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Abstract

Digital signal processors (DSP), which are characterized by statically-scheduled Very-

Long Instruction Word architectures and software-defined scratchpad memory, are

currently the go-to processor type for low-power embedded vision systems, as ex-

emplified by the DSP processors integrated into systems-on-chips from NVIDIA,

Samsung, Qualcomm, Apple, and Texas Instruments. DSPs achieve performance

by statically scheduling workloads, both in terms of data movement and instructions.

We developed a method for scheduling buffer transactions across a data flow graph

using data-driven performance models, yielding a 25% average reduction in execution

time and a reduction of up to 85% DRAM utilization for randomly-generated data

flow graphs. We also developed a heuristic instruction scheduler that serves as a

performance model to guide the selection of loops from a target data flow graph to

be fused. By strategically selecting loops to fuse, performance gains can be achieved

by eliminating unnecessary transactions with memory and increasing functional unit

utilization. This approach has helped us achieve up to 1.9x speedup on average for

sufficiently large data flow graphs used in image processing.
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Chapter 1

Introduction

1.1 Digital Signal Processors

Image processing accelerators are now commonly integrated as part of embedded

System-on-Chip (SoC) architectures. These types of accelerators go by different

names, such as “Visual Processing Units (VPUs)” and “Image Processing Units

(IPUs)”, but are generally structured as Digital Signal Processor (DSPs)-type which

use a hybrid Very Long Instruction Word (VLIW) and Single Instruction Multiple

Data (SIMD) architecture, which themselves differ from general purpose processors

and Graphics Processor Units (GPUs) in that they rely on compilation techniques

to statically schedule all instructions, they have a complex instruction set, and use

software-defined scratchpad memory and software-defined asynchronous pre-fetching

and buffering of data blocks in the scratchpad using a direct memory access (DMA)

controller as opposed to – or in addition to – traditional caches. Examples of such

processors include the Google Pixel Visual Core [48], Qualcomm Hexagon DSP [13],

Nvidia Programmable Vision Accelerator [17], and the Texas Instruments C66x &

C71x DSPs [49], [37]. In addition, Field Programmable Gate Arrays (FPGAs) loosely

fit this category when used with High Level Synthesis compilers [61], [25], [3].

Digital Signal Processors are a key technology for enabling the widespread deploy-

ment of Automated Driver Assistance (ADAS) systems that improve vehicle safety

and save lives. DSPs are the processors that execute real-time computer vision algo-

rithms that use camera-based sensors to detect road and lane boundaries, traffic signs
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and signals, pedestrians, and other vehicles, and are instrumental for self-driving car

technology. However, unlike GPUs, DSP design does not lend itself to an intuitive

programming model (i.e. CUDA), which makes it difficult, costly, and time consum-

ing for DSP programmers to meet performance requirements for new applications.

This creates significant challenges for the deployment of new algorithms for use in

vehicle safety systems [1].

1.2 OpenVX

OpenVX is a code-portable and performance-portable open programming interface

to aid in the design of accelerated signal processing subroutines, and has widespread

support on a variety of coprocessor architectures [46]. It was originally conceived

as a domain specific API targeted at image processing, but it is extensible to other

domains. OpenVX relies on a graph-based model that allows the programmer to com-

pose processing pipelines by assembling a collection of cooperative kernel primitives.

This way, each graph node represents a kernel and each edge represents the flow of

one image or video frame between kernels or as top-level inputs or outputs. This

representation potentially allows the runtime environment to identify opportunities

for optimization. Examples of OpenVX vendor implementations are Intel OpenVINO

[26], Nvidia VisionWorks [8], AMD OpenVX (AMDOVX) [5], and Texas Instruments

Vision SDK [28]. In our work, we target the Texas Instrument’s TDA2x System-on-

Chip and our baseline results are given by the release version of the Texas Instruments

Vision SDK with OpenVX framework (TIOVX) [10].

Kernels in an OpenVX graph exchange images, and a kernel cannot begin execu-

tion until it receives an image for each of its inputs. Executing an OpenVX graph on

a DSP-type architecture requires that images be conveyed as a sequence of smaller

fixed-sized tiles for the purpose of buffering in on-chip scratchpad memory. The size of

the tiles impacts both the memory system performance and instruction throughput.

2



Additionally, tiles associated with internal edges may optionally be kept in scratchpad

only or exchanged with DRAM between kernel invocations.

1.3 Image Processing Graph Optimization

The performance of a image processing graph can be improved by fusing kernels

(graph nodes). This dissertation is attempting to realize this using two methods.

1. By sharing intermediate data between kernels via scratchpad which allows for

intermediate results to be passed through L2 scratchpad memory and this avoids

DMA transactions. This is refereed to as “Kernel Buffer Fusing”.

2. By sharing intermediate data between kernels via processor registers which is

the next step forward and totally cuts down even the L1 cache and L2 scratchpad

memory transactions. This is refereed to as “Kernel Loop Fusing”.

Bn =
n−1∑
k=0

(
n − 1

k

)
× Bk

B0 = 1
(1.1)

The connected nodes in a graph can be grouped in various ways. A graph of

n nodes may be decomposed into Bn groups, where Bn is the recursively-defined

“Bell number”, as defined in Equation 1.1. The Bell number scales exponentially,

e.g. B6 = 203, B7 = 877, ..., B12 = 4, 213, 597. In practice, the total number of

decompositions is typically small enough to be enumerated and evaluated using fast

performance models as proposed by our methods above, but too large to enumerate

and evaluate on the DSP.

1.3.1 Kernel Buffer Fusion

Like other domain-specific processors, DSPs favor the use of software-controlled on-

chip memories instead of traditional caches. A scratchpad offers several advantages

3



over a traditional multi-level cache. A scratchpad combined with DMA controller op-

erates asynchronously with the processor, allowing the programmer to overlap DRAM

transfers with the corresponding compute workload.

Our method proposes new programming framework for DSPs that significantly

simplifies the development of efficient DSP code. The framework is built on top of an

existing open programming model, OpenVX, but uses a novel algorithm for identifying

which memory structures to store intermediate results from the computation, and how

to most efficiently orchestrate the set of processing stages that comprise the targeted

image processing algorithm.

The developed framework includes two components. The first is a set of data-

driven models for predicting the efficiency of the DSP’s memory interface decomposing

image data into sub-images of a given size, and a given schedule of buffering and

processing each of the sub-images. The second is a model for predicting the hardware

utilization and pixel throughput as a function of the number of processing stages

used to process each image. Together, these models are used to evaluate a large

set of possible software configurations to identify the one that will yield the best

performance. This allows DSP developers to avoid manual, trial-and-error approaches

for performance tuning and ultimately improves productivity for VPU programming.

One of the contributions of this dissertation is the development of performance

models to predict both DMA bandwidth and instruction throughput given features

of input and output tiles. Using these models, we select weakly-connected sub-graphs

that exchange tiles instead of whole images. This causes the runtime environment to

schedule successive kernels after processing each tile as opposed to processing each

image. We refer to this as “kernel buffer fusing”. Our approach performs tile size

selection for all individual kernels and groups of fused kernels.

To evaluate the potential performance impact of our tuning methodology, we use

large sets of randomly-generated graphs and compare their predicted performance

4



Table 1.1 OpenVX 1.1 Kernels That Support Fusing

Point to Point Kernels Neighborhood Kernels
AbsDiffNode PhaseNode Box3x3Node
AddNode TableLookupNode CannyEdgeDetectorNode
SubtractNode ThresholdNode ConvolveNode
AndNode MultiplyNode Dilate3x3Node
XorNode MagnitudeNode Erode3x3Node
OrNode ConvertDepthNode NonLinearFilterNode
NotNode IntegralImageNode
ChannelCombineNode Median3x3Node
ChannelExtractNode HalfScaleGaussianNode
ColorConvertNode Sobel3x3Node
ConvertDepthNode Gaussian3x3Node

improvement over that of the baseline software. Using this methodology, we achieve

a speedup of 1.3 on average, with an average prediction error of less than 2%.

A subset of the OpenVX 1.1 kernel set supported by the fusion approach proposed

in this paper is shown in Table 1.1.

1.3.2 Kernel Loop Fusion

The Texas Instruments VisionSDK includes an image processing library called VXLIB

that targets their DSP architectures. The library consists of a set of primitive image

processing kernels. Each kernel has a loop that operates on individual pixels or groups

of pixels when multiple pixels are processed via SIMD instructions.

Fusing the loops of multiple VXLIB kernels instead of sequentially executing

them allows the kernels to exchange intermediate results through registers instead

of through the L1 cache and on-chip scratchpad memory [1]. This reduces the num-

ber of load and store instructions, reduces the number of cache misses, and allows

the pool of functional units to be shared by multiple kernels within a basic block,

increasing the utilization of functional units.

As a VLIW architecture, DSPs exploit instruction-level parallelism by scheduling

multiple independent instructions in each clock cycle. Since data dependencies in
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the loop body would normally make this impractical, DSP compilers perform modulo

scheduling to transform the innermost loop in a way to reduce or eliminate intra-loop

dependencies and maximize the distance between loop-carried dependencies.

In this dissertation we propose a technique for fusing VXLIB kernel loops prior

to compilation, with the fusing decision being made in a closed-loop process in which

candidate sets of loops to fuse are systemically fused and their resultant performance

is estimated using a performance model that is capable of estimating the resultant

functional unit pressure, register pressure, and achieved loop throughput.

There are two reasons why identifying the sets of kernel loops to fuse is a chal-

lenging problem. The first is that some combinations of loops, when fused, cause

the compiler to fail when performing modulo scheduling. This is because longer loop

bodies may be significantly constrained by register pressure and cause register allo-

cation to fail during scheduling. Second, although the throughput of a fused loop is

generally greater than that of the effective throughput of individual loops, our goal is

to identify the sets of loops that, when fused, result in the greatest overall throughput

improvement for the whole graph as compared to the baseline case of not fusing any

loops.In this paper we propose a technique for fusing VXLIB kernel loops prior to

compilation, with the fusing decision being made in a closed-loop process in which

candidate sets of loops to fuse are systemically fused and their resultant performance

is estimated using a performance model that is capable of estimating the resultant

functional unit pressure, register pressure, and achieved loop throughput [2].

There are two reasons why identifying the sets of kernel loops to fuse is a chal-

lenging problem. The first is that some combinations of loops, when fused, cause

the compiler to fail when performing modulo scheduling. This is because longer loop

bodies may be significantly constrained by register pressure and cause register allo-

cation to fail during scheduling. Second, although the throughput of a fused loop is

generally greater than that of the effective throughput of individual loops, our goal is
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to identify the sets of loops that, when fused, result in the greatest overall throughput

improvement for the whole graph as compared to the baseline case of not fusing any

loops.

For a given directed acyclic graph (DAG) of VXLIB kernels, our proposed tool

searches for an optimal graph decomposition of weakly connected subgraphs that,

when the loops of each subgraph are fused, achieves maximum effective throughput.

In order to generate compilable code for merged loops, we developed HeRCide, a

library built using C++ meta-programming that simplifies the process of combining

and connecting loop bodies. Additionally, we developed a fast, heuristic scheduler

that can estimate the feasibility and performance of a given set of fused loops, based

on a database of single-scheduled iterations for each supported VXLIB kernel.

We show that this approach can achieve up to a 1.9 speedup on average for a

graph with 10 nodes as compared to equivalent non-fused baseline graph.
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Chapter 2

Background

There are two important performance optimizations we can do for DSPs:

1. Scheduling DMA transactions to transfer I/Os between L2 scratchpad and

DRAM in parallel to processing.

2. Scheduling more instructions in loops to increase functional unit utilization.

2.1 Scratchpad Memory Optimization

Like other domain-specific processors, Digital Signal Processors (DSPs) favor the use

of software-controlled on-chip memories instead of traditional caches. A scratchpad

offers several advantages over a traditional multi-level cache. A scratchpad combined

with DMA controller operates asynchronously with the processor, allowing the pro-

grammer to overlap DRAM transfers with the corresponding compute workload. For

applications where the access pattern is fixed, a scratchpad makes more efficient use

of memory, as caches are susceptible to conflict misses when accessing multidimen-

sional data. Scratchpads can also achieve higher throughput to off-chip memory by

transferring larger blocks of consecutive words. For example, a scratchpad might

transfer tiles of 128 by 96 four byte pixels, generating 512-byte consecutive transfers

per row, larger than a typical cache line of 64 bytes.

The introduction of image tiling, DMA, and scratchpad into the OpenVX runtime

on the Texas Instruments C66 DSP provided a benefit of a 2.3 speedup as compared

to using cache [10]. This baseline implementation decomposes each input, output,
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and intermediate image into 64x48-pixel tiles, each of which is transferred between the

on-chip L2 scratchpad and off-chip DRAM using the integrated DMA controller. The

DSP cores in our target platform (the TDA2x) have an L2 memory size of 288 KB,

which the program code (usually the bootloader) can configure as a partial hardware-

controlled L2 cache and partial software-controlled scratchpad. For our experiments,

it is configured as a 128 KB scratchpad SRAM with the rest as cache.

Since the DSP is an in-order architecture, the latency of data exchanges between

the cache and DRAM cannot be hidden and, as a result, a cache miss always causes the

DSP to idle until the miss is complete. On the other hand, the latency of exchanges

between the scratchpad and DRAM may be hidden by exposing concurrency between

the DSP core and DMA controller. In this way, the DSP processes tile n concurrently

with the outgoing transfer of output tile n−1 and incoming transfer of input tile n+1.

This is referred to as “ping-pong buffering” or “double buffering”. The scratchpad

memory, while being an on-chip memory, exists at level 2 and is itself cached by a 32

KB 2-way set associative L1 cache.

When executing an OpenVX graph, all tiles comprising each of a kernel’s output

edges are transferred back from scratchpad to DRAM before the DSP begins executing

any other kernel in the graph. For example, if a graph contains a kernel that has

two inputs and one output, the software will allocate three scratchpad buffers–one

for each edge–until the kernel has completed processing its output image and the

DMA engine transfers the last of its tiles to DRAM. At this point, the software will

re-allocate the scratchpad memory for the next kernel and start fetching tiles from

DRAM.

As shown in Fig. 2.1, the software allocates two scratchpad buffers, ping and

pong, for each input and output image of the kernel. Each buffer holds one tile and

the software operates an outer loop that processes one tile. In each iteration, the

software instructs the DMA controller to transfer the previously-computed output

9



Figure 2.1 Example timing diagram for double buffering execution on the TI C66x DSP.
In this example, the execution is memory-bounded, since the time required for the DMA
transfers exceeds the time required for processing one tile. “trigger time” is the time needed
for the processor to initiate concurrent DMA transfers.

tile into DRAM and transfer the next input tile into scratchpad. After computing,

the processor might need to wait until the DMA transfer completes before processing

the next tile.

The “trigger time” refers to the time required for the processor to initiate DMA

transfers and the “waiting time” refers to the difference in total DRAM transfer time

and compute time. Note that for smaller tiles, the cumulative trigger time across

the frame can be significant since there are more blocks to trigger per frame than

for larger tiles. The tile size can vary significantly, since the pixel size varies from

one to four bytes and some kernels have more inputs and outputs than others. If

a kernel’s compute time exceeds its DMA transfer time then it is compute bound

and its waiting time will be near zero. If a kernel’s DMA transfer time exceeds its

compute time, it will be memory bound.

Tile size selection has a potentially significant effect on performance. Also, al-

though OpenVX’s graph-based model decomposes the application into discrete oper-

ations, there are still opportunities for combining kernels within subgraphs to improve

memory locality and avoid unnecessary transactions with off-chip memory.
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Order of tile evaluation:

Figure 2.2 A graph with nodes A, B, C, and D, nodes B and D are grouped, and the image
is comprised of three tiles. Kn denotes the execution of tile n for node K. In this case, the
DSP must alternate execution of tiles within the set of grouped nodes.

For example, consider two connected kernels that each have one input and one

output. During execution, each kernel requires that an input tile and output tile

to be stored in scratchpad at any given time. The first kernel will transfer all its

output tiles to DRAM before the second kernel begins retrieving each of these tiles

for processing. Alternatively, if the first kernel conveys each of its output tiles as

input to the second kernel through a scratchpad buffer and without transferring the

tile to DRAM, the combination of both kernels will require that three total tiles are

stored in scratchpad at any given time, comprising the input tile, intermediate tile,

and output tile.

This approach reduces the total number of DMA transfers from three to two,

which can improve performance if the sum of DMA transfer time of both kernels

exceeds the sum of their execution time. However, storage of additional tiles will

potentially limit the maximum tile size.

Also, as shown in Fig. 2.2, grouping kernels in this way increases the frequency at

which the DSP must alternate its execution state between kernels, putting increased

pressure on the L1 instruction cache. Likewise, processing multiple tiles at once

increases the size of the working set, increasing pressure on the L1 data cache [3].

Further performance improvements with this method is presumably impossible

due to,
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1. The limitation of having to run the buffer merged kernels sequentially (we can’t

software pipeline across kernels).

2. All intermediate results need to pass through L2 scratchpad which also could

cause L1 cache conflict misses.

3. Mandatory cache capacity misses if the buffer sizes are greater than L1 data

cache size (32KB).

2.2 Loop Scheduling Optimization

One technique to overcome the problems described in the previous method is to

convey the intermediate results between kernels through DSP core’s registers. This

will result in no L1 data cache misses because we are getting rid of all intermediate

I/Os to cache or scratchpad memory and it will also save power because external

memories have very high power usage. All the merged kernels will be a single loop

which could probably be fully cached in L1 instruction cache. The only I/Os facing

the memory are the global inputs of the first and last kernels that are merged if the

intermediate kernels don’t have global I/Os. One limitation to this method is the

amount of instructions we could put in a software pipelined loop. If the instruction

count is too high, it might not produce an efficient pipeline.

2.2.1 DSP Architecture

Fig. 2.3 illustrates the simplified microarchitecture of the Texas Instruments C66x

DSP. Operating on a Very Long Instruction Word (VLIW) design, it emphasizes

instruction-level parallelism by enabling the execution of up to eight instructions in

parallel. To address the need for an excessive number of ports on the register file that

would otherwise be required for this approach, the design is split into two datapaths,

each featuring a register file and four associated functional units. Not depicted in
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Figure 2.3 Simplified Texas Instruments C66x DSP Block Diagram [24]

the diagram is a multiplexer situated on the second input of each functional unit,

enabling the use of one register from the opposite register file as a second operand

when necessary.

In total, there are 64 32-bit registers available. Each functional unit can accept

up to two 32-bit registers per operand for SIMD instructions, and the M unit can

support up to four 32-bit registers as each operand. The D unit executes load/store

instructions and both D units together can allow up to 128 bits to be loaded or stored

per cycle to the L1D cache.

Each of the four types of functional units can execute a specific subset of instruc-

tions, while some instructions can be executed on more than one unit. For example

LD (load) and ST (store) instructions can only be executed on the D units, while the

ADD instruction can be executed on the L and S units and the MOVE instruction

can be executed on the L, S, and D units. Note that the compiler determines which

unit is used for each instruction.
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2.2.2 Modulo Scheduling

To maximize the utilization of functional units on a VLIW DSP architecture, the

compiler must transform the innermost loop in a way that exploits any iteration-

to-iteration independence that may exist. To achieve this, compilers use modulo

scheduling, a form of software pipelining, which overlaps successive iterations of a

loop [47]. The resulting software-pipelined loop contains a prolog, software pipelined

kernel (“piped kernel”), and epilog. The prolog, run once, initiates a number of

iterations of the loop, “piping-up” the software pipelined loop. Execution then falls

into the repeating piped kernel, which starts additional iterations, continues the work

of some iterations, and completes some iterations. When no further iterations need to

be started, executions falls into the epilog (run once), which completes any iterations

that have started but not yet completed.

The objective of this transformation is to maximize the throughput of the loop

by minimizing the number of cycles between initiations of each iteration of the loop,

or “initiation interval (II)”. A loop’s total latency is decomposed into stages, each

with length II [24], and the number of iterations that must be executed in parallel is

determined by the ratio of loop latency to II, as shown in Eq. 2.1.

instruction throughput = 1
initiation interval

= iterations in parallel

iteration latency
(2.1)

The lower bound of the II is determined in part by the resource constraint, or

the minimum number of cycles required to execute the instructions in the loop body

based on the number of function units available, or ResMII [47]. ResMII depends

on the number of instructions comprising the loop body that can only be executed on

one of each of individual units (nL, nS, nM , and nD), which we refer to as single unit

instructions, the number of instructions that can be executed on either the L or S

units (nLS), which we refer to as two-unit instructions, and the number of instructions
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that can be executed on either the L, S, or D units (nLSD), which we refer to as three-

unit instructions (note that no instructions can execute on all four units). Since there

are two of each unit type, the number of single-unit instructions must be divided by

two, the number of two-unit instructions must be divided by four, and the number

of three-unit instructions must be divided by six. Thus, the lowest II at which the

software pipeliner can reasonably start attempting to schedule is determined in part

by Eq. 2.2.

ResMII = max
(

nL

2 ,
nS

2 ,
nD

2 ,
nLS

4 ,
nLSD

6

)
(2.2)

The minimum II at which the software pipeliner can reasonably start attempting

to schedule is also determined in part by data dependencies from iteration i to it-

eration i + k. For example, if a value is produced late in iteration i, but consumed

early in iteration i + 1, the start of iteration i + 1 may need to be delayed so that

the value produced from iteration i is ready by the time iteration i + 1 needs it. This

iteration-to-iteration dependence is called a loop-carried dependence. Scheduling at

a lower II than what the largest loop-carry dictates will result in an illegal software

pipeline schedule, and thus the scheduling attempt at that lower II will fail as a re-

sult. Because of this, the compiler will compute the recurrence bound of a loop, or

RecMII. The RecMII is the minimum II in which a loop can be scheduled without

violating the iteration-to-iteration data dependence. The actual minimum II is thus

the larger of ResMII and RecMII, i.e. MinII = max (ResMII, RecMII).

The minimum number of parallel iterations is determined by the minimum loop

iteration latency, or IL, which is determined by the critical path latency of the di-

rected acyclic graph (DAG) that describes the dependencies in the assembly code

representation of the loop body. However, the critical path delay does not include

the effect of additional delays caused by resource constraints. Determining the mini-

mum loop latency when including functional unit constraints requires a combinatorial
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search for all potential mappings of instructions to functional units and cycles.

Adding to this complexity are two factors. First, various scheduling constraints

can cause register lifetimes to be extended, increasing register pressure. When register

allocation fails during modulo scheduling, the TI compiler will increase the II and

retry modulo scheduling (and register allocation). Second, registers may become

live-too-long as a result of the modulo scheduling process, which means a register is

longer for II cycles. When registers that are written and read inside the loop are

live-too-long, this condition results in a schedule that will not produce the correct

results. The TI compiler typically attempts to split any live-too-long registers after

a modulo scheduling attempt with live-too-long-split-moves [52], but this does not

always work. If live-too-long splitting does not work, ii will need to be increased and

modulo scheduling tried again.
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Chapter 3

Related Work

Several prior efforts have been made to optimize the performance of data flow graphs

for various types of architectures. Our approach is unique because of the use of data

driven performance models to optimally chose the configurations parameters for a

given image processing graph to achieve the highest speedup. Our models can also

be directed to optimize DRAM utilization while maintaining a reasonable speedup

for a given graph.

3.1 OpenVX Platform-Specific Deployments

Yang et al extended Nvidia’s VisionWorks libray [8] to create a real-time OpenVX

implementation [63]. ADRENALINE is a virtual many core SoC platform with a

corresponding OpenVX runtime based on OpenCL [53]. It achieves a speedup of 2 to

5 for OpenVX graphs as compared to equivalent OpenCL implementations executed

on the same platform. OpTIflow [27] shows how the individual nodes of an OpenVX

graph can be mapped to various cores available in the TDA4V-Mid SoC (which

includes ARM, C66x, and C71x DSP cores) while [11] presents a parallelized software

architecture for OpenVX in TI Jacinto 7 SoC (TDA4VM). The AFFIX framework

performs a heterogeneous implementation of OpenVX kernels in a CPU-FPGA setup

using OpenCL and High-Level Synthesis with high and low level optimizations [55].
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3.2 Dataflow Optimization via Kernel Fusing

The general approach of identifying nodes to merge in a dataflow graph (or OpenVX

graph in particular) offers various benefits depending on what type of platform is tar-

geted. These efforts may be broadly categorized into the granularity of the hardware

resources targeted, such as a pool of processor cores or individual function units. In

the case of mapping processor cores, node merging can provide a mechanism to con-

strain crossbar switch sizes in the case of FPGA-based multiprocessor system-on-chip

platforms [12], improve cache performance on traditional shared memory multicores

[14], and minimize data movement for FPGA-based soft-core DSPs [54] [40]. In the

case of individual functional units such as the case when using FPGA-based high-level

synthesis, node merging allows for constraining total hardware cost by optimizing the

dataflow graph before lowering the graph to a C-language description immediately

prior to its synthesis to gates [39].

3.3 Performance Modeling

Machine learning is emerging as an alternative to analytical-based [50] and simulation-

based performance modeling [33] [30]. Particularly machine learning models have

been shown to be effective in predicting performance of a given set of image pro-

cessing kernels on various heterogeneous processors [30]. Plethora of research done

in analytical modeling to find effective tile sizes for data flow graphs have not been

successful across a range of processor architectures. Auto tuning, which involves

experimentally evaluating a range of tile sizes is another effective and widely-used

approach for tile size selection [56].
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3.4 DSLs (Domain Specific Languages)

OpenVX’s graph-based method for describing dataflows is similar to other efforts to

develop performance-portable domain-specific languages. Quio et al extended Hipacc,

an open source source-to-source compiler to automatically fuse kernels by analyzing

the AST (Abstract Syntax Tree) of a compiled image processing application written

in Hipacc DSL [43]. PolyMage [38] and Halide [45] are two popular domain-specific

languages, both embedded in C++, for auto-tuning image processing applications.

Both use a “position independent” representation, in which the programmer provides

an element-level description of a computation with only relative indexing and without

the surrounding loop constructs or any notion of the order in which the elements are

processed. PolyMage relies on polyhedral analysis to generate tiled loop nests. Halide

requires its programs to include both a functional representation as well as a meta-

program that specifies a method that Halide should follow to optimize the program.

An example for this is shown in [60] where Halide and MLIR were used to increasing

the speed of OpenVX data flow for CPUs.

3.5 Loop Fusion

Quio et al proposed a kernel fusion technique that transformed the loop fusion prob-

lem into a graph partitioning problem and using the minimum cut technique to re-

cursively search fusible kernels. The fusible kernels are selected based on the weights

of the edges in the graph and these weights are assigned based on a benefit estimation

model. They implemented their solution within Hipacc which is an image processing

DSL and a source-to-source compiler and it is targeted for GPUs [42], [44]. We do

have a similar approach but our models evaluating the fusibility are very different and

we do not use Hipacc because it doesn’t have support for Texas Instrument specific

intrinsics. Kennedy and McKinley’s [29] approach reorders the loop or change the
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order in which loop iterations are executed by preserving output dependencies and

then fuses multiple distinct loops into a single loop. They also convert the problem

into a graph partition problem similar to [42] and use a novel algorithm based on

maximum-flow/minimum cut to select kernels for fusing.

Meng et al developed a method to fuse parallel kernels–as opposed to loops–onto

the same GPUs to improve data locality [36]. This avoids the DMA accesses to

external memory and improves data locality in L1 cache. This approach is different

from ours as it’s not directly merging kernel loops into an one big single loop. The

paper published by Intel [51] discusses about fusing loops that are nested to maximize

locality. They convert the source code to a DAG (Directed Acyclic Graph) and fuse

different DAGs before converting the DAGs back to source code. In contrast we

fuse different image processing kernels while letting our heuristic model decide what

kernels to merge.

Fraboulet et al developed a loop fusing approach designed to improve data reuse

[20]. Kernel fusion could be potentially advantageous in data-intensive applications

like data warehousing. Wu et al evaluated the benefits of kernel fusion on relational

algebra operations implemented using CUDA for an NVIDIA Fermi GPU [59].

In our work, we fuse different kernels which have completely different functionality.

But the work suggested by [19] breaks down large functions into smaller kernels

and then evaluate which kernels combinations would best perform merged. They

have their predictor model which primarily focuses on computation against memory

access time. Xue et al proposes a technique to merge ’for’ loops while removing

fusion preventing dependencies by applying loop tiling [62]. In our approach we do

not handle image tiling process, the framework around our loop merged kernels are

suppose to handle the tiling process and Texas Instruments Vision SDK takes care

of that.

Mehta et al. developed a method to perform loop transformations using polyhe-
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dral framework which is a mathematical framework that includes parametric linear

algebra and linear programming [35]. So they’re able to merge loops that are not ob-

vious for the compiler to automatically merge. In our approach, we don’t do change

code in individual kernels because these kernels are highly optimized for the TI C66

compiler.

3.6 Instruction Scheduling

Instruction scheduling is an NP Complete problem even when the basic building block

of code is only several independent DAGs [41]. Wilken et al presents an approach

to instruction scheduling based on integer programming and graph transformation

to simplify the data dependency graph [58]. Lee and Ha came up with a cost ef-

fective approach for scheduling instructions for multi core DSPs [31]. Timmer et al

proposed a method to model resource and instruction set conflicts before schedul-

ing an instruction DAG[57]. Deng et al implemented a two-dimensional constrained

dynamic programming approach and a quantitative model for instruction scheduling

which achieved near optimal performance for VLIW DSP at a cost of time overhead

[15]. Bahtat et al developed a enumeration based resource constrained heuristic for

modulo scheduling in VLIW architectures which help them improve the performance

of a set of signal processing algorithms [7]. Leupers implemented a partitioning and

instruction scheduling technique for cluster based VLIW architectures to reduce the

interdependence among clusters [32]. Desoli proposed a cluster based instruction

scheduling approach to speedup the convergence of a deterministic descent algorithm

which was able to beat a common heuristic known as BUG (Bottom Up Greedy) by

5 to 50% [16].

Optimal assembly code generation is an integral part of a successful instruction

schedule. Faraboschi et al used region selection and region enlargement techniques

such as loop unrolling and branch target expansion to optimizing code generation
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for instruction level parallel processors like VLIW and Superscalar [18]. Arslan and

Kuchcinski used a state-of-the-art constraint solver to find solutions to large scale code

generation problems by redefining instruction selection and scheduling as a constraint

satisfaction problem [6]. Gibbons and Muchnick developed a code reorganizing algo-

rithm to significantly reduce the number of runtime pipeline interlocks for pipelined

architectures [21].

JOKer framework provides an automatic end-to-end multi-level code generator

for kernel optimization through three optimization primitives: Loop Transform, Vec-

torization and Instruction-level Optimization [64].

A novel reinforcement learning based approach using graph neural networks was

attempted for scheduling instructions for a DSP architecture but the results could

not achieve any significant improvements [4].

3.7 Register Allocation

In our heuristic scheduler used to predict which loops to fuse from a given set of

VXLIB kernels, it was not necessary to allocate physical registers according to the

DSP architecture. But we do make sure that register pressure will not go above the

register limit constraints on hardware. Register allocation is an NP Hard problem

[34]. We did not want to increase the computation time for our Heuristic Scheduler as

we have to evaluate many groupings for a given VXLIB graph to find the best set of

sub-graph groupings. Furthermore the accuracy of the predictions using our heuristic

scheduler was good enough to find the optimal or near optimal graph groupings.

Hence we didn’t need to implement a register allocator. Register allocation is a

classic graph coloring problem [9].
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Chapter 4

Kernel Buffer Fusion

Kernel buffer fusing allows run-time environment to pass smaller tiles of an image

between kernels through L2 scratchpad buffer rather than using DMA engine to read

whole images back and forth from external memory. But buffer fusion has to be done

methodically using right kernels and select the most appropriate tile size to achieve

the best performance. In our work we use performance models to predict the best

characteristics for buffer fusion.

4.1 Performance Considerations

The OpenVX programming model grants the runtime environment two degrees of

freedom for optimization.

1. The first is how to decompose the input, output, and intermediate images into

tiles. DMA performance depends on characteristics of the DMA transfers, such

as tile size and shape. Tile size is denoted by W (Width) x H (Height). The

tile size and shape affects DMA performance because the width and height

determine the number of consecutive and nonconsecutive addresses accessed

from DRAM. The width and height also affect compute performance because

of the impact of L1 conflict misses, the startup overhead of software pipelining

loops, and because some tile sizes cause the tile to extend further beyond the

right- and bottom- boundary of the image when processing the last column

and last row of tiles, causing differing levels of redundant calculation and/or
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Figure 4.1 DMA and compute cycles for AccumulateSquared Kernel for a Variety of Tile
Sizes.

inability to use full SIMD instructions for those tiles. Since tile transfers and

computation are perform concurrently, the total execution time for an OpenVX

kernel is max(timeDMA, timecompute).

2. The second is how to schedule the kernels onto the processor. The processor

can execute the kernels in any order so long as it obeys the graph’s data depen-

dencies. The data dependencies are defined using the graph edges, but their

granularity can be in terms of whole images or individual tiles. This way, the

runtime environment can execute each kernel for a whole image or only a single

tile. When the execution order is tile by tile, the processor must switch between

kernels at a higher rate than in the former case, which potentially affects L1

instruction and data cache performances.

We propose the use of DMA and compute performance models to facilitate achieving

automated exploration of optimization decisions.
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4.1.1 Performance Bounds

Fig. 4.1 shows a comparison of the total number of DMA and compute cycles required

to process a 1600x1200 pixel image for the AccumulateSquared OpenVX kernel for

tile sizes ranging from 32x16 to 384x16. The best DMA performance is achieved at

tile size 320x24, which is a 2.11 speedup as compared to the worst-performing tile size

of 32x16. The best compute performance is achieved at 64x48, which has a speedup

of 1.58 as compared to the worst-performing tile size of 320x24. Note that 320x24 is

the worst-performing tile size for compute but the best for DMA. However, since the

execution time is max(timeDMA, timecompute), the best performing tile size is 128x48.

The current release of the Texas Instruments OpenVX implementation in VISION

SDK sets all tile sizes to 64x48. As per the performance measurements done in

a TDA2x evaluation board, results show that for a variety of OpenVX “individual

kernels”, the 64x48 tile sizes achieves within 21% of the best performing tile size for

DMA time, and within 8% of the best performing tile size for compute time, and

within 12% of the best since the execution time is max(timeDMA, timecompute).

4.1.2 Kernel Fusing

Under default behavior, the images transferred along the edges of an OpenVX graph

are buffered in external DRAM. Specifically, when processing each image as a grid of

tiles, a kernel will store each output tile in scratchpad memory while it is being com-

puted, and after completion will transfer it into its position within the output image

in its external DRAM buffer. When a successor kernel is executed that consumes the

same image as input, each of its tiles are subsequently read back into scratchpad for

use as an input to the kernel.

Kernel fusing is a technique where the tiles sent between a predecessor and suc-

cessor kernel are stored only in on-chip scratchpad, avoiding the round-trip transfer

to external DRAM that would otherwise be performed in the baseline software. This
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is possible when the connection between the kernels is not connected to a top-level

output or read by any other kernels, unless those kernels are also a member of the

fused set.

Kernel fusing has two effects on execution behavior. First, it changes the frequency

in which kernels are executed. Without kernel fusing, each kernel continuously exe-

cutes until it completes the processing of the entire output image(s). On the other

hand, when a set of kernels are fused, each kernel in the fused set processes only

one output tile, at which point its downstream kernels process a single tile and the

process repeats until the whole image is processed.

This is depicted in Fig. 2.2, where kernel A and C each execute all the tiles

associated with their inputs without interruption, after which fused kernels B and D

must alternate execution after processing each of their tiles.

The advantage of kernel fusing is that it eliminates all of the transfers of inter-

mediate images to external DRAM. This can shift the performance bottleneck from

memory bandwidth to compute throughput and also reduce the DRAM utilization

when executing the fused tiles and lowering the average DRAM utilization for the

whole graph.

There are several constraints when choosing which kernels to fuse. First, in order

to achieve the intended effect of reducing transfers to external DRAM, the fused

kernels should be chosen such that there is at least one intermediate image that is

only connected to kernels in the fused set. In other words, the subgraph consisting of

the fused kernels should be weakly connected, meaning that there is a path between

every pair of kernels if the edges were bidirectional.

Second, as the number of fused kernels is increased, there is a corresponding

increase in the scratchpad buffer requirement. Specifically, there must be sufficient

space in the scratchpad to store all the input, output, and intermediate tiles needed

by the fused set of kernels. Also, since the input and output tiles are double buffered,
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there must be allocation of two of each of these . Thus the scratchpad capacity limits

the number of kernels that can be fused. Additionally, since the scratchpad memory

is cached by the L1 data cache, if the set of fused kernels covers a total size that

exceeds the L1 data cache, then as the fused kernels access all the tiles, they will

experience increased dynamic stalls due to increased frequency of L1 capacity and

conflict misses.

Third, only certain combinations of kernels can be fused. Due the double-buffering

used to explicitly transfer input tiles into scratch memory, Kernels must use the same

tile size for all inputs. This becomes an important restriction when fusing kernels,

since a kernel with two inputs cannot accept tiles from two other kernels in the same

fuse set with different output tile sizes. Note that the whole fuse set is associated

with an assigned tile size, but internal connections between the kernels in the fused

set may have their size reduced. This occurs when a fused set includes a kernel

that generates a smaller output tile size than its input tile size because it performs

neighborood-based or stencil operations such as 2D filtering.

Finally, the tile size and shape affects the achieved DRAM bandwidth and the

compute throughput for each kernel differently as described in Section 2. Likewise,

it affects each set of fused kernels differently.

As a result of these constraints and impacts on performance and DRAM utiliza-

tion, deciding which kernels to fuse must be informed by a performance model or

through exhaustive testing on hardware.

4.1.3 Enumerating OpenVX Graphs

In general, a graph of n nodes may be decomposed into Bn distinct groups, where

Bn is the recursively-defined “Bell number”, as defined in Eq. 1.1. The Bell number

scales exponentially, e.g. B6 = 203, B7 = 877, ..., B12 = 4, 213, 597. For an OpenVX

graph, the possible node groupings (fuse sets) must be weakly connected with respect
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Figure 4.2 Distribution of observed speedups of grouping and tile size enumerations for a
single 6-node graph, split into six distributions with each having an equal number of groups.

to the edges that carry image data. This means there must be a path between any

pair of nodes in a group if all edges are treated as bidirectional.

For each input graph we enumerate all valid node groupings. For each grouping,

we enumerate all possible tile size to groups chosen from 48x36, 64x48, 64x64, 80x60,

128x48. Enumerations that exceed the scratchpad capacity of 128 KB or that produce

runtime errors (e.g. fusing not possible due to internal tile size mismatches within

the group) are disregarded. Note that a grouping could be a single kernel.

Figure 4.2 depicts the size of the enumeration space and the impact on perfor-

mance of various enumerations for a 6-node graph. The figure is split into six sections,

with each section showing a distribution of speedups relative to the baseline case of

no grouping (equivalent to six groups) and using a 64x48 tile size for all kernels.

Each section corresponds to a different number of groups, from 6 groups in the

leftmost section to one group in the rightmost section. Each of the data points
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represents an assignment of tile sizes to each of the groups and each line represents a

single assignment of kernels to groups.

For example, a graph comprised of kernels A, B, C, D, E, F with the kernels as-

signed to three groups and corresponding group assignments 1, 1, 2, 2, 3, 3 has 53 = 125

ways to assign the six possible tile sizes to the three groups and the speedups for each

of these is shown along one of the lines under the section containing three groups.

Likewise, the 125 enumerations for the group assignments 1, 1, 1, 2, 2, 3 are shown on

another line.

As shown in the plot, the highest achieved speedup is 1.6 for one of the enu-

merations in the section containing three groups but any speedup greater than 1.4

is extremely rare among 4-, 3-, and 2-group enumerations and non-existent in the

others.

4.1.4 Optimizing both Performance and DRAM Utilization

Digital Signal Processors (DSPs) are always part of a larger System-on-Chip architec-

ture, generally sharing one DRAM interface among a large diverse set of processors

and/or co-processors. In addition to improving performance, fusing kernels and opti-

mizing tile sizes allows for minimizing DRAM utilization when executing the OpenVX

graph. In other words, in some cases it may be desirable to choose an enumeration

that causes the computation time to far exceed the DMA time in order to free the

DRAM interface for other processors sharing the System-on-Chip.
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Table 4.1 DRAM utilization of a random 6 node OpenVX graph sorted based on number of groups

Number
of

Groups

Number
of

Enumerations

Max
Speedup

Corr.
Execution

time

Corr.
DMA time

Corr.
DRAM

Utilization

Minimum
DRAM

Utilization

Corr.
Execution time

Corr.
DMA
Time

Corr.
Speedup

6 15625 1.24 11.06 ms 10.46 ms 95% 84% 12.21 ms 10.25 ms 1.16
5 15625 1.30 11.44 ms 10.26 ms 90% 72% 12.32 ms 8.89 ms 1.17
4 6125 1.41 11.49 ms 8.76 ms 76% 63% 14.66 ms 9.24 ms 1.14
3 1175 1.42 11.72 ms 7.27 ms 62% 52% 14.96 ms 7.79 ms 1.13
2 110 1.39 12.27 ms 6.80 ms 55% 44% 14.82 ms 6.48 ms 1.16
1 4 1.21 14.56 ms 5.10 ms 35% 35% 14.56 ms 5.10 ms 1.21

Table 4.2 DRAM utilization of another random 6 node OpenVX graph sorted based on number of groups

Number
of

Groups

Number
of

Enumerations

Max
Speedup

Corr.
Execution

time

Corr.
DMA time

Corr.
DRAM

Utilization

Minimum
DRAM

Utilization

Corr.
Execution time

Corr.
DMA
Time

Corr.
Speedup

6 15625 1.07 11.97 ms 16.14 ms 100% 100% 11.97 ms 16.14 ms 1.07
5 15625 1.30 11.37 ms 12.60 ms 100% 78% 15.02 ms 11.71 ms 1.08
4 6125 1.45 11.39 ms 11.32 ms 99% 57% 14.89 ms 8.54 ms 1.15
3 1200 1.50 11.68 ms 10.27 ms 88% 33% 15.24 ms 5.03 ms 1.14
2 120 1.48 11.82 ms 8.52 ms 72% 28% 15.60 ms 3.72 ms 1.20
1 5 1.46 12.86 ms 3.51 ms 27% 15% 16.46 ms 2.55 ms 1.20
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Table 4.1 shows the maximum speedup and minimum DRAM utilization for all the

enumerations of a different six node graph. These results show how either performance

or DRAM utilization may be chosen as a primary optimization objective while still

achieving a reasonably-good value for the other.

For example, the best speedup of 1.42 is achieved with 3 groups and has a cor-

responding DRAM utilization of 62%, while the minimal DRAM utilization of 35%

is achieved with 1 group while still achieving a 1.21 speedup. Note that optimizing

for either maximum performance or minimal DRAM utilization is possible with the

approach described below.

The stats for the graph shown in Table. 4.2 indicates that 88% dram utilization

is needed to achieve the best speedup possible which is 1.5. To find this value our

models described bellow evaluated 38,700 enumerations. This table also indicates

that a DRAM utilization as low as 15% could be achieved for a speedup of 1.2.

4.1.5 DMA Model

As shown in Fig. 2.1 the DMA engine concurrently transfers the previously-computed

output tile(s) from scratchpad to DRAM, and then transfers the next input tile(s)

from DRAM to scratchpad. At the same time, the DSP core processes the current

tile(s), reading and writing to scratchpad. DMA performance depends on character-

istics of the transfer, such as the size of the transfer, the number of consecutive bytes

accessed, and the stride length and frequency. Our approach is to develop a DMA

performance model that associates features of the transfer to an achieved effective

DMA bandwidth. Note that the DMA engine’s waiting time will be greater than 0

cycles when the computation is compute bounded, while the DSP’s waiting time will

be greater than 0 cycles when the computation is memory bounded.

To build a training set for the model, we use performance counters to measure

effective DMA bandwidth for individual OpenVX kernels as well as groups of up to
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10 fused OpenVX kernels over a variety of tile sizes and pixel depths, total number

of inputs and outputs, and the differences in input and output tile size caused by the

halo region of stencil-based kernels. The data set covered is comprised of 23,000 kernel

invocations over 27 tilable OpenVX 1.1 [22] kernels for all compatible pixel depths

and tile sizes of 48x36, 64x48, 64x64, 80x60, 128x48 for a 1600x1200 image size. From

these tests we found that DMA throughput varies from 190 MB/s to 4.01 GB/s. Each

configuration is averaged over 100 runs. In general, tile width plays an important part

of DMA bandwidth because wider tiles have more consecutively accessed pixels, which

reduces the frequency of row activations in the DRAM controller. Also, total tile size

determines the total payload transferred, reducing the impact of time needed to start

the DMA transfer.

We developed methods to increase the number of features that comprise the inde-

pendent variables for which we hope to predict bandwidth. In the original dataset, we

labeled each observation as a feature vector using a combination of elements chosen

from: (1) input tile width in pixels (TIW), (2) input tile height in pixels (TIH),

(3) output tile width in pixels (TOW), (4) output tile height in pixels (TOH), (5)

total input width (tile width x pixel size x number of inputs) (TTIW), (6) total

output width (tile width x pixel size x number of outputs) (TTOW), (7) total in-

put size, (TTIW x TIH) (TIS), (8) total output size, (TOW x TOH) (TOS), (9)

number of inputs (NI), (10) number of outputs (NO), (11) pixel depth (PD), (12)

stencil neighborhood width (SNW), and (13) stencil neighborhood height (SNH).

Each combination of feature vectors caused multiple observations to have the same

feature vector value but with different DMA bandwidths. We refer to each of these

sets of observations as “classes”.

In the dataset, the chosen input parameters are: (1) number of inputs (NI), (2)

number of outputs (NO), (3) total input bytes (∑NI
i=1 pixel depth per each input)

(TIB), (4) total output bytes (∑NO
i=1 pixel depth per each output) (TOB), (5) total

32



tile input width (∑NI
i=1 tile width × pixel depth per each input) (TTIW), (6) total tile

output width (∑NO
i=1 tile output width × pixel depth per each output) (TTOW), (7)

tile input height (TIH), (8) tile output height (tile height for each output averaged)

(TOH).

Note that stencil-based kernels (neighborhood-based kernels) generate a smaller

output tile than the corresponding input tile. For example, if the input tile size for

a Box3x3 kernel is 64x48, the output tile size will be 62x46 because the Box3x3 uses

a 3x3 stencil. The effect of these kernels are reflected on the TTOW and TOH

parameters. Some kernel and sets of fused kernels exhibit the same combination

of feature values but yield slightly different DMA bandwidths. We refer to each of

these sets of observations as “classes”. For classes with greater than one member, the

class feature vector is associated with the mean of DMA bandwidths observed for the

member of the class.

For the input feature set, we evaluated two machine learning techniques to predict

the output bandwidth. The dataset was divided into 80% training data and 20%

testing data. A neural network with two fully connected layers achieved RMS training

and testing error of 129.9 MB/s and 131.5 MB/s, respectively.

We also evaluated an interpolation-based method, which achieved an RMS train-

ing and testing error of 53 MB/s and 104.2 MB/s, respectively. The interpolation

model is trained by collecting the feature vectors and the corresponding observed

DMA bandwidth for each. Each set of observations sharing the same feature vector

are consolidated into a single datapoint and associated with a bandwidth that is the

arithmetic mean of the bandwidths observed for the set.

During deployment, the model will predict the effective DMA bandwidth for a

single kernel or fused set of kernels by using its feature vector to perform a lookup

in the table and return the associated bandwidth. If there is no entry in the table

for the input features, a prediction is made by interpolating the bandwidth among a
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Algorithm 1 Pseudocode for Interpolation
1: Input: Fin, classes, bandwidth
2: Output: bandwidthpredicted

3: for each class in classes do
4: dist_to_classi = |Fin − classi|
5: end for
6: sort(dist_to_class)
7: sum = ∑20

i=1 dist_to_classi

8: for i = 1..20 do
9: weighti = dist_to_classi/sum

10: weighti = 1/weighti

11: end for
12: sum = ∑20

i=1 weightsi

13: bandwidthpredicted = 0
14: for i = 1..20 do
15: weighti = weighti/sum
16: bandwidthpredicted += weighti × bandwidthi

17: end for

cohort of the 20 nearest feature vectors in the table.

This is shown in Algorithm. 1, which accepts the input feature vector Fin, the set

of feature vectors associated with each class classes, and the associated observed or

average of observed bandwidth for each class bandwidth.

For each class classi, the model calculates the distance between the input features

Fin and the features of each of the classes classesi. The model sorts the classes

according to their distances to the input features, then the model calculates a weighted

average with respect to the inverse normalized distances.

4.1.6 Compute Model

The C66x DSP relies on the compiler to statically schedule its instructions. All

stalls resulting from data, control, and structural hazards are explicitly defined in the

object code and the number of cycles per loop iteration is reported by the compiler.

Since instructions are statically scheduled, the only source of performance uncertainty

(aside from DMA bandwidth) are the number of stalls caused by L1 cache data misses.
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As shown in Fig. 4.1, the number of raw compute cycles needed by an OpenVX

kernel (without including the effects of the DMA controller) is determined by the

kernel and its associated tile size. The kernel’s L1 access pattern and its tile size

determine the number of stalls from L1 data cache misses. L1 data cache performance

is maximized at different tile sizes for different kernels.

Similar to the DMA model, our compute model is built around a table that

associates the kernel name, its input count, its output count, the number of input

bytes per pixel, the number of output bytes per pixel, its stencil neighborhood width,

its stencil neighborhood height, and its tile width and tile height with the observed

compute time.

The number of input bytes per pixel is calculated inclusive of all the kernel’s

inputs and the number of output bytes per pixel is calculated inclusive of all the

kernel’s outputs. For example, a kernel with two inputs each carrying an image with

four byte pixels is assumed to have eight bytes per input pixel.

The L1 instruction cache can potentially affect performance when the processor

alternates between multiple OpenVX kernels after processing each tile. For the results

shown below, we have remapped the kernel code into a contiguous memory block to

minimize L1 instruction cache misses.

The L1 data cache performance, on the other hand, depends on the access pattern

to the input, output, and intermediate tiles for a given fused set of kernels, making it

impractical to optimize. Larger fused sets, having a correspondingly larger footprint

of active tiles, are generally more adversely affected by L1 data cache misses than

smaller fused sets.

We refer to this effect as “λ scaling”, where λ defines the observed performance of

a fused set of kernels relative to the sum of execution times of its constituent kernels

when executed alone and using the baseline tile size of 64 × 48.

Texas Instruments Vision SDK’s TIOVX allows the programmer to manually
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define sets of fused kernels in a given OpenVX graph. In order to construct a training

set for predicting λ, we generated thousands of random OpenVX graphs and executed

each with every valid enumeration of weakly-connected fused subgraphs. Using this

method we have collected 10,381 data points.

From this data we determined that the optimal set of features for predicting λ

are:

1. the number of fused kernels,

2. the total tile footprint of the fused set = tile size in bytes for all input edges ×

2 + tile size in bytes for all internal edges, and

3. the total memory intensity = sum of execution cycles per pixel of the individual

kernels in the fuse set.

Using these parameters, the data set is divided into 7,880 classes, which is an

average of 1.32 observations per class.

We evaluated three techniques using the above parameters to accurately predict

the λ value (using 8,335 training samples, 2,106 testing samples):

1. interpolation-based model: training RMS error 0.003, testing RMS error 0.026,

2. linear regression model: training RMS error 0.37, testing RMS error 0.28, and

3. multi-level perception (MLP): we tested various MLPs with one to 50 hidden

layers, with the best training RMS error 0.08 and best testing RMS error 0.08.

As with the DMA model, we use the interpolation-based method for the λ model.

4.2 Automated Node Merging and Tile Size Selection

There are no publicly-available benchmarks for OpenVX. In the literature, previous

work on optimizing OpenVX graphs uses a set of relatively small graphs to evaluate
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the proposed techniques [54] [14], making it difficult to generalize results. In order to

evaluate our approach over a large set of OpenVX graphs, we developed a tool that

to randomly generate synthetic graphs having a given number of kernels. Of these,

only graphs that are unique, valid, and schedulable (as determined by the vendor

runtime) are used. For each randomly-generated graph, we enumerate all possible

weakly-connected subgraphs and tile sizes for each subgraph and consider each as a

potential optimal configuration.

4.2.1 Model Accuracy

As shown in Equation 1.1, n nodes may be decomposed into Bn groups. For an

OpenVX graph, the possible groupings must be weakly connected with respect to the

edges that carry image data (the OpenVX vx_image type). This means there must

be a path between any pair of nodes in a group if all edges are treated as bidirectional

(otherwise there would be no reason to group the nodes).

For each graph, we enumerate all valid node groupings. For each grouping, we

enumerate all possible tile size to group assignments, chosen from 48x36, 64x48,

64x64, 80x60, 128x48. Assignments that exceed the scratchpad capacity of 128 KB

are disregarded. Note that a grouping could be a single kernel on itself too. For each

grouping and assigned tile size, we use the DMA and Compute models to predict

its execution time, which is max(DMA time, Compute time). The graph execution

time is computed as the sum of group execution times.
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BW = 2.675581 GBps
Compute Bound
CT = 2574430 ns
DT = 2152803 ns

BW = 2.781538 GBps
Compute Bound

CT = 18640002 ns
DT = 3451325 ns

BW = 2.770822 GBps
Compute Bound
CT = 2327918 ns
DT = 1385870 ns

Total graph execution time (ns):

vxDilate3x3Node out(78 x 58 x 1) vx_imagevxSubtractNode vx_image (80 x 60 x 1)

in
vx_enum

vxPhaseNode (64 x 48 x 1) vx_image (80 x 60 x 1)
in vx_image (64 x 48 x 2)

in

vx_image (64 x 48 x 2)

vxGaussian3x3Node

(78 x 58 x 1) vx_image (80 x 60 x 1)

in vx_image (80 x 60 x 1)

23542350 ns

Figure 4.3 Predicted performance of a 4 node graph generated by our random graph generator.

BW = 2.478462 GBps
Compute Bound
CT = 4072869 ns
DT = 2324022 ns

Total graph execution time (ns):

vxMultiplyNode vxThresholdNodevx_image (64 x 48 x 1)

in vx_image (64 x 48 x 1)

in vx_image (64 x 48 x 1)

in vx_scalar

in

vx_enum

in

vx_enum

vxDilate3x3Nodevx_image (64 x 48 x 1)

in

vx_threshold

out(64 x 48 x 1) vx_image

4072869 ns

Figure 4.4 Predicted performance of a fused Multiply-Threshold-Dilate graph generated by our random graph generator.
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Figure 4.3, shows an example of a 4 node graph generated by our random graph

generator tool. In this instance our model has decided that the best performance

is achieved if the vxSubtractNode and vxDiliate3x3Node kernels are fused with tile

size 80x60, while the vxPhaseNode executes individually with a tile size of 64x48,

and the vxGaussian3x3node kernel executes individually with tile size 80x60. The

predicted compute time, DMA time, and DMA bandwidth for each kernel group are

shown next to each group. vxSubtractNode and vxDiliate3x3Node kernels are both

colored red, indicating that they are fused. Here all three groups are predicted to

be compute bound and the graph execution time is the sum of execution times of all

groupings.

For another example, Figure 4.4, is a 3 node graph. In this instance our model has

decided that the best performance could be achieved if all 3 nodes are fused together

and the tile size was set to 64 x 48. Notice that all 3 nodes have the same color,

which means they’re a group. The compute time and the DMA times are shown on

top of the group demarcation. Here the compute time is higher than the DMA time

so the fused kernel is compute bound and the DMA bandwidth for the grouping is

calculated to be 2.48 GBps.

To validate the performance predictions, we deploy the same OpenVX graph with

the same groupings on the Texas Instruments TDA2xx EVM (Evaluation Platform).

The EVM is designed around a System-on-Chip that includes two C66x DSP cores

and ARM Cortex-A15 CPUs. The CPUs execute the boilerplate code that creates

and validates the OpenVX graph, creates fused kernel groupings, assigns tile sizes to

each kernel/group, and offloads the graph to the DSP to gather performance data.
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Table 4.3 Comparison of average speedup values for over 500 graphs per each node count

Node
Count

Median
EVM Speedup

Average Best
EVM Speedup

Average
Prognosticated

Speedup

Average Model
Predicted
Speedup

Highest
EVM

Speedup

EVM vs Model
Error %

EVM vs
Prognosticated

Error %
2 1.31 1.40 1.38 1.39 2.67 4.81% 1.23%
3 1.32 1.38 1.37 1.38 2.88 4.64% 1.32%
4 1.30 1.35 1.33 1.34 2.71 4.51% 1.73%
5 1.26 1.31 1.29 1.32 2.34 3.85% 1.65%
6 1.24 1.29 1.26 1.29 2.03 4.08% 2.03%
7 1.16 1.24 1.22 1.26 2.07 3.35% 1.25%
8 1.19 1.24 1.22 1.27 2.22 3.69% 0.91%
9 1.13 1.21 1.20 1.26 2.19 4.60% 0.67%
10 1.13 1.21 1.20 1.27 2.07 4.78% 0.49%
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Graph performance is measured as speedup relative to the baseline case of no

kernel fusing and 64x48 tiles for all kernels, as shown in Eq. 4.1

speedup =
Number of clock cycles to execute the

baseline graph with NO fused groupings
Number of clock cycles to execute

the graph with fused groupings

(4.1)

Using Eq. 4.1, we associate a predicted speedup with each graph configuration,

which defines the kernel groupings given by a graph decomposition and associated

tile size for each group.

Table 4.3 shows performance and model accuracy for graphs of size 2 to 10 nodes,

for at least 500 random graphs of each size. Note that fully enumerating the graph

configurations for graphs with more than 10 nodes in the EVM is not feasible due to

the growth of the enumeration space.

The “Average Best EVM speedup” column indicates, for each graph size, the

average best speedup achieved for all graphs by selecting a configuration giving the

best performance for each graph when run on the hardware. In other words, this

represents the speedup a user would expect if it were feasible to evaluate all graph

configuration enumerations on the hardware.

Since this is generally not feasible, especially for larger graphs, the “Average Prog-

nosticated Speedup” column shows the expected speedup a user would obtain on the

hardware if all graph configuration enumerations are evaluated using the performance

model and choosing the one that maximized the expected speedup. When compared

to the previous column, this indicates how the model accuracy affects the overall

optimization problem of selecting the best graph configuration. In other words, in

cases where the model does not exactly identify the best performing graph on the

hardware (due to prediction error), it is still able to select a closely-performing graph.

Likewise, the “Average Model Predicted Speedup” is the expected speedup a user

would obtain according to the performance model if all graph configuration enumer-
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ations are evaluated using the performance model. This column, when compared to

the previous column, indicates the overall accuracy of the performance model.

The column labeled ”Highest EVM Speedup” shows the speedup of the highest-

performing graph among all those tested for each graph size, showing the maximum

potential for speedup using kernel fusing. The column labeled “EVM vs Model Error

%” shows the average model error when predicting the speedup given by the best

configuration of all graphs of each size. The “EVM vs Prognosticated Error %”

shows the relative difference in performance between selecting the best-performing

configuration based on hardware performance or model predicted performance.

As shown in the table, speedup from kernel fusion and tile size selection as well

as the model accuracy, remain relatively consistent across graph sizes, with a slight

reduction in performance as the graph size is increased. Generally speaking, a user

can expect a speedup of approximately 1.20x for graphs of size nine or larger by

automatically configuring a graph using the proposed performance models.
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Figure 4.5 Comparison of graph speedup from the EVM vs our model for 800 graphs of
8-nodes. Speedups are sorted based on EVM speedup and it correlates to model speedup.
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Figure 4.5 shows, for a set of random 8-node graphs, the distribution of the best

speedup achieved by the optimal graph configuration for each graph on the hardware

and the corresponding best speedup achieved by the optimal graph configuration for

each graph according to the performance model .

The plot is sorted in ascending order of best hardware speedup. The median

speedup is 1.19 and the 90th percentile is approximately 1.5. These results show that

the speedup attainable for a given graph depends on characteristics of the graph.

On average, the model predicts the best attainable speedup for each graph to within

3.69%, although as shown in Table. 4.3 the model accuracy varies with graph size.
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Figure 4.6 Comparison of graph speedup from the EVM vs our prognosticated speedup
for 800 graphs of 8-nodes. Speedups are sorted based on EVM speedup and it correlates to
the prognosticated speedup.

Figure 4.6 shows a similar distribute to that of Fig. 4.5 but in this case the best

attainable hardware speedup is compared to the speedup obtained on the hardware

if the graph configuration chosen was that of the configuration with the best speedup

as measured by the performance model. In other words, this later speedup represents

43



the actual speedup when the graph configuration is chosen using only the model for

guidance. In this case, there are some graphs where model inaccuracy led to the

non-optimal graph configuration not being selected, but this only accounts for 0.91%

slowdown on average across all the graphs.

Note that evaluating all graph configurations on the hardware is not feasible for

larger graphs due to the time required to generate, compile, deploy, execute, and

measure all graph configurations. On the other hand, evaluating the performance

model for each graph enumeration requires a trivial amount of time.
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Figure 4.7 Distribution of speedup over enumerated parameterizations of a randomly se-
lected 5-node graph. Speedup data was collected by running the graph in the EVM.

Fig. 4.7 shows the distribution of actual and predicted speedups over all 6,480

graph configurations for a randomly-chosen 5-node graph. The best predicted speedup

achieved with this graph is 2.32, but less than 2.7% of the graph configurations achieve

a actual speedup of greater than 1.5. This result illustrates the rarity of good graph

configurations.

Fig. 4.8 compares the average optimal configuration actual speedup to the actual
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Figure 4.8 Comparison between actual speedup from optimal node fusing vs fusing all
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speedup achieved from fusing all nodes into a single group with a 64x48 speedup.

Since it is not possible to fuse all nodes in every graph due to software limitations,

the data in this figure only includes those graphs in which all their nodes can be fused.

For this reason, this dataset is slightly different from the one presented in Table 4.3).

Speedups for the single grouping case range from 1.36 down to 1.19, while the op-

timal configuration speedups range from 1.52 to 1.35. This result shows that grouping

all the nodes will imposes a 10% - 15% performance penalty relative to the maximum

possible speedup.
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Figure 4.9 OpenVX graph for Skin Tone Detection.
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4.2.2 Practical Benchmark Application

Since our prior results are based on synthetic graphs, we also evaluated the proposed

fusing method on a practical application, shown in Fig. 4.9. Skin tone detection

is a practical application which can identify a person’s skin on an image or a video

stream. This application can be built using a 14 node OpenVX graph which includes

3 vxChannelExtract nodes, 2 vxSubtract nodes, 5 vxThreshold nodes, and 4 vxAnd

nodes.

The optimal configuration for this graph as predicted by our models has 3 groups.

First one vxChannelExtractNode, two vxThresholdNodes, one vxSubtractNode and

one vxAndNode were fused together and the tile size was set to 64x48. Second,

two vxChannelExtractNodes, one vxSubtractNode, one vxThresholdNode and one

vxAndNode was fused together with a tile size of 48x36 and finally two vxThreshodNodes

and two vxAndNodes were fused together and the tile size was set to 64x48. This

configuration achieved a speedup of 2.02 compared to the standard OpenVX graph

with no fused kernels. The best grouping enumeration proposed by our models are

shown in Fig. 4.10.
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Chapter 5

Kernel Loop Fusion

In image processing applications, input images are often subjected to a progressive

sequence of transformations. For example, an incoming image might be converted to

another color space, then have color channels extracted, then be added to another

image, then filtered with several convolutions such as blurring and edge extraction,

and then compute feature vectors for each pixel. These transformations are often

available as separate functions in an image processing library. In our case, we target

the Texas Instruments VXLIB library [23].

In this scenario, each successive transformation may be performed with a separate

loop but with the same number of loop iterations. On a DSP, each loop would read

the input data from an memory hierarchy buffer and store the output data in another

memory hierarchy buffer that would be read by a downstream loop.

Fusing any pair of loops where one produces data consumed by another allows

two loops to be replaced by a single loop and avoids all the memory transactions

that would otherwise be needed to convey the intermediate image between the loops.

In other words, the intermediate data would be transferred through registers rather

than through memory hierarchy buffers.

Fusing loops in this way improves performance through several mechanisms. First,

the fused loop, having more workload, can often exploit more on-chip resources, i.e.

achieve higher functional unit utilization. Second, the store and load instruction pairs

that would otherwise be needed to store intermediate results to memory hierarchy

would be eliminated, reducing the total dynamic instruction count. Finally, reducing
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Figure 5.1 Data flow graph for simple loop that loads two values, adds them, increments
the sum, and stores the result. The instruction latency is shown on the edges.

memory hierarchy access will correspondingly reduce dynamic stalls resulting from

cache misses. Fusing loops also improves energy efficiency by reducing memory system

utilization.

Choosing which loops to fuse is a challenge due to several practical considerations.

First, maximizing functional unit utilization requires that the loops to be fused have

a complementary set of instructions, allowing instructions from one loop to fill empty

slots that would otherwise be present in the other loop’s schedule.

Second, optimally statically scheduling loops is an NP-complete problem and is

thus sensitive to the size of the loop body. However, typical heuristics that are used to

software pipeline loops on VLIW architectures have compile times that increase by at

least the square or cube of the number of nodes in the scheduling graph. Therefore, to

avoid excessive compile time, the TI compiler limits modulo scheduling to loops that

have fewer number of instruction nodes than an experimentally determined threshold.

Above this threshold, the compiler will simply schedule the loop without modulo

scheduling, leading to poor utilization of the available functional units, and thus

poor execution performance.

Third, the size of the register file is a constraint for pipeline scheduling, which can

lead to reduced performance for certain combinations of loop bodies.

In order to illustrate how loop fusion can lead to speedup after modulo scheduling,

consider the following example. Assume a hypothetical processor with one load/store

unit and one arithmetic unit. Further, assume the following latencies: ‘load’ instruc-
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Figure 5.2 Modulo schedule for a loop that loads two values, adds them, then stores the
result.

tion requires 2 cycles, ‘store’ instruction requires 1 cycle, and arithmetic operations

(such as ‘add’) requires 2 cycles.

Fig. 5.2 shows a loop body that loads registers ‘a’ and ‘b’, computes their sum,

then stores the sum back to memory hierarchy.

For this loop and processor, the Minimum II as constrained by resources, or

ResMII, is computed by counting the number of instructions in the loop body corre-

sponding to each functional unit, dividing each by the corresponding number of func-

tional units, and finding the maximum. In this case, since there are three load/store

instructions and only one arithmetic instruction, ResMII = max(⌈3
1⌉, ⌈1

1⌉) = 3.

The minimum iteration latency (IL) of the loop is the combined latency of the

load, add, and store instructions, which is 5. Thus, to achieve an initiation interval

(II) of 3, there must be at least ⌈ IL
II

⌉ = ⌈5
3⌉ = 2 iterations in parallel.

In the schedule shown in Fig. 5.2, the column ‘piped loop cycle’ refers to the cycle

relative to the piped kernel, which is the code that is physically executed on the DSP.

This example schedule shows two iterations of the piped kernel. The column labeled

single scheduled cycle is the cycle relative to the single scheduled iteration, which is

a representation of the original, non-pipelined loop, and is executed over the course

of multiple piped kernel iterations.

Note that once the instruction scheduler places ‘load a’ and ‘load b’ in ‘single
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Figure 5.3 Modulo schedule for a loop that loads a value, increments it, and stores the
result.

scheduled cycle’ 0 and 1 respectively, the next instruction ‘c = a + b’ can be placed

in ‘single scheduled cycle’ 3 (pipelined loop cycle 3 mod II = 0) because of the two

cycle delay in loading ‘b’. Then ‘store c’ can be placed in ‘single scheduled cycle’ 5

because of the two cycle latency required by the add instruction.

The schedule’s resultant functional unit utilization is only 8
12 = 66%, since only 8

of the 12 functional unit slots are occupied in the schedule.

Consider another loop that only loads one value, increments it, and stores the

result back to memory. This loop has ResMII = max(⌈2
1⌉, ⌈1

1⌉) = 2 and minimum

iteration latency (IL) of 5, also requiring ⌈ IL
II

⌉ = ⌈5
2⌉ = 3 iterations in parallel to

achieve its minimum II of 2, as shown in Fig. 5.3 and achieving a functional unit

utilization of 9
12 = 75%.

Assuming both loops would normally be executed in sequence, fusing the loops

adds an additional 2 cycles to the minimum iteration latency (IL), caused by the ad-

dition of the increment operation that depends on the previous sum operation. How-

ever, fusing these loops allows the store instruction from the first loop and the load

instruction from the second loop to be eliminated, since the intermediate result (vari-

able c) can be allocated in a register. The resultant loop body has three load/store

instructions and two arithmetic instructions, with ResMII = max(⌈3
1⌉, ⌈2

1⌉) = 3,

IL = 2 + 2 + 2 + 1 = 7, and minimum iterations in parallel = IL
II

= 7
3 = 3.
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Figure 5.4 Modulo Schedule for the fused loop from Figs. 5.2 and 5.3.

A schedule for the fused loop is shown in Fig. 5.4. It has a resource utilization

of 15/18 (18 slots available for 9 cycles with 2 functional units each and 15 occupied

slots). The throughput of the fused loop is 1
II

= 1
3 and must be compared the

combined throughputs of the two constituent loops, computed as 1
II1+II2

= 1
5 . The

resultant speedup in terms of throughput achieved from the fusing is this 1/3
1/5 = 1.66.

The DAG for this loop is shown in Fig. 5.1.

For the fused loop, as shown in Fig. 5.4 the II is 3, iteration latency (IL) = 9 and

iterations in parallel (IP) = 3. It is evident that by fusing the 2 loops, the II did not

increase but the functional unit utilization was increased to 15/18 which means the

fused loop is doing more work within the same clock cycles as the first loop from Fig.

5.2. So by fusing these two loops we have achieved a speedup of (3 + 2) / 3 = 1.66 in

addition to eliminating the memory hierarchy accesses by removing the intermediate

load/store instructions.

5.1 Proposed Approach

We have developed a framework that accepts an image processing dataflow graph and

generates a corresponding C++ code with explicit loop fusing that, when compiled
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with the TI DSP compiler, produces near-optimal code.

This framework is comprised of three main components: (1) a graph generator

that enumerations all possible decompositions of an input VXLIB graph to identify

which kernels in the dataflow graph to fuse to maximize performance, (2) HeRCide: a

C++ code generator and corresponding target library that takes an input graph com-

prised of VXLIB kernels and generates a single loop encompassing the functionality of

multiple fused VXLIB kernels as executable code, and (3) VXOPT: a heuristic mod-

ulo scheduler and a library of assembly-level single scheduled iterations corresponding

to each VXLIB kernel.

5.1.1 Graph Generator

For a given image processing application described as a graph of VXLIB kernels, our

objective is to find the graph decomposition–that is, the assignment of each kernel to

a kernel group–that when each group of kernels is synthesized as a single loop and

scheduled, achieves the best overall speedup over the baseline case of executing each

kernel as a separate loop.

The upper bound for the maximum number of decompositions is defined by the

Bell number, defined in Eq. 1.1, which is an exponential function. In practice, since

each kernel group must be weakly connected in order for the grouping to allow for

the elimination of load and store instructions corresponding to the values conveyed

between grouped kernels, the total number of decompositions is potentially small

enough to be enumerated and evaluated using a fast performance model, but too

large to evaluate on the DSP.

Our graph generator enumerates all weakly connected subgraphs for a given ap-

plication and estimates the resultant speedup against a performance model that uses

a heuristic to compute a modulo schedule for the fused loop. The heuristic scheduler

contains an instruction-level dataflow graph for each VXLIB kernel. When the opti-
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mal decomposition is found, the resulting fused loops are composed in C++ using a

template library called HeRCide.

5.1.2 HeRCide

HeRCide is designed as a DSP-centric analog to Halide [45], is a hierarchical C++

library containing a PixelLib, a template function corresponding to the single iteration

workload associated with each VXLIB kernel. As such, a fused loop can be generated

by instancing calls to these methods in a single loop body. Since the C66x DSP

contains Single Instruction, Multiple Data (SIMD) support, the PixelLib is built on

top of a SIMD datatype library called the “core functions” library, which contains

assembly-level implementations of primitive operations for SIMD types.

Generated loop that merges 
kernels

Add 
kernels

Logical 
kernels

Color Convert 
kernels

...
Filter 

kernels

uint8x8_t uint16x8_t int8x4_t ...int8x16_t

Main 
Function

PixelLib 
Library

Core Functions 
with 

SIMD_WIDTH

Figure 5.5 HeRCide Architecture

This stack is shown in Fig. 5.5, in which a synthesized fused loop is comprised of

one call to the PixelLib library for each kernel being fused, and the PixelLib functions

having template parameters corresponding to whatever primitive SIMD type is being

processed by each kernel.
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This approach requires that the kernels being fused have the same number of loop

iterations, which consequently requires that all the included kernels use the same

SIMD width.

Code 2 Example type library of “Core Funcions” for uint8x8_t type
class uint8x8_t {
public:

uint64_t data;
uint8x8_t(uint64_t val=0) : data(val) {}
uint8x8_t() {}
inline uint8x8_t operator= (const uint8_t * restrict input) {

data = _amem8_const(input);
return uint8x8_t(data);

}
inline uint8x8_t operator| (const uint8x8_t op1) {

uint64_t t0 = data | op1.data;
return result(t0);

}
inline uint8x8_t operator+ (const uint8x8_t op1) {

uint64_t t0;
t0=_itoll(_add4(_hill(data), _hill(op1.data)),

_add4(_loll(data), _loll(op1.data)));
return uint8x8_t(t0);

}
inline void store (const uint8_t * restrict output) {

_amem8((void *)output) = data;
}

};

An example HeRCide core function class for the 8-element 8-bit unsigned SIMD

type is shown in Code. 2. It implements the primitive “bitwise-or” and “add” func-

tions. Note that the operators are overridden and include processor-specific vectorized

intrinsics that map to specific SIMD instructions.

An example set of PixelLib routines is shown in Code 3. Code. 4, shows an

example loop generated from fusing the “VXLIB_Add” kernel and “VXLIB_Or”

kernel. This code, which comprises the top-level loop and several compiler pragmas,

is machine-generated based on the kernels and interconnections given by a graph-
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Code 3 PixelLib library code for ‘add’ and ‘or’ kernels
template <typename simd_width>
static inline
void pixellib_add(simd_width src0,

simd_width src1,
simd_width &dst) {

dst = src0 + src1;
}

template <typename simd_width>
static inline
void pixellib_or(simd_width src0,

simd_width src1,
simd_width &dst) {

dst = src0 | src1;
}

based input description.

The VXLIB_Add kernel has two external inputs named src1 and src2 and the

output is connected to one of the inputs of the VXLIB_Or kernel, with the other

connected to an external input named src3. The output of the VXLIB_Or kernel is

an external output.

The “_nasssert” statement indicates to the compiler that the arrays are aligned

and can be accessed with load and store instructions that require aligned addresses.

The “UNROLL” pragma tells the compiler exactly how many times to unroll the loop

and the “MUST_ITERATE” pragma indicates minimum and maximum trip counts.

Within the kernel “for loop” customized SIMD load instructions are generated from

the overloaded assignment (=) operators.

Calls to the PixelLib library functions and their corresponding inputs and outputs

are connected according to the graph structure shown in Fig. 5.6. The output is

stored using the store function call which includes a SIMD store intrinsic.

The set of VXLIB kernels currently supported by HeRCide is presented in Table.

5.1.
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Code 4 Generated code for fused ‘add’ and ‘or’ kernels
void vxAddOrKernel(

const uint8_t * restrict src1,
const uint8_t * restrict src2,
const uint8_t * restrict src3,
uint8_t * restrict dst,
uint32_t width) {

uint8x8_t src1a, src2a, src3a, dsta, t0;
_nassert(((uint32_t)src1 % 8U) == 0);
_nassert(((uint32_t)src2 % 8U) == 0);
_nassert(((uint32_t)src3 % 8U) == 0);
_nassert(((uint32_t)dst % 8U) == 0);

#pragma UNROLL(1)
#pragma MUST_ITERATE(0„2)
for (int x=0; x<width; x++) {

#pragma FORCEINLINE_RECURSIVE
src1a = &src1[x*8];
#pragma FORCEINLINE_RECURSIVE
src2a = &src2[x*8];
#pragma FORCEINLINE_RECURSIVE
src3a = &src3[x*8];

#pragma FORCEINLINE_RECURSIVE
pixellib_add <uint8x8_t> (src1a, src2a, t0);
#pragma FORCEINLINE_RECURSIVE
pixellib_or <uint8x8_t> (t0, src3a, dsta);

#pragma FORCEINLINE_RECURSIVE
dsta.store(&dst[x*8]);

}
}

5.1.3 VXOPT

Fusing kernels has the potential to achieve substantial speedup for VXLIB graphs,

but identifying sub-graphs to fuse requires a model to predict both the feasibility and

performance impact of a proposed fusing strategy.

Certain combinations of kernels cannot be fused because the vendor’s DSP com-

piler will fail to modulo schedule loops in which the hardware constraints make it
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Table 5.1 VXLIB Kernels supported in HeRCide

Logical Kernels Arithmetic Kernels Misc Kernels
or_i8u_i8u_o8u absDiff_i8u_i8u_o8u colConvert_RGBtoYUV4

and_i8u_i8u_o8u addWeight_i8u_i8u_o8u channelExtract_1of[2|3|4]
xor_i8u_i8u_o8u addSquare_i8u_i16s_o16s channelCombine_[2|3|4]to1

not_i8u_o8u add_i[8|16][u|s]_i[8|16][u|s]_o[8|16][u|s] convertDepth_i[8|16][u|s]_o[8|16][u|s]
subtract_i[8|16][u|s]_i[8|16][u|s]_o[8|16][u|s] threshold_i[8|16][u|s]_o[8|16][u|s]
multiply_i[8|16][u|s]_i[8|16][u|s]_o[8|16][u|s] tableLookup_i[8|16][u|s]_o[8|16][u|s]

difficult or impossible to find a valid schedule having more than one iteration in

parallel. The most common cause of this is when there is an insufficient number of

registers to hold all the needed live values or when the iteration latency must be

increased to accommodate the schedule to the point where the II becomes equal to

the latency of the single scheduled iteration. In other words, it is not feasible to fuse

a large set of kernels.

Even for kernel sets that can be fused, kernel combinations that have complemen-

tary functional unit requirements or ones that are tightly interconnected will achieve

a greater speedup than combinations that lack these qualities.

Thus, in order to maximize speedup through kernel fusing, it is necessary to have

knowledge of which kernel combinations can be fused and which kernels combinations

when fused give the best speedup.

For this reason, we propose a performance model that will take, as input, a set

of kernels and predict the initiation interval that the compiler would achieve for a

loop that contains the combined workload of the fused kernels, minus the load and

store instructions that would have been required to convey intermediate results if

the kernels were not fused. Ideally, this model would be substantially faster than
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compiling the fused loop. For this reason, we have developed a heuristic scheduler

that approximates the modulo scheduling algorithm.

5.2 VXLIB Graph Optimization

For a given set of VXLIB kernels and associated graph, our performance model will

merge the corresponding instruction-level dataflow graphs of each kernel, compute

the As Soon as Possible (ASAP) and As Late as Possible (ALAP) cycles for each

instruction, construct a modulo schedule for a loop containing the kernels, and report

the resulting initiation interval, schedule, and register usage table. The reported II is

used to estimate the achieved throughput of the fused VXLIB kernels and is compared

against other candidate merging strategies.

Our scheduler is substantially faster (30 to 60x) than the TI compiler because

it does not require C/C++ parsing, it does not perform register allocation or code

generation, and uses a heuristic scheduler. For these reasons, it is not guaranteed to

produce results that are consistent with the TI compiler, but is intended to deliver

sufficient accuracy to significantly outperform a random fusing strategy.

5.2.1 Merging DAGs

The single scheduled iteration of each VXLIB kernel is stored in a database and,

when used, converted to a DAG in which each vertex corresponds to each assembly

instruction and each edge represents a dependency between two instructions. To

fuse two or more VXLIB kernels that are weakly connected in a VXLIB graph, their

corresponding DAGs are combined by matching the edges in the VXLIB graph to the

corresponding load and store instructions in the assembly-level DAGs for each kernel.

In other words, each external input and output from each VXLIB kernel is associ-

ated with a load or store instruction, respectively. When fusing two kernels in which

kernel A’s output is connected to the kernel B’s input, the corresponding store in-
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struction in kernel A and the corresponding load instruction in kernel B are removed

and replaced with a single DAG edge.

Fig. 5.7c shows an example VXLIB graph in which the VXLIB absDiff kernel

fans out to two VXLIB OR kernels. Figs. 5.7a and 5.7b shows the instruction-level

DAGs for the absDiff and OR kernels, respectively.

When fusing these 3 kernels, the store instructions corresponding to the output

of the absDiff are removed and the load instructions corresponding to the inputs of

the OR kernels are removed. Fig. 5.7d shows the merged DAG for the resultant

“absDiff-OR-OR kernel”.
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5.2.2 Performance Model Design

To identify the most efficient set of subgraphs in which to decompose a VXLIB graph,

our proposed method performs a search over the decomposition space, evaluating each

decomposition with our performance model. Our performance model uses a heuristic

to schedule the fused DAG to determine the feasibility of scheduling and the resultant

iteration interval (II).

A modulo scheduler must make several decisions when constructing a schedule,

each of which represents a branching point in the search space. For example, many

instructions can be scheduled on more than one functional unit type, for a given

function unit, instructions can be scheduled on either the A-register path or the B-

register path, and there may be a difference between the earliest and latest cycle in

which an instruction may be scheduled. For this reason, finding an optimal schedule

requires a combinatorial search. After the schedule is constructed, the compiler must

allocate registers, the decisions of which comprise its own combinatorial space.

In our proposed performance model, we use a scheduling algorithm without a

register allocation phase, which in practice produces sufficiently high quality of results

to prune away virtually all unpromising VXLIB graph decompositions.

Schedule Initialization

The modulo schedule is made up of functional unit slots, the number of which is

II × nunits, where II = the initiation interval, or the inverse of the loop throughput.

The number of units available in the C66x DSP is eight, namely L1, L2, D1, D2,

S1, S2, M1, M2. Each unit can be issued one instruction per cycle. Each issued

instruction performs workload on behalf of one of IP loop iterations, in which IP is

the number of iterations processed in parallel. Recall that IP is a function of II and

IL, where IL is the loop iteration latency as shown in Eq. 2.1.
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Figure 5.8 Modulo Schedule for the fused loop with an inferred register alive too long.

Register Allocation

The number of live registers in each of the II modulo cycles is an important constraint

when scheduling, as the number of live registers cannot exceed 64. For each edge in

the DAG connecting instructions a and b, when a is scheduled in modulo cycle acycle

and relative iteration ai for and instruction bi is scheduled in modulo cycle bcycle and

relative iteration j, and given the latency of instruction a is alatency, the number of

live registers in cycles ((acycle +alatency)+ai ×II) mod II to (bcycle +bi ×II) mod II

is incremented by the number of 32-bit values conveyed on that edge.

The number of live registers in cycle c is incremented for each instruction scheduled

n cycles prior to cycle c, where n is the latency of the instruction, and for which at

least one of the instruction’s successors is scheduled on or after cycle c.

Register Live-to-Longs

Additionally, a live register cannot persist for more than II cycles without being

transferred via a move instruction to another register, since each live register can only
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Figure 5.9 Modulo Schedule for the fused loop where the register alive too long has been
resolved.

be associated with one loop iteration at any moment. In other words, if an instruction

consuming a value is scheduled more than II cycles away from an instruction which

produces that value (also taking into account the latency of the producing instruction

to account for when the register is written), a live-too-long situation results. Without

intervention, the register written by the dependency will be invalidated before it can

be used. Inserting an intervening move instruction will remedy this problem but the

move instruction will occupy a scheduling slot.

Figs. 5.8 shows how the schedule from Fig. 5.4 could be alternatively generated

in a way that includes a register live-too-long. In this case, the number of iterations

in parallel has increased from 3 to 4. A register must be allocated to hold the value

of the variable d when it becomes available two cycles after the “d=c+1” instruction

that generates it. This register is read by the “store d” instruction four cycles later.

This requires the register holding the value of d to be alive for 4 cycles, which is

greater than the II of 3. This is a “register live-too-long” problem, because that

register would be invalidated by the “d=c+1” instruction corresponding to the next
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loop iteration 3 cycles later. Our proposed performance model detects registers that

are alive too long, and attempts to repair by inserting move instructions to split the

lifetime of the register that is live too long.

This is shown in Fig. 5.9, in which the “d1=d” instruction is inserted into an

empty slot two cycles after the “d=c+1” instruction and four cycles prior to the

“store d1” instruction that reads it. Assuming that latency of the move instruction is

one cycle or more, the lifetime of the register allocated to the d1 variable is guaranteed

to be less than or equal to the II of 3.

5.2.3 Heuristic Scheduler

Our heuristic algorithm is shown in Alg. 5. The algorithm takes as input the fused as-

sembly instruction DAG. It begins by computing the resource minimum II (ResMII)

as described in Section 2.2.2 and computes the “As Soon As Possible (ASAP)” and

“As Late As Possible (ALAP)” cycle for each instruction in the DAG.

The ASAP cycle of each instruction is computed as the sum of instruction latencies

corresponding to its longest chain of dependencies. The ALAP cycle for all store

instructions is set to the maximum ASAP cycle among all the instructions that have

no output (i.e. the terminating instructions). Finally, the DAG is traversed in reverse

order, setting the remaining ALAP values to the minimum ALAP value of each

instruction’s successors, minus its instruction latency. The critical path consists of

all instructions that have the same ASAP and ALAP values.

An example of this is shown for the DAG in Fig. 5.10a, under the simplify-

ing assumption that all instructions have a latency of two cycles. In this case, all

instructions are part of the critical path except for store2.

After computing ResMII and the ASAP and ALAP cycles for each instruction,

our heuristic first sorts the critical path instructions using −ALAP as the sort key.

Second, any pair of instructions A and B in which instruction A is a critical path
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Figure 5.10 Example of scheduling heuristic.

instruction and instruction B is a non-critcal path instruction but a successor of A,

the algorithm will insert instruction B before A in the sorted list.

Next, the non-critical path instructions are added to the tail of the sorted list

using the edge distance to its nearest critical path instruction as the primary sort key

and the ALAP value as the secondary sort key. In the example shown in Fig. 5.10,

the resulting sorted order is store1, add2, store2, add1, load1, and load2.

The algorithm then allocates one slot for each functional unit for each of the

ResMII cycles. The schedule is constructed in reverse order by choosing and schedul-
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ing instructions in sorted order. The cycle numbers are labeled in descending order

starting from 0.

Scheduling Heuristic Example

For the example assembly instruction DAG shown in Fig. 5.10a, each instruction

is labeled with its corresponding ASAP and ALAP cycles and the instructions are

sorted in scheduling order as described above. The ResMII for this DAG is 4 cycles,

based on the four load/store instructions and the availability of only one load/store

unit in the simplified architecture used for this example.

store1 is the first instruction to be scheduled. The scheduler can place this in-

struction in any cycle since it has no successor instructions. As shown in Fig. 5.10b,

our heuristic allocates the instruction to cycle 0, the latest cycle in the schedule.

This instruction is associated with loop iteration 0, which is meant to indicate a loop

iteration number that is relative to the iteration number associated with the other

instructions in the schedule.

Next, the heuristic schedules the add2 instruction–a dependency of the store1

instruction–which must be placed at least two cycles prior to the store1 instruction.

Our heuristic places it in the latest possible position, cycle -2 as shown in Fig. 5.10c.

Next, as shown in Fig. 5.10d, the heuristic schedules the store2 instruction in the

latest possible cycle in which the corresponding functional unit is available, -1, since

it has no successors.

Next, as shown in Fig. 5.10e, the heuristic schedules the add1 instruction. The

add1 instruction must be scheduled no less than two cycles earlier than its successors,

add2 and store2, which are already scheduled in cycles -2 and -1, respectively. The

latest cycle would therefore be -4. However, since this would require more than II

cycles, the heuristic must place the add1 instruction in a cycle of another iteration of

the piped kernel, pushing it into cycle 0 of the previous iteration. In the figure, both
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iterations are shown in the schedule table in order to depict the flow of data across

multiple iterations of the loop. Note that each iteration of the piped kernel must

execute the same instructions, but intermediate results flow across loop boundaries.

These are indicated by the dotted lines.

Next, as shown in Fig. 5.10f, the heuristic schedules the load1 instruction, which

must be scheduled no later than two cycles earlier than its successor, add1, so the

heuristic schedules it in the latest available cycle -2. Note that this instruction is

placed in cycle 2 of each iteration, as shown in the schedule table.

Finally, as shown in Fig. 5.10g, the heuristic schedules the load2 instruction, which

must be scheduled no later than two cycles earlier than its immediate successor, add1,

so the heuristic schedules it in the latest available cycle -3.

5.2.4 Making Scheduling Decisions and Pruning the Search Space

As described in Sec. 5.2.2, the C66x DSP has eight functional units, two of each type,

and many instructions can be scheduled on multiple function unit types. Additionally,

each instruction can potentially be scheduled in II possible cycles, since the iteration

number attached to the instruction can be used to meet dependency constraints.

Our scheduling heuristic uses a depth-first branch-and-bound search when search-

ing for a schedule. For each instruction to scheduled, the heuristic recurses on every

available cycle and every available and compatible functional unit.

For each candidate instruction placement, the algorithm performs a feasibility

test to determine if there is a sufficient number of remaining functional unit slots to

accommodate the unscheduled instructions. If not, the partial schedule is rejected

and the search space under it is pruned, at which point the heuristic backtracks

to the most recent decision point and selects a different unit and/or cycle for the

last-scheduled instruction.

Additionally, each time an instruction is placed on the schedule, the heuristic
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computes the number of live registers at each of the II cycles and prunes the partial

schedule if any cycle exceeds a given register number threshold.

When expanding scheduling choices, the heuristic uses a cycle-priority, then unit-

priorty order, meaning that it first attempts to schedule an instruction in the latest

possible cycle for each unit type in a given order and then repeats this procedure for

progressively earlier cycles.

If the search space is exhausted without finding a valid schedule for the ResMII,

then the scheduler abandons the schedule, increases the II by one, and repeats the

scheduling process. If the II reaches the latency of the single scheduled iteration, the

algorithm reports a failure and exists.

After a schedule is found, the heuristic identifies any register live-to-longs and

attempts to split the register lifetime by inserting a move instruction into the schedule.

Move instructions can be scheduled on the L, S, or D units. If none of these units are

available in the range of cycles required to split the register lifetime, the scheduler

abandons the schedule increases the II and repeats the schedule process.

A simplified pseudo-code for this algorithm is shown in Alg. 5.

5.3 Results

Table 5.2 shows the potential speedup gained from fusing VXLIB graphs as well as

the accuracy of our proposed performance model. Each row of the table summarizes

the results from up to 500 random VXLIB graphs of the size given in column 1. These

results were generated by fusing all the valid sub-graph decompositions for each of

the randomly generated graphs using our “HeRCide” automated loop fusing library.

The column labeled “Average Number of Fusing Configurations” indicates the

average number of ways the randomly generated graphs can be decomposed. Note

that the number of decompositions depends on the graph structure since all sub-

graphs in a decomposition must be weakly connected. Thus, graphs that are more
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densely connected will generally have a greater number of decompositions.

The column labeled “Median Potential Speedup” indicates the median best speedup

that can potentially be obtained from any fusing configuration. In other words, it

is the speedup one may expect if it were known for each graph which decomposi-

tion achieves the best performance. Speedup is measured relative to the baseline

performance given the graph without kernel fusing, as shown in Eq. 5.1.

Likewise, the column labeled “Average Potential Speedup” indicates, the average

best speedup achieved for all graphs by selecting the set of sub-graphs achieving the

best performance for each graph when evaluated for II for by the vendor compiler.

In other words, this represents the speedup a user would expect if it were feasible to

evaluate all sub-graph enumerations using the compiler.

speedup =
Sum of Initiation Intervals (II) for the

baseline graph with NO fused groupings
Sum of Initiation Intervals (II) for

the graph with fused groupings

(5.1)

The column labeled “Average Prognosticated Speedup” shows the speedup achieved

on average if a user selects the fusing configuration suggested by the proposed heuris-

tic scheduler, as opposed to the best overall fusing configuration. Compared to the

previous column, this indicates how the accuracy of the heuristic scheduler affects

the overall optimization problem of selecting the best fusing configuration. In other

words, in cases where the heuristic scheduler does not exactly identify the best per-

forming configuration (due to prediction error), it is still able to select a closely

performing configuration.

Likewise, the “Average Heuristic Predicted Best Speedup” is the average speedup

reported by the heuristic scheduler. This column, compared to the “Average Potential

speedup” column, indicates the overall accuracy of the heuristic scheduler.

The column labeled ”Max Potential Speedup” shows the speedup of the highest-

performing fused graph among all those tested for each graph size, showing the max-
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imum potential for speedup using kernel loop fusing. The column labeled “Actual vs

Heuristic Error %” shows the average heuristic scheduler error when predicting the

speedup given by the best sub-graph of all graphs of each size. The “Actual vs Prog-

nosticated Error %” shows the relative difference in performance between selecting

the best-performing configuration based on performance given by the compiler or the

heuristic scheduler.
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Table 5.2 Comparison of average actual speedup values vs heuristic predicted speedup values for up to 500 graphs per each node count

Node
Count

Average Number
of Fusing

Configurations

Median
Potential Speedup

Average
Potential Speedup

Average
Prognosticated

Speedup

Average Heuristic
Predicted

Best Speedup

Max
Potential
Speedup

Actual vs
Heuristic
Error %

Actual vs
Prognosticated

Error %
2 2 1.33 1.48 1.48 1.55 4.00 7.64% 0.50%
3 4 1.60 1.64 1.62 1.72 3.00 6.70% 1.13%
4 8 1.67 1.71 1.69 1.81 3.00 6.56% 2.07%
5 18 1.71 1.80 1.76 1.91 3.33 7.89% 3.25%
6 41 1.70 1.81 1.74 1.92 3.50 9.14% 4.63%
7 85 1.73 1.84 1.79 1.98 4.00 8.65% 5.97%
8 208 1.69 1.84 1.72 1.96 5.00 10.40% 9.55%
9 483 1.74 1.84 1.67 1.98 6.33 10.46% 9.24%
10 1216 1.71 1.80 1.64 1.97 4.25 9.92% 9.99%
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Figure 5.11 Distribution of speedups over sub-graph groupings of a randomly selected 10
node VXLIB graph. Speedup data was collected by running all possible groupings in the
compiler for the selected graph.

Fig. 5.11 shows the distribution of speedups for all the 4,606 fusing configurations

for a randomly-chosen 10-node VXLIB graph, computed from the output of the DSP

compiler. The highest potential speedup achieved for this graph is 2.00, but only 4

out of 4,606 fusing configurations achieve a speedup of 2.00. This result illustrates

the rarity of optimal graph fusing configurations.
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Algorithm 5 Heuristic Scheduler
1: Input: inst, dag
2: Output: sched
3: function sched_inst(inst, dag)
4: for each i ∈ [0, ii − 1], unit ∈ {L|S|D|M} do
5: place inst into sched(i, unit)
6: if avail_units > calc_units_needed(dag) then
7: if is_reg_press_high(sched) then
8: exit recursion
9: else

10: sched_inst(instnext, dag)
11: end if
12: else
13: return NULL
14: end if
15: end for
16: if are_reg_live_too_long(sched) then
17: mv = insert_mv_instructions(dag)
18: is_sucess = sched_mv_inst(mv, sched)
19: if is_sucess then
20: return sched
21: else
22: exit recursion
23: end if
24: end if
25: return sched
26: end function
27: Input: dag
28: Output: sched
29: function build_sched(dag)
30: sort daginst per Sec. 5.2.3
31: compute iimin using ResMII
32: compute iimax as latency of single scheduled iteration
33: for each ii from iimin to iimax do
34: sched = sched_inst(instfirst, dag)
35: if sched ! = NULL then
36: return sched
37: end if
38: end for
39: return NULL
40: end function
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Chapter 6

Conclusion and Future Work

Image processing workloads that are represented by a graph structure inherently allow

further optimization. This is especially true for a DSP-based architecture where the

workload is statically scheduled. In a graph where the nodes are represented by

image processing kernels, Kernel buffer fusing allows memory access optimizations.

Grouping the most optimal kernels and selecting an optimal tile size for images allows

for a reduction in DMA accesses and improved compute efficiency. This also reduces

power consumption and achieves greater performances. Performance of a graph can

be further increased if the kernels are fused together at the loop level, allowing for

increased memory locality and functional unit utilization.

All the above mentioned optimizations are possible, only if the correct set of ker-

nels are fused. In this dissertation, a model-based approach is presented to efficiently

select the correct group of kernels to be fused through buffers or at loop level.

In the first part of this dissertation, machine learning techniques were applied

to train the models using data collected from performance observed on the DSP

hardware having various graph configurations. The models, when used to search for

an OpenVX graph configuration that gives maximum performance, are able to select

one that achieves within 2%, on average that of the best possible graph configuration.

Our results show the potential to achieve 1.3 speedup, on average, for synthetic graphs

of up to 10 nodes.

In the second part of this dissertation, a method for quickly estimating the per-

formance given by fusing two or more image processing loops taken from a graph
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composed of VXLIB image processing kernels (part of the Texas Instruments Vision

SDK) was proposed. The performance model allows for the estimation of end-to-end

performance of the graph when decomposed into multiple weakly-connected fused

subgraphs. Using our code synthesis tool HeRCide, we can generate fused loops as

C++ code for graph deployment.

Our performance model is based on modulo scheduling the instructions comprising

the body of the fused loop. The scheduler is a heuristic that trades off less than 10%

accuracy, notably by searching only a portion of the schedule space and skipping

the register allocation phase, allowing for the rapid exploration of a large graph

decomposition space. Our results indicate that the accuracy of the performance

model is sufficient for selecting the optimal fusing configuration in 80% of graphs and

selecting a configuration that achieves within 10% of the performance of the optimal

configuration for 90% of graphs. This technique enabled us to achieve up to 1.9x

speedup on average for sufficiently large synthetic graphs.

In a given graph of image processing kernels, performance improvements can be

achieved from both kernel buffer fusing and kernel loop fusing. In our current work,

these two approaches are done independently. As per future work, we can develop a

unified model or set of models to apply both kernel buffer and loop fusing together to

achieve the best performance possible for a given generic graph. This can be tested

on the EVM board for at least a few graphs. Currently is it not possible to run this

test for a large number of graphs because some part of the test has to be hard coded

due to the static nature of the VXLIB kernel library in Texas Instruments Vision

SDK (Software Development Kit).
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