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ABSTRACT 

The Industrial Internet of Things (IIoT) movement has birthed technologies that 

enable the fusing of physical and digital environments. However, the extensive number of 

available options for industrial communication and data formatting has remained a barrier 

to achieving digital knowledge synonymy in industry. There have been previous attempts 

to establish standards for industrial connectivity and communication, but legacy machines, 

as well as custom and non-proprietary devices, still face issues communicating data with 

other manufacturing equipment. To address these challenges, the Industrial Internet of 

Things initiative has led to the creation of the Plug and Produce (PnP) concept to facilitate 

the smooth commissioning of industrial systems without the necessity for intensive manual 

configuration from system integrators. This thesis aims to apply the PnP concept to the 

Future Factories manufacturing testbed at the University of South Carolina’s McNair 

Aerospace Center to connect the various hardware and software components that interact 

within the manufacturing system. The architecture of the PnP systems consists of several 

protocol-agnostic Agent Gateways (AGs) that connect to the various manufacturing 

systems. These AGs acquire and aggregate the process data from the various data sources 

and translate them to the OPC UA framework. Utilizing the information modeling features 

of the OPC UA framework, the AGs can declare the capabilities and characteristics of the 
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manufacturing systems to IIoT applications. The AG then pushes the process data to a 

central Ignition Gateway (IG) platform to enable widespread connectivity, data 

availability, and application development between different manufacturing facilities and 

systems. 
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CHAPTER 1 

INTRODUCTION 

1.1 MOTIVATION 

The emergence of the Industrial Internet of Things (IIoT) has given rise to 

technologies that facilitate the integration of physical and digital environments. The 

industrial sector is increasingly incorporating the use of these technologies to take 

advantage of the vast amounts of data being generated for various applications. However, 

the vast array of options for industrial communication and data formatting has posed a 

significant obstacle to achieving a unified digital knowledge framework between industrial 

systems. Despite previous efforts to establish standards for industrial connectivity and 

communication, challenges persist in enabling communication between legacy machines, 

custom devices, and non-proprietary equipment. Moreover, these IIoT technologies are 

traditionally created for specific use-cases and applications, preventing industrial systems 

from rapidly responding to changes in the industrial environment, such as the addition of 

new sensors and equipment. In response to these challenges, the IIoT initiative has 

introduced the Plug and Produce (PnP) concept, aiming to streamline the commissioning 

of industrial systems without requiring extensive manual configuration by system 

integrators. The motivation behind this thesis is to investigate the PnP concept through its 
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application to the Future Factories manufacturing testbed. This thesis aims to develop a 

generalized PnP system that enables connectivity between the various hardware and 

software components that interact within the Future Factories manufacturing system. 

1.2 BACKGROUND 

This chapter presents a background regarding the technological initiatives that 

embody the development of PnP systems. We provide an overview of the Internet of Things 

(IoT) and subsequently the IIoT to provide context to the description of the PnP concept. 

1.2.1 INTERNET OF THINGS 

The IoT has emerged as an influential force, garnering significant attention across 

diverse industries [1]. This technological revolution involves the interconnectedness of 

devices, machines, and sensors, commonly referred to as "things," through standard 

Internet technologies. The exponential growth of the IoT is evident, with the global market 

projected to expand from $662.21 billion in 2023 to a staggering $3,352.97 billion by 2030, 

indicating a remarkable Compound Annual Growth Rate (CAGR) of 26.1% [2]. 

IoT infrastructure spans various application domains and is increasingly being 

integrated into businesses, enabling both physical and virtual devices to seamlessly 

interoperate through data networks, all without requiring direct human intervention [3]. 

The applications of IoT are numerous and diverse, including domains such as smart cities 

[4], smart homes [5], energy [6], healthcare [7], and intelligent transportation [8], [9]. The 

interconnectedness facilitated by IoT is not limited to specific sectors but extends to a wide 

array of applications, contributing to a more interconnected and intelligent world.  

In the realm of smart cities, IoT technologies are harnessed to enhance urban living 

by optimizing resource management, improving public services, and ensuring 
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sustainability [4]. Similarly, smart homes leverage IoT to create intelligent environments 

that enhance convenience, security, and energy efficiency [5]. Energy applications strive 

to improve efficiency in cost and energy usage [6]. Healthcare applications utilize IoT for 

remote patient monitoring, data-driven diagnostics, and personalized healthcare solutions 

[7]. Intelligent transportation systems rely on IoT to enhance route optimization, parking, 

streetlights, and accident prevention/detection [9]. As IoT applications continue to evolve, 

they present a growing landscape of heterogeneity, complexity, and increasing demands, 

underscoring the need for standardized technologies and architectures to ensure seamless 

networking and interoperability across diverse applications and industries. 

1.2.2 INDUSTRIAL INTERNET OF THINGS 

The IIoT represents a transformative paradigm in the realm of industrial operations, 

merging the capabilities of Operational Technology (OT) with the advanced connectivity 

and intelligence of the IoT [10]. At its core, IIoT leverages interconnected devices, 

machines, sensors, and systems within industrial settings to enhance efficiency, 

productivity, and overall operational performance. This convergence of physical and 

digital realms facilitates data-driven decision-making [11], [12], [13] and autonomous 

process optimization [14], [15], [16], heralding a new era of smart, connected industries. 

In the industrial landscape, IIoT acts as a catalyst for digital transformation, 

fostering connectivity and intelligence across the entire value chain [17], [18]. The 

deployment of sensors and connected devices in industrial processes enables real-time 

monitoring, predictive maintenance, and data-driven insights. This interconnected 

ecosystem brings forth opportunities for enhanced automation and optimization of 
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industrial processes, and has led to the creation of smart factories capable of adapting to 

dynamic market demands [19]. 

The seamless integration of IIoT technologies holds the promise of unlocking 

unprecedented operational efficiencies, reducing downtime, and enhancing overall asset 

management [20]. With a strong foundation in the principles of connectivity, data 

exchange, and intelligent analytics, the IIoT emerges as a cornerstone in the ongoing 

evolution of industries toward more adaptive, responsive, and interconnected systems. As 

industries increasingly harness the power of IIoT, the potential for innovation and 

efficiency gains becomes a driving force in shaping the future of industrial processes and 

systems. 

1.3 PLUG AND PRODUCE 

PnP plays a pivotal role in addressing the evolving challenges of modern 

manufacturing, where product and innovation cycles are becoming increasingly complex, 

and there is a growing demand for customized and specialized products [21]. In the face of 

unpredictable market conditions, production plants must exhibit the capability for rapid 

adaptation to shifts in capacity and changes in production processes. Traditional plant 

engineering tends to prioritize specific products and operating points, often at the expense 

of flexibility. Modularization is identified as a solution to enhance the reconfiguration 

efficiency of production plants, allowing for swift adaptations to varying demands [22], 

[23]. This is particularly significant as modularization enables the reuse of engineering 

solutions across multiple customers, optimizing the overall efficiency of the engineering 

process. 
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The landscape of manufacturing is witnessing a shift from mass production to mass 

customization due to the demand for personalized products [24]. The adaptability of 

manufacturing facilities to accommodate changes in product specifications is crucial. 

Achieving flexibility in manufacturing systems relies heavily on minimizing the 

configuration efforts required to commission and restructure production facilities. 

Currently, automated production facilities face challenges due to proprietary automation 

technologies and communication protocols, leading to inflexibility. The PnP concept 

augments the ability of the system to detect newly plugged devices and configure them 

efficiently and automatically to perform specific production tasks.  

The dynamic nature of today's manufacturing environment is marked by shorter 

product life cycles and changing market conditions, and therefore necessitates the agility 

of manufacturing systems to adapt to dynamically changing business needs [25]. However, 

modifying existing production systems involves time-consuming and manual steps that can 

be error-prone, leading to costly production interruptions. Control systems in modern 

manufacturing encompass a range of components, including embedded controllers, 

sensors, actuators, servers, workstations, and cloud services [26]. The software supporting 

these systems can be extensive, with intricate architectures designed to meet challenging 

non-functional requirements such as performance, reliability, and security [27].  

The vision of PnP revolves around maximizing the economic sustainability of 

production systems through three primary initiatives [28]. First, it focuses on enabling PnP 

capabilities for automation equipment, robots, and machines. Second, it aims to facilitate 

horizontal and vertical communication between all hardware and software entities, 

fostering the innovation of new business functions. Finally, it strives to enable seamless 
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interaction with high-level Manufacturing Execution System (MES) and Enterprise 

Resource Management (ERP) systems that are easily extendable and adaptable for the 

introduction of new product specifications, work orders, and equipment. The PnP vision 

anticipates seamless deployment, optimization, and changeover management strategies, 

aligning with the overarching goal of enhancing manufacturing flexibility and efficiency. 

1.4 THESIS STRUCTURE 

Chapter 1 introduces the IoT, IIoT, and the PnP concepts. Subsequently, the 

structure of the thesis is described.  

Chapter 2 includes a literature review of PnP in the IIoT. The survey provides a 

brief overview of the general IIoT architecture and conducts an investigation on 

connectivity in the IIoT. The survey describes the taxonomy of PnP and similar concepts 

in relation to the IIoT. The review subsequently identifies the PnP characteristics and 

elaborates on current research directions for key enabling IIoT technologies for PnP. This 

is followed by a discussion on the challenges in incorporating IIoT technologies in PnP 

systems, followed by potential future research directions to address the identified gaps in 

the literature. 

Chapter 3 defines the use-case and requirements for PnP in the Future Factories 

manufacturing testbed and provides an overview of the various system components that 

make up the testbed. The chapter then highlights the capabilities of OPC UA that enable 

interoperability for PnP systems. The chapter provides a description of the OPC UA 

framework, including key features that enable interoperability such as the OPC UA base 

information model defined from the OPC UA Core Specification as well as OPC UA 

companion specifications. The chapter goes into detail on the process of developing a 
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custom information model, allowing for the combination of companion specifications to 

define the capabilities of assets more emphatically in the manufacturing environment . 

Subsequently, the chapter describes the role of various modules and software integrations 

for developing the Ignition Gateway (IG) platform as a scalability solution for PnP systems. 

The development methodology for the PnP framework is then described. Lastly, the thesis 

presents a roadmap for implementing the PnP framework for brownfield manufacturing 

scenarios. 

Chapter 4 presents the architecture of the developed PnP framework for the Future 

Factories manufacturing cell. The chapter describes the approach for developing Agent 

Gateways (AGs) through the building of custom information models for the Rocket 

Assembly station and Mobile Visual Inspection station in the Future Factories 

manufacturing cell. Subsequently, the configuration process for the development of IGs to 

enable scalability for the PnP framework is presented. The system utilizes various 

combinations of software packages and libraries to enable Factory-to-Factory (F2F) 

connectivity and communication while remaining communication protocol agnostic.  

Chapter 5 summarizes the contents of the thesis and suggests future work for further 

development of the PnP system. A description of the situation of research for the Future 

Factories manufacturing cell is provided, providing an overview of the various prior 

research works within the Smart Manufacturing domain.
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CHAPTER 2 

LITERATURE REVIEW 

A literature review pertinent to the themes explored in this thesis is presented. First, 

we introduce the concept of the IIoT emphasizing the architectural and connectivity 

requirements. Subsequently, we delineate the PnP taxonomy and define the characteristics 

inherent to PnP with a focus on enabling IIoT technologies and current research directions. 

Lastly, a discussion is presented on the challenges associated with facilitating PnP systems, 

accompanied by potential solutions. 

2.1 INDUSTRIAL INTERNET OF THINGS 

The IoT refers to the interconnected network of physical devices, vehicles, 

appliances, and other objects embedded with sensors, software, and connectivity, enabling 

them to collect and exchange data over the internet [29]. The fundamental concept of IoT 

involves turning everyday objects into smart devices by enabling them to communicate 

and share information autonomously [30]. The IIoT exists as a subset of the IoT, tailored 

specifically for industrial applications [10]. The IIoT is closely intertwined with the broader 

Industry 4.0 concept [31], which is an initiative describing the ongoing transformation of 

traditional manufacturing and industrial processes through the integration of cutting-edge 

technologies, intelligent automation, and data-driven insights.  The IIoT harnesses the 
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power of interconnected devices, sensors, and systems to enhance efficiency, productivity, 

and data-driven decision-making in industrial environments. Unlike traditional industrial 

systems, the IIoT integrates digital intelligence into physical processes, fostering 

automation, intelligent decision-making, and the seamless information exchange across the 

industrial landscape [19]. The IIoT ecosystem enables the concept of Smart Manufacturing 

[32], where machines, equipment, and production lines operate collaboratively in a 

dynamic and interconnected environment. The IIoT is characterized by its emphasis on 

connectivity, data analytics, and the convergence of OT with information technology (IT), 

paving the way for a new era of intelligent and adaptive industrial operations. 

2.1.1 ARCHITECTURE OF THE IIOT 

The IIoT is a rapidly expanding field that enables the interconnection of devices 

and sensors to collect and exchange data over the internet. Reference architectures refer to 

the various models that serve as a foundation in the design, deployment, and management 

of IIoT systems by providing a higher level of abstraction to identify issues and challenges 

across different application scenarios [33]. These architectures are crucial for ensuring the 

reliability, scalability, and security of IIoT systems [34], impacting industries such as 

transportation [9], supply chain logistics [17], manufacturing [35], and energy [36]. 

Designing an effective IIoT architecture requires a focus on specific aspects of the IIoT 

system, such as extensibility, scalability, modularity, and interoperability among 

heterogeneous devices using various technologies. Commonly adopted approaches include 

multilayer descriptions organized around the services offered at each level, tailored to 

specific technologies, business needs, and technical requirements [33]. The design of an 
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IIoT architecture depends on factors such as the number and types of devices, data 

processing requirements, network connectivity, and security needs. 

Numerous reference architecture frameworks have emerged in the past, addressing 

diverse application contexts for the IIoT [37]. This review specifically focuses on two 

prominent reference frameworks: the Industrial Internet Reference Architecture (IIRA) 

from the IIoT Consortium and the Reference Architectural Model Industry 4.0 (RAMI 4.0) 

from Platform Industries 4.0. The IIRA concentrates on the functionality of the industry 

domain, including business, operations, data analytics, and domain-specific applications 

[38]. It offers specific viewpoints catering to different stakeholders, providing guidance to 

system architects in building IIoT systems. These viewpoints cover categories such as 

business, usage, functional, and implementation, each serving as a foundation for designing 

domain-specific IIoT architectures. The RAMI 4.0 model extends the IIRA model toward 

the life cycle and value streams of manufacturing applications [18]. Unlike the IIRA, 

RAMI 4.0 aims to harmonize different user perspectives, offering a common understanding 

of relations and attributes between individual components for IIoT solutions [33]. 

 

 Figure 2.1: Hybrid IIoT Architecture 
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These reference architectures [18], [37], [39] serve as the basis for designing use-

case specific IIoT architectures. These multiple-tier architectures enable the design of 

dynamic models and services for both business and industrial applications while also 

addressing the challenges posed by the heterogeneous nature of devices and networks. 

Hybrid IIoT architectures typically follow a three-tier pattern connecting edge, platform, 

and enterprise tiers through service networks [33]. Figure 2.1 shows a graphical 

representation of a generic hybrid IIoT architecture. The edge tier encompasses sensors, 

controllers, and actuators interconnected by local area networks, connecting to the platform 

tier through edge gateways. The platform tier, in turn, links to the enterprise tier, 

implementing domain-specific applications and providing end-user interfaces through 

service networks. 

2.1.2 CONNECTIVITY IN THE IIOT 

The IIoT represents a transformative paradigm shift in the industrial landscape, 

enabled by the seamless integration of advanced sensors, intelligent devices, and data 

analytics into traditional industrial processes [10]. At the core of this technological 

revolution lies the crucial element of connectivity, which plays a pivotal role in unlocking 

the full potential of the IIoT. Connectivity in the IIoT refers to the ability of devices and 

systems to communicate, share data, and collaborate in real-time across a network 

infrastructure, ultimately fostering a more responsive, intelligent, and efficient industrial 

ecosystem [38]. Connectivity is an essential feature for the IIoT because the establishment 

of a robust and interconnected network enables the seamless exchange of data between 

various systems within an industrial environment. This interconnectedness allows for real-

time monitoring, control, and coordination of industrial processes, leading to improved 
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operational efficiency and agility [40]. The ability to collect, transmit, and analyze data in 

real-time empowers organizations to make data-driven decisions, optimize processes, and 

respond swiftly to changing conditions. 

A key objective of enabling IIoT connectivity is to mitigate the use of isolated 

systems that are dependent on proprietary solutions [33]. The overarching aim is to foster 

an environment conducive to data sharing and interoperability among existing closed 

subsystems and forthcoming applications, both within and across diverse industries. IIoT 

connectivity also serves to provide interoperable communications among network 

endpoints for the purpose of facilitating system integration [38]. Interoperability can be 

achieved at various levels of the IIoT Protocol Stack, with solutions ranging from custom 

integration to Plug and Play interfaces based on open standards. The IIoT Protocol Stack 

is shown in Figure 2.2. 

 

 Figure 2.2: IIoT Protocol Stack 

The IIoT Protocol Stack consists of a layered architecture that facilitates 

communication and interoperability among systems in industrial environments. The 

protocol stack is based on the IIoT Communications Stack Model from [38] and the IIoT 
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Protocol Stack from [33]. Various models of the IIoT Protocol Stack [31], [33], [34], [38], 

[41] can differ slightly in that some of the layers are combined or separated according to 

the application. For example, technologies such as Wi-Fi and Ethernet perform operations 

simultaneously in the physical and link layers, and therefore are represented as a single 

layer in the stack, as shown in Figure 2.2. While there is not a single, standardized IIoT 

protocol stack, several communication technologies are commonly used across different 

layers. The role of each layer in the IIoT Protocol Stack [38] is described in Table 2.1. 

Table 2.1: IIoT Protocol Stack Layers 

Physical Layer Involves the transmission of physical signals, sent as bits, via wired or wireless 

means to establish connections among participants. 

Link Layer Encompasses the transmission of frames, or series of bits, through signaling 

protocols over a shared physical link between adjacent connected participants. 

Network Layer Manages the exchange of packets, routing them across multiple links to 

facilitate communication between non-adjacent participants. 

Transport Layer Facilitates the exchange of messages, which can vary in length, between 

applications of participating entities. 

Framework Layer Governs the exchange of structured data, including state, events, and streams, 

offering configurable quality-of-service features for communication among 

participant applications. 

Application Layer Depends on the data -sharing mechanisms provided by the framework layer to 

enable communication and collaboration between applications of participating 

entities. 

In the context of the IIoT Protocol Stack, the interoperability concept is categorized 

into three specific definitions based on the corresponding IIoT layer [38]. Technical 

interoperability pertains to the capacity to exchange information as bits and bytes, syntactic 

interoperability involves the ability to employ a shared data structure and a defined set of 
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rules for exchanging meaningful data [30], [42], and semantic interoperability refers to the 

capability to interpret the meaning of exchanged data unambiguously within the 

appropriate context [43]. The actual application itself plays a crucial role in delivering 

semantic interoperability and requires the prior establishment of technical and syntactical 

interoperability in the IIoT environment [33].  

Connectivity serves as the backbone for the implementation of enabling 

technologies for the IIoT, such as edge computing [44], [45], cloud services [46], [47], big 

data analytics [48], [49], data fusion [50], [51], and machine learning [52]. Connectivity 

also enables the integration of intelligent sensors and actuators into industrial processes, 

creating a network of smart devices that can communicate and collaborate autonomously 

[33]. This interconnectedness enhances predictive maintenance capabilities, allowing for 

the early detection of equipment failures, minimizing downtime, and optimizing 

maintenance schedules [10]. Furthermore, connectivity supports the concept of Digital 

Twins (DTs), enabling real-time monitoring and simulation for better decision-making 

[41]. 

In summary, IIoT connectivity enables the creation of intelligent, interconnected, 

and data-driven industrial ecosystems. The seamless flow of information across the IIoT 

network empowers industries to enhance efficiency, reduce costs, and embrace innovative 

technologies, driving the ongoing evolution of industrial processes in the digital age. 

2.2 PLUG AND PRODUCE 

In this section, the taxonomy of PnP and similar concepts is defined. The 

characteristics inherent to PnP are described, and the current research directions of IIoT 

technologies for PnP are introduced. 
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2.2.1 PLUG AND PRODUCE TAXONOMY 

The concepts of "Plug and Play," "Plug and Work," and "Plug and Produce" play 

interconnected roles in the realms of industrial automation, IoT, and smart manufacturing. 

The IIoT has been classified as the intersection between the IoT and CPSs according to 

[33]. "Plug and Play" originated as a concept in the computer domain, where peripherals 

are automatically detected and configured by the operating system [53]. This concept has 

been extensively applied across the IoT domain [54], [55], [56], [57], [58], [59], facilitating 

communication between various devices to observe and interact with the surrounding 

environment. A specific term has not been created to define the intersection between Plug 

and Play and the IoT, as this domain is simply referred to as Plug and Play IoT. However, 

applying the Plug and Play concept to CPS systems has resulted in the formation of the 

“Plug and Work” concept. 

"Plug and Work" introduces a layer of complexity by requiring technical 

foundations to determine the information exchange during the startup of software and 

hardware components in a production environment. This concept, integral to industrial 

standards like AutomationML and OPC UA, emphasizes the secure and confidential 

transfer of sensitive information between industrial machines [60]. Plug and Work 

mechanisms ensure that the exchange of information adheres to defined standards within 

the industrial environment while simultaneously meeting the demands of end-users [61]. 

The literature suggests that the application of the “Plug and Play” concept to the 

IIoT has resulted in the formation of the “Plug and Produce” concept. "Plug and Produce" 

aligns closely with the familiar Plug and Play concept employed in IT systems. In the 

context of industrial automation and the IIoT, Plug and Produce refers to systems that can 
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communicate effectively without extensive human intervention [62]. This concept is 

pivotal for the future smart factory, where machines, production lines, and storage systems 

collaborate within a network of CPSs. Plug and Produce is closely associated with the IIoT, 

emphasizing the utilization of standardized communication protocols, data representation 

formats, information translation modalities, and the ability of devices to self-configure and 

self-optimize [20], [63].  In the IIoT landscape, it facilitates heterogeneous systems' 

communication both horizontally and vertically, enabling autonomous interaction between 

disparate systems, such as digital supply chain networks and industrial production 

equipment [17]. In this manner, the Plug and Produce concept enables disparate systems to 

exchange information, trigger actions, and control each other. 

Together, these concepts together form a comprehensive framework for seamless 

integration, communication, and operation within both industrial and commercial 

ecosystems. While both the “Plug and Produce” and “Plug and Work” concepts share the 

goal of simplifying the integration of devices in CPSs, Plug and Produce tends to 

emphasize open-communication between heterogeneous systems, protocol agnosticism, 

and system adaptability, whereas Plug and Work focuses more on establishing 

straightforward integration processes based on developed standard communication 

interfaces. Based on these definitions, we develop the taxonomy for Plug and Produce 

systems in relation to the associated intersecting research domains in Figure 2.3. 
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Figure 2.3: Plug and Produce Taxonomy 

2.2.2 PLUG AND PRODUCE CHARACTERISTICS AND CURRENT RESEARCH 

DIRECTIONS 

This review investigates the primary characteristics of PnP systems related to IIoT 

connectivity, which are defined to be interoperability, scalability, and mobility. Security is 

also an essential characteristic of PnP systems but falls outside the scope of this review, 

and as such is not covered. We introduce enabling technologies for these PnP 

characteristics and elaborate on current research directions for these technologies in PnP 

systems. While the requirements of these technologies may intersect with the other PnP 

characteristics, these technologies are categorized according to the purpose behind their 

implementation in PnP systems. This review focuses on generalized and widespread 
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enabling technologies that can be applied to various use-cases within manufacturing, as 

there exists a vast array of application-specific IIoT technologies that can be applied to PnP 

systems but fall outside of this scope. 

2.2.2.1 INTEROPERABILITY 

As manufacturing systems evolve, diverse devices and systems require the capacity 

to communicate and collaborate amongst each other. In the context of PnP systems, 

interoperability refers to the seamless exchange of information and functionalities between 

various components, both within and across different industrial domains [64]. This 

harmonious integration fosters a dynamic and interconnected ecosystem where machines, 

sensors, and controllers can work in tandem to accomplish tasks autonomously [65]. 

Research regarding enabling seamless IIoT connectivity has yielded a plethora of standards 

aimed at achieving universal interoperability between interconnected components. By 

emphasizing standardized communication, PnP systems transcend the barriers posed by 

disparate devices, ensuring a unified connectivity framework that enables the achievement 

of the overarching goals of an industrial automation system. Given the plethora of existing 

communication standards, translation mechanisms are also being utilized to support system 

interoperability [66], [67], [68]. The ability to translate communication protocols ensures 

that devices, each adhering to their specific protocol, can effectively communicate and 

comprehend information.  

2.2.2.1.1 STANDARDIZATION OF IIOT PROTOCOLS 

The standardization effort in the IIoT plays a pivotal role in the advancement of 

PnP systems, catering to the specific requirements of commissioning processes [69]. This 

is particularly crucial in the current push towards Cyber-Physical Systems (CPS), where 
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the harmonization of information models becomes a critical factor [28]. The IIoT is heavily 

contingent on the standardization of communication technologies, encompassing aspects 

such as interoperability, usability, trustworthiness, and ensuring uninterrupted business 

operations. Leading networking initiatives such as IEEE 802.15.4a and IETF are central to 

this standardization initiative [64]. Presently, various industrial consortia, organizations 

(IEEE, WC3, OASIS), and IoT management frameworks (ITU-T, oneM2M, OCF) are 

driving the standardization efforts for numerous IIoT technologies [70]. Additionally, 

domain-specific standardized bodies and institutes are working to address diverse 

industrial challenges related to connectivity (e.g., 3GPP, IETF6Lo, IEC, OSGi, ETSI 

DASH7) and interoperability (e.g., IEEE PLC, IPv6 Forum, OMA, oneM2M, DMTF, 

SNIA). 

Interoperable connectivity currently poses a significant challenge for industries due 

to the amalgamation of heterogeneous devices, diverse network architectures, and complex 

distributed environments [64]. The standardization of IIoT protocols plays a crucial role in 

establishing an interoperable connectivity within an IIoT ecosystem. These protocols 

empower IIoT devices to observe, listen, comprehend, and execute tasks by enabling 

seamless communication, data exchange, and decision-making [71]. A primary objective 

of IIoT systems is to construct a device-friendly protocol stack that facilitates the 

interoperable communication of devices, fostering knowledge exchange and the 

accomplishment of their intended objectives [64]. Notably, at the network level, 

communication standards (WirelessHART, WIA-AP, and ISA100.11a) are extensively 

employed for the development of industrial interfaces, even though challenges related to 

reliability and scalability persist in such models. At the transport level, research initiatives 
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[68], [72] emphasize the importance of the standardization of various transport protocols, 

such as TCP/IP and HTTP(S), alongside diverse encoding formats like JSON, BIN, and 

XML. Regarding OPC UA, the standardization effort extends to interaction patterns with 

services [73], encompassing actions such as read and write, to facilitate user interaction 

with the data. At the framework level, information models excel in providing 

contextualized data; however, the lack of common rules or structures across heterogeneous 

models poses a challenge in establishing uniformity in information representation between 

various systems. At the application level, achieving semantic interoperability involves 

defining OPC UA information models based on desired companion specifications [68].  

In the assembly domain, the establishment of standards has become indispensable 

for creating adaptable systems that ensure compatibility among assembly equipment 

modules [74]. Importantly, the collaborative nature of standardization efforts extends 

beyond individual companies or organizations, emphasizing a mutually beneficial 

approach. This collaborative effort is grounded in domain knowledge maturity, ensuring 

not only interoperability and integration but also wider acceptance of the technology. 

Together, these concerted standardization efforts are essential steps toward realizing 

seamless communication and compatibility in the evolving landscape of smart and 

interconnected systems. 

2.2.2.1.2 INFORMATION TRANSLATION 

In the pursuit of achieving interoperability within the IIoT, substantial challenges 

persist despite ongoing standardization efforts. The need for a semantic IIoT architecture 

that accommodates multiple IIoT protocols is evident [75]. Specifically, at the transport 
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layer, the absence of interoperability remains a significant barrier to effective 

communication among IIoT devices. 

Derhamy et al.’s work [76] identified a gap in the investigation of OPC UA 

interoperability within a multi-protocol setting, leading to the proposition of an OPC UA 

translator. This translator aims to be compatible with various protocols such as CoAP, 

HTTP, and MQTT by employing mapping techniques to an intermediate format [66]. To 

achieve uniformity between information models, a mapping must be established between 

a subset of OPC UA services and an intermediate format, as well as between the OPC UA 

address space and IIoT protocol message structure. The method involves mapping OPC 

UA to an intermediate format that, in turn, can be mapped to other standard communication 

protocols like CoAP, HTTP, and MQTT. While the protocol translator lacks semantic 

translation capabilities, it is suggested that an individual semantic translator could 

complement its functionality. 

Desai et al. [75] propose the Semantic Gateway as Service (SGS) concept to serve 

as a bridge between sink nodes and IIoT services. The gateway, utilizing CoAP, XMPP, or 

MQTT protocols, semantically annotates data using Semantic Sensor Network (SSN) 

ontology. The SGS facilitates interoperability at both the messaging protocol and data 

modeling levels, connecting low-level raw sensor information with knowledge-centric 

application services. 

Taking a different approach, Katti [77] emphasizes the necessity of a mechanism 

to translate semantic models to a payload received by the OPC UA client, ensuring 

compatibility with the expected format in the OPC UA server (lowering transformation). 

Conversely, service output represented in the OPC UA information model must also 
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undergo transformation to align with the corresponding semantic model (lifting 

transformation). 

Pauker [78] introduces an innovative approach for generating OPC UA information 

models by automatically transforming Unified Modeling Language (UML) class diagrams, 

which is a standard language for modeling software systems. While some model elements 

can be mapped between UML and OPC UA, challenges arise due to the inherent 

incompatibility of certain UML concepts and model elements with the OPC UA 

framework. 

In a different context, Koo [79] proposes the concept of an IoT device-name-system 

architecture as an interoperability-enabling technology. This architecture facilitates the 

analysis and translation of an IoT device's identification system and resource request 

format, allowing resource requests between heterogeneous IoT platforms. Notably, the 

DNS architecture is tested on a microcomputer, indicating its suitability for low-power IoT 

applications. These diverse approaches and proposals contribute to the ongoing discourse 

on addressing interoperability challenges in the evolving landscape of the IIoT. 

2.2.2.2 SCALABILITY 

In the IIoT, scalability refers to the ability of a system to handle increasing 

workloads effectively without compromising the performance, efficiency, and quality of 

the system. With the rise of smart manufacturing and interconnected systems, PnP systems 

require the capability to seamlessly integrate new technologies, devices, and components 

into existing manufacturing infrastructures, and should be able to easily accommodate the 

addition of new sensors, actuators, and other IIoT devices [62]. The scalability of PnP 

systems can also be enhanced through the efficient distribution of computing resources to 
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meet varying production demands. Scalability is therefore defined to be a critical 

characteristic in PnP systems, and with the advent of the IIoT, the capability to support an 

ever-increasing quantity of IIoT devices and process large volumes of data is more 

necessary than ever before. 

2.2.2.2.1 OPC UA 

The scalability of OPC UA within PnP is highlighted by its ability to accommodate 

varying scopes of functions and support diverse platforms through OPC UA servers [80]. 

Basic communication is fundamental aspect to realizing the Plug-and-Produce 

environment, requiring automated device discovery capabilities and self-description, along 

with interoperability across different systems [81]. In this context, OPC UA's service-based  

machine-to-machine communication stands out for its adherence to standardized 

invocations and concepts for semantic description. The scalability extends not only to the 

technical aspects of communication but also to the organizational level, as OPC UA 

enables interoperability across different systems, facilitating seamless integration of 

devices and systems from various vendors. 

Liu's examination of OPC UA's messaging capabilities compares client-server and 

PubSub interaction patterns to examine the protocol's scalability [82]. The PubSub 

communication pattern introduces benefits to system scalability, as it is especially useful 

in manufacturing scenarios where multiple clients are involved. The distinction between 

broker-based and broker-less modes provides flexibility, allowing for optimization based 

on specific network and system requirements. The efficiency of PubSub mode, particularly 

in reducing client processing loads during data changes, further supports its scalability in 

the context of IIoT environments with potentially numerous connected devices. 
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Drahos et. al. [83] emphasize the role of OPC UA in messaging over global 

networks to support various PubSub scenarios. The definition of mappings on messaging 

protocols such as Advanced Message Queuing Protocol (AMQP) and MQTT enhances 

OPC UA's scalability, offering a secure and efficient means of data sharing across 

connected devices. The ability to operate over cloud-based networks adds a layer of 

scalability crucial for modern industrial applications that span geographically distributed 

environments. 

Burger et al.’s [84] investigation into resource management capabilities concerning 

potential bottlenecks and Computer Processing Unit (CPU) utilization in OPC UA 

communication contributes valuable insights into the protocol's scalability. Despite 

negligible impacts on memory and network resources, identifying the CPU as the primary 

bottleneck highlights the need for optimization in server-side processing. This insight is 

crucial for addressing scalability concerns and ensuring the efficient operation of OPC UA 

in diverse industrial settings. 

OPC UA stands as a linchpin technology in ensuring scalability within the PnP 

paradigm. Its flexibility, standardized communication, and support for diverse 

functionalities make it an essential element in the advancement of interconnected and 

scalable industrial systems. The protocol's adaptability to different communication patterns 

and its emphasis on secure, standardized data exchange position OPC UA as a fundamental 

technology for the evolving landscape of industrial automation. 

2.2.2.2.2 CLOUD COMPUTING 

Cloud computing has played a pivotal role in enhancing the scalability for PnP 

systems. In the foundation of every IIoT platform lies a network of sensors or “things” that 
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provide information about the surrounding environment. The management of data from 

these elements is traditionally handled within cloud computing systems [58]. Traditional 

on-premise computing platforms, while suitable for certain tasks, face limitations in 

processing large amounts of data in real-time. Additionally, scaling on-premise computing 

platforms to the level required for training data-driven machine learning models proves to 

be expensive and challenging. Cloud computing platforms, characterized by their 

capability to process large volumes of data efficiently, present an ideal solution for these 

demands in the PnP landscape. 

The combination of IIoT technologies with cloud computing has emerged as a 

powerful paradigm [85]. Middleware serves as a crucial interface between software and 

physical objects, enabling communication among heterogeneous devices. Leveraging the 

open connectivity and computing environments of the IIoT complements the capabilities 

of cloud-computing infrastructures, offering features such as virtualization, scalability, 

lifecycle management, and multi-tenancy. 

The benefits of cloud computing platforms can also be realized when used in 

tandem with CPS architectures. In a cloud-based CPS architectures, features such as DT 

monitoring and control, Big Data, and graphical application modules are used to facilitate 

custom development of dashboards and data analytics for factories [86]. By applying cloud 

computing architectures to a distributed control environment, PnP systems can realize 

intelligent control at the network edge. The translation of various communication 

modalities of industrial machines to the standard OPC UA protocol ensures compatibility 

between cloud computing platforms and industrial systems. Additionally, applications on 

the cloud that receive the industrial data are often run in Docker containers to offer 
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enhanced performance and scalability. Beno et. al. [87] exemplify the integration of OPC 

UA servers with cloud computing platforms like Microsoft Azure. In this experiment, an 

OPC UA server, an intermediary edge device, and the Azure Cloud are interconnected. The 

edge device serves as the central point of communication between the local offline network 

and the internet, facilitating the seamless transfer of OPC UA data to the Azure Cloud, 

where it can be interacted with in diverse ways. This integration showcases the practical 

application of cloud computing for processing and analyzing data from PnP systems, 

exemplifying the scalability and versatility it brings to industrial environments. 

2.2.2.2.3 EDGE COMPUTING 

Edge computing plays a vital role in advancing the scalability and efficiency of PnP 

systems, contributing to the optimization of industrial processes [88]. Unlike cloud-centric 

IIoT architectures, where data travels to a centralized cloud server for processing, edge 

computing involves performing computational tasks physically closer to the data source, 

at the edge of the network. By deploying computational capabilities at the edge of the 

network, critical decisions can be made in real-time instead of relying on centralized cloud 

processing [89]. This local processing not only reduces latency but also ensures that 

devices can respond swiftly to changing conditions or requirements [44].  

Edge computing also serves to facilitate autonomous device collaboration in PnP 

systems. Localized processing enables devices to communicate, coordinate, and 

collaborate without relying on continuous communication with a central server [90]. This 

autonomy enhances the efficiency of PnP systems by allowing devices to operate in a 

coordinated manner without constant external supervision. As the number of connected 

devices and sensors increases, edge nodes can distribute the processing load eff iciently, 
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preventing congestion and optimizing resource utilization [91]. This scalability is essential 

for accommodating the growing complexity of industrial ecosystems.  

Furthermore, edge computing can also be used to complement the capabilities of 

cloud computing infrastructures through cooperation mechanisms to enable intelligent  

manufacturing [45]. By decentralizing computational power from central servers to the 

network periphery, edge computing is better able to support cloud computing by handling 

tasks that require real-time processing while delegating big data analytics and complex 

optimization problems to the central cloud server. Edge devices also act as intermediary 

nodes that collect heterogeneous data and translate to a common standard [92]. Such 

standards allow manufacturers to define semantic models that contextualize heterogeneous 

data, providing a higher level of perception to PnP to enable autonomous and intelligent  

decision making. 

2.2.2.2.4 TASK OFFLOADING 

In the rapidly growing IIoT ecosystem, the surge in connected devices has led to a 

substantial increase in data generation. This data is often processed and analyzed in the 

cloud, which can result in elevated network traffic and latency in environments where 

thousands of computation tasks are to be performed in parallel. On the other hand, devices 

at the edge of the network are traditionally resource-constrained, and therefore may lack 

the capability to compute large volumes of data. To address these challenges, task 

offloading techniques can be employed, which involves the transfer of data processing 

tasks from the cloud to the edge of the network, as well as from the edge of the network to 

the cloud, to find the most optimal endpoint to carry out the task. This approach enhances 
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the scalability of IoT services, and IIoT services by extension, by reducing latency, 

improving network efficiency, and enabling real-time data analysis. 

Task offloading entails partitioning computationally exhaustive resources in mobile 

applications and utilizing cloud resources for computations [93]. A task offloading 

framework defines the rules for identification of computationally exhaustive resources 

from code snippets and controls the delegation of these IoT tasks to the most optimal 

processing device, which can either be local to the device or in the cloud. A large challenge 

of implementing task offloading in IIoT environments is defining how to consistently 

optimize delegation of IoT tasks for a dynamic environment. Implementing computation 

offloading in IIoT environments requires an adaptive framework capable of consistently 

optimizing the delegation of tasks in dynamic conditions.  

Task offloading frameworks often leverage machine learning (ML) algorithms to 

accomplish this task, as highlighted in [94], which provides a comprehensive comparative 

analysis of different ML technologies for task offloading. These ML algorithms are defined 

to designate which tasks are computationally exhaustive, and which can be processed by 

the device at the edge of the network. Extensive studies on task offloading techniques have 

been researched, emphasizing the necessity of performance enhancement of IIoT 

environments. However, the criteria upon which tasks are delegated according to must be 

defined according to the requirements of the use-case.  

Aljanabi et. al. [95] stress the critical necessity of task offloading techniques in 

network administration to realize benefits such as balancing network traffic load, saving 

energy in low-power devices, and improving Quality of Service (QoS) metrics related to 

latency in real-time applications. This approach considered load balancing and delay 
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parameters to select the best edge-node for each task and to determine the optimal offload 

policy. Similarly, Sun [96] incorporates a task offloading scheme focusing on optimizing 

service accuracy in addition to the power-delay trade-off, demonstrated through a case 

study for IIoT edge intelligence. Using similar task offloading criteria to [95], [96], Zhao 

[16] defines a three-hierarchical offloading optimization strategy in IIoT networks, using 

relays, computational access points, and an optimization process for latency and energy 

consumption reduction. The system performance is measured by analyzing a linear 

combination form of the latency and energy consumption of the system to identify 

computationally exhaustive tasks. 

Mai et. al. [91] develop an in-network computing paradigm to offload application-

specific tasks from end-hosts to network devices with higher processing capacities. In 

contrast to [16], [95], [96], where the goal is to identify and subsequently offload 

computationally exhaustive tasks, the criticality of IoT tasks is instead the primary criteria 

to motivate decision-making. The task criticality is evaluated by a complex event 

processing tool which identifies meaningful complex events by analyzing, filtering, and 

matching semantically low-level simple events from multiple sources in real-time, upon 

which lightweight critical tasks are offloaded to the INC devices.  

Rather than using a cloud-based or edge-based architecture, Ghosh [97] proposes a 

task offloading solution using terminal-to-terminal networks, relying on direct 

communication between end-users without an infrastructure backbone. A new symbolic 

model verifier is used to verify three prediction-based offloading schemes that exploit 

mobility patterns and temporal contacts of nodes to predict future data transfer 

opportunities. 
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Considering a much more holistic approach, Aazam et. al. [98] present a taxonomy 

of task offloading schemes and considers a wide variety of factors for evaluating task 

offloading decision criteria. The criteria used to determine the task offloading sequence 

consisted of detection of excessive computation or constrained resources, reducing latency 

to meet specification, load balancing, permanent or long-term storage requirements, data 

management and organization, privacy and security, and data accessibility, and 

affordability, feasibility, and maintenance. 

2.2.2.3 MOBILITY 

The essence of PnP lies in the seamless integration and interoperability of various 

devices and components within an industrial environment. In this context, mobility refers 

to the ability of devices and components to easily connect to and transfer between industrial 

systems without significant manual intervention. Therefore, mobility is defined to be a key 

characteristic of PnP systems as it enables the systems’ flexibility, adaptability, and 

portability in the dynamic industrial landscape. In this section, we define several key 

technologies that enhance the mobility of PnP systems. 

2.2.2.3.1 SERVICE ORIENTED ARCHITECTURES 

Service-Oriented Architectures (SoAs) play a crucial role in enhancing the mobility 

of PnP systems by providing a distributed and collaborative framework for the IIoT. Unlike 

traditional automation systems, which are generally hierarchical and centralized, SoAs 

focus on distributed systems that consist of collaborating assets with encapsulated 

information describing their functionalities [69]. These assets offer services that can be 

easily utilized by other participants in the system, allowing for a more adaptable approach 
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to solving tasks. SoA services can then be combined to solve different system tasks; this 

process is referred to as orchestration. 

The concept of service orchestration is integral to enabling the functions of CPSs 

[99]. In this context, services are defined as functions that impact the virtual world of an 

asset, encapsulated in a way that external users can access them through virtual interfaces. 

This encapsulation ensures that the internal workings of the service remain a black-box, 

known only by its inputs and outputs. The autonomy and independence of services 

contribute to the adaptability, expandability, and stateless operability of the overall CPS, 

allowing it to efficiently handle diverse tasks. 

PnP extensively employs SoA at the application level, identifying autonomous and 

self-contained components as services accessible to other services or applications through 

the public exposition of Application Programming Interfaces (APIs) [62]. Auto-

configuration mechanisms within service-oriented platforms are focused on discovery 

mechanisms, aiding the identification of previously registered services in a service 

directory. Additionally, the presence of a service composition mechanism provides a list 

of discoverable services that each service must be aware of before utilization. 

By leveraging SoA principles, PnP systems achieve adaptability, expandability, and 

efficient operability. The decentralized nature of encapsulated services enables solutions 

to be provided independently by relevant system elements, ensuring that the complexity of 

the program remains manageable and economic. Overall, SoAs provide the architectural 

foundation for mobile and agile PnP systems. 
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2.2.2.3.2 AUTOMATIC CONFIGURATION MECHANISMS 

Automatic configuration mechanisms (ACMs) play a pivotal role in the PnP 

paradigm in enhancing mobility of industrial systems. Commissioning such systems 

traditionally involves a labor-intensive and expensive process of manually installing, 

configuring, and integrating a multitude of sensors, actuators, and controllers [26]. Over 

the last 15 years, efforts in the realm of the PnP initiative has sought to automate 

commissioning, with a historical focus on network discovery and proprietary technologies.  

Network protocols are typically defined in some way that, after some basic 

configuration, neighboring devices can automatically begin the negotiation process to 

identify and communicate with each other. However, to truly reach an autonomous end-to-

end communication service within and between layers in the IIoT architecture, IIoT 

environments require that several network protocols be used in combination with each 

other in an intelligent manner [1].  Widespread modern technologies such as Universal 

Plug-and-Play (UPnP), commonly used in enterprise/home network scenarios, fall short of 

meeting industrial requirements due to the inherent security risks associated with the 

automatic authentication that occurs between UPnP-enabled devices. This emphasizes the 

need for specialized ACMs to enable autonomous configuration in industrial environments.  

The introduction of ACMs in industrial environments, as highlighted in [100], is 

paramount for streamlining the development, deployment, and maintenance of industrial 

systems. The choice of ACM significantly influences the mobility of the system, enabling 

manufacturers to seamlessly add or remove devices without manual configuration, 

regardless of the device vendor.  
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The evolution of ACMs in industrial systems has historically been rooted in the 

automatic detection of field devices by a Programmable Logic Controller (PLC) on specific 

fieldbuses, progressing from serial communication interfaces to current Real Time 

Ethernet (RTE) interfaces [62]. Different proposals explore the use of lower layers of 

TCP/IP protocols to auto-configure industrial devices into the RTE network. For instance, 

Imtiaz et al. [101] suggest an approach involving auto-assignment of MAC addresses 

combined with a Link Layer Discovery Protocol (LLDP) at Layer-2 to discover device 

locations in network topology. Innovative approaches such as an ad-hoc channel, as 

proposed in [102], coexist with RTE channels for automatic identification of industrial 

devices using Web Service Dynamic Discovery (WS-Discovery) based on SoA.  

Duerkop et al. [25] modify this approach by substituting WS-Discovery with OPC 

UA as a discovery mechanism to identify industrial devices in the network. OPC UA 

introduces two discovery services for identifying other OPC UA instances within a 

network: Local Discovery Services (LDS) which pinpoints instances within the same 

subnet, and Global Discovery Services (GDS) which extends this capability across diverse 

subnets. By allowing the automatic configuration and deployment of OPC UA servers 

solely based on information from industrial devices, OPC UA systems gain the capability 

to become first-class PnP systems through enhancing their mobility.  

The semantically described information model from the OPC UA server can also 

be combined with Software Defined Networking (SDN) features to enhance the automatic 

configuration and deployment of OPC UA [63]. An augmented version of LDS, referred 

to as LDS with Multicast Extension (LDS-ME), utilizes Multicast Domain Name System  

(mDNS) broadcast messages carrying Domain Name System Service Discovery (DNS-
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SD) information to discern OPC UA instances. These broadcast messages traverse the 

entire network, ensuring every OPC UA LDS-ME receives the information to enable the 

addition of new OPC UA devices to the network without the necessity of preconfiguring 

the OPC UA counterparts. 

Koo [79] introduces the concept of an IIoT device-name-system (DNS) 

architecture, showcasing its potential for low-power IIoT applications. This architecture 

facilitates resource requests between heterogeneous IIoT platforms and offers 

reconfiguration options based on specific application needs.  

While many protocols inherently include capabilities to enable automatic device 

discovery, manual orchestration is typically still required by ACMs to enable end-to-end 

communication services in multi-protocol industrial communication networks. 

Nevertheless, the incorporation of ACMs contributes significantly to the mobility and 

efficiency of industrial systems to meet the demands of PnP.  

2.2.2.3.3 WIRELESS NETWORKING 

Wireless networking has emerged as a crucial enabler for enhancing the mobility 

of PnP systems, as the flexibility required by IIoT communications are typically addressed 

using wireless links [33]. The rapid advancement of wireless technology over the past 

decade has provided a diverse array of options for configuring the communication layer of 

industrial applications. The availability of these various options ensures their continued 

relevance to the dynamic needs of industry. 

Exploring these options, Drahos et. al.’s comparison of network protocols reveals 

a notable shift towards wireless networking in industrial connectivity trends [83]. While 

traditional fieldbuses and Industrial Ethernet have been historically dominant, wireless 
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networks are clearly emerging as the fastest-growing segment. This shift underscores the 

increasing importance of wireless technologies in M2M communication in industry. The 

growth of these industrial networking modalities are showcased in Figure 2.3. 

 

Figure 2.4: Growth Trends of Networking Protocols [83] 

Saqlain et al. [103] discussion on wireless sensor networks (WSNs) emphasizes 

their effectiveness in monitoring industrial machine activities, offering increased 

flexibility. WSNs enable collaborative interactions with multiple sensor devices to achieve 

common objectives, a feature that aligns seamlessly with the dynamic requirements of PnP 

systems. Various wireless technologies, including RFID, Wi-Fi, Bluetooth, Wi-Fi direct, 

4G LTE, Z-wave, and ZigBee, are employed to transport heavy data traffic, providing 

capabilities such as guaranteed system latency and high bandwidth support. PnP ontologies 

can also be merged with WSNs to improve the support of automatic network configuration 

for Time Sensitive Networking (TSN) applications [104].  
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Notably, 5G technology is also gaining prominence in industrial environments, 

offering advantages such as flexibility, mobility, productivity, quality, safety, 

sustainability, and utilization [105]. Bärring et. al. [106] highlight three key factors of 5G 

that enable data-driven manufacturing: volume, velocity, and variety of data. 5G's 

bandwidth, speed, and compatibility with diverse data formats make it a formidable 

technology for real-time decision-making in industrial settings. 5G network slicing enables 

the creation of logically separated, use-case-specific virtual networks within the same 

physical network, providing better flexibility and service quality [107]. However, while 

5G technologies promise to connect a massive number of devices over long distances, they 

are limited in that they require infrastructure support and licensed bands [108]. Moreover, 

IIoT applications typically require relatively small throughput per node, as capacity is not 

the primary consideration. Rather, the primary focus concerns the capacity to connect an 

extensive array of devices to the Internet at a low cost, while accounting for limited 

hardware capabilities and energy resources [109]. This highlights the importance of 

prioritizing features such as latency, energy efficiency, cost-effectiveness, reliability, and 

security within the realm of PnP systems. 

2.3 DISCUSSION AND GAP ASSESSMENT 

In this section, we present a discussion on the challenges associated with 

developing and enabling PnP systems. Subsequently, we suggest future research directions 

based on the identified gaps from the discussion. 

2.3.1 CHALLENGES AND POTENTIAL SOLUTIONS 

Despite recent advances, challenges persist in realizing seamless integration of IIoT 

solutions in industry. The development and implementation of enabling technologies from 
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the covered literature bring forth several challenges that directly impact the 

interoperability, scalability, and mobility of PnP systems. Addressing these challenges is 

crucial to realizing the full potential of PnP.  

The literature shows that extensive research has been conducted on the design of 

PnP systems, with numerous standards developed to attain comprehensive interoperability 

across systems. However, challenges arise when applying these standards to IIoT 

peripherals with limited computing capacity. This limitation stems from the insufficient 

computing capability to process these protocols and handle data representation. For 

example, while OPC UA incorporates both the data modeling and data transport aspects of 

IIoT communication, legacy devices as well as IIoT peripherals with limited computing 

capacity are unable to process the device capabilities represented within the OPC UA 

information model. In cases such as these, dedicated edge devices can be utilized to take 

on the task of processing device information to enable various ACMs. Moreover, 

lightweight communication protocols such as MQTT can further reduce the strain on the 

processing device. This can be incorporated into existing OPC UA infrastructures either 

through some kind of translation mechanism, or more simply by using the PubSub 

extension of the OPC UA protocol.  

For cloud computing infrastructures, the literature suggests that despite its 

advantages, challenges persist in enabling cloud-centric IIoT applications for PnP systems, 

specifically concerning real-time task prioritization, resource discovery, and 

standardization of design approaches. Edge computing technologies can help to mitigate 

these issues by utilizing the local processing capabilities for critical IIoT applications that 

have real-time processing requirements. For more dynamic environments, edge computing 
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can be combined with task offloading techniques to correctly prioritize IIoT tasks 

according to the specifications of the manufacturing scenario. 

The literature also mentions disadvantages regarding edge computing architectures; 

researchers highlight issues related to stateful programmable data-plane abstraction, 

transportation of large-scale data, resource allocation, scalability, integration, energy 

consumption tradeoff, and data monitoring. Most of these issues can be mitigated through 

the combination of edge computing and cloud computing infrastructures and 

simultaneously utilizing task offloading services to allocate resources accordingly. 

However, task offloading techniques are typically use-case specific and require intensive 

manual configuration to integrate into manufacturing scenarios.  

Lastly, investigations on ACMs in PnP scenarios have typically been focused on 

device discovery capabilities. Recently there has been research into providing more 

functionality for the various ACMs, such as allowing for discovery and virtual 

representation of heterogeneous devices that operate using differing frameworks. While 

these ACMs enhance the scalability of the PnP system across the equipment layer, there 

still lies the issue of exposing the addition of new devices to the system to applications in 

higher layers of the IIoT architecture that analyze this data, such as business applications 

in the cloud.  

2.3.2 FUTURE DIRECTIONS 

Based on the identified gaps in the literature from the previous section, a few 

research opportunities are presented for future development of PnP systems:  
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Table 2.2: Future Directions of PnP 

Application of 

ACMs to Task-

offloading  

As more devices are added to IIoT infrastructures, the scalability 

requirements of the system become more demanding. However, while task 

offloading techniques can be used to address the increased scalability 

requirement, task offloading techniques are typically use-case specific and 

require intensive manual configuration to integrate into manufacturing 

scenarios. Therefore, PnP systems could potentially benefit from research 

regarding the combination of ACMs with task offloading techniques to 

address this issue. Furthermore, for wide scale integration of task 

offloading techniques to be incorporated into current industrial 

environments, more research must be conducted on the development of 

generalized task offloading frameworks that can be applied to various 

domains within the IIoT. 

ACMs in Hybrid 

Cloud-Edge 

Infrastructures 

ACMs still face issues regarding extending the mobility they provide to 

PnP systems to higher levels of the IIoT architecture. Therefore, PnP 

systems can benefit from investigations into the incorporation of ACMs 

within hybrid edge-cloud computing infrastructures to facilitate the 

interaction of these ACMs across the entire span of the IIoT architecture. 

AI-Enabled 

ACMs 

ACMs require the implementation of autonomous software agents that can 

communicate, negotiate, and collaborate with each other to achieve system 

configuration goals and adapt to changing conditions in real-time. 

Artificial intelligence and machine learning techniques can be incorporated 

with these ACMS to analyze historical data, predict future system 

requirements, and optimize system configuration dynamically based on 

evolving production conditions. 
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CHAPTER 3 

THEORY AND DEVELOPMENT 

3.1 INTRODUCTION 

As identified from the literature review in the previous chapter, the core 

characteristics of Plug-and-Produce (PnP) IIoT are interoperability, scalability, and 

mobility. This thesis focuses on developing a PnP framework that embodies these 

characteristics for the manufacturing testbed in the Future Factories lab located at the 

University of South Carolina’s McNair Aerospace Research Center. The next section 

identifies the use-case and requirements for PnP in the Future Factories manufacturing 

testbed. Following this section, the thesis introduces several elements within the 

manufacturing testbed, both cyber-physical and software-based, that highlight the 

necessity of interoperability and seamless information exchange in manufacturing 

operations. Next, the enabling technologies for the development and implementation of the 

PnP framework are described. Finally, the thesis discusses the development methodology 

of the PnP framework for the Future Factories use-case. 

3.2 PLUG AND PRODUCE CONNECTIVITY FRAMEWORK 

Currently within the manufacturing domain, there exists an extensive number of 

options for communication and data formatting between manufacturing devices. 

Centralized solutions for data interoperability tend to be domain-specific and require 

significant processing resources, making them unsuitable for time-sensitive applications. 

However, the Future Factories manufacturing testbed incorporates research from several 
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intersecting domains within Smart Manufacturing, all of which demand high data 

availability and rich data description. Furthermore, these domains incorporate various 

software suites and applications that do not provide out-of-the-box interoperability 

between these heterogeneous devices. Therefore, it is necessary to create optimized 

hardware and software solutions that are platform-agnostic, vendor-neutral, and is capable 

of bilateral communication with data repositories to enable the interconnectivity of d evices 

isolated in different vendor silos.  

3.2.1 USE-CASE 

Adhering to the guidelines described in the previous section, the primary objective 

of this thesis is to develop a PnP framework that is capable of translating and exposing data 

between industrial machines and applications to be utilized in the research of  future 

manufacturing applications. For the purpose of enabling interoperability in the IIoT, this 

thesis investigates the development of custom information models as well as the translation 

between the OPC UA Framework and IIoT Protocols. To enable scalability for the PnP 

solution, the middleware takes advantage of several capabilities of the IG software to 

reduce the manual effort of device configuration and system integration while also 

enhancing data availability. Furthermore, mobility is provided to the PnP solution by taking 

advantage of the characteristics of wireless networking, as well as developing the PnP 

solution on edge devices with a low physical footprint and limited computing resources. 

3.2.2 REQUIREMENTS 

To create the PnP use-case in the Future Factories manufacturing testbed, the 

definition of specific requirements is necessary. These requirements were created 
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according to the primary PnP initiatives identified in Chapter 1 of this thesis, as well as the 

PnP characteristics defined from the literature. The requirements are detailed in Table 3.1. 

Table 3.1: PnP Requirements for the Future Factories 

Requirements Description 

Physical 

Infrastructure 

The physical infrastructure of the manufacturing testbed must be designed. 

The infrastructure must incorporate manufacturing equipment and 

processing devices of various vendors.  

Open-

communication 

The manufacturing equipment and associated processing devices must 

possess open-communication capabilities to foster data acquisition and 

transmission of the manufacturing process data.  

Interoperable The PnP framework must be capable of translating data into a format that 

is understood by both the sending and receiving systems. Communication 

between systems should also be bidirectional to enable cohesive interaction 

between operational equipment and IT applications. 

Scalable The PnP framework must increase the availability of manufacturing data 

and expose this data to all relevant systems within the testbed.  The 

framework should also be capable of being easily extended to 

accommodate additional devices. 

Mobile The PnP framework must be developed on a device with a low physical 

footprint. The middleware should reduce the configuration effort for 

system integration and should also be easily transferrable between systems. 

Horizontal and 

Vertical 

Communication 

The framework should enhance communication both horizontally and 

vertically among all hardware and software entities in the IIoT 

infrastructure to enable seamless interaction between applications and 

industrial systems. 
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3.3 FUTURE FACTORIES MANUFACTURING TEST BED 

 

Figure 3.1: Future Factories Testbed 

The test environment within the Future Factories lab serves to enable the integration 

of diverse technologies into smart manufacturing processes and is shown in Figure 3.1. The 

testbed is a platform to introduce enabling technologies across various research topics 

within the Smart Manufacturing domain, such as state of the art tools in robotics, IIoT, data 

analytics, and edge computing. As the testbed is meant to serve as a cornerstone for future 

manufacturing research, the testbed infrastructure was designed to be reusable and 

reconfigurable, allowing it to adapt to different use-cases. The testbed features four 

conveyor belts designed to provide optimal flexibility for manufacturing processes. 

Currently, the manufacturing process executed by the testbed is an assembly process for a 

customized 3D-printed model rocket. The testbed is also cross-domain, as it incorporates 

equipment from a range of manufacturers, including Siemens, IBM, Dell, Yaskawa, and 
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others. This manufacturing testbed serves to showcase the collaborative capabilities of 

various software platforms and equipment assets within the testbed.  

3.3.1 DIGITAL TWIN 

 

Figure 3.2: DT of the Future Factories Testbed 

The manufacturing domain is increasingly incorporating the use of DT technology 

to digitally represent assets within a manufacturing facility. A DT is essentially a virtual 

representation of the physical objects, assets, and processes within a system. It is a detailed 

and dynamic digital model that mirrors the physical facility, providing a means to monitor, 

analyze, and simulate real-world entities. The model replicates the characteristics, 

behavior, and attributes of its physical counterpart. The Future Factories manufacturing 

testbed uses the Siemens Tecnomatix Process Simulate software as the primary DT tool. 

The software is used to model physical testbed in virtual space, as shown in Figure 3.2. 

3.3.2 PLC PROGRAMMING 

PLCs serve as the central processing unit for automation processes in the Future 

Factories testbed. PLCs are controllers designed to monitor and control manufacturing 

processes, controlling various machines such as robotic devices and conveyors. In the 

Future Factories testbed, a Siemens S7-1516F CPU is used to control manufacturing 
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operations, along with several distributed I/O modules for the connection of sensors to the 

PLC through the proprietary Siemens PROFINET network. The PLC program is designed 

using a combination of Ladder Logic and Structured Control Language within the Siemens 

Totally Integrated Automation (TIA) Portal engineering software.  

3.3.3 VISUAL INSPECTION 

The Future Factories testbed includes a visual inspection station that is located at 

the beginning of the model rocket assembly process. The station performs an inspection by 

taking a picture of the incoming rocket tray on a mobile phone to verify that the physical 

configuration of the assembly work pieces is correct before the assembly process begins. 

Previously, the Future Factory testbed used the proprietary IBM Maximo Mobile Visual 

Inspection (MVI) application on an iPhone. However, the proprietary nature of the 

application does not allow for the application to be modified based on the desired use-case, 

which makes it difficult to integrate with external open-source applications. As such, 

Future Factories has created a new platform for students to develop and implement MVI 

systems by creating a custom visual inspection station.  

3.3.4 EDGE COMPUTING 

Edge computing is a research domain that brings processing capabilities closer to 

the data source rather than relying solely on cloud computing technologies. Typically, these 

processing devices, called edge devices, are mounted near the data sources and directly 

communicate with operational assets. By situating processing capabilities closer to the data 

source, edge computing enables real-time processing of the generated manufacturing data. 

Currently in the Future Factories testbed, a Siemens IPC 227E Industrial PC acting as an 

edge device is connected to the PLC using the proprietary S7 connection to gain access to 
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the PLC data. Edge computing is utilized by this edge device to filter the PLC data before 

transmitting it to the cloud via MQTT. For the development of the PnP framework, edge 

computing is employed in order to create a local centralized data pipeline for the collection 

and aggregation of manufacturing data, which is then distributed to the interested client 

applications on the network.  

3.3.5 CLOUD COMPUTING 

Cloud computing refers to the capability of executing computationally intensive 

tasks over the internet, or in the cloud. Typically, this functionality involves the 

deployment of infrastructure such as servers that are hosted on the internet. Cloud 

computing serves various purposes, including data storage, analytics, and handling 

complex intelligence tasks. It proves particularly valuable for consolidating data from 

diverse physical locations into a centralized server. The Future Factories manufacturing 

testbed integrates two cloud computing platforms, which are the Siemens Insights Hub and 

IBM Maximo Application Suite platforms.  

Cloud computing is primarily employed in the testbed for establishing the 

connection of data from the various data sources to the different cloud platforms. Cloud 

computing assumes the central role as the platform for advancing reasoning capabilities, 

particularly in generating contextualized information from the edge. Currently, the 

Siemens Insights Hub platform pushes the manufacturing data from industrial machines 

(robots, conveyor VFDs, etc.) involved in the rocket assembly process to the Insights Hub 

cloud, where the manufacturing data is analyzed for trends and is visualized through 

dashboarding. IBM Maximo Application Suite, on the other hand, collects information 
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from the MVI application in the testbed and sends it to the Maximo Application Suite 

cloud.  

3.4 OPC UA AS AN INTEROPERABILITY SOLUTION 

The foundation of OPC UA rests on 2 major pillars, which are data modeling and 

the transportation mechanism. Data modeling refers to how to describe the data hierarchy 

and relationship of virtual objects requested from the server and occurs within the 

Framework Layer of the IIoT Communications Stack. This concept establishes a shared 

framework for constructing a more intricate and structured information model for the 

process data handled by industrial devices [62]. This framework simplifies the hierarchical 

representation of complex data types, and the resulting information model is stored within 

the address space of an OPC UA server, which can be presented in an organized manner to 

any OPC UA client.  

The transportation mechanism, on the other hand, describes the mechanism by 

which data is transported between OPC UA systems, and operates within the transport layer 

of the IIoT Communications Stack Model. The transportation mechanism facilitates the 

transmission of machine data, such as control variables and parameters, in a machine-

readable format while also preserving the semantic annotation of information. These pillars 

collectively define OPC UA as a robust and versatile framework for facilitating 

information sharing and data communication, ensuring compatibility across platforms, and 

supporting complex information models within a service-oriented architecture. 
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3.4.1 OPC UA FRAMEWORK 

The OPC UA Framework is classified into 4 specification types – Core, Access Type, 

Utility, and Companion – that are divided further into various parts, each serving distinct 

purposes [73]. These specification types are described in Table 3.2. 

Table 3.2: OPC UA Framework Specification Types 

Core Specification Parts Form the foundational components of OPC UA technology. We focus on 

the OPC UA Core Specification Parts that relate to the enablement of 

interoperability and connectivity in the framework, notably Parts 3 -6. 

Access Type Specification Standardized OPC-specific information models tailored for providing 

classic OPC information, such as Data Access, Alarms, etc. 

Utility Specification Parts Encompass additional tools to enhance the functionality of OPC UA, 

such as server discovery. 

Companion Specifications Additional information models defined for specific use-cases or 

industries that are developed via collaborative efforts from organizations 

promoting framework and protocol standardization. 

Together, these specifications create a comprehensive framework for implementing 

OPC UA, catering to various aspects of information modeling, data access types, utilities, 

and collaborative standardization efforts. The collaborative approach for developing 

modular and use-case-specific information models ensures that OPC UA extends its 

interoperability and applicability by accommodating diverse industry standards and 

requirements.  

OPC UA is designed to be cross-platform and internet-ready, boasting firewall-

friendly attributes by utilizing established protocols like HTTPS. The framework 

incorporates a complex information model and follows a service-oriented architecture. The 

OPC UA server exposes micro-services in the form of methods, allowing clients to request 
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information seamlessly. For instance, methods like ReadTag(), WriteTag(), and 

FindServer() enable access to read data services, write data services, and configuration 

server services, respectively. Another key characteristic is simplified IT integration, 

addressing the flow of data between field devices on the shop floor and higher-level 

applications such as Enterprise Resource Planning (ERP) software. 

3.4.1.1 OPC UA BASE INFORMATION MODEL 

The information model concept is to create a comprehensive hierarchical structure 

enabling the digital description of objects and processes within the manufacturing 

environment. Within this hierarchy, the basic unit of information is the node, serving as 

the fundamental element for constructing various types of information. Nodes play a 

pivotal role in the creation of variables, methods, and objects, as everything in the OPC 

UA address space is considered a node.  

An essential component within the OPC UA Framework is the OPC UA Base 

Information Model, which consists of base node classes. Base node classes specify 

universal metadata characteristics that all nodes possess, including the node id which serves 

as the numeric identifier for the node, display name which is acts as a descriptive alias for 

the node, node class which classifies the type of information the node represents, 

references which define the relationship between different nodes, and browse name which 

is used to search for the hostname in the OPC UA address space. The base node classes 

encompass various types such as variable, variable type, object, object type, view, data 

type, reference type, and method.  

Furthermore, Nodes can be enriched with additional information in the form of 

properties, allowing for a more detailed and comprehensive description of each node's 
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characteristics. Nodes are interconnected through References that are classified by 

Reference Type, establishing relationships and connections between different nodes within 

the OPC UA address space. This structured approach to defining Nodes and their att ributes, 

along with the interconnections through typified References, forms the foundation for 

creating a well-organized and interconnected OPC UA address space, facilitating effective 

communication and data exchange within the system. 

However, there is a notable weakness associated with the standard OPC UA Client-

Server interaction pattern; while an OPC UA client can dynamically explore and map out 

the information model within the OPC UA Server's address space, this can only occur after 

establishing a connection to the server. To ensure true interoperability between 

heterogeneous systems, a system must possess the capability to anticipate the information 

structure it will encounter even before establishing a connection. This is where the 

development of standardized companion specifications plays a role in enabling 

interoperability.  

3.4.1.2 OPC UA COMPANION SPECIFICATIONS 

OPC UA companion specifications play a crucial role in achieving interoperability 

in industrial automation and communication systems. Companion specifications define 

standardized information models and data structures for specific industries or use-cases, 

ensuring that different devices and systems can seamlessly exchange data and understand 

each other. OPC UA companion specifications are developed for 2 primary reasons [74]: 

 

 



 

51 

1. To publish information models for a specific use-case e.g., in a particular 

industry, or for a particular set of devices. 

2. To specify how to use OPC UA in specific environments e.g., defining a 

cloud-based library of various OPC UA Information Models and 

Namespaces [75]. 

By adhering to OPC UA companion specifications, vendors can implement 

standardized information models in their devices and systems. This facilitates 

interoperability between products from different manufacturers, allowing them to 

communicate and exchange data seamlessly. With OPC UA companion specifications, 

integration efforts are reduced because devices and systems follow a standardized set of 

rules for data representation and communication. This minimizes the need for custom 

interfaces, proprietary protocols, and extensive integration efforts when connecting new 

components to existing systems. OPC UA companion specifications also contribute to the 

PnP capability in that they allow devices to be easily integrated into existing systems. This 

simplifies the deployment of new equipment, reduces configuration complexities, and 

supports dynamic reconfiguration of systems. 

3.4.1.3 DESIGNING A CUSTOM INFORMATION MODEL 

Building upon definitions from developed industry-standard companion 

specifications, OPC UA also provides interoperability to custom information models. 

Custom information models built from the framework of existing standardized companion 

specifications, such as the Device Integration (DI) information model [76], serve to enable 

heterogeneous devices and applications to consistently comprehend information from each 

other. Through building nodes based on the node classes from the companion specification 
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– which are in-of-themselves built from the base node classes from the core specification 

– the information model can define relationships between nodes that are understood by 

both systems. This anticipatory strategy is crucial for fostering seamless communication 

and understanding among diverse components within a system. 

Designing a custom OPC UA information model for a complex system involves a 

step-by-step process with the ultimate aim of generating a NodeSet2.xml file [77]. If 

companion specifications are used, then the information model will also generate 

Types.bsd and NodeIds.csv files to describe the unique data types and assign the Node Ids 

for each node in the address space, respectively. There are generally three methods to 

achieve this, as shown in Figure 3.3.  

 

Figure 3.3: Design Process of Custom Information Model 

Firstly, one can opt for the manual approach, which involves manually typing the 

NodeSet2.xml, Types.bsd, and NodeIds.csv files. However, this method requires 

significant experience in OPC UA and is also the most difficult method for debugging 

errors. Alternatively, a graphical design tool such as UAModeler can be employed [78]. 

With this approach, users graphically design the information model, and the tool 

automatically generates the necessary NodeSet2.xml file. However, these tools are 

generally only freely available when building models with an extremely limited amount of 

nodes. As custom information models often use a combination of several companion 
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specifications simultaneously, GUI modelers can limit how manufacturers can define the 

information hierarchy in the model. Lastly, there's the option of manually creating a 

Model.xml file to define the structure of the information model. To execute this method, 

the UA Model Compiler tool is necessary to compile the Model.xml into a NodeSet2.xml 

file, accompanied by the required .NET code.  

Each of these methods offers a unique approach to designing custom OPC UA 

information models, catering to different levels of expertise and preferences in the 

development process. This research work opted to use the 2nd and 3rd method for 

designing the information models, as we found the generated NodeSet2.xml file from these 

methods to be the most stable when incorporating the information model with other open-

source libraries. More specific detail on the design of the information models for the Future 

Factories manufacturing testbed is provided in Chapter 4.  

3.4.2 OPC UA TRANSPORT 

Interoperability on the transport layer is achieved through the standardization of 

different transport protocols, such as TCP/IP and HTTP(S), in combination with different 

encoding formats e.g., JSON, BIN, and XML [10]. Users are then able to interact with the 

data through standardized interaction services, such as reading and writing the attributes of 

nodes in the OPC UA address space. However, since the IIoT still lacks a generic protocol 

translation tool [9], there is still a lack of horizontal communication between devices 

segregated into vertical silos of proprietary systems, as the current state of the IIoT 

infrastructure lacks suitable methods to provide interconnectivity at both the framework 

and transport layers in multi-protocol settings [79]. To establish semantic uniformity 

between these segregated silos, there are 2 conditions that must first be met: 
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1. There must be a mapping between the OPC UA address space and the IIoT 

protocol message structure.  

2. There must be a mapping between the OPC UA services and IIoT protocol 

services.  

These 2 elements are investigated for the development of the PnP prototype. The 

MQTT Sparkplug protocol was chosen as the IIoT protocol for development of the PnP 

prototype due to its capability to automatically define the hierarchical topic structure with 

respect to the nodes of the OPC UA information model.  

3.4.2.1 MAPPING BETWEEN THE OPC UA ADDRESS SPACE AND MQTT 

PROTOCOL MESSAGING 

When translating information and data between OPC UA and MQTT, it's essential 

to understand that the OPC UA Framework and MQTT protocol serve different purposes 

and have distinct infrastructures. OPC UA is designed for complex object-oriented 

industrial communication and represents relationships between nodes through references, 

whereas MQTT is a lightweight messaging protocol most commonly used for simplified  

device-to-device communication. Considering that the OPC UA Framework has 

comparatively much more advanced data modeling capabilities, there are issues when 

translating between OPC UA and MQTT. What is the best way to translate these metadata-

rich representations to the MQTT infrastructure? To represent the OPC UA information 

model when translating to MQTT, we must consider a mapping strategy that fits the 

hierarchical, publish/subscribe nature of MQTT. 

While the OPC UA address space is composed of nodes and references that define 

the relationships between these nodes, MQTT represents the nodal hierarchy as a topic 
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hierarchy, where each node in the OPC UA address space is mapped to a unique topic in 

MQTT. A simple method was utilized to represent OPC UA nodes in the MQTT 

infrastructure. This method is to encapsulate the node information – i.e., attributes and 

properties – in the payload structure of the MQTT messages. With this method, the MQTT 

payload structure is designed to represent relevant node attributes as metrics of the MQTT 

Topic for that Node i.e., the value attribute of the OPC UA Node is represented as the value 

metric of the MQTT message payload.  

3.4.2.2 MAPPING BETWEEN OPC UA AND MQTT PROTOCOL SERVICES 

The mapping between the abstract descriptions of OPC UA services and the 

communication stack derived from these services are defined by the OPC UA Core 

Specifications [80]. OPC UA services are organized into service sets that define a set of 

related services e.g., the discovery service set defines services that allow clients to discover 

endpoints implemented by a server. One service set of interest for the PnP prototype is the 

attribute service set, which defines services that allow OPC UA clients to read and write 

the attributes of nodes. As the value of a variable node in the OPC UA server is defined as 

a node attribute, this service can be used by an OPC UA client to read and write the values 

of variables in the OPC UA server. When this occurs, the changing of the variable value 

attribute must be reflected in the changing of the value metric for the associated MQTT 

topic.  

The node management service set defines services that allow an OPC UA client to 

add, modify, and delete nodes in the OPC UA server address space, meaning that clients 

can dynamically change the structure of the information model upon introducing new 

machines to the industrial environment. However, dynamic changes to the information 
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model in the OPC UA server address space must also be reflected by changes to the MQTT 

topic structure, such as generating a new MQTT topic when a new node is added to the 

OPC UA server.  

3.5 IGNITION GATEWAY AS A SCALABILITY SOLUTION 

Ignition is an integrated software platform for Supervisory Control and Data 

Acquisition (SCADA) systems developed by Inductive Automation. The platform features 

a cross-platform web-based deployment through the cooperation of IGs, the Ignition 

Designer application, and several runtime clients. A key characteristic of Ignition is the 

utilization of independently developed modules that provide functionality to individual 

components within the Ignition platform. The Ignition platform includes several 

capabilities that help to enable scalability for IIoT solutions. These capabilities include the 

transformation of devices of various operating systems (Windows, Linux, MacOS) into 

IGs to enable communication among them, the utilization of select PLC drivers to access 

information from PLC address spaces, the bridging of distributed data sources into a 

centralized OPC UA architecture, and the translation between various communication 

protocols e.g., HTTP/HTTPS, TCP/IP, WebSockets, MQTT, etc. In combination with the 

interoperability enabling modalities described in the previous sections, the IG extends the 

interoperability of the PnP solution in a scalable manner. 

3.5.1 IGNITION GATEWAYS 

 The central software service governing all operations in the Ignition platform is the 

IG [117]. This singular application functions as a web server that is accessible from any 

web browser. Its functionalities encompass tasks such as establishing connections with data 

sources and PLCs, executing modules, and communicating with clients. The IG is accessed 



 

57 

through a web browser via the gateway web interface. The web browser, running on any 

machine, must have network access to the IG host. From this web browser, the IG can be 

configured to manage connections to new data sources/sinks, such as a database connection 

to an SQL server, connections to 3rd party OPC servers, and device connections to 

production machines given that Ignition includes the drivers to communicate with the 

device architecture. 

The IG also allows users to establish a gateway network, enabling the connection 

of two or more IGs. The gateway network allows users to connect multiple IGs together 

over a wide area network, facilitating various distributed interactions between IGs [118]. 

The gateway network uses a dedicated HTTP data channel capable of handling multiple 

streams of message data. By configuring incoming and outgoing connections between 

endpoints of different IGs, the gateway network allows for seamless data sharing between 

the IGs. 

3.5.2 IGNITION TAGS 

The Ignition architecture defines the data points from various data sources as 

Ignition Tags. These can be defined depending on the protocol of the data source e.g., OPC 

Tags, SQL Tags, etc. At the highest level of tag configuration is the Tag Provider [119]. 

Tag Providers are a collection of Ignition Tags that are organized according to the data 

source. Tag Providers are categorized into 2 types, depending on which gateway is storing 

the data and which gateway is accessing the data: 

1. Standard Tag Providers: Collections of Ignition Tags from various data 

sources handled locally in the IG. 
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2. Remote Tag Providers: Establishes a connection to a remote IG and 

retrieves tag information. A link is created between the local IG to a 

Standard Tag Provider on a remote IG through a gateway network 

connection. 

These Tag Providers essentially act as clients that are capable of subscribing to 

various types of data sources, translating the heterogeneous data into Ignition Tags. In the 

proposed PnP framework, these Ignition Tags act as an intermediary format, as the newly 

formed Ignition Tags can then be translated into the OPC UA Framework in the local 

Ignition OPC UA Server. While Tag Providers are configured within the IG webserver, the 

actual Ignition Tags themselves are created and managed within the Ignition Designer 

application.  

Ignition Designer is an application for interacting with the data published to the IG. 

The software enables a wide variety of applications, including but not limited to SCADA 

data visualization and analysis tools, scripting, report generation, SQL querying, etc. 

Ignition Designer includes the essential Tag Browser tool, which allows for the creation of 

Ignition Tags from various data sources, such as an OPC UA server, SQL queries, variables 

derived from scripting, and data received through a direct device connection to the IG using 

the aforementioned device drivers. 

3.5.3 IGNITION OPC UA SERVER 

The IG can access data from industrial machines by configuring various device 

connections. When configuring a device connection, Ignition includes several driver 

modules that allow connections to specific types of devices from the Ignition OPC UA 

server. Some of these drivers include Allen-Bradley over Ethernet, Modbus TCP and RTU, 
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Siemens S7, BACnet, etc. Using these drivers, Ignition connects to these devices using the 

associated protocol for the device. These drivers enable the writing of machine data into 

Ignition Tag Providers without the need for intensive manual configuration.  

However, it is important to note that a few of these drivers do not support tag 

browsing of the device, such as Siemens and Modbus, meaning that manual configuration 

of the OPC path for the Ignition Tag is required [120]. In cases such as these, data 

acquisition can be handled by configuring a 3rd party OPC UA server to store the 

associated device’s process data. IGs can create connections to and access data from 

external OPC UA servers, acting as both an OPC UA server and an OPC UA client. These 

OPC UA connections can be classified as separate Tag Providers and bridged to the 

Ignition OPC UA server. Moreover, the Tag Provider containing the data from external 

OPC UA servers preserves the structure of the information model for the device, allowing 

for the aggregation of information models from heterogeneous systems onto the centralized 

OPC UA server on the IG. 

3.5.4 CIRRUS LINK MQTT MODULES FOR IGNITION GATEWAYS 

The IG includes several additional modules to enable further communication 

capabilities to an industrial environment. Among these additional modules are the MQTT 

Distributor, MQTT Transmission, and MQTT Engine modules developed by Cirrus Link 

Solutions. These modules for Ignition are designed specifically for the integration of 

MQTT data in building IIoT solutions [121]. Using these MQTT modules, Ignition allows 

the user to build and deploy a flexible and scalable IIoT architecture. Although there are 

many possible variations in which the IIoT architecture can be designed, the core of the 

solution involves 3 basic steps: 
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1. Access data from the edge of the network. 

2. Publish data from the edge of the network to the MQTT server. 

3. Publish and Subscribe to data from the MQTT server from external 

applications. 

This process occurs by utilizing the distinct features of each of the aforementioned 

Cirrus Link MQTT modules.  

3.5.4.1 MQTT DISTRIBUTOR MODULE 

The MQTT Distributor module is an MQTT Server, and essentially acts as a local 

MQTT broker on the IG. MQTT brokers play a key role in facilitating communication and 

message exchange among devices and applications. The MQTT Distributor module acts as 

an intermediary central hub that receives, stores, and forwards messages between MQTT 

clients. In contrast to cloud-based MQTT brokers that operate over the internet, a local 

MQTT broker is confined to a specific local network. This makes the MQTT Distributor 

module suitable for use-cases in which devices must communicate over a local network 

without being exposed to the outside world, as is often the case for industrial environments. 

Moreover, the MQTT Distributor module includes various configuration settings allowing 

the users to customize their IIoT solution based on their needs. The MQTT server uses TCP 

for connections by default but can be configured to enable Websocket connections to 

enable communication with higher-level applications that communicate over Websockets. 

TLS can also be enabled to ensure that information is protected from unauthorized access 

or interception during message transit, as well as to enable authentication of the 

communicating parties. 
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3.5.4.2 MQTT TRANSMISSON MODULE 

The MQTT Transmission module enables the translation and transmission of 

MQTT Sparkplug topics and Ignition Tags. The module essentially acts as a bridge 

between Ignition Tag and MQTT Sparkplug topics. Transmitters are configured to pull 

data from a specified Ignition Tag Provider, meaning that MQTT messages can be 

generated from various data sources, including OPC tags, SQL tags, etc. A transmitter acts 

as a listener and monitors the values of Ignition Tags, and upon a value change, generates 

MQTT Sparkplug messages that are published to a Sparkplug-enabled MQTT Server 

[122]. This is typically the MQTT Server from the MQTT Distributor module, but any 

external broker compatible with the Sparkplug MQTT format can be used. Optionally, 

transmitters can be configured to use a custom namespace instead of the default 

SparkplugB namespace for cases in which users prefer using a custom message payload 

structure. Transmitters configured in the MQTT Transmission module also listen to 

commands from MQTT Sparkplug messages, allowing for bidirectional communication 

between publishers and subscribers.  

3.5.4.3 MQTT ENGINE MODULE 

The MQTT Engine module allows users to enhance the MQTT infrastructure of 

their IIoT solutions by providing a path to deliver data to both operational equipment and 

higher-level applications [123]. The module uses the IG to push the MQTT data to the edge 

of the SCADA network. This essentially creates a single data pipeline for all data to be 

utilized within the Ignition platform, increasing data throughput while also reducing the 

effort of data acquisition across the industrial environment.   
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3.6 PLUG AND PRODUCE FRAMEWORK FOR FUTURE FACTORIES 

This section will provide more detail regarding the PnP use-case. First, the 

development methodologies for the PnP framework are described. This is followed by the 

description of the architecture for the PnP framework.  

3.6.1 DEVELOPMENT METHODOLOGY 

The development methodology for the proposed PnP framework of the Future 

Factories manufacturing testbed is split into 2 parts, for the development of the AGs and 

the IG, respectively. Together, these methodologies describe a platform for enabling 

interoperable and scalable information exchange across the manufacturing ecosystem. 

 

 

Figure 3.4 shows the development methodology for the creation of AGs that utilize 

OPC UA to enable interoperability between heterogeneous systems. The first step of 

building the AG is for the user to select what data is required to build a rich object-oriented 

Figure 3.4: Development Methodology for Agent Gateways 
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data model of the industrial environment. The second step is to create an information model 

that contains all of the necessary objects, variables, properties, and references to describe 

the industrial assets in the system. Depending on the manufacturing use-case, different 

companion specifications can be selected to more accurately describe the properties and 

capabilities of the industrial assets. The next step is to build an OPC UA server application 

that imports the developed information model to create nodes with the address space. After 

building the OPC UA server address space, the server is deployed onto the AG. The next 

step is to acquire the relevant data and populate the nodes of the OPC UA server address 

space. Depending on the architecture of and protocol used by the data source, this step can 

be accomplished in a variety of ways. For the Future Factories testbed, this was 

accomplished by developing an MQTT client application to subscribe to the MQTT 

manufacturing data, which is then regularly published to each node in the OPC UA address 

space. The final step is to connect the AG and IG devices to the same network.  

 

    Figure 3.5: Development Methodology for IG 
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Figure 3.5 shows the development methodology of the central IG for the 

aggregation and consumption of the manufacturing data transmitted from the AGs. The 

first step of developing the IG is to install the Ignition software, as well as the Cirrus Link 

MQTT Distributor, Transmission, and Engine modules onto the PnP middleware serving 

as the central gateway. After this is done, a Tag Provider is created for each AG, and the 

OPC UA server from each AG is added as a data source within the IG webserver, allowing 

Tag Providers to access data from the AGs. The Tag Provider is configured to be exposed 

to the local Ignition OPC UA server on the PnP middleware.  

Once the Tag Provider is receiving the data, the MQTT modules for the IG are 

configured to set up the MQTT infrastructure. The MQTT Distributor module creates a 

local MQTT broker on the IG. The MQTT Engine module creates a centralized data 

pipeline for Ignition applications to consume the MQTT data. The MQTT Transmission 

module is used to create a transmitter for each Tag Provider. The transmitter serves to 

translate the Ignition tags from each Tag Provider into MQTT topics that can be subscribed 

to from any MQTT client on the network. The transmitter also allows for MQTT messages 

to be published to the MQTT topic, which is then subsequently translated back into an 

Ignition tag, allowing for bidirectional translation and communication between the internal 

Ignition OPC UA server and external MQTT clients. Lastly, a gateway network is 

configured to enable data access to other IGs, facilitating data availability between different 

facilities and contributing to the Factory-to-Factory scalability concept. 
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3.6.2 ARCHITECTURE 

 

 Figure 3.6: PnP Architecture for Future Factories 

The architecture of the developed PnP solution for the Future Factories testbed is 

shown in Figure 3.6. For this use-case, the architecture serves to aggregate and distribute 

the data for the Rocket Assembly station and the Mobile Visual Inspection (MVI) station 

in the manufacturing testbed. The “X” in “X Protocol” serves to showcase that the AG can 

receive the process data from the related application via several different protocols, such 

as MQTT, OPC UA, HTTP/HTTPS, API calls, etc. 

The Rocket Assembly station is controlled primarily by the S7-1516F PLC 

Program in TIA Portal and serves to autonomously assemble and disassemble the parts of 

the model rocket in a continuous loop. The assembly process features the use of 

YASKAWA GP8 and HC10 collaborative robots for fine manipulation of the product work 

pieces. The robot GPIO, along with other external sensors such as potentiometers and load 

sensors, are assigned to PLC tags within the PLC address space. The testbed also features 
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4 conveyor belts to move the work pieces between the robots and are each controlled by a 

SIMATIC G120C VFD. Parameters from the VFD, such as drive temperature and 

conveyor speed, are also assigned to the PLC address space. The PLC data is transmitted 

to the IPC227E Industrial Edge (IE) Databus via the proprietary S7 connection. The 

Industrial PC then publishes the data from the IE Databus to an MQTT broker under the 

“FF” topic. On the AG, an MQTT client subscribes to the “FF” topic on the MQTT broker 

and populates the address space nodes of a local OPC UA server. The AG is then connected 

to the centralized IG. 

The MVI station sits next to the first robot in the Rocket Assembly station and 

analyzes the configuration of the rocket tray holding the model rocket pieces for detection 

of defects. This step is performed to ensure the following steps of the rocket assembly 

operation can be performed correctly. The application was developed on a Samsung Galaxy 

XCover6 Pro android phone, which is responsible for the capturing, storing, and 

classification of inspection images of the rocket tray based on the developed image 

classification model. The image classification model was trained using PyTorch and 

resnet18 as its pre-trained convolutional base, and a custom image binary classifier was 

added on top of the frozen convolutional base to classify rocket tray images as either 

“correct” or “incorrect.” The MVI model is then deployed on the android phone using a 

Docker container. Using MQTT, the Docker container publishes the predicted class of the 

rocket tray to the “MVI” topic in a local MQTT broker on the AG. On the AG, another 

MQTT client subscribes to the “MVI” topic on the local MQTT broker. The “correct” and 

“incorrect” string values are translated into the UA_Boolean data type for the 

“CorrectConfig” topic – i.e., true or false – and subsequently populates the address space 
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nodes of the local OPC UA server application. The AG is then connected to the centralized 

IG. 

3.7 INDUSTRIAL INTERNET OF THINGS INTEGRATION IN BROWNFIELD 

MANUFACTURING SYSTEMS  

The proposed PnP framework is designed to be generic to be easily applicable to 

various manufacturing use-cases. However, depending on the specific needs of these use-

cases, the technical requirements of the IIoT architecture may change. Greenfield 

manufacturing scenarios typically face less issues regarding IIoT integration as they 

typically are built using the latest IIoT technologies from the ground up [124]. However, 

brownfield manufacturing scenarios often still face issues regarding deploying IIoT 

technologies into existing manufacturing facilities to bridge the divide between OT and IT 

systems.  

Due to the relative youth of the IIoT initiative, many manufacturing facilities are 

still striving to reach a state of complete automation, and therefore are not yet ready to 

consider integrating autonomy into their manufacturing solutions. Moreover, the financial 

and time costs required to transform existing manufacturing systems into full-fledged IIoT 

solutions often outweigh the benefits associated with achieving full digital synonymy, as 

implementing these solutions typically involves replacing equipment with smarter 

alternatives, installation of costly modules to enable open communication for legacy 

systems, and other requirements that involve increasing production downtime. Reducing 

these costs is therefore integral for advocating the integration of IIoT technologies in 

brownfield manufacturing applications. The PnP concept serves to accomplish this goal by 

reducing the time required to integrate IIoT solutions in manufacturing applications; this 
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occurs through creating a modifiable and flexible IIoT infrastructure that can react 

dynamically to changes in the manufacturing environment.  

First, it is important to identify problem areas in the manufacturing environment 

that would benefit from augmenting IIoT technologies. Rather than converting an entire 

manufacturing facility into an IIoT solution, it is more suitable and economic for 

brownfield manufacturing scenarios to target specific production lines or already identified 

issues in the manufacturing facility [124]. Sensors can be mounted onto legacy machines 

to monitor activities that otherwise would have been performed physically or electrically 

(activation of valves, actuators, etc.), allowing manufacturers to detect equipment wear and 

process inefficiencies early and propose corrective solutions.  

After adding sensors to monitor the environment and conditions of the problem 

areas and identifying the data required for the manufacturing solution, the next step is to 

build a comprehensive information model to describe the characteristics and capabilities 

of the industrial assets. These assets include product work pieces, industrial equipment, 

sensors, process parameters, and anything else that serves to describe the industrial 

environment. The PnP framework uses OPC UA to design the information model, as the 

OPC UA framework includes several companion specifications that allow manufacturers 

to precisely describe the industrial process in a digital environment. The information model 

is used to provide context for the state of the industrial environment to the IIoT system, 

which can be used to identify manufacturing events upon triggering configured conditions. 

The information model is then used to build the address space of an OPC UA server. 

Once the information models are built for the selected systems, the next step is to 

begin the process of data acquisition and translation. Because brownfield manufacturing 
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facilities tend to incorporate IIoT solutions iteratively according to the criticality of the 

process task, it is common for industrial systems to incorporate communication solutions 

that are the most compatible with the existing equipment to reduce production downtime. 

For example, many legacy machines use the Modbus protocol for industrial 

communication, so manufacturers may be inclined to add sensors that also use the Modbus 

protocol. However, newer state-of-the-art IIoT sensors often use more common protocols 

such as MQTT, as MQTT is widely compatible with devices and applications in the modern 

IIoT ecosystem and allows for much greater customizability and ease-of-use compared to 

the Modbus protocol. To bridge the communications gap between new, custom, and legacy 

industrial devices, gateways can be introduced to the manufacturing system to aggregate 

and translate the different sources of industrial data, freeing manufacturers from being 

restricted to specific equipment due to interoperability challenges. In multi-protocol 

settings, as often is the case in brownfield manufacturing scenarios, these gateways must 

include mechanisms to translate between the various different communications protocols. 

The proposed PnP framework uses AGs to accomplish this task, using edge computing for 

acquisition of the industrial data and translation from MQTT into the OPC UA framework. 

The OPC UA server nodes are then regularly updated from the incoming industrial data. 

The final step is to connect the gateways to a centralized data platform to enable 

communication between the different manufacturing systems in the facility. By doing this, 

manufacturers are able to develop applications that consume and analyze the different data 

sources. These applications can be used to identify trends and inefficiencies in the 

manufacturing facility and facilitate prediction and decision making, such as through the 

use of machine learning. For example, the state of a digital supply network [17] can be 
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described within an information model. Upon disruptions to the supply of work pieces 

required for a specific product, the related industrial processes can then be notified and 

autonomously modified to account for these changes, such as procuring alternative work 

pieces to produce the product or scheduling other products to be manufactured until the 

work piece supply is recouped. In the proposed PnP framework, the IG serves as the 

centralized data platform for data aggregation and transformation, and also provides the 

functionality to build SCADA and business applications to analyze the industrial data. The 

IG can then be optionally connected to MES or ERP systems to provide high-level 

management of the industrial environment such as through work orders, equipment change 

requests, financial planning, project management, etc. 

 

        Figure 3.7: Sample IIoT Architecture for Brownfield Manufacturing Systems 
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Figure 3.7 presents a sample IIoT architecture for the application of the PnP 

framework for a general brownfield manufacturing scenario. The AG acquires the data 

from the industrial controllers and other legacy equipment and translates it from the 

original protocol to the OPC UA framework. Additional IIoT sensors that communicate 

through MQTT are added to the system to provide more information about the state of the 

manufacturing process. The IIoT sensors connect to the MQTT server on the IG, whereas 

the AG OPC UA server connects to a Tag Provider acting as an OPC UA client in the IG, 

which is then bridged to the IG OPC UA server. The Ignition Tag Provider serves as an 

intermediate format between the Ignition servers, meaning that changes to the data in either 

server are reflected in the Ignition Tag Provider, and subsequently in the other server. From 

here, external applications use the associated client to connect to the Ignition OPC UA or 

MQTT servers to acquire the data and perform tasks, such as predictive maintenance, 

process scheduling, business applications, etc. 

Altogether, this framework adopts a SoA to allow manufacturers to take advantage 

of specific services to meet the requirements of the manufacturing system. By 

incorporating IIoT standardization and translation techniques, the framework enables 

interoperability across the manufacturing ecosystem. The modularity of the services within 

the SoA ensures that modifications can be made to the system without disrupting the entire 

system. This makes it easier to integrate IIoT solutions into existing manufacturing 

systems, and therefore enhances its scalability and flexibility. The framework facilitates 

access to data from various sources within the manufacturing environment, which can be 

aggregated and analyzed to derive actionable insights that drive efficiency, productivity, 

and intelligent-decision making in manufacturing processes.
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CHAPTER 4 

IMPLEMENTATION AND DISCUSSION 

 

4.1 INTRODUCTION 

This chapter provides a detailed walkthrough of the implementation process for the 

PnP use-case. Section 2 describes the development of the AGs, while section 3 describes 

the development of the IG. Section 4 provides a discussion on the aspects of the architecture 

that contribute to the tenets of PnP described in Chapter 2.  

4.2 AGENT GATEWAYS 

In this section, the development of the AGs for the Rocket Assembly station and 

the MVI Station are described.   

4.2.1 DESIGNING THE INFORMATION MODELS 

In the PnP framework, it is necessary to create information models to digitally 

describe the properties and capabilities of industrial assets for each respective system. To 

realize the use-case described previously in Chapter 3, information models are built for the 

Rocket Assembly station, referred to as the FF information model, and the Mobile Visual 

Inspection station, referred to as the MVI information model. In this section, the process 

of creating the information models is described. 
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4.2.1.1 ROCKET ASSEMBLY STATION 

The FF information model is built using the DI and Robotics companion 

specifications from the OPC Foundation. The Robotics companion specification is 

dependent on the DI companion specification and is used to define the industrial assets 

within the Future Factories manufacturing testbed. 

 

                Figure 4.1: Robotics Companion Specification [125] 
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The Robotics companion specification released by the VDMA Robotics & 

Automation Association defines several new Object Types, as shown in Figure 4.1. The 

companion specification includes a basic description of a motion device system by defining 

the unique MotionDeviceSystemType, MotionDeviceType, SafetyStateType, 

ControllerType, and TaskControlType Object Types. The MotionDeviceSystemType 

Object Type is defined to include the Motion Devices, Controllers, and SafetyStates of the 

motion device system, which are defined according to their associated Object Types. These 

definitions are used to define the robot and conveyor object instances in the Future 

Factories manufacturing cell.  

The design of the FF information model was created by manually writing a 

Model.xml file. The purpose of creating the Model.xml file is to define the nodes within 

the address space of the OPC UA server. The basic procedure for designing the Model.xml 

is summarized by the following steps: 

1. Import or define all of the namespaces required by the custom information 

model, such as the companion specifications. 

2. Define the new namespace object for the custom information model. 

3. Define any new Reference Types, Object Types, Variable Types, and Data 

Types needed to define assets in the custom information model that aren’t 

already defined by the imported companion specifications. 

4. Define instances of Objects, Variables, and References to define industrial 

assets in the information model. 
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5. Use the UAModelCompiler tool from the OPC Foundation to compile the 

Model.xml file into the NodeSet2.xml, NodeIds.csv, and Types.bsd files 

required by the OPC UA server.  

 

           Figure 4.2: Define Namespaces in Model.xml File 

 

           Figure 4.3: FF Namespace Object in Model.xml File 
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 The namespaces are defined for each information model referenced by the new 

custom information model, where “ua” represents the base information model namespace 

from the OPC UA Core Specifications, “DI” and “ROB” represent the DI and Robotics 

namespaces from the associated companion specifications, and “FF” represents the Rocket 

Assembly station namespace. The definition of the namespaces are shown in Figure 4.2. 

The definitions for the namespace objects of the companion specifications are imported 

from their respective information models, as shown by the “FilePath” variable in Figure 

4.2. After the namespace of the new information model has been declared, the properties 

of the namespace object for the custom information model are defined, as shown in Figure 

4.3. 

 

 Figure 4.4: FF Object Types in Model.xml File 
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The next step is to define any new Object Types, Variable Types, Data Types not 

covered by the imported companion specifications. The primary components of the Rocket 

Assembly System are 5 collaborative robot systems and a conveyor belt system. Each robot 

system consists of a robot arm and robot controller pair. The robot arms are composed of 

a mix of YASKAWA GP8s and HC10s, while the controllers are a mix of YASKAWA 

YRC1000s and YRC1000micros. The conveyor system is composed of 4 individual 

conveyor belts and 4 SINAMICS G120C VFDs. These systems include desired parameters 

not covered by the basic definitions provided by the Robotics companion specification, 

such as the joint angles of the robots. Therefore, it is necessary to create new definitions 

for these motion device systems specific to the Future Factories manufacturing cell.  

The “HC10” Object Type is a new Object Type created in the new information 

model and is defined as a MotionDeviceType Object Type from the Robotics companion 

specification. Therefore, the HC10 Object Type inherits all of the properties and variables 

from the MotionDeviceType Object Type, but now additional properties and variables can 

be added to the definition of the new HC10 Object Type, such as the robot joint angles. 

The same is done for the “GP8” MotionDeviceType definition, the “YRC1000” and 

“YRC1000micro” ControllerType definitions for the robot controllers, the 

“SINAMICSG120C” DriveType definition for the conveyor VFDs, and the 

“IBMConveyor” MotionDeviceType for the conveyor belts. These definitions are shown 

in Figure 4.4.  



 

78 

 

 Figure 4.5: R01 Object Instance in Model.xml File 

After the new Object Types for the custom information model are defined, the next 

step is to define the object instances for the industrial assets in the Future Factories 

manufacturing cell. The robot systems and the conveyor system are defined as the 

MotionDeviceSystemType Object Type from the Robotics companion specification. The 

definition for R01 is shown in Figure 4.5. The R01 system consists of a YASKAWA 

YRC1000 robot controller and a YASKAWA HC10 motion device. The definitions of the 

other motion device systems are largely similar, depending on which controllers and 

motion devices are used.  

 

 Figure 4.6: Compilation of Model.xml File 
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 Figure 4.7: Output of Model.xml Compilation 

The design of the Model.xml file for the FF information model is now complete. 

The final step is to compile the Model.xml file to generate the required NodeSet2.xml, 

NodeIds.csv, and Types.bsd files for the building of the OPC UA server address space. 

This compilation process is shown in Figure 4.6. The UAModelCompiler executable is 

activated as indicated by “.\Opc.Ua.ModelCompiler.exe” in the terminal. The NodeIds.csv 

and Model.xml files from the companion specifications are passed as inputs, and based on 

the definitions from the Model.xml file for the FF information model, several source files 

are generated for the new FF namespace. The files generated as the output of the 

compilation process are shown in Figure 4.7. Of these files, the most important are the 

Opc.Ua.Ff.Types.bsd, Opc.Ua.Ff.NodeSet2.xml, and Opc.Ua.Ff.NodeIds.csv files, which 

will be used to build the new address space of the OPC UA server. 
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 Figure 4.8: FF Information Model Diagram 

A visual diagram of the full FF information model was generated using the 

GraphViz software. The arrows represent OPC UA references, where the black double-

arrow is the “HasTypeDefinition” reference, the white double-arrow is the “HasSubtype” 

definition, and the bar-arrow is the “HasComponent” reference. The boxed rectangles 

represent Objects and Object Types, whereas the rounded rectangles represent Variables 

and Variable Types. The Object Types and Variable Types are indicated by the half -

shading of the rectangle, whereas the non-shaded rectangles are Object and Variable 

instances. This graphical visualization serves to showcase the relationship between the 

nodes in the FF information model. 

4.2.1.2 MVI STATION 

 

          Figure 4.9: RocketTray Object Instance in UaModeler 
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The information model for the MVI station was designed using the UAModeler 

software, as the MVI station is composed of only a few components, none of which require 

the use of domain-specific companion specifications. The building of the model in 

UAModeler is shown in Figure 4.9. The information model consists of the RocketTray 

object instance, which has an Object Type of the BaseObjectType from the OPC UA base 

information model. The RocketTray is made up of the 4 parts of the model rocket, which 

are the Rocket_Base, Rocket_MidLow, RocketMidHigh, and RocketNose object instances. 

The RocketTray also has 2 variable instances of the BaseDataVariableType Variable Type, 

which are the color of the rocket and the “Config_Correct” output of the MVI application. 

A visual diagram of the MVI Station information model was also generated using the 

GraphViz software, as shown in Figure 4.10. 

 

 Figure 4.10: MVI Station Information Model Diagram 

4.2.2 BUILDING THE OPC UA SERVER  

After developing the information models to enhance the interoperability of the 

manufacturing cell, the next step for the PnP framework is to create the OPC UA servers 

for each of the AGs. 

4.2.2.1 ROCKET ASSEMBLY STATION 

To develop the OPC UA server for the Rocket Assembly station, 2 different 

methodologies are shown. The first methodology uses the internal OPC UA server from 
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the PLC, which is configured through the Siemens TIA Portal software. The second 

methodology uses a manually created OPC UA server using the open-source open62541 

OPC UA stack. These methodologies serve to showcase how to build the OPC UA server 

for industrial machines with internal OPC UA capabilities, as well as for industrial 

machines without internal OPC UA capabilities, respectively. However, going forward in 

future sections, only the methodology using the open62541 OPC UA stack will be 

considered for the PnP use-case. 

4.2.2.1.1 S7-1516F PLC INTERNAL OPC UA SERVER 

A Siemens S7-1500 PLC is used to control the automation processes in the Future 

Factories manufacturing cell. A key feature of this PLC is that it contains an internal OPC 

UA server that can be accessed by OPC UA clients in the same network subnet. The OPC 

UA capabilities of the PLC can be further customized using the Siemens TIA Portal 

software. One such capability is the creation of server interfaces in TIA Portal. Server 

interfaces combine nodes of an OPC UA address space into a single unit, so that individual 

server interfaces can be viewed by OPC UA clients. A server interface contains nodes that 

can be read with an OPC UA client to receive tag data from the machine, nodes that you 

can write to with an OPC UA client to transfer new values to the data tags of the machine, 

and nodes that can be called with an OPC UA client to start functions of the machine using 

server methods. 
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Figure 4.11: DI Reference Namespace Server Interface 

 

Figure 4.12: Robotics Reference Namespace Server Interface 

TIA Portal categorizes OPC UA server interfaces into either the server interface 

type or the companion specification type. Each server interface serves to define one or 

more namespaces in the OPC UA server. The server interface is used to add OPC UA 

elements from the PLC address space directly as the nodes of the OPC UA server, while 

the companion specification type defines the OPC UA server address space according to 

the nodes of an imported OPC UA information model. Furthermore, companion 

specification server interfaces are classified into 2 types: companion specifications and 

reference namespaces. The companion specification type allows for OPC UA elements, 

such as Data Block variables and PLC tags, to be mapped to specific nodes of the 
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information model. The reference namespace type imports the definition of object, 

variable, and data types that can be utilized by the companion specification server interface.  

Because the FF information model is dependent on type definitions from the DI and 

Robotics companion specifications, it was necessary to add the DI and Robotics 

information models as reference namespaces to the TIA Portal Project, as shown in Figures 

4.11 and 4.12. In total, the S7-1516F OPC UA server has 3 individual server interfaces, 

where the DI server interface depends on the OPC UA base information model, the 

Robotics server interface depends on the DI server interface, and the FF server interface 

depends on both the DI and Robotics server interfaces.  

 

Figure 4.13: FF Companion Specification Server Interface 

The developed FF information model for the manufacturing cell was uploaded to 

TIA Portal as an OPC UA companion specification server interface called “FF.” Figure 

4.13 shows the developed FF companion specification server interface for the custom 

information model. It is important to note that TIA Portal refers to the OPC UA companion 

specifications as reference namespaces and refers to the information model that uses these 
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reference namespaces as companion specifications, even though the developed information 

model is not technically an OPC UA companion specification. This is because custom OPC 

UA information models in TIA Portal are usually developed as the server interface type 

instead of the companion specification type. Since the information model was developed 

using the UA Model Compiler tool, there was no need to recreate the information model 

in TIA Portal.  

However, it is important to note that there are certain disadvantages to using this 

methodology. The PLC includes several features allowing for the communication between 

industrial machines; however, this assumes that the device connected to the PLC is 

supported, which is indicated by the presence of the device within the TIA Portal hardware 

catalog. For devices and systems that exist outside the hardware catalog, such as a 

Raspberry Pi, it becomes difficult to enable seamless communication without a large 

manual configuration effort from the system integrator. Even with such an effort, the 

configuration effort is typically different depending on what drivers and modules are 

necessary to enable communication between 2 specific devices. For example, the robot  

controller has several parameters that describe the state of the robot and the controller, but 

most of these parameters cannot be directly accessed by the PLC. The PnP middleware is 

designed to be generic as to expose the manufacturing data to both industrial assets and IT 

systems alike in a scalable manner. As such is the case, this research work opts to use the 

2nd methodology to acquire data from the PLC into an OPC UA server. 

4.2.2.1.2 OPEN62541 OPC UA SERVER 

An OPC UA server was manually configured using the open62541 library on a 

Raspberry Pi 4 running Ubuntu 20.04.5, serving as the AG for the Rocket Assembly 
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station. The open62541 library is an open-source implementation of OPC UA written in 

the C language. The library includes a nodeset compiler tool that creates an internal 

representation of the information model and generates the associated C source code for 

each namespace. This internal representation is defined according to the CSV (Node IDs), 

BSD (OPC UA Types), and XML (Nodeset) files generated from the UAModelCompiler 

tool.  

 

 Figure 4.14: Generate FF Namespaces and Data Types 

A CMakeLists.txt file was created to hold the CMake functions 

“generate_nodeset_and_datatypes” that call the nodeset compiler tool. A code snippet of 

the CMakeLists.txt file is shown in Figure 4.14. Using these CMake functions, the nodeset 

compiler tool generates the source code for the namespace and data types for each 
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information model. The source code is then linked to the main function for the OPC UA 

server. 

 

 Figure 4.15: R01 Object Node in namespace_ff_generated.c File 

 

 Figure 4.16: FF Node IDs in ff_nodeids.h File 

As a result, several source files are generated for each information model. These 

source files are the types_x_generated.c and namespace_x.c source files, as well as the 

associated types_x_generated.h and namespace_x.h header files, where “x” represents the 

name of the information model i.e., di, rob, and ff. An x_nodeids.h header file is also 

generated for each information model and contains the definitions for the Node IDs for 

each node in the server address space. A code snippet of the namespace_ff_generated.c file 

is displayed in Figure 4.15, showing the definition of the R01 object node in the 

information model. This file includes the definition of the all of the nodes in the OPC UA 

server address space. A code snippet of the ff_nodeids.h file is shown in Figure 4.16. This 

file defines the Node IDs for each node in the information model. There are no unique data 

types for the custom information model, so the types_ff_generated.h file is not shown.  
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  Figure 4.17: FF Base Server Code From main.c File  

The main.c file contains the code for building the OPC UA address space and 

running the server. The base version of the server code before the server nodes are 

populated with data is shown in Figure 4.17. The header files for the namespaces, node ids, 

and data types are included into the server code to create the custom address space for the 

OPC UA server. The status of the namespace for each information model is checked for 

any issues before it is uploaded to the server address space. 

4.2.2.2 MOBILE VISUAL INSPECTION STATION OPC UA SERVER 

The process of building the OPC UA server for the MVI station is largely similar 

to the building process for the open62541 FF OPC UA server. The OPC UA server was 
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manually configured using the open62541 library on another Raspberry Pi 4 running 

Ubuntu 22.04.5, serving as the AG for the MVI station.  

 

 Figure 4.18: Generate MVI Namespace from CMakeLists.txt File 

A CMakeLists.txt file was created to hold the CMake function that calls the nodeset 

compiler tool. Because the information model for the MVI station does not use any 

companion specifications, the nodeset compiler tool does not require a NodeIds.csv or 

Types.bsd file. A code snippet of the CMakeLists.txt file is shown in Figure 4.18. The 

nodeset compiler tool then generates the source code for the namespace of the information 

model.  

 

 Figure 4.19: Config_Correct Variable Node in namespace_mvi_generated.c File 

Because there are no unique Object Types, Variable Types, Data Types, or 

Reference Types created for the MVI Station information model, the only output of the 

nodeset compiler tool is the namespace_mvi_generated.c and namespace_mvi_generated.h 
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files. The namespace_mvi_generated.c file is displayed in Figure 4.19. The source code is 

then linked to the main function for the OPC UA server. 

 

 Figure 4.20: MVI Base Server Code from main.c File 

Following the same steps as for the Rocket Assembly station, the main.c file for the 

MVI station is created. The base version of the server code before the server nodes are 

populated with data is shown in Figure 4.20. The status of the namespace for the MVI 

information model is checked for any issues before it is uploaded to the server address 

space. 

4.2.3 DATA ACQUISITION AND POPULATION OF THE OPC UA SERVER  

Once the server address space has been configured, the next step is to populate the 

nodes of the server address spaces with process data. This step is highly variable depending 

on the choice of communication protocol and the method by which the device publishes 

the data. For OPC UA connections – meaning an OPC UA client/server connection – the 

OPC UA specification includes numerous protocols such as the ultra-fast OPC-binary 
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transport, JSON over web-sockets, etc. The optional OPC UA PubSub extension is protocol 

agnostic and can be used with broker-based protocols like MQTT and AMQP, as well as 

broker-less implementations like UDP-Multicasting, with the caveat that published 

messages follow the content structure for PubSub messages defined by the OPC 

Foundation. However, it becomes slightly more difficult to get data into the OPC UA server 

when the publishing device does not use the OPC UA framework, as is often the case when 

collecting data from legacy machines. The published data must be translated into a format 

compatible with the OPC UA architecture to be added to the OPC UA server. To 

demonstrate such a use-case, the Future Factories manufacturing process data is published 

using the widely compatible MQTT protocol and translated into the OPC UA architecture.  

4.2.3.1 ROCKET ASSEMBLY STATION 

The Future Factories cell uses a Siemens IPC 227E Industrial PC acting as an edge 

device to collect tag information from a S7-1516F PLC through the proprietary S7 

Connection protocol. The SIMATIC S7 Connector is an application that runs on the edge 

device that accesses the PLC data through either an S7 Connection or OPC UA. The 

application sends the PLC Tag values imported from the controllers to the Industrial Edge 

(IE) Databus via the Industrial Edge Runtime. A data publisher application was created on 

the edge device to parse through data from the IE Databus for the desired tags and publish 

the filtered MQTT topic to an MQTT broker.  

 

 Figure 4.21: Parsing FF Data in MQTT Client 
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 Figure 4.22: FF Data Assignment in MQTT Client 

An MQTT client application was then created on the AG to subscribe to the topic 

from the MQTT broker at a regular time interval of 500 milliseconds. The message payload 

data is received in the form of a JSON object which is assigned to the char variable “data.” 

Using the lightweight cJSON library, the data variable is parsed for each index within the 

JSON object, and each index is assigned to a new variable that corresponds with the tag 

name, as shown in Figure 4.21. A shared memory segment is then created in the MQTT 

client application. A shared memory segment is an area of memory in a computer system 

that can be accessed by multiple processes concurrently. By utilizing this shared memory 

segment, the data assigned to the shared memory segment in the MQTT client can then be 

accessed by the OPC UA server application. A new double array variable “tags[]” is 

declared. The tag variables are then assigned to indices within the tags[] array. The entire 

tags[] array is then assigned to the variable stored in the shared memory segment, which is 

called “tags_ptr.” This process is shown in Figure 4.22.  

 

 Figure 4.23: Callback Function for Q_VFD1_Temperature Variable Node  
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 Figure 4.24: Calling beforeRead_Q_VFD1_Temperature Callback Function  

Now that the MQTT client has been completed, the main.c file for the OPC UA 

server application must be modified to populate the server nodes with data. Using the 

shared memory segment created in the MQTT client application, the OPC UA server 

application can access the published data from the MQTT client application and write to 

the value attribute of the appropriate OPC UA node through a callback mechanism. A 

callback function is created for each node in the OPC UA address space. Figure 4.23 

defines the callback function for the Q_VFD1_Temperature variable node, which is named 

“beforeRead_Q_VFD1_Temperature.” Lines 33-37 retrieves the “tags_ptr” array from the 

MQTT Client and assigns the value to a new variable of the associated OPC UA Data Type 

i.e., UA_Double for Q_VFD1_Temperature. Lines 39-41 uses the open62541 API to write 

to the value attribute of the Q_VFD1_Temperature variable node in the OPC UA address 

space, utilizing the OPC UA attribute service set described in Chapter 3. The callback 

function is then called in the main loop of the main.c server code through a callback 

mechanism, as shown in Figure 4.24. Calling the callback function triggers the OPC UA 

write service to write the updated value metric from the MQTT client to the value attribute 

of the OPC UA server node.  
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 Figure 4.25: UAExpert Client Connection to FF OPC UA Server 

Once an OPC UA client reads the node from the OPC UA server, the value attribute 

will then be updated from the data received by the MQTT client. Figure 4.25 shows the 

connection of the UAExpert OPC UA client to the FF OPC UA server, indicating that the 

server nodes are now populated with data. The configuration of the AG for the Rocket 

Assembly station has now been completed. The final step is to connect the FF AG to the 

same network as the IG to enable access to the manufacturing data. 

4.2.3.2 MOBILE VISUAL INSPECTION STATION 

The same process is repeated for the population of the OPC UA server nodes for 

the MVI station with process data. An MQTT client is created to access the process data 

from the MVI Station MQTT broker.  
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Figure 4.26: Parsing MVI Data in MQTT Client 

The message payload data is parsed for each index within the JSON object, and 

each index is assigned to a new variable that corresponds with the tag name, as shown for 

the “ConfigCorrect” variable in Figure 4.26. The shared memory segment is then created 

in the MQTT client application, and the value of the “ConfigCorrect” variable is assigned 

to the shared memory segment to be accessed from the OPC UA server application. 

 

 Figure 4.27: Callback Function for ConfigCorrect Variable Node 

 

 Figure 4.28: Calling beforeRead_ConfigCorrect Callback Function 
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Now that the MQTT client is complete, the main.c file for the OPC UA server 

application is modified to populate the server nodes with data. A callback function is 

created for each node in the OPC UA address space. Figure 4.27 defines the callback 

function for the ConfigCorrect variable node, which is named 

“beforeRead_ConfigCorrect.” The callback function is then called in the main loop of the 

main.c server code through the callback mechanism, as shown in Figure 4.28.  

 

 Figure 4.29: UAExpert Client Connection to MVI OPC UA Server 

The value attribute is updated from the data received by the MQTT client upon an 

OPC UA client connection. Figure 4.29 shows the connection of the UAExpert OPC UA 

client to the MVI station OPC UA server, indicating that the server nodes are now 

populated with data. The configuration of the AG for the MVI station is now complete. 

The final step is to connect the MVI station AG to the same network as the IG to enable 

access to the manufacturing data. 

4.3 IGNITION GATEWAY 

After the AGs have been configured, the IG must be developed. The Ignition 

software, as well as the Cirrus Link MQTT Distributor, Engine, and Transmission modules, 

were installed on an NVidia Jetson TX2 running the Ubuntu 18.04 operating system. The 
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device serves as the central gateway in the PnP architecture. This section describes the 

configuration process of the IG. 

4.3.1 CONFIGURE TAG PROVIDERS AND CONNECT AGENT OPC UA SERVERS 

 

    Figure 4.30: Ignition Tag Providers for AGs 

 

      Figure 4.31: Ignition OPC Connections for AGs 

A standard Tag Provider was created for each AG for the collection of the 

manufacturing data. “FF” is the Tag Provider that will contain the data from the Rocket 

Assembly station, whereas “MVI” is the Tag Provider that will contain the data from the 

MVI station. These Tag Providers are shown in Figure 4.30. In the PnP architecture, the 

Tag Providers essentially act as clients for the AG OPC UA servers, consuming the 

manufacturing data and translating the data into Ignition Tags. An OPC connection was 

then created for each of the AG OPC UA servers to the IG, as shown in Figure 4.31. This 

step exposes the OPC UA servers to the IG, allowing for the consumption of the 

manufacturing data from the AGs. 
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 Figure 4.32: Adding MVI Agent to Tag Provider 

In the Ignition Designer application, the Tag Browser tool is used to interact with 

the Tag Providers in the IG. After selecting the Tag Provider, the data sources connected 

to the IG were then browsed. The data sources were then imported into the Tag Provider 

for the respective AG. Figure 4.32 shows the importing of the MVI Agent OPC UA server 

nodes into the MVI Tag Provider.  

 

  Figure 4.33: Client Connection to Ignition OPC UA Server 
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Navigating to the OPC UA Server Settings within the IG webserver, the “Expose 

Tag Providers” option was enabled. This setting allows users to bridge the Tag Providers 

to the local Ignition OPC UA Server. Clients now have access to data across the entire 

manufacturing ecosystem via a single OPC UA server-client connection. Figure 4.33 shows 

an OPC UA client connection to the Ignition OPC UA server.  

4.3.3 CONFIGURE CIRRUS LINK MQTT MODULES 

The manufacturing data from the AGs is now exposed to the Ignition OPC UA 

Server. The next step is to configure the Cirrus Link MQTT Modules to translate between 

the OPC UA framework and the MQTT Sparkplug IIoT Protocol. This step involves the 

configuration of the MQTT Distributor, Engine, and Transmission modules. 

4.3.3.1 MQTT DISTRIBUTOR 

 

  Figure 4.34: MQTT Distributor Module Configuration 

The MQTT Distributor module is configured to create a local MQTT Server on port 

1883 and 8090 of the IG, as shown in Figure 4.34. The server acts as a local MQTT broker 

for MQTT clients on the same network to publish and subscribe data. Port 1883 serves as 

the device port for MQTT-over-TCP connections, whereas port 8090 serves as the device 

port for MQTT-over-Websocket connections.  
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4.3.3.2 MQTT TRANSMISSION 

A new server set called “Chariot SCADA Sparkplug” was configured in the MQTT 

Transmission module. Server sets represent a logical grouping of MQTT servers that are 

referred to by MQTT Transmitters. 

 

  Figure 4.35: MQTT Transmitters 

 

 Figure 4.36: Subscribe to IG MQTT Server 

An MQTT Transmitter was then configured for each of the AGs, as shown in Figure 

4.35. The Tag Provider and the tag path for the transmitter are defined. These tags are then 

monitored for any value changes, upon which a new MQTT message with the updated 

value is published to the MQTT server. The tag values can then be modified from either 

writing a new value attribute to the server node via an OPC UA client connection or 

publishing a new message from a Sparkplug-Enabled MQTT client with the new value 
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metric to the MQTT server. Therefore, these transmitters serve to enable bidirectional data 

communication from either OPC UA or MQTT, and these value changes are reflected in 

both infrastructures i.e., the Ignition OPC UA Server and the Ignition MQTT Server. Figure 

4.36 shows the subscription of the Sparkplug-Enabled MQTT client application MQTT.fx 

to the MQTT server on the IG. 

4.3.3.3 MQTT ENGINE 

 

  Figure 4.37: Configure MQTT Server in MQTT Engine 

In the MQTT Engine module, the Sparkplug B topic namespace is enabled by 

default. All MQTT topics published to the MQTT server will fall under the “spBv1.0” 

MQTT topic. This topic namespace indicates that the MQTT topic is using the Sparkplug 

B version 1.0 specification and also serves as an identifier for the protocol version and 

encoding used for the payload data. The “Server” tab in the MQTT Engine configuration 

provides a list of the MQTT Servers that the MQTT Engine module should connect to. A 

reference to the “Chariot SCADA Sparkplug” MQTT Server was configured in the MQTT 

Engine module and linked to the local TCP port (1883) of the MQTT Server from the 

MQTT Distributor module, shown in Figure 4.37. This allows for interaction with the 

MQTT data from SCADA applications in the Ignition platform.  
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4.3.3.3 CREATE GATEWAY NETWORK 

 

    Figure 4.38: Configure Gateway Network Connection 

 

        Figure 4.39: Windows PC Ignition OPC UA Server 

A gateway network was created on the IG, enabling data access to other approved 

IGs. The Ignition software was installed on a Windows PC in the manufacturing testbed, 

transforming it into an IG. An outgoing connection was then configured from the NVidia 

Jetson TX2 IG to the Windows PC IG, shown in Figure 4.38. On the Windows PC IG, a 

remote Tag Provider was created for each of the Tag Providers from the Jetson IG. In the 

OPC UA Server Settings, the “Expose Tag Providers” setting was once again enabled to 

bridge the Tag Providers to the local Ignition OPC UA Server. Figure 4.39 shows the local 

Ignition OPC UA Server, which includes the imported nodes from the Jetson Ignition OPC 

UA Server.  

4.4 DISCUSSION 

The diverse, widespread, and ever-changing characteristics of resources and 

devices, coupled with a vast array of data, pose significant challenges in the discovery, 
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access, processing, integration, and interpretation of real-world data in the IIoT. In the 

current state of the IIoT, intelligent manufacturing systems need to be able to access raw 

data from various resources over the network, which must be analyzed in order to extract 

knowledge.  

This thesis focused on the development of a PnP framework that enables 

interoperable, scalable, and mobile communication between heterogeneous systems. The 

manufacturing use-case is realized through the development of AGs that collect data at the 

edge-of-the-network, and the development of an IG for the aggregation and distribution of 

process data throughout the network. The OPC UA framework was chosen for its 

information modeling features that enable data-rich and object-oriented representations for 

industrial systems. The MQTT protocol was chosen for its M2M communication capability 

in distributing information across the manufacturing ecosystem in a scalable manner. The 

Ignition platform was chosen due to its capability to easily aggregate heterogeneous data 

sources into a centralized data pipeline for the entire manufacturing environment using 

either OPC UA or MQTT, in addition to the F2F-enabling capabilities through the creation 

of gateway networks.  

The framework utilizes these tools to enable the PnP characteristics for the IIoT 

architecture, transforming it into a PnP system. Interoperability within the PnP framework 

is enabled by OPC UA data modeling features and transportation mechanisms; these 

bidirectional communication capabilities facilitate data translation between the different 

systems, ensuring uniformity in data representation. Scalability is achieved through ACMs 

and centralized data aggregation in the Ignition platform, reducing manual effort for 

integrating new systems and increasing data availability for client applications. Mobility is 
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addressed by designing the PnP middleware to be easily transferable between systems, 

leveraging wireless networking and edge computing technologies. Overall, the PnP 

framework addresses key challenges in PnP applications, enabling interoperability, 

scalability, and mobility for intelligent manufacturing systems. 

 4.4.1 INTEROPERABILITY 

The PnP framework serves to enable interoperability between heterogeneous 

industrial systems. Several aspects of the developed PnP framework contribute to this 

concept. This thesis explores the development of custom information models and the 

translation process between the OPC UA Framework and IIoT Protocols with the purpose 

of facilitating interoperability within the PnP framework. To enable interoperability in the 

PnP framework, the middleware translates data into a format that is understood by both the 

sending and receiving systems, which is the OPC UA framework. The communication 

between systems is bidirectional to enable cohesive interaction between operational 

equipment and IT applications. These effects are achieved through the design of custom 

information models using companion specifications to represent the inherent capabilities 

of the systems. Furthermore, the Ignition platform allows for bidirectional communication 

between the OPC UA and MQTT IIoT infrastructures, giving field devices more options 

to publish the data to the IG using either the OPC UA framework or the MQTT protocol. 

This ensures that there is uniformity of the manufacturing data between both the MQTT 

and OPC UA infrastructures. 

4.4.2 SCALABILITY 

The PnP framework serves to enable scalability for the manufacturing ecosystem. 

The key aspects of the PnP framework that contributes to the scalability concept are the 
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ability to reduce the manual configuration effort for integration of new systems, as well as 

to increase the availability of the manufacturing data within the industrial environment for 

client applications to access. The Ignition platform includes several driver modules that 

allow for seamless data access for specific types of devices. These drivers enable the 

writing of production data into Tag Providers without the need for intensive manual 

configuration. Furthermore, the bridging capabilities of the Ignition OPC UA Server are 

utilized to aggregate data sources into a centralized data pipeline to reduce the effort of 

data acquisition for intelligent manufacturing applications requiring data from 

heterogeneous data sources.  

4.4.3 MOBILITY 

The PnP framework was designed to be mobile in order to accommodate various 

trends of enabling technologies within the IIoT domain. These trends include the increasing 

utilization of wireless networking modalities for communication within industrial 

environments, as well as the use of edge computing for data acquisition and analysis at the 

edge of the network. These trends contribute towards the PnP concept in that PnP devices 

are meant to have the capability to be easily transferred between systems, and for the device 

to adjust dynamically to the new system without requiring intensive manual 

reconfiguration. By using wireless networking and edge computing, the PnP devices are 

able to be physically moved between systems more easily. Following these guidelines, the 

AGs and IG were developed on resource-constrained edge devices with a low physical 

footprint. The communication occurs wirelessly, meaning the PnP devices are not 

physically constrained to the location of the data source. 
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CHAPTER 5 

CONCLUSION 

5.1 SUMMARY OF WORK 

The thesis introduces fundamental concepts such as the IoT, IIoT, and PnP. A 

thorough literature review on Plug and Produce within the IIoT is presented. This includes 

an examination of the general IIoT architecture and an exploration of IIoT connectivity. 

The taxonomy of Plug and Produce is defined in the context of the IoT and CPSs, drawing 

comparisons with related terms like Plug and Play and Plug and Work. It identifies and 

elaborates on the characteristics of Plug and Produce and discusses current research 

directions in key IIoT technologies enabling Plug and Produce. The review also delves into 

challenges associated with incorporating these technologies and proposes future research 

directions to address the identified gaps. 

The thesis defines the use-case and requirements for the PnP framework in the 

Future Factories manufacturing testbed. The framework focuses on enabling PnP 

capabilities for automation equipment, robots, and machines. The capabilities refer to the 

defined PnP characteristics, which are interoperability, scalability, and mobility of the 

system. The framework also aims to facilitate horizontal and vertical communication 

between all hardware and software entities to foster the innovation of new business 
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functions. Currently, the Future Factories manufacturing testbed does not implement the 

use of an MES system; however, the architecture and various system components of the 

PnP framework were carefully selected in order to allow for seamless interactivity with 

such systems upon their eventual introduction into the testbed. The thesis then provides an 

overview of the testbed's components, emphasizing the capabilities of OPC UA in enabling 

interoperability for manufacturing systems. The interoperability-enabling properties of the 

OPC UA framework are detailed, including features like information modeling and 

companion specifications. Additionally, the process of developing custom information 

models for definition of asset capabilities in the manufacturing environment is explained. 

The role of various modules and software integrations in building the IG platform as a 

scalability solution for PnP systems is discussed, followed by an explanation of the 

development methodology for the PnP framework. Lastly, the thesis presents a roadmap 

for the integration of the PnP framework and associated IIoT technologies in brownfield 

manufacturing scenarios. 

The thesis showcases the developed architecture of the PnP framework for the 

Future Factories manufacturing testbed. This is followed by outlining the development 

approach for the AGs for the manufacturing processes by employing custom information 

models for specific stations within the manufacturing testbed. The thesis then details the 

configuration process for IGs to facilitate scalability across the span of the IIoT architecture 

of the manufacturing system. The system's communication protocol agnostic nature is 

emphasized, achieved through a combination of software packages and libraries. 
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5.2 FUTURE WORK 

There are additional opportunities to enhance the capabilities of the PnP framework 

for the Future Factories manufacturing testbed. One limitation of the PnP framework is the 

lack of utilization of ACMs for reducing the effort required for device integration. Devices 

that have compatible drivers within the Ignition platform or that feature inherent OPC UA 

or MQTT capabilities can be seamlessly connected to the Ignition Gateway. However, for 

devices that don’t meet these requirements, such as legacy industrial machine systems, the 

process of building information models, acquiring data, and populating the OPC UA server 

is much too variable and manually intensive. For future work, the PnP framework should 

incorporate various types of ACMs to reduce the manual configuration effort for system 

integration. The following ACMs would serve to achieve this outcome: 

Table 5.1: ACMs for PnP Framework in Future Work 

Device Discovery Allows for the OPC UA server to scan for available devices on the network 

using the TCP/IP protocol to identify potential new device candidates to 

collect information from. 

Dynamic Information 

Exchange 

Send queries to browse the address spaces of discovered devices on the 

network to obtain information about their process parameters. When new 

parameters are defined in the industrial system, the associated changes to the 

information model should happen dynamically during server runtime. 

Automatic Information 

Modeling 

Based on the received process parameter information, the information model 

for the device would be automatically generated. However, this process 

would require a minimum level of manual configuration, as parameters are 

not always able to fully describe the characteristics of a system e.g., the 

“HasComponent” references to define the relationship between physical 

components within the industrial system. 
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Another limitation of the PnP framework is the inability to represent all of the 

attributes of an OPC UA node within the MQTT infrastructure. For example, the MQTT 

message payload data contains the name, timestamp, datatype, and value metrics. Notably 

missing from this payload structure is the Object/Variable/Data Type, the “BrowseName” 

and “DisplayName” attributes, references and reference types, etc. Devices that are 

subscribed to the MQTT server of the IG lose a portion of the metadata that serves to 

describe the characteristics of the OPC UA node. This challenge can be mitigated by 

defining a custom MQTT payload structure for MQTT messages to include the definition 

of these OPC UA attributes. However, this solution faces potential compatibility issues 

with devices that publish MQTT messages with a fixed payload structure. Solving this 

issue would require developing an automated mechanism that subscribes to the publishing 

device from an MQTT client, restructures the message payload to include the additional 

OPC UA attributes, and republishes the reformatted MQTT message to the IG. 

5.3 SITUATION OF RESEARCH 

This investigation into PnP connectivity for manufacturing systems aims to extend 

the research conducted in the Smart Manufacturing domain in the Future Factories 

laboratory at the University of South Carolina’s McNair Center. Analyses on Smart 

Manufacturing were conducted, such as identifying major manufacturing paradigms for 

factories of the future [126] and investigating optimization of Smart Manufacturing 

systems from early-state analyses of smart products during the beginning-of-life (BOL) 

stages [127]. Other studies aimed to identify mechanical attributes [128] and perform 

semantic segmentation [129] for enhanced event comprehension in the manufacturing 

environment. The mechanical attributes are semantically represented within the PnP 
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framework using OPC UA information modeling to define the characteristics of the 

industrial assets, and the system framework provides the capability to define manufacturing 

events through conditional requirements. Earlier projects also analyzed cognition in DTs 

[130], integrated reinforcement learning with DTs to enhance intelligence [131], explored 

multi-modal robotic health in the IoT [132], developed a mapping method for product-

centered DTs to automatically analyze product manufacturability [133], created a DT for 

an Automated Fiber Placement (AFP) manufacturing system [134], and delved into 

intelligent virtual commissioning [135]. The PnP framework enables communication via 

the common OPC UA framework to the Siemens Process Simulate software used for 

virtual commissioning, digital twinning, and process simulation. Other notable works also 

include enabling motion-capture-based calibration for industrial robots [136] and 

integration of semantic web technologies to for fault-tolerant autonomous manufacturing 

[137]. An analog and a multi-modal time-series dataset were generated from the rocket 

assembly process in the Future Factories manufacturing testbed and were made publicly-

available to promote further development of Smart Manufacturing applications in real-

world industrial environments [138]. The common objective of these research works is to 

enable the autonomy of manufacturing processes by incorporating Artificial Intelligence 

(AI) into manufacturing through diverse methodologies, and the PnP framework aims to 

further enhance the collaboration of these systems by facilitating seamless and interactive 

communication between the various hardware and software components. Additionally, the 

current work builds upon the preliminary design efforts directed at establishing the Future 

Factories testbed [139]. 
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