
University of South Carolina University of South Carolina

Scholar Commons Scholar Commons

Theses and Dissertations

2020

An Empirical Comparison of Machine Learning Models for An Empirical Comparison of Machine Learning Models for

Classification Classification

Nubaira Rizvi

Follow this and additional works at: https://scholarcommons.sc.edu/etd

 Part of the Statistics and Probability Commons

Recommended Citation Recommended Citation
Rizvi, N.(2020). An Empirical Comparison of Machine Learning Models for Classification. (Doctoral
dissertation). Retrieved from https://scholarcommons.sc.edu/etd/7879

This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please
contact digres@mailbox.sc.edu.

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F7879&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=scholarcommons.sc.edu%2Fetd%2F7879&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/7879?utm_source=scholarcommons.sc.edu%2Fetd%2F7879&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu

AN EMPIRICAL COMPARISON OF MACHINE LEARNING MODELS FOR

CLASSIFICATION

by

Nubaira Rizvi

Bachelor of Science

University of Dhaka, 2017

 Submitted in Partial Fulfillment of the Requirements

For the Degree of Master of Science in

Statistics

College of Arts and Sciences

University of South Carolina

2020

Accepted by:

David Hitchcock, Director of Thesis

Karl Gregory, Reader

Minsuk Shin, Reader

Cheryl L. Addy, Vice Provost and Dean of the Graduate School

 ii

© Copyright by Nubaira Rizvi, 2020

All Rights Reserved.

 iii

DEDICATION

 Dedicated to my parents, Shakil and Rehana Rizvi, for their unconditional love

and encouragement.

 iv

ACKNOWLEDGEMENTS

 I would like to thank Dr. David Hitchcock for his guidance and support while

completing this study. This thesis would not have been possible without his knowledge

and endless patience.

 I would like to thank Dr. Karl Gregory and Dr. Minsuk Shin for severing on my

committee on such short notice.

 I would also like to thank my wonderful professors especially Dr. Lianming

Wang for being there when I needed them.

 v

ABSTRACT

 Classification problems are tackled across various industries throughout

multiple disciplines. A model used for classification attempts to predict the class of an

outcome variable based on some predictors. There are number of classification models

available. But as the underlying population distribution of the predictors is always

unknown it is difficult to know which model fits the situation best. Several studies have

been done on which supervised model performs better given specific datasets. But little

work has been done to compare the models’ performance for predicting one or more

outcomes under multivariate settings.

 This study compares the performance of seven popular statistical learning

models used for classification when the dataset is from a multivariate population. The

models are: K-nearest neighbor, logistic regression, support vector machines, linear

discriminant analysis, random forest, adaptive boosting and gradient boosting. We

compare these methods under three different distribution settings, e.g., multivariate

normal distribution, multivariate t distribution and multivariate log-normal

distributions for both binary, k=2 and multiple outcomes, k=5. Three different sample

sizes, n=100, 300, 500 are considered along with two different number of predictors,

p=3,10 to check if the performance changes with sample size and number of predictors.

We also compare the models for balanced and unbalanced datasets under these different

settings. The models are evaluated using two criteria: accuracy, which works best for

balanced datasets and Cohen’s kappa coefficient, which gives good result under

unbalanced datasets.

vi

 A 10-fold cross validation technique is used where the data is randomly split

into 75% training set and 25 % testing set to test the models’ prediction skills on new

data. The model parameters are tuned under each setting to get the best performing

model. Boxplots are used to show the spread of performance metrics calculated from

multiple iterations. It is found that for the multivariate normal distribution, boosting

algorithms are superior to others, whereas for the multivariate t distribution, support

vector machines are preferable. Lastly, for the multivariate log-normal distribution, all

models perform well but the random forest algorithm was better than the rest in most

cases. The preference of models changes with an increase in the number of classes

depending on balanced and unbalanced datasets. But overall, the gradient boosting

algorithm and random forest have good performance accuracies for all the settings. This

is further implemented on a real dataset of heart disease patients to verify the results of

the simulation. Gradient boosting produces the highest prediction accuracy among all

seven models and the K-nearest neighbor had the narrowest spread of accuracies.

vii

TABLE OF CONTENTS

Dedication .. iii

Acknowledgements ... iv

Abstract .. v

List of Tables .. ix

List of Figures ... xi

Chapter 1: Introduction .. 1

1.1 K- Nearest Neighbors .. 1

1.2 Logistic Regression Classifier ... 2

1.3 Linear Discriminant Analysis .. 2

1.4 Support Vector Machines .. 3

1.5 Random Forest Algorithm ... 5

1.6 Adaptive Boosting Algorithm .. 6

1.7 Gradient Boosting .. 7

Chapter 2: Simulation Study .. 10

2.1 Introduction .. 10

2.2 Methodology .. 10

2.3 Results .. 12

Chapter 3: Comparing Models on Real Data ... 18

viii

3.1 Introduction to Dataset ... 18

3.2 Analysis.. 18

3.3 Result ... 23

Chapter 4: Conclusion.. 25

References .. 28

Appendix A: Tables from Simulation Study ... 31

Appendix B: Figures from Simulation Study .. 34

ix

LIST OF TABLES

Table 2.1: Data generated from multivariate normal distribution with p=3 12

Table 2.2: Accuracy for multivariate normal when p=3 & k=2 12

Table 2.3: Kappa for multivariate normal when p=3 & k=2 12

Table 2.4: Accuracy for multivariate normal when p=10 & k=2 14

Table 2.5: Kappa for multivariate normal when p=10 & k=2 14

Table 2.6: Accuracy for multivariate normal when p=3 & k=5 15

Table 2.7: Kappa for multivariate normal when p=3 & k=5 16

Table 2.8: Accuracy for multivariate normal when p=10 & k=5 16

Table 2.9: Kappa for multivariate normal when p=10 & k=5 17

Table 3.1: The heart disease dataset .. 18

Table 3.2: The performance metrics of models ... 23

Table A.1: Accuracy for multivariate T when p=3 & k=2 .. 31

Table A.2: Kappa for multivariate T when p=3 & k=2 ... 31

Table A.3: Accuracy for multivariate lognormal when p=3 & k=2 31

Table A.4: Kappa for multivariate lognormal when p=3 & k=2 31

Table A.5: Accuracy for multivariate T when p=10 & k=2 .. 31

Table A.6: Kappa for multivariate T when p=10 & k=2 ... 32

Table A.7: Accuracy for multivariate lognormal when p=10 & k=2 32

Table A.8: Kappa for multivariate lognormal when p=10 & k=2 32

Table A.9: Accuracy for multivariate T when p=3 & k=5 .. 32

Table A.10: Kappa for multivariate T when p=3 & k=5 ... 32

x

Table A.11: Accuracy for multivariate lognormal when p=3 & k=5 32

Table A.12: Kappa for multivariate lognormal when p=3 & k=5 33

Table A.13: Accuracy for multivariate T when p=10 & k=5 33

Table A.14: Kappa for multivariate T when p=10 & k=5 ... 33

Table A.15: Accuracy for multivariate lognormal when p=10 & k=5 33

Table A.16: Kappa for multivariate lognormal when p=10 & k=5 33

xi

LIST OF FIGURES

Figure 2.1: The boxplots for multivariate normal when n=100, p=3 & k=2 13

Figure 3.1: The correlation matrix for the dataset ... 19

Figure 3.2: Accuracy plot for different K values ... 20

Figure 3.3: Accuracy plot for different cost values ... 20

Figure 3.4: Relative error plot for complexity parameter .. 21

Figure 3.5: Variable importance plot using random forest .. 21

Figure 3.6: Accuracy plot for adaptive boosting ... 22

Figure 3.7: Accuracy plot for gradient boosting algorithm ... 22

Figure 3.8: Confidence interval of accuracies for classification models 23

Figure B.1: Boxplot for n=300 & n=500 for multivariate-T, p=3 & k=2 34

Figure B.2: Boxplot for n=300 & n=500 for multivariate-lognormal, p=3 & k=2 34

Figure B.3: Boxplot for n=300 & n=500 for multivariate normal, p=3 & k=5 34

Figure B.4: Boxplot for n=300 & n=500 for multivariate lognormal, p=3 & k=5 35

Figure B.5: Boxplot for n=300 & n=500 for multivariate normal, p=10 & k=2 35

Figure B.6: Boxplot for n=300 & n=500 for multivariate T, p=10 & k=2 35

Figure B.7: Boxplot for n=300 & n=500 for multivariate normal, p=10 & k=5 36

Figure B.8: Boxplot for n=300 & n=500 for multivariate T, p=10 & k=5 36

Figure B.9: Boxplot for n=300 & n=500 for multivariate lognormal, p=10 & k=5 36

 1

CHAPTER 1

INTRODUCTION

 In recent years machine learning models have become one of the most appealing

tools of choice for data analysis across different disciplines. Most machine learning

models fall into three main categories: supervised learning, unsupervised learning and

reinforcement learning. Among them, supervised learning is used in situations where

each observation has a response measurement. Depending on whether the response is

categorical or continuous we can further group supervised learning models into

regression or classification models. This thesis presents a comparison study for some

popular machine learning models used for classification.

1.1 K- Nearest Neighbors

 The K-nearest neighbor rule (Fix & Hodges, 1951) is the simplest method

among all techniques. It is easy to interpret and has good predictive powers. A set of

training data with n-dimensional attributes are represented in n-dimensional pattern

space. A point in the space is a sample. The unknown sample is classified when the K-

nearest neighbor classifier finds a pattern in the space for K training samples that are

closest to the unknown sample. They are instance-based or lazy learners since they store

all the training data first and build a classifier only when a new or unlabelled sample

needs to be classified. The closeness is defined by distance measures such as Euclidian

distance, Manhattan distance, Chebyshev distance, etc for continuous variables and

Hamming distance for categorical variables. The most popular distance used is the

Euclidian distance. Standardization of numerical variables is necessary if there is both

numerical and categorical variables present in the dataset.

 2

 The Euclidian distance between two points, X= (𝑥1, 𝑥2, ,𝑥𝑛) and Y= (𝑦1, 𝑦2,

 ,𝑦𝑛) is

𝐷(𝑋, 𝑌) = √∑(𝑋𝑖 − 𝑌𝑖)2

𝑛

𝑖

The key parameter in this method is naturally K. Careful consideration is required to

select the value of K. It is selected such that validation error is minimum while

maintaining a low training error rate. As the value of K decreases the prediction

becomes less stable whereas a larger value of K will give a smoother fit.

1.2 Logistic Regression Classifier

 Logistic regression is a popular machine learning model used to determine the

probability of an observation being in a certain class. The closer the probability is to 1

the more likely it is the value is part of that class. The probability is calculated using

the sigmoid function:

𝑃(𝑥) =
𝑒(𝛽𝑜+𝛽1𝑋)

1 + 𝑒(𝛽𝑜+𝛽1𝑋)

We can get the logit equation from this after some mathematical manipulation:

log (
𝑝(𝑥)

1−𝑝(𝑥)
) = (𝛽𝑜 + 𝛽1𝑋)

Since the logit equation is linear, for positive coefficients, a higher value of X results

in higher probabilities. The coefficients can be estimated using the maximum likelihood

method of estimation.

1.3 Linear Discriminant Analysis

 Linear Discriminant Analysis is a model-based classifier that uses statistical

distances as the basis. It projects the data onto a new axis in a way to maximize the

separation of the two categories when we have predefined response classes. The goal

is to classify objects into different types of pattern recognition. It is more interpretable

 3

and easier to predict than other classification algorithms. In this technique, each

observation is treated as a point in a N-dimensional space, where N is the number of

predictor variables. The points are labelled by classes. LAD divides the dimensional

space into parts based on categories and has linear boundaries. It treats all points in the

same part as one category. This algorithm assumes that the dependent variables have

the same multivariate normal distribution where different classes have their class-

specific means and equal covariance. Mathematically, LAD uses input data to calculate

group means and the probability of belonging to various groups. Then scoring function

coefficients are computed for each category. The function is:

𝛿�̂�(𝑋) = 𝑋 .
𝜇�̂�

𝜎2 −
𝜇�̂�

2𝜎2 + log (𝜋�̂�) ,

where, 𝛿�̂�(𝑋) is the discriminant function. 𝜋�̂� =
𝑛𝑘

𝑛
 is the proportion of training

observations that are in category K, 𝜇�̂� is the sample mean of class K and 𝜎2 is the

weighted average of the sample variance for each class. The score calculated from each

function uses the explanatory variables to get class-specific coefficients and a case is

labelled with the class for which the score is highest.

1.4 Support Vector Machines

 Support vector machines is a discriminative classification technique that uses a

hyperplane in multidimensional space to categorize objects. The hyperplane is a flat

surface of (p-1) dimension in a p dimensional space. It splits the data in a way that the

distance between support vectors or training points and the plane is farthest. The

minimal distance from training observations to hyperplane is called the margins. This

is a constrained optimization problem that tries to maximize this margin while

maintaining that none of the points are on the plane. It can be solved using the Lagrange

multiplier. The maximal margin classifier is the simplest form of classification when a

perfectly separating hyperplane exists, and it is linear. For non-separable cases, soft

 4

margins are used that almost separates the classes. This case is called the method of

support vector classifiers or soft margin classifiers. Rather than finding the largest

margin, it incorrectly classifies some points to get greater robustness. Sometimes the

points can not only be on the wrong side of the margin but also on the wrong side of

the hyperplane. In that case, soft margin classifiers misclassify the points. A tuning

parameter, C, accounts for this misclassification, representing the amount of violation

that will be tolerated. Thus, it controls the bias-variance trade-off since smaller C means

low bias but high variance and vice versa. If C=0 then no violation will be allowed in

the model. C > 0 means only C points will be allowed to be misclassified. C is generally

chosen through cross-validation. The support vector machine is the generalization of

the maximal margin classifier. Both regression and classification analyses are available

with it and it can handle multiple qualitative and quantitative variables. It can be used

when there is a non-linear hyperplane in the space by enlarging the feature space using

quadratic, cubic and higher order polynomial functions of the predictors or kernels. A

kernel is a function that quantifies the similarity between two observations. The

different types of kernel functions are:

Here, , that is the kernel function, represents a dot product of input data

points mapped into the higher dimensional feature space by the transformation. The

radial basis function (RBF) is the most popular kernel used in support vector machines.

Gamma is the kernel coefficient when using RBF, polynomial or Sigmoid as the

function. A larger value of gamma will lead to overfitting of data since it will then try

to exactly fit the training set. A higher value of gamma takes into account only the

closest points while ignoring the points far from the decision boundary. More weight is

 5

given to the closest points and this results in more wiggly line. Cross validation is used

to find an optimum combination of gamma and the tuning parameters.

1.5 Random Forest Algorithm

 The random forest is a bagging ensemble method that uses the decision trees by

decorrelating the decision trees. This is a robust and powerful model. Instead of

selecting all the predictors, it chooses m features out of p features each time a split is

considered. This increases predictive accuracy without substantially increasing bias

error. Since the random forest is a collection of trees, features that were not included in

one tree are present in others. An aggregated result of all trees is presented in the end.

The predictors are chosen randomly, otherwise the same one might get chosen as the

base for many trees. In this case error due to variance will still be high. The basics of a

random forest are:

1) Choosing the number of trees in the forest (M)

2) Choosing the number of samples in each tree (n)

3) Choosing the number of features in each tree (f)

4) For each tree in M:

a) Select n samples with replacement from all observations

b) Select f features at random

c) Train a decision tree using the data set of n samples with f features

d) Save the decision tree

The model does not overfit if M is large. So, a sufficiently large value of M is taken to

reduce the error rate.

1.6 Adaptive Boosting Algorithm

 The adaptive boosting (Freund & Schapire, 1999) is a boosting algorithm that

uses a set of weak classifiers and aggregates them to make a stronger prediction. The

 6

weaker models are generated sequentially. The latest model learns from the mistakes

of the previous learners. The dependency between the models is used to give the

mislabeled observation higher weight. The weak learners for this algorithm can be any

of the basic classifiers like logistics regression to decision trees. In this study decision

stumps are used as the weak learners. Decision stumps are different from random forest

as they are not fully developed. They have only one node and two leaves. The steps for

algorithm are

1. Initially a weak classifier is trained by giving equal weights to all the sample

that needs to be classified correctly.

2. Fit the weak classifier for each predictor and check how accurately each one

classifies the sample. The classifier with the lowest weight error, 𝛼 is selected.

3. More weights are given to the incorrectly classified stumps so that they have a

higher chance of being correctly labelled in the next decision stump.

4. Repeat from step 2 until all the observation have been correctly labelled or up

to maximum number of iterations.

The initial weight is, 𝑤 =
1

𝑛
 and the updated weight is, 𝑤𝑖 = 𝑤𝑖−1 ∗ 𝑒±𝛼. Here, n is the

sample size and alpha, 𝛼 is calculated as

𝛼 =
1

2
ln(

1 − 𝑇𝑜𝑡𝑎𝑙 𝑒𝑟𝑟𝑜𝑟

𝑇𝑜𝑡𝑎𝑙 𝑒𝑟𝑟𝑜𝑟
)

The total error is the number of misclassifications divided by number of training points.

After m classifications, the final prediction is calculated as the sum of the weighted

prediction of each classifier. It can be expressed as-

𝐹(𝑋) = 𝑠𝑖𝑔𝑛(∑ 𝑤𝑚
𝑀
𝑚=1 𝑓𝑚(𝑥))

Here, 𝑓𝑚(𝑥) is the m-th weak classifier and 𝑤𝑚 is their respective weights. The sum of

weights is always 1. That means individual weights will always be between 0 to 1.

 7

1.7 Gradient Boosting

 The gradient boosting method is a generalization of the adaptive boosting. In

this case, a new weak learner is added at each step to improve the performance whereas

the older ones are left unchanged. It has three main parts:

i. A differentiable loss function that has to be optimized such as logarithmic loss

for classification

ii. The weak learner of choice such as decision trees. Purity scores like Gini is used

to choose the best split point for the tree.

iii. An additive model that sums up the weak learners. In the existing sequence of

trees, the output of a new tree is added each time to improve the model.

Bauer and Kohavi (1999) conducted an empirical study to compare the voting

classification models like bagging, boosting, decision trees and naive Bayes algorithm.

The goal was to check how these models influences the classification error terms. The

study shows that voting methods compared to non-voting methods lead to a significant

reduction in classification error.

 Caruana and Niculescu-Mizil (2006) did a large-scale empirical evaluation of

ten different supervised learning algorithms. The models used are SVM, neural

networks, naïve Bayes, logistic regression, memory-based learning, random forest,

decision trees, bagged trees, boosted trees and boosted stumps. These were performed

on eleven binary classification problems. The best fitted models were chosen using a

variety of evaluation metrics like ROC area, F-score, squared error etc. The space of

parameters was explored extensively for each algorithm. The specialty of this study

was the different performance criteria used. The study concludes that calibrated boosted

trees performed best while models like naive Bayes, logistic regression and decision

trees showed the poorest performance.

 8

 Narassiguin and Bibimoune (2016) conducted an empirical comparison of

nineteen supervised ensemble methods, e.g., random forests, boosting, bagging etc.

along with recent methods like random patches for binary classification. Nineteen UCI

datasets were used to compare the models with probability metrics, threshold metrics

and ranking metrics like area under the ROC curve. The study concludes that rotation

forest family of algorisms performs better than all other ensemble models by a

noticeable margin.

 Armitage (2010) did a comparison of supervised learnings on bat echo-location

calls using random forest, discriminant analysis, support vector machines and neural

networks. Overall, all the models worked quite well except for discriminant analysis

for which accuracy was quite low.

 Ahmed (2010) fitted K-nearest neighbor, regression trees, support vector

machine and other methods for time series data. This empirical study showed a

significant difference in the performances of the methods. It also evaluates the

performance of different pre-processing settings.

Shao (2012) used the support vector machine, neural network, random forest

for comparison for the land-cover classification. He found that overall, support vector

machine produces higher accuracies. There was also less variability for its accuracies

compared to other models.

Brown and Muse (2011) compared traditional classification methods like-

logistic regression, decision trees and neural networks with support vector machines,

random forest and gradient boosting for imbalanced datasets. Five real world credit

sorting datasets were used where the class imbalance was gradually increased to check

how well the models perform. The metric used for model evaluation was the area under

 9

the receiver operating characteristic curve (AUC). Friedman’s Statistic and Nemenyi

post hoc test were used to test if the AUC varies significantly.

 10

CHAPTER 2

SIMULATION STUDY

2.1 Introduction

 The goal of the simulation study is to see how different machine learning

models perform in certain multivariate settings. In real life, the dataset’s underlying

distribution is unknown along with its parameters. Simulating data from a known

distribution gives us the ability to judge their performance by comparing their

predictive results with the real values. In this study, we generate data from three

different types of distribution: the multivariate normal, multivariate t-distribution and

multivariate log-normal distributions. The models’ performances were also evaluated

for increasing sample sizes, e.g., 100, 300, 500 where the first two sample sizes were

used to check the accuracy with a balanced dataset and the last one was used to check

the performance with a unbalanced dataset for both binary and multiple class outcome.

The validation of the evaluation was checked using 10-fold cross validation method.

2.2 Methodology

 The data were generated from three different distributions, multivariate normal,

multivariate T and multivariate log-normal, where the mean and variances were chosen

accordingly. Under each distribution, the groups had the same covariance matrix across

the classes. The generated predictors were also correlated to each other. Along with the

distributions, the settings of the simulation varied in sample size (n=100,300,500),

number of groups (k=2,5) and number of predictors (p=3,10). The package mvtnorm

 11

was used in R to generate all three types of datasets. The function mvrnorm() generated

multivariate normal, rmvt() generated multivariate T and the exponential the

exponential exp() of the multivariate normal data generated the log-normal distribution.

Next, the data was split into two sets, where 75% were randomly assigned into the

training set and 25% into the testing set. The training set was used to train the data and

the testing set was used to make prediction and to calculate accuracies. The models

were trained using the train() function from the package caret in R. Boxplots are used

to show the accuracy with interquartile range as whiskers of the boxplots. Each model

was fitted using 10-fold repeated cross-validation with iteration set to 10. An extensive

range of parameter values were tried to find the model that gives the best fit for each

algorithm.

 The evaluation metrics used are- accuracy, which works well for a balanced

dataset and Cohen’s kappa coefficient (k) which gives good results for an unbalanced

dataset. The accuracy is measured as the percentage of correctly classified observations

out of all the observations. The formula for accuracy is:

Accuracy =
True positive

True positive + True negetive + False positive + False negetive

The Cohen’s kappa coefficient is a model performance metric that measures inter-rater

reliability. The coefficient is calculated as:

 kappa =
Total accuracy − Random accuracy

1 − Random accuracy

The higher the value the better the models are considered.

 For example, if we were to generate data from a multivariate normal distribution

with three predictors, p=3 and where the dependent variable has two classes, with

sample size, n=300, the first few observations of the simulated dataset would look like

the one given below:

 12

Table 2.1: Data generated from multivariate normal distribution with p=3

X1 X2 X3 Y

-3.48 3.89 6.09 1

1.27 2.39 5.91 1

-1.19 6.53 10.12 1

2.3 Results

 All the simulated data and corresponding figures to show the spread of accuracy

are provided in the appendix. Under the first setting where data was generated from the

multivariate normal distribution, with predictors, p=3 and dependent variable, y with

two categories, k=2, the boosting algorithms, adaptive boosting, random forest and

gradient boosting perform better than others. Adaptive boosting had 71.4% accuracy

on average, which is highest out of all the models. As we increase the sample size, the

accuracy increases. For the unbalanced dataset, random forest performs best with 97%

accuracy.

Table 2.2: Accuracy for multivariate normal when p=3 & k=2

Sample

size

RF KNN SVM AdaBoost LDA Logistic GBM

n=100 0.57 0.50 0.625 0.714 0.571 0.571 0.571

n=300 0.95 0.91 0.90 0.95 0.82 0.81 0.95

n=500 0.97 0.84 0.84 0.973 0.67 0.68 0.94

 The values for the kappa coefficient show similar results where the boosting

algorithms, adaptive boosting, random forest and gradient boosting perform better than

others. It worked especially well for sample size of n=500 where the dataset was

unbalanced. Logistic regression and linear discriminant analysis perform worst.

Table 2.3: Kappa for multivariate normal when p=3 & k=2:

Sample

size

RF KNN SVM AdaBoost LDA Logistic GBM

n=100 0.57 0.50 0.625 0.714 0.571 0.571 0.571

n=300 0.95 0.91 0.90 0.95 0.82 0.81 0.95

n=500 0.97 0.84 0.84 0.973 0.67 0.68 0.94

 13

 The boxplot shows the spread of the accuracy. Adaptive boosting had the

narrowest spread and has the highest accuracy even when the sample size was small

followed by gradient boosting and support vector machine. Linear discriminant analysis

had the largest spread.

Figure 2.1:The boxplots for multivariate normal when n=100, p=3 & k=2

 Under the setting where data was generated from the multivariate T distribution,

with p=3 and dependent variable y had two categories, k=2, the support vector machine

performs best across all the different sample sizes followed by the logistic regression

and the gradient boosting algorithms. For the unbalanced dataset, it produced 65.4%

accuracy and gradient boosting has 65.2% accuracy. The accuracy measures had larger

spread as sample size decreases. Linear discriminant analysis had the narrowest spread

for all sample sizes. Thus, it produced the most consistent result with the multivariate

T distribution.

 For the setting where data was generated from the multivariate log-normal

distribution, with p=3 and dependent variable y had two categories, k=2, all the models

perform equally well. The gradient boosting was the best of them all with 96%

 14

accuracy. Logistic regression had the lowest accuracy with 63.7%. But K-nearest

neighbor, logistic regression and linear discriminant analysis have the lowest spread of

accuracy values. K-nearest neighbor produces the most consistent results on multiple

iterations for all sample sizes. That is, using any one of them will give a highly accurate

result when the data comes from a multivariate log-normal distribution.

 For the next setting, where data was generated from the multivariate normal

distribution, with ten predictor variables (p=10) and dependent variable having two

classes (k=2), support vector machines had the highest accuracies for both balanced

and unbalanced data. As sample size increased, accuracy also increased except for with

the random forest model where it decreased slightly.

Table 2.4: Accuracy for multivariate normal when p=10 & k=2

Sample

size

RF KNN SVM AdaBoost LDA Logistic GBM

n=100 1.00 0.988 1.00 0.985 1.00 0.987 0.986

n=300 0.998 0.998 1.00 0.992 1.00 1.00 0.995

n=500 0.997 0.9992 1.00 0.994 0.997 0.997 0.997

 The kappa coefficient shows the similar results with the support vector machine

performing best. All the other models had high accuracies as well since all of them have

over 96% accuracy. The spread of accuracies for the models were extremely narrow,

although they all had several outlier accuracies values.

Table 2.5: Kappa for multivariate normal when p=10 & k=2:

 When data was generated from the multivariate T distribution, with ten

predictor variables (p=10) and dependent variable having two classes (k=2), gradient

boosting, adaptive boosting and random forest algorithm had 99.5% accuracy. Linear

Sample

size

RF KNN SVM AdaBoost LDA Logistic GBM

n=100 1.00 0.976 1.00 0.960 1.00 0.974 0.973

n=300 0.996 0.997 1.00 0.985 1.00 1.00 0.990

n=500 0.994 0.985 1.00 0.989 0.994 0.994 0.994

 15

discriminant analysis and logistic regression had the lowest accuracy with 57.5% and

65.8% respectively. The kappa coefficients showed similar results as gradient boosting

and adaptive boosting both have 98.7%. But random forest had the highest value with

99%. These three models also had the narrowest spread of accuracy values.

 For the setting where data was generated from the multivariate log-normal

distribution, with ten predictor variables (p=10) and dependent variable having two

classes (k=2), gradient boosting, adaptive boosting and random forest had the best

results with 99.8%, 99.7% and 99.4% accuracies. Linear discriminant analysis had the

worst accuracy with 60% when the sample size is small. But for larger samples, all the

models performed well. From the boxplot, linear discriminant analysis and logistic

regression had the largest spreads while others had relatively smaller ones.

 Next, the data was generated from the distributions where the dependent

variable had five classes (k=5). Since the number of classes are more than two, sample

size 300 and 500 were considered and the dataset was balanced for both. Five models

were compared instead of seven as binary logistic regression is designed for cases with

two classes and adaptive boosting requires high computing power.

 When data was generated from multivariate normal with three predictors (p=3)

and five classes (k=5), all the models had high accuracies. As sample size increased,

the accuracies dropped a small amount.

Table 2.6: Accuracy for multivariate normal when p=3 & k=5

Sample

size

RF KNN SVM LDA GBM

n=300 0.987 0.996 0.994 0.991 0.986

n=500 0.963 0.974 0.977 0.975 0.965

 The kappa coefficient values increased as sample size increased, and all the

models had high values. Support vector machines had the largest one. It also had the

smallest spread along with K-nearest neighbors algorithm. For the rest of the models,

 16

confidence intervals were relatively larger. The values for lower limit of the confidence

interval were above 94%.

Table 2.7: Kappa for multivariate normal when p=3 & k=5

Sample

size

RF KNN SVM LDA GBM

n=300 0.954 0.968 0.971 0.968 0.957

n=500 0.984 0.995 0.993 0.989 0.983

 For the setting where data was generated from multivariate T distribution with

three predictors (p=3) and five classes (k=5), gradient boosting algorithm and random

forest had the highest accuracies with 95.4% and 95.5% respectively. Linear

discriminant analysis and support vector machines had the lowest values. They also had

the largest spreads from the boxplot. The accuracies increased as sample size became

larger in each group.

 When data was generated from multivariate log-normal with three predictors

(p=3) and five classes (k=5), the models had extremely high accuracies with narrow

spreads. One reason for such high accuracy could be the class variance was set too low

making it easier for the models to classify.

 Lastly, the number of predictors were increased. For the setting where data was

generated from a multivariate normal distribution with ten predictors (p=10) and five

classes (k=5), linear discriminant analysis, random forest and gradient boosting had the

best results with 86.6%, 84.2% and 83.9% accuracies. K-nearest neighbor had the

lowest value at 66.9%. As the sample size increased, the accuracies increased.

Table 2.8: Accuracy for multivariate normal when p=10 & k=5

Sample

size

RF KNN SVM LDA GBM

n=300 0.842 0.669 0.787 0.866 0.839

n=500 0.886 0.696 0.863 0.915 0.887

 17

 The same results were obtained from the kappa coefficients. The spread was

smallest for random forest and largest for K-nearest neighbors. They all had some

outliers when sample size was 300 but as sample size increased there were no outliers.

Table 2.9: Kappa for multivariate normal when p=10 & k=5

Sample

size

RF KNN SVM LDA GBM

n=300 0.803 0.586 0.734 0.833 0.843

n=500 0.860 0.620 0.829 0.894 0.859

 When data was generated from a multivariate T distribution with ten predictors

(p=10) and five classes (k=5), random forest and gradient boosting had the highest

values with 83.7% and 82.9%. The values increased with sample size but very slightly.

Linear discriminant analysis performed worst with 22.8% accuracy. The same results

were seen from the kappa coefficients. From the boxplot random forest and gradient

boosting had the smallest spreads for both sample sizes.

 Lastly, for data generated from multivariate log-normal distribution with ten

predictors (p=10) and five classes (k=5), random forest and linear discriminant analysis

had the highest accuracies with 80.7% and 81.6% respectively. K-nearest neighbor had

the lowest value at 60.3%. Increasing the sample size raised the accuracies. The kappa

coefficient had similar results with random forest resulting in the highest accuracy

value.

 Furthermore, to create a more difficult classification problem, a covariance

matrix with higher values is used to check which log-normal model performs the best

under each setting. In such case support vector machines and K-nearest neighbors had

higher accuracy than most, while linear discriminant analysis had lower accuracies than

others.

 18

CHAPTER 3

COMPARING MODELS ON REAL DATA

3.1 Introduction to Dataset

 In order to study the performance of the models in practice, a real dataset was

examined. The dataset was donated by David W. Aha to the UCI repository and

contains information about heart disease patients. It consists of 303 observations with

14 different attributes. The goal is to classify the patients in to 5 groups that denotes

presence (1,2,3,4) and absence (0) of heart disease. The supervised models mentioned

in this thesis were used to perform the classification. The first four observations of the

dataset are given below:

Table 3.1: The heart disease dataset:

Age Sex CP Trestbps Chol Fbs Restecg MaxHB Exang Oldpeak Slope Ca Thal Target

63 1 3 145 233 1 0 150 0 2.3 0 0 1 1

37 1 2 130 250 0 1 187 0 3.5 0 0 2 1

41 0 1 130 204 0 0 172 0 1.4 2 0 2 1

56 1 1 120 236 0 1 178 0 0.8 2 0 2 1

3.2 Analysis

 The dataset had to be pre-processed first before fitting the models. There were

no missing values in the dataset. The numeric variables were scaled, and two mislabeled

columns were re-labeled. The categorical variables were converted to factors in R. Then

some exploratory analysis was done to check the distribution of the variables and the

correlation matrix was created to see if there are any highly correlated variables to avoid

multicollinearity.

 19

Figure 3.1 The correlation matrix for the dataset

 Next, the dataset was then split into a training set (75%) and test set (25%). The

models were fitted to the training set using the caret package in R. For each model, the

parameter tuning was done when necessary. Some additional packages were used for

this purpose, specially to get the plots such as randomForest and rpart for tuning

random forest, e1071 for tuning support vector machines, fastAdaboost for adaptive

boosting.

 The caret package chooses the best model after searching through the specified

parameter values. The models were validated by 10-fold repeated cross validation with

10 repeats using the testing set. The accuracy measures were accuracy and Cohen’s

Kappa coefficient.

 The K-nearest neighbor has only one tuning parameter, K. The value of K was

chosen by looking at the accuracy plot. K=9 gives the highest accuracy for the model.

 20

Figure 3.2 Accuracy plot for different K values

 For training support vector machines, the radial basis function gives the best

result. The cost parameter value C=0.25 was chosen since it gives the highest accuracy

for the radial support vector machine with tuning parameter sigma=0.03409.

Figure 3.3 Accuracy plot for different cost values

For tuning random forest models, we tune the complexity parameter, CP. Here,

CP=0.018 was chosen since it produces the lowest relative error for different tree sizes.

 21

Figure 3.4 Relative error plot for complexity parameter

The random forest was also utilized for variable selection by exploring the

variable selection plot. Except for the variable “fbs”, that is, fasting blood sugar, all the

variables were important and so they were kept in the model.

Figure 3.5 Variable importance plot using random forest

 22

 Similarly, for the adaptive boosting algorithm, the number of trees and method

was selected by using the accuracy plot. The real adaptive boosting method gives the

highest accuracy when the number of trees utilized is 150.

Figure 3.6: Accuracy plot for adaptive boosting

 Lastly, the gradient boosting model was tuned to select the maximum depth of

trees.

Figure 3.7: Accuracy plot for gradient boosting algorithm

 23

3.3 Result

 The models’ performances are compared using the validation measures-

accuracy and kappa coefficient. It can be seen that while all the classification models

perform well, the gradient boosting algorithm gives the best results followed by support

vector machines and random forest.

Table 3.2: The performance metrics of models:

Model Accuracy Kappa

GBM 0.838 0.673

SVM 0.835 0.667

RF 0.827 0.651

KNN 0.826 0.664

LDA 0.820 0.635

AdaBoost 0.818 0.631

Logistic 0.816 0.629

 The boxplots of the accuracies show that, K-nearest neighbors has the narrowest

spread. Logistic regression and adaptive boosting algorithm have some outliers.

Figure 3.8: Confidence interval of accuracies for classification models

 24

 Overall, the gradient boosting algorithm has the best performance with 83.8%

accuracy on average. This is consistent with the simulation results for the multivariate

normal distribution. The support vector machines have 83.5% accuracy which is the

next best results. K-nearest neighbor does moderately well for both the training and

the testing dataset. But it has the narrowest spread, so its accuracy level is more

consistent than others. Linear discriminant analysis gives better accuracy than logistic

regression, which is understandable, since they are designed for a multiclass target

variable. Logistic regression provides the least accuracy among all seven models with

81.6% accuracy. Overall, for the heart disease prediction, the gradient boosting

algorithm should be used since it gives the highest accuracy.

 25

CHAPTER 4

CONCLUSION

 In this thesis a comparison study of popular supervised learning models for

classification were presented. The goal was to identify which models perform better

under different settings. The models considered were K-nearest neighbors, logistic

regression, linear discriminant analysis, support vector machines, random forest,

adaptive boosting and gradient boosting algorithms.

 The data was generated from three different distributions: multivariate normal,

multivariate T and multivariate log-normal. For each distribution, the models were

fitted for three (p=3) and ten sets of predictor variables (p=10). The dependent variable

had two classes (k=2) and five classes (k=5) for every setting. The models were also

compared for increasing sample sizes of n=100, 300 and 500. Balanced datasets were

considered for all the settings except for sample size 500 with two classes to

differentiate between performance for balanced and unbalanced datasets. The generated

datasets were scaled before fitting the models.

 The metrics used for evaluating the models were classification accuracy

calculated from the confusion matrix and Cohen’s kappa coefficient, which measures

how closely the values predicted by the models match the true values. The model

parameters were tuned to find the best model possible for each setting.

 For the multivariate normal distribution, gradient boosting algorithms had the

best results at different settings overall. As predictor numbers increased, the support

vector machines had higher accuracy, but gradient boosting’s accuracy was close to it.

Along with gradient boosting, the random forest algorithm also had very well prediction

 26

accuracy throughout the settings. Both performed well when the number of classes were

two and five. They also had narrower spreads than others, but K-nearest neighbor had

the shortest spread for five classes. The accuracies for all the models increased as

sample size was increased, except for when the number of predictors was small, and

the number of classes were high.

 When data was generated from a multivariate T distribution, gradient boosting

and random forest produced higher accuracies than others. Linear discriminant analysis

and logistic regression had the worst values. The consistency of performance of models

changed when the number of classes changed. For a smaller number of predictors,

linear and two class discriminant analysis had the narrowest spread but for 5 classes it

had the largest spread. Support vector machines accuracy was the highest for the

unbalanced dataset followed by the gradient boosting accuracy. Increasing sample size

gave better performance measures for most of the settings. Support vector machines

and linear discriminant analysis accuracies decreased when there were five classes

instead of two with three predictors.

 For data generated from a multivariate log-normal distribution, almost all the

models performed significantly well when the number of classes were two. But for

more difficult classification with five classes, random forest and linear discriminant

analysis had the highest accuracies. K nearest neighbor performed the worst. The spread

for random forest and gradient boosting was the narrowest for most of the settings.

 The results from the simulation study were consistent with the results of real-

life data for heart patients. The numerical variables in the dataset mostly followed

normal distribution. The gradient boosting algorithm gave the best prediction accuracy

followed by support vector machines. K- nearest neighbors had the narrowest spread of

accuracies.

 27

 Overall, while there is no one method best for every setting, gradient boosting

and random forest algorithms seemed to give good results throughout. Especially if the

parameters are tuned carefully, they produce high prediction accuracies. Further studies

can be done for classes with unequal variances and larger number of classes.

 28

REFERENCES

1. James, G., Witten, D., Hastie, T. and Tibshirani, R (2013), Introduction to

Statistical Learning: with Applications in R, New York: Springer

2. Silverman, B., & Jones, M. (1989). E. Fix and J.L. Hodges (1951): An Important

Contribution to Nonparametric Discriminant Analysis and Density Estimation:

Commentary on Fix and Hodges (1951). International Statistical Review /

Revue Internationale De Statistique,57(3), 233-238. doi:10.2307/1403796

3. Freund, Y., Schapire, R., & Abe, N. (1999). A short introduction to

boosting. Journal-Japanese Society For Artificial Intelligence, 14(771-780),

1612.

4. Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting

classification algorithms: Bagging, boosting, and variants. Machine

learning, 36(1-2), 105-139.

5. Caruana, R., & Niculescu-Mizil, A. (2006, June). An empirical comparison of

supervised learning algorithms. In Proceedings of the 23rd international

conference on Machine learning (pp. 161-168).

6. Narassiguin, A., Bibimoune, M., Elghazel, H., & Aussem, A. (2016). An

extensive empirical comparison of ensemble learning methods for binary

classification. Pattern Analysis and Applications, 19(4), 1093-1128.

7. Armitage, D. W., & Ober, H. K. (2010). A comparison of supervised learning

techniques in the classification of bat echolocation calls. Ecological

Informatics, 5(6), 465-473.

 29

8. Ahmed, N. K., Atiya, A. F., Gayar, N. E., & El-Shishiny, H. (2010). An

empirical comparison of machine learning models for time series

forecasting. Econometric Reviews, 29(5-6), 594-621.

9. Shao, Y., & Lunetta, R. S. (2012). Comparison of support vector machine,

neural network, and CART algorithms for the land-cover classification using

limited training data points. ISPRS Journal of Photogrammetry and Remote

Sensing, 70, 78-87.

10. Brown, I., & Mues, C. (2012). An experimental comparison of classification

algorithms for imbalanced credit scoring data sets. Expert Systems with

Applications, 39(3), 3446-3453.

11. Phyu T. N. (2009), “Survey of Classification Techniques in Data Mining”,

International MultiConference of Engineers and Computer Scientists, Vol

IIMECS 2009, Hong Kong

12. Castanon, J. (2019), 10 Machine Learning Methods that Every Data Scientist

Should Know, Towards Data Science, Available

athttps://towardsdatascience.com/10-machine-learning-methods-that-every-

data-scientist-should-know-3cc96e0eeee9

13. Liberman, N. (2017), Decision Trees and Random Forests, Towards Data

Science, Available athttps://towardsdatascience.com/decision-trees-and-

random-forests-df0c3123f991

14. Ray, S. (2017), Understanding Support Vector Machine Algorithm from

Examples, Analytics Vidhya, Available

athttps://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-

machine-example-code/

 30

15. Hoare, J. (2017), Linear Discriminant Analysis in R: an introduction, DisplayR

blog, Available athttps://www.displayr.com/linear-discriminant-analysis-in-r-

an-introduction/

 31

APPENDIX A: TABLES FROM SIMULATION STUDY

Table A.1: Accuracy for multivariate T when p=3 & k=2

Sample

size

RF KNN SVM AdaBoost LDA Logistic GBM

n=100 0.55 .56 0.55 0.515 0.516 0.542 0.557

n=300 0.59 0.581 0.62 0.60 0.586 0.60 0.58

n=500 0.624 0.611 0.654 0.634 0.621 0.638 0.652

Table A.2: Kappa for multivariate T when p=3 & k=2:

Sample

size

RF KNN SVM AdaBoost LDA Logistic GBM

n=100 0.092 0.124 0.07 0.024 0.033 0.036 0.109

n=300 0.195 0.161 0.238 0.199 0.185 0.227 0.160

n=500 0.217 0.179 0.272 0.236 0.119 0.173 0.265

Table A.3: Accuracy for multivariate lognormal when p=3 & k=2

Sample

size

RF KNN SVM AdaBoost LDA Logistic GBM

n=100 0.952 0.967 0.954 0.949 0.970 0.971 0.954

n=300 0.987 0.987 0.983 0.982 0.984 0.978 0.986

n=500 0.958 0.967 0.957 0.951 0.9634 0.637 0.960

Table A.4: Kappa for multivariate lognormal when p=3 & k=2:

Sample

size

RF KNN SVM AdaBoost LDA Logistic GBM

n=100 0.904 0.935 0.908 0.898 0.940 0.941 0.909

n=300 0.964 0.975 0.966 0.964 0.969 0.957 0.972

n=500 0.912 0.931 0.911 0.898 0.923 0.924 0.918

Table A.5: Accuracy for multivariate T when p=10 & k=2

Sample size RF KNN SVM AdaBoost LDA Logistic GBM

n=100 0.995 0.747 0.644 0.995 0.575 0.658 0.995

n=300 0.995 0.747 0.644 0.995 0.575 0.658 0.995

n=500 0.995 0.844 0.738 0.994 0.609 0.739 0.994

 32

Table A.6: Kappa for multivariate T when p=10 & k=2:

Sample

size

RF KNN SVM AdaBoost LDA Logistic GBM

n=100 0.990 0.491 0.280 0.991 0.113 0.324 0.991

n=300 0.990 0.491 0.280 0.991 0.113 0.324 0.991

n=500 0.990 0.674 0.431 0.987 0.044 0.441 0.988

Table A.7: Accuracy for multivariate lognormal when p=10 & k=2

Sample

size

RF KNN SVM AdaBoost LDA Logistic GBM

n=100 0.997 0.823 0.732 0.994 0.600 0.670 0.996

n=300 0.971 0.944 0.932 0.971 0.956 0.948 0.973

n=500 0.963 0.962 0.955 0.963 0.966 0.953 0.961

Table A.8: Kappa for multivariate lognormal when p=10 & k=2:

Sample

size

RF KNN SVM AdaBoost LDA Logistic GBM

n=100 0.994 0.637 0.424 0.988 0.038 0.253 0.992

n=300 0.943 0.887 0.863 0.942 0.912 0.897 0.946

n=500 0.923 0.921 0.907 0.924 0.930 0.903 0.919

Table A.9: Accuracy for multivariate T when p=3 & k=5

Sample

size

RF KNN SVM LDA GBM

n=300 0.955 0.881 0.303 0.277 0.954

n=500 0.984 0.934 0.260 0.238 0.984

Table A.10: Kappa for multivariate T when p=3 & k=5

Sample

size

RF KNN SVM LDA GBM

n=300 0.980 0.917 0.713 0.043 0.981

n=500 0.943 0.850 0.112 0.078 0.943

Table A.11: Accuracy for multivariate lognormal when p=3 & k=5

Sample

size

RF KNN SVM LDA GBM

n=300 1.00 1.00 1.00 1.00 1.00

n=500 0.996 1.00 1.00 1.00 0.995

 33

Table A.12: Kappa for multivariate lognormal when p=3 & k=5

Sample

size

RF KNN SVM LDA GBM

n=300 1.00 1.00 1.00 1.00 0.994

n=500 0.995 1.00 1.00 1.00 0.993

Table A.13: Accuracy for multivariate T when p=10 & k=5

Sample

size

RF KNN SVM LDA GBM

n=300 0.837 0.743 0.317 0.228 0.829

n=500 0.885 0.769 0.375 0.240 0.885

Table A.14: Kappa for multivariate T when p=10 & k=5

Sample

size

RF KNN SVM LDA GBM

n=300 0.7963 0.678 0.150 0.030 0.786

n=500 0.856 0.711 0.219 0.055 0.856

Table A.15Accuracy for multivariate lognormal when p=10 & k=5

Sample

size

RF KNN SVM LDA GBM

n=300 0.807 0.603 0.782 0.816 0.781

n=500 0.847 0.641 0.847 0.8403 0.8404

Table A.16: Kappa for multivariate lognormal when p=10 & k=5

Sample

size

RF KNN SVM LDA GBM

n=300 0.758 0.503 0.728 0.769 0.726

n=500 0.808 0.550 0.809 0.8002 0.800

 34

APPENDIX B: FIGURES FROM SIMULATION STUDY

Figure B.1: Boxplot for n=300 & n=500 for multivariate-T, p=3 & k=2

Figure B.2: Boxplot for n=300 & n=500 for multivariate-lognormal, p=3 & k=2

Figure B.3: Boxplot for n=300 & n=500 for multivariate normal, p=3 & k=5

 35

Figure B.4: Boxplot for n=300 & n=500 for multivariate lognormal, p=3 & k=5

Figure B.5: Boxplot for n=300 & n=500 for multivariate normal, p=10 & k=2

Figure B.6: Boxplot for n=300 & n=500 for multivariate T, p=10 & k=2

 36

Figure B.7: Boxplot for n=300 & n=500 for multivariate normal, p=10 & k=5

Figure B.8: Boxplot for n=300 & n=500 for multivariate T, p=10 & k=5

Figure B.9: Boxplot for n=300 & n=500 for multivariate lognormal, p=10 & k=5

	An Empirical Comparison of Machine Learning Models for Classification
	Recommended Citation

	Dedication
	Acknowledgements
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1
	Introduction
	1.1 K- Nearest Neighbors
	1.2 Logistic Regression Classifier
	1.3 Linear Discriminant Analysis
	1.4 Support Vector Machines
	1.5 Random Forest Algorithm
	1.6 Adaptive Boosting Algorithm
	1.7 Gradient Boosting

	Chapter 2
	Simulation Study
	2.1 Introduction
	2.2 Methodology
	2.3 Results

	Chapter 3
	Comparing Models on Real Data
	3.1 Introduction to Dataset
	3.2 Analysis
	3.3 Result

	Chapter 4
	Conclusion
	References
	Appendix A: Tables from Simulation Study
	Appendix B: Figures from Simulation Study

