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Abstract

In this work we investigate the dynamic behavior of bead-spring polymer solu-

tions in viscoelastic fluids, which are essential in industries like materials science,

biotechnology, and pharmaceuticals. The study leverages GPU-accelerated simu-

lations and detailed modeling of polymer chain dynamics at the mesoscale, which

enables efficient analysis of intricate fluid behaviors and the microscale dynamics of

polymer chains. Additionally, the research examines the breaking-reforming dynam-

ics of polymer chains, crucial for understanding phenomena such as shear thinning

and thickening. The findings have broad applications, from improving inkjet printing

and 3D printing technologies to developing new drug delivery systems and biocom-

patible materials. This work aims to bridge the gap between microscale polymer

dynamics and macroscale fluid behavior, contributing to the advancement of various

technologies through a robust computational framework.
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Chapter 1

Introduction

Viscoelastic fluids, characterized by their intricate balance of viscous and elastic prop-

erties, are of particular interest due to their wide range of applications in industries

such as materials science, biotechnology, and pharmaceuticals. Recent advancements

in computational methods have opened new avenues for exploring these complex

systems. The objective of this thesis is to explore the mathematical modeling of

polymeric systems. The viscoelastic properties of these systems originate from the

dynamics of a network comprising polymer molecules. The dynamic behavior of poly-

mer solutions and their response to various flow conditions represent a cornerstone in

the understanding of complex fluid mechanics. Our main objective is to develop con-

stitutive equations for these systems at the mesoscale, particularly through the use of

GPU-accelerated simulations and detailed modeling of polymer chain dynamics [1–5].

The advent of GPU computing has revolutionized the field of computational fluid

dynamics by enabling large-scale simulations with significantly enhanced speed and

efficiency. This approach allows for the exploration of complex fluid behaviors which

were previously computationally prohibitive. GPU-accelerated simulations enable

the analysis of large systems of non-interacting polymer chains, providing valuable

insights into the microscale dynamics and their influence on the macroscale properties

of the fluid.
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Related Research Work

Le Bris and Lelièvre [6] presented a comprehensive and technical exploration into the

mathematical modelling of complex fluids, with a specific focus on polymeric fluids.

In this work authors provided a detailed theoretical foundation for the study of New-

tonian and non-Newtonian fluids, covering both fundamental aspects and advanced

topics in fluid mechanics. This includes a comprehensive introduction to stochastic

differential equations, the Monte Carlo method, Brownian motion, Itô calculus, and

the Fokker Planck equation. The authors done an excellent job of illustrating the

application of these stochastic methods in the context of fluid dynamics. In addition

to the theoretical exploration, their work provided practical insights through the nu-

merical simulation of a test case. This includes a discussion on the discretization of

macroscopic equations, the handling of microscopic problems through deterministic

and stochastic approaches, and the use of MATLAB codes.

In [7] Keunings presented a comprehensive analysis of the micro-macro approach,

which seeks to connect the mesoscopic models of kinetic theory with the macroscopic

continuum mechanics in fluid dynamics. The micro-macro approach operates on two

levels. At the microscopic level, the behavior of individual molecules or molecular

structures in the fluid is considered. Kinetic theory models are employed to represent

these molecular configurations. Keunings discusses various models used at this level,

like the Hookean and FENE dumbbell models for dilute polymer solutions and more

advanced models for entangled polymer systems. These models account for the forces

and interactions at the molecular level, including Brownian motion, elastic forces, and

drag forces. On the macroscopic scale, the behavior of the fluid as a whole is con-

sidered. This involves solving the continuum mechanics conservation laws, which in-

clude the conservation of mass and momentum. The macroscopic properties, like flow

velocity and stress fields, are determined by solving these equations. In this work Ke-

unings also focuses on bridging these two scales through simulation techniques. The
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micro-macro methods couple the molecular scale of kinetic theory with the macro-

scopic scale of continuum mechanics. This coupling is achieved through numerical

techniques that solve the governing equations simultaneously. The microstructural

models provide detailed insights into the molecular configurations, which in turn in-

fluence the macroscopic properties of the fluid. Keunings also shows how stochastic

differential equations are used to describe the evolution of molecular configurations

under the influence of random forces like Brownian motion. Monte Carlo methods

are employed to simulate these stochastic processes, providing statistical information

about molecular configurations. One of the challenges in implementing the micro-

macro approach which Keunings discusses in his work is the high computational

demand, which we are addressing in our work using GPU simulations.

In the study of polymeric fluid dynamics at the microscopic level, various models

have been introduced to link microstructural movements with macroscopic responses,

as shown in Figure 1.1. Notably, bead-spring models stand out in this context. These

models represent polymer chains through a simplified framework of beads linked by

springs, a method known as molecular coarse-graining. Among the simplest of these is

the elastic dumbbell model, which consists of a pair of beads. Despite its rudimentary

nature, limiting its ability to fully capture the complexities of polymeric systems, this

model is still valuable. It can adequately provide qualitative insights, particularly

in describing the basic stretching and orientation behaviors of polymers, which are

crucial in understanding their steady-state rheological properties and slow-moving

flow dynamics [8].

The foundational models at the mesoscale, addressing breakage and reformation

dynamics, were developed by Yamamoto [9], Tanaka and Edwards [10], Green and

Tobolsky [11]. Various approaches have been taken in modeling wormlike micellar

solutions. Van den Brule and Hoogerbrugge [12] developed a stochastic dumbbell

model incorporating breaking and reforming processes, wherein the model specifi-
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Figure 1.1 Coarse-grained representation of polymer molecules. Figure
from [13]

cally tracks the topology of the dumbbells, including the position and connections of

each bead or dumbbell. In their model beads were attaching to a node when they

are within a certain fixed distance of that node. Vaccaro and Marrucci [14] intro-

duced a model for transient networks formed by associating telechelic polymers, with
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a focus on simple yet molecularly plausible kinetics for chain detachment and reat-

tachment processes. In their work they focused on two structural components of the

system: active chains that connect the network’s nodes, and pendent chains that are

temporarily disconnected at one end from the network with the assumption that the

quantity of each chain type may vary during flow, but the total combined number

of these chains remains constant. Rincón et. al. [15] presented a model analyzing

the dynamics of transient networks in complex fluids, incorporating two kinetic pro-

cesses and defining five microstates to represent macromolecular interactions within

a Newtonian fluid. In [16] Vasquez, McKinley and Cook presented a network model

(VCM) for wormlike micellar solutions, employing Cates’ ‘living polymer’ theory, to

explore the dynamics of chain scission and reformation under various flow conditions

and examines the impact of model parameter variations on the solution’s rheological

behavior. In [17] Adams et al. enhaced VCM model for unentangled wormlike mi-

celles by incorporating microscopic reversibility and spatial information about micelle

breakage points. Park and Ianniruberto [18] introduced a new Brownian dynamics

algorithm for telechelic polymers, focusing on understanding the rheological complex-

ities of hydrophobically modified ethoxylated urethane solutions. In [19] Quintero et

al. developmed a stochastic mesoscale model simulating the breaking and reforming

of single and double dumbbells. In their model they are tracking the topology and

incorporating the dynamics of FENE springs. In [20] Cromer and Vasquez created

a multiscale flow solver designed for GPUs, enabling highly efficient calculations. In

their work they are utilizing a specific system with non-interacting dumbbells, which

is inherently suited for parallelization.

The applications of these studies are vast and varied. For instance, the research

on ink rheology by Hutchings et al. [21] and Guo et al. [22] has significant implications

in the printing industry, particularly in improving the quality of inkjet printing and

advancing 3D printing technologies. The study by Krishnan et al. [23] on complex
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fluid rheology finds its applications in industries dealing with non-Newtonian fluids,

including food, cosmetics, and pharmaceuticals. In the biomedical field, the work

of Ulery et al. [24] on biodegradable polymers is instrumental for developing new

drug delivery systems and biocompatible materials. The insights from Barbati et

al. [25] on hydraulic fracturing have profound implications in the oil and gas industry.

The research by Ewoldt and Saengow [26] on designing complex fluids has potential

applications in consumer products, lubricants, and medical therapies.

Contributions of this Dissertation

In this study, we examine the stress response of fluids, particularly focusing on the

distinction between Newtonian and viscoelastic materials. Newtonian fluids exhibit

a linear relationship between stress and shear rate, encapsulated in the constitutive

equation τ = ηγ̇, where η represents viscosity. This equation highlights the unifor-

mity in the stress response of Newtonian fluids, varying only in the viscosity coefficient

across different materials. On the other hand, viscoelastic materials demonstrate a

more intricate behavior as they lack a unified constitutive model due to their stress

response’s dependence on specific material properties and the nature of applied forces.

This variability renders the study of viscoelastic materials both challenging and es-

sential, given their prevalence in numerous industrial and biological applications. Our

analysis extends to the dynamics of polymeric fluids, which are characterized by a

microstructure consisting of polymer chains. These chains undergo various processes,

such as twisting into coils or unwinding, forming cross-links by physically binding

together. Their movement can be obstructed by getting entangled with each other

or affected by the influence of neighboring polymer molecules these chains. The new

contribution form our work is the addition of stimuli-responsive dynamics. Stimuli-

responsive materials refer to materials that can alter their rheological properties in

response to external stimuli. Typically, this process involves the breaking and sub-
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sequent reformation of either network junctions or polymer chains. In this work,

we focus mainly in breaking and reforming of the chains due to external flow fields.

To adequately represent the dynamic processes of breaking and reforming of poly-

mer chains, we utilize double dumbbells which are essentially composed of two single

dumbbells that are physically interconnected.

In this work, we integrate GPU-accelerated simulations with our custom-designed

stochastic modeling of breaking-reforming dynamics in polymer chains. Specifically,

we advance the use of GPU computing for the simulation of complex fluids at the

molecular level using non-interacting dumbbell models. This approach, inherently

suitable for parallel computation, overcomes the computational limitations of previous

traditional models, allowing for large-scale simulations that were not feasible before.

Moreover, our approach not only enhances computational efficiency but also provides

a more comprehensive picture of the intricate behaviors exhibited by these complex

materials by integrating a double dumbbell breaking-reforming model instead of a

single dumbbell model. These advances allow us to more accurately predict fluid

behavior under a variety of conditions, thereby contributing to the advancement of

technologies in various applied fields.

We divide this thesis into three main parts. In the first part we discuss two differ-

ent representations at the mesoscale; namely Langevin and Fokker-Planck equations.

In the second part, we discuss the formulation and solution of dumbbells models in

viscometric flows, using GPU computing. The last part deals with the introduction

of breaking and reforming dynamics to the dumbbell equations.

7



Chapter 2

Coupling Fluid Dynamics using Langevin and

Fokker-Planck Equations

This review focuses on two idealized scenarios involving microscopic particles em-

bedded in a fluid. In the first one, we consider the uncoupled motion of individual

Brownian probes, while in the second one, we consider the dynamics of an ensemble

of such probes. These two cases allow us to explore the relation between two well-

known families of equations in fluids dynamics: the Langevin equations (LE) and

Fokker–Planck (FP) equations. By no means is this meant to be a comprehensive

review of either of these equations, but rather a bird’s-eye view of their relationship

and how they can be used to better understand fluid dynamics at the microscale. The

article is written for undergraduate students and highlights different concepts from

undergraduate courses in calculus and differential equations and their applications

to fluid dynamics problems. In addition, whenever pertinent, the reader will be re-

ferred to more specialized publications for a more in-depth treatment of the different

subjects.

To elucidate the relation between these two types of approaches, Figure 2.1 shows

the relation between a LE and a FP description of particles moving as a result of

simple Brownian motion in two dimensions. This process describes the random mi-

gration of small particles arising from their motion due to thermal energy. The term

Brownian motion was coined after the botanist Robert Brown, who was the first to

describe this phenomenon in 1828 during his investigation of the movements of fine
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Figure 2.1 Relation between the Langevin equations (LE) and Fokker–Planck (FP)
solutions. (A) LE solutions give particle positions as functions of time, each point
represents a particle position at some time t. All particles have initial position (0, 0)
and follow different trajectories dictated by their respective noise history. (B) The
distribution of particle positions can be summarized using a histogram. (C) FP
solutions shows the probability of finding a particle at a given position as a function
of time; darker color indicates a higher probability of finding a particle at that
position.

particles, like pollen, dust, and soot, on a water surface. In 1905, Albert Einstein

explained Brownian motion in terms of random thermal motions of fluid molecules

bombarding the microscopic particle and causing it to undergo a random walk [33].

Nonetheless, the range of applications of Brownian motion goes beyond the study

of microscopic particles and includes modeling of thermal noise, stock prices, and

random perturbations in many physical, biological, and economic systems [34, 35].

From an observational point of view, the Langevin equation is easier to understand

than the Fokker–Planck equation. The LE approach directly uses the concept of time

evolution of the random variable describing the process; in the case of Figure 2.1,

this corresponds to the individual particle’s position. In contrast, the FP approach

follows the time evolution of the underlying probability distribution. That is, instead

of describing a particle position, it describes the likelihood of finding a particle at a

given position.

9



In this paper, we briefly describe the basics of LE equations and investigate their

relation with their corresponding FP equations. The special cases discussed in the

following sections are aimed at understanding how information is represented under

these two different descriptions and illustrating how one can gather data under one

approach and be able to infer behavior under the other.

2.1 Langevin Approach

To understand the Langevin description, we start by considering a particle immersed

in a fluid. The particle “feels” a force arising from the collisions with the fluid’s

molecules. This force consists of two parts: (a) a deterministic hydrodynamic drag,

which resists motion; and (b) a fluctuating stochastic force, caused by thermal fluc-

tuations. Newton’s second law gives the evolution equation governing the dynamics

of the particle as

ma =
∑

F

= drag force + random force.

Assuming a linear drag force (force = −drag coefficient × velocity) and a white noise,

the resulting equation is known as the Langevin equation:

ma = mv̇ = −ζv + f . (2.1)

White noise describes a random term that assumes no correlation on the fluctuating

forces; this is captured by drawing a random number from a Gaussian distribution

with mean and variance given by

⟨f(t)⟩ = 0, (2.2a)

⟨fi(t)fj(s)⟩ = Γδijδ(t − s), (2.2b)

where Γ represents the variance of the distribution or strength of the noise; i, j indicate

vector components; δij is the Kronecker delta; and δ(t) is a Dirac delta function. Note

10



that both the Kronecker delta and Dirac delta function capture the zero-correlation

of the forces both spatial, δij = 0 for i ̸= j, and temporal, δ(t − s) = 0 for t ̸= s.

Moreover, for any interval [a, b] contained in interval [c, d], we have the following

rule:

∫ b

a
dτ
∫ d

c
f(τ, s)δ(τ − s) ds =

∫ b

a
f(τ, τ) dτ (2.3)

Since f represents a stochastic term, Equation (2.1) is part of a broad class of

differential equations known as stochastic differential equations (SDEs) [35,36].

Assuming white noise, one can solve Equation (2.1) formally using basic solution

techniques for ordinary differential equations (ODEs). In particular, Equation (2.1)

can be treated as a first order, non-homogeneous differential equation of the form

dy(t)
dt

+ p(t)y(t) = q(t),

with integrating factor and solution given by

ν(t) =
∫

p(t) dt, y(t) = e−ν(t)
∫

eν(t)q(t) dt.

For Equation (2.1), y(t) = v, p(t) = ζ/m and q(t) = f , so that its formal solution is

given by

v(t) = v(0)e−ζ t/m + 1
m

∫ t

0
e−ζ (t−τ)/m f(τ) dτ

= v(0)e−t/τB + 1
m

∫ t

0
e−(t−τ)/τB f(τ) dτ. (2.4)

The quantity τB = m/ζ has units of time and is usually referred to as the Brownian

relaxation time of the particle velocity.

Note that, in the absence of random noise, f(t) = 0, Equation (2.4) gives v(t) =

v(0)e−t/τB , which implies that v → 0 as t → ∞. However, according to the equipar-

tition theorem, the velocity should satisfy

lim
t→∞

〈1
2mv2(t)

〉
= d

2kBT,

11



where the brackets < · > represent averages; kB is the Boltzmann’s constant; T is

the temperature; v2(t) = v(t) · v(t); and d represents the degrees of freedom, or

dimensionality, d = 1, 2 or 3. The fact that the equipartition theorem states that the

velocity cannot approach zero as time goes to infinity implies that the random force

is necessary to obtain the correct equilibrium condition. Furthermore, the strength

of the noise, Γ, should be such that equipartition theorem is satisfied.

To determine the strength of the random force, Γ, we take the average of v2(t)

using Equation (2.4) as

⟨v(t) · v(t)⟩ = v(0) · v(0)e−2 t/τB + 2
m

∫ t

0
e−(2t−τ)/τB [v(0) · ⟨f(t)⟩] dτ +

1
m2

∫ t

0

∫ t

0
e−(2t−τ−s)/τB ⟨f(τ) · f(s)⟩ dτ ds,

〈
v2(t)

〉
= v(0) · v(0)e−2 t/τB + 2

m

∫ t

0
e−(2t−τ)/τB [0] dτ

+ d

m2

∫ t

0

∫ t

0
e−(2t−τ−s)/τB [Γδ(τ − s)] dτ ds

= v2(0) e−2 t/τB + d Γ
2ζ m

[
1 − e−2t/τB

]
. (2.5)

In the last step of Equation (2.5), we used the property of the Dirac delta function

given in Equation (2.3). Taking the limit as t → ∞ in Equation (2.5), and comparing

it to the condition given by the equipartition theorem, gives

lim
t→∞

〈1
2mv2(t)

〉
= d

2kBT Equipartition

= 1
2m

[
d Γ

2ζ m

]
= dΓ

4ζ
Equation (2.5).

Therefore, the strength of the noise should satisfy

Γ = 2 ζ kBT. (2.6)
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This relation between the strength of the fluctuations of the stochastic forces (Γ) and

the dissipative term given by the drag force (ζ) is a special case of a more general

result known as the fluctuation–dissipation theorem [37].

The fluctuation–dissipation theorem states that equilibrium is brought about by

a dissipation force, in our case drag, between the particle and the medium, and what-

ever the mechanism of the dissipation, it has to be the same process that produces

random, fluctuating forces on the particle. In other words, both the frictional force

and the random force must be related since they have the same origin: fluid molecules

“bombarding” the particle and inducing mobility.

Finally, after solving Equation (2.1), the particle position can be obtained as

x(t) − x(0) =
∫ t

0
v(τ) dτ. (2.7)

For a given SDE such as Equation (2.1), in order to make inferences based on its

solution, it is necessary to find the average over many realizations. To illustrate this,

consider the 2D version of Equation (2.1) solved three different times using the same

initial position but subject to different random noises. The resulting trajectories are

shown in Figure 2.2.

The fact that each trajectory is very different from the others implies that we

cannot infer any behavior from the system by just considering a handful of solutions.

That is, just as one would not be able to determine whether a coin is fair by just a

couple of tosses, to be able to infer behavior based on Equation (2.1) one needs to

look at many realizations of particle trajectories. This can be done numerically by

solving the equation many times and then finding the average of such solutions or

can be done analytically by using time-correlation functions, as discussed next.
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Figure 2.2 Evolution of 2D particle position for three different solutions of
Equation (2.1). All three trajectories start from an initial position (0, 0). In all
three figures, ∆t = 0.001 and the simulation ran for 1000 time steps.

2.1.1 Moments of a Stochastic Process

In mathematical statistics, the sth moment of a set of stochastic observations {Xi}n
i=0

is defined as

Ms (X) = 1
n

n∑
i=1

Xs
i .

Note that in the present application, our variables denote displacement of the particle

with respect to the zero-time position, and the different moments measure deviations

of the observations from the mean of the values. Within the context of fluid dynamics

and Langevin equations, we are interested in the first (s = 1) and second (s = 2)

moments of the particle positions. That is, the mean value of the stochastic variable

and its spread or variance with respect to the mean.

• First moment

For the velocity in Equation (2.4), taking into account that ⟨f⟩ = 0, the mean

is given by

M1(v) = ⟨v(t)⟩ = v(0)e−t/τB ,

with a long-time or equilibrium value given by

M1(v) → 0, as t → ∞.
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For the particle position,

M1(x) = ⟨x − x(0)⟩ =
∫ t

0
⟨v(s)⟩ ds =

∫ t

0
v(0)e−s/τB ds

= −v(0) τBe−s/τB

∣∣∣∣t
0

= v(0) τB

[
1 − e−t/τB

]
.

In addition, its long-time behavior is

M1(x) → v(0) τB, as t → ∞.

• Second moment

From Equation (2.5), the second moment for the velocity is

M2(v) =
〈
v2(t)

〉
= v2(0) e−2t/τB + dkBT

m

[
1 − e−2t/τB

]
.

For the particle position, we have

M2(x) =
〈
|x(t) − x(0)|2

〉
=

〈
x2(t)

〉
=

〈[∫ t

0
v(τ) dτ

]2
〉

=
〈∫ t

0
v(s) ds ·

∫ t

0
v(τ) dτ

〉
=

∫ t

0

∫ t

0
⟨v(s) · v(τ)⟩ dτ ds

=
∫ t

0

∫ t

0

(
v2(0) e

− s+τ
τB + dkBT

m

[
e

− |s−τ|
τB − e

− s+τ
τB

])
dτ ds

= v2(0)I1 + dkBT

m
I2 − dkBT

m
I1.

In this derivation, we have again used Equation (2.3) and the properties of the

Dirac-delta function. For clarity, we solve each integral separately:

I1 =
∫ t

0

∫ t

0
e−(s+τ)/τB dτ ds = τ 2

B

(
1 − e−t/τB

)2

I2 =
∫ t

0

∫ t

0
e−|s−τ |/τB dτ ds = 2

∫ t

0

∫ s

0
e−|s−τ |/τB dτ ds

= 2τB t − 2τ 2
B

(
1 − e−t/τB

)
.
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Substituting I1 and I2 into the equation for M2(x) gives

〈
x2(t)

〉
=

[
v2(0) − dkBT

m

] [
τ 2

B

(
1 − e−t/τB

)2
]

+dkBT

m

[
2τB t − 2τ 2

B

(
1 − e−t/τB

)]
= v2(0)τ 2

B

(
1 − e−t/τB

)2

+dkBT

m
τ 2

B

[
−
(
1 − e−t/τB

)2
+ 2

τB

t − 2
(
1 − e−t/τB

)]
= v2(0)τ 2

B

(
1 − e−t/τB

)2

+dkBT

m
τ 2

B

[ 2
τB

t − 3 + 4e−t/τB − e−2t/τB

]
. (2.8)

The quantity ⟨x2(t)⟩ is called a mean squared displacement (MSD) and repre-

sents the square of the mean distance a particle has traveled in a given time

interval. In practice, the MSD is one of the most commonly used experimental

measures to determine material properties, as discussed in the next section.

2.1.2 Applications of the MSD

Performing a Taylor expansion of the MSD about t = 0 gives

〈
x2(t)

〉
≈ v2(0) t2 + O(t3),

that is, at short times, the MSD grows quadratically in time. Similarly, at large

times, we obtain

〈
x2(t)

〉
→ 2dkBT

m
τB t, as t → ∞.

Using the definition of τB,

〈
x2(t)

〉
→ 2dkBT

m

m

ζ
t = 2dkBT

ζ
t = 2dD t as t → ∞, (2.9)

where we have introduced the diffusion coefficient, D = kBT/ζ.

The result in Equation (2.9) constitute a powerful tool in the characterization of

fluids. The diffusion coefficient characterizes the mobility of particles of a given size in

a given medium at a given temperature. For example, for spherical particles the drag
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coefficient is given by ζ = 6πηa, where a is the particle radius and η is the viscosity of

the fluid. By embedding spherical particles in a fluid of unknown properties, one can

estimate the viscosity of the fluid based on the particle trajectories.

Assume we had tracked the trajectories of n spherical particles diffusing in a

Newtonian fluid, {xi(t)}n
i=1, where x(t) = [xi(t), ; yi(t); zi(t)]. We can calculate the

1D, 2D, and 3D MSD as follows:

MSD1D (∆t) =
〈
[x (t + ∆t) − x(t)]2

〉
,

MSD2D (∆t) =
〈
[x (t + ∆t) − x(t)]2 + [y (t + ∆t) − y(t)]2

〉
,

MSD3D (∆t) =
〈
[x (t + ∆t) − x(t)]2 + [y (t + ∆t) − y(t)]2 + [z (t + ∆t) − z(t)]2

〉
.

Examples of these MSDs are shown in Figure 2.3 for different ∆t’s and the Matlab

code used to generate them can be found in Appendix A. Note that in Appendix A

we have used the zero-mass limit of the LE equation, see Section 2.1.4 for details of

this limiting case.

Once the diffusion coefficient is found from the particle trajectories and the MSD,

the fluid viscosity can be determined by

D = kBT

ζ
= kBT

6πηa
⇒ η = kBT

6πaD
. (2.10)

This type of inference can also be used with more complex fluids and/or different types

of particles. For instance, the Einstein–Smoluchowski–Sutherland relation states that

[38]

D = µkBT ,

where µ is the particle’s mobility. This mobility is given by Stokes’ law in terms of

the particle hydrodynamic radius, aH ,

µ = 1
c π η aH

,
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Figure 2.3 Mean squared displacement (MSD) in 1D, 2D, and 3D. Each line has
been fitted to a function of the form y = m x, the best fitting value for the slope m
is shown for each line. The slope for 1D is 2D = 0.019, giving D = 0.0095, the slope
for 2D gives 4D = 0.037 ⇒ D = 0.0093, and for 3D it is 6D = 0.059 ⇒ D = 0.0098.
As a reference, the diffusion coefficient used to generate the particle trajectories is
D = 0.01.

where both the constant c and aH depend on the particle size and shape. Note that,

for spherical particles, we return to the so called Stokes–Einstein relation,

D = kBT

6πηa
,

however, the relation in Equation (2.10) stills holds for non-spherical particles.

In addition, complex fluids, such as viscoelastic materials, exhibit MSDs that do

not depend linearly on time [39,40]. For example, the long-time MSD of some fluids

obeys

MSD ∼ tα.

This type of behavior is known as anomalous diffusion and the power law exponent,

α, indicates the type of diffusion: for α < 1, it is called subdiffusion, for α = 1,

regular diffusion, and for α > 1, superdiffusion [41]. Although Equation (2.10) no

longer holds in this case, material properties can still be inferred from the MSD of

these fluids as discussed in [39,40].
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2.1.3 Generalized Langevin Equations (GLE)

The GLE, as its name implies, is a generalization of Equation (2.1) and it can be

similarly derived from Newton’s second law assuming that the forces acting over the

particle are a stochastic force, a drag force, and some external conservative force [35]:

mẍ(t) = FR + FD + FE.

In the GLE approach, the drag coefficient is considered dynamic, so that the drag

force is given by [37]

F D = −
∫ t

0
K (t − τ) ẋ (τ) dτ,

where K(t) is a memory kernel.

Since the external force is considered conservative, from Vector Calculus we know

that this implies it arises from some potential field V (x), such that

FE = −∇V (x).

The resulting equation of motion is

mẍ(t) = f (t) −
∫ t

0
K (t − τ) ẋ (τ) dτ−∇V (x). (2.11)

The power of the GLE is that it is able to coarse-grain several degrees of freedom

by describing: (i) explicitly the dynamics of variables of interests, which in this

case corresponds to the position x(t) of a particle of mass m; and (ii) implicitly the

remaining degrees of freedom through a memory kernel K(t), a random noise f(t),

and an external potential V (x). For free diffusion, particle mobility is in response

only to stochastic thermal forces, i.e., ∇V (x) ≡ 0, but in more complex systems

external forces also play a role, ∇V (x) ̸= 0.

The memory kernel, K(t), represents a retarded effect of the frictional force, and

to generate the correct equilibrium statistics, the random noise has to be related to
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this kernel in order to obey the fluctuation–dissipation theorem:

⟨fi(t)fj(s)⟩ = 2 kBT δij K (t − s) .

Physically, the kernel K(t) represents the fact that the medium requires a finite time

to respond to any fluctuations in the motion of the particle; this in turn affects how

the medium acts back on the particle. Thus, the force that the medium exerts on the

particle at a given time depends on what the particle did in the past.

For simple fluids and large Brownian particles, the medium is capable of respond-

ing infinitely quickly to changes in the particle position, i.e., it has no memory. In

this case the memory kernel is a delta-function and Equation (2.11) reduces to the

Langevin equation previously discussed [35,37]:

K(t − τ) = ζ δ(t − τ) (2.12)

mẍ(t) = f (t) − ζẋ(t) dτ−∇V (x). (2.13)

Another extreme is a very sluggish medium that responds slowly to changes in

the particle position. In this case, one can assume K(t) ≈ K(0) = K0, so that the

GLE becomes

mẍ(t) = f (t) − K0

∫ t

0
ẋ (τ) dτ − ∇V (x)

= f (t) − K0 (x(t) − x(0)) − ∇V (x)

= f (t) − ∇
(

V (x) + K0

2 ∥x − x(0)∥2
)

, (2.14)

thus adding an extra harmonic term to the potential. Such a term has the effect of

trapping the system of particles in certain regions of its configuration space, an effect

known as dynamic caging [42].

2.1.4 Zero-Mass Limit of the Langevin Equation

We finish this section on Langevin-type equations with a simplification. If we

assume K(t) = ζ δ(t), and that the particles are so small that their mass is negligible,
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we obtain the so-called zero-mass limit:

0 = f(t) − ζẋ(t) − ∇V (x).

This limit is also known as the overdamped or inertialess limit since it assumes that the

inertial forces, ma, are negligible compared to the other forces acting on the particle.

Rearranging terms and recalling that ⟨fi(t) fj(s)⟩ = 2 ζ kBT δijδ(t − s) gives

ζ
dx
dt

= −∇V (x) + f(t),

= −∇V (x) +
√

2 ζ kBT W(t),
dx
dt

= −1
ζ

∇V (x) + 1
ζ

√
2 ζ kBT W(t),

= −1
ζ

∇V (x) +
√

2 kBT

ζ
W(t),

dx
dt

= −1
ζ

∇V (x) +
√

2 D W(t), (2.15)

where W is a normally distributed random noise with ⟨W⟩ = 0 and ⟨Wi(t)Wj(s)⟩ =

δij δ(t − s). For simplicity, in the following sections, we only consider the relation

between equations of the form (2.15) and their respective Fokker–Planck equations.

2.2 Fokker–Planck Approach

As discussed in the previous section, when a system is described by an LE, a com-

plete description of the macroscopic system will require the solution and averaging

of many SDEs. An equivalent approach is to describe the system by macroscopic

variables which fluctuate as a result of stochasticity, instead of describing the indi-

vidual evolution of stochastic probes [43]. An excellent explanation of the different

representations and their characteristics can be found in Risken’s book [43], which

we summarize in Figure 2.4.

A Fokker–Planck (FP) equation is a partial differential equation that describes

the evolution of the probability density function (PDF) of a stochastic variable.
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Figure 2.4 Levels of description of a system, adapted from [43].

For Langevin-type equations of the form given by Equation (2.15), the stochastic

variable is a particle’s position as a function of time, x(t). The corresponding PDF is

the function that gives the probability of a particle being in the position x at time t

as P (x, t) dx. The reader is referred to Appendix B for a brief introduction to PDFs.

The LE equation given by Equation (2.15) can be written as

dx
dt

= −1
ζ

∇V (x) +
√

2 D W(t),

= g1(x, t) + g2(x, t) W(t),

and the corresponding FP is given by [43],

∂P

∂t
= −∇ · [g1(x, t) P (x, t)] + 1

2∇2
[
(g2(x, t))2 P (x, t)

]
. (2.16)

Note that taking a deterministic perspective is equivalent to ignoring the random

noise term in the LE, g2(x, t) = 0, which results in the absence of the diffusion term in

the FP equation, ∇2 [(·) P (x, t)]. This simple statement helps us identify the relation

between fluctuations at the microscale and diffusion at the macroscale. That is, the

observed diffusion at the macroscale is the result of fluctuations arising from the

fluid’s molecules bombarding the probe at the microscale.
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2.2.1 One-Dimensional Examples

In the following examples, we assume that all initial positions of particles are

located at zero, that is,

x(0) = 0

P (x, 0) = δ(0).

• Brownian motion without external field for small particles (m → 0)

dx

dt
=

√
2DW (t). (2.17)

In this case, the corresponding FP equation is the well-known diffusion equation,

which has the same mathematical form of the heat equation in the context of

heat transfer under temperature gradients:

∂P

∂t
= − ∂

∂x
[0 · P ] + 1

2
∂2

∂x2

[(√
2D

)2
P
]

∂P

∂t
= D

∂2P

∂x2 . (2.18)

We can find the general solution of this equation using similarity solutions with

the transformation

P (x, t) = t−p F (µ), (2.19)

where t−p represents temporal decay and µ = x2/(4Dt) is a shape factor used

to reduce the partial differential equation (PDE) to an ordinary differential

equation (ODE). For details on how this particular form is obtained, the reader

is referred to [44].
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We can calculate the derivatives of P (x, t) using Equation (2.19) as

∂P

∂t
= −pt−p−1 F (µ) + t−p dF

dµ

∂µ

∂t
= −pt−p−1 F (µ) − µ t−p−1 dF

dµ

∂P

∂x
= t−p dF

dµ

∂µ

∂x
= x t−p−1

2D

dF

dµ

∂2P

∂x2 = t−p−1

2D

dF

dµ
+ x t−p−1

2D

d2F

dµ2
∂µ

∂x
= t−p−1

2D

dF

dµ
+ µ t−p−1

D

d2F

dµ2

Substituting in Equation (2.18) gives

−pt−p−1 F (µ) − µ t−p−1 dF

dµ
= D

[
t−p−1

2D

dF

dµ
+ µ t−p−1

D

d2F

dµ2

]

µ
d

dµ

(
dF

dµ
+ F

)
+ 1

2

(
dF

dµ
+ 2pF

)
= 0.

Since we have yet to define a value for p, we conveniently choose it to be p = 1/2,

so that the two quantities in the parenthesis are the same. Finally, a solution

for the resulting differential equation will satisfy

dF

dµ
+ F = 0,

with the general solution

F (µ) = C0 e−µ,

which gives the solution for P (x, t),

P (x, t) = C0t
−1/2 exp

(
− x2

4Dt

)
.

To find the value of the constant of integration C0, we consider the fact that

∫ ∞

−∞
P (x, t) dx = 1,

that is, all possible realizations are included, see Appendix B.
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To solve the integral, we introduce the error function erf(y)

erf(y) = 2√
π

∫ y

0
e−s2

ds

which has values erf(−∞) = −1 and erf(∞) = 1.

∫ ∞

−∞
P (x, t) dx =

∫ ∞

−∞
C0t

−1/2 exp
(

− x2

4Dt

)
dx

= C0t
−1/2

∫ ∞

−∞
exp

(
− x2

4Dt

)
dx

= C0t
−1/2

√
π D t erf

(
x

2
√

D t

) ∣∣∣∣∞
−∞

= C0t
−1/2

√
π D t (2) = 2 C0

√
π D,

which gives

C0 = 1
2
√

πD
= 1√

4πD.

Therefore, the solution of the FP equation is

P (x, t) = 1√
4πD t

exp
(

− x2

4Dt

)
, (2.20)

which is a one-dimensional Gaussian function centered at zero: M1(x) = 0 and

with variance M2(x) = 4Dt.

To compare these results with those obtained in the LE section, we consider

the first and second moments of P (x, t).

The first moment is given by

M1(x) =
∫ ∞

−∞
x P (x, t) dx

=
∫ ∞

−∞
x

1√
4πD t

exp
(

− x2

4Dt

)
dx

= 1√
4πD t

∫ ∞

−∞
x exp

(
− x2

4Dt

)
dx.
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We use integration by substitution (u = x2) to obtain

∫
x exp

(
− x2

4Dt

)
dx =

∫ 1
2 exp

(
− u

4Dt

)
du

= −2Dt exp
(

− u

4Dt

)
+ C

= −2Dt exp
(

− x2

4Dt

)
+ C,

and

M1(x) = 1√
4πD t

[
−2Dt exp

(
− x2

4Dt

)]∞

−∞
= 0.

For the second moment, we have

M2(x) =
∫ ∞

−∞
x2 P (x, t) dx

=
∫ ∞

−∞
x2 1√

4πD t
exp

(
− x2

4Dt

)
dx

= 1√
4πD t

∫ ∞

−∞
x2 exp

(
− x2

4Dt

)
dx

= 1√
4πD t

[
−2x Dt exp

(
− x2

4Dt

) ∣∣∣∣∞
−∞

+ (4Dt)3/2√π

4 erf
(

x√
4Dt

) ∣∣∣∣∞
−∞

]

= 1√
4πD t

[
0 + (4Dt)3/2√π

4 (2)
]

= 1√
4πD t

[
(4Dt)3/2√π

2
√

π

]
= 2Dt,

which is the same result we obtained in the limit t → ∞ for Equation (2.9),

when the dimensionality is d = 1.

Solutions at different times are shown in Figure 2.5, together with the normal-

ized histograms obtained from LE data. For details of the histogram normal-

ization see Appendix B.
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Figure 2.5 Probability density function (PDF) for position of particles diffusing
via one-dimensional Brownian motion. Histograms correspond to LE data and solid
lines corresponds to FP solutions. In this figure, D = 10−2 µm2/s.

• Brownian motion with external field for small particles (m → 0)

A common example of an external field is a background velocity, u, which

imposes a drift on the particles:

dx

dt
= u +

√
2DW (t). (2.21)

The corresponding FP equation is the advection–diffusion equation

∂P

∂t
= − ∂

∂x
[u · P ] + 1

2
∂2

∂x2

[(√
2D

)2
P
]

∂P

∂t
= −u

∂P

∂x
+ D

∂2P

∂x2 . (2.22)

The solution of this PDE is [45]

P (x, t) = 1√
4πDT

exp
(

−(x − u t)2

4Dt

)
. (2.23)

A comparison between Equations (2.20) and (2.23) shows that the only differ-

ence between these two solutions is in a “shift” of x by u t. That is, the effect

of drift is to move the mean of the Gaussian distribution from zero.

As before we can calculate the first and second moment of the distribution
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function as [45]

M1(x) = ut,

M2(x) = u2t2 + 2Dt.

That is, the mean position of the particle is displaced by the background velocity

over a distance ut. In addition, note that the MSD at long times becomes ∼ t2

due to the additional linear flow in the fluid.

In the case of simple diffusion, the dispersion of the particles can be attained

from the MSD or equivalently the variance of the Gaussian. In the case where

drift is present, dispersion is superimposed by the background flow, for this

reason a more accurate measure of the dispersion is given by the metric [45]

σ2 =
∫ ∞

−∞
(x − M1(x))2 P (x, t) dx = 2Dt,

which gives back the linear behavior characteristic of standard diffusive pro-

cesses. Note that in this equation, M1(x) is a central moment as opposed to the

general definition given at the beginning of Section 2.1.1. These two moments

will coincide if the mean is zero.

Plots of Equation (2.23) are shown in Figure 2.6, where the solutions with drift

are compared to solutions without drift.

2.2.2 Two-Dimensional Examples

In this section, we present the 2D equations corresponding to four different cases

and their numerical solutions.

• No external field
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Figure 2.6 PDF for position of particles diffusing via one-dimensional Brownian
motion plus drift. Histograms correspond to generalized Langevin equations (GLE)
data and solid lines corresponds to FP solutions. For comparison, FP solutions
without drift are shown in dashed lines. In this figure, D = 10−2µm2/s, u = 0.2µ/s.

– Langevin equations

dx

dt
=

√
2DWx(t),

dy

dt
=

√
2DWy(t).

In this case, both Wx and Wy are statistically independent white noises;

the subscripts are used to denote that the noise histories are for x and y.

– Fokker–Planck Equation

∂P

∂t
= D

[
∂2P

∂x2 + ∂2P

∂y2

]
.

Solutions for LE and FP representations for this case of no external field are

provided in Figure 2.7.

Note that, in two dimensions, we obtain two LEs, but still one FP equation. In

general, as the degrees of freedom of the system increase, the choice between

LE and FP representations is analogous to the choice between solving many

SDEs and solving a single, high-dimensional PDE.
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Figure 2.7 LE and FP solutions for two-dimensional Brownian motion without
external field. For both representations, D = 10−2 µm2/s and time is in seconds.
For the LE representation, the total number of particles is 5 × 103.

• Constant drift in the x-direction, V (x, y) = u x

– Langevin equations

dx

dt
= u+

√
2DWx(t),

dy

dt
=

√
2DWy(t).

– Fokker–Planck Equation

∂P

∂t
= −u

∂P

∂x
+ D

[
∂2P

∂x2 + ∂2P

∂y2

]
.

Solutions for LE and FP representations for this case of constant drift in the

x-direction are provided in Figure 2.8.

• Background flow field, u = u0 + [ux(x, y), uy(x, y)]T

For any background field of the form where u0 and v0 are constants,

u =

 u0 + ux(x, y)

v0 + uy(x, y)

 ,
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Figure 2.8 LE and FP solutions for two-dimensional Brownian motion with
constant drift. For both representations, D = 10−2 µm2/s, u = 0.2 µ/s and time is
in seconds. For the LE representation, the total number of particles is 5 × 103.

the Langevin equations are given by

dx

dt
= u0+

(
∂ux

∂x

)
x +

(
∂ux

∂y

)
y +

√
2DWx(t),

dy

dt
= v0+

(
∂uy

∂x

)
x +

(
∂uy

∂y

)
y +

√
2DWy(t).

This equation can be written in vector form as

dx
dt

= u0+κ · x +
√

2DW,

where κij = ∂ui/∂xj is the strain-rate tensor. The corresponding FP equation

is

∂P

∂t
= −∇ · [(u0+κ · x) P ] + D

[
∂2P

∂x2 + ∂2P

∂y2

]
.

Note that when ux = uy = 0, the equations reduce to those for constant drift,

as discussed above.

– Example: simple shear, u = [U y, 0]T

κ =

 ∂ux

∂x
∂ux

∂y

∂uy

∂x
∂uy

∂y

 =

 0 U

0 0

 .
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Figure 2.9 LE and FP solutions for two-dimensional Brownian motion with simple
shear flow. For both representations, D = 10−2 µm2/s, U = 0.2 µ/s and time is in
seconds. For the LE representation, the total number of particles is 5 × 103.

κ · x =

 0 U

0 0

 ·

 x

y

 =

 U y

0

 .

∇ · [(κ · x) P ] =

 ∂
∂x

∂
∂y

 ·

 U y P

0

 =

 U y ∂P
∂x

0

 .

∗ Langevin equations

dx

dt
= Uy +

√
2DWx(t),

dy

dt
=

√
2DWy(t).

∗ Fokker–Planck Equation

∂P

∂t
= −U y

∂P

∂x
+ D

[
∂2P

∂x2 + ∂2P

∂y2

]
.

Solutions for LE and FP representations for this case of simple shear flow

are provided in Figure 2.9.
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Chapter 3

Micro-Macro Descriptions of Viscoelastic

Materials

3.1 Conservation Equations

In the study of viscoelastic fluid dynamics, particularly under unsteady and incom-

pressible conditions, and in the absence of external forces, two primary conservation

principles govern the flow: mass and momentum.

The conservation of mass is governed by the continuity equation, which asserts

the constancy of mass in a fluid flow. It is mathematically expressed as:

∇ · ũ = 0 (3.1)

where ũ represents the dimensional velocity vector of the fluid. This equation implies

that the fluid’s mass is neither generated nor annihilated within the flow field.

The conservation of momentum, accounting for viscoelastic effects, extends the

classic Navier-Stokes equation. It includes terms for inertial forces, pressure gradients,

solvent viscosity, and viscoelastic stresses. The dimensional form of the conservation

of momentum is given by:

ρ

(
∂ũ
∂t̃

+ ũ · ∇ũ
)

= −∇p̃ + η̃s∇2ũ + ∇ · τ̃ (3.2)

where ρ̃ is the fluid density, p̃ is the pressure, η̃s is the solvent viscosity, and τ̃ is

the extra stress tensor.
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For non-dimensionalization, the equations are scaled using characteristic macro-

scopic scales such as a length scale L, a velocity scale U , the zero shear rate polymeric

viscosity ηp, and the longest relaxation time λ. The relationships between dimensional

and non-dimensional parameters are defined as follows [20]:

t = t̃ ·
(

U

L

)
, x = x̃ ·

( 1
L

)
, u = ũ ·

( 1
U

)
, p = p̃ ·

(
1

ρU2

)
, τ = τ̃ ·

(
λ

ηp

)
. (3.3)

The non-dimensional forms of the equations are then:

∇ · u = 0, (3.4)
∂u
∂t

+ u · ∇u = −∇p + β

Re
∇2u + 1 − β

ReDe
∇ · τ (3.5)

Here, Re = ρUL

η
and De = λU

L
are the Reynolds and Deborah numbers, respec-

tively, representing the ratio of inertial to viscous forces and the fluid’s relaxation time

to the characteristic flow time. The parameter β = ηs

ηs + ηp

is the ratio of solvent

viscosity to total zero-shear viscosity.
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3.2 Constitutive Modeling using Dumbbells Representations

On the micro level we begin with the position vectors ri of a free bead or a junction

of 2 beads within an fixed chain of N-1 dumbbells (Fig. 3.1). The motion of these

vectors is subject to a balance of several forces: the force exerted by the spring, the

hydrodynamic drag, and the Brownian motion force. To ensure accurate representa-

tion of drag forces in the model, the drag coefficient assigned to a single, free bead

is denoted as ζ. In contrast, at the junctions, which are the meeting points of two

beads, the drag coefficient effectively becomes 2ζ. This adjustment accounts for the

cumulative drag experienced by two interconnected beads, compared to the drag on

an individual, isolated bead.

Figure 3.1 Dumbbell chain configuration composed of N − 1 merged dumbbells.

3.2.1 Single Dumbbell Representation

We start with a case of a single dumbbell as shown in Figure 3.2.

Here we assume homogeneous flow conditions, so the motions of the beads are

described by a Langevin equation [27]:

dr̃1

dt
= (∇̃ũ)T · r̃1 − 1

ζ
F(r̃1,2) +

√
2kBT

ζ
f1, (3.6)

dr̃2

dt
= (∇̃ũ)T · r̃2 − 1

ζ
F(r̃2,1) +

√
2kBT

ζ
f2. (3.7)
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Figure 3.2 Single dumbbell configuration given by the coordinates of
each dumbbell, r⃗1 and r⃗2, or its center of mass, r⃗c and end-to-end
vector, Q⃗.

Here u is the velocity vector of the flow, F(ri,j) denotes the function of the spring

force acting on the bead i due to its connection with bead j, ζ is the drag coefficient,

kBT represents the thermal energy, where kB is the Boltzmann constant and T is the

temperature, and f= [f1, f2]T is a Brownian force, with mean and variance given by

⟨f(t)⟩ = 0, (3.8a)

⟨f1(t)f2(s)⟩ = δ12δ(t − s). (3.8b)

In the methodology employed for our GPU-based approach, we operate under the

premise of a homogeneous distribution. This framework negates the necessity to

monitor the spatial positions of the dumbbells. Instead of solving system of equations

for position vectors ri, for each dumbbell in the chain we introduce its center of mass

rc
i = 1

2 (ri + ri+1) , i = 1, ..., N − 1 and the end-to-end connector vector Qi = ri+1 − ri

(Fig. 3.2). Due to the homogeneous assumptions in our model, equations for rc
i are
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not required. Our focus is primarily on Qi, and here is the resulting equation, which

we get from Eqns. (3.6)-(3.7):

dQ̃
dt

= (∇̃ũ)T · Q − 1
ζ

(F(r̃2,1) − F(r̃1,2)) +
√

2kBT

ζ
(f2 − f1), (3.9)

which can be simplified to:

dQ̃
dt

= (∇̃ũ)T · Q̃ − 2
ζ

F(Q̃) +
√

2kBT

ζ
dWt, (3.10)

where Wt is a Wiener process sampled from a normal distribution with a mean

of zero and a variance of dt.

There are several approaches to obtain viscoelastic stresses from the moments of

the end-to-end vector Q. Here we use Kramer’s formula [8]:

τ̃ = n⟨F (Q̃)Q̃⟩ − nkBT I, (3.11)

where τ is the stress tensor, n is the dumbbells number density, n⟨F (Q̃)Q̃⟩ accounts

for the force exerted by the spring, which follows the spring force F (Q̃), nkBT reflects

the influence of the Brownian motion, and I is the 3 × 3 identity matrix.

The final step consists on defining the functional form for the spring force, F (Q̃).

Below we discuss two approaches.

3.2.2 Hookean Spring Law

In the Hookean model, the force F (Qj) is assumed to follow Hooke’s law, which is a

linear elastic law,

F (Q̃) = HQ̃, (3.12)

where H is the spring constant. This model simplifies the complex dynamics of

polymer chains by considering the force to be directly proportional to the distance

between the beads.
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Applying Hookean force, we can rewrite Eqns. (3.10) and (3.11) as follows:

dQ̃
dt

= (∇̃ũ)T · Q̃ − 2H

ζ
Q̃ +

√
4kBT

ζ
dWt, (3.13)

τ̃ = nH⟨Q̃Q̃⟩ − nkBT I. (3.14)

To get non-dimensional equations, we are using same relations as in Eqn. (3.3)

and the characteristic microscopic length,

x =
√

kBT

H
. (3.15)

The non-dimensional parameters are related to their dimensional counterparts by:

ηp = nkBTλ, (3.16)

τ = τ̃

(
λ

ηp

)
= τ̃

( 1
nkBT

)
, (3.17)

Q = Q̃ ·
√

H

kBT
. (3.18)

Lastly, the system’s longest relaxation time, indicating the time for the dumbbell to

reach equilibrium after disturbance, is defined as:

λ = ζ

4H
. (3.19)

Using this relations, non-dimensional equations for a Hookean single dumbbell

then read:

dQ
dt

= (∇u)T · Q − 1
2De

Q + 1√
De

dWt, (3.20)

τ = ⟨QQ⟩ − I. (3.21)

3.2.3 FENE Spring Law

In the case of a FENE (Finitely Extensible Nonlinear Elastic) model, the spring force

is given by a non-linear equation to account for the finite extensibility of polymer

chains. The force equation is [8]:

F (Q̃) = HQ̃
1 − (Q̃/Qmax)2

(3.22)
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where Q̃2 = Q̃ · Q̃ and Qmax is the maximum extension of the spring. This model is

more realistic for simulating polymer behavior under large deformations.

For a single dumbbell under the FENE force, the equations corresponding to

Eqns. (3.10) and (3.11) become:

dQ̃
dt

= (∇̃ũ)T · Q̃ − 2H

ζ

(
Q̃

1 − (Q̃t/Qmax)2

)
+
√

4kBT

ζ
dWt, (3.23)

τ̃ = nH

〈
Q̃Q̃

1 − (Q̃/Qmax)2

〉
− nkBT I. (3.24)

The non-dimensional parameters and relations remain as described in the Hookean

case, with an additional non-dimensional nonlinear FENE parameter:

b = H Q2
max/(kBT ). (3.25)

Thus, the non-dimensional FENE equations for a single dumbbell are:

dQ
dt

= (∇u)T · Q − 1
2De

(
Q

1 − Q2
t /b

)
+ 1√

De
dWt, (3.26)

τ =
〈

QQ
1 − Q2/b

〉
− I. (3.27)
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3.3 Numerical Schemes

In our approach, each GPU thread is responsible for dynamics of one dumbbell. Dur-

ing its evolution, dumbbell can change its type between single and double, while be-

ing calculated completely on one thread without any interactions with other threads.

From this set up it can be seen that the amount of dumbbells remains constant

and is equal to the number of running threads, while the number of beads is chang-

ing. Implementing the numerical schemes presented unique challenges, particularly

in optimizing GPU thread utilization for individual dumbbell dynamics. The process

required careful balancing to maximize computational efficiency while maintaining ac-

curacy, highlighting the complexities of parallel computation in simulating intricate

fluid behaviors.

Each dtmacro step, values from all threads are sent from the GPU to the CPU

to be saved. In future iterations of this work, there is potential to explore more

sophisticated data transfer and management techniques between GPU and CPU,

aiming to minimize data transmission time and optimize memory usage. Additionally,

the integration of emerging parallel processing architectures could further enhance

the simulation efficiency, enabling the exploration of even larger and more complex

systems.

3.3.1 Initialization Steps

At the beginning of the simulation, the system parameters and variables are initial-

ized. This includes setting up the number of threads (dumbbells), Deborah number

De, maximum spring extension (b), deformation tensor (κ) and three time steps

(dtmacro, dtprob, dtmicro).
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3.3.2 Hookean Dumbbells Evolution

In the case of Hookean Dumbbells, we are using a forward Euler scheme. For each

single dumbbell we solve corresponding evolution Eqn.(3.20):

Q (tj+1) = Q (tj) +
[
(∇u)T · Q (tj) − 1

2De
Q (tj)

]
∆tj + 1√

De
∆Wj. (3.28)

3.3.3 FENE Dumbbells Evolution

In the case of FENE Dumbbells due to the introduction of non-linearity in the evolu-

tion equation, a semi-implicit algorithm of the first order is employed instead of the

forward Euler scheme.

Predictor Step

The predictor step computes an intermediate connector vector S for each dumbbell

[27,30]:

S = Q(tj) +
[
(∇u)T · Q(tj) − F (Q(tj))

2De

]
∆tj +

√
1

De
∆Wj (3.29)

where Q(tj) is the current end-to-end connector vector, F (Q(tj)) is related to the

FENE spring force and we define it as:

F (Q(tj)) = Q (tj)
1 − Q (tj)2 /b

, (3.30)

Corrector Step

The corrector step refines the connector vector based on the predictor step:

Q(tj+1)
[
1 + 1

4De

∆tj

1 − Q2 (tj+1) /b

]
=Q(tj) +

√
1

De
∆Wj

+ ∆tj

2
[
(∇u)T · S + (∇u)T · Q(tj)

]
− ∆tjF (Q(tj))

4De
,

(3.31)
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Cubic Equation

To get new end-to-end connector vector from the previous corrector step, we need to solve

the following cubic equation, which has a unique real solution in (0,
√

b) [31]:

x3 − Px2 − b

(
1 + 1

4De
∆tj

)
x + bP = 0, (3.32)

where P is the the right-hand-side of the previous corrector step Eqn. (3.31) and P is the

magnitude of P.

Position Update

The new end-to-end connector vector of each dumbbell is updated according to the following

formula:

Q(tj+1) = x · P
P

. (3.33)
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3.4 Macroscopic Closures of Dumbbell Models

Here, we present macroscopic closure models for the Hookean and FENE dumbbell config-

urations discussed in Section 3.2. We use these macroscopic models to compare with their

corresponding microscopic counterparts with the key aim to investigate the degree of mi-

croscale detail that is potentially lost when using macroscopic closures. This comparison is

crucial to demonstrate the limitations of macroscopic models and to highlight the vital role

of integrating micro-macro modeling techniques. Using Eqn. (3.10) we obtain an equation

for the second moment of the end-to-end vector Q,

(〈
Q̃Q̃

〉)
(1)

+ 4
ζ

〈
F (Q̃)Q̃

〉
= 4kBT

ζ
I, (3.34)

where (·)(1) represents the upper convected derivative of (·), defined as:

(·)(1) = ∂(·)
∂t

+ u · ∇(·) − (·) · (∇u) − (∇u)⊺ · (·). (3.35)

3.4.1 Hookean Dumbbells

The Hookean dumbbell model, utilizing a linear spring force, leads to the well-known Upper

Convected Maxwell (UCM) model. The non-dimensionalized stress tensor and evolution

equations are:

τ = ⟨QQ⟩ − I (3.36)

De (⟨QQ⟩)(1) + ⟨QQ⟩ = I (3.37)

3.4.2 FENE Dumbbells

The FENE model, representing finite extensibility, yields different closures [29]. In our work

we use FENE-P model for which the non-dimensionalized constitutive equations are [20]:

τ = ⟨QQ⟩
1 − ⟨Q2⟩/b

− I (3.38)

De (⟨QQ⟩)(1) + ⟨QQ⟩
1 − ⟨Q2⟩/b

= I (3.39)
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3.5 Results

We present our results for a case of a simple shear flow, which is created by positioning a

fluid between two parallel plates, where the bottom plate remains fixed and the top plate

moves at a constant speed, denoted by Utop. The results for the simple shear flow case lay

the foundation for extended explorations. Future research could focus on applying these

findings to more complex flow scenarios, including turbulent flows or non-Newtonian fluids.

Additionally, the potential application of these results in optimizing industrial processes,

such as inkjet printing or drug delivery systems, represents an exciting avenue for practical

implementation of our research.

By assuming a fully developed flow and under viscoelastic conditions the equations can

be simplified as:

ũ = [γ̇0ỹ, 0, 0]⊺ , (3.40)

where γ̇0 = Utop/L, represents the shear rate, with L being the distance between the plates.

In addition, we assume all partial derivatives with respect to x are equal to zero.

By applying the previously used scaling, the velocity can be further written as u =

[y, 0, 0]⊺, and consequently, the velocity gradient tensor is simplified to:

∇u =


0 1 0

0 0 0

0 0 0

 . (3.41)

All numerical computations were performed at the The University of South Carolina

Hyperion High Performance Computing cluster, which is intended for large, parallel jobs

and consists of 356 compute, GPU and Big Memory nodes, providing 16,616 CPU cores.

Its compute and GPU nodes have 128-256 GB of RAM and Big Memory nodes have 2TB

RAM. All nodes have EDR infiniband (100 Gb/s) interconnects, and access to 1.4 PB of

GPFS storage. For our simulations we were using N = 218 GPU threads, each of which

was in charge of one dumbbell.

In Figs. 3.3 and 3.4 we compare results of the Hookean single dumbbell model with

parameters dtmacro = 10−1, dtmicro = 10−5 with the Upper Convected Maxwell model for
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Figure 3.3 Comparison of shear stress results for Hookean model and its UCM
closure, dtmacro = 10−1, dtmicro = 10−5.

varied values of the Deborah number De. In Fig. 3.3 we compare results of the shear stress

component τxy, and in Fig. 3.4 we compare results of the first normal stress N1 = τxx −τyy.

The Upper Convected Maxwell model precisely follows the Hookean dumbbell equation,

and as anticipated, outcomes from these two models consistently align.

Likewise, in Figs. 3.5 and 3.6 we compare results of the FENE single dumbbell model

with parameters dtmacro = 10−1, dtmicro = 10−5, b = 105 with the FENE-P model for

varied values of the Deborah number De. These figures illustrate that the FENE-P closure

diverges from the FENE model as expected.
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Figure 3.4 Comparison of normal stress N1 = τxx − τyy results for Hookean model
and its UCM closure, dtmacro = 10−1, dtmicro = 10−5.
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Figure 3.5 Comparison of shear stress results for FENE and FENE-P models,
dtmacro = 10−1, dtmicro = 10−5, b = 105.
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Figure 3.6 Comparison of normal stress N1 results for FENE and FENE-P models,
dtmacro = 10−1, dtmicro = 10−5, b = 105.
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Chapter 4

Modeling Stimuli Responsive Materials

4.1 Constitutive Modeling

In order to incorporate the effects of external flow fields on the breaking and reforming

dynamics of polymer chains, it becomes necessary to revise the dumbbell models described in

Chapter 3. As a starting point, it is important to recognize that this new system comprises

chains of various lengths. As an initial approximation, we simplify by assuming the existence

of just two lengths. Therefore, there will be two types of dumbbells: single dumbbells

and double dumbbells, which are formed by combining two single dumbbells. Besides the

constitutive equations for the double dumbbells, we must also include processes that account

for the combination of two single dumbbells to form a double dumbbell (reforming) and the

separation of a double dumbbell into two single dumbbells (breaking). These approaches

will be discussed in the following sections.

4.1.1 Double Dumbbell Representation

In a case of a double dumbbell we have two single dumbbells connected with a junction

with the drag coefficient of 2ζ (Fig. 4.1). We begin with providing Langevin equation for

the free beads r1, r3 and the junction bead r2:

dr̃1
dt

= (∇̃ũ)T · r̃1 − 1
ζ

F(r̃1,2) +
√

2kBT

ζ
f1, (4.1)

dr̃2
dt

= (∇̃ũ)T · r̃2 − 1
2ζ

(F(r̃2,1) + F(r̃2,3)) +
√

2kBT

2ζ
f2, (4.2)

dr̃3
dt

= (∇̃ũ)T · r̃2 − 1
ζ

F(r̃3,2) +
√

2kBT

ζ
f3. (4.3)
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Figure 4.1 Double dumbbell configuration given by two free
beads with a drag coefficient ζ and the junction with a drag
coefficient 2ζ.

Rewriting these equations in terms of the end-to-end connector vectors gives:

dQ1
dt

= (∇u)T · Q1 − 1
2ζ

F(r2,1) − 1
2ζ

F(r2,3) + 1
ζ

F(r1,2) +
√

2kBT

ζ
( 1√

2
f2 − f1), (4.4)

dQ2
dt

= (∇u)T · Q2 − 1
ζ

F(r3,2) + 1
2ζ

F(r2,1) + 1
2ζ

F(r3,2) +
√

2kBT

ζ
( 1√

2
f1 − f2), (4.5)

which could be simplified to:

dQ1
dt

= (∇u)T · Q1 − 1
2ζ

(3F(Q1) − F(Q2)) +
√

3kBT

ζ
dWt, (4.6)

dQ2
dt

= (∇u)T · Q2 − 1
2ζ

(3F(Q2) − F(Q1)) +
√

3kBT

ζ
dWt. (4.7)

• Equations for Double Hookean Dumbbells

Applying Hookean force, we can rewrite Eqns. (4.6) and (4.7) as follows:

dQ1
dt

= (∇u)T · Q1 − H

2ζ
(3Q1 − Q2) +

√
3kBT

ζ
dWt, (4.8)

dQ2
dt

= (∇u)T · Q2 − H

2ζ
(3Q2 − Q1) +

√
3kBT

ζ
dWt. (4.9)

Using the same non-dimensional parameters as for the single dumbbell, we get non-
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dimensional equations for a Hookean double dumbbell:

dQ1
dt

= (∇u)T · Q1 − 1
8De

(3Q1 − Q2) +
√

3
4De

dWt, (4.10)

dQ2
dt

= (∇u)T · Q2 − 1
8De

(3Q2 − Q1) +
√

3
4De

dWt, (4.11)

τ = ⟨⟨Q1Q1⟩ + ⟨Q2Q2⟩⟩ − I. (4.12)

• Equations for Double FENE Dumbbells

For a double dumbbell system under FENE forces, the equations corresponding to

Eqns. (4.6) and (4.7) are modified using the same non-dimensionalization as in the

single dumbbell case:

dQ1
dt

= (∇u)T · Q1 − 1
8De

(3Q1 − Q2)
1 − Q2

1/b
+
√

3
4De

dWt, (4.13)

dQ2
dt

= (∇u)T · Q2 − 1
8De

(3Q2 − Q1)
1 − Q2

2/b
+
√

3
4De

dWt, (4.14)

τ =
〈〈 Q1Q1

1 − Q2
1/b

〉
+
〈 Q2Q2

1 − Q2
2/b

〉〉
− I. (4.15)

4.1.2 Breaking Dynamics

In this work we are using the detachment mechanism, based on the model proposed by

Hernandez Cifre et al. [28]. which involves a consideration of the energy barriers and the

lifetime of junctions formed by beads in the network. The lifetime of a junction τ in the

network is modeled as a function of the energy barrier that must be overcome for bead

detachment:

τ = τ0e

−d2
0F 2

s

4U0 , (4.16)

where τ0 is the mean life time of a junction without stretch, Fs is the elastic force acting

on the bead due to the connector spring, U0 and d0 are depth and width of the parabolic

potential well. This leads to having following probability of detachment per time step:

Pdissoc = 1 − exp
(

−∆t

τ

)
. (4.17)
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4.1.3 Reforming Dynamics

In our model, since we are not monitoring the specific locations of each dumbbell, it is not

feasible to determine if two dumbbells are within a range where they could potentially con-

nect. To address this, we introduce a mean reforming rate, denoted as 1/β0 [19]. This rate

is designed to approximate the effect of the density of dumbbells in the system. Essentially,

it represents an average rate at which separated dumbbells could come together to form a

bond, reflecting the overall likelihood of reattachment in the absence of precise positional

information. This approach leads to having following probability of attachment per time

step:

Passoc = 1 − exp
(

−∆t

β0

)
. (4.18)
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4.2 Numerical Schemes

In our approach, when a single dumbbell has to be changed to a double dumbbell, we man-

ually attach a second single dumbbell with the same Q value, and when a double dumbbell

breaks into two single dumbbells we keep tracking one of them and pretend that the second

one does not exist anymore. A significant contribution of this research is the development

of a novel approach for transitioning single dumbbells to double dumbbells within our sim-

ulations. This method manages to mirror the physical processes of bead attachment and

detachment in polymer networks while maintaining computational efficiency under GPU

restrictions of this numerical scheme.

4.2.1 Initialization Steps

In the initial stages of the simulation, the system parameters and variables undergo initial-

ization. This involves configuring various elements such as the number of threads (referred

to as dumbbells), the Deborah number De, the maximum spring extension b, the deforma-

tion tensor κ, as well as parameters τ0 and β0 associated with detachment and attachment

probabilities. Additionally, three distinct time steps (dtmacro, dtprob, dtmicro) are established.

4.2.2 Calculation of Attachment and Detachment Probabilities

Attachment

For a single dumbbell (Qtype = 1) at each dtprob time step we calculate the probability of

attachment:

pattach = 1 − exp(−dtprob
β0

). (4.19)

Using Monte-Carlo approach, we compare calculated probability of attachment with a gen-

erated uniformly distributed random number. If pattach is greater, the dumbbell changes to

a double dumbbell. In our modeling approach, we achieve this by assigning the Q value

from the first dumbbell to the second. This method enables our model to maintain average

orientations and stretching of the dumbbells within the constraints of non-interacting GPU

threads.
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Detachment

For a double dumbbell (Qtype = 2) at each dtprob time step we calculate the probability of

detachment:

pdetach = 1 − exp(−dtprob
τ

), (4.20)

τ = τ0 exp(− d2
0

4U0
( Qa

Qmx
)2), (4.21)

where Qa is the maximum magnitude of the two dumbbells, and Qmx = 1 − ( Qa

Qmax
)2. For

our simulations, we assume d2
0

4U0
≈ 0.004 based on the values used in [28], so the probability

of detachment can be varied by changing the values of only one parameter τ0:

pdetach = 1 − exp(−dtprob
τ

), (4.22)

τ = τ0 exp(−0.004( Qa

Qmx
)2). (4.23)

Here probability of detachment directly relates to the maximum of extensions of the

springs. Similar to the attachment case, a generated uniformly distributed random number

is compared to probability of detachment. If pdetach is greater, the dumbbell detaches into

a single dumbbell.

4.2.3 Hookean Dumbbells Evolution

In the case of Hookean Dumbbells, we are using a forward Euler scheme. For each double

dumbbell we are solving Eqns. (4.10) and (4.11) and we get the following scheme:

Q1 (tj+1) =
[
(∇u)T · Q1 (tj) − 1

8De
(3Q1 (tj) − Q2 (tj))

]
∆tj

+ Q1 (tj) +
√

3
4De

∆W1,j ,

(4.24)

Q2 (tj+1) =
[
(∇u)T · Q2 (tj) − 1

8De
(3Q2 (tj) − Q1 (tj))

]
∆tj

+ Q2 (tj) +
√

3
4De

∆W2,j .

(4.25)
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4.2.4 FENE Dumbbells Evolution

In the case of FENE Dumbbells due to the introduction of non-linearity in the evolution

equation, a semi-implicit algorithm of the first order is employed instead of the forward

Euler scheme.

Predictor Step

The predictor step computes intermediate connector vectors S1 and S2 for each dumbbell

[27, 30]:

S1 = Q1(tj) +
[
(∇u)T · Q1(tj) − F1(Q(tj))

2De

]
∆tj +

√
3

4De
∆W1,j (4.26)

S2 = Q2(tj) +
[
(∇u)T · Q2(tj) − F2(Q(tj))

2De

]
∆tj +

√
3

4De
∆W2,j , (4.27)

where Q1(tj) and Q2(tj) are the current end-to-end connector vector, F1(Q(tj)) and F2(Q(tj))

are related to the FENE spring force and we define them as:

F1(Q(tj)) = 1
4

(
3Q1 (tj)

1 − Q1 (tj)2 /b
− Q2 (tj)

1 − Q2 (tj)2 /b

)
, (4.28)

F2(Q(tj)) = 1
4

(
3Q2 (tj)

1 − Q2 (tj)2 /b
− Q1 (tj)

1 − Q1 (tj)2 /b

)
, (4.29)

which we can rewrite as:

F1(Q(tj)) = 3F (Q1(tj)) − F (Q2(tj))
4 , (4.30)

F2(Q(tj)) = 3F (Q2(tj)) − F (Q1(tj))
4 , (4.31)

Corrector Step

The corrector step refines connector vectors based on the predictor step:

Q1(tj+1)
[
1 + 3

16De

∆tj

1 − Q2
1 (tj+1) /b

]
=Q1(tj) +

√
1

De
∆W1,j

+ ∆tj

2
[
(∇u)T · S1 + (∇u)T · Q1(tj)

]
+ ∆tj

16De
[F (Q2(tj)) − 3F (Q1(tj))] ,

(4.32)
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Q2(tj+1)
[
1 + 3

16De

∆tj

1 − Q2
2 (tj+1) /b

]
=Q2(tj) +

√
1

De
∆W2,j

+ ∆tj

2
[
(∇u)T · S2 + (∇u)T · Q2(tj)

]
+ ∆tj

16De
[F (Q1(tj)) − 3F (Q2(tj))] .

(4.33)

Cubic Equation

To get new end-to-end connector vectors from the previous corrector step, we need to solve

the following cubic equations, which have unique real solutions in (0,
√

b) [31]:

x3
1 − P1x2

1 − b

(
1 + 3

16De
∆tj

)
x1 + bP1 = 0 (4.34)

x3
2 − P2x2

2 − b

(
1 + 3

16De
∆tj

)
x2 + bP2 = 0, (4.35)

where P1 and P2 are the the right-hand-sides of the previous corrector step Eqns. (4.32)

and (4.32). P1 and P2 are the magnitudes of P1 and P2 respectively.

Position Update

The new end-to-end connector vectors of each dumbbell are updated according to the

following formulas:

Q1(tj+1) = x1 · P1
P1

(4.36)

Q2(tj+1) = x2 · P2
P2

. (4.37)
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4.3 Results

Similarly to Section 3.5 we present our results for a case of a simple shear flow, which is

created by positioning a fluid between two parallel plates, where the bottom plate remains

fixed and the top plate moves at a constant speed, denoted by Utop. By assuming a fully

developed flow and under viscoelastic conditions the equations can be simplified as:

ũ = [γ̇0ỹ, 0, 0]⊺ , (4.38)

where γ̇0 = Utop/L, represents the shear rate, with L being the distance between the plates.

In addition, we assume all partial derivatives with respect to x are equal to zero.

By applying the previously used scaling, the velocity can be further written as u =

[y, 0, 0]⊺, and consequently, the velocity gradient tensor is simplified to:

∇u =


0 1 0

0 0 0

0 0 0

 . (4.39)

All numerical computations were performed at the The University of South Carolina

Hyperion High Performance Computing cluster, which is intended for large, parallel jobs

and consists of 356 compute, GPU and Big Memory nodes, providing 16,616 CPU cores.

Its compute and GPU nodes have 128-256 GB of RAM and Big Memory nodes have 2TB

RAM. All nodes have EDR infiniband (100 Gb/s) interconnects, and access to 1.4 PB of

GPFS storage. For our simulations we were using N = 218 GPU threads, each of which

was in charge of one dumbbell (either single or a double one).

In Figs. 4.2-4.5, we present results for a Hookean stochastic model with parameters

τ0 = 1, U0 = 15, d0 = 0.5, dtmacro = 1, dtprob = 10−2, dtmicro = 10−4, b = 100. We examine

various values of the parameter β, which is related to the reforming rate of single dumbbells,

and also consider different values of the Deborah number De. We initialize the system by

setting all dumbbells to be single, with their Q values drawn from the normal distribution

with a mean of 0 and a variance of 1. In Fig. 4.2 we demonstrate how the number of single

dumbbells changes in the system for β = 0.001 and β = 0.01. It can be seen that a lower
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Figure 4.2 Comparison of number of single dumbbells for Hookean models with
reforming rate β = 0.01 and β = 0.001.

value of β consistently results in a smaller number of single dumbbells, indicating that the

system contains a larger number of double dumbbells, which have reformed from the single

ones. This result aligns with our expectations, as the mean reforming rate, employed in our

calculations of attachment probability in Eqn. (4.18), is inversely proportional to the β0

value. In Figs. 4.3-4.4 we compare results for stress component τxy and first normal stress

N1. As can be seen from the figures, different reforming rates yield similar results. In Fig.

4.5 we present results of the second normal stress, which we calculate as N2 = τyy − τzz.

The figure indicates that larger values of β tend to result in higher amplitudes. It can also

be observed that the values of N2 begin to stabilize concurrently with the stabilization of

τxy and N1, as shown in Figs. 4.3-4.4.
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Figure 4.3 Comparison of shear stress for Hookean models with reforming rate
β = 0.01 and β = 0.001.

In Figs. 4.6-4.9, we present results for a FENE stochastic model with parameters

β = 0.01, U0 = 15, d0 = 0.5, dtmacro = 1, dtprob = 10−2, dtmicro = 10−4, b = 100. We

examine various values of the parameter τ0, which is related to the mean life time of a

junction, and also consider different values of the Deborah number De. In Fig. 4.6 we

demonstrate the variation in the number of single dumbbells within the system for τ0 = 1

and τ0 = 16. It is observed that a smaller value of τ0 consistently leads to a higher number

of single dumbbells, which have resulted from the reformation of double ones. This outcome

is in line with our expectations, as the mean lifetime of a junction, used in our calculations

of detachment probability in Eqn. (4.17), is inversely proportional to the τ0 value. In Figs.

4.7-4.8 we compare results for stress component τxy and first normal stress N1. The figures
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Figure 4.4 Comparison of normal stress N1 results for Hookean models with
reforming rate β = 0.01 and β = 0.001.

demonstrate that as the value of De increases, the results for different tau0 values converge.

Additionally, it is noticeable how the profiles of the shear stress and first normal stress differ

from those presented in Figs. 3.5-3.6, respectively. The primary reason for the significant

bump observed before stabilization in Figs. 4.7-4.8 is attributed to using a smaller value

of b, which represents the square of the maximum possible extension of the spring. In Fig.

4.9 we present results of the second normal stress. It is observed that larger values of De

lead to higher amplitudes of N2. Moreover, Figs. 4.7-4.8 show that the stabilization of N2

values occurs simultaneously with the stabilization of τxy and N1.
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Figure 4.5 Comparison of normal stress N2 results for Hookean models with
reforming rate β = 0.01 and β = 0.001.
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Figure 4.6 Comparison of number of single dumbbells for FENE models with
breaking rate τ0 = 16 and τ0 = 1.
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Figure 4.7 Comparison of shear stress for FENE models with breaking rate τ = 16
and τ = 1.
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Figure 4.8 Comparison of normal stress N1 results for FENE models with breaking
rate τ = 16 and τ = 1.
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Figure 4.9 Comparison of normal stress N2 results for FENE models with breaking
rate τ = 16 and τ = 1.
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Chapter 5

Discussion

5.1 Concluding Remarks

This dissertation combines mathematical modeling and simulation to examine the behavior

of viscoelastic materials. Our primary concern is the description of polymer networks at

the mesoscale, with a connection to the macroscopic conservation equations.

In Chapter 2, we explore the connection between Langevin (LE) and Fokker-Planck (FP)

representations of particles diffusing in a fluid, both with and without external fields. While

each description offers a different perspective on the underlying dynamics, there is a direct

connection between these two approaches. To explore this connection, we provide simple

examples of both one and two dimensions. In studying these two families of equations, we

employ subjects from calculus, such as Taylor expansions and conservative vector fields; as

well as ordinary differential equations, such as integrating factors; and partial differential

equations, such as similarity solutions.

The LE representation involves stochastic differential equations (SDEs) and allows for

the easy incorporation of microscopic processes into the equations. However, a drawback of

this representation is that it requires as many SDEs as degrees of freedom in the system, and

each SDE needs to be solved multiple times to reduce statistical noise. The FP approach

involves partial differential equations (PDEs) that describe the evolution of the probability

density function (PDF) of the stochastic variable. Unlike numerical solutions for SDEs,

solutions for the FP equations are deterministic. However, a drawback of the FP approach

is that the dimensionality of the PDF increases with the number of degrees of freedom in

the system, leading to high algorithmic complexity and a high computational cost for the

corresponding numerical schemes.
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Experimentally, LE equations can be informed by techniques that capture the movement

of probes at the microscale, such as passive microrheology [40]. While, FP equations can be

informed by experimental techniques that capture the behavior of the ensemble of probes,

such as light scattering experiments [46].

In Chapter 3, we study constitutive modeling of polymeric solutions. To facilitate

highly parallel and efficient simulations, we present a multiscale flow solver that harnesses

the power of GPU computing. The core element of this work is the dumbbell model, which

allows us to investigate the behavior of polymer chains in complex fluids. In our study, we

explore two types of spring laws: the linear spring law, which gives rise to the Hookean

model, and the nonlinear law, which leads to the FENE model. To ensure the accuracy and

reliability of our approach, we rigorously validate it against macroscopic constitutive equa-

tions. The results of this validation confirm the effectiveness of our simulation techniques

in accurately capturing the intricate behavior of polymer chains.

Through the improvement of computational capabilities, our work makes it possible

to simulate large-scale systems that were previously unattainable due to computational

constraints. This development has significant implications in various industries, such as

materials science, biotechnology, and pharmaceuticals. Moreover, it improves the efficiency

and advancement of technologies, such as 3D printing and drug delivery systems.

After validating this model through simulations of single dumbbells, we introduce a

new modeling approach in Chapter 4. This approach involves incorporating breaking and

reforming dynamics into the equations. The inclusion of these dynamics is crucial, as

it enables the accurate simulation of systems where polymer chains undergo scission and

recombination under the influence of external fields. This has direct applications in the

field of stimuli-responsive materials. Stimuli-responsive materials are materials that can

change their properties in response to external fields such as light, heat, electricity or flow.

This ability to adapt makes them incredibly important for developing new technologies in

medicine, energy, oil recovery and consumer products.

In our case, we use our simulations to study the behavior of reversible polymer networks

under shear. Our approach allows us to capture the principal features of reversible polymer
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networks, including a Newtonian plateau, which is a region of constant viscosity observed

at low shear rates and shear thinning, which is the decrease in viscosity at high shear rates.

Overall, this approach provides a computationally efficient way to model the behavior of

these systems under shear.

5.2 Future Work

We aim to further refine the micro-macro approach for modeling complex micropolymer so-

lutions, incorporating the Navier-Stokes equations. One of the next steps in our research is

the development of a model adept at handling more complex geometries of polymeric chains

and exploring the dynamic breaking and reforming processes. Investigating these structures

could uncover new insights into the behavior of polymers under extreme conditions, paving

the way for advanced materials with tailor-made properties for specific industrial applica-

tions. This will involve refining the current modeling approach to accurately represent and

predict the behavior of polymers with intricate structural configurations. This development

will entail creating advanced constitutive models that more precisely depict the intricate

behaviors of polymer chains, such as entanglement, alignment, and stretching under diverse

flow conditions. This particularly focuses on scenarios like elongational flow or capillary

thinning, which were not covered in this work. Such advancements are crucial for a bet-

ter understanding of the dynamics of these complex systems and for accurately simulating

their behavior in diverse applications. Additionally, we plan to further investigate the im-

plementation of efficient and accurate numerical methods for solving this complex system

of coupled equations, with a special emphasis on leveraging GPU computations to enhance

computational performance.
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Appendix A

%% Constants

D = 1e−2; % diffusion coefficient

dt = 1e−3; % time step

Np = 5e2; % number of particles

NT = 1e3; % number of time steps

%% Generate particle positions

x = zeros(Np,NT); y = zeros(Np,NT); z = zeros(Np,NT);

for k=2:NT

x(:,k) = x(:,k−1) + sqrt(2*D*dt)*randn(Np,1);

y(:,k) = y(:,k−1) + sqrt(2*D*dt)*randn(Np,1);

z(:,k) = z(:,k−1) + sqrt(2*D*dt)*randn(Np,1);

end

%% Calculate MSD

lag = round((1/3)*NT):round((2/3)*NT);

for k=1:length(lag)

dx = x(:,1+lag(k):end)−x(:,1:end−lag(k));

dy = y(:,1+lag(k):end)−y(:,1:end−lag(k));

dz = z(:,1+lag(k):end)−z(:,1:end−lag(k));

msd1(k,:) = mean(dx'.^2);

msd2(k,:) = mean(dx'.^2+dy'.^2);

msd3(k,:) = mean(dx'.^2+dy'.^2+dz'.^2);

end
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%% Plot MSDs

plot(lag*dt,mean(msd1'),'linewidth',3)

hold on

plot(lag*dt,mean(msd2'),'−−','linewidth',3)

plot(lag*dt,mean(msd3'),'−.','linewidth',3)

%% Recover D

fmsd1 = fit(lag'*dt,mean(msd1')','a*x','start',1);

fmsd2 = fit(lag'*dt,mean(msd2')','a*x','start',1);

fmsd3 = fit(lag'*dt,mean(msd3')','a*x','start',1);

fmsd1.a/2

fmsd2.a/4

fmsd3.a/6
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Appendix B

Recall that in Figure 2.2, the trajectory of three different particles were plotted. Assume

we are interested in determining the x-coordinate of the final position of a particle. From

the figure, we would have three different answers: x = 0.0140, x = −0.0526, and x = 0.0081.

It is clear that the fact that each plot gives a different answer is a result of the randomness

of the process. This simple observation implies that the correct question is not what is

the position of the particle? but rather what is the most likely position of the particle?

To answer this, we collect the final position of 1000 particles and summarize them using

histograms, like the ones shown in Figure B.1.

To construct histograms, we divide the data into groups or ‘bins’ and count how many

realizations fall within each bin. The next question is how to extract probabilities out

Figure B.1 Histograms of particle positions for 1000 particles. (A) counts using 20
bins; (B) counts from (A) divided by total number of particles; (C) counts using 10
bins; (D) counts from (C) divided by total number of particles.
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Figure B.2 Normalized histogram of particle positions. The code used to generate
these plots can be found in Appendix B.

of these histograms. A first attempt to calculate probabilities is to divide the number of

realizations within each bin by the total number of realizations. An inspection of Figure B.1

shows why this is not the correct approach; although both figures (B) and (D) correspond

to the same data, the answer is different depending on the number of bins used.

In order to transform the histogram data into probabilities, it is necessary to eliminate

the effect of the bin size. This is done by normalizing the histogram using the area of each

bin, rather than the counts in each bin. This normalization is shown in Figure B.2. Since

the size of the bins does not affect the resulting plot, we could make the size of the bins

as small as we wish, to the point of being able to trace a continuous probability density

function, represented by the continuous line in Figure B.2, which is unique to the data

independently of the number of bins used.

Just as its name indicates, a PDF is not exactly a probability. However, just as one can

find the mass of an object by multiplying its density by its volume, we can find a probability

by multiplying is probability density (PDF) by a range. In this sense, the quantity

P (x, t) dx

represents the probability that a particle’s position is in the range [x, x + dx] at time t.

In addition, working with the continuous form of the PDF, P (x, t), allows us to use

integrals to find different probabilities as areas under the curve, as the example given in

Figure B.3, or to provide a definition of statistical moments based on PDFs:

Mn(x) =
∫ ∞

−∞
xn P (x, t) dx

77



Figure B.3 Calculating probabilities using PDFs.

Note that since the area under the PDF should represent all possible realizations, we

have the condition that the area under the whole curve should be equal to one:

∫ ∞

−∞
P (x, t) dx = 1. (B.1)

As a final remark, note that not all PDFs are bell-shaped like a Gaussian. The only

condition that remains true for all PDFs is that the area under the curve is equal to one as

defined in Equation (B.1). In addition, not all PDFs have to define a probability density

for every location of the sample space. For a more in-depth review of different probability

distribution functions, the reader is referred to [47].

%% Computing and Normalizing histogram

[c,n] = hist(x(:,600),20);

c1 = c./trapz(n,c);

%% Fitting to normal distribution

[mu,sigma,muci,sigmaci] = normfit(x(:,600));

Y = normpdf(linspace(−0.4,0.4,1e3),mu,sigma);

%% Plots

bar(n,c1)

hold on

plot(linspace(−0.4,0.4,1e3),Y)
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