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Abstract

Graham and Pollak showed in 1971 that the determinant of a tree’s distance matrix

depends only on its number of vertices, and, in particular, it is always nonzero. This

dissertation will generalize their result via two different directions: Steiner distance k-

matrices and distance critical graphs. The Steiner distance of a collection of k vertices

in a graph is the fewest number of edges in any connected subgraph containing those

vertices; for k = 2, this reduces to the ordinary definition of graphical distance.

Here, we show that the hyperdeterminant of the Steiner distance k-matrix is always

zero if k is odd and nonzero if k is even, extending the result beyond k = 2. We

conjecture that not just the vanishing, but the value itself, of the Steiner distance

k-matrix hyperdeterminant of an n-vertex tree depends only on k and n. We further

introduce new techniques to prove that the distance matrix (the k = 2 case) of a

tree has a nonzero determinant, thus providing weaker versions of the Graham-Pollak

Theorem. In the second half of the dissertation, we focus on distance critical graphs.

In a tree, standard distance is measured by the unique path connecting two vertices.

The distance measure, however, may be obtained from multiple paths if the graph

is not a tree. A distance critical graph is a connected graph such that no vertex

can be deleted without altering the distance metric on the remaining vertices. We

generalize this unique path distance concept that holds within a tree by introducing

and discussing properties of distance critical graphs.
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Chapter 1

introduction

Distance matrices have served as an integral tool in graph theory since their introduc-

tion in 1971 by Graham and Pollak. These matrices helped solve the loop switching

problem in which messages pass through a communication network by following the

shortest path, thus reducing the hold time. Since then, distance matrices have found

their way into spectral graph theory and have helped determine important structural

properties of graphs by simply analyzing their spectrum. These results have then

been applied to chemistry, network analysis, computer science, and combinatorics.

A tree is defined as an undirected graph in which any two vertices are connected by

exactly one path, or equivalently a connected acyclic undirected graph. In addition to

solving the loop switching problem, Graham and Pollak showed that the determinant

of the distance matrix of a tree T on n vertices – the n × n matrix whose each

(v, w) ∈ V (T )×V (T ) entry is the ordinary graph distance between v and w – depends

only on n. In fact, they gave a formula: −(n − 1)(−2)n−2 [16]. Others have viewed

this problem and come up with different proofs. One such example was discovered by

Yan and Yeh [28] that includes an elegant proof relying on the fact that two pendant

vertices can be deleted from a tree and the remaining entries in the distance matrix

are unchanged. Further research led to the conclusion that weighted trees could be

considered. Bapat, Kirkland, and Neumann [2] proved that if T is a weighted tree on

n vertices with edge weights αi, for i = 1, ..., n − 1 and D is the distance matrix of
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T , then

det(D) = (−1)n−12n−2
(

n−1∏
i=1

αi

)(
n−1∑
i=1

αi

)
.

These techniques were then expanded upon to analyze the distance spectra of other

types of graphs besides trees. See [1] for more of these results.

The first half of this dissertation will answer Y. Mao’s question 1 as to whether

the Graham-Pollak result can be extended to “Steiner distance”, a generalization of

distance introduced by Hakimi [18] and popularized by [5]. The Steiner distance

dG(S) of a set S ⊆ V (G) of vertices is the fewest number of edges in a connected

subgraph of G containing all of S. Note that, if S = {v, w}, this reduces to the

classical definition of the distance from v to w, since a connected graph of smallest

size containing v and w is a path of length dG(v, w) := dG({v, w}). (See [22] for an

extensive survey on Steiner distance.)

Just as all pairwise distances in a graph can be represented by a symmetric matrix,

we can write the Steiner distances of all k-tuples of vertices as an order-k hypermatrix

(sometimes referred to as a tensor): the
k︷ ︸︸ ︷

[n] × · · · × [n] (super-)symmetric integer

array whose (v1, . . . , vk) entry is the Steiner distance of {v1, . . . , vk}. We sometimes

refer to such hypermatrices as “cubical” since all the index sets are identical. There

is a notion of hyperdeterminant that generalizes determinant, and shares many of its

properties, though in general is much harder to compute. See, for example, [23] for

discussion of the symmetric hyperdeterminant. For our purposes, what will matter

about the hyperdeterminant is that it detects nontrivial simultaneous vanishing of a

system of degree-(k−1) homogeneous polynomials (a.k.a. (k−1)-forms) in n variables.

We will discuss the techniques for computing this system of polynomials in Chapter

1Personal communication.
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2 as well as how we use this to classify the hyperdeterminant of the Steiner distance

k-matrix.

In Chapter 3, we prove the results for the odd order Steiner distance k-matrices as

well as go into the specific structure of the nullvariety for the case k = 3. Chapter 4

will prove the results for the even order Steiner distance k-matrices as well as introduce

some new variations for the k = 2 case to append to the list of proofs for the Graham-

Pollak theorem. Distance critical graphs will be introduced and discussed in Chapter

5 and will compose the second half of the dissertation. We named these graphs in

an attempt to use the techiniques of Yan and Yeh to classify the determinant of the

distance matrix for some other class of graphs besides trees. We will leave the reader

in Chapter 6 with open problems in these areas of research.

3



Chapter 2

Hypermatrix Preliminaries

The hypermatrix is a generalization of the standard order-2 (or n×n) matrix. In 1843,

Cayley introduced the idea of calculating the hyperdeterminant [3]; however, this

definition can only be applied to hypercubes having an even number of dimensions.

Cayley expanded his definition two years later to eliminate these restrictions and

introduce what is commonly referred to as Cayley’s second hyperdeterminant [4].

For the remainder of this paper, we will be referencing this second hyperdeterminant.

While groundbreaking, much of Cayley’s work was limited to the 2×2×2 hypermatrix

and was largely forgotten for about 140 years until the release of [14]. This book

reignited interest in hyperdeterminants and specifically discovered a condition for

when a hyperdeterminant is non-trivial for higher order hypermatrices.

2.1 Background

Before introducing this result, we define some terms using much of the notation from

[8].

Definition 2.1. A (cubical) hypermatrix A over a set S of dimension-n and order-k

is a collection of nk elements ai1i2...ik
∈ S where ij ∈ [n].

Definition 2.2. A hypermatrix is said to be symmetric if entries which use the same

index sets are the same. That is, A is symmetric if ai1i2...ik
= aiσ(1)iσ(2)...iσ(k) for all

permutations σ of [k].

4



An order-k dimension-n symmetric hypermatrix A uniquely defines a homoge-

neous degree k polynomial in n variables (a.k.a. a "k-form") by

fA(x) =
n∑

i1,i2,...,ik=1
ai1i2...ik

xi1xi2 . . . xik
.

If we write xk for the order-k dimension-n hypermatrix with i1, i2, . . . , ik entry

xi1xi2 . . . xik
, then the expression above can be written as fA(x) = Axk. We next

introduce the resultant which will be required to compute Cayley’s second hyperde-

terminant.

Theorem 2.3 (The Resultant, [14]). Fix degrees d1, d2, . . . , dn. For i ∈ [n], consider

all monomials xα of total degree di in x1, . . . , xn. For each such monomial, define a

variable ui,α. Then there is a unique polynomial RES ∈ Z[{ui,α}] with the following

three properties:

(1) If F1, . . . , Fn ∈ C[x1, . . . , xn] are homogeneous polynomials of degrees d1, . . . , dn,

respectively, then the polynomials have a non-trivial common root in Cn exactly

when RES(F1, . . . , Fn) = 0. Here, RES(F1, . . . , Fn) is interpreted to mean substi-

tuting the coefficient of xα in Fi for the variable ui,α in RES.

(2) RES(xd1
1 , . . . , xdn

n ) = 1.

(3) RES is irreducible, even in C[{ui,α}].

Moreover, for i ∈ [n], RES is homogeneous in the variable {ui,α} with degree

∏
j∈[n],j ̸=i

di.

Definition 2.4. The symmetric hyperdeterminant of A, denoted det(A), is the re-

sultant of the polynomials in ∇fA(x) and fA(x).

5



Definition 2.5. The characteristic polynomial of a hypermatrix A is calculated as

ϕA(λ) = det(λI − A) where λ is an indeterminate and I is the identity hypermatrix.

See [23] for more of a discussion on the symmetric hyperdeterminant.

While the hyperdeterminant is much more complex to evaluate than the standard

determinant, there are some similarities between the two. For example, Qi shows in

[23] that the hyperdeterminant is the constant term of the characteristic polynomial.

Other similarities are described in the following theorem. The term slice is used to

represent the indices of the hypermatrix with one fixed component.

Theorem 2.6 ([14]). Let A be a hypermatrix.

(a) Interchanging two parallel slices leaves the hyperdeterminant invariant up to

sign (which may equal 1).

(b) The hyperdeterminant is a homogeneous polynomial in the entries of each slice.

The degree of homogeneity is the same for parallel slices.

(c) The hyperdeterminant does not change if we add to some slice a scalar multiple

of a parallel slice.

(d) The hyperdeterminant of a matrix having two parallel slices proportional to each

other is equal to 0. In particular, det(A) = 0 if A has a zero slice.

With this background, we next introduce the result from [14] stating when a

hyperdeterminant is non-trivial. This theorem will be critical for the results in the

remainder of this paper.

Theorem 2.7. The hyperdeterminant det(A) of the order-k, dimension-n hyperma-

trix A = (ai1,...,ik
)n

i1,...,ik=1 is a monic irreducible polynomial which evaluates to zero iff

6



there is a nonzero simultaneous solution to ∇fA = 0⃗, where

fA(x1, . . . , xn) =
∑

i1,...,ik

ai1,...,ik

k∏
j=1

xij
.

2.2 Computing Hyperdeterminant

While it is beneficial to know when a hyperdeterminant is non-trivial, we also hoped

to calculate this value. Cox, Little, and O’Shea provide an algorithm in [10] to

calculate the characteristic polynomial of a hypermatrix which in turn will allow us

to determine the hyperdeterminant from the constant term. We present the algorithm

here.

To compute RES(F1, F2, . . . , Fn) for an order-k hypermatrix, let d = n(k−1)−n+1

and S be the set of all monomials of degree d in the variables x1, . . . , xn. (We denote

such a monomial xα, where x stands for a variable vector, and α stands for an

exponent vector.) Let

S1 = {xα ∈ S|xk−1
1 divides xα}

S2 = {xα ∈ S\S1|xk−1
2 divides xα}

...

Sn = {xα ∈ S\ ∪n−1
i=1 Si|xk−1

n divides xα}.

This collection forms a partition of S (using the pigeon-hole principle). Fix an arbi-

trary ordering on S, and define the |S| × |S| matrix M as follows. The (α, β) entry

of M is the coefficient of xβ in the polynomial Fi(x)
xα

xk−1
i

, where i is the unique index

such that xα ∈ Si. In particular, any non-zero (α, β) entry is one of the coefficients

of Fi where i has xα ∈ Si.

Call a monomial xα ∈ S reduced if there is exactly one i so that xk−1
i divides

xα. Form the matrix M ′ by deleting the rows and columns of M that correspond to

7



reduced monomials. The resultant of the system is then det(M)/ det(M ′), provided

that the denominator does not vanish. In our case, each determinant is actually a

characteristic polynomial, so this is never an issue.

Using Dutle’s code made available in [13] as a framework, we evaluated the char-

acteristic polynomials of specific hypermatrices at λ = 0 to determine the hyperde-

terminant as desired.

8



Chapter 3

Odd Order Steiner k-matrices

In an attempt to generalize the Graham-Pollak theorem, we extend the notion of

regular distance to consider Steiner distances. The Steiner distance dG(S) of a set S ⊆

V (G) of vertices is the fewest number of edges in a connected subgraph of G containing

all of S. Note that there is a choice to be made in generalizing distance matrices:

instead of dG(S), we could also simply set the entries corresponding to vertex sets S

of cardinality less than k to zero. However, doing so yields a hyperdeterminant of

zero irrespective of the non-degenerate entries, as we now show. For a hypermatrix

A ∈ CS×···×S, call an entry A(i1, . . . , ik) “degenerate” if |{i1, . . . , ik}| < k.

Theorem 3.1 ([9]). Let A be any cubical hypermatrix with all degenerate entries set

equal to 0. Then the hyperdeterminant of A is 0.

Proof. To prove the hyperdeterminant is 0, we exhibit a nontrivial simultaneous zero

of the partial derivatives of the k-form

fA(x) =
n∑

i1,i2,...,ik=1
ai1i2···ik

xi1xi2 · · · xik
.

Since A has degenerate entries set equal to zero, any term that has ip = iq for some

p, q ∈ [k] will have a matrix entry of zero and thus will not appear in the polynomial.

Therefore, the only terms that will appear are xi1xi2 · · · xik
with each ip distinct. The

gradient vector of these polynomials will consist of terms of degree k − 1 where once

again each ip is distinct. Therefore, choose x1 = x2 = · · · = xn−1 = 0 and let xn be

9



any nonzero value; this is a nontrivial point where all partial derivatives vanish, so

that the hyperdeterminant is 0.

So, instead, we use positive Steiner distance to populate all entries of the hyper-

matrix. This is made precise as follows.

Definition 3.2. Given a graph G and a subset S of the vertices, the Steiner distance

of S, written dG(S) or dG(v1, . . . , vk) where S = {v1, . . . , vk}, is the number of edges

in the smallest connected subgraph of G containing S = {v1, . . . , vk}. Since such a

connected subgraph of G witnessing dG(S) is necessarily a tree, it is called a Steiner

tree of S.

Definition 3.3. Given a graph G, the Steiner polynomial of G is the k-form

p
(k)
G (x) =

∑
v1,...,vk∈V (G)

dG(v1, . . . , vk)x1 · · · xk

where we often suppress the subscript and/or superscript on p
(k)
G if it is clear from

context.

Equivalently, we could define the Steiner k-form to be the k-form associated with

the Steiner distance hypermatrix:

Definition 3.4. Given a graph G, the Steiner k-matrix (or just “Steiner hypermatrix”

if k is understood) of G is the order-k, cubical hypermatrix SG of dimension-n whose

(v1, . . . , vk) entry is dG(v1, . . . , vk).

Throughout the sequel, we write Dr for the operator ∂/∂xr, and we always assume

that T is a tree.

Definition 3.5. Given a graph G on n vertices, the Steiner k-ideal – or just “Steiner

ideal” if k is clear – of G is the ideal in C[x1, . . . , xn] generated by the polynomials

{DjpG}n
j=1.

10



Thus, the Steiner ideal is the Jacobian ideal of the Steiner polynomial of G.

Definition 3.6. A Steiner nullvector is a point where all the polynomials within the

Steiner ideal vanish. The set of all Steiner nullvectors – a projective variety – is the

Steiner nullvariety.

3.1 k = Odd Proof

While the problem of finding the Steiner distance of a set of vertices in a graph is

NP-complete [22], we can easily determine that distance when the graph is a tree.

Definition 3.2 states dG(S) is witnessed when the subgraph containing the vertices of

S is a tree. The smallest subtree containing S will then occur when the leaf vertices

of the subtree are all elements in S. Therefore, we can iterate through the leaves of

the original tree and remove every leaf that does not lie within S until we obtain the

smallest subtree, thus also obtaining the Steiner distance.

Using this method, we adjusted Dutle’s code [13] to create the Steiner distance

k-matrix of a tree and evaluate the characteristic polynomial when λ = 0. The results

led to the following conjecture.

Conjecture 1. The order-k Steiner distance hypermatrix of a tree T on n ≥ 3 vertices

has a hyperdeterminant that only depends on T through n, and is 0 iff k is odd.

Below, we show that this conjecture holds for all odd k, when the hyperdeter-

minant is 0 irrespective of the choice of T . We then go on to describe the Steiner

nullvariety for k = 3. These results appear in [9].

Theorem 3.7. For k odd, the Steiner distance k-matrix of a tree T with at least 3

vertices has a hyperdeterminant equal to zero.

11



Proof. Since T has at least 3 vertices, let u be a leaf, w a neighbor of u, and v ̸= u a

neighbor of w. Let x denote the vector whose z coordinate xz is given by

xz =



1 if z = u

ζ if z = v

−1 − ζ if z = w

0 otherwise,

where ζ = exp(πi/(k − 1)), a (2k − 2)-root of unity. By Theorem 2.7, it suffices to

show that DzpT (x) = 0 for each z ∈ V (T ). First, suppose v is not on the u − z path

in T and z ̸= u (which includes the case z = w). Let α = dT (z, u, v, w), so that

1
k

DzpT (x) =
∑

a+b+c=k−1
xa

uxb
vxc

w

(
k − 1
a, b, c

)
dT (z, u, v, w)

+
∑

a+c=k−1
xa

uxc
w

(
k − 1
a, c

)
(dT (z, u, w) − dT (z, u, v, w))

+
∑

b+c=k−1
xb

vxc
w

(
k − 1
b, c

)
(dT (z, v, w) − dT (z, u, v, w))

+ xk−1
w (dT (z, u, v, w) − dT (z, u, w) − dT (z, v, w) + dT (z, w))

= α(xu + xv + xw)k−1 − (xu + xw)k−1 − (xv + xw)k−1

= 0 − (−ζ)k−1 − (−1)k−1 = 0.

Next, if v is on the u − z path in T and z ̸∈ {u, w}, we obtain

1
k

DzpT (x) =
∑

a+b+c=k−1
xa

uxb
vxc

w

(
k − 1
a, b, c

)
dT (z, u, v, w)

+
∑

b+c=k−1
xb

vxc
w

(
k − 1
b, c

)
(dT (z, v, w) − dT (z, u, v, w))

+ xk−1
v (dT (z, v) − dT (z, v, w))

= α(xu + xv + xw)k−1 − (xv + xw)k−1 − xk−1
v

= 0 − (−1)k−1 − (ζ)k−1 = 0.

12



Finally, if z = u, then

1
k

DzpT (x) =
∑

a+b+c=k−1
xa

uxb
vxc

w

(
k − 1
a, b, c

)
dT (u, v, w)

+
∑

a+c=k−1
xa

uxc
w

(
k − 1
a, c

)
(dT (u, w) − dT (u, v, w))

+ xk−1
u (dT (u) − dT (u, w))

= 2(xu + xv + xw)k−1 − (xu + xw)k−1 − xk−1
u

= 0 − (−ζ)k−1 − 1k−1 = 0.

To help visualize the Steiner distance k-matrix, we include the example of the

unique tree T on 3 vertices, a path of length 2 with leaves 1 and 3, and k = 3. Let

ST =
[
M1 M2 M3

]

represent the Steiner distance 3-matrix of T . With this notation, Mi represents the ith

“slice” of the hypermatrix, the matrix whose (j1, j2) entry is dT (i, j1, j2). Therefore,

M1 =


0 1 2

1 1 2

2 2 2

 , M2 =


1 1 2

1 0 1

2 1 1

 , M3 =


2 2 2

2 1 1

2 1 0

 .

Now, we consider the Steiner 3-form:

pT = 3x2
1x2 + 6x2

1x3 + 3x1x
2
2 + 3x2

2x3 + 6x1x
2
3 + 3x2x

2
3 + 12x1x2x3,

which has a gradient given by

∇pT =


6x1x2 + 12x1x3 + 3x2

2 + 6x2
3 + 12x2x3

3x2
1 + 6x1x2 + 6x2x3 + 3x2

3 + 12x1x3

6x2
1 + 3x2

2 + 12x1x3 + 6x2x3 + 12x1x2

 .
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It is easy to check the vector x = [1, −1 − i, i] is a zero of every polynomial in the

gradient; therefore, ST has a hyperdeterminant of 0.

Note that the hyperdeterminant of a tree on one vertex is also zero. This is be-

cause the Steiner k-form, p
(k)
T (x), only contains one monomial: dT (1, . . . , 1)xk

1. Since

dT (1, . . . , 1) = 0, the Steiner k-form as well as the partial derivative is automatically

0, and so the Steiner nullvector x = [x1] can be set to anything.

For the tree on two vertices and odd k, the hyperdeterminant is not always zero.

It is straightforward to write the Steiner k-form as p
(k)
T (x) = (x1 + x2)k − xk

1 − xk
2.

The partial derivatives are therefore Djp
(k)
T (x) = k(x1 + x2)k−1 − kxk−1

j for j = 1, 2,

so D1p
(k)
T (x) = D2p

(k)
T (x) = 0 implies xk−1

1 = (x1 + x2)k−1 = xk−1
2 . Then, since k − 1

is even, x2 = ±ζx1, where ζk−1 = 1, but if x1 ̸= 0 this implies

1 = (x1 + x2)k−1/xk−1
1 = (1 ± ζ)k−1.

This holds true only when k ≡ 1(mod 6). This can be viewed geometrically by

considering which roots of unity are the same when 1 is added to them. In other

words, we are looking for the intersections between the unit circle and the unit circle

with 1 added to every value. A picture of this is shown below, proving that the

equality only holds if k ≡ 1(mod 6).

ζ

Figure 3.1 Inter-
section of unit circles
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Therefore, for k ≡ 1(mod 6), x = [x1, ±ζx1] is a nontrivial nullvector for x1 ̸= 0

and the hyperdeterminant must be zero. For k ̸≡ 1(mod 6), the hyperdeterminant is

nonzero since the only nullvector is the trivial one.

3.2 k = 3 Nullvariety

Now that we have established that all Steiner hyperdeterminants of odd order with

n ≥ 3 are zero, we describe in more detail the corresponding Steiner nullvariety,

at least for order k = 3. The following simple lemma appears as a special case of

Theorem 3 in [17].

Lemma 3.8. For any distinct vertices i, j, k of a tree T , we have

2dT (i, j, k) = dT (i, j) + dT (i, k) + dT (j, k).

Proof. It is easy to check the formula for each of the two cases: either the Steiner

tree of {i, j, k} is a path or a tree with three leaves.

The following result shows that p
(3)
T (x) is divisible by the elementary symmetric

polynomial of degree 1, which we refer to as s.

Proposition 3.9. The Steiner 3-form p
(3)
T (x) is divisible by s = ∑

r xr.

Proof. Let p = p
(3)
T (x). If s divides p, then p = sg for some polynomial g. We claim

g = 3∑i<j dT (i, j)xixj. We show that

p = sg =
∑

r

xr

3
∑
i<j

dT (i, j)xixj

 =
∑

r,i<j

3dT (i, j)xixjxr

holds by classifying summands according to the triple (r, i, j).

• If r = i, the contribution is 3∑i<j dT (i, j)x2
i xj.
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• If r = j, the contribution is 3∑i<j dT (i, j)xix
2
j .

• If r ̸= i, j, then the contribution becomes

3
∑
i<j

r ̸=i,j

dT (i, j)xixjxr = 3
∑

i<j<k

[dT (i, j) + dT (i, k) + dT (j, k)]xixjxk

= 6
∑

i<j<k

dT (i, j, k)xixjxk

=
∑

i,j,k distinct
dT (i, j, k)xixjxk

where the second equality follows from Lemma 3.8. On the other hand,

p = 3
∑
i ̸=j

dT (i, j)x2
i xj +

∑
i,j,k distinct

dT (i, j, k)xixjxk,

which agrees with the sum of the three types of terms in sg.

Theorem 3.10. If x = (x1, · · · , xn) is a Steiner nullvector of order 3 and s = ∑n
i=1 xi,

then s3 lies within the Steiner ideal J .

Proof. We can write p = gs, where p = p
(3)
T (x), s = ∑

i xi, and g = 3∑i<j dT (i, j)xixj.

Thus, writing Dr for differentiation with respect to xr, we obtain

Drp = g + sDrg.

Then

∑
r

xrDrp =
∑

r

xr(g + sDrg)

= g
∑

r

xr + s
∑

r

xrDrg

= s(g +
∑

r

xrDrg).
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Now,

∑
r

xrDrg = 3
∑

r

xrDr

∑
i<j

dT (i, j)xixj


= 3

∑
r

xr

∑
j

dT (r, j)xj

= 6
∑
r<j

dT (r, j)xrxj = 2g.

Putting these together gives that ∑r xrDrp = s(g + 2g) = 3sg. So sg is in the

Steiner ideal J = ⟨{Drp}r⟩. Since Drp = g + sDrg ∈ J , we also have s(g + sDrg) =

sg + s2Drg ∈ J , and so also sg + s2Drg − sg = s2Drg ∈ J .

Now, Drg = 3∑j dT (j, r)xj. In other words, ∇g = Mx, where M denotes the

(symmetric) distance matrix of the tree and x is the vector of all variables. By the

Graham-Pollak Theorem, M is invertible for trees, so yM = 1⃗ has a solution (where

1⃗ is the all-ones row vector). Let the solution be y = (c1, . . . , cn). Then

y∇g = yMx = 1⃗x = s

i.e., ∑r crDrg = s. Thus, ∑r crs
2Drg = s3 ∈ J .

In fact, tracing back through the computation gives s3 = ∑
r frDrp where

fr = crs − xr

3
∑

j

cj.

It is not hard to deduce from Proposition 3.15 below that s2 ̸∈ J .

Corollary 3.11. If x is a Steiner nullvector, then the sum of the coordinates of x is

0.

Proof. Since s3 ∈ J , we have s ∈
√

J . Therefore, if x is in the Steiner nullvariety,

then s(x) = 0, i.e., the coordinates of x sum to 0.
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Theorem 3.12 ([15] Lemma 1). Let T be a tree with vertex set [n], let dj be the

degree of vertex j, and let aij be the indicator function that ij ∈ E(T ). If D is the

distance matrix of T and the ij-entry of D−1 is d∗
ij, then

d∗
ij = (2 − di)(2 − dj)

2(n − 1) +


−di/2 if i = j

aij/2 if i ̸= j .

Proposition 3.13. cr = (2 − dr)/(n − 1) and ∑r cr = 2/(n − 1).

Proof. Let M be the distance matrix of T . Since yM = 1⃗ and M is invertible,

y = 1⃗M−1.

Therefore, applying Theorem 3.12, we can write

cr =
∑

j

(2 − dr)(2 − dj)
2(n − 1) +


−dr/2 if r = j

arj/2 if r ̸= j


= 2 − dr

2(n − 1)
∑

j

(2 − dj) − dr

2 + dr

2

= 2 − dr

2(n − 1)(2n − 2(n − 1)) = 2 − dr

n − 1 .

Thus, ∑
r

cr =
∑

r

2 − dr

n − 1 = 1
n − 1(2n − 2(n − 1)) = 2

n − 1 .

Corollary 3.14. s3 = ∑
r frDrp where

fr = 1
n − 1

(
(2 − dr)s − 2

3xr

)
.

So, s is in the radical
√

J of J , and we can write s3 (but not s2) in terms of the

generators of J . In particular, the codimension of the Steiner nullvariety is at least

one. The next few results show that the codimension is in fact, 2.
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Proposition 3.15. The polynomials Drp are not divisible by s.

Proof. Suppose s|Drp. Then, since p = gs, we have Drp = g + sDrg, so s|g as well.

But, g is quadratic, so there exist a1, . . . , an ∈ C so that g = s
∑

r arxr, i.e.,

g =
∑
i,j

aixixj.

The x2
i term on the right-hand side is aix

2
i , but the corresponding coefficient on the

left-hand side is 0, so ai = 0 for each i. Then ∑r arxr = 0, so g = 0, a contradiction.

Theorem 3.16. The codimension of an order-3 Steiner nullvariety of a tree is 2.

Proof. If J is the Steiner ideal, then, by the previous result, ⟨s⟩ ⊊ ⟨s, g⟩ ⊆
√

J . On

the other hand, Drp = g + sDrg ∈ ⟨g, s⟩, so
√

J = ⟨s, g⟩.

In fact, we can go even further: for every assignment of values to n − 2 vertices,

there is an assignment to the last two vertices that yields a Steiner nullvector:

Proposition 3.17. For any tree T on n vertices and n − 2 values a3, . . . , an ∈ C,

there exist a1, a2 so that (a1, . . . , an) is a Steiner nullvector: a1 is any solution to

Aa2
1 + Ba1 + C = 0,

where A = dT (1, 2), B = ∑
j≥3(dT (1, 2)−dT (1, j)+dT (2, j))aj, and C can be calculated

as ∑j,k≥3(dT (2, j) − 1
2dT (j, k))ajak; and a2 = −a1 −∑n

j=3 aj.

Proof. Assume v = (a1, · · · , an) is a nullvector where a3, · · · , an are arbitrary complex

number. Since v is a nullvector, Corollary 3.11 states that ∑n
j=1 aj = 0. Therefore,

a2 = −a1 −∑n
j=3 aj.

Also, since v is a nullvector, by definition all partial derivatives to the Steiner

3-form must vanish. Notice by Proposition 3.9, Drp = Dr(sg) = sDrg + g where
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g = 3∑j<k dT (j, k)ajak. Since s = ∑n
j=1 aj = 0, this means that we only need to

show that g = 3∑j<k dT (j, k)ajak = 0. Rewriting g to pull out any terms involving

a1 or a2, we see that

3dT (1, 2)a1a2 + 3a1

n∑
j=3

dT (1, j)aj + 3a2

n∑
j=3

dT (2, j)aj + 3
n∑

j<k
j≥3

dT (j, k)ajak = 0.

Plugging in a2 = −a1 −∑n
j=3 aj and simplifying yields

a2
1dT (1, 2) + a1

∑
j≥3

(dT (1, 2) − dT (1, j) + dT (2, j))aj


+
∑

j,k≥3
(dT (2, j) − 1

2dT (j, k))ajak = 0,

which has a solution for every choice of a3, . . . , an.
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Chapter 4

Even Order Steiner k-matrices

Conjecture 1 states that the Steiner distance k-matrix of a tree on at least 3 vertices

has a zero hyperdeterminant if and only if k is odd. The backwards direction was

proved in Chapter 3, and the forwards direction is proved here along with the case

n = 2. The same definitions and notation will be used that were presented in Chapter

3 in our consideration of even order Steiner distance k-matrices. We introduce some

additional notation that will be used for the even case.

A Steiner k-ideal (Definition 3.5) can be interpreted in the context of hyper-

matrices. We use the notation S(xk−1, ∗) to represent S(
k−1︷ ︸︸ ︷

x, x, . . . , x, ∗). Notice that

S(xk−1, ∗) = S(xk−2, ∗, ∗)x where S(xk−2, ∗, ∗) is an n × n matrix whose entries are

homogeneous polynomials of degree k − 2. Then the Steiner k-ideal of a graph G on

n vertices is the ideal in C[x1, . . . , xn] generated by the components of S(xk−1, ∗).

4.1 k = Even Proof

We show that the Steiner distance k-matrix of a tree T on n ≥ 2 vertices has a

nonzero hyperdeterminant for even k. Therefore, for the remainder of this chapter,

we assume T is a tree on at least 2 vertices with vertex set {v0, . . . , vn} and k is

even. To condense notation, let S = S(xk−2, ∗, ∗) as defined in the introduction.

Further, we use only the subscripts of the vertices when referencing the Steiner sets,

i.e. dT (0, . . . , k − 1) represents the Steiner distance among vertices v0, . . . , vk−1.
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Proposition 4.1. If vertex vu is adjacent to vertex vu+1 in a tree T on n+1 vertices,

then Su − Su+1 is a vector of the form [x0, x1, . . . , xn] where x0 = x1 = . . . = xu =

− (∑u
i=0 xi)k−2 and xu+1 = . . . = xn =

(∑n
i=u+1 xi

)k−2
with v0, . . . , vu lying in one

component of T − vuvu+1 and vu+1, . . . , vn lying in the other component.

Proof. Assume vertex vu is adjacent to vertex vu+1. Notice that

Suw =
∑

vi1 ,...,vik−2 ∈V (T )
dT (u, w, i1, . . . , ik−2)xi1 . . . xik−2 .

It is sufficient to show that for any vw and vw′ that lie within the same component of

T − vuvu+1,

dT (u, w, i1, . . . , ik−2) − dT (u + 1, w, i1, . . . , ik−2) =

dT (u, w′, i1, . . . , ik−2) − dT (u + 1, w′, i1, . . . , ik−2)

holds for all vi1 , . . . , vik−2 ∈ V (T ). For every case, let d = dT (u, w, i1, . . . , ik−2) and

d′ = dT (u, w′, i1, . . . , ik−2).

Case 1: Let vi1 , . . . , vik−2 lie in the same component as vu.

(a) Assume vw and vw′ also lie within the same component of vu. Then,

dT (u, w, i1, . . . , ik−2) − dT (u + 1, w, i1, . . . , ik−2) = d − (d + 1) = −1

dT (u, w′, i1, . . . , ik−2) − dT (u + 1, w′, i1, . . . , ik−2) = d′ − (d′ + 1) = −1.

(b) Assume instead that vw and vw′ lie in the same component as vu+1. Then,

dT (u, w, i1, . . . , ik−2) − dT (u + 1, w, i1, . . . , ik−2) = d − d = 0

dT (u, w′, i1, . . . , ik−2) − dT (u + 1, w′, i1, . . . , ik−2) = d′ − d′ = 0.

Case 2: Let vi1 , . . . , vik−2 lie in the same component as vu+1.
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(a) Assume vw and vw′ also lie within the same component of vu+1. Then,

dT (u, w, i1, . . . , ik−2) − dT (u + 1, w, i1, . . . , ik−2) = d − (d − 1) = 1

dT (u, w′, i1, . . . , ik−2) − dT (u + 1, w′, i1, . . . , ik−2) = d′ − (d′ − 1) = 1.

(b) Assume instead that vw and vw′ lie in the same component as vu. Then,

dT (u, w, i1, . . . , ik−2) − dT (u + 1, w, i1, . . . , ik−2) = d − d = 0

dT (u, w′, i1, . . . , ik−2) − dT (u + 1, w′, i1, . . . , ik−2) = d′ − d′ = 0.

Case 3: Suppose some of the vertices among vi1 , . . . , vik−2 lie in the same compo-

nent as vu and some lie in the same component as vu+1. Then,

dT (u, w, i1, . . . , ik−2) − dT (u + 1, w, i1, . . . , ik−2) = d − d = 0

dT (u, w′, i1, . . . , ik−2) − dT (u + 1, w′, i1, . . . , ik−2) = d′ − d′ = 0.

Therefore, the vector Su − Su+1 has equal entries among the locations of vertices

that lie in the same component of T − vuvu+1.

To calculate these entry values, we combine the different cases. Notice that Case

3 will always give a zero contribution; therefore, we can omit those entries in the

calculations. We first calculate xu = Suu−Su+1,u. Since vu lies in the same component

as itself, we are working with Cases 1(a) and 2(b). Case 2(b) contributes a zero to

the summation; therefore, we need only consider the vertices in Case 1(a), giving us

xu = −∑u
i1,i2,...ik−2=0 xi1xi2 . . . xik−2 = − (∑u

i=0 xi)k−2.

We now calculate xu+1 = Su,u+1 −Su+1,u+1. Since vu+1 lies in the same component

as itself, we are working with Cases 1(b) and 2(a). Case 1(b) contributes a zero to

the summation; therefore, we need only consider the vertices in Case 2(a), giving us

xu+1 = ∑n
i1,i2,...,ik−2=u+1 xi1xi2 . . . xik−2 =

(∑n
i=u+1 xi

)k−2
.
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Let hu(a, b) = [h0, h1, . . . , hn] ∈ Cn+1 be a vector with at most two distinct coor-

dinates: h0 = . . . = hu = a and hu+1 = . . . = hn = b.

Theorem 4.2. Let x = [x0, x1, . . . , xn] be a Steiner nullvector of a tree T . All entries

that correspond to leaf vertices are constant and equal to the summation of every vertex

except itself.

Proof. Since T is a tree on at least 2 vertices, it must have a leaf vertex, call it v0.

Let v1 be the unique neighbor of v0. Theorem 4.1 ensures that

(D0pT − D1pT )(x) = h0(a, b) · x

= h0

−xk−2
0 ,

(
n∑

i=1
xi

)k−2
 · x

= −xk−1
0 +

(
n∑

i=1
xi

)k−1

= 0

so that xk−1
0 = (∑n

i=1 xi)k−1. Since k − 1 is odd,

x0 =
n∑

i=1
xi.

From here, we see that ∑n
i=0 xi = x0 + x0 so that x0 = 1

2
∑n

i=0 xi. The choice of

v0 was made arbitrarily among the leaf vertices; therefore, this must be true for all

leaf vertices so that they have constant value in the Steiner nullvector. The value of

these leaf vertices can then be determined by ∑n
i=1 xi.

Theorem 4.3. Let vu and vu+1 be adjacent vertices in the tree T on n + 1 vertices.

Let v0, . . . , vu lie in one component of T − vuvu+1 and vu+1, . . . , vn lie in the other

component. Let x = [x0, x1, . . . , xn] be a Steiner nullvector. Then ∑u
i=0 xi = x0 where

x0 is the entry of a leaf vertex.
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Proof. Theorem 4.1 ensures that

(DupT − Du+1pT )(x) = hu(a, b) · x

= hu

−
(

u∑
i=0

xi

)k−2

,

 n∑
i=u+1

xi

k−2
 · x

= −
(

u∑
i=0

xi

)k−1

+
 n∑

i=u+1
xi

k−1

= 0

so that (∑u
i=0 xi)k−1 =

(∑n
i=u+1 xi

)k−1
. Since k − 1 is odd,

u∑
i=0

xi =
n∑

i=u+1
xi. (4.1)

We assumed x0 is the entry of a leaf vertex; therefore, Theorem 4.2 tells us that

x0 = ∑n
i=1 xi. We can rewrite (4.1) to be x0 +∑u

i=1 xi = x0 −∑u
i=1 xi so that

u∑
i=1

xi = 0.

Therefore, ∑u
i=0 xi = x0 as desired.

Given these restrictions on the entries of a Steiner nullvector of a tree T , we prove

the necessary structure of such a nullvector.

Theorem 4.4. The Steiner nullvector entries of a tree T on n + 1 vertices are given

by x0(2 − deg(vt)) where vt is the vertex to which the entry corresponds and x0 is the

entry of the leaf vertices.

Proof. We first consider a leaf vertex, v0. Since deg(v0) = 1, the nullvector entry is

x0 = x0(2 − deg(v0)) as desired. Theorem 4.2 tells us that all leaf vertices have a

constant value in the nullvector; therefore, x0 can represent all entries for leaf vertices.

For the remaining vertices, choose an arbitrary interior vertex, vt, with degree

d. Since T is a tree on at least 2 vertices, vt has at least one neighbor, call it vt+1.
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Let G be the set of all vertices that lie in the same component as vt in T − vtvt+1.

Theorem 4.3 tells us that ∑{i:vi∈G} xi = x0. We can further group the vertices of

G into subgroups G0, . . . , Gd−2 so that every branch leading away from vt contains

vertices that lie in the same group. (Note that there are only d − 1 subgroups since

the branch containing vertex vt+1 is not included in G). Once again, we can apply

Theorem 4.3 to say that ∑{i:vi∈Gj} xi = x0 for 0 ≤ j ≤ d − 2. Therefore,

x0 =
∑

{i:vi∈G}
xi

= xt +
d−2∑
j=0

∑
{i:vi∈Gj}

xi

= xt +
d−2∑
j=0

x0

= xt + x0(deg(vt) − 1)

and xt = x0(2 − deg(vt)) as desired.

We are now equipped to prove the main result. Within the following proof, let

i ∈ {0, . . . , n}k represent a k-dimensional vector with entries taken from the set

{0, . . . , n}. Further, we define xi := ∏dim(i)
j=1 xij

and νt(i) := |{j : ij = t}|.

Theorem 4.5. The Steiner k-matrix of a tree has a nonzero hyperdeterminant.

Proof. Theorem 4.4 tells us that any Steiner nullvector x = [x0, . . . , xn] has entries

given by x0(2 − deg(vt)) where x0 is a leaf vertex entry and vt is the vertex to which

the entry corresponds. We prove the result by contradiction.

Consider any tree T on n + 1 vertices where n ≥ 1. Let vn be a leaf vertex of T

whose neighbor is vn−1, and let x = [x0, . . . , xn−1, xn] be a Steiner nullvector of T .

Assume the hyperdeterminant is zero. Theorem 2.7 states that there must exist a
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nontrivial solution to the Steiner k-ideal. Since the generators of the Steiner k-ideal

are homogeneous, and xn = 0 implies that xt = 0 for all vt ∈ V (T ) by Theorem 4.4,

we may assume xn = 1. Notice that

Dn−1pT (x) =
∑

i∈{0,...,n}k−1

dT (n − 1, i)xi

=
k−1∑
a=0

∑
i∈{0,...,n}k−1

νn(i)=a

dT (n − 1, i,
a︷ ︸︸ ︷

n, n, . . . , n)xi

=
k−1∑
a=0

(
k − 1

a

)
xa

n

∑
i∈{0,...,n−1}k−1−a

dT (n − 1, i,
a︷ ︸︸ ︷

n, n, . . . , n)xi

=
∑

i∈{0,...,n−1}k−1

dT (n − 1, i)xi

+
k−1∑
a=1

(
k − 1

a

) ∑
i∈{0,...,n−1}k−1−a

[dT (n − 1, i) + 1]xi

by partitioning the vectors i according whether νn(i) = 0 or a for some a > 0.

Continuing to rewrite the quantity Dn−1pT (x),

=
k−1∑
a=0

(
k − 1

a

) ∑
i∈{0,...,n−1}k−1−a

dT (n − 1, i)xi +
k−1∑
a=1

(
k − 1

a

) ∑
i∈{0,...,n−1}k−1−a

xi

=
k−1∑
a=0

(
k − 1

a

) ∑
i∈{0,...,n−1}k−1−a

dT (n − 1, i)xi +
(

1 +
n−1∑
i=0

xi

)k−1

−
(

n−1∑
i=0

xi

)k−1

=


k−1∑
a=0

(
k − 1

a

)
k−1−a∑

b=0

∑
i∈{0,...,n−1}k−1−a

νn−1(i)=b

dT (n − 1, i)xi

+ 2k−1 − 1

=
k−1∑

a=0

(
k − 1

a

)
k−1−a∑

b=0

(
k − 1 − a

b

)
xb

n−1
∑

i∈{0,...,n−2}k−1−a−b

dT (n − 1, i)xi

+ 2k−1 − 1

=
 k−1∑

a+b=0

(
k − 1

a, b, k − 1 − a − b

)
xb

n−1
∑

i∈{0,...,n−2}k−1−a−b

dT (n − 1, i)xi

+ 2k−1 − 1

=
k−1∑

j=0

(
k − 1

j

) j∑
b=0

(
j

b

)
xb

n−1
∑

i∈{0,...,n−2}k−1−j

dT (n − 1, i)xi

+ 2k−1 − 1
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=
k−1∑

j=0

(
k − 1

j

)
(xn−1 + 1)j

∑
i∈{0,...,n−2}k−1−j

dT (n − 1, i)xi

+ 2k−1 − 1

where j has been introduced to replace a + b. If T is a tree on 2 vertices, then

Dn−1pT (x) = 2k−1 − 1 ̸= 0. Therefore, the only Steiner nullvector of a tree on 2

vertices is the trivial one, and the hyperdeterminant must be nonzero. We continue

by assuming that T is a tree on at least 3 vertices.

If we delete the leaf vertex vn, we obtain a new tree T ′ on n vertices. Let x′ =

[x′
0, . . . , x′

n−2, x′
n−1] be a Steiner nullvector of T ′. Notice that for 0 ≤ i ≤ n − 2,

degT (vi) = degT ′(vi), and degT (vn−1) = degT ′(vn−1) + 1. Using Theorem 4.4 and the

definition of x, we can say that x′ = [x0, . . . , xn−2, xn−1+xn] = [x0, . . . , xn−2, xn−1+1].

Notice that

Dn−1pT ′(x′) =
∑

i∈{0,...,n−1}k−1

dT (n − 1, i)x′i

=
k−1∑
j=0

∑
i∈{0,...,n−1}k−1

νn−1(i)=j

dT (n − 1, i)x′i

=
k−1∑
j=0

(
k − 1

j

)(
x′

n−1

)j ∑
i∈{0,...,n−2}k−1−j

dT (n − 1, i)xi

=
k−1∑
j=0

(
k − 1

j

)
(xn−1 + 1)j

∑
i∈{0,...,n−2}k−1−j

dT (n − 1, i)xi.

Since we assumed x and x′ were Steiner nullvectors, both Dn−1pT (x) = 0, and

Dn−1pT ′(x′) = 0. Therefore,

0 = Dn−1pT (x) − Dn−1pT ′(x′)

=
k−1∑

j=0

(
k − 1

j

)
(xn−1 + 1)j

∑
i∈{0,...,n−2}k−1−j

dT (n − 1, i)xi

+ 2k−1 − 1

−
k−1∑
j=0

(
k − 1

j

)
(xn−1 + 1)j

∑
i∈{0,...,n−2}k−1−j

dT (n − 1, i)xi

= 2k−1 − 1 ̸= 0.
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Therefore, the only solution must be the trivial one, and the hyperdeterminant must

be nonzero.

4.2 k = 2 Variations

We attempted many different methods as we tried to prove the even k case. These

methods, while unsuccessful for k > 2, provided new insight into the k = 2 case.

The results presented next prove that the standard distance matrix for a tree has

nonzero determinant. The Graham-Pollak theorem is more precise since it provides an

exact formula for the determinant; however, these new results generalize the theorem

utilizing new techniques. Note that in all cases, T is a tree on at least 2 vertices.

4.2.1 Polynomial Method

Proposition 4.6. The 2-Steiner nullity of a tree T is zero.

Proof. We show this by arguing that any Steiner 2-nullvector must be the all-zeroes

vector. Suppose x ∈ CV (T ) is a Steiner 2-nullvector, and for each u ∈ V (G), write

xu for its u-coordinate. Then x must be a common zero of the polynomial system

{Dup
(2)
T }u∈V (G). Note that

Dvp
(2)
T (x) = 2

∑
u∈V (T )

d(u, v)xu.

Consider two adjacent vertices v, w ∈ V (T ). Then

∑
u∈V (T )

d(u, v)xu = 0 =
∑

u∈V (T )
d(u, w)xu.

Subtracting the right-hand side from the left-hand side yields

∑
u∈V (T )

(d(u, v) − d(u, w))xu = 0. (4.2)
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The vertices of T can be partitioned into two sets, V (Tj) for j = 1, 2, where Tj =

Tj(v, w) are the two components of T − vw indexed so that v ∈ T1 and w ∈ T2. Note

that d(u, v) − d(u, w) = (−1)j if u ∈ Tj. Therefore, abbreviating ∑u∈U xu by Σ(U)

and S(v, w) := V (T1(v, w)), we may rewrite (4.2) as

Σ(S(v, w)) = Σ(S(w, v)). (4.3)

Let v ∈ V (T ) be arbitrary, and suppose w1, . . . , wdegT (v) are the neighbors of v in T .

Applying (4.3) for an edge vwj yields

Σ(S(wj, v)) = Σ(S(v, wj)) = xv +
∑
i ̸=j

Σ(S(wi, v)) = Σ(V (T )) − Σ(S(wj, v)). (4.4)

Therefore,

2Σ(S(wj, v)) = Σ(V (T )),

so we may rewrite (4.4) as

xv = (1 − degT (v)/2)Σ(V (T )).

Because the system {Dup
(2)
T }u∈V (G) is homogeneous, we may assume Σ(V (T )) = 1,

i.e., xv = 1 − degT (v)/2 for every v. Thus, for each v ∈ V (G), we have

0 = 2
∑

u∈V (T )
d(u, v)xu

=
∑

u∈V (T )
d(u, v) (2 − degT (u)) .

From here, there are two ways with which we can obtain the result.

• Proof 1: We prove by induction that there exists a vertex v in every tree such

that ∑u∈V (T ) d(u, v) (2 − degT (u)) > 0.

For a tree on 2 vertices, note that ∑u∈V (T ) d(u, v) (2 − degT (u)) = 1 > 0.

Assume the result holds for a tree on n − 1 vertices.
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Consider a tree, T , on n vertices. Remove a leaf to make a new tree, T ′ on n−1

vertices. By induction, there exists a v ∈ V (T ′) such that

∑
u∈V (T ′)

d(u, v) (2 − degT ′(u)) > 0.

Attach an additional vertex w to some vertex z ∈ V (T ′). Now, degT (z) =

degT ′(z) + 1 and d(w, v) = d(z, v) + 1. Let S ′ = ∑
u∈V (T ′) d(u, v) (2 − degT ′(u))

where S ′ > 0 by induction. Now, let

S =
∑

u∈V (T )
d(u, v) (2 − degT (u))

= S ′ − d(z, v)(2 − degT ′(z)) + d(z, v)(2 − degT (z)) + d(w, v)(2 − degT (w))

= S ′ − d(z, v) + d(w, v)

= S ′ + 1 > 0.

Therefore, the only solution must be the trivial one so that the nullity is zero.

• Proof 2: We still prove that there exists a vertex v in every tree such that

∑
u∈V (T )

d(u, v)(2 − degT (u)) > 0,

but not by induction. Let H be the set of high degree vertices (vertices with

degree at least 3), and let L be the set of low degree vertices (the leaves). Then∑
u∈H d(u, v)(2 − deg(u)) +∑

w∈L d(w, v)(2 − deg(w)) > 0 so that

∑
w∈L

d(w, v) >
∑
u∈H

d(u, v)(−2 + deg(u)) ≥
∑
u∈H

d(u, v).

We show there exists a matching between the high degree vertices and the low

degree vertices that proves the inequality. Choose a leaf, w, and let P be the

path used to calculate d(w, v). If there exists a high degree vertex on P , call it

u that has not been previously matched, match the leaf with the vertex u that
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minimizes d(w, u). Then d(w, v) = d(w, u)+d(u, v) so that d(w, v) ≥ d(u, v). If

no such u exists, then the summation on the left hand side (i.e. the low degree

vertices) receives an additional entry while the right hand side does not. This

method ensures that every high degree vertex gets paired with a leaf. Indeed,

assume a high degree vertex u did not receive a matching with a leaf. This would

imply there were more high degree vertices than leaves, which is impossible.

Therefore, with each pairing w and u, we have d(w, v) ≥ d(u, v) with at least

one pairing where d(w, v) > d(u, v). This ensures ∑w∈L d(w, v) >
∑

u∈H d(u, v)

as desired.

Proposition 4.6 ensures the only solution to the Steiner 2-ideal is the trivial one.

Therefore, by Theorem 2.7, the determinant must be nonzero.

4.2.2 Kernel Method

We first define some terms using the same vocabulary as in [21].

Definition 4.7. A map K : X ×X → C is called a kernel on X. We say that a kernel

K is hermitian if K(x, y) = K(y, x). A hermitian kernel K will be called Schoenberg

kernel if K(x, y) = K(y, x) ≥ 0 and K(x, x) = 0.

Let cc(X) denote the set of all complex-valued functions on a set X with finite

supports.

Definition 4.8. We say that a hermitian kernel K is conditionally (strictly) negative

definite if

∀λ ∈ cc(X)\{0}
∑

x,y∈V

λ(x)λ(y)K(x, y) ≤ 0 (< 0) provided that
∑
x∈X

λ(x) = 0.
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Definition 4.9. A map α is called the quadratic embedding of a metric space into

a Hilbert space if d(x, y) = ∥α(x) − α(y)∥2.

Definition 4.10. A system of vectors {v0, . . . , vn} ∈ V is affinely independent if the

system of vectors {v1 − v0, . . . , vn − v0} is linearly independent.

Knowing these definition, we next introduce two theorems that will serve as an

outline to prove our result.

Theorem 4.11. [24] A graph G admits a quadratic embedding if and only if the

kernel formed from its’ distance matrix is conditionally negative definite.

Theorem 4.12. [21] Let (X, K) be a finite set with a conditionally negative definite

Schoenberg kernel, let α : V → H be its quadratic embedding. The following conditions

are equivalent:

(a) The matrix defined by K is invertible.

(b) The set of vectors {α(x) : x ∈ X} is affinely independent.

(c) K is conditionally strictly negative definite.

Our goal is then to prove that a tree can be applied to these theorems. We prove

this below.

Theorem 4.13. Any tree, T , admits a quadratic embedding into a Hilbert space.

Proof. We will label the vertices of T with n-tuples consisting of 1’s and 0’s. Every

time a vertex, j, is labeled, we add ej to the label of its neighbor. We prove this

labeling is a quadratic embedding recursively.

Consider when n = 1. The vertex is labeled as (0). Clearly, ∥α(v) − α(v)∥2 =

∥(0) − (0)∥2 = 0 = dT (v, v) so there exists a quadratic embedding.
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Assume the result holds on n − 1 vertices.

Consider a tree on n vertices. Identify a leaf vertex, v, and its neighbor, w. Delete

vertex v to obtain a tree on n − 1 vertices. We know by induction that there exists

a quadratic embedding of this tree. Now, append v back to the tree by attaching it

to vertex w, and append 0 to the label of every labeled vertex. Note this does not

change the quadratic embedding for the first n−1 vertices since the 0 in the last spot

of the labeling will not affect the distance calculation. Vertex w; therefore, has some

labeling (w1, . . . , wn−1, 0). Label vertex v as (w1, . . . , wn−1, 0) + en. We know that for

any vertex j in the tree, dT (w, j) = ∥α(w) − α(j)∥2. Further, by the structure of a

tree, dT (v, j) = dT (w, j) + 1. For every j ∈ V (T )\{v}, α(j) has a 0 in the last spot of

its labeling. Therefore, ∥α(v) − α(j)∥2 = ∥α(w) − α(j)∥2 + 1. Therefore, a quadratic

embedding exists as desired.

Theorem 4.14. The determinant of the distance matrix of any tree, T , is nonzero.

Proof. Theorem 4.13 states that T can be quadratically embedded into a Hilbert

space. Therefore, by Theorem 4.11, the kernel formed from the distance matrix of

T is conditionally negative definite. If we can prove that the set of vectors created

from the quadratic embedding is affinely independent, Theorem 4.12 states that the

distance matrix is invertible. From our mapping, take v0 to be the trivial vector. We

prove v1, . . . , vn are linearly independent by induction.

Clearly, a single vector, v1 is linearly independent.

Assume the result holds on a tree on n − 1 vertices.

By construction of the embedding, the nth vertex is assigned a vector that has a

1 in the last entry. Every other vector has a zero in the last entry. By induction, the

first n − 1 vectors are linearly independent. This additional vector has an entry that

cannot be obtained by any linear combination of the previous vectors. Therefore, the
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system is linearly independent as desired. Theorem 4.12 then says that the kernel

is conditionally strictly negative definite and the determinant of the distance matrix

must be nonzero.

4.2.3 Elementary Vector Method

Linear algebra tells us that a matrix is invertible if it’s columns (or rows) are linearly

independent. We use this fact and reduce the columns of the distance matrix for a

tree into the elementary vectors, thus proving the result.

Theorem 4.15. The determinant of the distance matrix of any tree T on at least

two vertices is nonzero.

Proof. We prove this by showing there are a series of steps that allow us to obtain the

elementary vectors from the columns of the distance matrix. Therefore, the columns

span Rn so that the determinant of the distance matrix is nonzero.

First, we consider the vertices that have degree 2 in the tree. Let Kvi
be the

vector with entries representing the distance from vertex vi to the other vertices.

Further, assume vk is the vertex of degree 2 with vk−1 and vk+1 as its neighbors. Let

v0, v1, . . . , vk−1 lie in one component of T − vk−1vk and vk, vk+1, . . . , vn−1 lie in the

other component. Then

2Kvk
− Kvk−1 − Kvk+1 = [0, 0, . . . , 0, −2, 0, . . . , 0] (4.5)

where the only nonzero entry is in position vk. Therefore, we have a multiple of the

elementary vector ek.

We consider the leaf vertices next. Let L represent the set containing all the leaves

of the tree. We know |L| = x ≥ 2; therefore, without loss of generality assume v0 ∈ L
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and v1 is the unique neighbor of v0. Then

Kv0 − Kv1 = [−1, 1, 1, . . . , 1]. (4.6)

Since Kvℓ
− Kvℓ+1 has the same form for all vℓ ∈ L and vℓ+1 the unique neighbor of

vℓ, we can conclude that

∑
vℓ∈L

(
Kvℓ

− Kvℓ+1

)
= [x − 2, x − 2, . . . , x − 2, x, . . . , x] (4.7)

where the x − 2 entries are in leaf positions and the x entries are in positions of

vertices of degree 2 or greater. Note that if every non-leaf vertex was degree 2, then

∑
vℓ∈L

(
Kvℓ

− Kvℓ+1

)
− 2

∑
{k:deg(vk)=2}

ek = [x − 2, x − 2, . . . , x − 2]. (4.8)

Therefore, we have obtained the constant vector so that

Kv0 − Kv1 −
1

x − 2
∑

vℓ∈L

(
Kvℓ

− Kvℓ+1

)
= [−2, 0, . . . , 0] (4.9)

where the only nonzero entry is in position v0, a leaf vertex. Note, however, this only

holds when there are no vertices of degree 3 or greater. If these high degree vertices

exist in the tree, then

∑
vℓ∈L

(
Kvℓ

− Kvℓ+1

)
− 2

∑
{k:deg(vk)=2}

ek = [x − 2, x − 2, . . . , x − 2, x, . . . , x] (4.10)

where the x entries are in the positions of the high degree vertices. Therefore, we move

on to the vertices of degree at least 3 to obtain the constant vector from Equation

4.10.

Consider a vertex, vt, of degree d ≥ 3 and let N = {vt+1, vt+2, . . . , vt+d} be the

set of neighbors of vt. Each neighbor creates a sub-tree that leads away from vertex

vt. Then

2Kvt − Kvt+1 − Kvt+2 = [0, 0, . . . , 0, −2, −2, . . . , −2] (4.11)
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where the nonzero entries are at locations vt and the vertices in the sub-trees not

attached to vertices vt+1 or vt+2. Notice that

2dKvt −2
∑

vi∈N
Kvi

= [−2(d−2), . . . , −2(d−2), −2d, −2(d−2), . . . , −2(d−2)] (4.12)

where every entry is −2(d − 2) except the vt entry. Notice that in Equation 4.10, the

vt entry is x since it is a vertex of degree at least 3. Therefore, we can add a multiple

of Equation 4.12 to Equation 4.10 so that it has the same entry in position vt as the

entries in the leaf positions. Indeed,

∑
vℓ∈L

(
Kvℓ

− Kvℓ+1

)
− 2

∑
{k:deg(vk)=2}

ek +
1
2

2dKvt − 2
∑

vi∈N
Kvi

 =

[x − d, . . . , x − d, x − d + 2, . . . , x − d + 2]

where now the x − d entries are in positions of leaf vertices, degree 2 vertices, as well

as the vertex vt while the x − d + 2 entries are in locations of all other high degree

vertices. The same technique can be applied so that the other high degree vertices’

entries match the remaining entries, thus obtaining the constant vector as desired.

This constant vector can be used to complete the remaining cases. Equation 4.6

applies to any leaf vertex; therefore, subtracting off a multiple of the constant vector

allows us to obtain the elementary vector eℓ for any leaf, vℓ. Equation 4.12 applies to

any vertex of degree 3 or more; therefore, subtracting off a multiple of the constant

vector allows us to obtain the elementary vector et for any high degree vertex, vt.

We have now accounted for all vertices producing a multiple of their corresponding

elementary vector; therefore, the columns span Rn and the determinant of the distance

matrix is nonzero as desired.
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4.2.4 Poisson-Product Formula Method

The last method we considered was applying the Poisson-Product Formula to the

distance matrix of a star graph. We include the following description of the product

formula from [10].

Theorem 4.16 (Poisson Product Formula). Let F1, . . . , Fn be homogeneous polyno-

mials of respective degrees d1, . . . , dn in K[x1, . . . , xn] where K is an algebraically

closed field. For 1 ≤ i ≤ n, let Fi be the homogeneous polynomial in K[x2, . . . , xn]

obtained by substituting x1 = 0 in Fi, and let fi be the polynomial in K[x2, . . . , xn]

obtained by substituting x1 = 1 in Fi. Let V be the set of simultaneous zeros of the

system of polynomials {f2, . . . , fn}, that is, V is the affine variety defined by the poly-

nomials. If Res(F2, . . . , Fn) ̸= 0, then V is a zero-dimentional variety (a finite set of

points), and

Res(F1, . . . , Fn) = Res(F2, . . . , Fn)d1
∏
p∈V

f1(p)m(p)

where m(p) is the multiplicity of a point p ∈ V .

Cooper and Dutle utilized this method in [7] by applying it to the all-ones hyper-

matrix, so we had hoped to extend this to the Steiner distance k-matrix. While this

did not prove fruitful for even k > 2, it had not been applied to the k = 2 case (the

standard distance matrix) to the best of our knowledge. Further, we could only apply

it to the star graph since it has predictable entries in its’ distance matrix. With this

method, we were actually able to prove the formula in the Graham-Pollak theorem

for a star rather than just proving that the determinant was nonzero like the previous

cases.

Theorem 4.17. Let G be a star graph on n vertices and M be its Steiner distance

2-matrix. Then det(G) = −(n − 1)(−2)n−2.
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Proof. Let 1 be the center vertex and 2, . . . , n be the leaf vertices of G. We proceed

by induction using the Poisson Product Formula. The base case when n = 2 is trivial

since M =

0 1

1 0

 so that det(M) = −1 = −(n − 1)(−2)n−2.

Assume the result holds for a star on n − 1 vertices.

Now, consider a star on n vertices. In this case, M =



0 1 1 1 · · · 1

1 0 2 2 · · · 2

1 2 0 2 · · · 2
... ... 2 . . . . . .

...

1 2 2 2 . . . 0


so

that F1 = ∑n
i=2 xi and Fj = x1 + 2∑n

i=2 xi − 2xj for 2 ≤ j ≤ n. The Poisson Product

Formula requires substituting 0 for some variable. Slight variations of the proof occur

depending on which variable is chosen.

• Proof 1: If we set x1 = 0, we are left with the matrix 2J − 2I of size n − 1.

Therefore, Res(F2, · · · , Fn) = det(2J − 2I) = 2n−1(−1)n−2(n − 2). Applying

this to the Poisson Product formula yields

Res(F1, . . . , Fn) = 2n−1(−1)n−2(n − 2)
∏
p∈V

f1(p)m(p).

To find the solutions to {f2, . . . , fn}, we solve

(2J − 2I)
[
p2 p3 p4 . . . pn

]T

=
[
−1 −1 −1 . . . −1

]T

.

This gives the solution p =

−
1

2(n − 2), −
1

2(n − 2), . . . , −
1

2(n − 2)

. Lastly,

applying this to the Poisson Product formula gives us

Res(F1, . . . , Fn) = 2n−1(−1)n−2(n − 2)

−
n − 1

2(n − 2)

 = −(n − 1)(−2)n−2

as desired.
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• If we instead set xn = 0, then the resulting graph G is still a star on n − 1

vertices. Applying the inductive hypothesis to the Poisson Product formula

then yields

Res(F1, . . . , Fn) = −(n − 2)(−2)n−3 ∏
p∈V

fn(p)m(p).

Let D =



0 1 1 · · · 1

1 0 2 · · · 2

1 2 0 · · · 2
... ... ... . . . 2

1 2 2 · · · 0


. To find the solutions to {f1, . . . , fn−1}, we solve

D
[
p1 p2 p3 . . . pn−1

]T

=
[
−1 −2 −2 . . . −2

]T

.

This gives the solution

p =



0 1 1 · · · 1

1 0 2 · · · 2

1 2 0 · · · 2
... ... ... . . . 2

1 2 2 · · · 0



−1 

−1

−2

−2
...

−2



=
1

det(D)


2n−2(−1)n−3(n−3) −(−2)n−3 ··· −(−2)n−3

−(−2)n−3 2n−4(−1)n−3(n−3) −(−2)n−4 ···
... −(−2)n−4

... −(−2)n−4

−(−2)n−3
... −(−2)n−4 2n−4(−1)n−3(n−3)





−1

−2

−2
...

−2


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where det(D) = 2n−3(−1)n−2(n − 2). Continuing with this substitution,

=



−
2(n − 3)

n − 2
1

n − 2 · · ·
1

n − 2
1

(n − 2) −
n − 3

2(n − 2)
1

2(n − 2) · · ·

...
1

2(n − 2)
. . .

1
2(n − 2)

1
n − 2

...
1

2(n − 2) −
n − 3

2(n − 2)





−1

−2

−2
...

−2



=



− 2
n − 2

−
1

n − 2
...

−
1

n − 2


Lastly, applying this to the Poisson Product formula gives us

Res(F1, . . . , Fn) = −(n − 2)(−2)n−3

−
2

n − 2 + 2(n − 2)

−
1

n − 2




= −(n − 1)(−2)n−2

as desired.

41



Chapter 5

Distance Critical Graphs

Before extending the Graham-Pollak theorem to higher orders, we began by analyzing

the order-2 case (the general definition of distance) for trees. While many proofs

exist in the literature, the simplest proof was perhaps given by Yan-Yeh. This proof

combines different linear algebra techniques to calculate this determinant. One such

technique is the following:

Proposition 5.1 (Dodgson’s Rule [12]). Let A be a matrix of order n > 2, Aij the

minor of A formed by deleting the ith row and jth column, and A2 the minor of A by

deleting rows 1 and n. Then

det(A) det(A2) = det(A11) det(Ann) − det(A1n) det(An1).

Using this result, we present the Yan-Yeh proof since the basic idea for defining

distance critical graphs relies on it’s technique.

5.1 Yan-Yeh Proof

Theorem 5.2 ([16]). Suppose T is a tree with vertex set V (T ) = {v1, . . . , vn}. Let

D = (dij)n×n be the distance matrix of T , where Dij equals the distance between

vertices vi and vj. Then det(D) = −(n − 1)(−2)n−2.

Proof. [28] The theorem is proved through induction. First, the base cases n ≤ 3 are

trivial to show.
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Assume the result holds for a tree on n − 1 vertices.

Consider a tree, T , on n vertices with n ≥ 4. Note that T has at least two

pendant, or leaf, vertices. Without loss of generality, we assume both v1 and vn are

two pendant vertices of T . Further, assume vp is the unique neighbor of v1, and vq

is the unique neighbor of vn. Let di denote the ith column of D. By definition of

v1, vp, vq, and vn, (d1 − dp)T = (−1, 1, 1, . . . , 1) and (dn − dq)T = (1, 1, . . . , 1, −1).

Therefore,

det(D) = det(d1 − dp + dq − dn, d2, . . . , dn−1, dn).

Notice that (d1 − dp + dq − dn)T = (−2, 0, 0, . . . , 0, 2) so that

det(D) = −2 det(D11) + 2(−1)n+1 det(Dn1).

Dodgson’s determinant-evaluation rule also states that

det(D) det(D2) = det(D11) det(Dnn) − det(D1n) det(Dn1).

Since the distance matrix, D, is symmetric, det(D1n) = det(Dn1). Also, note that

D2, D11, and Dnn respectively represent the distance matrices of the trees T −v1 −vn,

T − v1 and T − vn. The induction hypothesis allows us to conclude that
det(D) = −2[−(n − 2)(−2)n−3] + 2(−1)n+1 det(Dn1),

det(D)[−(n − 3)(−2)n−4] = [−(n − 2)(−2)n−3]2 − [det(Dn1)]2

from which the result immediately follows.

5.2 Definitions/Computations

The elegance of the Yan-Yeh proof lies in the fact that trees always have at least 2

leaves which can be deleted such that the remaining entries in the distance matrix

are unchanged. This holds because the interior (or non-leaf) vertices have a unique
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path by which the distance metric is obtained. This led us to question what types of

graphs have the restriction that no vertex can be deleted without altering the distance

metric on the remaining vertices. The question can also be viewed as determining

whether there exists a maximal proper induced subgraph H of a graph G such that

H embeds isometrically into G. Djokovic studied this idea specifically when G is a

hypercube [11] and Winkler expanded on this to prove that isometric embeddings of

H into any product of complete graphs are unique [27]. Our goal, however, was to

study these isometric embeddings among all graphs. To begin, we define this new

class of graphs.

Definition 5.3. Distance Critical (DC) Graph: A connected graph such that no vertex

can be deleted without altering the distance metric on the remaining vertices.

The existence of leaf vertices in a graph, G, have already been shown to eliminate

G from being distance critical. We require the following definition to determine

whether the vertices in a graph classify it as distance critical.

Definition 5.4. Determining Pair for vertex v: a pair of nonadjacent vertices, a and

b, with exactly one common neighbor, v.

These definitions immediately result in the following property.

Proposition 5.5. A connected graph G is distance critical if and only if for all

v ∈ V (G), v admits a determining pair {a, b} where a, b ∈ V (G).

Proof. First we prove the forward direction. Note that, if G is complete, then it is not

distance critical, and no vertex admits a determining pair. If G is not complete but

is connected and distance critical, then let P be a path that witnesses the shortest

distance between two nonadjacent vertices, x and y. Let v be an interior vertex of

P , and let a and b be the neighbors of v in P . First, notice that a is not adjacent
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to b; otherwise, v would not be included in the shortest path. Assume there exists

another vertex, w, such that a is adjacent to w and b is adjacent to w. Since G is

assumed to be distance critical, no vertex can be deleted without altering the distance

metric on the remaining vertices. However, by deleting vertex v, the distance from

x to y remains unchanged since the path xPawbPy has the same length as P . This

is a contradiction. Therefore, v must be the unique common neighbor of some two

nonadjacent vertices, as desired.

Now for the reverse direction. Let v be some vertex of a connected graph G and

choose two other vertices, x and y, from G−v. If there exists a shortest path between

x and y that does not contain v, then the distance between x and y in G − v and G

is the same. Now, consider when v lies on every shortest path between vertices x and

y. Choose one of these shortest paths and call it P . Let a and b be the neighbors

of v that lie on P . First, notice that a is not adjacent to b; otherwise, v would not

be included in the shortest path. Assume there exists another vertex, w ̸= v, such

that a is adjacent to w and b is adjacent to w. However, by deleting vertex v, the

distance from x to y remains unchanged in G − v since the path xPawbPy is present

in G − v and has the same length as P . Therefore, deleting vertex v will never affect

the distance metric and G is distance critical by contraposition.

For an example of a distance critical graph, see Figure 5.1.

Proposition 5.5 immediately implies the following corollary.

Corollary 5.6. Distance critical implies minimum degree at least 2.

We were able to compute the number of distance critical graphs up until 11 vertices

using Sage. See Table 5.1 for these results. This became our database from which to

derive conjectures for distance critical graphs. Clearly, there are no distance critical

graphs on one or two vertices since there are not enough vertices to form a determining
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Figure 5.1 Dodecahedron

pair. Further, there are no distance critical graphs on three or four vertices given the

restrictions imposed by Proposition 5.5. The first distance critical graph that occurs

is the cycle on five vertices, as shown in Figure 5.2.

Table 5.1 The total num-
ber of distance critical graphs
on n vertices.

n Number of DC graphs
1 0
2 0
3 0
4 0
5 1
6 1
7 4
8 15
9 168
10 2,252
11 94,504

The maximum possible number of edges in a graph on n vertices is known to be

n(n − 1)/2. If N = n(n − 1)/2, then the edge density of a graph G is the ratio of the

number of edges in the graph and the total possible number of edges in the graph,

i.e. |E(G)|/N . After analyzing our database up to 11 vertices, it appeared that the

edge densities of the graphs were rather sparse, leading to the following conjecture.
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Figure 5.2 The cy-
cle on 5 vertices (C5)

Conjecture 2. Distance critical graphs have a maximum edge density of 1/2.

The definition of distance critical graphs relies on a local property (requiring that

each vertex has a determining pair) which did not prove useful in proving this edge

density hypothesis. We therefore tried to narrow our search to detect some other

property that inhibits high density distance critical graphs. Notice that a graph

being distance critical does not require that it has maximum density. Consider, for

example, the cycle on 8 vertices as shown in Figure 5.3.

Figure 5.3 The cy-
cle on 8 vertices (C8)

C8 is clearly a distance critical graph; however, edges can be added without break-

ing it’s distance criticality. A graph G with a given graph property P is said to be

edge-maximal if adding any additional edge to G destroys P . Consider the example

presented in Figure 5.4 that depicts the maximal distance critical graph on 8 vertices

that contains C8 as a subgraph.
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Figure 5.4 Maxi-
mal DC cycle on 8
vertices

With this restriction, we adjusted our previous Sage code to display only the

maximal distance critical graphs. See Table 5.2 for these results.

Table 5.2 The total number of max-
imal distance critical graphs on n ver-
tices.

n Number of Maximal DC graphs
1 0
2 0
3 0
4 0
5 1
6 1
7 2
8 4
9 14
10 82
11 557

5.3 Distance Critical Results

With this new database in hand, we were able to prove the following results for

distance critical graphs. We began by considering products of graphs to obtain some

larger examples.
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Definition 5.7. The cartesian product of two graphs G and H, denoted G2H, is

a graph such that V (G2H) = V (G) × V (H). Two vertices (x, y) and (x′, y′) are

adjacent in G2H if and only if either

• x = x′ and y ∼ y′ or

• y = y′ and x ∼ x′.

Lemma 5.8. The cartesian product of a distance critical graph and any other graph

will be distance critical.

Proof. Consider w ∈ V (H) and (v, w) ∈ G2H with G a distance critical graph and H

be some other graph. Let v ∈ V (G) with a and b as the determining pair for v. Since

a and b are the determining pair for v, this implies that (v, w) is adjacent to (a, w) as

well as to (b, w). Further, (a, w) and (b, w) are not adjacent because there is no edge

between a and b in G. Assume there is another neighbor (x, y) that is adjacent to

(a, w) and (b, w). If (x, y) is adjacent to (a, w) either x = a or y = w. If x = a, this

implies w is adjacent to y. We are also assuming that (x = a, y) is adjacent to (b, w).

This only occurs if y = w and a is adjacent to b. This is not possible because a and

b are the determining pair of vertex v and not adjacent. Therefore x ̸= a. The other

option is if y = w. This would then imply that x is adjacent to b and x is adjacent

to a. Since a and b are the determining pair of vertex v, this implies that x = v and

thus (x, y) = (v, w). Therefore, every vertex of G2H has a determining pair and the

cartesian product is distance critical as desired.

Definition 5.9. The tensor product of two graphs G and H, denoted G × H, is

a graph such that V (G × H) = V (G) × V (H). Two vertices (x, y) and (x′, y′) are

adjacent in G × H if and only if x ∼ x′ and y ∼ y′.
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Lemma 5.10. If the tensor product of two graphs, G and H, is not distance critical,

then either G or H is not distance critical.

Proof. Assume both G and H are distance critical and consider (v, w) ∈ G × H. Let

v ∈ V (G) with a and b as the determining pair for v. Let w ∈ V (H) with c and d as

the determining pair for w. Since a and b are adjacent to v and c and d are adjacent to

w, this implies that (v, w) is adjacent to (a, c) as well as to (b, d). Further, (a, c) and

(b, d) are not adjacent because there is no edge between a and b in G. Assume there

is another neighbor (x, y) that is adjacent to (a, c) and (b, d). If (x, y) is adjacent to

(a, c), then x is adjacent to a and y is adjacent to c. If (x, y) is adjacent to (b, d),

then x is adjacent to b and y is adjacent to d. Therefore, overall x is adjacent to a

and b and y is adjacent to c and d. From our assumption, this implies that x = v and

y = w. Therefore, (v, w) is the unique common neighbor between vertices (a, c) and

(b, d) and the tensor product is distance critical as desired.

An example of non-distance criticality being preserved would be letting G = C5

and H = C4.

Definition 5.11. The strong product of two graphs G and H, denoted G ⊠ H, is

a graph such that V (G ⊠ H) = V (G) × V (H). Two vertices (x, y) and (x′, y′) are

adjacent in G ⊠ H if and only if

◦ x = x′ and y ∼ y′ or

◦ y = y′ and x ∼ x′ or

◦ x ∼ x′ and y ∼ y′.

Lemma 5.12. If the strong product of two graphs, G and H, is not distance critical,

then either G or H is not distance critical.
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Proof. Assume G and H are distance critical graphs and consider (v, w) ∈ G ⊠ H.

Let v ∈ V (G) with a and b as the determining pair for v. Let w ∈ V (H) with c

and d as the determining pair for w. Since a and b are adjacent to v and c and d

are adjacent to w, this implies that (v, w) is adjacent to (a, c) as well as to (b, d).

Further, (a, c) and (b, d) are not adjacent because there is no edge between a and b

in G. Assume there is another neighbor (x, y) that is adjacent to (a, c) and (b, d). If

(x, y) is adjacent to (a, c), then either x = a or x is adjacent to a. If x = a, then

y must be adjacent to c. Further, we are assuming that (x = a, y) is adjacent to

(b, d). This implies that a is adjacent to b which is not true since a and b are the

determining pair for v. Therefore, x ̸= a, and we can assume that x is adjacent to

a. The same reasoning can be applied to (x, y) and (b, d) to conclude that x must be

adjacent to b. Therefore, x is adjacent to a and b, so x = v. Once again, the same

reasoning applies to the second coordinate so that y = w and (v, w) will be the unique

common neighbor between (a, c) and (b, d). Therefore, G ⊠ H is distance critical as

desired.

We next present results based on the structural properties of distance critical

graphs. The girth of a graph G is the length of the smallest cycle in the graph.

Lemma 5.13. Let g represent the girth of a graph. A graph, G, that has minimum

degree at least 2 and girth g > 4 must be distance critical.

Proof. Consider the contrapositive of this statement. Let G be a graph of mini-

mum degree at least 2 that is not distance critical. Since G is not distance critical,

Proposition 5.5 implies that there exists a vertex v which admits no determining pair.

However, v must have at least 2 neighbors, call them a and b. If a and b are adjacent,

then the graph contains a triangle, so that g = 3. Now, assume a and b are not

adjacent, so there must be another vertex w adjacent to both a and b, or else they
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would be a determining pair for v. Then G contains the 4-cycle vawbv. Therefore,

g ≤ 4 in this case as well, so, if G is a 2-connected graph that is not distance critical,

then g ≤ 4 as desired.

Within the following lemma, a connected graph G is said to be κ-connected if

|V | > κ and removing any κ − 1 vertices from G does not disconnect it.

Lemma 5.14. In a 2-connected distance critical graph, every vertex is contained in

a cycle of length at least 5.

Proof. Let v be some vertex in G. By Proposition 5.5, there exist two nonadjacent

neighbors, a and b, of v, so that v is their unique common neighbor. Further, Corollary

5.6 guarantees that a has degree at least 2. Since a and b are nonadjacent, there must

exist some other vertex, x ̸= v, that is adjacent to a. This vertex x cannot be adjacent

to b; otherwise, v would not be the unique common neighbor of a and b. We can use

the same argument to show that there exists a vertex, y ̸= v, that is adjacent to b but

not adjacent to a. It follows also that x ̸= y. Now, G is 2-connected; therefore, we

can delete vertex v and there will still exist a path, P , between x and y in G−v. The

argument that there exists some cycle of length at least 5 that contains v is made via

several cases.

• If a and b do not lie on the path P , then xavbyPx is already a cycle in G with

length at least 5.

• Assume without loss of generality that b lies on P but a does not. Then, there

must exist some other vertex, call it c, that lies between x and b on P , since x

and b are non-adjacent in G and therefore also in G − v. Therefore, the graph

G contains the cycle xavbPx of length ≥ 5.
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• If both a and b lie on P , there must exist some vertex, call it e, that lies between

a and b on P (because a is not adjacent to b). However, if this was the only

other vertex of aPb, then v would not be the unique common neighbor of a and

b. Therefore, the path aPb has length at least 2, and once again, the graph G

then contains the cycle avbPa of length at least 5.

This completes all possible cases; therefore, a distance critical graph will have

every vertex contained in a cycle of length at least 5 as desired.

A dominating vertex is a vertex that is adjacent to all other vertices.

Lemma 5.15. Distance critical graphs cannot have a dominating vertex.

Proof. Assume that this can occur. Let G be a distance critical graph with v a

dominating vertex. Let w be some other vertex of the graph. Since G is distance

critical, w has two nonadjacent neighbors, call them a and b. These vertices, a and b,

are also adjacent to v since v is a dominating vertex. This, however, means that w is

not the unique common neighbor of a and b; therefore, the graph cannot be distance

critical which contradicts the original assumption.

For the following three lemmas, let n represent the number of vertices in the graph.

A regular graph is a graph where all vertices have the same degree.

Lemma 5.16. Every distance critical graph has a minimum of n edges.

Proof. In order to be distance critical, every vertex of a graph must have a determining

pair; therefore, the degree of every vertex must be at least 2. To minimize the number

of edges, we want every vertex to have exactly degree 2. This results in a cycle which

has n edges.

Lemma 5.17. The vertices of a distance critical graph have maximum degree n − 4.
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Proof. Proposition 5.15 guarantees that no vertex can have degree n − 1.

Let v be any vertex of a distance critical graph and assume it has degree n − 2.

Then v is adjacent to every other vertex except one; label this exception as u. Let S

be the set of vertices that are adjacent to v. We know that u must have a determining

pair, and that u is not adjacent to v. Therefore, u must be adjacent to 2 vertices

in S, call them x and w. However, x and w are also both adjacent to v, so u is not

their unique neighbor. Therefore, u cannot have a determining pair so v cannot have

degree n − 2.

Consider if v has degree n − 3. Once again, let S be the set of n − 3 vertices

adjacent to v and label the remaining 2 vertices u1 and u2. All vertices in S must

have a determining pair. Let w be some vertex in S. The options for a determining

pair for w are vu1(A), vu2(B), u1u2(C), xu1(D), and xu2(E) where x is some other

vertex in S. Assume w has option A as a determining pair. Then w is adjacent to u1

and u1 cannot be adjacent to any other vertex in S; otherwise, w would not be the

unique common neighbor of v and u1. Therefore, the remaining vertices of S must

have determining pairs given by either options B or E. In either case, this requires u2

to be nonadjacent to all other vertices of S due to the same reasoning as the previous

case, so the remaining vertices of S cannot have a determining pair. Therefore, no

vertex of S can have a determining pair of A or B.

Consider u1. We know that u1 is not adjacent to v, therefore, assume the deter-

mining pair has both vertices in S. This contradicts that the determining pair has a

unique vertex u1 (because all vertices in S are adjacent to v). Therefore, u1 must be

adjacent to u2 and some other vertex in S. Therefore, no vertex can have u1u2 as a

determining pair because they are adjacent, so C is not an option.

Therefore, the vertices of S must have determining pairs with either option D or

E. Assume w is a vertex of S with determining pair D. Then w is adjacent to u1y
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where y is another vertex of S with determining pair E. However, y is adjacent to u2

and u1 is adjacent to u2 so w is not a common neighbor. The same argument applies

if we started with a vertex in S with determining pair E. Therefore, all the vertices

cannot have a determining pair, so the graph cannot be distance critical with n − 3

degree.

Lemma 5.18. The vertices of a regular distance critical graph have maximum degree
n−1

2 .

Proof. First, we prove the upper bound. Every vertex in a distance critical graph,

G, has a determining pair. Let {x, y} be the determining pair for some vertex v.

We know that the neighborhoods of x and y only intersect at v; otherwise, {x, y}

would not be a determining pair. Therefore, the remaining n − 3 vertices lie in the

neighborhood of x, the neighborhood of y, or are not adjacent to x nor y. Further,

since x and y are both adjacent to v, we have that deg(x)+deg(y) ≤ n−3+2 = n−1.

In a regular graph, all vertices have the same degree; therefore, deg(x) = deg(y) so

that deg(x) ≤ n−1
2 as desired.

Now, we construct a n−1
2 -regular distance critical graph to show that this bound

is strict. Let G be a graph with vertex set {0, 1, 2, ..., n − 1}. For every i ∈ V (G), i is

adjacent to i ± j (mod n) for 1 ≤ j ≤ n−1
4 . Therefore, we have a n−1

2 -regular graph.

Now we show that this graph is indeed distance critical. Choose some i ∈ V (G). This

vertex has the determining pair {i + n−1
4 , i − n−1

4 } because i + n−1
4 is not adjacent to

i − n−1
4 and i + n−1

4 is adjacent to i + n−1
4 ± j for 1 ≤ j ≤ n−1

4 while i − n−1
4 is adjacent

to i − n−1
4 ± j for 1 ≤ j ≤ n−1

4 . Therefore, i is the only common neighbor between

i + n−1
4 and i − n−1

4 , and the graph is distance critical as desired.
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The results presented thus far are useful in constructing distance critical graphs.

We next move towards determining properties necessary in constructing maximal

distance critical graphs in an effort to upper bound the edge density.

Lemma 5.19. If G is a distance critical graph with x, y ∈ V (G) such that dG(x, y) >

3, then G + xy is distance critical as well.

Proof. Suppose G is distance critical and G+xy is not. Then there exists a v ∈ V (G)

such that v has a determining pair, call it (w, z), in G but not in G + xy. Therefore,

w and z are adjacent to v, but wz /∈ E(G). Further, for all u ∈ V (G\{v, w, z}),

uw /∈ E(G) or uz /∈ E(G) or both are non-edges of G. We assumed; however, that

(w, z) is not a determining pair for v in G + xy. Two cases must be considered: (1)

wz ∈ E(G + xy) or (2) there exists another vertex u ∈ V (G\{v, w, z}) such that

uw ∈ E(G + xy) and uz ∈ E(G + xy).

In case (1), wz ∈ E(G+xy). Without loss of generality, let w = x and z = y. In G,

(w, z) was a determining pair for v; therefore, wv ∈ E(G + xy) and vz ∈ E(G + xy).

Since w = x and z = y, this means that xvy is a P3 in G which implies that

dG(x, y) ≤ 2, a contradiction.

In case (2), both uw ∈ E(G + xy) and uz ∈ E(G + xy) which eliminates the

possibility of (w, z) being a determining pair for v. Without loss of generality, assume

uw /∈ E(G) but uw ∈ E(G+xy). Therefore, uw = xy so that either u = x and w = y

(call this case (a)) or u = y and w = x (call this case (b)). Now we assumed

uw /∈ E(G); therefore, uz ∈ E(G). First considering case (a), notice that xzvy is a

path in G. In case (b), notice again that xvzy is a path in G. Either way, dG(x, y) ≤ 3,

a contradiction.

Lemma 5.20. Let G be a distance critical graph and v ∈ V (G) such that C = G − v

is a cycle. Then v must be included in a determining pair for some other vertex.
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Proof. Assume that v is not part of a determining pair for any other vertex. If G is

distance critical, then v must have a determining pair itself. We consider the possible

locations of where this determining pair could occur to reach a contradiction. Label

the vertices of C as 0, 1, ..., n − 1. Without loss of generality, let 0 be one of the

vertices of the determining pair for v.

Clearly, the other vertex of the determining pair, call it j, cannot be adjacent to

0; therefore, j ≥ 2.

Consider the case when j = 2, i.e. (0, 2) is a determining pair for v. The vertices

0 and 2, however, are the only choice for the determining pair of vertex 1; therefore,

they cannot also have a common neighbor with vertex v. This implies that j ≥ 3.

Consider the case when j = 3. We know that 2v /∈ E(G); otherwise, 1 would not

have a determining pair since its neighbors, 0 and 2, would have another common

neighbor with vertex v. The same type of reasoning can be applied to vertex 2 to say

that 1v /∈ E(G). We see then, that 01 ∈ E(G) and 0v ∈ E(G) such that 0 is the only

common neighbor of vertices 1 and v; therefore, (1, v) is a determining pair for 0, a

contradiction. Therefore, j ≥ 4.

Consider the case when 4 ≤ j ≤ n − 1. We know that 2v /∈ E(G), otherwise, 1

would not have a determining pair. If 1v ∈ E(G), then (2, v) would be a determining

pair for 1 unless 3v ∈ E(G). This, however, results in the fact that 12 ∈ E(G), 23 ∈

E(G), and both 2 and v are common neighbors of vertices 1 and 3. Therefore, vertex

2 cannot have a determining pair so G cannot be distance critical, a contradiction.

Therefore, 1v /∈ E(G). This implies, however, that (1, v) is a determining pair for 0,

a contradiction.
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Lemma 5.21. Let G be a distance critical graph and v ∈ V (G) such that F = G − v

is also distance critical. If v is not part of a determining pair for any vertex, then

deg(v) > 3.

Proof. Corollary 5.6 tells us that deg(v) ≥ 2. Assume that deg(v) = 2, and label the

neighbors of v as x and y. Since G is distance critical, (x, y) must be the determining

pair of v; therefore, xy /∈ E(G). Since F is distance critical, we know that x must

have a determining pair that does not include v. We know that x is not adjacent to

y, so x must have two additional neighbors that are a determining pair, call them u

and w. We claimed that deg(v) = 2; therefore, uv /∈ E(G). This implies that (u, v)

is a determining pair for x, unless uy ∈ E(G). This contradicts the fact that (x, y) is

a determining pair for v, so deg(v) ̸= 2.

Assume that deg(v) = 3, and label the neighbors of v as x, y, and z. Since G is

distance critical, v has a determining pair. Without loss of generality, let (x, y) be

the determining pair for v; therefore, xy /∈ E(G). Further, x has a determining pair

that does not include vertex v. Therefore, x is adjacent to at least 2 other vertices

and since xy /∈ E(G), at least one of these vertices must be distinct. Label this new

vertex as u. This vertex, u, must be nonadjacent to y; otherwise, (x, y) would not be

a determining pair for v.

The same type of reasoning implies that y has a distinct neighbor, call it w such

that xw /∈ E(G).

Now, we assumed that deg(v) = 3; therefore, uv /∈ E(G) and wv /∈ E(G). We

also assumed that v is not included in any determining pairs; therefore, u must be

adjacent to a neighbor of v so that (u, v) is not a determining pair for x. The only

possibility is if uz ∈ E(G). The same type of reasoning implies that wz ∈ E(G).
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From here, we can state that at least one of the pairs, xz or yz is not an edge.

Indeed, assume yz ∈ E(G). Then xz /∈ E(G) so that (x, y) is a determining pair for

v. Therefore, without loss of generality, assume xz /∈ E(G).

We know that x has a determining pair that does not include vertex v; therefore,

x has at least one other distinct neighbor. For all p ∈ N(x) − v, py /∈ E(G) so that

(x, y) is a determining pair for v. Further, pv /∈ E(G) since deg(v) = 3.

In order to make (v, p) not a determining pair for x, p must be adjacent to z.

This, however, means that for all p ∈ N(x), xp ∈ E(G) and pz ∈ E(G). Therefore,

x cannot have a determining pair, a contradiction. We conclude that deg(v) > 3 as

desired.

Lemma 5.22. Let G be a distance critical graph on n vertices and let S be the set of

vertices which are involved in some determining pair. Then |S| ≥
√

2n.

Proof. Since G is distance critical, each of the n vertices has a determining pair. A

determining pair consists of 2 vertices; therefore,
(

|S|
2

)
≥ n. Solving, we see that

asymptotically, |S| ≥
√

2n as desired.

Within the following lemma, G represents G complement. The complement of a

graph G is a graph H on the same vertex set such that two vertices are adjacent in

H if and only if they are not adjacent in G.

Lemma 5.23. Let G be a distance critical graph and z ∈ V (G). If z has a determin-

ing pair in G but z has no determining pair in G + xy for some xy ∈ E(G), then the

set of z-determining pairs in G is a star in G whose center is either x or y.

Proof. Two cases exist for ways in which the addition of the edge xy can interfere

with the fact that z has a determining pair: (1) (x, y) is the only determining pair
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for z or (2) xy interferes with all determining pairs for z, i.e. for every determining

pair (u, v), (u, v) is no longer a determining pair for z in G + xy.

In case (1), (x, y) was the only determining pair of z in G. In G+xy, this non-edge

becomes an edge so that (x, y) is no longer a determining pair. Therefore, the unique

determining pair of z forms a star since an edge is itself a star.

In case (2), the edge xy interferes with all determining pairs of z. If the addition

of xy destroys the determining pair (u, v), then u and v must have another common

neighbor after xy is added besides z. Without loss of generality, consider v within the

determining pair of z. There exists some other vertex, y ∈ V (G) such that vy ∈ E(G).

The addition of xy interferes with all determining pairs; therefore, there exists some

x ∈ V (G) such that uy = xy so that u = x. Another way of viewing this is that x

is contained in every determining pair of z so that the set of determining pairs of z

form a star with center x.

Corollary 5.24. Let S be the set of vertices which are involved in some determin-

ing pair in an edge-maximal distance critical graph, G. Then every non-edge of G

intersects the set S.

Proof. Let xy ∈ E(G). Since G is edge critical distance critical, there exists a z ∈

V (G) such that z does not have a determining pair in G + xy. Lemma 5.23 tells us

that the set of determining pairs of z forms a star with center either x or y. Since S

is the union of all the determining pairs of all vertices (including z), this implies that

xy intersects S as desired.

Corollary 5.25. If G is an edge-maximal distance critical graph and S is the set of

vertices involved in some determining pair, then the set of vertices T = V (G) − S

induces a clique.
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Proof. Assume not, that instead there are two vertices x and y of T which are non-

adjacent in G. Since G is edge-maximal, it must also be edge-critical. We assumed

xy ∈ E(G) and does not intersect S, which contradicts Corollary 5.24.

A clique is a set of vertices such that all vertices are adjacent. If we could determine

the maximum clique size in a distance critical graph, then we could obtain a closer

estimate of the upper bound for the edge density. Since a determining pair must

consist of nonadjacent vertices, the determining pair for vertices within the clique

have two options: (1) the determining pair consists of one vertex within the clique

and one vertex outside the clique (call these type A vertices), and (2) the determining

pair consists of vertices outside the clique (call these type B vertices). This led to

the following construction and theorem.

Definition 5.26. Let Gm be a graph which has a vertex set divided into 3 sets.

Set A has m(m − 1)/2 vertices labeled as aij for 0 ≤ i < j < m, set B has m

vertices labeled as bj for 0 ≤ j < m, and set C has 2m vertices labeled as cj for

0 ≤ j < 2m (understood modulo 2m). The edge set for Gm is obtained by considering

the relationship between and among each of the sets. First, every pair of vertices of

set A is adjacent forming a clique of size m(m−1)/2. Also, edges (aij, bi) and (aij, bj)

exist for every element aij of set A. For every vertex bj of set B, edges (bj, cj) and

(bj, cj+m) exist. Lastly, for every element cj of set C, the edge (cj, cj+1(mod2m)) exists.

The graph G5 is shown in Figure 5.5 to help visualize this construction. The red

vertices lie in set A, the blue vertices are in set B, and the black vertices are in set

C.

Theorem 5.27. Among distance-critical graphs G on n vertices, the maximum clique

number of G is n − Θ (
√

n).
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Figure 5.5 G5

Proof. Consider the graph Gm. First, we argue that Gm is indeed distance critical

by noting the determining pairs for each vertex. Consider the vertex aij. This vertex

has the determining pair {bi, bj} because bi is not adjacent to bj and bi is adjacent to

aij, ci, and ci+m while bj is adjacent to aij, cj, and cj+m. Therefore, aij is the only

common neighbor between bi and bj. Consider vertex bj. This vertex has determining

pair {cj, cj+m} because cj is not adjacent to cj+m and cj is adjacent to bj and cj+1

while cj+m is adjacent to bj and cj+m+1. Therefore, bj is the only common neighbor

between cj and cj+m. Lastly, consider vertex cj. This vertex has determining pair

{cj−1, cj+1} because cj−1 is not adjacent to cj+1 and cj−1 is adjacent to cj and bj−1

while cj+1 is adjacent to cj and bj+1. Therefore, cj is the only common neighbor

between cj−1 and cj+1.

Now we establish the clique number. By construction of Gm, a clique of size

m(m−1)/2 is induced by the vertex set {aij}0≤i<j<m with a remaining 3m vertices of

the form bj or cj. Therefore, n = |V (Gm)| =
(

m
2

)
+ 3m = m2/2 + O(m) so that m =

√
2n(1+o(1)). From here, we see that maxG ω(G) ≥ n−(3+o(1))

√
2n = n−O (

√
n).
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Now we establish a matching upper bound. Consider a DC graph G on n. Every

vertex v in a max clique K of size m must have a determining pair, say, {xv, yv}.

Let S = ⋃
v∈K{xv, yv}. Note that, for each v ∈ K, |{xv, yv} \ K| = 1 or 2, because

if it were zero, then {xv, yv} ⊂ K whence xvyv ∈ E(G), contradicting that {xv, yv}

is a determining pair. Let A be the subset of V (K) with |{xv, yv} \ K| = 1 and

B = K \ A. For each vertex v ∈ A, wlog we assume xv ∈ K and yv ̸∈ K. Note that

the yv are distinct across all v ∈ A, since, if yv = yw for some w ∈ A, then xv and

yv have common neighbors v and w, contradicting that they form a determining pair

for v. Thus,

|V (G − K)| ≥ |{yv : v ∈ A}| ≥ |A|.

On the other hand, the pairs {xv, yv} for v ∈ B are entirely contained in V (G − K).

Since none of these pairs are repeated (or else they could not be determining pairs),

the graph (⋃v∈B{xv, yv}, {xvyv : v ∈ B}) has |B| edges and therefore at least
√

2|B|

vertices, all of which lie outside K. Therefore,

|V (G − K)| ≥ max{|A|,
√

2|B|} = max{|A|,
√

2(m − |A|)} ≥
√

2m,

since 0 ≤ |A| ≤ m. Then G contains at least
√

2m vertices in addition to the clique

K, and so n ≥ m +
√

2m which implies m ≤ n −
√

(2 + o(1))n, and we may conclude

that ω(G) ≤ n − Ω(
√

n).

Within the previous proof, the constants obtained in proving the upper and lower

bounds did not match. We were able to narrow the difference between these constants

by considering the following construction.

Definition 5.28. Let G′
m be a graph which has a vertex set divided into 3 sets. Set

A has m(m − 1)/2 vertices labeled as aij for 0 ≤ i < j < m, set B has m vertices

labeled as bj for 0 ≤ j < m, and set C has m vertices labeled as cj for 0 ≤ j < m.
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The edge set for Gm′ is obtained by considering the relationship between and among

each of the sets. First, every pair of vertices in set A are adjacent forming a clique

of size m(m − 1)/2. Also, edges (aij, bi) and (aij, bj) exist for every element aij of set

A. For every vertex bj of set B, edge (bj, cj) exists. Lastly, every pair of vertices in

set C are adjacent forming a clique of size m.

The graph G′
5 is shown in Figure 5.6 to help visualize this construction. Once

again, the red vertices lie in set A, the blue vertices in lie in set B, and the black

vertices lie in set C.

Figure 5.6 G′
5

The constructions of Gm and G′
m led to the following two theorems.

Theorem 5.29. Every graph is an induced subgraph of some distance critical graph.

Proof. Let G be any graph on n vertices. If n = 1, clearly a single point is an induced

subgraph of some distance critical graph. Now consider n = 2. Either G is a path

of length 1, or G has two disconnected vertices. Every distance critical graph has

a pair of adjacent vertices; therefore, it includes an induced subgraph consisting of

a path of length 1. Further, every distance critical graph has a pair of nonadjacent
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vertices that make up a determining pair; therefore, it includes an induced subgraph

consisting of two disconnected vertices.

Now, consider when n ≥ 3. We know that every vertex of G must have a de-

termining pair if it is an induced subgraph of some distance critical graph. Using

the construction of Gm, let G be the set of A vertices so that n =
(

m
2

)
. We need

an additional m vertices to make up the B set where m2 − m − 2n = 0; therefore,

add m = ⌈1+
√

1+8n
2 ⌉ additional vertices to account for the B set. Label the vertices

of G as aij for 0 ≤ i < j < m and stop once all n vertices have been labeled. La-

bel the added vertices bj for 0 ≤ j < m. Add edges (aij, bi) and (aij, bj) for every

element aij of set A (or the original graph G). We showed when defining Gm that

this ensures every element of set A has a determining pair. Similarly, add an ad-

ditional 2m = ⌈1 +
√

1 + 8n⌉ vertices to make up set C and label these vertices as

cj for 0 ≤ j < 2m (understood modulo 2m). Add edges (bj, cj) and (bj, cj+m) for

0 ≤ j < m so that every element in B has a determining pair. Lastly, add edges

(cj, cj+1( mod 2m)) for 0 ≤ j < 2m so that every element in C has a determining pair.

Therefore, the newly constructed graph is distance critical. We can then conclude

that any graph can be input into the Gm construction as set A, thereby proving that

it is an induced subgraph of some distance critical graph.

We conclude the chapter on distance critical graphs by disproving Conjecture 2.

Theorem 5.30. Among distance critical graphs G on n vertices, the maximal edge

density of G is between 1 − O(1/
√

n) and 1 − Ω(1/n).

Proof. Gm and Gm′ have approximately N2 − cN3/2 edges for N =
m(m + 5)

2 and

N =
m(m + 3)

2 respectively. Further, we know that every vertex of a distance critical
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graph must have a determining pair which creates at least N non-edges. Therefore,

the maximal edge density must be between 1 − O(1/
√

n) and 1 − Ω(1/n).
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Chapter 6

Open Problems

Tolkien embodied research when he stated, "You certainly usually find something, if

you look, but it is not always quite the something you were after" [26]. Much of the

work presented in this dissertation arose from taking detours as we tried to answer

other questions. While we were able to pinpoint certain results, many problems

remain open to exploration in both these areas of research. We leave the reader by

presenting some of these questions.

6.1 Steiner k-matrix

It is now proven that the Steiner distance k-matrix has a zero hyperdeterminant if

and only if n = 1, k is odd and n > 2, or k ≡ 1(mod 6) and n = 2. We hope,

however, to completely generalize the Graham-Pollak theorem to find a formula that

only depends on k and n for the Steiner hyperdeterminant.

Question 6.1. What is the hyperdeterminant of the Steiner distance k-matrix for a

tree on n vertices?

For k odd, the question is mostly answered since the hyperdeterminant is always

zero when n ≥ 3 or when k ≡ 1(mod 6) and n = 2. The proof for an even k appears to

be much harder. Our Sage code database, provides evidence that suggests the result

does generalize to even order Steiner distance hypermatrices. These calculations are

depicted in Table 6.1 below. Note that the case k = 2 is excluded since that is the
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Graham-Pollak result stating that the determinant of the distance matrix for any tree

is given by −(n − 1)(−2)n−2.

Table 6.1 The hyperdeterminant of the Steiner k-matrix for trees
of order n.

k n Hyperdeterminant
4 2 −1 · 22 · 7

3 212 · 7 · 234

4 −1 · 238 · 327 · 56 · 7 · 1312

5 2203 · 532 · 7 · 1132 · 2324 · 378

6 2 −1 · 112 · 31
3 214 · 316 · 114 · 31 · 192314

4 −1 · 282 · 317 · 118 · 31 · 4112 · 716 · 896 · 15124 · 25724 · 151112

8 2 −1 · 26 · 292 · 127
3 256 · 1316 · 294 · 1138 · 127 · 10098 · 21434

The algorithm provided by Cox, Little, and O’Shea [10] does not seem feasible to

help determine the formula for the hyperdeterminant. Instead, we hope to utilize the

results presented in [25].

Theorem 6.2 (Theorem 3.2 [25]). Let A be a tensor with dimension n and order

k ≥ 2. Then we have

(a) If B is the tensor obtained from A by interchanging the ith and jth slices of A

(i ̸= j), then det(B) = (−1)(k−1)n−1 det(A).

(b) If B is the tensor obtained from A by adding c times the ith slice to the jth slice

of A (i ̸= j), then det(B) = det(A).

(c) If the ith and jth slices of A are equal (i ̸= j), then det(A) = 0.

(d) Moreover, if the slices of A are linearly dependent, then det(A) = 0. But the

converse of this property does not hold.
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For the case n = 2, Z. Du 1 observed from our data that the Steiner distance

k-matrix of a tree has a hyperdeterminant given by the Wendt determinant of k-th

circulant matrix C(k) with an adjustment to the sign. The circulant matrix C(k) is

defined as the matrix whose first row is [c1, ..., ck] where ci =
(

n
i−1

)
, and subsequent

rows are obtained by cyclically shifting the previous row one place to the right. The

Wendt determinant can also be viewed as a resultant of the two polynomials xk − 1

and (x + 1)k − 1 [19]. This led to the following theorem by Cooper and Du [6]:

Theorem 6.3. The hyperdeterminant of the Steiner k-matrix of a tree on 2 vertices

is given by the Wendt determinant, Wk, up to sign.

For larger trees, the hyperdeterminant does not appear to have any entries in

OEIS. Rather than trying to determine the entire formula for the hyperdeterminant

for larger trees, we could begin by proving the following conjectures.

Conjecture 3. The sign of the hyperdeterminant of the Steiner distance k-matrix

for a tree on n vertices is given by (−1)n−1.

Conjecture 4. The hyperdeterminant of the Steiner distance k-matrix for a tree has

a factor of 2k−1 − 1.

We can view these conjectures holds true for our data shown in Table 6.1. Inter-

estingly, the factor 2k−1 − 1 also appeared at the end of the proof of Theorem 4.5

where we proved the hyperdeterminant is nonzero by taking the difference between

Dn−1pT (x) and Dn−1pT ′(x) where T is a tree on n + 1 vertices and T ′ is a tree on n

vertices. While it is unclear how these calculations are related, there appears to be

some underlying connection.

1Personal communication.
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Another question that could be explored with these Steiner distance k-matrices

would be the following.

Question 6.4. Can we extend the kernel method argument (presented in Chapter

4.2.2) to prove that the hyperdeterminant of the Steiner distance k-matrix is nonzero?

This was our original idea when we approached the problem. If we could show the

Steiner distance kernel is conditionally strictly positive definite for all trees, this could

potentially lead to similar results to prove the set of vectors is affinely independent

and the hypermatrix has a nonzero hyperdeterminant. Greenleaf, Iosevich, and Taylor

[20] determine a way to embed a tree into a compact subset of Rd for d ≥ 2 such that

it’s kernel is strictly positive. It has yet to be shown how this could then prove the

hyperdeterminant of the hypermatrix formed by this kernel is nonzero.

6.2 Distance Critical Graphs

To the best of our knowledge, distance critical graphs are an entirely new class of

graphs that have not been studied. Therefore, many open questions still exist to

determine the properties of these types of graphs. One such question is presented

below. A graph is considered Hamiltonian if it contains a cycle that visits each vertex

exactly once.

Question 6.5. What is the smallest distance critical graph such that its complement

is not Hamiltonian?

The data presented in Table 5.1 showed that the complement of distance critical

graphs on n ≤ 11 vertices was Hamiltonian. The construction of G′
m, however,

disproved this result. For m = 5, the vertices are divided equally among the large

clique and the remainder of the graph and create a Hamiltonian cycle. When m = 6,
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this no longer holds true. Therefore, there exists a distance critical graph on 27

vertices whose complement is not Hamiltonian. The smallest one must then occur

between order 12 and 27, but we have not been successful in narrowing this bound

yet.

Question 6.6. What fraction of graphs are distance critical?

We proved that every graph is a subgraph of some distance critical graph. This

proof, however, relied on the structure of the distance critical graph Gm and shows

that on n vertices, there are at least 2(n−O(
√

n)
2 ) distance critical graphs. However, we

hope to determine the ratio of all distance critical graphs (not just ones with the Gm

structure) compared to all possible graphs. One method to possibly accomplish this

would be calculating the probability that a random graph is distance critical.

Question 6.7. We have a sequence for the number of distance critical graphs and

the number of maximal distance critical graphs. To what does this enumeration cor-

respond?

These sequences did not appear in the OEIS; therefore, it would be interesting to

first find some other mathematical concept it applies to and then prove its connection

to distance critical graphs. Hopefully, determining the fraction of all graphs that are

distance critical will give us more insight into this question.

Question 6.8. Is there some formula for the chromatic number of distance critical

graphs?

To feasibly examine this, we would have to consider specifically the maximal

distance critical graphs to avoid the already known cases such as the cycles. Since

we do not know much about the global properties of these graphs, it would probably

be best to analyze the star graphs formed by the determining pairs as described in
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Lemma 5.23. Since each edge in this star graph is actually a non-edge in the original

graph, all the vertices within the star could be colored using the same color. The

complication would be to consider how these stars overlap.
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Appendix A

SageMath Code

This appendix is included to share the code we used in SageMath 9.7 to calculate

the Steiner distance k-matrix of a tree and its hyperdeterminant. We further include

the code we used to calculate the Steiner polynomials and Steiner k-ideals. Within

the following, ‘#’ indicates a comment to the code and ‘<<’ is used to indicate a

line-break and means that the following text should be appended to the previous line.

The first block will calculate the Steiner distance among vertices in a tree.

# input : G = t r e e graph , S = l i s t o f v e r t i c e s

# output : S t e ine r d i s t ance o f S in G

def s t e i n e r_d i s t anc e (G, S ) :

f i n a l = Fal se

Gc = copy (G)

while not f i n a l :

pendant = [ ]

count = 0

for ver tex in Gc . v e r t i c e s ( ) :

i f Gc . degree ( ver tex ) == 1 :

pendant . append ( ver tex )

i f ver tex not in S :

Gc . de l e t e_ver tex ( ver tex )
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else :

count += 1

i f count == len ( pendant ) :

f i n a l = True

return Gc . s i z e ( )

The next few blocks will construct the k-Steiner distance hypermatrix of a tree

for 2 ≤ k ≤ 8.

# input : G = t r e e graph

# output : S t e ine r 2−matrix

def two_steiner_matrix_tree (G, verbose=False ) :

n = G. order ( )

i f not G. i s_t r e e ( ) :

print ( ’Graph␣must␣be␣a␣ t r e e . ’ )

return False

else :

d i stance_matr ix = [ [ 0 for c o l in range (n ) ] for

<< row in range (n ) ]

for x in range (n ) :

for y in range (x , n ) :

d i s t ance = s t e i n e r_d i s t anc e (G, [ x , y ] ) / 2

distance_matr ix [ x ] [ y ] = d i s t ance

distance_matr ix [ y ] [ x ] = d i s t ance

i f verbose :

pret ty_pr int ( distance_matr ix )

return ( distance_matr ix )
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# input : G = t r e e graph

# output : S t e ine r 3−matrix i f G i s a t r e e

def three_ste iner_matr ix_tree (G, verbose=False ) :

n = G. order ( )

i f not G. i s_t r e e ( ) :

print ( ’Graph␣must␣be␣a␣ t r e e . ’ )

return False

else :

d i stance_matr ix = [ [ [ 0 for c o l in range (n ) ] for

<< row in range (n ) ] for x in range (n ) ]

for x in range (n ) :

for y in range (x , n ) :

for z in range (y , n ) :

d i s t ance = s t e i n e r_d i s t anc e (G, [ x , y ,

<< z ] ) / 3

distance_matr ix [ x ] [ y ] [ z ] = d i s t anc e

distance_matr ix [ x ] [ z ] [ y ] = d i s t anc e

distance_matr ix [ y ] [ x ] [ z ] = d i s t anc e

distance_matr ix [ y ] [ z ] [ x ] = d i s t anc e

distance_matr ix [ z ] [ x ] [ y ] = d i s t anc e

distance_matr ix [ z ] [ y ] [ x ] = d i s t anc e

i f verbose :

pret ty_pr int ( distance_matr ix )

return ( distance_matr ix )
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# input : G = t r e e graph

# output : S t e ine r 4−matrix i f G i s a t r e e

def four_ste iner_matr ix_tree (G, verbose=Fal se ) :

n = G. order ( )

i f not G. i s_t r e e ( ) :

print ( ’Graph␣must␣be␣a␣ t r e e . ’ )

return False

else :

d i stance_matr ix = [ [ [ [ 0 for c o l in range (n ) ] for

<< row in range (n ) ] for x in range (n ) ] for y in

<< range (n ) ]

for x in range (n ) :

for y in range (x , n ) :

for w in range (y , n ) :

for z in range (w, n ) :

d istance_matr ix [ x ] [ y ] [w ] [ z ] =

<< st e i n e r_d i s t anc e (G, [ x , y ,w, z ] )

<< /4

i f verbose :

pret ty_pr int ( distance_matr ix )

return ( distance_matr ix )

# input : G = t r e e graph

# output : S t e ine r 5−matrix i f G i s a t r e e

def f i ve_ste iner_matr ix_tree (G, verbose=False ) :

n = G. order ( )
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i f not G. i s_t r e e ( ) :

print ( ’Graph␣must␣be␣a␣ t r e e . ’ )

return False

else :

d i stance_matr ix = [ [ [ [ [ 0 for c o l in range (n ) ]

<< for row in range (n ) ] for x in range (n ) ] for y

<< in range (n ) ] for z in range (n ) ]

for x in range (n ) :

for y in range (x , n ) :

for w in range (y , n ) :

for z in range (w, n ) :

for l in range ( z , n ) :

d istance_matr ix [ x ] [ y ] [w ] [ z ]

<< [ l ] = s t e i n e r_d i s t anc e (G,

<<[x , y ,w, z , l ] ) / 5

i f verbose :

pret ty_pr int ( distance_matr ix )

return ( distance_matr ix )

# input : G = t r e e graph

# output : S t e ine r 6−matrix i f G i s a t r e e

def s ix_ste iner_matr ix_tree (G, verbose=False ) :

n = G. order ( )

i f not G. i s_t r e e ( ) :

print ( ’Graph␣must␣be␣a␣ t r e e . ’ )

return False
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else :

d i stance_matr ix = [ [ [ [ [ [ 0 for c o l in range (n ) ]

<< for row in range (n ) ] for x in range (n ) ] for y

<< in range (n ) ] for z in range (n ) ] for w in

<< range (n ) ]

for x in range (n ) :

for y in range (n ) :

for w in range (n ) :

for z in range (n ) :

for l in range (n ) :

for m in range (n ) :

d istance_matr ix [ x ] [ y ] [w]

<< [ z ] [ l ] [m] = ste ine r_

<< di s t anc e (G, [ x , y ,w, z ,

<< l ,m] ) / 6

i f verbose :

pret ty_pr int ( distance_matr ix )

return ( distance_matr ix )

# input : G = t r e e graph

# output : S t e ine r 7−matrix i f G i s a t r e e

def seven_ste iner_matr ix_tree (G, verbose=False ) :

n = G. order ( )

i f not G. i s_t r e e ( ) :

print ( ’Graph␣must␣be␣a␣ t r e e . ’ )

return False
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else :

d i stance_matr ix = [ [ [ [ [ [ [ 0 for c o l in range (n ) ]

<< for row in range (n ) ] for x in range (n ) ] for y

<< in range (n ) ] for z in range (n ) ] for w in

<< range (n ) ] for m in range (n ) ]

for x in range (n ) :

for y in range (n ) :

for w in range (n ) :

for z in range (n ) :

for l in range (n ) :

for m in range (n ) :

for p in range (n ) :

d istance_matr ix [ x ]

<< [ y ] [w ] [ z ] [ l ] [m]

<< [ p ] = ste ine r_

<< di s t anc e (G, [ x , y ,

<< w, z , l ,m, p ] ) / 7

i f verbose :

pret ty_pr int ( distance_matr ix )

return ( distance_matr ix )

# input : G = t r e e graph

# output : S t e ine r 8−matrix i f G i s a t r e e

def e ight_ste iner_matr ix_tree (G, verbose=Fal se ) :

n = G. order ( )

i f not G. i s_t r e e ( ) :
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print ( ’Graph␣must␣be␣a␣ t r e e . ’ )

return False

else :

d i stance_matr ix = [ [ [ [ [ [ [ [ 0 for c o l in range (n ) ]

<< for row in range (n ) ] for x in range (n ) ] for y

<< in range (n ) ] for z in range (n ) ] for w in

<< range (n ) ] for m in range (n ) ] for p in

<< range (n ) ]

for x in range (n ) :

for y in range (n ) :

for w in range (n ) :

for z in range (n ) :

for l in range (n ) :

for m in range (n ) :

for p in range (n ) :

for q in range (n ) :

d istance_matr ix

<< [ x ] [ y ] [w ] [ z ]

<< [ l ] [m] [ p ] [ q ]

<< = ste ine r_

<< di s t anc e (G,

<< [ x , y ,w, z , l ,m,

<< p , q ] ) / 8

i f verbose :

pret ty_pr int ( distance_matr ix )
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return ( distance_matr ix )

Note that in each of these functions, we must divide the entries in the Steiner

distance k-matrix by k. This is due to the following proposition in which Axk−1

denotes a vector whose ith component is ∑n
i2,...ik=1 ai,i2,...,ik

xi2 · · · xik
. In other words,

the ith component of Axk−1 is given by DifA(x)/k.

Proposition A.1. [23] The symmetric hyperdeterminant of A, det(A), is the resul-

tant of Axk−1 = 0, and is a homogeneous polynomial in the entries of A.

Using Definition 2.4, the symmetric hyperdeterminant is the resultant of fA(x)

and ∇fA(x). Notice that fA(x) = 0 when Axk−1 = 0. Therefore, RES(Axk−1) = 0 if

and only if det(A) = 0. Since both are monic polynomials, RES(Axk−1) = det(A).

We must therefore divide each of the polynomials within ∇fA(x) by k to create

the polynomials Axk−1 as desired, thus dividing each entry in the Steiner distance

k-matrix by k.

The next block calculates the Steiner k-polynomial given a tree graph G.

# input : G = t r e e graph , k = order

# output : S t e ine r po lynomia l o f G

def s t e ine r_po ly (G, k ) :

v = G. num_verts ( )

varnames = [ var ( ’a_%s ’ % i ) for i in G. v e r t i c e s ( ) ]

R = PolynomialRing (QQ, names=varnames , k=’ degrev l ex ’ )

s = R. gens ( )

outpoly = R(0)

V = G. v e r t i c e s ( )

N = len (V)
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for t in range (N^k ) :

u = In t eg e r ( t ) . d i g i t s (N, padto=k)

varprod = prod ( [ s [ i ] for i in u ] )

outpoly += varprod ∗ s t e i n e r_d i s t anc e (G, [V[ i ]

<< for i in u ] )

return outpoly

We can also calculate the Steiner k-polynomial directly from the hypermatrix.

# input : T = Ste ine r hypermatr ix g i ven as a l i s t o f

#l i s t s

# output : S t e ine r po lynomia l o f T

def build_form (T) :

outpoly = 0

#ge t the dimensions o f the array

n=len (T)

cur r ent = deepcopy (T)

k=0

while type ( cur r ent)== l i s t :

k+=1

cur rent= cur rent [ 0 ]

# ge t l i s t o f v a r i a b l e s

xvars = l i s t ( var ( ’x_%d ’ % i ) for i in range (n ) )

# i t e r a t e over a l l t u p l e s o f i n d i c e s

for R in range (n^k ) :

indextup l e = In t eg e r (R) . d i g i t s ( base=n , padto=k)

monomial = prod ( [ xvars [ j ] for j in i ndextup l e ] )
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Tentry = deepcopy (T)

for j in range ( k ) :

Tentry = Tentry [ indextup l e [ j ] ]

outpoly += Tentry∗monomial

return ( outpoly )

Similarly, we can calculate the Steiner k-ideal either from the graph itself or it’s

hypermatrix. Both codes are shown below.

# input : G = graph , k = order

# output : S t e ine r k−i d e a l

def s t e i n e r_ i d e a l (G, k ) :

p = ste ine r_po ly (G, k )

R = p . parent ( )

J = R. i d e a l ( gradvec (p ) )

return J

# input : T = Ste ine r hypermatr ix g i ven as a l i s t o f

#l i s t s

# output : S t e ine r k−i d e a l

def gradvec (T) :

n=len (T)

cur r ent = deepcopy (T)

k=0

while type ( cur r ent)== l i s t :

k+=1

cur rent= cur rent [ 0 ]
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# ge t l i s t o f v a r i a b l e s

xvars = l i s t ( var ( ’x_%d ’ % i ) for i in range (n ) )

F = build_form (T)

outvec = [ ]

for j in range (n ) :

outvec . append (F . d e r i v a t i v e ( xvars [ j ] ) )

return outvec

Lastly, we include the code to calculate the hyperdeterminant of the Steiner dis-

tance k-matrix. The framework of this code was taken from Dutle [13] and adjusted

to calculate only the hyperdeterminant (not the characteristic polynomial). The al-

gorithm itself comes from Cox, Little, and O’Shea as described in Chapter 2.2.

# input : T = Ste ine r hypermatr ix g i ven as a l i s t o f

#l i s t s

# output : S t e ine r hyperdeterminant

def Ste iner_hyperdeterminant (T) :

#ge t the dimensions o f the array

n=len (T)

cur r ent = deepcopy (T)

k=0

while type ( cur r ent)== l i s t :

k+=1

cur rent= cur rent [ 0 ]

#ge t S ( the monomials o f t o t a l degree d ) and

#i n i t i a l i z e the matrix f o r the r e s u l t a n t ,

d= n∗(k−2)+1
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R = [ ]

for i in range (n ) :

for j in range (d ) :

R. append ( i )

L=Subsets (R, d , submul t i s e t=True )

S=[ ]

for l in L :

s =[ ]

for i in range (n ) :

s . append ( l . count ( i ) )

S . append ( deepcopy ( s ) )

row = [ ]

for r in S :

row . append (0 )

M = [ ]

for r in S :

M. append ( deepcopy ( row ) )

RED=[]

#for each monomial , determine the co r r e c t p a r t i a l to

#m u l t i p l y by , and determine i f i t i s ’ reduced ’

for r in range ( len (S ) ) :

count=0

ind=0

red=0

while ind==0:
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while S [ r ] [ count ] < k−1:

count +=1

ind = 1

ind = deepcopy ( count )

for i in range (d−k+2):

red = red+S [ r ] . count (k−1+i )

#f ind the monomials t h a t appear in the p a r t i a l

#equat ion , change them by s , and put the entry

#in to our matrix

VAR=[]

for i in range (n ) :

for j in range (k−1):

VAR. append ( i )

mons = Subsets (VAR, k−1, submul t i s e t = True ) .

<< l i s t ( )

for l in mons :

expvec=deepcopy (S [ r ] )

expvec [ ind ]=expvec [ ind ]−k+1

for m in l :

expvec [m]+=1

Tensentry = deepcopy (T[ ind ] )

for m in l :

Tensentry = Tensentry [m]

i f ind in l :

number = l . count ( ind )
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Tensentry = Tensentry ∗ (number + 1)

s =[ ]

for i in range (n ) :

i f i == ind :

num = l . count ( i )

s . append (num+1)

else :

s . append ( l . count ( i ) )

num_perm = 1

cho i c e s = deepcopy (k )

for elem in s :

num_perm = num_perm ∗ binomial ( cho i ce s ,

<< elem )

i f elem != 0 :

cho i c e s −= elem

Tensentry = Tensentry ∗ num_perm

M[ r ] [ S . index ( expvec ) ] = Tensentry

i f red ==1:

RED. append ( r )

else :

red = 0

RED. r e v e r s e ( )

#ge t the determinant o f t h i s matrix , g e t the reduced

#matrix , and re turn the hyperdeterminant

P1=Matrix (M) . charpoly ( )
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for j in range ( len (RED) ) :

del M[RED[ j ] ]

for i in range ( len (M) ) :

for j in range ( len (RED) ) :

del M[ i ] [RED[ j ] ]

P0=Matrix (M) . charpoly ( )

r a t i o = P1/P0

return r a t i o . subs (x=0)∗(−1)∗∗(n∗(k−1)∗∗(n−1))
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