. The latest model learns from the mistakes 

of the previous learners. The dependency between the models is used to give the 

mislabeled observation higher weight. The weak learners for this algorithm can be any 

of the basic classifiers like logistics regression to decision trees. In this study decision 

stumps are used as the weak learners. Decision stumps are different from random forest 

as they are not fully developed. They have only one node and two leaves. The steps for 

algorithm are 

1. Initially a weak classifier is trained by giving equal weights to all the sample 

that needs to be classified correctly.  

2. Fit the weak classifier for each predictor and check how accurately each one 

classifies the sample. The classifier with the lowest weight error, 𝛼 is selected. 

3. More weights are given to the incorrectly classified stumps so that they have a 

higher chance of being correctly labelled in the next decision stump. 

4. Repeat from step 2 until all the observation have been correctly labelled or up 

to maximum number of iterations. 

The initial weight is, 𝑤 =
1

𝑛
 and the updated weight is, 𝑤𝑖 = 𝑤𝑖−1 ∗ 𝑒±𝛼. Here, n is the 

sample size and alpha, 𝛼 is calculated as 

𝛼 =
1

2
ln(

1 − 𝑇𝑜𝑡𝑎𝑙 𝑒𝑟𝑟𝑜𝑟

𝑇𝑜𝑡𝑎𝑙 𝑒𝑟𝑟𝑜𝑟
) 

The total error is the number of misclassifications divided by number of training points. 

After m classifications, the final prediction is calculated as the sum of the weighted 

prediction of each classifier. It can be expressed as- 

𝐹(𝑋) = 𝑠𝑖𝑔𝑛(∑ 𝑤𝑚
𝑀
𝑚=1 𝑓𝑚(𝑥)) 

Here, 𝑓𝑚(𝑥) is the m-th weak classifier and 𝑤𝑚 is their respective weights. The sum of 

weights is always 1. That means individual weights will always be between 0 to 1. 
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1.7 Gradient Boosting 

 The gradient boosting method is a generalization of the adaptive boosting. In 

this case, a new weak learner is added at each step to improve the performance whereas 

the older ones are left unchanged. It has three main parts: 

i. A differentiable loss function that has to be optimized such as logarithmic loss 

for classification 

ii. The weak learner of choice such as decision trees. Purity scores like Gini is used 

to choose the best split point for the tree. 

iii. An additive model that sums up the weak learners. In the existing sequence of 

trees, the output of a new tree is added each time to improve the model. 

Bauer and Kohavi (1999) conducted an empirical study to compare the voting 

classification models like bagging, boosting, decision trees and naive Bayes algorithm. 

The goal was to check how these models influences the classification error terms. The 

study shows that voting methods compared to non-voting methods lead to a significant 

reduction in classification error. 

 Caruana and Niculescu-Mizil (2006) did a large-scale empirical evaluation of 

ten different supervised learning algorithms. The models used are SVM, neural 

networks, naïve Bayes, logistic regression, memory-based learning, random forest, 

decision trees, bagged trees, boosted trees and boosted stumps.  These were performed 

on eleven binary classification problems. The best fitted models were chosen using a 

variety of evaluation metrics like ROC area, F-score, squared error etc. The space of 

parameters was explored extensively for each algorithm. The specialty of this study 

was the different performance criteria used. The study concludes that calibrated boosted 

trees performed best while models like naive Bayes, logistic regression and decision 

trees showed the poorest performance. 



 8 

 Narassiguin and Bibimoune (2016) conducted an empirical comparison of 

nineteen supervised ensemble methods, e.g., random forests, boosting, bagging etc. 

along with recent methods like random patches for binary classification.  Nineteen UCI 

datasets were used to compare the models with probability metrics, threshold metrics 

and ranking metrics like area under the ROC curve. The study concludes that rotation 

forest family of algorisms performs better than all other ensemble models by a 

noticeable margin.   

 Armitage (2010) did a comparison of supervised learnings on bat echo-location 

calls using random forest, discriminant analysis, support vector machines and neural 

networks. Overall, all the models worked quite well except for discriminant analysis 

for which accuracy was quite low. 

 Ahmed (2010) fitted K-nearest neighbor, regression trees, support vector 

machine and other methods for time series data. This empirical study showed a 

significant difference in the performances of the methods. It also evaluates the 

performance of different pre-processing settings. 

Shao (2012) used the support vector machine, neural network, random forest 

for comparison for the land-cover classification. He found that overall, support vector 

machine produces higher accuracies. There was also less variability for its accuracies 

compared to other models. 

Brown and Muse (2011) compared traditional classification methods like- 

logistic regression, decision trees and neural networks with support vector machines, 

random forest and gradient boosting for imbalanced datasets.  Five real world credit 

sorting datasets were used where the class imbalance was gradually increased to check 

how well the models perform. The metric used for model evaluation was the area under 
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the receiver operating characteristic curve (AUC). Friedman’s Statistic and Nemenyi 

post hoc test were used to test if the AUC varies significantly.  
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CHAPTER 2 

SIMULATION STUDY    

2.1 Introduction 

 The goal of the simulation study is to see how different machine learning 

models perform in certain multivariate settings. In real life, the dataset’s underlying 

distribution is unknown along with its parameters. Simulating data from a known 

distribution gives us the ability to judge their performance by comparing their 

predictive results with the real values. In this study, we generate data from three 

different types of distribution: the multivariate normal, multivariate t-distribution and 

multivariate log-normal distributions. The models’ performances were also evaluated 

for increasing sample sizes, e.g., 100, 300, 500 where the first two sample sizes were 

used to check the accuracy with a balanced dataset and the last one was used to check 

the performance with a unbalanced dataset for both binary and multiple class outcome. 

The validation of the evaluation was checked using 10-fold cross validation method. 

2.2 Methodology 

 The data were generated from three different distributions, multivariate normal, 

multivariate T and multivariate log-normal, where the mean and variances were chosen 

accordingly. Under each distribution, the groups had the same covariance matrix across 

the classes. The generated predictors were also correlated to each other. Along with the 

distributions, the settings of the simulation varied in sample size (n=100,300,500), 

number of groups (k=2,5) and number of predictors (p=3,10). The package mvtnorm
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was used in R to generate all three types of datasets. The function mvrnorm() generated 

multivariate normal, rmvt() generated multivariate T and the exponential the 

exponential exp() of the multivariate normal data generated the log-normal distribution. 

Next, the data was split into two sets, where 75% were randomly assigned into the 

training set and 25% into the testing set. The training set was used to train the data and 

the testing set was used to make prediction and to calculate accuracies. The models 

were trained using the train() function from the package caret in R. Boxplots are used 

to show the accuracy with interquartile range as whiskers of the boxplots. Each model 

was fitted using 10-fold repeated cross-validation with iteration set to 10. An extensive 

range of parameter values were tried to find the model that gives the best fit for each 

algorithm.  

 The evaluation metrics used are- accuracy, which works well for a balanced 

dataset and Cohen’s kappa coefficient (k) which gives good results for an unbalanced 

dataset. The accuracy is measured as the percentage of correctly classified observations 

out of all the observations. The formula for accuracy is: 

Accuracy =
True positive

True positive + True negetive + False positive + False negetive
 

The Cohen’s kappa coefficient is a model performance metric that measures inter-rater 

reliability. The coefficient is calculated as: 

      kappa =
Total accuracy − Random accuracy

1 − Random accuracy
 

The higher the value the better the models are considered. 

 For example, if we were to generate data from a multivariate normal distribution 

with three predictors, p=3 and where the dependent variable has two classes, with 

sample size, n=300, the first few observations of the simulated dataset would look like 

the one given below: 
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Table 2.1: Data generated from multivariate normal distribution with p=3 

X1 X2 X3 Y 

-3.48 3.89 6.09 1 

1.27 2.39 5.91 1 

-1.19 6.53 10.12 1 

 

2.3 Results 

 All the simulated data and corresponding figures to show the spread of accuracy 

are provided in the appendix. Under the first setting where data was generated from the 

multivariate normal distribution, with predictors, p=3 and dependent variable, y with 

two categories, k=2, the boosting algorithms, adaptive boosting, random forest and 

gradient boosting perform better than others. Adaptive boosting had 71.4% accuracy 

on average, which is highest out of all the models. As we increase the sample size, the 

accuracy increases. For the unbalanced dataset, random forest performs best with 97% 

accuracy. 

Table 2.2: Accuracy for multivariate normal when p=3 & k=2 

Sample 

size 

RF KNN SVM AdaBoost LDA Logistic GBM 

n=100 0.57 0.50 0.625 0.714 0.571 0.571 0.571 

n=300 0.95 0.91 0.90 0.95 0.82 0.81 0.95 

n=500 0.97 0.84 0.84 0.973 0.67 0.68 0.94 

 

 The values for the kappa coefficient show similar results where the boosting 

algorithms, adaptive boosting, random forest and gradient boosting perform better than 

others. It worked especially well for sample size of n=500 where the dataset was 

unbalanced. Logistic regression and linear discriminant analysis perform worst.  

Table 2.3: Kappa for multivariate normal when p=3 & k=2: 

Sample 

size 

RF KNN SVM AdaBoost LDA Logistic GBM 

n=100 0.57 0.50 0.625 0.714 0.571 0.571 0.571 

n=300 0.95 0.91 0.90 0.95 0.82 0.81 0.95 

n=500 0.97 0.84 0.84 0.973 0.67 0.68 0.94 
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 The boxplot shows the spread of the accuracy. Adaptive boosting had the 

narrowest spread and has the highest accuracy even when the sample size was small 

followed by gradient boosting and support vector machine. Linear discriminant analysis 

had the largest spread. 

 

Figure 2.1:The boxplots for multivariate normal when n=100,  p=3 & k=2 

 

 Under the setting where data was generated from the multivariate T distribution, 

with p=3 and dependent variable y had two categories, k=2, the support vector machine 

performs best across all the different sample sizes followed by the logistic regression 

and the gradient boosting algorithms. For the unbalanced dataset, it produced 65.4% 

accuracy and gradient boosting has 65.2% accuracy. The accuracy measures had larger 

spread as sample size decreases. Linear discriminant analysis had the narrowest spread 

for all sample sizes. Thus, it produced the most consistent result with the multivariate 

T distribution. 

 For the setting where data was generated from the multivariate log-normal 

distribution, with p=3 and dependent variable y had two categories, k=2, all the models 

perform equally well. The gradient boosting was the best of them all with 96% 
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accuracy. Logistic regression had the lowest accuracy with 63.7%. But K-nearest 

neighbor, logistic regression and linear discriminant analysis have the lowest spread of 

accuracy values. K-nearest neighbor produces the most consistent results on multiple 

iterations for all sample sizes. That is, using any one of them will give a highly accurate 

result when the data comes from a multivariate log-normal distribution.  

 For the next setting, where data was generated from the multivariate normal 

distribution, with ten predictor variables (p=10) and dependent variable having two 

classes (k=2), support vector machines had the highest accuracies for both balanced 

and unbalanced data. As sample size increased, accuracy also increased except for with 

the random forest model where it decreased slightly. 

Table 2.4: Accuracy for multivariate normal when p=10 & k=2 

Sample 

size 

RF KNN SVM AdaBoost LDA Logistic GBM 

n=100  1.00 0.988 1.00 0.985 1.00 0.987 0.986 

n=300 0.998 0.998 1.00 0.992 1.00 1.00 0.995 

n=500 0.997 0.9992 1.00 0.994 0.997 0.997 0.997 

 

 The kappa coefficient shows the similar results with the support vector machine 

performing best. All the other models had high accuracies as well since all of them have 

over 96% accuracy. The spread of accuracies for the models were extremely narrow, 

although they all had several outlier accuracies values.  

Table 2.5: Kappa for multivariate normal when p=10 & k=2: 

 

 When data was generated from the multivariate T distribution, with ten 

predictor variables (p=10) and dependent variable having two classes (k=2), gradient 

boosting, adaptive boosting and random forest algorithm had 99.5% accuracy. Linear 

Sample 

size 

RF KNN SVM AdaBoost LDA Logistic GBM 

n=100 1.00 0.976 1.00 0.960 1.00 0.974 0.973 

n=300 0.996 0.997 1.00 0.985 1.00 1.00 0.990 

n=500 0.994 0.985 1.00 0.989 0.994 0.994 0.994 



 15 

discriminant analysis and logistic regression had the lowest accuracy with 57.5% and 

65.8% respectively. The kappa coefficients showed similar results as gradient boosting 

and adaptive boosting both have 98.7%. But random forest had the highest value with 

99%. These three models also had the narrowest spread of accuracy values. 

 For the setting where data was generated from the multivariate log-normal 

distribution, with ten predictor variables (p=10) and dependent variable having two 

classes (k=2), gradient boosting, adaptive boosting and random forest had the best 

results with 99.8%, 99.7% and 99.4% accuracies. Linear discriminant analysis had the 

worst accuracy with 60% when the sample size is small. But for larger samples, all the 

models performed well. From the boxplot, linear discriminant analysis and logistic 

regression had the largest spreads while others had relatively smaller ones. 

 Next, the data was generated from the distributions where the dependent 

variable had five classes (k=5). Since the number of classes are more than two, sample 

size 300 and 500 were considered and the dataset was balanced for both. Five models 

were compared instead of seven as binary logistic regression is designed for cases with 

two classes and adaptive boosting requires high computing power. 

 When data was generated from multivariate normal with three predictors (p=3) 

and five classes (k=5), all the models had high accuracies. As sample size increased, 

the accuracies dropped a small amount. 

Table 2.6: Accuracy for multivariate normal when p=3 & k=5 

Sample 

size 

RF KNN SVM LDA GBM 

n=300 0.987 0.996 0.994 0.991 0.986 

n=500 0.963 0.974 0.977 0.975 0.965 

 

 The kappa coefficient values increased as sample size increased, and all the 

models had high values. Support vector machines had the largest one. It also had the 

smallest spread along with K-nearest neighbors algorithm. For the rest of the models, 
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confidence intervals were relatively larger. The values for lower limit of the confidence 

interval were above 94%. 

Table 2.7: Kappa for multivariate normal when p=3 & k=5 

Sample 

size 

RF KNN SVM LDA GBM 

n=300 0.954 0.968 0.971 0.968 0.957 

n=500 0.984 0.995 0.993 0.989 0.983 

 

 For the setting where data was generated from multivariate T distribution with 

three predictors (p=3) and five classes (k=5), gradient boosting algorithm and random 

forest had the highest accuracies with 95.4% and 95.5% respectively. Linear 

discriminant analysis and support vector machines had the lowest values. They also had 

the largest spreads from the boxplot. The accuracies increased as sample size became 

larger in each group.  

 When data was generated from multivariate log-normal with three predictors 

(p=3) and five classes (k=5), the models had extremely high accuracies with narrow 

spreads. One reason for such high accuracy could be the class variance was set too low 

making it easier for the models to classify.  

 Lastly, the number of predictors were increased. For the setting where data was 

generated from a multivariate normal distribution with ten predictors (p=10) and five 

classes (k=5), linear discriminant analysis, random forest and gradient boosting had the 

best results with 86.6%, 84.2% and 83.9% accuracies. K-nearest neighbor had the 

lowest value at 66.9%. As the sample size increased, the accuracies increased.   

Table 2.8: Accuracy for multivariate normal when p=10 & k=5 

Sample 

size 

RF KNN SVM LDA GBM 

n=300 0.842 0.669 0.787 0.866 0.839 

n=500 0.886 0.696 0.863 0.915 0.887 
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 The same results were obtained from the kappa coefficients. The spread was 

smallest for random forest and largest for K-nearest neighbors. They all had some 

outliers when sample size was 300 but as sample size increased there were no outliers. 

Table 2.9: Kappa for multivariate normal when p=10 & k=5 

Sample 

size 

RF KNN SVM LDA GBM 

n=300 0.803 0.586 0.734 0.833 0.843 

n=500 0.860 0.620 0.829 0.894 0.859 

 

 When data was generated from a multivariate T distribution with ten predictors 

(p=10) and five classes (k=5), random forest and gradient boosting had the highest 

values with 83.7% and 82.9%. The values increased with sample size but very slightly. 

Linear discriminant analysis performed worst with 22.8% accuracy. The same results 

were seen from the kappa coefficients.  From the boxplot random forest and gradient 

boosting had the smallest spreads for both sample sizes. 

 Lastly, for data generated from multivariate log-normal distribution with ten 

predictors (p=10) and five classes (k=5), random forest and linear discriminant analysis 

had the highest accuracies with 80.7% and 81.6% respectively. K-nearest neighbor had 

the lowest value at 60.3%. Increasing the sample size raised the accuracies. The kappa 

coefficient had similar results with random forest resulting in the highest accuracy 

value. 

 Furthermore, to create a more difficult classification problem, a covariance 

matrix with higher values is used to check which log-normal model performs the best 

under each setting. In such case support vector machines and K-nearest neighbors had 

higher accuracy than most, while linear discriminant analysis had lower accuracies than 

others.
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CHAPTER 3 

COMPARING MODELS ON REAL DATA 

3.1 Introduction to Dataset 

 In order to study the performance of the models in practice, a real dataset was 

examined. The dataset was donated by David W. Aha to the UCI repository and 

contains information about heart disease patients. It consists of 303 observations with 

14 different attributes. The goal is to classify the patients in to 5 groups that denotes 

presence (1,2,3,4) and absence (0) of heart disease. The supervised models mentioned 

in this thesis were used to perform the classification. The first four observations of the 

dataset are given below: 

Table 3.1: The heart disease dataset: 

Age Sex CP Trestbps Chol Fbs Restecg MaxHB Exang Oldpeak Slope Ca Thal Target 

63 1 3 145 233 1 0 150 0 2.3 0 0 1 1 

37 1 2 130 250 0 1 187 0 3.5 0 0 2 1 

41 0 1 130 204 0 0 172 0 1.4 2 0 2 1 

56 1 1 120 236 0 1 178 0 0.8 2 0 2 1 

 

3.2 Analysis 

 The dataset had to be pre-processed first before fitting the models. There were 

no missing values in the dataset. The numeric variables were scaled, and two mislabeled 

columns were re-labeled. The categorical variables were converted to factors in R. Then 

some exploratory analysis was done to check the distribution of the variables and the 

correlation matrix was created to see if there are any highly correlated variables to avoid 

multicollinearity. 
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Figure 3.1 The correlation matrix for the dataset 

 

 Next, the dataset was then split into a training set (75%) and test set (25%). The 

models were fitted to the training set using the caret package in R. For each model, the 

parameter tuning was done when necessary. Some additional packages were used for 

this purpose, specially to get the plots such as randomForest and rpart for tuning 

random forest, e1071 for tuning support vector machines, fastAdaboost for adaptive 

boosting.  

 The caret package chooses the best model after searching through the specified 

parameter values. The models were validated by 10-fold repeated cross validation with 

10 repeats using the testing set. The accuracy measures were accuracy and Cohen’s 

Kappa coefficient. 

 The K-nearest neighbor has only one tuning parameter, K. The value of K was 

chosen by looking at the accuracy plot. K=9 gives the highest accuracy for the model. 
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Figure 3.2 Accuracy plot for different K values 

 

 For training support vector machines, the radial basis function gives the best 

result. The cost parameter value C=0.25 was chosen since it gives the highest accuracy 

for the radial support vector machine with tuning parameter sigma=0.03409.   

 
Figure 3.3 Accuracy plot for different cost values 

For tuning random forest models, we tune the complexity parameter, CP. Here, 

CP=0.018 was chosen since it produces the lowest relative error for different tree sizes. 
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Figure 3.4 Relative error plot for complexity parameter 

 

The random forest was also utilized for variable selection by exploring the 

variable selection plot. Except for the variable “fbs”, that is, fasting blood sugar, all the 

variables were important and so they were kept in the model. 

 

Figure 3.5 Variable importance plot using random forest 
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 Similarly, for the adaptive boosting algorithm, the number of trees and method 

was selected by using the accuracy plot. The real adaptive boosting method gives the 

highest accuracy when the number of trees utilized is 150. 

 

Figure 3.6: Accuracy plot for adaptive boosting 

 

 Lastly, the gradient boosting model was tuned to select the maximum depth of 

trees.  

 

Figure 3.7: Accuracy plot for gradient boosting algorithm 
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3.3 Result 

 The models’ performances are compared using the validation measures- 

accuracy and kappa coefficient. It can be seen that while all the classification models 

perform well, the gradient boosting algorithm gives the best results followed by support 

vector machines and random forest.  

Table 3.2: The performance metrics of models: 

Model Accuracy Kappa 

GBM 0.838 0.673 

SVM 0.835 0.667 

RF 0.827 0.651 

KNN 0.826 0.664 

LDA 0.820 0.635 

AdaBoost 0.818 0.631 

Logistic 0.816 0.629 

 

 The boxplots of the accuracies show that, K-nearest neighbors has the narrowest 

spread. Logistic regression and adaptive boosting algorithm have some outliers.  

 
Figure 3.8: Confidence interval of accuracies for classification models 
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 Overall, the gradient boosting algorithm has the best performance with 83.8% 

accuracy on average. This is consistent with the simulation results for the multivariate 

normal distribution. The support vector machines have 83.5% accuracy which is the 

next best results.  K-nearest neighbor does moderately well for both the training and 

the testing dataset. But it has the narrowest spread, so its accuracy level is more 

consistent than others. Linear discriminant analysis gives better accuracy than logistic 

regression, which is understandable, since they are designed for a multiclass target 

variable. Logistic regression provides the least accuracy among all seven models with 

81.6% accuracy.  Overall, for the heart disease prediction, the gradient boosting 

algorithm should be used since it gives the highest accuracy.
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CHAPTER 4 

CONCLUSION 

 In this thesis a comparison study of popular supervised learning models for 

classification were presented. The goal was to identify which models perform better 

under different settings. The models considered were K-nearest neighbors, logistic 

regression, linear discriminant analysis, support vector machines, random forest, 

adaptive boosting and gradient boosting algorithms. 

 The data was generated from three different distributions: multivariate normal, 

multivariate T and multivariate log-normal. For each distribution, the models were 

fitted for three (p=3) and ten sets of predictor variables (p=10). The dependent variable 

had two classes (k=2) and five classes (k=5) for every setting. The models were also 

compared for increasing sample sizes of n=100, 300 and 500. Balanced datasets were 

considered for all the settings except for sample size 500 with two classes to 

differentiate between performance for balanced and unbalanced datasets. The generated 

datasets were scaled before fitting the models. 

 The metrics used for evaluating the models were classification accuracy 

calculated from the confusion matrix and Cohen’s kappa coefficient, which measures 

how closely the values predicted by the models match the true values. The model 

parameters were tuned to find the best model possible for each setting. 

 For the multivariate normal distribution, gradient boosting algorithms had the 

best results at different settings overall. As predictor numbers increased, the support 

vector machines had higher accuracy, but gradient boosting’s accuracy was close to it. 

Along with gradient boosting, the random forest algorithm also had very well prediction
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accuracy throughout the settings. Both performed well when the number of classes were 

two and five. They also had narrower spreads than others, but K-nearest neighbor had 

the shortest spread for five classes. The accuracies for all the models increased as 

sample size was increased, except for when the number of predictors was small, and 

the number of classes were high. 

 When data was generated from a multivariate T distribution, gradient boosting 

and random forest produced higher accuracies than others. Linear discriminant analysis 

and logistic regression had the worst values. The consistency of performance of models 

changed when the number of classes changed. For a smaller number of predictors, 

linear and two class discriminant analysis had the narrowest spread but for 5 classes it 

had the largest spread. Support vector machines accuracy was the highest for the 

unbalanced dataset followed by the gradient boosting accuracy. Increasing sample size 

gave better performance measures for most of the settings.  Support vector machines 

and linear discriminant analysis accuracies decreased when there were five classes 

instead of two with three predictors. 

 For data generated from a multivariate log-normal distribution, almost all the 

models performed significantly well when the number of classes were two. But for 

more difficult classification with five classes, random forest and linear discriminant 

analysis had the highest accuracies. K nearest neighbor performed the worst. The spread 

for random forest and gradient boosting was the narrowest for most of the settings. 

 The results from the simulation study were consistent with the results of real-

life data for heart patients. The numerical variables in the dataset mostly followed 

normal distribution. The gradient boosting algorithm gave the best prediction accuracy 

followed by support vector machines. K- nearest neighbors had the narrowest spread of 

accuracies. 
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 Overall, while there is no one method best for every setting, gradient boosting 

and random forest algorithms seemed to give good results throughout. Especially if the 

parameters are tuned carefully, they produce high prediction accuracies. Further studies 

can be done for classes with unequal variances and larger number of classes.
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APPENDIX A: TABLES FROM SIMULATION STUDY 

Table A.1: Accuracy for multivariate T when p=3 & k=2 

Sample 

size 

RF KNN SVM AdaBoost LDA Logistic GBM 

n=100 0.55 .56 0.55 0.515 0.516 0.542 0.557 

n=300 0.59 0.581 0.62 0.60 0.586 0.60 0.58 

n=500 0.624 0.611 0.654 0.634 0.621 0.638 0.652 

 

Table A.2: Kappa for multivariate T when p=3 & k=2: 

Sample 

size 

RF KNN SVM AdaBoost LDA Logistic GBM 

n=100 0.092 0.124 0.07 0.024 0.033 0.036 0.109 

n=300 0.195 0.161 0.238 0.199 0.185 0.227 0.160 

n=500 0.217 0.179 0.272 0.236 0.119 0.173 0.265 

 

Table A.3: Accuracy for multivariate lognormal when p=3 & k=2 

Sample 

size 

RF KNN SVM AdaBoost LDA Logistic GBM 

n=100  0.952 0.967 0.954 0.949 0.970 0.971 0.954 

n=300 0.987 0.987 0.983 0.982 0.984 0.978 0.986 

n=500 0.958 0.967 0.957 0.951 0.9634 0.637 0.960 

 

Table A.4: Kappa for multivariate lognormal when p=3 & k=2: 

Sample 

size 

RF KNN SVM AdaBoost LDA Logistic GBM 

n=100 0.904 0.935 0.908 0.898 0.940 0.941 0.909 

n=300 0.964 0.975 0.966 0.964 0.969 0.957 0.972 

n=500 0.912 0.931 0.911 0.898 0.923 0.924 0.918 

 

Table A.5: Accuracy for multivariate T when p=10 & k=2 

Sample size RF KNN SVM AdaBoost LDA Logistic GBM 

n=100 0.995 0.747 0.644 0.995 0.575 0.658 0.995 

n=300 0.995 0.747 0.644 0.995 0.575 0.658 0.995 

n=500 0.995 0.844 0.738 0.994 0.609 0.739 0.994 
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Table A.6: Kappa for multivariate T when p=10 & k=2: 

Sample 

size 

RF KNN SVM AdaBoost LDA Logistic GBM 

n=100 0.990 0.491 0.280 0.991 0.113 0.324 0.991 

n=300 0.990 0.491 0.280 0.991 0.113 0.324 0.991 

n=500 0.990 0.674 0.431 0.987 0.044 0.441 0.988 

 

Table A.7: Accuracy for multivariate lognormal when p=10 & k=2 

Sample 

size 

RF KNN SVM AdaBoost LDA Logistic GBM 

n=100 0.997 0.823 0.732 0.994 0.600 0.670 0.996 

n=300 0.971 0.944 0.932 0.971 0.956 0.948 0.973 

n=500 0.963 0.962 0.955 0.963 0.966 0.953 0.961 

 

Table A.8: Kappa for multivariate lognormal when p=10 & k=2: 

Sample 

size 

RF KNN SVM AdaBoost LDA Logistic GBM 

n=100 0.994 0.637 0.424 0.988 0.038 0.253 0.992 

n=300 0.943 0.887 0.863 0.942 0.912 0.897 0.946 

n=500 0.923 0.921 0.907 0.924 0.930 0.903 0.919 

 

Table A.9: Accuracy for multivariate T when p=3 & k=5 

Sample 

size 

RF KNN SVM LDA GBM 

n=300 0.955 0.881 0.303 0.277 0.954 

n=500 0.984 0.934 0.260 0.238 0.984 

 

Table A.10: Kappa for multivariate T when p=3 & k=5 

Sample 

size 

RF KNN SVM LDA GBM 

n=300 0.980 0.917 0.713 0.043 0.981 

n=500 0.943 0.850 0.112 0.078 0.943 

 

Table A.11: Accuracy for multivariate lognormal when p=3 & k=5 

Sample 

size 

RF KNN SVM LDA GBM 

n=300 1.00 1.00 1.00 1.00 1.00 

n=500 0.996 1.00 1.00 1.00 0.995 
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Table A.12: Kappa for multivariate lognormal when p=3 & k=5 

Sample 

size 

RF KNN SVM LDA GBM 

n=300 1.00 1.00 1.00 1.00 0.994 

n=500 0.995 1.00 1.00 1.00 0.993 

 

Table A.13: Accuracy for multivariate T when p=10 & k=5 

Sample 

size 

RF KNN SVM LDA GBM 

n=300 0.837 0.743 0.317 0.228 0.829 

n=500 0.885 0.769 0.375 0.240 0.885 

 

Table A.14: Kappa for multivariate T when p=10 & k=5 

Sample 

size 

RF KNN SVM LDA GBM 

n=300 0.7963 0.678 0.150 0.030 0.786 

n=500 0.856 0.711 0.219 0.055 0.856 

 

Table A.15Accuracy for multivariate lognormal when p=10 & k=5 

Sample 

size 

RF KNN SVM LDA GBM 

n=300 0.807 0.603 0.782 0.816 0.781 

n=500 0.847 0.641 0.847 0.8403 0.8404 

 

Table A.16: Kappa for multivariate lognormal when p=10 & k=5 

Sample 

size 

RF KNN SVM LDA GBM 

n=300 0.758 0.503 0.728 0.769 0.726 

n=500 0.808 0.550 0.809 0.8002 0.800 
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APPENDIX B: FIGURES FROM SIMULATION STUDY 

 

Figure B.1: Boxplot for n=300 & n=500 for multivariate-T, p=3 & k=2  

 

Figure B.2: Boxplot for n=300 & n=500 for multivariate-lognormal, p=3 & k=2 

  

Figure B.3: Boxplot for n=300 & n=500 for multivariate normal, p=3 & k=5  
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Figure B.4: Boxplot for n=300 & n=500 for multivariate lognormal, p=3 & k=5 

 

Figure B.5: Boxplot for n=300 & n=500 for multivariate normal, p=10 & k=2 

 

Figure B.6: Boxplot for n=300 & n=500 for multivariate T, p=10 & k=2  
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Figure B.7: Boxplot for n=300 & n=500 for multivariate normal, p=10 & k=5 

 
Figure B.8: Boxplot for n=300 & n=500 for multivariate T, p=10 & k=5 

 
Figure B.9: Boxplot for n=300 & n=500 for multivariate lognormal, p=10 & k=5 
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