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ABSTRACT

 As the leading cause of weather-related fatalities in the United States, the concept 

of heat as a hazard has been studied for decades, especially in the urban environment. 

Urban heat island research is limited by the fact that most investigate land surface 

temperature (LST) rather than air temperature and other variables that affect human 

comfort including humidity. This thesis utilizes a public network of weather stations in 

Richland County, South Carolina to investigate differences in heat between the city of 

Columbia, and more rural parts of the county. The study period was June, July, and 

August of 2022. Results indicate that through the summer average, there is a range of 

afternoon Heat Index deviations of 8.1°F. The afternoon hot spots lie in downtown 

Columbia, as well as the more rural southwestern portion of the county. Heat Index, 

temperature, relative humidity, and dew point deviations were investigated for both 

afternoon and morning. To understand what land use variables best predict these 

deviations, twelve variables were explored including Normalized Difference Vegetation 

Index (NDVI) and percent impervious surface each at three scales. Results indicate that 

afternoon values are difficult to predict, possibly a result of the 10- meter station height 

with afternoon wind and vertical mixing. Land use variables performed better with 

morning heat variables. Finally, multiple linear regressions were created to predict 

morning and afternoon heat variables, with successful models on temperature deviations, 

with other variables lacking predictability. This project is a step towards creating local 

heat models based on air temperature and humidity rather than LST.  
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CHAPTER 1 

INTRODUCTION 

            Heat is the leading cause of weather fatalities in the United States (National 

Oceanic and Atmospheric Administration (NOAA) 2023). Heat waves have been linked 

to substantially increased emergency department visits in North Carolina (Fuhrmann et al 

2015) and Atlanta (Chen et al 2017), and increased cardiovascular mortality in US 

counties (Khatana et al 2022). Furthermore, the frequency, intensity, and duration of heat 

waves have all increased over the past several decades (Kirkpatrick & Lewis 2020, 

Habeeb et al 2015, Perkins et al 2012), and are expected to rise under climate change 

scenarios (Meehl & Tebaldi 2004), potentially leading to compounding risk due to 

consecutive high heat events (Baldwin et al 2019). Urban cores are known to be hotter 

than surrounding rural and suburban areas, known as the Urban Heat Island (UHI), which 

is exaggerated during heart waves (Li and Bou- Zeid 2013). With an ever- increasing 

urban population, extreme heat events, and higher exposure in urban cores, analysis into 

urban areas deserve attention. This thesis contributes to understanding urban heat by 

investigating the differences in heat across a county with an urban core, and by exploring 

what land use variables best predict these differences. Urban heat is often studied through 

remotely sensed land surface temperature, but by utilizing an existing county network of 

weather stations, this project is able to explore air temperature and humidity in situ.
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1.1 HEAT INDICES 

With a heightened awareness and attention towards heat risks, there is ongoing 

scientific discussion concerning what heat indices to use, when to use them, and how 

much heat varies within geographic regions. Despite the importance of heat as an 

atmospheric variable, the ability of the current measurements to predict heat accurately 

and reliably has been called into question. The National Weather Service (NWS) 

currently uses three indices for heat- the Heat Index, Wet Bulb Globe Temperature 

(WBGT), and an experimental tool known as HeatRisk, although the Heat Index remains 

the only tool for official warnings (NWS 2023). 

The Heat Index was originally conceptualized by Robert G. Steadman in the late 

1970s, intended to calculate an apparent temperature based on ranges of dry bulb 

temperature and relative humidity that are likely to be present at the earth’s surface 

(Steadman 1979). The Heat Index is commonly known as the ‘feels like’ temperature in 

public forecasts. At a given temperature and humidity, the Heat Index value is the 

temperature at which one would experience the same comfort with baseline levels of 

water vapor pressure of 1.6 kPa, wind speed of 5.6 mph, barometric pressure of 101.3 

kPa, and in the shade (Steadman 1979). The NWS adopted the Heat Index for their 

weather communications, and it is their official product for their heat watches, advisories, 

and warnings (NWS 2023). The NWS standard Heat Index equation is shown in Equation 

[1] and visualized in Figure 1.1.  

HI = -42.379 + 2.04901523T + 10.14333127RH - .22475541T*RH - .00683783T2 - 

.05481717RH2 + .00122874T2RH + .00085282TRH2- .00000199*T2RH2  [1] 
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Despite its wide acceptance and use, the Heat Index has documented weaknesses 

as its calculation does not consider solar radiation, pressure, or wind. The Heat Index is 

measured in the shade, so adding exposure to the sun adds unaccounted stress. It also 

does not consider wind, which has the capacity to increase evaporative cooling. Steadman 

did however, author a subsequent paper considering these effects on apparent temperature 

(Steadman 1979). Recently, the Heat Index was noted to yield unphysical results at 

extreme temperature and humidity combinations, and an extended thermoregulation 

model was created to allow for accurate apparent temperatures in extreme environments 

(Lu and Romps 2022). There were severe underestimations found in the existing Heat 

Index in high humidity environments when compared to the extended model. For 

example, the existing Heat Index was found to underestimate the apparent temperature of 

an 88°F, 96% RH environment by 26°F. 

Another index, the Wet Bulb Globe Temperature (WBGT) is a more holistic 

measurement of heat stress. WBGT was introduced in the 1950’s in response to the 

occurrence of heat illnesses in US Army and Marine Corps training camps (Yaglou & 

Minard 1956). The WBGT comprises the dry bulb, wet bulb, and black globe 

temperatures. The dry bulb thermometer is a shaded dry thermometer, also known as air 

temperature. The wet bulb thermometer includes a wet cloth covering and is exposed to 

the air, wind, and sun. This serves as a measurement of evaporative cooling capacity of 

the air. The black globe thermometer lies inside of a black plastic sphere, that heats the 

inside when exposed to solar radiation. From these measurements the WBGT is 

calculated using Equation [2]. 

  WBGT = .7 *TWB + .2*TBG + .1*TDB   [2] 
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By using three thermometers, the WBGT incorporates the effects of temperature, 

solar radiation, wind, and humidity. Since its initial adoption by the US military, the 

WBGT has been adopted in other domains including sports medicine. WBGT continues 

to be used by OSHA (Occupational Safety and Health Administration, OSHA Technical 

Manual Section III: Chapter 4- Heat Stress 2017, OSHA Heat Hazard Recognition 2023), 

is mandated for use by the South Carolina High School League South Carolina High 

School League 2021), and the Georgia High School Association (Georgia High School 

Association 2024). WBGT is still heavily researched in sports medicine today (e.g. 

Grunstein et al 2012, Tripp et al 2020, Grundstein et al 2023, Grundstein et al 2022). 

Although there is widespread adoption of the WBGT for risk monitoring, different risk 

thresholds exist depending on organization, activity, and acclimation. One example, 

developed by the University of Georgia divides the United States into three geographical 

regions and provides different risk thresholds for each (Grundstein et al 2015).  

There are limitations to the use of WBGT index. The most severe of which is that 

proper WBGT measurement requires a wet bulb thermometer with a water reservoir, and 

a black globe thermometer. Most weather stations, including the nationwide NWS 

automated stations, do not have these instruments. There are methods for estimating these 

variables from existing sensors, some of which are fairly accurate (Mullin 2022), but 

using these methods in place of proper measurements has been questioned (Budd 2007). 

Wet bulb temperature has been modeled from dry bulb temperature and relative humidity 

at sea level pressure (Stull 2011), and black globe temperature can be estimated from 

readily available NWS station data (Dimiceli et al 2011). These WBGT estimation 
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methods could serve as proxies that do not require new instrumentation at every weather 

station, but using them is sub- optimal.  

WBGT has also been shown to underestimate the physiological effects of 

restricted evaporation at low winds and high humidity (Budd 2007, Ramanathan & 

Belding 1973). While its inclusion of solar radiation and wind are crucial for representing 

heat stress, the typical temporal and spatial fluctuations of wind and solar radiation cause 

large spatiotemporal heterogeneity. At a given station, wind and solar fluctuations can 

change a WBGT value by several degrees in seconds or minutes. Coupling these 

fluctuations with narrow risk categories (e.g., US Military risk categories are 2-5 degrees 

Fahrenheit) results in rapidly changing perceived risk and recommendations (NOAA 

2023). Making an accurate forecast for WBGT that is volatile in the microenvironment 

that humans experience heat stress, is likely to be a challenge. Another challenge of 

WBGT is the number of varying risk charts, limiting consistency with risk messaging. 

Introducing WBGT to the public may be a concern too, because the highest risk category 

is 90°F, which is less intimidating than Heat Index values of the same risk, or even air 

temperature of the same risk. 

Recently, the western regions of the NWS have been exploring a different 

indicator known as HeatRisk. This forecasting tool considers temperature deviation from 

climatological normal, the duration of heat, day and nighttime temperatures, and if those 

temperatures are expected to have heat-related impacts. The prototype is a product of a 

collaboration with the Centers for Disease Control and Prevention (CDC) and based on 

peer reviewed research on heat hospitalizations (NWS 2023, Vaidyanathan et al 2019), 

and the effects of nighttime temperatures, prolonged exposure, and time of year that has 



6 

been supported by other findings (Chen et al 2017). This HeatRisk product is currently 

experimental and is being adjusted for use in the eastern US. This product uniquely 

addresses the role of overnight low temperatures. Warm overnight lows cause 

accumulating heat exposure, and makes it harder and more expensive to cool the home at 

night, which exaggerate the prolonged effects of heat stress. This is of greater concern to 

urban residents, because urban areas typically do not cool off at night like their rural 

counterparts do. A study done by CAPA Strategies for the City of Portland Bureau of 

Emergency Management tracked temperatures inside 49 public or affordable housing 

units in Portland over two and a half months. They found that every unit exceeded indoor 

temperatures over 80°F, 82% of housing units exceeded 85°F, and 18% exceeded 90°F 

(CAPA Strategies 2023).  

A challenging task of heat risk messaging is deciding which method(s) to use, for 

each time and place. Using different metrics in the same meteorological environment can 

result in different risk categories and can produce conflicting information. With different 

methods of measuring and communicating heat risk, there are arguments for which 

measurement yields the best results in health outcomes. The best measurement of heat for 

predicting health outcomes varies too much by place, demographic group, and seasons, to 

select one best overall performing index (Goldie et al 2018, Barnett et al 2010, Goldie et 

al 2017, Fletcher et al 2012).  

1.2 URBAN PHENOMENA 

Heat as a hazard is further complicated by the spatial variability in heat 

conditions. The existence and effects of Urban Heat Island (UHI) have been studied 

extensively, (e.g., Oke 1980, Arnfield 2003, Roth 2007). The UHI is mostly the result of 
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an imbalanced surface energy budget caused by artificial surfaces that store heat, 

anthropogenic heat releases, and limited outgoing longwave radiation (Zhou et al 2019).   

More detailed quantification of the UHI effect continues to be an active area of 

research, with studies using remote sensing to understand land surface temperature (LST) 

patterns (Imhoff et al 2010, NASA 2022). There are model-based tools to calculate UHI 

intensity based on urban geometry which is an important mechanism of the Urban Heat 

Island in cities with dense architecture geometry (Nakata-Osaki et al 2018). Another 

study noted synergistic effects of the UHI during heat waves, compounding urban risk (Li 

& Bou-Zeid 2013).  

The most common method by which to examine the UHI is by LST, or Surface 

Urban Heat Island (SUHI). The number of SUHI studies has risen to over 75 per year in 

2018 (Zhou et al 2019). Rapid urbanization, enhanced ability of thermal imaging, and 

increased attention to climate change have driven this rise. Although the insights of 

remote sensing can give on surface temperature are important, the fundamental limitation 

of these studies for practical use is that surface temperature is not directly comparable to 

air temperature (Zhou et al 2019). A review of urban heat thermal remote sensing 

progress by Voogt and Oke (2003) highlights a lack of observational studies to validate 

remotely sensed data. The most valuable information to obtain is high resolution 

temperature, humidity, wind, and solar radiation, data at the height and location of human 

experience. If public health officials, urban planners, and decision makers want to 

understand the heat stress their citizens experience, understanding SUHI is insufficient. 

Validating the SUHI with air temperature data is crucial.  
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In recent years, vehicle- based measurements for heat island mapping have been 

done in over 60 cities, including Columbia, SC (CAPA Strategies, Voelkel et al 2016). In 

2023, CAPA Strategies, funded by NOAA and NIHHIS (National Integrated Heat Health 

Information System) completed a ‘Heat Watch Report’ for the City of Columbia. The 

campaign, coordinated by the University of South Carolina (USC), had volunteers drive 

on designated routes throughout the city with a car mounted temperature sensor for three 

time periods in early August 2022. Sensor data was sent to CAPA Strategies, who used 

remotely sensed imagery to interpolate between the routes of data. The afternoon results 

of this effort, shown in Figure 1.2, indicate dramatic temperature differences across the 

city. The afternoon temperatures ranged from 82.3°F to 100.0°F in downtown Columbia 

(CAPA Strategies 2022). This degree of afternoon temperature differential was greater in 

Columbia than for replicated campaigns in other southeast cities such as Atlanta, 

Charleston, Nashville, Knoxville, Jacksonville, as well as western cities including Austin, 

Los Angeles, and Albuquerque (NIHHIS Urban Heat Island Mapping Campaign Cities, 

2019- 2022). 

Each UHI measurement method has its own imperfections, for example, LST 

does not investigate the air temperature differences directly, where humans are 

experiencing the heat. Vehicle- based measurements get observations from the air that 

humans are experiencing, but sensors attached to cars may be exposed to additional 

sources of heat from the car or aspiration from the car’s movement that do not necessarily 

reflect the conditions otherwise. The exposure to vehicle heat may be exaggerated in 

urban areas with more traffic, more frequent stops, and lower speeds. In addition, 

interpolating the temperature for differing land uses between observations exclusively 
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measured on roads could introduce bias. Additionally, there is anecdotal evidence of 

heterogeneous cloud cover in Columbia the day of the afternoon measurements. Noting 

these imperfections does not intend to proclaim that those methods are incorrect or 

useless, just that each methodology has its flaws.  

The UHI is typically defined by temperature differences between urban and 

surrounding rural areas, but using other variables to consider heat stress, such as 

humidity, can yield different results. In addition to the UHI there are other urban 

phenomenon based on moisture differences known as urban moisture island (UMI), or 

urban dry island (UDI). In an analysis of over 40,000 weather stations in roughly 600 

urban clusters in Europe during a 2019 heatwave, researchers found that the UDI effect 

moderated outdoor Heat Index when coupled with an UHI (Chakraborty et al 2022). They 

also demonstrated that surface temperature is a poor proxy for daytime urban heat stress 

variaitons, and that vegetation moderates heat stress poorer than it mitigates surface 

temperature (Chakraborty et al 2022), which challenges UHI mitigation methods. A study 

on mitigation efforts in New York City, found that vegetation cooled air temperature 

more effectively than increasing albedo, and the most effective mitigation strategy was 

curbside planting (Rosenzweig et al 2006). The effectiveness of mitigation studies, 

particularly regarding vegetation have conflicting results, depending on what measure of 

UHI is being used, whether it be temperature, heat stress, or LST. Urban vegetation does 

contribute other benefits like shade, carbon sequestration, and visual appeal, so heat 

mitigation is only a fraction of the role of urban vegetation. Additionally, Chakraborty et 

al found that air temperature and surface temperature had a weak daytime correlation. 

This analysis demonstrates that measuring UHI intensity with LST, and predicating the 
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effectiveness of mitigation strategies on LST alone is limited. In a meta- analysis of 34 

UMI and UDI studies, cities in humid climates are found to have lower humidity 

differences between urban and rural locations than arid cities (Huang and Song 2023). In 

mid latitude cities, urban humidity was found to be between 20% lower and 50% higher 

than rural humidity, showing a bias towards an UMI (Huang and Song 2023). Through 

incorporating analysis of humidity, these studies give a better understanding of heat stress 

than temperature studies alone. Based on varying results on the presence of urban heat 

stress islands, there is no generalizability, emphasizing the importance of local 

understanding.  

Other methods to understand the role of land use and heat stress have investigated 

differences in WBGT between land uses over small distances, giving insight into the 

intra-urban heterogeneity. Measuring WBGT across different surfaces at an athletic 

complex in Georgia revealed no significant differences (Grundstein & Cooper 2020), but 

WBGT differences between land surfaces over a similar proximity in North Carolina 

were found, and were exaggerated in sunny versus shaded conditions (Clark 2023). The 

importance of local assessment of WBGT for decision makers is further emphasized 

when comparing observed versus modeled data (Tripp et al 2020, Grundstein et al 2022, 

Pryor et al 2017). There is no consensus on how much heat stress varies based on land 

use and location within the urban environment and between urban and rural 

environments. It is also unclear at what scale differences arise, or what scale is 

appropriate to model UHI.  

Currently, the University of South Carolina is working on a project funded by 

NOAA to understand the geographic variability of heat and heat risk perception for the 
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Columbia forecast region. This has included collecting data from several temporary 

weather stations with varying land surfaces over the heat seasons in 2022 and 2023. 

Preliminary results show that these land use variations yield different counts of days in 

each risk category for Heat Index. Figure 1.3 shows the differences between five of the 

project’s stations meeting NWS Excessive Heat Advisory Heat Index thresholds, in 

contrast to the actual number of advisories and warnings that were issued by the forecast 

office. For days exceeding the ‘Excessive Heat Warning’ threshold of 110°F Heat Index, 

three of the stations all had the same percent of 45%. One of these three stations (labelled 

“Saluda” in Figure 1.3) was an agricultural site in rural Saluda County, SC. “Fort 

Jackson”, a rural site located in a clearing of a large forested area also had 45% of days 

exceeding the warning threshold, as well as “Barnwell”, an urban station located on a 

parking lot. The station with the lowest percentage was Fairfield, an airport location in 

rural Fairfield County, SC. The station with the highest percentage of days was 29203, 

which is an urban station located on concrete. The hottest and coolest stations here fit the 

typical UHI expectations, but having two rural vegetated sites yielding the same results as 

a parking lot urban site is curious. 

Urban studies have aimed at understanding patterns of heat stress across space in 

a high- resolution manner. LST studies optimize spatial resolution at the cost of limiting 

insight into air temperature, humidity, and heat stress. These studies create a snapshot of 

high- resolution land surface temperature, but leave us clueless as to how much variance 

we feel in the air above, or temporal analysis. Other studies provide such temporal 

analysis of air qualities but have a limited number of stations, often just pairing one urban 

and one rural station. Other work, like the car mounted sensors provide great spatial 
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resolution and insight into air qualities, but have no temporal component. Therefore, the 

research gap in the urban heat literature is a temporal analysis of air qualities (both air 

temperature and humidity), using a high- density network of stations in an urban area. 

The dataset used in this thesis allows for analysis in this research gap.  

 

1.3 RESEARCH QUESTIONS 

The curious results from the ongoing University of South Carolina project, as well 

as the mixed results from UHI, UDI, UMI literature, and the dramatic UHI from the Heat 

Watch, led to the need for deeper investigation of city-wide variability analysis for 

Columbia. This thesis project addresses the topic of heat variability at the local scale by 

utilizing an existing weather station network in Richland County, South Carolina to 

answer the following research questions:  

1) What are the differences in daily max Heat Index across stations around Columbia, 

South Carolina?  

2) What variables may explain the differences in daily max Heat Index between stations 

around Columbia South Carolina?  

3) Is a statistical model developed from past network observations able to improve Heat 

Index predictions at a local scale? 

The work presented here focuses on the Heat Index and its components. Heat Index 

allows for a better investigation into heat stress than air temperature, but does not require 

the instrumentation required for WBGT measurements. Heat Index is also currently the 

product used for official warnings from the NWS, and is more familiar to the public as 
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either Heat Index or a ‘feels like’ temperature. Additionally, without considering solar 

radiation or wind, the heat stress data is less volatile, allowing for a better understanding 

of general trends.  

Figure 1.1 National Weather Service Heat Index Chart, from NWS. 
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Figure 1.2 CAPA Heat Watch Model, from CAPA Strategies. 
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Figure 1.3 UofSC Data Heat Index Threshold Counts, NWS Data from Iowa 

Environmental Mesonet. 
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CHAPTER 2 

METHODOLOGY 

2.1 STUDY AREA 

The study area for this thesis was Columbia, South Carolina. Within Richland 

County and located in the center of South Carolina, Columbia is home to the state capital 

as well as the University of South Carolina. The location of Richland County within the 

state and Columbia within the county is shown in Figure 2.1. The city trademarked the 

slogan ‘Famously Hot’ in 2010, which is backed by summer temperatures regularly in the 

mid 90’s coupled with oppressive humidity (Experience Columbia SC 2024, NCEI 

2024). The record high temperature was a stifling 110°F, measured in June 2012 (NWS 

2024). Home to around 130,000 residents, the city is the second largest in the state (US 

Census Bureau 2024). Demographically, Columbia is roughly half white and 40% black, 

with a poverty rate more than double the US average (US Census Bureau 2024). 

Coupling a financially vulnerable population with particularly oppressive heat is a recipe 

for high risk, especially if the vulnerable population lives within an UHI.  

2.2 WEATHER DATA 

To explore the differences in heat in Columbia and the relationship between heat 

and land use, both weather data and land use data were acquired. For the weather data, 

this research utilized an existing weather station network known as RC Winds (Richland 

County Weather Information Network Data System), which is a network of professional 



 

17 

grade weather monitors throughout Richland County, South Carolina, and surrounding 

areas (RC Winds 2023). Historical data is available by request through the RC Winds 

data manager at Richland County EMS and real time information is available through 

their public website. 

This network has been used by emergency officials and local meteorologists since 

its origin in 2013 (Richland County SC 2023). The network contains over 60 stations, 

collecting data in five- minute intervals measuring air temperature, relative humidity, 

wind speed, solar radiation, barometric pressure and rainfall. Having this density of 

stations in one county gives officials a high-resolution insight into weather conditions. 

Without the RC Winds network, county officials would have to rely on the existing 

network of FAA (Federal Aviation Administration) and NWS automated weather stations 

at airports, and with only two stations in or near Richland County, the alternative density 

of information is much lower. Having this dense network is useful for emergencies like 

wildfires, chemical releases, hazmat incidents, winter weather, flooding, high winds, 

special events (RC Winds 2024), or in this case, research. The instrument heights range 

from four to 30 meters, with the mode being 10 meters.  

For the work presented here, the 33 stations with a measurement height of 10 

meters were used to minimize confounding variables. Figure 2.2 shows the locations of 

the 10- meter stations distributed across Richland County. Richland County, and 

therefore the RC Winds network, covers approximately 750 square miles in the heart of 

South Carolina, including the city of Columbia. The stations are spread throughout the 

county creating a somewhat uniform density. Most stations are located on the grounds of 

fire stations or emergency medical service stations, with a few others on other public 
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lands. Most of the instruments are on top of a dedicated tower in proximity to the one or 

two- story fire station buildings.  

The majority of stations are surrounded by grass, near a building, often with trees 

higher than the instrument in proximity of the station. An example of a typical station is 

shown in Figure 2.3. Instrument guidelines for installation are to keep the instrument at 

least eight feet above peak roof height, for roof installations (Campbell Scientific 2024). 

Even though not on the roof, most stations are close to a roof. Based on station photos, it 

appears the majority of stations are well over eight feet above the roof peak, which the 

example station shown in Figure 2.3 demonstrates. Each station measures air 

temperature, relative humidity, barometric pressure, rainfall, solar radiation, wind speed, 

and wind direction at 5-minute time stamps. Each station sends data automatically to the 

user’s computer.  

2.3 WEATHER VARIABLES 

The raw RC Winds data were used to compute a number of weather-related 

variables. Because the focus of this work is heat, all RC Winds data were subset to the 

months of June, July, and August of 2022, resulting in 92 days of data. Heat index was 

calculated for each available time interval using air temperature and relative humidity, 

based on the standard National Weather Service equation (Rothfusz 1990), as shown in 

Equation [1]. In addition, dew point was calculated for each time interval using August- 

Roche- Magnus approximation based on temperature and relative humidity to investigate 

UDI UMI (McNoldy 2024). 
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For initial investigation, the maximum calculated Heat Index for each day at each 

station was found, called Daily Max Heat Index (DMHI). Then, the daily average across 

33 stations for each day was found, called DMHI Average (DMHIA). Further, the 

deviation for each station from that daily average was calculated, giving 92 days of 

deviations, named ΔDMHI. That variable was averaged, resulting in the Δ Daily Max 

Heat Index Average (ΔDMHIA). These variables can be viewed for further context in 

Table 2.1. This variable was a single value reflecting each stations’ tendency to deviate 

from the network average, in degrees Fahrenheit. Positive values reflected a station tends 

to have relatively higher daily peaks, and lower values reflected a relatively cool station.  

ΔDMHI was plotted in box plots to visualize the range of the differences that 

existed. The mean value in each of these box plots represents the variable ΔDMHIA. 

What was found is that the ΔDMHIA ranged from about -12°F to 17°F, producing a 

range of 29°F. The distribution showed six distinct outliers though, both based on their 

mean value and range. These outliers were Broad River, Elders Pond, Irmo Fire District, 

Landfill, Screaming Eagle, and Utilities. Further examination of these six stations 

indicated probable instrument errors due to excessively low or high relative humidity 

values, thus they were removed from further analysis. Additional discussion of this 

removal process can be found in Appendix A. The weather variables used for the final 

analysis were recalculated without the presence of the outlier station data found in this 

ΔDMHIA investigation. 

 For deeper investigation, and to involve more data, the hottest and coolest hours 

of the day were considered to understand diurnal patterns of temperature, humidity, and 

their relationships with spatial variables. It was found that the typical hottest hour of the 
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day through the summer was 3pm, and the coolest was 6am, based on 5- minute average 

temperature and Heat Index. The data were filtered into a 6am and a 3pm dataset. 

Deviations were calculated for relative humidity, temperature, Heat Index, dew point, as 

well as solar radiation and wind speed for each time stamp. For example, at station ‘MLK 

Park’, at 6:25 am June 3, the deviation for temperature was the MLK temperature at 6:25 

minus the network average at 6:25 am June 3. From this, the median of these values was 

computed to represent the typical deviation for each station during the 6am hour. 

Therefore, each station had one median deviation value for temperature, relative 

humidity, Heat Index, dew point, wind speed, and solar radiation. These median 

deviation variables were used for the major analysis of this thesis. This allowed for a 

diurnal understanding of the UHI and UDI/ UMI based on air temperature, humidity, and 

heat stress. These deviations were assessed via summary statistics to get an understanding 

of the range and typical values, as well as visualizations including box plots and Inverse 

Distance weighting spatial interpolation to assess the deviations over space. Moran’s I 

autocorrelation index was also performed to assess the spatial clustering, randomness, or 

dispersion of these deviations.  

2.4 LAND COVER AND LOCATIONAL DATA 

 Based on the latitude and longitude given by RC Winds, the following variables 

were created for each station using ArcGIS Pro: elevation, latitude, longitude, multi- 

scale vegetation index, proximity to the urban center, multi scale impervious surface 

percentage, proximity to a water body, and soil available water supply, shown in Table 

2.2. These served as the independent variables used to assess their prediction power of 

deviations in Heat Index, temperature, and other variables.  
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 Multi scale vegetation was represented by NDVI (Normalized Difference 

Vegetation Index), calculated for the area around each station for three buffers, 5km, 

1km, and 50m. The average value of the pixels within that circle represented the station’s 

NDVI. The NDVI was downloaded from USGS EarthExplorer and was computed using 

Landsat 8 imagery from June 15, 2022, which was the best available imagery from the 

centermost date of the study period. While the NDVI value may change throughout the 

summer, only one value was calculated to represent each station’s vegetation for the 

study period. The pixel size for this raster imagery is 30 meters. NDVI is a well- known 

index for assessing plant health and vegetation density (USGS 2023). Vegetation has the 

capacity to mitigate heat and add humidity. This index was particularly useful in testing 

its relationships to weather variable deviations.   

Percent impervious surfaces was computed at the same buffers as NDVI, from the 

2021 NLCD (National Land Cover Dataset). It is assumed that the land cover did not 

change enough between 2021 and 2022. The pixel size for this data was also 30 meters. 

Each land cover type in the dataset was given a value of 0 to 1 to represent it’s percent 

perviousness, then the average value was calculated for each buffer area around each 

station. The buffers for this variable were the same as the NDVI, 5km, 1km, and 50m. A 

50m buffer represented the immediate land use attributes near a station. The 1km buffer 

was chosen to represent intermediate land use attributes, relative to the study area. The 

5km value was chosen to represent a broad land use attribute, without having too much 

overlap with other stations to avoid minimal inter- station variability. The extent of the 

5km and 1km buffers are shown in Figure 2.4. 
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 Proximity to the urban center was defined as the Euclidean distance to a center 

point of Columbia, the State House, in meters. The State House was chosen because it is 

a landmark that lies in the heart of the downtown Columbia area. Near it, the most 

densely urban land use exists. In addition, the State House lies in the heart of the hottest 

part of Columbia, as found by the CAPA Heat Watch (Figure 1.2).  

Proximity to water body was defined as the Euclidean distance in meters to the 

nearest border of Lake Murray, which was considered the only water body close enough 

to the stations and large enough to have an effect on the station data. Lake Murray is a 

48,000 acre reservoir located just west of Columbia. Upon the completion of the reservoir 

in the 1920’s to make hydroelectric power, the 1.6-mile dam was the largest earthen dam 

in the world (South Carolina Department of Natural Resources 2024).  The lake perimeter 

was chosen because similar to lake effect snow, or land and sea breezes, the phenomena 

are observed in higher correlation with the shoreline than the center of the water body. 

Although the severe lake effect snow and land and sea breezes are caused by much larger 

bodies of water than Lake Murray, a smaller scale effect is expected at Lake Murray, so 

the same perimeter logic was applied to compute the Proximity to Water Body variable.  

Soil Available Water Supply (SAWS) was found through the USDA (United 

States Department of Agriculture) Soil Survey and was chosen to represent a soil type’s 

capacity to hold moisture in the upper layer (USDA 2023). This variable served as a 

proxy for evaporation capacity of a soil. A soil with more evaporation will cool the soil, 

but add heat stress to the air above. The SAWS value for each station was the SAWS 

value for the soil type directly under the station point.   
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2.5 SPATIAL VARIABLES 

 To understand the distribution of the deviation of daily maximums several spatial 

techniques were used. Inverse Distance Weighting (IDW) was used as a spatial 

interpolation method to view the Median ΔDMHI variable on a continuum. From a set of 

points with a chosen variable to interpolate, IDW creates a raster of cell values by using a 

linearly weighted combination of a set of sample points (ESRI 2023). Using an 

appropriate color scheme, the IDW interpolation creates a heat map for the chosen 

variable. To further analyze the spatial distribution of this the ΔDMHIM, Moran’s I Index 

was calculated. This tool gave insight into the spatial autocorrelation of a variable. 

Further, it revealed if the variable was clustered, random, or dispersed.  

 The relationship between the twelve land use and locational variables and daily 

max Heat Index deviations was measured through linear correlation. Using deviations 

was important because this research is curious to understand what explains the 

differences between the stations, rather than the values at the stations. Overall, the values 

at the stations like temperature, humidity, and Heat Index are results of meteorological 

conditions, air masses, the location of Columbia on the globe, and daily variations in 

meteorological conditions. The differences between stations, when averaged through the 

summer, are more likely to be the result of land use rather than weather conditions. For 

example, an afternoon thunderstorm that passed through the north western portion of the 

county may create large 3pm Heat Index differences, which could be incorrectly 

attributed to land use. Averaging these deviations for the summer gives more confidence 

that the differences that exist are a result of land use variables and not daily weather 

patterns.  
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 UHI literature uses land use variables to model land surface temperature, often 

with multiple linear regression. After getting an understanding of the correlations that 

each land use variable had with the weather deviations, the next goal was to test the 

ability for a combination of these variables to predict the deviations in weather variables. 

Theoretically, a well- performing set of land use variables could be the inputs for a high 

spatial resolution heat stress model for Columbia. Then, interpolation between points 

would be based on an accurate regression, rather than linear interpolation. Ideally, a 

network of stations collecting heat data at human height would be ideal for model 

creation. However, it is the lack of these desired stations that led UHI research to rely on 

land surface temperature, and vehicle-based measurements rather than a network of 

permanent high- density stations. RC Winds provides a high-density network of stations, 

just at higher heights than human experience. With this network, a multiple linear 

regression was made initially for afternoon Heat Index deviations, then for other variable 

deviations to understand what could be predicted. Using Ordinary Least Squares (OLS) 

Multiple Linear Regression, and Exploratory Regression in ArcGIS Pro, as well as OLS 

from the scikit- learn machine learning library using python.  

The performance evaluation metrics derives from these regressions will give 

insight into the possibility of using the land use variables in this study for creating a 10- 

meter heat stress model for Columbia. A VIF (Variance Inflation Factor) was computed 

to assess multicollinearity between variables. The VIF quantifies how much the variance 

of a predictor is inflated by the existence of correlation among the predictor variables in 

the model (PSU 2023). Models with a VIF over four require investigation, while models 

with a VIF over ten indicate serious multicollinearity (Kang, personal communications 
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2023). Other model performance metrics include Adjusted R2, which lowers the r squared 

with higher model complexity, the closer this value to 1, the better the model. The AICc 

is the corrected Akike Information Criteria which is an estimation of prediction error, so 

minimizing this value is optimal. The Koenker (BP) Statistic p- value assesses the 

consistency of relationships over space, a value under .05 suggests that there are 

inconsistent relationships. The residuals of a regression should be randomly distributed. 

In the case that the residuals are clustered, measured by Moran’s I, spatial error model is 

an appropriate method to account for this. If the coefficients vary across space, then a 

Geographically Weighted Regression should be used. In addition to ArcGIS Pro model 

evaluation, the model will be created and evaluated using Scikit- learn, a popular 

machine learning library in python (Pedregosa et al 2011). Using both a Decision Tree 

and OLS (Ordinary Least Squares) regression, the average MAE (Mean Absolute Error), 

and RMSE (Root Mean Square Error) will be found for twelve cross- validation folds 

using 80% of the points to train, and testing on the remaining 20%. This gave further 

insight to the applicability for these land use variables to improve local heat forecasting. 
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Table 2.1 Heat Index Variables 

 

Table 2.2 Land Use and Location Variables  

 

Variable Name Calculation Number of 

Data Points 

Explanation 

Heat Index 

(HI) 

27 stations* 92 

days* 288 

observations/day 

715,392 Calculated from 5-

minute observation 

temperature and relative 

humidity 

Daily Max Heat 

Index 

(DMHI) 

27 stations* 92 

days 

2484 Maximum Heat Index 

found for each day and 

each station 

Daily Max Heat 

Index Average 

(DMHIA) 

92 days 92 Across network daily 

average of all stations’ 

Daily Max Heat Index 

Δ Daily Max Heat 

Index 

(ΔDMHI) 

27 stations* 92 

days 

2484 Calculated from (Daily 

Max Heat Index) - 

(Daily Max Heat Index 

Average) to get each 

station’s daily departure 

from mean 

Δ Daily Max Heat 

Index Average 

(ΔDMHIA) 

27 stations 27 The mean of 92 days of 

Δ Daily Max Heat Index 

for each station 

Δ Daily Max Heat 

Index Median 

(ΔDMHIM) 

27 stations 27 The median of 92 days 

of Δ Daily Max Heat 

Index for each station 

Variable (Unit) Source 

Elevation (m) USGS National Map 

Latitude (Decimal Degrees) RC Winds, personal communication 

Longitude (Decimal Degrees) RC Winds, personal communication 

NDVI 5km (N/A) USGS Earth Explorer 

NDVI 1km (N/A) USGS Earth Explorer 

NDVI 50m (N/A) USGS Earth Explorer 

Proximity to Urban Environment (m) Calculated Field 

Percent Impervious 5km (%) USGS NLCD  

Percent Impervious 1km (%) USGS NLCD  

Percent Impervious 50m (%) USGS NLCD  

Proximity to Water Body (m) Calculated Field 

Soil Available Water Supply (Inches) USDA Web Soil Survey 
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Figure 2.1 Richland County, South Carolina 
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Figure 2.2 10-meter RC Winds Stations in Final Analysis.  

Figure 2.3 Typical RC Winds Station, Left- Example RC Winds Station, Right- 

WeatherHawk weather station, from K. Aucoin, and Campbell Scientific. 
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Figure 2.4 Buffer Visualization 
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CHAPTER 3 

RESULTS 

3.1 HEAT INDEX VARIABILITY 

 The first research question aimed to understand the deviations that existed across 

the network. Based on a distribution of the 3pm Heat Index deviations for all 5- minute 

time stamps, each station had time stamps where the value was higher than average, and 

each station had time stamps where the value was lower than average. Out of 27 stations, 

14 had median values below 0, and 12 had median values above 0, leaving one station’s 

median value at zero. Eleven stations’ median value was outside a 2.5° deviation from 

zero. A visualization of the 5- minute Heat Index deviations during the 3pm hour is 

shown in Figure 3.1. For 3pm Heat Index, the median deviations ranged from -3.6°F to 

4.5°F, a range of 8.1°F. This means that on an average day in the summer during the 3pm 

hour, one would expect a difference in Heat Index across the county of 8.1°F at 10 

meters.  

Using the 5-minute 3pm deviations, violin plots were made for all stations for 

temperature, relative humidity and heat index A sample of these violin plots are shown in 

Figure 3.2. These plots showed insight into the distributions of deviations for each station 

that supplemented the box plots. Several observations were made, which are discussed 

and hypothesized on here. First, the heat index and temperature deviation violin plots 

tended to have longer tails on the low (cooler) end, and shorter tails on the high (warmer) 
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end. Differential cloud cover and or rain patterns in the afternoon may allow for certain 

stations to cool off significantly compared to the network. Cold fronts and convective 

storms can create this rapid cooling for a set of stations. These reasons may explain the 

longer tails on the cooler side of the violins. While a cold front or localized rainfall may 

create sharp decreases in temperature at a station, it is much harder to quickly increase 

temperature and heat index at a given station, compared to the network. There are no 

frontal systems that can rapidly warm a station at 3pm, and although the rate of surface 

heating varies by land use, the effects of that dwindle with height, which may not be 

experienced at the 10m height. The violin plots for afternoon relative humidity deviations 

have longer tails on the high end, demonstrating that raising relative humidity compared 

to the network is more common than lowering it. This supports the observations of 

temperature plots, when temperature is quickly lowered by a front, cloud cover, rainfall 

or otherwise, the relative humidity will respond by increasing. Lake Murray station had 

the widest spread of afternoon deviations, especially for relative humidity and heat index. 

Being right on the eastern edge of Lake Murray, which has an east- west orientation, 

allows for different wind directions to significantly change the air qualities coming 

toward the station. Interestingly, this distribution is not seen for Coast Guard Island, 

which is in the northeast edge of Lake Murray. Fort Jackson had a uniquely bimodal 

relative humidity distribution, which is curious because the land use surrounding the 

station is consistent so there shouldn’t be differences based on wind direction. This 

station is embedded within a large wooded area, so this bimodal humidity could reflect 

day-to day changes in vegetation and soil moisture, which the static independent 

variables would not capture. One final observation about the violin plots is that Owens 
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Field, a downtown airport station, had many outlier observation points for relative 

humidity on the high end. This was a curious finding, as the station is adjacent to a large 

area of low grass and asphalt, which would be expected to have higher temperatures and 

lower relative humidity.  

 Inverse Distance Weighting (IDW) was performed in ArcGIS Pro to visualize the 

interpolation of 3pm Heat Index deviations. The IDW creates a raster of data based on the 

bounding box of the input points, therefore the output is rectangular. As shown in Figure 

3.3, hot spots are located in downtown Columbia, just north of Columbia, and in the 

southeast portion of the study area, in Eastover. Cool spots are located near Lake Murray, 

Fort Jackson, and Forest Acres, located just east of downtown Columbia.  

 In addition to spatial interpolation, Moran’s I Spatial Autocorrelation assessment 

was completed for 3pm Heat Index deviations. The Moran’s I index was .11, with a z-

score of 1.19, and a p-value of .23, indicating that the pattern did not appear to be 

significantly different than random. With a positive z score however, the pattern skewed 

more likely to be clustered than to be dispersed.  

 A similar inspection into other variables was completed. Table 3.1 includes some 

descriptive statistics for the 6am median deviations, and Table 3.2 includes the same for 

3pm median deviations. These tables were generated based on the having one median 

deviation for each station.  

 Moran’s I Spatial Autocorrelation Index was computed for additional median 

deviation variables. The only significantly clustered variable was 3pm temperature 

deviations, as shown in the Moran’s I results in Table 3.3. This variable was visualized 
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using IDW spatial interpolation, as shown by Figure 3.4. The major hot spot of the area 

was clearly downtown Columbia, but only with a range of temperature deviations of less 

than 6 degrees.   

3.2 LAND USE AND VARIABILITY 

 The second research question is ‘What variables may explain the differences in 

daily max Heat Index between stations around Columbia South Carolina?’. This question 

is aimed at understanding and quantifying which variables, and at which scale, are 

important for the possible creation of a high-resolution local heat model. 

 The twelve land use variables were tested for their strength and direction of 

correlation with 3pm Heat Index deviations. The only r-squared value above .1 was with 

Elevation (-.18). This implied a weak negative relationship between elevation and 3pm 

Heat Index deviation. All other land use variables displayed an r-squared of less than .06. 

The weak relationships that land use variables had with 3pm Heat Index was a surprising 

finding, given the literature on UHI suggesting the likelihood of afternoon heat to be 

more extreme in the urban areas. Additionally, the CAPA Heat Watch that took place in 

Columbia found afternoon differences of 18°F in the same study area. Granted, those 

observations were car- mounted and this study is analyzing 10-meter observations. 

Investigation into the components of Heat Index was necessary to explore a possible 

moderated heat stress due to lower urban humidity, similar to the one found in 

Chakraborty et al (2022). Afternoon temperature had little correlation to land use 

variables as well. The variables above an r-squared of .1 were Elevation, NDVI1km, 

NDVI50m, and %Imp5km. Elevation shows a negative weak correlation with 3pm 

temperature deviations. Two NDVI variables perform weakly but positive with 3pm 
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temperature, implying more vegetation means higher afternoon air temperatures. 

Although the correlation was weak, this was an unexpected result. Table 3.4 shows 3pm 

deviation r-squared values.  

 The afternoon deviations shown in Table 3.4 show mostly weak correlations. 

Wind was the only variable to have a single variable r-squared above .2. NDVI correlated 

negatively with wind deviations, implying that more vegetation is associated with lower 

afternoon wind. The mature height of the most common indigenous South Carolina trees 

is higher than 10 meters, so stations located near trees are likely below the treetops, 

decreasing wind (Coastal Expeditions 2021).  

 Even though the spatial interpolations shown in section 3.1 reveal hot spots in 

downtown Columbia, the correlation between land use variables and afternoon 

temperature and Heat Index are low, the highest of which is -.19 between temperature 

and Elevation. Additionally, the lack of correlation between afternoon dewpoint and 

relative humidity reveals no strong afternoon UMI or UDI. For the 3pm deviation 

correlations, the best performing variables in order were NDVI50m, NDVI1km, 

NDVI5km, Elevation, %Imperv5km, %Imperv1km, Proximity Water, Longitude, 

%Imperv50m, Proximity Urban, SAWS, and Latitude. The order of predictability among 

afternoon weather variables was wind, temperature, Heat Index, relative humidity, then 

dew point.  

 Investigating afternoon Heat Index was a starting point for this analysis, but going 

further into both the components of Heat Index, including other weather variables, as 

well as understanding diurnal patterns was necessary. The correlations found at 3pm were 

low, but more intriguing correlations were found for the 6am deviations. The two largest 
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NDVI buffers explained over 60% of the variance in 6am temperature deviations. Both 

had negative coefficients of determination, implying stations surrounded by more 

vegetation is associated with lower morning temperatures than network average. The 5km 

NDVI and 1km NDVI performed very similarly (-.63, -.62), but the 50-meter NDVI only 

explained half as much variance in 6am temperatures. This gives helpful insight as to 

what scale is important for understanding these differences, at least for 10-meter 

observations. The correlations for both NDVI5km and NDVI50m with 6am dew point 

deviations were relatively low at -.2 and -.24, respectively, but their direction implies a 

slight morning UMI effect. The mechanism that produces this is said to be due to higher 

rates of evapotranspiration among urban vegetation overnight due to higher temperatures 

(Huang and Song 2023). 

Another notable finding was that the percent impervious variables performed 

weakly across the board, peaking at .28, and .25 for 1lm and 5km percent impervious 

surface, respectively. The direction of this relationship makes sense, as impervious 

surfaces are expected to retain and emit heat through the night, limiting nightly cooling. 

However, they explained less than half of their NDVI counterparts, demonstrating here 

that the presence of vegetation is more important for nighttime cooling than the absence 

of impervious surfaces. Upon initial consideration, NDVI and percent imperviousness 

may seem like opposite variables, but an area could have mostly impervious surfaces, 

with mature trees adding to the vegetation index. Additionally, an area could have 100% 

pervious surfaces but be covered by dead grass, dirt, or another low vegetation index 

cover. This is further demonstrated by their linear correlations, which show coefficients 

of determination between -.22 and -.42 between NDVI and percent impervious surface 
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variables compared at the same scale. Land use variables generally performed better with 

dew point deviations as well, and NDVI led the way again, but peaked at the 50- meter 

buffer this time.  

For the 6am deviation correlations, the best performing variables in order were 

NDVI1km, NDVI5km, NDVI50m, %Imperv1km, Proximity Water, %Imperv5km, 

Longitude, Proximity Urban, %Imperv50m, SAWS, Elevation, then Latitude. The order 

of predictability among afternoon weather variables was temperature, wind, Heat Index, 

dew point, then relative humidity. 

In summary, NDVI performed better than all other variables, including percent 

impervious surface. 6am weather deviations were much easier to predict from these land 

use variables than 3pm weather deviations, with coefficients of determination more than 

doubled in the morning than afternoon. Ranking the NDVI coefficients reveal that 

morning deviations are better predicted by smaller scale buffers of NDVI, rather than the 

larger scale buffers.  

3.2 MODEL BUILDING 

The third research question, ‘Is a statistical model developed from past network 

observations able to improve Heat Index predictions at a local scale?’ attempts to 

understand the possibility of using land use variables as the framework for a local heat 

model. Quantifying the explanatory power that a group of land use variables has on heat 

deviations, can help to understand the possibility of a local heat model. If the model 

created here explained much of the variance in the 3pm Heat Index, it could be used to 

create a high-resolution afternoon heat model for Columbia.  
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Using ArcGIS Pro’s Exploratory Regression tool, one can select a dependent 

variable, candidate independent variables, and compare the model results of different 

combinations. Similar to previous research questions, the starting point for this analysis 

was the 3pm Heat Index deviations. The results of the 3pmHeatIndex exploratory 

regression indicate that the best performance comes from using Elevation alone, with an 

adjusted r squared of .15. Using two variables decreased the adjusted r squared to .13. 

Table 3.6 summarizes the results of the best model for each number of explanatory 

variables. Results indicate that a 3pm Heat Index model may not be significantly 

improved by the incorporation of land use variables at the 10- meter height.  

Because the 6am temperature deviations had the best individual correlations with 

the land use variables, it was necessary to perform exploratory regression on it as well. 

Contrary to 3pm Heat Index, 6am temperature was able to be modeled accurately, with 

adjusted r squared values up to .71. The set of explanatory variables that reached this  

explanatory power were elevation, NDVI5km, NDVI50m, percent impervious 1km, and 

percent impervious 50m, all of which besides elevation were significant at the .05 level or 

better. The other metrics, like AICc, K(BP), and VIF were in acceptable ranges, meaning 

this model was successful. An assumption of a regression is that the residuals are 

randomly distributed. To test this, in ArcGIS Pro, the Generalized Linear Regression tool 

was run on 6am temperature with the five variables that produced the best result. Then, 

Moran’s I spatial autocorrelation index was run on the residuals. The results of this test 

showed with a z-score of -.4, a p value of .65, and a Moran’s Index of -.09, the pattern of 

residuals was randomly distributed. Figure 3.5 illustrates the five variable ArcGIS Pro 

regression model predicted versus observed 6am temperature deviation.  
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In addition to the 3pm Heat Index and 6am temperature, other morning and 

afternoon heat variables were put through exploratory regression as well. The model that 

maximized explanation power for 6am Heat Index, 6am dew point, 3pm temperature, and 

3pm dew point resulted in .37, .32, .6, and .03 adjusted r squared values, respectively. 

Therefore, 3pm temperature was put into Generalized Linear Regression on ArcGIS Pro. 

The model that created the .6 adjusted r squared for 3pm temperature is shown in Table 

3.6, and the residuals visualized in Figure 3.6. 6am and 3pm temperature were the only 

two variables that were able to output an adjusted r squared over .4, indicating 

temperature is better modeled than Heat Index.  

These regression models were recreated using Python, to understand the 

performances further. Scikit- learn Ordinary Least Squares (OLS) regression and 

Decision Tree regression were used. Model performance was tested using twelve 

validation folds with an 80% training sample and 20% testing sample, and finding the 

average RMSE and MAE. The results of these outputs are shown in Table 3.7. In both the 

ArcGIS Generalized Linear Regression, and the Scikit- learn regressions, 3pm Heat 

Index was not able to be accurately and consistently modeled with the input variables 

given. The adjusted r squared was low (.15), showing weak explanatory power. 

Additionally, the RMSE and MAE were high (1.92 to 6.7), considering the range of 

values for this dependent variable was only 8.1°F. As for the 6am temperature regression 

model, the model accuracy is high, but the range of deviations for morning temperatures 

was only 4.1°F. Finally, for 3pm temperature, RMSE and MAE were both between the 

values for 3pm Heat Index and 6am temperature. The MAE for OLS regression for 3pm 

temperature was less than a degree Fahrenheit, and with a range of 5.5°F, this was 
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moderately successful. The OLS performed better for each deviation variable than the 

Decision Tree regression. This is likely because of the size of the input data. Training the 

Decision Tree with 80% of 27 stations is not optimal to maximize accuracy. The 

Decision Tree results may have been improved with more stations, or using 5-minute 

deviations, or daily medians rather than summer median deviations.  

The results of this section indicate that Heat Index is not well modeled by the 

selected land use variables for this study, at 10 meters. However, morning and afternoon 

temperature were both found to be successfully modeled by the chosen land use 

variables. Dew point, relative humidity, nor Heat Index were successfully modeled, 

meaning that UMI or UDI patterns were not shown here. 
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Table 3.1 6am Weather Variable Deviation Summary Statistics 

 

Table 3.2 3pm Weather Variable Deviation Summary Statistics 

 

 

 

 

 

 

 Table 3.3 Moran’s I Results 

 

 

 

 

 6amRH_Dev 

% 

6amTemp_Dev 

°F 

6amHI_Dev 

°F 

6amDewP_Dev 

°F 

Mean .18 -.08 .14 .02 

Std 

dev. 

4.77 1.04 2.30 1.73 

Min -15.00 -1.50 -3.70 -4.60 

25% .05 -.95 -2.10 .05 

50% 1.60 0.00 -.30 .40 

75% 2.95 .60 1.30 1.20 

Max  5.70 2.60 5.00 1.70 

Range 20.7 4.1 8.7 6.3 

 3pmRH_Dev 

% 

3pmTemp_Dev 

°F 

3pm HI_Dev 

°F 

3pmDewP_Dev 

°F 

Mean -.66 .13 -.15 -.15 

Std dev. 5.30 1.25 2.44 2.80 

Min -13.20 -2.70 -3.60 -7.10 

25% -1.70 -.55 -2.50 -.65 

50% .20 .00 -.20 .70 

75% 2.20 .95 1.3 1.35 

Max  9.30 2.80 4.50 3.40 

Range 22.5 5.5 8.1 10.5 

 Moran’s I Z-score p-value Conclusion 

6amTemp_Dev .14 1.38 .07 Random. 

6amDewP_Dev -.14 -.88 .38 Random. 

6amHI_Dev .11 1.21 .23 Random. 

3pmTemp_Dev .27 2.5 .01 Clustered, 95% confidence. 

3pmDewP_Dev -.13 -.73 .46 Random. 

3pmHI_Dev .11 1.19 .23 Random. 
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Table 3.4 3pm R-squared Correlation Matrix 

 

Table 3.5 6am R-squared Correlation Matrix 

 
3RH_Dev 3Wnd_Dev 3Temp_Dev 3HI_Dev 3DewP_Dev 

Latitude 0.00 0.02 -0.03 0.04 0.00 

Longitude 0.01 -0.11 0.02 0.04 0.01 

Elevation 0.00 0.01 -0.19 -0.18 -0.01 

NDVI5km -0.05 -0.42 0.06 0.00 -0.03 

NDVI1km -0.08 -0.39 0.16 0.02 -0.02 

NDVI50m -0.08 -0.57 0.12 0.01 -0.04 

%Imp5km -0.01 0.09 0.11 0.05 0.00 

%Imp1km -0.01 0.11 0.06 0.03 0.00 

%Imp50m 0.00 0.06 0.05 0.03 0.01 

SAWS 0.00 0.00 -0.07 -0.03 0.00 

ProxWater 0.00 -0.13 0.02 0.03 0.00 

ProxUrban 0.00 -0.02 -0.06 -0.03 0.00 

 
6RH_Dev 6Wnd_Dev 6Temp_Dev 6HI_Dev 6DewP_Dev 

Latitude 0.00 0.04 0.01 0.00 0.00 

Longitude 0.00 -0.14 -0.11 -0.05 -0.02 

Elevation 0.00 0.08 0.02 0.01 0.01 

NDVI5km 0.00 -0.28 -0.63 -0.20 -0.20 

NDVI1km -0.02 -0.42 -0.62 -0.27 -0.09 

NDVI50m -0.04 -0.23 -0.31 -0.04 -0.24 

%Imp5km 0.00 0.00 0.25 0.09 0.04 

%Imp1km -0.01 0.00 0.28 0.12 0.03 

%Imp50m 0.05 -0.02 0.07 0.00 0.11 

SAWS 0.00 0.06 -0.05 -0.01 -0.02 

ProxWater 0.00 -0.15 -0.15 -0.06 -0.04 

ProxUrban 0.00 0.00 -0.17 -0.03 -0.06 
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Table 3.6 Exploratory Regression Results. Variable Significance (* = .10, ** = .05, *** = 

.01) 

 

 Table 3.7 Scikit- learn Regression Performance 

 

Variables Adj R2 AICc K(BP) VIF Model 

3pm Heat 

Index 

.15 125.63 .05 1.00 -Elevation** 

6am 

Temp 

.71 58.42 .93 3.56 +Elevation -NDVI5km*** -

NDVI50m** +PrcntImperv1km*** 

+PrcntImperv50m*** 

3pm 

Temp 

.60 77.25 96 2.75 +Latitude -Elevation** 

+NDVI1km** +NDVI50m*** 

+PrcntImperv5km*** 

Dependent Variable Method RMSE average MAE average 

6amTemperature Decision Tree .74 .94 

6amTemperature OLS .48 .55 

3pmHeatIndex Decision Tree 6.7 2.32 

3pmHeatIndex OLS 2.16 1.92 

3pmTemperature Decision Tree 1.80 1.10 

3pmTemperature OLS 1.28 .81 
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Figure 3.1 3pm Heat Index Deviation Box Plots 
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Figure 3.2 Sample of 3pm Heat Index Deviation Violin Plots 

 
Figure 3.3 3pm Heat Index Interpolation

Lake Murray 

29203 zip code 

Eastover 
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Figure 3.4 3pm Temperature Interpolation 

Figure 3.5 Predicted and Observed 6am Temperature Deviation

Lake Murray 

29203 zip code 

Eastover 
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Figure 3.6 Predicted and Observed 3pm Temperature Deviation
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CHAPTER 4 

CONCLUSIONS 

4.1 DISCUSSION 

 The most significant limitation to this study is the 10- meter height of weather 

stations, as this is not the height of human experience, and therefore cannot make 

conclusions on the patterns at other heights. The optimal urban heat stress study 

incorporates a high-density network of human height weather stations over varying land 

uses, with great spatial and temporal coverage. Unfortunately, such a network does not 

exist for most places, which is why land surface temperature is a popular alternative. 

Here, using the best available network, the understanding of local heat stress in 

Columbia, was improved because of the temporal or spatial coverage the RC Winds 

network provided. The number of stations, 27, was also not optimal for regression or 

statistical analysis.  

 Another limitation is the presumption of static independent variables. While 

proximity to water body will not change, other variables do change within the summer. 

For example, NDVI changes throughout the year, and if captured throughout the summer 

of 2022, may have yielded different results. The use of one image to create the NDVI 

raster was done because of the availability of high quality remotely sensed images of the 

study area, as well as a general assumption that the NDVI values would not change so 

significantly through the summer to be able to alter the general conclusions of this thesis. 

Additionally, the percent impervious surface was created from a national dataset from a 
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previous year, and some places within the study area may have changed land uses 

between the impervious surface data capture and the weather data capture.  

 Analyzing summer averages allowed for the understanding of general climate 

forecasting in Richland County. The choice to use static land use variables corresponded 

with the temporal scale of the summer deviations. Future research would benefit from the 

inclusion of dynamic variables. For example, capturing weekly NDVI could improve the 

accuracy of the model as vegetation health varies with rainfall. These dynamic variables 

could help understand the patterns found in the violin plots in section 3.1. Another 

example would be to include a variable for antecedent moisture, instead of the static 

SAWS. This could help understand dynamic differences in soil moisture and therefore 

humidity and latent heat. Controlling for dynamic weather variables like cloud cover, 

rainfall, and wind would also contribute to creating better daily weather forecasts. For 

example, a calm wind sunny high- pressure system day would likely create higher 

variance in air temperature across the county, whereas rainy windy days likely limit the 

variance. The limited explanation of land use on afternoon heat is hypothesized to be 

afternoon wind, shown in Figure 4.1. Understanding these finer scale dynamic variances 

would benefit forecasters to make accurate predictions and warnings.  

4.2 CONCLUSIONS 

 Heat is the leading cause of weather-related fatalities in the United States 

(National Oceanic and Atmospheric Administration (NOAA) 2023). As global 

temperatures continue to rise, urban populations grow, and heat waves grow stronger and 

more frequent, excessive heat exposure will rise (Kirkpatrick & Lewis 2020, Habeeb et al 

2015, Perkins et al 2012, Meehl & Tebaldi 2004, Baldwin et al 2019). Urban areas have 
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higher temperatures than their surrounding rural and suburban counterparts, creating the 

urban heat island (Oke 1980). Researchers have modeled the urban heat island, but due to 

a limited number of weather stations in urban areas, they commonly use remotely sensed 

land surface temperature. This allows for high resolution modeling, but the fundamental 

limitation of this method is that surface temperature is not directly comparable, and is a 

poor proxy for air temperature (Zhou et al 2019, Chakraborty et al 2022). Furthermore, 

remotely sensed land surface temperature does not give insight into heat stress variables 

like the Heat Index, or Wet Bulb globe temperature, or patterns of urban humidity.  

 This thesis utilized a unique network of weather stations in Richland County, 

South Carolina to understand the geographic patterns of heat stress, using the Heat Index. 

With 27 stations at 10-meters surrounding the city of Columbia, South Carolina, this 

network allowed for the investigation of the urban heat island through air temperature 

and humidity. The overarching goal for this thesis was to understand the plausibility of 

land use variables that are available at high spatial resolutions to model heat stress. The 

necessity for heat stress to be modeled at a high resolution assumes heterogeneity in the 

urban environment. If temperature, humidity, and therefore Heat Index were found to be 

homogenous across the study area, then modeling these variables at a higher resolution 

than a city would be trivial. Therefore, the first research question aimed to understand 

what differences in Heat Index did exist across the network.  

The results showed that on an average summer day, during the hottest hour, 3pm, 

one would expect Heat Index to vary across the county by 8.1°F. Heat Index is the 

official heat warning tool of the National Weather Service, and this 8.1°F difference 

could mean the difference in a warning or no warning, or two different risk categories in 
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the county. These differences were found at 10-meters, so it is likely that differences are 

even greater for human- height measurements. That is exactly what the Heat Watch in 

Columbia in 2022 found, with afternoon differences over 18°F air temperature across the 

city, measured at human height (CAPA Strategies 2022). When mapping the 3pm Heat 

Index deviations, a spatial interpolation showed hot spots in downtown Columbia, as well 

as the more rural southeastern portion of the county. These warmer rural southeastern 

stations seemed to be more humid than the network average, which helps understand their 

higher Heat Index. Cool spots were located near Lake Murray, and near Fort Jackson.  

To investigate deeper, Heat Index, temperature, relative humidity, and dew point 

deviations were all calculated for afternoon (3pm) and the morning (6am). Each station 

was given a median deviation for each variable, representing the summer average of how 

much that station tended to be higher or lower than the network average. From 

interpolating these variables on a map, generally an UHI effect is shown. Using Moran’s 

I spatial autocorrelation index though, only 3pm temperature was found to be clustered. 

After the differences in temperature, Heat Index, dew point, and relative humidity were 

quantified and visualized in both the morning and afternoon, the next question aimed at 

understanding why these differences may exist.  

From the latitude and longitude that came with each station’s metadata, ten other 

land use and location variables were calculated for each station. These variables were all 

created with the possibility that they could explain the spatial pattern of the weather 

variable deviations. Individual variable correlations were created to understand which 

land use variables could explain spatial deviations the best. For morning and afternoon 

weather deviations, the three NDVI variables performed the best, followed by the percent 
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impervious surface variables. This implies that the density of vegetation is more 

important for heat mitigation than the absence of impervious surfaces, which is similar to 

the findings of Rosenzweig et al in their 2006 study on heat mitigation in New York City. 

Overall, the correlations between 3pm deviations and the land use variables were low, the 

highest combination being 3pm temperature and elevation with a coefficient of 

determination of -.19. The morning deviations correlated much better with the land use 

variables, as NDVI5km and NDVI1km each reached a coefficient of determination of 

over .6. Overall, morning weather deviations were much better correlated with land use 

variables than their afternoon counterparts.  

Two typical diurnal weather patterns may explain the difference in performance 

between morning and afternoon models. Morning wind speeds are typically lower than 

afternoon winds, due to lower pressure gradient force. Typical summer mornings have 

little to no wind, which allows for more heterogeneous conditions to develop. Figure 4.1 

shows the average wind speed by hour for this network, and clearly, overnight wind 

speeds are low, typically around .5 m/s overnight. 3pm winds are typically around 1.5 

m/s, with large variance. Vegetated surfaces cool faster at night than impervious surfaces, 

and combining this with low winds, it makes sense why 6am temperatures would be 

better explained by land use variables than 3pm. In addition to horizontal wind, there is 

vertical mixing. Vertical mixing is the convection of air vertically, especially strong in 

the summer when the sun heats the surface and drives vertical temperature gradients. 

Although not measured by these stations, the vertical mixing on a typical summer day 

may limit the temperature and Heat Index differences that would have been expected to 

be predicted by land use. Especially at the 10- meter height, these two mechanisms are 
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likely the cause for the lack of explanation the land use variables have on the afternoon 

weather deviations.   

Finally, the last research question addressed the possibility of using these land use 

variables to build a model for heat in Columbia. Exploratory regression in ArcGIS Pro 

was used to configure a set of best performing independent variables to maximize 

explanatory power for the dependent variable. The set of variables that performed the 

best for each dependent variable were assessed using python with scikit- learn OLS and 

Decision Tree regression. Twelve cross validation folds were run, using 80% of the data 

points to train the model, and 20% to test the performance. This was completed initially 

for 3pm Heat Index, then for all deviation variables. Afternoon Heat Index was not well 

modeled, with the best linear regression model reaching an adjusted r- squared value of 

.15, which was created by elevation alone. 6am temperature deviations however, were 

well modeled by land use variables, resulting in a .71 adjusted r- squared with reasonable 

RMSE and MAE values. This was not unexpected because the individual variable 

correlations were high with morning temperature deviations. Also unexpected was the 

fact that even though 3pm temperature deviations had low correlations with individual 

land use variables, the multiple linear regression model explained approximately 60% of 

the variance. These results indicate that temperature deviations are able to be modeled by 

the selected land use variables, whereas Heat Index, relative humidity, and dew point are 

not well modeled by the selected land use variables at 10 meters. This implies, for the 10- 

meter height, that there is an UHI, but only for temperature, not heat stress, and that there 

is no significant UMI or UDI.  
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Overall, this study aids the knowledge of local heat by highlighting differences in 

heat that exist across Richland County. By generating deviations through the summer, the 

regression results show that typical 6am temperature deviations are accurately modeled 

by land use variables, and 3pm temperature is fairly accurately modeled by land use 

variables. This thesis is a step towards understanding the capacity to model human heat 

stress from land use by utilizing observational data.  

The RC Winds network allowed for the unique analysis in this study, and can be 

used for much more research on different natural hazards. Having a dense observational 

network, a micronet, eliminates the guesswork of forecasters, especially for important 

events, and during hazardous conditions. These micronets could be the data source for 

many more fine- scale hazard and climate studies, that are specific to the local area. 

These micronets allow local officials to use their real- time observations rather than 

meso-scale forecasts and observations. Some hazards, particularly thunderstorms and 

tornadoes are difficult to accurately predict and monitor with the low-density airport 

stations. With access to RC Winds, officials in Richland County would have real time 

access to all the variables that would help warn and prepare for these smaller scale 

hazards. An area for improvement, as it relates to human heat stress, is the incorporation 

of human height measurements on these micronets. This would allow for the optimal 

urban heat research, and potentially better forecasting. 

The practical implications of this thesis will be providing insight into the 

heterogeneity of heat as a hazard in Richland County, South Carolina. It will complement 

the other ongoing work in the region. A combination of these works helps build evidence 

for future heat warnings and decision making in Columbia surrounding heat risk. These 
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decisions may include special warnings for known hot areas, warnings to public health 

officials about vulnerable groups. For example, when temperatures are higher in urban 

areas, this could have implications for unhoused populations, and those without access to 

reliable air conditioning. High overnight temperatures coupled with no air conditioning 

are a dangerous combination, especially if those without air conditioning are physically 

vulnerable. The principle of utilizing higher resolution local data for site- specific 

analysis can be applied to other hazards, too. Accessing the RC Winds weather network 

for rainfall, for example, could be a powerful tool for predicting flooding. Certain 

portions of the county throughout the year are likely to have gotten more or less rainfall, 

making them more or less likely to flood during incoming rain events. 

This thesis demonstrates the capacity for local datasets to be used to understand 

the characteristics of hazards at a high resolution. Local data provides officials with 

evidence to support or reject their intuitions, and to limit the guesswork associated with 

hazard warnings and decision making. It matches the hazard data observation with the 

population the data is meant to benefit.  
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Figure 4.1 Average Hourly Wind Speed by Station
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APPENDIX A 

OUTLIER STATION REMOVAL PROSESS 

After initial deviation plotting, further investigation of outlier stations was 

warranted. When plotting individual days throughout the entire summer, week segments, 

and longer stretches of time, a similar pattern became apparent in these stations. A 

particularly hot period from July 26th to July 30th 2022 was chosen to demonstrate the 

pattern. As shown in Figure A.1, the Heat Index for this period for the six outlier stations 

varied in daily peaks by about 70°F. The three low outliers are grouped closely for all 

four days and nights, and the three high outliers are well above the low grouping, but 

spread out. Next, air temperature was plotted for the same set of days and stations and as 

shown in Figure A.2, all six outlier stations had remarkably similar data pertaining to air 

temperature, with peak variations of single digit degrees Fahrenheit. So then, if 

temperature was grouped closely but Heat Index was not, then relative humidity is the 

variable creating the outliers. Plotting the same four days and six stations, revealed the 

relative humidity values were incredibly variant. Figure A.3 shows that two of the 

stations’ relative humidity never broke 20%, and other stations’ values often got ‘stuck’ 

at or near 100% relative humidity. Data patterns of this nature are indicative of 

instrument error. This was especially true for afternoon time stamps when the 

temperature measured over 90° Fahrenheit with the relative humidity staying over 90%, 

conditions that are physically unrealistic. Between the excessive differences in humidity 

between these stations, as well as these stations’ variance from the ΔDMHIA, and the 
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excessive range shown in Figure A.1 of the ΔDMHI variable, these six stations were 

removed from the study.  

Figure A.1 Outlier Station Heat Index Time Series 

 

Figure A.2 Outlier Station Temperature Time Series 
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Figure A.3 Outlier Station Relative Humidity Time Series 


	Exploring Heat Variations in Columbia, South Carolina
	Recommended Citation

	tmp.1725027122.pdf.XWKO3

