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Abstract

The expectation that the physical expansion of space occurs smoothly may be expressed

mathematically as a requirement for continuity in the time derivative of the metric scale

factor of the Friedmann–Robertson–Walker cosmology. We explore the consequences of

imposing such a smoothness requirement, examining the forms of possible interpolating

functions between the end of inflation and subsequent radiation- or matter-dominated eras,

using a straightforward geometric model of the interpolating behavior. We quantify the

magnitude of the cusp found in a direct transition from the end of slow roll inflation to the

subsequent era, analyze the validity several smooth interpolator candidates, and investigate

equation-of-state and thermodynamic constraints. We find an order-of-magnitude increase

in the size of the universe at the end of the transition to a single-component radiation or

matter era. We also evaluate the interpolating functions in terms of the standard theory of

preheating and determine the effect on the number of bosons produced.
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Chapter 1

Introduction

1.1 The Geometry of Spacetime

The cosmological principal states that the universe is homogeneous and isotropic on large

scales. Ancient astronomers placed Earth at the center of the universe. It remained there

centuries later under the influence of epicycles, which were increasingly intricate adjust-

ments to the models underlying the predicted motion of cosmological objects, until Coper-

nicus relocated the center of the universe to the sun. Although agreement on the location of

the center remained unsettled, the focus of astronomers moved provisionally to the center

of mass within the volume under consideration in Newtonian gravitation, with the space

outside the volume assumed to be homogeneous and isotropic. Finally convinced by em-

pirical evidence available beginning in the twentieth century, modern cosmologists have

come to rely on the cosmological principle. On sufficiently large scales such that existing

structure becomes immaterial, observers see a universe that is the same everywhere and

lacks a preferred direction. If not, for instance, observers might find themselves living in

an isotropic but not homogeneous universe, like one with a preferred position at which an

observer witnesses the density of structure dependent on radial distance. Conversely, the

universe might be homogeneous without being isotropic. For example, space filled with a

pervasive vector field establishes a preferred direction dependent on the line of sight of an

observer.

Based on the foundation of the theory of General Relativity and the cosmological prin-

cipal, Alexander Friedmann and his contemporaries provided cosmologists with tools to

1



study the dynamics of the universe. The cosmological principal is the basis for Fried-

mann–Robertson–Walker (FRW) models of cosmology [1–3]. In our notation, ℏ = 1 and

c = 1 hereafter unless otherwise noted. Below we have the Minkowski metric, which satis-

fies Einstein’s first postulate of Special Relativity that spacetime measurements are Lorentz

invariant with respect to inertial frames of reference,

ds2 = dt2 − (dx2 + dy2 + dz2) = dt2 − dl2. (1.1)

Homogeneity imposes the restriction of a constant coefficient before dt2, here equal to one

after rescaling the other elements, and isotropy removes off-diagonal elements [4].

Geodesic slices at fixed times foliate spacetime into 3 dimensional manifolds. These

geodesics define the shortest metrics in spacetime, and the manifolds possess an inherent

flat, spherical, or hyperbolic geometrical radius of curvature = 0, > 0, or < 0, respec-

tively. The radius of curvature is constant throughout space in a homogeneous, isotropic

universe [5]. In 2 dimensional Euclidean space, for a circle we have line element and radius

R [6, 7]:

dl2 = dx2 + dy2 and R2 = x2 + y2. (1.2)

The analogous representations in (1 + 1)-dimensional Minkowski spacetime for a hyper-

bola of constant separation of the vertices S are

dl2 = dx2 − dt2 and S 2 = −x2 + t2. (1.3)

Combining the formalism for the circle and the hyperbola results in

dl2 = dx2 ± du2 (1.4)

±C2 = x2 ± u2. (1.5)

The parameter C, the radius of curvature in our geometry, represents both the constant

radius R and the constant separation S of the hyperbola. The parameter u stands for the

2



second dimension in our geometries, y for the circle and time t for the parabola in (1 +

1)-dimensional space. Differentiating eq. (1.5) gives

du2 =
x2 dx2

u2 =
x2 dx2

C2 ∓ x2 . (1.6)

After substituting this into the eq. (1.4) line element, we obtain

dl2 = dx2
(
1 ±

x2

C2 ∓ x2

)
. (1.7)

We extend this treatment to more rigorous mathematical theory. The geometry encom-

passes that of a three-sphere embedded in four-dimensional Euclidean space and a hyper-

boloid embedded in (1 + 3)-dimensional space. In 3 dimensional spherical coordinates,

dx2 = dr2 + r2(dθ2 + sin2θ dϕ2) (1.8)

x2 = r2 (1.9)

x dx =
1
2

d|x|2 = r dr. (1.10)

Below we first make these substitutions into the eq. (1.7) line element,

dl2 = dr2 ±
r2 dr2

C2 ∓ r2 + r2(dθ2 + sin2θ dϕ2) (1.11)

= dr2

 1

1 ∓ r2

C2

 + r2(dθ2 + sin2θ dϕ2), (1.12)

and then use this result to replace the line element in the eq. (1.1) metric,

ds2 = dt2 − dr2

 1

1 ∓ r2

C2

 + r2(dθ2 + sin2θ dϕ2). (1.13)

We introduce the parameter κ, which is the inverse of the radius of curvature squared,

κ = 1/C2, with units of inverse length squared and get

ds2 = dt2 − dr2
(

1
1 ∓ κr2

)
+ r2(dθ2 + sin2θ dϕ2). (1.14)

The angular parameters θ, dθ, and dϕ are invariant to spatial expansion in 3 dimensions.

The other parameters are functions of time subject to the effect of expansion. We convert

3



the observable proper distance r measured in local coordinates at a specific time into a

comoving distance r′ with coordinates that remain constant in time:

r = a(t)r′, (1.15)

and convert the other distance parameters, dr = a(t)dr′ and κ = κ′/a2(t), similarly. All dis-

tances relative to an observer in a comoving frame of reference expand by a(t), so that such

an observer continues to see an istropic universe as time passes. By contrast, for example,

on Earth we see the redshifting and blueshifting of the Cosmic Microwave Background

(CMB) depending on the line of sight as our frame of reference travels through space rel-

ative to the CMB isotropy. After dropping the prime for convenience, we are left with the

metric

ds2 = dt2 − a2(t)
[(

1
1 ∓ κr2

)
dr2 + r2(dθ2 + sin2θ dϕ2)

]
. (1.16)

The observable spacetime metric ds2 in eq. (1.16) comprises the observable proper time

element dt2 and the observable proper distance element, consisting of the time dependent

conversion factor a(t), called the scale factor, and the comoving distance. The comoving

distance represents the shortest distance between events on the spacetime geodesic. Both

parameters in factor κr2 are comoving. At the present, the proper and comoving distances

are equal, so that a(t) = 1. The product of a distance measurement today and the scale fac-

tor at time t provides the calculated distance measure at t. Figure 1.1 depicts the expansion

in space of a comoving displacement defined by constant coordinates.

Next we rescale the line element components to transform κ into curvature constant k,

such that k = 0,+1,−1 for the flat, spherical, and hyperbolic curvatures described above.

The rescaling relations are [8]

k =
κ

|κ|
(1.17)

r′ = |κ|1/2r (1.18)

dr′ = |κ|1/2dr (1.19)
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Figure 1.1 As space expands in time, comoving coordinates remain constant.

a′ =
a
|κ|1/2
. (1.20)

Again we drop the prime for convenience to get the Robertson–Walker (RW) metric, the

basis for the FRW models of cosmology:

ds2 = dt2 − a2(t)
[( 1

1 − kr2

)
dr2 + r2(dθ2 + sin2θ dϕ2)

]
. (1.21)

The scale factor a(t) quantifies the expansion of space in time. We derive it from the

Einstein field equations in section 1.2, in which we also show the RW metric informs the

derivation of the stress-energy tensor and the Ricci tensor and scalar. Further, we see the

role of the RW metric in the models of inflation in chapter 2, both as the background for

old inflation and the equations of motion for new inflation and chaotic inflation.

1.2 The Friedmann Equations

Alexander Friedmann based a second tool he contributed to cosmology, the Friedmann

equations, on the Einstein field equations. He assumed the universe consists of a plasma

that acts as a perfect fluid, that is, a smoothly flowing, incompressible fluid without viscos-

ity. Inflation theorists base their work on the same assumption.
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The RW metric written as tensors is

ds2 = gµνdxµdxν (1.22)

with metric tensor

gµν =



1 0 0 0

0 − a2

1−kr2 0 0

0 0 −a2r2 0

0 0 0 −a2r2 sin2(θ)


. (1.23)

We proceed by first evaluating the left-hand side of the Einstein field equations, after

combining the cosmological constant with the stress-energy tensor on the right:

Rµν −
1
2

gµνR = 8πG Tµν. (1.24)

The Ricci tensor Rµν results from the contraction of the Riemann tensor:

Rµν = Rαµαν =
∂

∂α
Γαµν −

∂

∂ν
Γαµα + Γ

α
σαΓ

σ
µν − Γ

α
σνΓ

σ
µα. (1.25)

The equation for the Christoffel symbol,

Γl
ji =

1
2

glm

(
∂gmi

∂x j +
∂gm j

∂xi −
∂gi j

∂xm

)
, (1.26)

displays symmetry Γl
ji = Γ

l
i j, and the diagonal metric tensor implies that only terms with

l = m survive, from which we obtain a set of non-zero symbols. For example, for l = m = 0:

Γt
ji =

1
2

gtt

(
∂gti

∂x j +
∂gt j

∂xi −
∂gi j

∂xt

)
(1.27)

Γt
rr =

1
2

gtt

(
∂gtr

∂xr +
∂gtr

∂xr −
∂grr

∂xt

)
=

aȧ
1 − kr2 (1.28)

Γt
θθ = aȧr2; Γt

ϕϕ = aȧr2 sin2(θ). (1.29)

Appendix A contains the rest of the non-zero symbols.

For a perfect fluid, the energy density is constant, the lack of viscosity eliminates sheer

forces, and rotation and turbulence are absent in the smooth flow. The right-hand side of the
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Einstein field equations, the stress-energy tensor, is diagonal for a pre-inflationary plasma

of energy and matter that acts as a perfect fluid [9]:

Tµν = (ρ + p)UµUν − pgµν. (1.30)

In the fluid rest frame, that is, the frame of an observer moving with the flow of the fluid,

the four-velocity Uα = (c, 0). The stress-energy tensor takes the form

Tµν =



ρ 0 0 0

0 −pg11 0 0

0 0 −pg22 0

0 0 0 −pg33


. (1.31)

Thus the Ricci tensor has the same diagonal form. For example,

Rtt = Rαtαt =
∂

∂α
Γαtt −

∂

∂t
Γαtα + Γ

α
σαΓ

σ
tt − Γ

α
σtΓ
σ
tα (1.32)

= −
∂

∂t
Γαtα − Γ

α
σtΓ
σ
tα (1.33)

= −
3ä
a
. (1.34)

Similarly,

Rrr =
1

1 − kr2

(
aä + 2ȧ2 + 2k

)
; Rθθ = r2

(
aä + 2ȧ2 + 2k

)
; Rϕϕ = r2 sin2(θ)

(
aä + 2ȧ2 + 2k

)
.

(1.35)

Contracting the Ricci tensor yields the Ricci scalar

R = gµνRµν (1.36)

= −6
[
ä
a
+

( ȧ
a

)2

+
k
a2

]
. (1.37)

Combining the left-hand and right-hand sides of the Einstein field equations, that is,

eqs. (1.34), (1.35), and (1.37) on the left and eq. (1.31) on the right, we get an expression

for the time components and a second one for the space components:[
ȧ(t)
a(t)

]2

+
k

a2(t)
=

8πG
3
ρ(t) (1.38)
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2ä(t)
a(t)

+

[
ȧ(t)
a(t)

]2

+
k

a2(t)
= −8πGp(t). (1.39)

Each individual spatial component exhibits the same dependency of expansion on pressure

in eq. (1.39). Conversion of eq. (1.39) by substituting the first Friedmann equation, eq.

(1.38), into it yields the second Friedmann equation, also called the acceleration equation:

ä
a
= −

4πG
3

(ρ + 3p). (1.40)

In the same way that the stress-energy tensor of the Einstein field equations informs the

dynamics of the mass and energy that comprise it, the energy density and pressure of the

Friedman equations direct the expansion of space represented by the scale factor and its rate

of change and acceleration. Taken together, the Friedman equations show that although the

rate of expansion increases proportionally to an increase in energy density, the acceleration

of the expansion decreases with an increase in either the energy density or pressure. The

first Friedmann equation, eq. (1.38), determines the expansion rate of the universe, the

Hubble parameter, H(t) = ȧ
a . The sign inherent in ȧ > 0 or ȧ < 0 dictates whether the

universe expands or contracts. Theorists use the acceleration, specifically, ä > 0, to define

a spacetime state of inflation.

The energy density ρ consists of all types of particles. We use the first Friedmann

equation to derive the scale factor dependency on time for single component matter-filled

and radiation-filled universes in section 1.3. We also rewrite the first Friedman equation in

terms of the critical density associated with a flat universe to derive an observable measure

of flatness in section 1.4. Section 1.5 describes cosmological issues that motivated the

formulation of inflationary theory.

1.3 The Fluid Equation

A third tool available to cosmologists in their study of the dynamics of space is the fluid

equation, which we derive here with the principles of thermodynamics. Energy expressed

8



as a comoving density is

U = ρV, (1.41)

with volume V = 4
3πa

3(t)r3 and constant comoving r. Differentiating the energy in time

results in

U̇ = 4πa2(t)ȧ(t)ρ(t) +
4
3
πa3(t)ρ̇(t). (1.42)

The vacuum of space in a homogeneous, isotropic universe experiences no heat flow or

pressure gradient effect. The first law of thermodynamics dU = dQ − PdV therein reduces

to dU = −PdV . Differentiation with respect to time,

4πa2(t)ȧ(t)p = −
4
3
πa3(t)ρ̇(t) − 4πa2(t)ȧ(t)ρ(t), (1.43)

yields a version of the fluid equation in terms of both energy density and pressure,

ρ̇(t) = −3
ȧ(t)
a(t)

[
ρ(t) + p

]
. (1.44)

For ȧ(t) > 0, for example, energy decreases as space expands due to the dilution of particles

and the work done by pressure.

The dynamic behavior of the energy density applies to the variety of particles found in

the universe. For simplicity, we consider single component, non-relativistic and relativistic

particles separately. On large scales, matter in a homogeneous isotropic universe exhibits

dust-like characteristics, that is, matter acts as if it were a pressureless perfect fluid. For

relativistic particles, the thermodynamic energy and entropy are U = σVT 4 and S = 4
3

U
T =

4
3VT 3, respectively. The Stefan-Boltzmann constant σ is the proportionality coefficient.

The Helmholtz free energy F = U − TS becomes

F = σVT 4 −
4
3
σVT 4 = −

1
3
σVT 4. (1.45)

Pressure of the relativistic particles in terms of the Helmholtz free energy is

P = −
(
∂F
∂V

)
T
=

1
3
σT 4 =

1
3

U
V
=

1
3
ρ. (1.46)
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The results for the two forms of particles give us a linear relationship between pressure and

energy density, the equation of state,

p = wρ, (1.47)

with w = 0 for non-relativistic particles and w = 1/3 for relativistic particles. Substitution

into eq. (1.44) yields the well known form of the fluid equation,

ρ̇(t) = −3
ȧ(t)
a(t)
ρ(t)(1 + w). (1.48)

The first Friedmann equation combined with the fluid equation enables us to determine

the way in which space expands in time for a single component universe. After integrating

eq. (1.48) from t0 to t, we find [10]

ρ(t) = ρ(t0)
[

a(t)
a(t0)

]−3(1+w)

. (1.49)

For a universe consisting of only non-relativistic matter,

ρ(t) = ρ(t0)
[

a(t)
a(t0)

]−3

. (1.50)

Substituting this result into the first Friedmann equation with
[

ȧ(t)
a(t)

]2
≫ k

a(t)2 gives[
ȧ(t)
a(t)

]2

=
8πG

3
ρ(t0)

[
a(t)
a(t0)

]−3

. (1.51)

In differential form, we have

a1/2(t) da =
[
8πG

3
ρ(t0)a3(t0)

]1/2

dt. (1.52)

Integration reveals the relation of expansion of space of a matter-filled universe to time to

be

a(t) ∝ t2/3, (1.53)

after neglecting the contributions of a(t0) and t0, if any. Similarly, for a radiation-filled

universe with w = 1/3,

ρ(t) = ρ(t0)
[

a(t)
a(t0)

]−4

. (1.54)

10



The associated Friedmann equation,[
ȧ(t)
a(t)

]2

=
8πG

3
ρ(t0)

[
a(t)
a(t0)

]−4

, (1.55)

leads to

a(t) da =
[
8πG

3
ρ(t0)

]1/2

a2(t0) dt (1.56)

and the proportionality

a(t) ∝ t1/2. (1.57)

Analysis of the fluid equation provides the understanding that energy density scales

with the expansion of space by factors proportional to a−3(t) and a−4(t) for matter-filled

and radiation-filled single component universes, respectively, while a(t) itself scales ∝ t2/3

and t1/2, respectively. Dilution of both types of particles by the volume expansion of space

decreases the energy density by a−3. Expansion also reduces the energy density of radiation

by another factor of a−1 due to the redshift of the comoving electromagnetic wavelengths

λcm as they lengthen during expansion in the same way as any other spatial displacement,

λ(t) = a(t)λcm. These insights drive derivation of a measure of the flatness of curved

spacetime in section 1.4.

1.4 Spatial Curvature

We have characterized the spherical, flat, and hyperbolic geometries of the universe in the

eq. (1.21) RW metric with curvature constant values +1, 0, and -1, respectively, which

cosmologists describe as closed, flat, and open. In a flat universe, the first Friedmann

equation [
ȧ(t)
a(t)

]2

=
8πG

3
ρ(t) −

k
a2(t)
, (1.58)

reduces to [
ȧ(t)
a(t)

]2

=
8πG

3
ρ(t). (1.59)
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For a given energy density, as t → ∞ and the energy density undergoes dilution and tends

to zero, a flat universe expands with a positive decreasing rate of expansion ȧ(t)
a(t) → 0. An

open universe with [
ȧ(t)
a(t)

]2

=
8πG

3
ρ(t) +

1
a2(t)

(1.60)

expands forever at a positive decreasing rate that never goes to zero. For a closed universe,

the Friedman equation [
ȧ(t)
a(t)

]2

=
8πG

3
ρ(t) −

1
a2(t)

(1.61)

predicts expansion at a decreasing rate until

a(t) =
[ 3
8πGρ(t)

]1/2

, (1.62)

at which time expansion stops and space begins to contract.

We measure flatness using an empirical attribute of curvature called the density param-

eter, Ωt, derived below starting with the first Friedmann equation,

H2(t) =
8πG

3
ρt −

k
a2(t)
. (1.63)

We define a critical density ρcr,t expressed in terms of the Hubble parameter as the density

at time t at which the geometry of the universe is flat, namely,

ρcr,t =
3

8πG
H2(t), (1.64)

where

ρt =
∑

i

ρi,t = ρm,t + ρr,t + ρΛ,t. (1.65)

Each component above, that is, matter, radiation, and the vacuum, has an associated density

parameter, a ratio in terms of the critical density:

Ωi,t =
ρi,t

ρcr,t
. (1.66)

The sum of these,

Ωt =
∑

i

Ωi,t, (1.67)
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gives us a measure of the flatness of the universe, the spatial curvature parameter, Ωk =

(1 −Ωt), which is the variation of the density parameter from 1:

Ωk = (1 −Ωt) = (1 −Ωm,t −Ωr,t −ΩΛ,t). (1.68)

For a flat universe at the critical density, (1 − Ωt) = 0. When the density of the universe is

greater than the critical density, we have (1 −Ωt) < 0, and the amount of matter, radiation,

and vacuum energy will cause gravitational collapse. An open universe, with (1 −Ωt) > 0,

expands forever at a decreasing rate.

Using these definitions and attributes we convert the first Friedmann equation into a

measurable form:

H2(t) =
8πG

3
(ρm,t + ρr,t + ρΛ,t) −

k
a2(t)
. (1.69)

H2(t) = H2(t)
[
Ωm,t + Ωr,t + ΩΛ,t −

k
a2(t)H2(t)

]
. (1.70)

(1 −Ωt) = −
k

a2(t)H2(t)
. (1.71)

(1 −Ω0) = −
k

a2(t0)H2
0

. (1.72)

The last equation is the measure of flatness in the present, designated by subscript 0. Equa-

tion (1.71) also provides the insight that the variation cannot change sign, because k does

not change its value, as evidenced by the first Friedman equation. An open or closed uni-

verse remains open or closed. Expansion does not change the topology of the universe.

We extract a relation for the evolution of flatness by eliminating the curvature constant

k from equations (1.71) and (1.72) with the scale factor today a(t0) = 1:

(1 −Ωt) =
H2

0

a2(t)H2(t)
(1 −Ω0). (1.73)

We thus obtain a form of the Friedmann equation that is responsive to observation, one that

provides a function of the variation from 1 of the density parameter in the past based on the

observational variation in the present. Using equation (1.73) to quantify flatness requires

an expression for H2
0

H2(t) .
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Comoving densities, as derived in Appendix B,

ρm,t =
ρm,0

a3(t)
; ρr,t =

ρr,0

a4(t)
; ρΛ,t = ρΛ,0, (1.74)

transform equation(1.69) into

H2(t) =
8πG

3

[
ρm,0

a3(t)
+
ρr,0

a4(t)
+ ρΛ,0

]
−

k
a2(t)
. (1.75)

Substitution of the component density parameters of equation(1.66) leaves

H2(t) =
8πG

3

[
Ωm,0ρcr,0

a3(t)
+
Ωr,0ρcr,0

a4(t)
+ ΩΛ,0ρcr,0

]
−

k
a2(t)

(1.76)

= H2
0

[
Ωm,0

a3(t)
+
Ωr,0

a4(t)
+ ΩΛ,0 −

k
a2(t)H2

0

]
. (1.77)

We simplify equation(1.70) as

1 =
[
Ωm,t + Ωr,t + ΩΛ,t −

k
a2(t)H2(t)

]
, (1.78)

enabling us to interpret the term k
a2(t)H2(t) as the density parameter remaining after taking the

difference between 1 and the matter, radiation, and vacuum density parameters. The term

k
a2(t)H2(t) drives the rate of expansion with a sign opposite to that of k. Thus, we observe that

+(1 − Ωt) is the contribution to the rate of expansion of space due to curvature. Eq. (1.78)

today is

1 =
[
Ωm,0 + Ωr,0 + ΩΛ,0 −

k
a2(t0)H2

0

]
(1.79)

1 −Ω0 = −
k

a2(t0)H2
0

= −
k

H2
0

. (1.80)

Applying this result to equation(1.77) yields the required coefficient,

H2
0

H2(t)
=

[
Ωm,0

a3(t)
+
Ωr,0

a4(t)
+ ΩΛ,0 +

(1 −Ω0)
a2(t)

]−1

. (1.81)

Equation(1.73), the evolution of the variation from 1 of the density parameter, becomes

(1 −Ωt) =
a2(t)(1 −Ω0)

a(t)Ωm,0 + Ωr,0 + a4(t)ΩΛ,0 + a2(t)(1 −Ω0)
, (1.82)

which is a form responsive to observation.
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1.5 The Flatness, Horizon, andMonopole Problems

The problem of trying to reconcile physical theories regarding the form and evolution of

the primordial universe with modern cosmological observations has occupied researchers

for decades. Providing a complete explanation for the origins of the characteristics that

the universe exhibits today has been challenging. We witness extreme uniformity and

flatness and the absence of certain particles predicted in some Grand Unified Theory (GUT)

models. Many physicists have detailed these well-known difficulties in texts and expository

papers; see, for example, Refs. [11–19].

1.5.1 The Flatness Problem

Expansion itself does not change the inherent topology of the universe: A universe that is

closed, open, or flat remains so. However, expansion makes any curvature appear locally

more flat. In the preceding section lies the basis of the Flatness Problem. The most recent

experimental data from the Planck Collaboration sets the spatial curvature parameter today,

Ωk = 1 − Ω0, at ≈ 7 × 10−4 [20]. However, because k does not change its value, if we

observe an open universe today, going back in time we expect to see an open universe. The

geometry of a closed universe would remain unchanged similarly going back in time.

Although the expansion of space would tend to flatten the radius of curvature, and

intuitively we recognize that expansion flattens a sphere and a hyperbola, we see from eq.

(1.71) an inverse dependence on the rate of change of the scale factor,

|Ωk| = |(1 −Ωt)| =
∣∣∣∣∣− k

a2(t)H2(t)

∣∣∣∣∣ (1.83)

=

∣∣∣∣∣− k
ȧ2(t)

∣∣∣∣∣ . (1.84)

But the scale factor differentials for the matter-dominated and radiation-dominated eras,

ȧ(t) ∝ t−1/3 and ȧ(t) ∝ t−1/2, respectively, are themselves inversely dependent on time, so

that |Ωk| decreases going backward in time through the eras.
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To evaluate the evolution of the variation, we use generally accepted values for the scale

factor at various periods in the history of the universe and recent experimental data for

densities [11, 20]. The trend of |(1 −Ωt)| ranges from the Planck Collaboration ≈ 7 × 10−4

today to ≲ 10−6 at recombination, ≲ 10−7 at matter-radiation equality, and ≲ 10−14 at

Big Bang nucleosynthesis, according to eq. (1.82). Continuing backward in time would

generate increasingly extreme variations from 1. Table 1.1 details these values. The density

factors m, γ, and Λ, for matter, radiation, and the vacuum energy, respectively, reflect

approximations of the composition of the universe during the applicable periods. Big Bang

nucleosynthesis is the theoretical era of fusion of fundamental observable matter giving

rise to heavier elements. Following the arbitrary milestone of the equality of matter and

radiation densities, recombination of protons and electrons to form hydrogen atoms was the

event that precipitated the creation of the CMB, when the universe was sufficiently large so

that photons were first able to stream without scattering.

Table 1.1 The variation in curvature at selected periods going backward in time in the
history of the universe.

Density Factor

Period ∼ Age m γ Λ ≈ a(t) (1 −Ωt)

Today 3.8 × 109 years 0.31 0 0.69 1.0 0.0007

Recombination 380,000 years 1.0 0 0 9.1 × 10−4 2.0 × 10−6

Matter-radiation equality 47,000 years 0.5 0.5 0 2.8 × 10−4 3.2 × 10−7

Big Bang nucleosynthesis 2 minutes 0 1.0 0 3.6 × 10−8 1.1 × 10−14

Inflation offers a remedy: The inflationary exponential scale factor would tend to drive

down the spatial curvature to a level that could support subsequent evolution to the value

observed today, as discussed in section 2.2.2. Otherwise, in the absence of this solution,

physics has to devise an alternative model of origin to account for an apparently flat uni-

verse initially.
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1.5.2 The Horizon Problem

The issue of uniformity has the name the Horizon Problem. We see a homogeneous,

isotropic universe on large scales. Despite the almost incomprehensible longevity of the

universe, it is simply too immense to have grown to be uniform on large scales. Causality

demands that local homogeneity takes time to develop, with equilibrium conditions dispers-

ing at a rate no greater than the speed of light. Two local homogeneous elements dispersed

in time must retain a causal connection to remain in equilibrium with one another. Yet

opposite sides of the universe appear nearly identical to us. Even if we assume they started

that way, not enough time has passed for space to have expanded a great enough distance

to maintain the equilibrium—at least not according to the physics we understand—with

signaling bounded by the limit of the speed of light. Cosmologists assess uniformity pri-

marily using the temperature of the Cosmic Microwave Background (CMB), which is the

thermal radiation emitted as the matter in the universe was cooling and transitioning from

a conductive, opaque plasma to a neutral, transparent gas. The widely accepted standard

is T ≈ 2.7255 K [21]. An Early CMB probe, the Cosmic Background Explorer, found the

temperature variation from the mean to be on the order of 10−5 K [22]. Quantifying the

Horizon Problem further illustrates it.

We assume the early universe consisted of plasma containing causally connected pho-

tons as the source of the CMB photons at recombination when they were last scattered. In

a non-relativistic universe, the distance between two isothermal objects traveling apart at

the same speed would be simply 2vt. But in Einstein’s universe, the speed governing the

causal connection between two photons moving apart cannot exceed c. We return to the

eq. (1.15) definition of comoving distance at time t, cmd(t), now in integral form to define

the distance light travels in an expanding universe. The maximum distance the photons

that would become the CMB could be separated, that is, the maximum distance of causal
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connection at last scattering, the proper distance pd(tls), follows (c = 1):

cmd(tls) =
∫ tls

0

dt
a(t)

→ (1.85)

pd(tls) = a(tls)
∫ tls

0

dt
a(t)

(1.86)

= a(tls)
∫ a(tls)

0

da
a(t)ȧ(t)

(1.87)

= a(tls)
∫ a(tls)

0

da
a2(t)H(t)

(1.88)

= a(tls)
∫ a(tls)

0

da
a2(t)H0

[
Ωm,0

a3(t)
+
Ωr,0

a4(t)
+ ΩΛ,0 +

(1 −Ω0)
a2(t)

]−1/2

. (1.89)

In the last step, we have substituted the measurable form of the first Friedmann equation,

eq. (1.81).

The Friedmann equation used in the last step derived from component densities that as-

sumed idealized, single-component versions of the universe. In reality, the existing variety

of components would have interacted, making the actual density formulas more complex.

However, the distance estimate that results from the approximation proves suitable for

demonstration of the Horizon Problem.

We next evaluate to O(a) the maximum distance of causal connection at a(tls), given

the Table 1.1 value a(tls) ≈ 9.1 × 10−4:

pd(tls) ≈ a(tls)
∫ a(tls)

0

da
H0

(aΩm,0 + Ωr,0)−1/2 (1.90)

=
2a(tls)

H0Ωm,0

[ √
a(tls)Ωm,0 + Ωr,0 −

√
Ωr,0

]
(1.91)

≈ 0.26 Mpc. (1.92)

The final step in the process of quantifying the Horizon Problem is comparison of the

maximum possible causal separation to the size of the last scattering surface. In their

study [23], Halpern and Tomasello used Planck satellite data to estimate the radius of the

observable universe in the present as 14,200 Mpc. The comoving distance equation results
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in an estimate for the size of the universe at the time of last scattering,

pd(tls) = a(tls) cmd(t0) (1.93)

≈ 12.9 Mpc. (1.94)

Thus, the ratio of the maximum distance of causal connection to the radius of the universe

at the time of last scattering was approximately 0.26 Mpc
12.9 Mpc ≈

1
50 . Each causally connected por-

tion of the CMB that should have been able to thermalize before the recombination photons

that we observe today began to stream freely along their paths toward the Earth could not

have been diametrically separated by more than 1
50 the necessary distance. Cosmologists

confronting the Horizon Problem ask the question, How can we observe isothermal pho-

tons diametrically separated by 28,400 Mpc in the present when the maximum diametric

separation of causal connection at the time of last scattering was about 1/50 the diametric

separation of the last scattering surface? How then, cosmologists ask, did they collectively

equilibrate at a common temperature that is uniform to within the order of 10−5 K [11]? A

period of superluminal expansion provided by inflation could provide the missing causal

connection.

1.5.3 TheMonopole Problem

The additional Monopole Problem arises from the predictions of some GUT models [24,

25] that a phase transition breaks the symmetry between the strong and weak forces when

the temperature of the universe drops to a level consistent with the energy scale 1016 GeV. A

result would be the formation of a dust of massive magnetic monopoles, with a density that

is subsequently proportional to a−3, potentially thereby blocking the radiation and matter

eras from taking place [15]. The Monopole Problem calls for a mechanism to reconcile the

GUT prediction of the creation of these massive particles with our accepted understanding

of the chronology of the early universe and current cosmological observation. Inflation

could provide dilution that would make magnetic monopoles so few and far apart that

finding them would be essentially impossible.
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Chapter 2

Inflationary Cosmology

2.1 Old Inflation

In his groundbreaking research in 1981 [26], Alan Guth introduced the theory of inflation

to address the unresolved horizon, flatness, and monopole problems. He proposed that

Grand Unified Theory (GUT) phase transitions during the cooling of the universe produced

the required solution of exponential expansion. However, his approach did not provide a

satisfactory method to reheat a homogeneous, isotropic universe at the end of inflation.

Guth modeled the vacuum of space with constant energy density ρ0 and a temperature

Tc at the energy scale of a GUT theory. He envisioned the early universe not necessarily

causally connected in its entirety but locally homogeneous, isotropic, and thermalized. A

GUT phase transition initiated supercooling that trapped the scalar field in the lowest en-

ergy level ρ0 of the unstable false vacuum state. The universe supercooled orders of mag-

nitude below Tc, causing inflationary expansion sufficient to solve the Horizon, Flatness,

and Monopole Problems. During the supercooling, the scalar field underwent quantum

tunneling at the energy density of the vacuum. Bubbles, randomly distributed regions of

space, formed at a temperature below that of the phase transition. These bubbles, which

contained the scalar field, then expanded and nucleated. At an electroweak phase transition

temperature Ts, collisions occurred among the bubbles to release the latent heat stored in

their walls. The collisions reheated and thermalized the universe to a temperature Tr on the

order of Tc.
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The initial environment was one of constant entropy in a comoving volume undergoing

adiabatic expansion,
d
dt

(sR3) = 0, (2.1)

where s and R were the entropy density and radius of curvature, respectively, of the causally

connected universe. Guth proposed that the GUT phase transition began non-adiabatic

expansion with respect to initial total entropy S 0,

S 0 ≡ R3s, (2.2)

so that volume expansion factor Z acted on entropy S 0 resulting in total entropy today S p,

S p = Z3S 0. (2.3)

Inflation ended at the reheating temperature Tr, which determined the expansion factor for

the inflationary environment,

Z ≈
Tr

Ts
. (2.4)

As the universe expanded, the constant energy density ρ0 of the vacuum came to dom-

inate the first Friedmann equation and thus define the rate of expansion of the inflationary

universe. Guth assumed the scalar field expanded relativistically, so that T (t) ∝ a(t)−1, or

T (t) = Ca(t)−1 with constant C, for the redshifted field:

ȧ(t) = −
Ṫ (t) C
T (t)2 (2.5)

ȧ(t)
a(t)
= −

Ṫ (t)
T (t)
. (2.6)

We then have the Friedmann equation in terms of the scale factor a(t) and the temperature,

ȧ(t)
a(t)
=

√
8πG

3
ρ0 (2.7)

Ṫ (t)
T (t)

= −

√
8πG

3
ρ0. (2.8)

21



Solving the differential equation gives

T (ti)
T (t f )

= e
√

8πG
3 ρ0 (t f−ti). (2.9)

Finally, after resubstituting the scale factor,

a(t f ) = a(ti) e
√

8πG
3 ρ0 (t f−ti) = a(ti) eH(t f−ti), (2.10)

yielding the Hubble parameter H =
√

8πG
3 ρ0, the constant inflationary rate of expansion.

Inflation ended when enough bubbles collided and coalesced to form an infinite, re-

heated universe in the true vacuum state. However, Guth acknowledged a major difficulty

of his model. The rate of nucleation was problematic. With a rate that was too fast, infla-

tion would not last long enough to solve the Horizon, Flatness, and Monopole Problems.

But too slow a rate would result in not enough bubbles to collide and reheat the universe.

No rate could accomplish both sufficient exponential expansion and reheating [27].

The inflation proposed by Guth was not capable of terminating successfully. He ac-

knowledged the difficulty his mechanism created: An exit from the false vacuum that drives

inflation involved quantum tunneling from a false to the true vacuum state, an effect that

would occur primarily in localized bubbles—that is, discrete regions subsequently charac-

terized by the Klein-Gordon scalar field that drives inflation (the inflaton ϕ) having settled

into its true vacuum state. Meanwhile, expansion of space would continue between the

bubbles (where such tunneling had not yet occurred), and as a result, we would expect to

see parcels of non-uniform space today. Intersecting bubbles would have similar effects.

This model of inflation thus predicted a universe inconsistent with observation; Guth’s

original theory lacks what cosmologists call a graceful exit, a problem solved by Andrei

Linde with his theory of new inflation.

2.2 New Inflation

In 1982, inflation pioneer Andrei Linde sought to solve the graceful exit problem with a

new theory, slow-roll inflation [28]. Instead of starting in a false vacuum, the inflaton rolls
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down a potential energy plateau to a minimum where it oscillates around a true vacuum

state, which figure 2.1 depicts schematically. The assumption that the potential energy

of the inflaton dominates the kinetic energy for a sufficient time results in exponential

inflation.

Figure 2.1 Slow roll inflation requires a plateau to generate enough inflationary expansion
to solve the Horizon, Flatness, and Monopole Problems. After inflation, the inflaton oscil-
lates around a minimum potential during a period of reheating, reviewed in chapter 2.5.

The Lagrangian for the inflaton, the Klein-Gordon scalar field with an as yet undefined

potential energy function V(ϕ) is well-known:

L =
1
2
∂µϕ∂

µϕ − V(ϕ). (2.11)

We assume that the scalar field has a negligible spatial dependence, so that ϕ = ϕ(t). Vary-

ing the action of the Lagrangian in gravity defined by the RW metric yields the equation of

motion,

ϕ̈ + 3
ȧ
a
ϕ̇ +
∂V(ϕ)
∂ϕ

= 0. (2.12)
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In terms of the expansion rate of the universe, the Hubble parameter H, the equation of

motion becomes

ϕ̈ + 3Hϕ̇ + V(ϕ),ϕ = 0. (2.13)

The comma linked to the potential of the inflaton denotes the partial derivative with respect

to ϕ.

Noether’s theorem leads to the derivation of the stress-energy tensor,

T µν =
∂L

∂(∂µϕ)
∂νϕ − gµνL. (2.14)

Applied to the Lagrangian and with the indices lowered, the stress-energy tensor is

Tαβ = ∂αϕ∂βϕ − gαβ

[
1
2
∂µϕ∂

µϕ − V(ϕ)
]

(2.15)

= ∂αϕ∂βϕ −
1
2

gαβ
[
ϕ̇2 − ∇2ϕ

]
+ gαβV(ϕ). (2.16)

With the inflaton scalar field ϕ = ϕ(t),

Tαβ = ∂αϕ∂βϕ −
1
2

gαβϕ̇2 + gαβV(ϕ). (2.17)

Only the diagonal elements survive:

Ttt = ∂tϕ∂tϕ −
1
2

gttϕ̇
2 + gttV(ϕ) (2.18)

=
1
2
ϕ̇2 + V(ϕ). (2.19)

Tii = ∂iϕ∂iϕ −
1
2

giiϕ̇
2 + giiV(ϕ) (2.20)

= −
1
2

giiϕ̇
2 + giiV(ϕ). (2.21)

These elements equate to those of the rest frame perfect fluid to produce expressions for

the energy density and pressure of the inflaton:

ρ =
1
2
ϕ̇2 + V(ϕ). (2.22)

p =
1
2
ϕ̇2 − V(ϕ). (2.23)
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The Hubble friction term in eq. (2.13) regulates the slow roll condition of inflation, un-

derstood to arise with the expansion of space as its physical basis, such that kinetic energy

is negligible with respect to the potential energy that drives inflation, and the magnitudes of

both the density and pressure of the inflaton become approximately equal to the potential:

ρ =
1
2
ϕ̇2 + V(ϕ) ≈ V(ϕ) (2.24)

p =
1
2
ϕ̇2 − V(ϕ) ≈ −V(ϕ). (2.25)

The negative pressure arising from the perfect fluid assumption acts repulsively on the left-

hand side of the Einstein field equations in the same way as a cosmological constant, an

effect opposite to that of energy and mass. Within bubbles that tunnel to the true vacuum,

inflatons undergo oscillatory decay leading to the end of inflation. However, regions that

fail to tunnel, trapping inflatons that never decay in the false vacuum, expand forever, like

a universe defined by the de Sitter solution to the Einstein equations.

2.2.1 The Nature of Inflation

The universe is always expanding, so that the time derivative of the scale factor is posi-

tive, and we define inflation as expansion characterized by acceleration of the scale factor,

specifically, when ä > 0. We start with the relationship between the energy density and

pressure of the particles in space, the equation of state derived in section 1.3 from the Fluid

Equation,

w =
p
ρ
. (2.26)

We now use the second Friedmann equation, the acceleration equation, to determine the

necessary condition for inflation with ä > 0:

ä
a
= −

4πG
3

(ρ + 3p) > 0. (2.27)

ρ + 3p < 0. (2.28)

p
ρ
< −

1
3
→ winfl < −

1
3
. (2.29)
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The necessary condition for density, ρ > 0, implies that pressure is in fact less than zero,

p < 0, which is consistent with negative pressure in the stress-energy tensor of the Einstein

field equations driving expansion of the lattice of spacetime on the left-hand side.

The first of two parameters that constrain inflation, ϵ, supports the inflationary expan-

sion. The equation of state for the inflaton, based on equations 2.22 and 2.23, is

wϕ =
1
2 ϕ̇

2 − V(ϕ)
1
2 ϕ̇

2 + V(ϕ)
. (2.30)

Assuming that the potential energy dominates, so that V(ϕ) ≫ 1
2 ϕ̇

2,

wϕ ≈
−V(ϕ)
V(ϕ)

= −1, (2.31)

which satisfies the necessary condition that winfl < −
1
3 of section 2.2.1.

We derive the first parameter as follows:

H2 + Ḣ =
( ȧ
a

)2

+
d
dt

( ȧ
a

)
=

( ȧ
a

)2

+
ä
a
−

( ȧ
a

)2

=
ä
a
. (2.32)

Let

H2 + Ḣ = H2
(
1 +

Ḣ
H2

)
= H2(1 − ϵ) → ϵ = −

Ḣ
H2 . (2.33)

After evaluating Ḣ as

Ḣ =
d
dt

( ȧ
a

)
=

ä
a
−

( ȧ
a

)2

, (2.34)

we substitute the acceleration equation and the first Friedmann equation in flat space into

equation 2.34 and find ϵ for V(ϕ) ≫ 1
2 ϕ̇

2:

ϵ = −
Ḣ
H2 =

3(ρ + p)
2ρ

=
3ϕ̇2

ϕ̇2 + 2V(ϕ)
≪ 1 (2.35)

We have an inflationary period with wϕ = −1 subject to the constraint that the first param-

eter ϵ ≪ 1.

The slow-roll condition implies ϕ̈ → 0, so that the equation of motion of the scalar

field,

ϕ̈ + 3Hϕ̇ + V(ϕ),ϕ = 0, (2.36)
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reduces to

3Hϕ̇ = −V(ϕ),ϕ. (2.37)

We interpret the result to indicate that under the constraint that ϵ ≪ 1, the potential of the

inflaton drives the expansion of space, which itself provides the slow roll condition.

The need for inflation to come to an end such that ä = 0 motivates derivation of the

second parameter, η. We rearrange the equation of motion 2.13, so that

ϕ̈

3Hϕ̇
+

V(ϕ),ϕ
3Hϕ̇

= −1. (2.38)

For ϕ̈→ 0, we define the second parameter as

η =
ϕ̈

3Hϕ̇
→ 0, (2.39)

in which case

V(ϕ),ϕ ≈ −3Hϕ̇. (2.40)

Inflation ends as the second parameter approaches zero, and the final result indicates that

the decrease in the ratio of the derivative of V(ϕ) with respect to ϕ to the derivative of ϕ in

terms of time approximates the Hubble parameter during inflation.

The expansion rate of the universe during inflation depends on the potential of the

inflaton and is exponential. To start, we expand the first Friedmann equation in flat space

and the acceleration equation in terms of the expressions for ρ and p:

H2 =
8πG

3
ρ =

8πG
3

[1
2
ϕ̇2 + V(ϕ)

]
; (2.41)

ä
a
= Ḣ + H2 = −

4πG
3

(ρ + 3p) = −
8πG

3
[ϕ̇2 − V(ϕ)]. (2.42)

Substitution leaves

Ḣ = −4πG ϕ̇2. (2.43)

The first parameter constraining inflation becomes

ϵ = −
Ḣ
H2 =

4πG ϕ̇2

H2 , (2.44)
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and after imposing the constraint that ϵ ≪ 1,

4πG ϕ̇2 ≪ H2. (2.45)

Now the first Friedman equation reduces to

H2 ≈
8πG

3
V(ϕ). (2.46)

We thus confirm the interesting insight that the rate of expansion of the universe during

inflation depends on the potential of the inflaton.

In this regime of density and pressure of eqs. (2.24) and (2.25), respectively, the Fried-

mann acceleration equation governing ä is

ä(t)
a(t)
= −

4πG
3

(ρ + 3p) =
8πG

3
ρ. (2.47)

Thus the expansion of space undergoes inflationary acceleration, ä
a > 0, as a result. The

first Friedman equation,

H2 +
k
a2 =

8πG
3
ρ, (2.48)

with H2 =
(

ȧ
a

)2
≫ k

a2 , yields the scale factor solution

a(t) = a0eHt. (2.49)

This is the exponential expansion of space predicted by the theory of slow-roll infla-

tion [18, 29]. A period of superluminal expansion would explain the homogeneity and

isotropy of the observable universe by providing the necessary causal connection to solve

the Horizon Problem. Superluminal expansion would also flatten the spatial curvature and

decrease the density of magnetic monopoles. Numerical analysis provides insight into the

question of the number of e-folds of expansion necessary to resolve these problems. The

amount by which the cosmos expands is normally expressed in terms of the number of

times the size has increased by a constant factor—in other words, the number of the e-folds

(or nepers) N = log a(t f )
a(ti)

. However, this solution comes with its own associated shortcom-

ing: Producing an outcome consistent with modern observations demands very specific

initial conditions.
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2.2.2 The Inflation Solution

Inflation provides a solution to the as yet otherwise intractable Flatness, Horizon, and

Monopole Problems. Regarding the Flatness Problem, as Table 1.1 shows, the scale factors

of the single-component eras numerically reduce the curvature of space going backward in

time, due to their proportionality to a fractional exponent. Extending the timeline of the ta-

ble to an even earlier era reduces the measure of flatness, Ωk = 1−Ω(t), to an infinitesimal

level. At the end of inflation with section 3.1 estimates t f ≈ 4 × 10−39 s and a(t f ) ≈ 10−29,

calculation yields Ωk ≈ 10−57.

The derivation of Ωk, eq. (1.82), from the first Friedmann equation enables us to de-

termine the effect of inflation on curvature, starting with expressions for flatness at the

beginning and end of inflation:

Ωk(ti) = −
k

a2(ti)H2(ti)
(2.50)

Ωk(t f ) = −
k

a2(t f )H2(t f )
. (2.51)

We equate the curvature constants, because an open or closed universe remains open or

closed, and assume the Hubble parameter is constant over the inflationary period.

Ωk(ti)a2(ti) = Ωk(t f )a2(t f ). (2.52)

Ωk(t f ) = Ωk(ti)
a2(ti)
a2(t f )

= Ωk(ti)e−2N . (2.53)

Within reasonable tolerances for early-universe parameter assumptions, we find the same

order of magnitude measures of flatness as the extended Table 1.1 value that evolves to the

Planck Collaboration observation today. For example, for a maximally open universe, in

which Ωk = 1, the flatness measure at the end of inflation is Ωk(t f ) ≈ 10−57 with N = 65.

Thus, exponential inflation flattens the curvature of space to an infinitesimal level, and

during the subsequent single-component eras, the scale factors proportional to fractional

exponents curve space to the nearly flat universe observed today with Ωk ≈ 7 × 10−4.
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Analyzing the effect of exponential inflation applied to distances resolves the Horizon

Problem. We have found that the universe without inflation could not have thermalized

subsequent to the formation of the last scattering surface. We require that the causal con-

nection in the early universe expand sufficiently by the time of the creation of the last

scattering surface to encompass the region of space destined to grow to the size of the ob-

servable isothermal universe today. The analysis here evaluates the relation between the

original early-universe causal connection and that region at the time of the last scattering

surface, tls, to determine the number of inflationary e-folds needed.

We start with the expression for the causal connection,

pd(tls) = a(tls)
∫ tls

0

dt
a(t)
, (2.54)

and expand it in terms of each constituent era:

pd(tls) = a(tls)
[∫ ti

0

( ti

t

)1/2 dt
a(ti)
+

∫ t f

ti

dt
a(ti)eH(t−ti)

+

∫ tls

t f

dt
a(t)

]
. (2.55)

Assuming the inflationary term will dominate, we eliminate the third term to obtain

pd(tls) =
a(tls)
a(ti)

(
2ti + H−1

)
− H−1 ≈

a(tls)
a(ti)

(
2ti + H−1

)
=

a(tls)eN

a(t f )

(
2ti + H−1

)
(2.56)

Solving for N yields

eN =

[
a(t f )

a(tls)(2ti + H−1)

]
pd(tls). (2.57)

Based on the Table 1.1 value for a(tls), the previously determined pd(tls), and an estimate

that inflation began at ti = 10−42 s [12], we find N ≈ 68 and thus, within reasonable toler-

ances for early-universe parameter assumptions, a numerical basis for support of the theory

of New Inflation as a valid solution to the Horizon Problem.

Cosmologists have applied a variety of approaches to estimating the amount of inflation

necessary to solve the Horizon, Flatness, and Monopole Problems. Linde [29] reports that

a quadratic inflaton potential creates a wavelength for the inflaton comparable in size to our

observable universe after about 60 e-folds. In a detailed analysis, Lyth [30] finds that for
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a quartic inflaton potential, a range of e-fold values from 47 to 61 results in a universe on

the present scale. He further explains that at a minimum, more than 14 e-folds are needed

to generate perturbations leading to structure formation, and that an extended period of

domination of the inflaton kinetic term could increase his estimates of N by nearly 14,

therefore concluding with an estimate of 14 < N < 75.

Other researchers have performed analyses to determine the number of e-folds re-

quired to solve specific inflationary problems [31]. Solving the Horizon Problem entails

that the comoving Hubble radius at the beginning of inflation [a(ti)H(ti)]−1 must contain

what has become the comoving Hubble radius today [a(t0)H(t0)]−1, so that the comov-

ing [a(t0)H(t0)]−1 could have thermalized before expanding through the post-inflationary

epochs of the universe up to the present. The Hubble radius is the distance light travels in

time t = H−1. Thus we have

[a(ti)H(ti)]−1 ≥ [a(t0)H(t0)]−1 (2.58)

1
H(ti)

≥
1

H(t0)
a(ti)
a(t0)

=
1

H(t0)
a(t f )
a(t0)

a(ti)
a(t f )

=
1

H(t0)
a(t f )
a(t0)

e−N (2.59)

−N ≤ log
[
H(t0)
H(ti)

a(t0)
a(t f )

]
= log

[
H(t0)
H(ti)

T (t f )
T (t0)

]
= log

[
H(t0)
T (t0)

T (t f )
H(ti)

]
. (2.60)

In eq. (2.60) we use the inverse relation between the scale factor and temperature, which

is derived in appendix C for reference. Parameter values T (t0) ≈ 2.75 K and H(t0) ≈

100 km/s/Mpc lead to

N ≥ 67 + log
[

H(ti)
T (t f )

]
, (2.61)

which indicates that N is at least 67, because the temperature H(ti) represents is greater

than T (t f ).

2.3 Chaotic Inflation

Although the underlying physics of inflation (such as the existence of the inflaton field) re-

mains unsubstantiated experimentally, the framework of inflation is widely accepted among
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cosmologists as a way of providing an underlying solution to various cosmological prob-

lems. Over the years, researchers have revised the concept by devising a diverse body of

new theories. For our purposes, we shall focus on Linde’s solution to the problem of the

requirement of specific initial conditions in the slow roll theory. In 1983, he published his

theory of chaotic inflation [32]. In its simplest version [29], the inflaton potential has the

form V(ϕ) = 1
2m2ϕ2. The plateau is absent, and in an expanding universe, the friction term

3Hϕ̇ in the inflaton equation of motion (2.36) has the effect of restricting the motion of the

inflaton, as the slow roll plateau does, resulting again in exponential expansion. Figure 2.2

shows the chaotic inflation potential in contrast to that of figure 2.1.

Figure 2.2 In chaotic inflation, the effects of the friction term in the equation of motion
replace that of the slow roll plateau in keeping the inflaton from moving to the true vacuum
too quickly, after which the inflaton oscillates around its minimum potential during reheat-
ing.

2.4 The Physics of the CosmicMicrowave Background

Large Scale Structure
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Gravitationally bound structure, defined as structure larger than galactic scales, is a fea-

ture of the universe that supports inflationary theory. Quantum fluctuations of the inflaton

arising during inflation cause curvature and density inhomogeneities subject to gravita-

tional instability based on the physics of General Relativity. Matter accumulates in grav-

itationally bound density perturbations and disperses in empty space during expansion in

quantities sufficient in time for the formation of stars and larger and larger structure, un-

til satellites map the pattern throughout the universe today. The Milky Way, for exam-

ple, resides in structure of increasing size, from the Local Group containing more than

54 galaxies, to the Virgo Supercluster, and then to the Laniakea Supercluster. Although

the universe is homogeneous when viewed on large scales, the statistical distribution of

large scale structure is not random. The image generated by the Sloan Digital Sky Survey

(SDSS) in figure 2.3 shows a map of redshift radiation across a swath of the upper hemi-

sphere. By contrast, a random distribution would spread galaxies in a uniform pattern,

which would lack the distinctive clusters of structure in figure 2.3.

Figure 2.3 The SDSS redshift map of the structure of galaxies of the north Galactic cap
within 4◦ of the plane of Earth’s equator. Figure from Ref. [33].

A qualitative description of the complicated dynamics of the origin of large scale struc-

ture begins with the inflaton subject to quantum fluctuations [34],

ϕ(x, t) → ϕ(t) + δϕ(x, t), (2.62)
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crossing the Hubble radius during the inflationary period t ∼ H−1. As the field exits the

Hubble radius, the fluctuations cause time fluctuations that affect the end of inflation and

expansion, resulting in curvature and associated density perturbations. Outside the Hub-

ble parameter, the inflatons begin to behave classically, such that the amplitudes remain

constant while the wavelengths continue both to expand exponentially and to generate

fluctuations. As the Hubble radius expands after inflation along with the universe, the

perturbations reenter the Hubble radius. At recombination, the photons that start streaming

toward observers in the present day reveal the effects of the density perturbations imprinted

on the last scattering surface. The density perturbations that reenter the Hubble radius at

recombination become increasingly irregular as time progresses, and they coalesce under

gravitational instability to evolve eventually into large scale structure.

We note a simplified proportionality between density and the Hubble parameter and

time according to the first Friedmann equation in flat space

ρ ∼ H2 ∼ t−2 (2.63)

| δρ | ∼ | − t−3δt | (2.64)

δρ

ρ
∼
δt
t
. (2.65)

The differential of the inflaton with respect to time gives an expression for δt,

ϕ̇ =
dϕ
dt
=
δϕ

δt
→ δt =

δϕ

ϕ̇
=

H
2πϕ̇
, (2.66)

where in the last step we substituted the derived dependence of the inflaton perturbation on

the Hubble parameter, δϕ = H
2π [34]. Eqs. (2.65) and (2.66) yield

δρ

ρ
∼

1
t

H
2πϕ̇
=

H2

2πϕ̇
. (2.67)

The left-hand side is responsive to experimental observation; the right-hand side is subject

to numerical evaluation. Agreement supports the proposition that the dynamics of physics

in inflationary theory was the source of large scale structure. The discovery of temperature
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anisotropies experimentally confirmed the existence of density perturbations.

Temperature Anisotropies

The most notable accomplishment of the early CMB probe, the 1989 Cosmic Back-

ground Explorer (COBE), which also showed that CMB radiation remarkably simulates

that of a blackbody, was the discovery of temperature anisotropies. Temperature anisotropies

are variations from isotropy of the CMB, measured as brightness on angular scales. The

Nobel-winning accomplishments of COBE provided a strong impetus for the proposal and

approval of more ambitious projects, the 2003 Wilkinson Microwave Anisotropy Probe

(WMAP) and the 2013 Planck satellite. Figure 2.4 compares sky maps of temperature

anisotropies generated by the COBE and Planck missions. The Planck mission improved

the resolution in angular scale from the 10◦ of COBE to better than 0.2◦. The COBE map

was the result of 4 years of observational data, which had to be washed to eliminate noise

and the Dipole effect caused by motion of the satellite, anchored ultimately in the Local

Group, in the CMB rest frame.

The temperature anisotropies provide experimental confirmation of the physics [11].

During the time prior to recombination, curvature perturbations cause temperature per-

turbations due to the Sachs-Wolfe effect acting on photon modes on super-horizon scales,

derived as [37]
δT
T
=
δa
a
. (2.68)

The Sachs-Wolfe effect combines a redshift as photons climb out of the potential well of

contracted space offset by a gravitational time delay, with both driven by the theory of

General Relativity. At recombination, the photons that begin streaming toward detectors

in the present carry the signature of the temperature perturbations. Density perturbations

associated with the same curvature perturbations cross the last scattering surface at the

same time to seed large scale structure, of which the Earth finds itself a part.
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(a)

(b)

Figure 2.4 The contrast between the detail of graph (a) of the 1993 COBE map of tem-
perature anisotropies and that of graph (b), the 2018 Planck satellite map at an enhanced
angular scale. The Planck rendering has also eliminated the galactic plane of the Milky
Way, which appears as the broad horizontal red band in the COBE image. Figures from
Refs. [35] and [36], respectively.

The enhanced angular resolution of the Planck satellite has been the source of much

information about the physics of the CMB. Although some of the effects occur after the

period of interest here and recombination, a brief review of the work of the Planck Col-

laboration regarding temperature anisotropies is illustrative of the advancement in CMB

cosmology over the past three decades. The symmetry of the isotropy and homogeneity of

the CMB allows expansion of the temperature anisotropies in spherical harmonics [11],

δT
T

(θ, ϕ) =
∞∑

l=0

l∑
m=−l

almYlm(θ, ϕ). (2.69)

After defining the correlation function between points defined by n̂ and n̂′ separated by θ

in the sphere as

C(θ) =
〈
δT (n̂)

T0

δT (n̂′)
T0

〉
, (2.70)
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where δT (n̂) = T (n̂)− T0 and T0 is the average temperature of the CMB calculated over all

pairs of points at the angular scale, we have an expression for the form of the correlation

function responsive to observation,

C(θ) =
1

4π

∞∑
l=0

(2l + 1) Cl Pl (cos θ). (2.71)

The Planck Collaboration produced statistical data displayed as angular power spec-

trum brightness, that is, the correlation function, adjusted for various noise effects as a

function of multipole moment of the spherical harmonics of temperature anisotropies. Fig-

ure 2.5 captures the observational results. On the left of the dominant peak, that is, the small

multipole moments and large angular scales, is the brightness profile for the anisotropies

COBE measured due to the Sachs-Wolfe effect. Physics effects after recombination gener-

ate the dominant peak, the two smaller peaks to the right, and the rest of the detail of the

brightness profile.

Figure 2.5 The temperature power spectrum fitted to observation. The lower part of the
graph shows residuals of the fit, that is, the difference when the observations are compared
to the predicted fit of Planck’s Lambda Cold Dark Matter (ΛCDM) model. Figure from
Ref. [38].

Cosmologists classify temperature anisotropies according to the scale and timing on

which the physics that creates them operates [39]. Physics acting on scales larger than the

Hubble radius prior to recombination imprint primary anisotropies on the last scattering
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surface as the anisotropies reenter the horizon. Between recombination and the present,

physics acting on photons streaming toward our detectors produce secondary anisotropies.

Primary anisotropies, all a consequence of inflation, include the following types:

• The Sachs-Wolfe effect, described above, is reflected in the COBE results. As space

expands, photons must climb out of the potential well of the flattening curvature

perturbations.

• At the creation of the last scattering surface, electrons that scatter photons have a

velocity relative to the rest frame of the CMB and introduce a Doppler effect.

• Curvature perturbations bring about baryonic perturbations and the changes in den-

sities cause temperature anisotropies. Theoretical physics had predicted these pertur-

bations, including the influence of cold dark matter. However, although the tempera-

ture anisotropies caused by the Doppler effect were known empirically, experimental

confirmation of perturbations had to await the resolution provided by COBE.

• Also due to inflation, outside the horizon two primary anisotropies on sub-horizon

scales arise from modes within the speed of sound horizon of waves in the plasma of

baryons and photons:

– The plasma oscillates adiabatically in acoustic waves due to the opposing forces

between the gravitational attraction of baryons and dark matter and pressure

from photons. The density anisotropies imprinted on the last scattering surface

include additional temperature anisotropies of the acoustic waves.

– Recombination occurred at the time at which the photon mean free path ex-

ceeded the Hubble radius, so that photons were able to begin streaming freely

through space without absorption by hydrogen. However, the formation of the

CMB last scattering surface required a duration of time. While some photons

began streaming freely, others continued to be absorbed and emitted, until the
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last scattering surface was completed. During that interim period, in a process

called Silk Damping, temperature anisotropies underwent isotropic degrading

by photon absorption and then emission in all directions.

The following secondary anisotropies came about from the physics of cosmology in

the evolution of the universe after recombination and are not directly related to inflation or

scales greater than the Hubble radius:

• After reionization of hydrogen by electrons emitted from relatively newly formed

stars, galaxies, and quasars, photons scatter off free electrons. Thomson scattering is

isotropic, thereby erasing the anisotropies originally imprinted at the time of the last

scattering surface.

• The curvature distortions of large scale structure disrupts the anisotropy profile of

photons because of the influence of changes to the gravitational potential as the pho-

tons pass into and out of its influence. The effect, called the integrated Sachs-Wolfe

effect because determining the magnitude involves line-of-sight integration, results

as the time-dependent potential changes while photons traverse the potential well,

and the effects of falling into the well and climbing out of it do not offset.

• Photons experience deflection due to General Relativity by all the objects that make

up large scale structure.

• The Sunyaev-Zeldovich effect, isotropic scattering of photons by clusters of galaxies

and gases, alters the temperature anisotropies originally imprinted.

A few additional comments conclude this section. In the Planck spectrum of figure 2.5,

the large scale spectrum measured by COBE lies to the left of the dominant peak, where

the Sachs-Wolfe effect dominates, ending at about multipole moment 13. The relatively

flat spectrum in this region is due to the resolution of COBE at a large angular scale, which
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captures anisotropies generated outside the Hubble radius. On that scale, the frozen am-

plitudes of inflaton perturbations generate density perturbations with amplitudes also all of

approximately the same size. Thus, we see the impact of the Sachs-Wolfe effect, reflecting

the density perturbations, as a nearly flat spectrum as measured by COBE. Finally, overall,

one of the primary successes of the Planck Collaboration was a set of estimates of com-

ponent densities and cosmological parameters consistent with those that model a ΛCDM

universe.

The Scalar Spectral Index

Further theoretical analysis of the spectrum of anisotropies provides observable con-

straints on models of inflation. Observations of large scale structure of the SDSS sky

survey are consistent with Gaussian density perturbations. Similarly, WMAP character-

ized the CMB perturbations as Gaussian [40, 41]. The correlation function of a Gaussian

random scalar field, like the inflaton of slow roll inflation, encodes all the statistical prop-

erties of the field. As such, in momentum space, the power spectrum with modes k of of

the CMB temperature anisotropies distributed over its multipole moments has the form

Pk ∝ kns−1. (2.72)

The scalar spectral index ns becomes

ns − 1 =
d log Pk

d log k
. (2.73)

A spectral index of 1 produces a flat, scale-invariant spectrum. The variation from a

flat spectrum manifests itself as a “tilt” in the graph of the spectrum. The observations

of inflaton perturbations imprinted on the CMB last scattering surface are the correlation

function of the temperature anisotropies described previously. We start by expressing the

power spectrum in terms of the potential of the inflaton V [42],

Pk =
1

75π2M2
p

V3

V ′2
, (2.74)
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with the Planck mass Mp and the potential differentiated with respect to ϕ.

We will need the slow-roll parameters ϵ and η of eqs. (2.35) and (2.39), respectively,

as functions of V . The first parameter ensures that the potential changes slowly when

ϵ ≪ 1, which accounts for the slow roll, and inflation terminates under the condition that

η, also defined as very much less than 1, approaches zero. To express ϵ as a function of

the potential, we differentiate the first Friedmann equation in flat space after the conversion

8πG = 1
M2

p
[19],

H2 =
1

3M2
p

(
1
2
ϕ̇2 + V

)
(2.75)

2HḢ =
1

3M2
p

(
ϕ̇ϕ̈ + V ′ϕ̇

)
. (2.76)

The equation of motion (2.36) during slow roll inflation when ϕ̈ → 0 reduces to

ϕ̈ + 3Hϕ̇ + V ′ = 0 → V ′ = −3Hϕ̇, (2.77)

and eq. (2.76) becomes

Ḣ = −
1

2M2
p
ϕ̇2. (2.78)

Under the slow-roll assumption that V ≫ ϕ̇, eq. (2.75) gives us

H2 =
1

3M2
p

(
1
2
ϕ̇2 + V

)
≈

1
3M2

p
V. (2.79)

Substitution of eqs. (2.78) and (2.79) into the formula for ϵ yields

ϵ =
Ḣ
H2 = −

3
2
ϕ̇2

V
. (2.80)

By substituting eq. (2.79) into eq. (2.77), we find

ϕ̇ = −
V ′

3H
= −V ′

M2
p

3V

1/2

, (2.81)

so that

ϵ = −
M2

p

2

(
V ′

V

)2

. (2.82)

We continue by using a definition of the second parameter in terms of the potential [42],

η =
M2

pV ′′

V
. (2.83)

41



For the modes under consideration, that is, perturbations that crossed the approximately

constant Hubble radius during inflation with k = aH,

d log k
dt

≈
d log aH

dt
(2.84)

=

d(aH)
dt

aH
=

ȧ
a
= H (2.85)

→ d log k ≈ Hdt. (2.86)

In the equation for the scalar spectral index, eq. (2.73),

ns − 1 =
d log Pk

d log k
, (2.87)

we convert the epression for the denominator, eq. (2.86), into a function of the potential

using eq. (2.77)
d

d log k
≈

d
Hdt

(2.88)

V ′ = −3H
dϕ
dt
→ dt = −

3H
V ′

dϕ (2.89)

d
Hdt
=

1
H

d
−3H
V′ dϕ

→
d

d log k
≈ −

V ′

3H2

d
dϕ
. (2.90)

Substituting eq. (2.79) into the above gives

d
d log k

≈ −
M2

pV ′

V
d

dϕ
. (2.91)

The spectral index becomes

ns − 1 =
d log Pk

d log k
= −

M2
pV ′

V
d

dϕ

[
log

(
1

75π2M2
p

V3

V ′2

)]
(2.92)

= −
M2

pV ′

V
d

dϕ

[
log

(
V3

V ′2

)]
(2.93)

= −6
M2

p

2

(
V ′

V

)2

+ 2M2
p
V ′′

V
(2.94)

= −6ϵ + 2η. (2.95)

This is the form of the spectral index that, for example, the Planck Collaboration reports in

an early paper on inflationary constraints [43]. Thus, under the slow roll constraints ϵ ≪ 1

and η ≪ 1, slow roll inflationary theory predicts a spectral index approximately equal to 1.
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The enhanced resolutions from COBE to WMAP to the Planck mission show increas-

ingly convincing observational evidence in support of inflationary theory. COBE calculates

a scalar spectral index of ns = 1.2 ± 0.3 [35], a somewhat flat result. The refined scale of

WMAP provides stronger support for slow roll theory with a much flatter spectral index

measurement, ns = 0.9608 ± 0.0080 [41]. The additional precision of the Planck telescope

serves to reinforce the WMAP finding with ns = 0.9649 ± 0.0042 [38], suggesting that nu-

merically, we are approaching a valid measurement of the actual phenomenon. In addition,

the Planck Collaboration explicitly confirms the Gaussian nature of the inflaton and affirms

the validity of both the slow roll approach and the power law spectrum [38].

Polarization of the CMB

Additional constraints on models of inflation are available through comparison of ob-

servation of CMB polarization and theoretical predictions. The CMB exhibits polarization

that is in essence different from the familiar polarization of electromagnetism. Light, with

its oscillating electric and magnetic fields, can exhibit linear and circular polarization. In

a somewhat analogous manner, the CMB has regions of oscillations made up of com-

ponents termed E-modes and B-modes. The E-mode polarization is like electromagnetic

linear polarization in that it is perpendicular to the axial wave vector, although the E-mode

polarization can also be parallel to the wave vector axis. Both the electromagnetic linear

polarization and the CMB E-mode polarization lack a curl. While the circular polarization

of electromagnetism is perpendicular to the wave vector, B-mode polarization lies at a 45◦

angle to the wave vector axis. Because the B-mode polarization can loop dependent on its

orientation around a point in space, it is divergence-free like circular polarization. Again

in analogy, like light waves possessing electromagnetic polarization, a wave of CMB radi-

ation in a region of space displays polarization of its electric field consisting of superposed
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E- and B-modes. The physics of the interaction of radiation and the geometry of space

imparts the superposed modes on the last scattering surface.

To compare theoretical predictions with observations, that is, measures of the CMB po-

larization, cosmologists decompose curvature perturbations in the metric tensor into scalar

perturbations and tensor perturbations, which are density perturbations and theoretically

predicted gravitational waves, respectively. The formalism starts with the momentum space

expression for a quantum scalar field χ(x, t) [31, 44, 45],

χ(x, t) =
∫

d3k
2π3/2 eik·x χk(t). (2.96)

Cosmologists define the power spectrum in momentum space as the vacuum expectation

value 〈
χk1 χ

∗
k2

〉
=

2π2

k3 Pχkδ
(3) (k1 − k2) , (2.97)

and in real coordinate space, the definition is〈
χ2

k(t)
〉
=

∫
dk
k

Pχ(k). (2.98)

After perturbation of the scalar field in conformal time τ, so that

χ(x, τ) = χ(τ) + δχ(x, τ). (2.99)

second quantization with the commutation relations of the creation and annihilation opera-

tors yields the power spectrum of the fluctuations

Pδχ =
k3

2π2 |δχ|
2. (2.100)

Scalar perturbations of the metric tensor are the density perturbations and related tempera-

ture anisotropies that result in the formation of large scale structure as described previously.

In the formalism of the quantum scalar field, scalar perturbations have the power spectrum

PS and scalar spectral index nS of eqs. (2.72) and (2.73).

Similarly, perturbing the metric tensor gµν of the RW metric,

ds2 = gµνdxµdxν, (2.101)
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generates the tensor perturbations and its power spectrum. Perturbations of the inflaton in

the stress-energy tensor of the Einstein field equations give rise to metric tensor perturba-

tions. Complex formalism fixing a gauge choice using constant conformal slices of time

makes frame of reference transformations invariant and results in a revised metric tensor in

terms of perturbation hi j,

gµνdxµdxν = a2(τ)
[
−dτ2 + (δi j + hi j) dxidx j

]
. (2.102)

The tensor δi j is the spatial part of the RW metric in conformal time. The tensor hi j mani-

fests itself physically as theoretically predicted gravitational waves.

Just like the scalar perturbations, scale-invariant tensor perturbations lie outside the

Hubble radius after inflation, and we have an analogous tensor power spectrum PT and

spectral index nT . The tensor-to-scalar ratio r, defined as

r =
PT

PS
, (2.103)

is an observable parameter. Using suitable parametric estimates, cosmologists have de-

rived model-dependent theoretical bounds on r. Thus, observations can lend support to or

disfavor inflationary models.

Regarding the physics of polarization, the stage is set at recombination before the brief

period of creation of the last scattering surface. The universe cools sufficiently to promote

the formation of hydrogen atoms from ionized protons and free electrons. For the first time,

photons are able to stream without continually being absorbed and emitted by electrons.

However, electrons that have not yet bonded to protons scatter photons for the last time

through Thomson scattering, which linearly polarizes the radiation [46]. The physics is

not unlike that of the scattering of unpolarized light from a planar surface. An observer

positioned along the line of sight of the incoming reflected light sees polarization aligned

with the reflecting planar surface, that is, perpendicular to the plane formed by the incident

and reflected rays. Thomson scattering from free electrons produces the same polarizing

effect. If the incoming radiation is isotropic to the frame of reference of the electrons,
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the superposed scattered radiation displays no polarization. However, in the case of the

last scattering surface, the radiation incoming to the frame of the electrons has a preferred

orientation, which the scattered radiation embodies in its polarization.

Spherical harmonic quadrupoles of temperature anisotropies arising from the gµν pertur-

bations are responsible. The scalar and tensor perturbations of metric tensor perturbations

create the quadrupoles of figure (2.6). Scalar perturbations, the consequence of underlying

density perturbations of the metric tensor, generate E-mode polarization. The oscillations

of gravitational waves, the tensor perturbations, create both E- and B-mode polarization.

Figure 2.6 Quadrupole images for spherical harmonics Ym
l (θ, ϕ) with indices l = 2, m = 0

on the left and l = 2, m = 2 on the right, associated with scalar and tensor perturbations,
respectively. The light gray lobes are hotter, less dense regions in contrast to the colder,
more dense, dark gray regions.

The temperature anisotropies and varying densities of photons in the Y0
2 (θ, ϕ) quadrupole

in the image on the left of figure (2.6) create radiation flows from both the upper and lower

hotter lobes toward the colder torus-like region in the center. The rays incident to Thomson

scattering are not isotropic, and the imbalance in the pattern of migration causes a net linear

E-mode polarization. A more complicated dynamic takes place in the flow of radiation with

the Y2
2 (θ, ϕ) quadrupole in the image on the right and also with the Y−2

2 (θ, ϕ) quadrupole.

The peaks and troughs of passing gravitational waves laterally stretch the colder and hotter

lobes, respectively, and impart both E- and B-modes of polarization to the radiation wave.

Whereas the alignment in the Y0
2 quadrupole of the lobes and the centrally-directed flows
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results in Thomson scattering E-modes, the elongation of the lobes of the Y±2
2 quadrupoles

by gravitational waves causes misalignment with the flows, so that scattering generates the

looping B-mode. The three quadrupoles in combination imprint the superimposed modes

on the suddenly free-streaming CMB photons comprising the last scattering surface.

Observations

Analysis of the CMB polarization begins with the decomposition of observations into

the curl-free E-mode and divergence-free B-mode, similar to the decomposition of a vector

into curl- and divergence-free components according to the Helmholtz Theorem, namely,

F = ∇Φ + ∇ × A. (2.104)

The formulas E = ∇Φ and B = ∇ × A in electrostatics would be the curl-free and

divergence-free parts, respectively. The polarization of the CMB has position and orienta-

tion but lacks direction, in contrast to an electromagnetic wave, with its polarization vector

pointing away from the axis of the wave vector. Decomposition of the CMB polarization

involves a tensor composed of its Stokes parameters.

We have described the scalar perturbations giving rise to observable temperature anisotropies,

by which the power spectrum becomes a function of the multipole moments of the corre-

lation function. In the same way, we again observe polarization of the CMB as a pattern

of temperature anisotropies. Produced by tensor perturbations of the metric tensor, these

anisotropies are on a scale of an order of magnitude less than those of the scalar perturba-

tions.

In the familiar formalism of electromagnetic polarization, decomposed wave compo-

nents are

Ex = Ex ei(k·x−ωt) êx = ax eiθx ei(k·x−ωt) êx (2.105)

Ey = Ey ei(k·x−ωt) êy = ay eiθy ei(k·x−ωt) êy, (2.106)
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with amplitudes written in terms of their magnitudes, ax and ay, and phase factors, θx and

θy. We have time-averaged Stokes parameters [47]

I =
〈
a2

x

〉
+

〈
a2

y

〉
(2.107)

Q =
〈
a2

x

〉
−

〈
a2

y

〉
(2.108)

U = 2axay cos(θx − θy). (2.109)

The polarization in terms of position-defined parameters Q and U transforms invariantly

under rotations with tensor

Pab =
1
2

 Q −U sin(θ)

−U sin(θ) −Q sin2(θ)

 (2.110)

in coordinates (n, θ, ϕ). We recall the symmetry of the CMB offered expansion of the

scalar perturbation temperature anisotropies in spherical harmonics in eq. (2.69). Although

in a more complex form, spherical harmonic expansion of the CMB polarization is also

available:
Pab

T0
=

∞∑
l=2

l∑
m=−l

[
aG

(lm)Y
G
(lm)ab + aC

(lm)Y
C
(lm)ab

]
. (2.111)

The supercripts G and C signify the gradient and curl decompositions for E- and B-modes

like the decompositions of the vector in eq. (2.104). Figure 2.7 contains depictions of a

set of idealized orientations of the polarization of the E-modes and B-modes less than and

greater than zero.

Beginning with observations taken in 2006, the BICEP collaboration has reported on

measurements of the CMB polarization at increasing sensitivities. Three years of obser-

vations from 2010 to 2012 at the South Pole resulted in the E-mode and B-mode maps of

figure 2.8.

The instruments viewed ∼ 380 square degrees of the southern hemisphere sky around

right ascension 0◦ and declination −57.5◦. Right ascension 0◦ is the celestial equivalent

of the Prime Meridian. Cosmologists call it the Vernal equinox, the longitude in the sky
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Figure 2.7 A sample of possible orientations of curl-free E-mode and divergence-free B-
mode CMB polarizations. Figure from Ref. [45].

Figure 2.8 Observed and simulated E- and B-mode maps on the left and right, respec-
tively. Figure from Ref. [48].

where the sun crosses the celestial equator on the spring equinox. Declination is the ce-

lestial equivalent of latitude. In figure 2.8, color-coded temperature anisotropies appear

measuring ≲ ±1.8µK in the top row maps and ≲ ±0.3µK in the bottom row maps. The line

segments represent polarization orientations corresponding to magnitudes of temperature

anisotropies at scales of 1.7µK and 0.3µK for the E-modes and B-modes, respectively. The
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pair of graphs on the left are observations after undergoing filtering processes. On the right

are simulations of maps based on a lensed-ΛCDM+noise environment. The simulations

include both instrument noise and the post recombination lensing effect of conversion of

E-modes into B-modes by the CMB passing through the influence of the gravitational po-

tential of structure. Statistical analysis offers a comparison for consistency between the

actual observations and the simulations. At this point in the project history, the collabora-

tion has not yet cleaned their observational data of B-mode polarization to be reported by

the Planck team caused by galactic dust.

Constraints on Models of Inflation

The Planck Collaboration reports consistency between the six parameters used to char-

acterize the ΛCDM universe and the fit of their model to observations. Table 2.1 details

their bounds on the following six parameters:

• The present-day baryon density.

• The angular size of CMB fluctuations at recombination, which is the ratio of the

acoustic sound wave arc length on the last scattering surface to the observational

distance.

• The Thompson scattering optical depth, a measure of the number of times a photon

is scattered. As described above, isotropic Thomson scattering after reionization

lessens the anisotropies originally imprinted at the time of the last scattering.

• The amplitude of the power spectrum of scalar perturbations.

• The scalar spectral index.

• The present-day density of dark and visible matter.

50



Table 2.1 The bounds of the Planck Collaboration on the six parameters of the ΛCDM
universe [20].

Parameter Result Description

Ωbh2 0.02237 ± 0.00015 Baryon density
100θMC 1.04092 ± 0.00031 Angular size
τ 0.0544 ± 0.0073 Optical depth
log(1010As) 3.044 ± 0.014 Amplitude of scalar perturbations
ns 0.9649 ± 0.0042 Scalar spectral index
Ωm 0.3153 ± 0.0073 Matter density

A second publication of the Planck Collaboration reports their findings regarding the

validity of models of inflation, graphically displayed in figure 2.9. The topmost colored

items of the key accompanying the graph are the various sets of observational data used to

analyze the models of inflation, including correlation functions (TT, TE, and EE); the re-

moved E-mode data (lowE) and effect of structure (lensing); the Bicep results (BK15); and

baryon acoustic oscillations (BAO). The lower set of colored items, dashed key, and col-

ored bars represent the models of inflation considered. The graph bounds inflation models

with the circles at the bottom of the key, that is, the span of values for inflationary e-folds,

50 < N < 60. The figure displays the sets of observational data as upright, quasi-half-

elliptical regions centered on the ns-axis at 1-σ and 2-σ confidence levels. For example,

close visual inspection reveals the outline in blue of a smaller, 1-σ area within the larger,

2-σ blue area.

Based on their derived bound for the tensor-to-scalar ratio, r0.002 < 0.056, the Planck

team reaches a conclusion supporting slow-roll, concave potentials and no other. The

subscript 0.002 defines the scale of the horizon-crossing mode k during inflation as k =

0.002 Mpc−1. For the models of inflation of interest here, quadratic slow roll and chaotic in-

flation, we see the ϕ2 potential model becoming progressively more removed in time from

the colored areas of the Planck analyses in the graphs of the 2013, 2015, and finally 2018

papers [38, 43, 49]. The latest paper shows the ϕ2 model in figure 2.9 lying entirely outside

the valid colored areas. However, we can consider the final physics far from settled.
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Figure 2.9 The graphical result of the Planck analyses of inflationary models. Figure
from Ref. [38].

2.5 Reheating

The expansion of space by inflation dilutes the number densities of all particles and leaves

the universe cold, with energy concentrated primarily in the inflaton. Following the end

of inflation, reheating results in the transfer of energy from the inflaton to Standard Model

particles or their precursors. Reheating has two stages, first the transfer of energy and then

subsequent thermalization to a temperature sufficient to promote nucleosynthesis of light

elements. A mechanism developed by Lev Kofman, Andrei Linde, and Alexei Starobinsky

in their iconic 1997 paper, “Towards the Theory of Reheating after Inflation” [50], which

they call preheating because it precedes thermalization, supersedes earlier explanations of

reheating by way of perturbation theory and narrow parametric resonance. We reference a

selection of the wide range of literature available on the subject of preheating [17, 51–54].

A preheating framework appears to be necessary, because perturbative processes prove

too slow and inefficient to raise the reheating temperature enough to support nucleosyn-

52



thesis. Also, the perturbative approach required certain conditions and treated inflatons

collectively in a state of superposition of individual particles, each capable of decaying

independently—rather than as coherent semiclassical fields. On the other hand, narrow

parametric resonance models followed the approach that the inflatons formed a homoge-

neous, coherent, oscillating wave appropriate for classical treatment. In narrow parametric

resonance, an inflaton wave interacts as a background source for a second scalar field χ.

However, this theory itself can be problematic. Because the modes of the scalar field χ

have physical wavelengths, the expansion of space redshifts modes outside the borders of

the resonance band and also makes the band more narrow. In addition, the expansion and

the decay of the inflaton into χ particles decrease the amplitude of the coherent inflaton

wave. The number of particles being produced instantaneously is proportional to both the

number of χ particles previously created and to the inflaton amplitude, so that the effects of

expansion and decay lower the efficiency of the resonant conversion and tend to suppress

the growth of the χ population. Narrow parametric resonance thus typically terminates well

before reheating is complete.

The parametric resonance in preheating models is instead broad: All modes less than

a specific momentum participate in the ϕ-χ coupling. A non-adiabatic transfer of energy

leads to exponential growth in the number and number density of the χ quanta. Moreover,

the expansion of space can actually make the resonance more effective by gradually red-

shifting additional modes down to below the maximum momentum, making them part of

the process. The end of reheating depends on the possible range of values of parameters

involved in preheating and the complex dynamics of backreaction and rescattering. How-

ever, preheating may still not be sufficient to complete reheating, and the reheating process

may have to revert to a period of narrow parametric resonance, perturbative decay, or both

to arrive at a temperature that is suitable for thermalization but not high enough to produce

very massive particles like monopoles.
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In chapter 3, the reader will find a description of the cusp discontinuity inherent in in-

flationary theories involving an exponential scale factor and our approach to quantifying

the extent of the cusp. Chapter 4 introduces a method for finding an interpolating function

to replace the cusp, by detailing the geometry of a simple circular model, and then we fo-

cus on finding a more realistic interpolating function. We derive the formalism establishing

smoothness in the expansion of space at the end of inflation and analyze the implications

of the most straightforward interpolating candidates, power law functions. The equation-

of-state and thermodynamic constraints provide additional means of restricting possible

interpolating functions, and this is discussed in chapter 5. We analyze the effect on the size

of the universe of a horizontal parabola-like power law serving as a transitional interpo-

lating function in chapter 6. Finally, we look at further numerical analyses to determine

the effect on the scalar χ number and number density predicted by the Kofman, Linde, and

Starobinsky (KLS) model of preheating in chapter 7.
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Chapter 3

Period Scale Factors

The well-known expressions for the scale factor in the early universe include a curious

unphysical approximation, a lack of smoothness at the end of the inflationary epoch. The

inflationary and radiation-dominated scale factors, a1(t) and a2(t), respectively, follow [11]

a1(t) = a(ti)eH(t−ti) (3.1)

a2(t) = a(t f )
(

t
t f

)1/2

. (3.2)

To demonstrate the discontinuity in ȧ, we assume contrariwise that the time derivatives of

the scale factors are equal at the end of inflation, t f :

d
dt

a1(t)
∣∣∣
t f
= a(ti)HeH(t−ti)

∣∣∣
t f
= a(t f )H (3.3)

d
dt

a2(t)
∣∣∣
t f
=

a(t f )
√

t f

1
2t1/2

∣∣∣∣∣
t f

=
a(t f )
2t f
. (3.4)

By first expressing the Hubble parameter H in terms of N, the number of inflationary e-

folds of expansion, and then equating derivatives, we find

H =
N

t f − ti
(3.5)

N =
t f − ti

2t f
=

1
2
−

ti

2t f
. (3.6)

Continuity of the derivatives requires that N ≤ 1
2 , or else the time at the beginning of

inflation is less than zero. Although much research into inflation has produced a wide

range of proposed values for N, this result is particularly problematic. If taken literally, it

would eliminate inflation as a solution to the kinds of problems the theory was designed to

solve.
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3.1 Quantifying the Discontinuity

Although early universe estimates are themselves quite problematic because of the uncer-

tainty in the values of basic parameters, using reasonable values can provide some insight

into the mathematical relationship between the scale factors in different periods of cosmo-

logical evolution. We can estimate a value for a(t f ) by taking advantage of the inverse

relation between the scale factor and temperature, in conjunction with estimates of temper-

ature then and now, T (t f ) and T (t0), respectively,

a(t f ) =
T (t0)
T (t f )

≈
2.73 K

1.16 × 1029 K
≈ 10−29, (3.7)

since by convention, a(t0) = 1. The temperature of the CMB today is T (t0) ≈ 2.73 K [21],

and T (t f ) corresponds to the temperature equivalent to the value of H for a universe that

supports the Standard Model, which is H ≈ 1016 GeV [55].

Next we compare slopes at the end of inflation. The inflationary slope is

ȧ1(t f ) ≈ 10−13 GeV ≈ 1011 s−1. (3.8)

For the radiation-era derivative, after solving eq. (3.5) for t f and substituting it into eq. (3.4),

we have

ȧ2(t f ) =
a(t f )H

2(N + Hti)
=

ȧ1(t f )
2(N + Hti)

. (3.9)

The estimate by Liddle and Lyth that inflation began at ti = 10−42 s [12] leads to Hti ≈

0.02. A reasonable assumption is that N ≈ 60 [29–31], which results in a measure of the

discontinuity. The time derivative of the radiation-era scale factor is approximately 1
120 of

the derivative of the inflationary scale factor. Graph (a) of figure 3.1 shows this change

in the growth behavior qualitatively. We also note that these values, H = 1016 GeV and

N = 60, yield an estimate for the duration of inflation without the need to specify ti or t f :

∆t =
N
H
≈ 4 × 10−39 s. (3.10)
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(a) (b)

Figure 3.1 (a) The graph depicts the discontinuity between inflationary and radiation era
scale factors at the end of inflation. (b) The circular arc defined by the transitional scale
factor acir(t) intersects tangentially with the inflationary scale factor a1(t) and the now-
displaced radiation era scale factor noted with a prime, a′2(t).
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Chapter 4

The Transition

What kind of transitional function could provide continuity between the two period scale

factors? At the end of inflation, the slope begins to decline. For simplicity, we require a

steadily declining slope with no regions in which the universe undergoes contraction. To

preserve the accepted forms of the period scale factors, we seek a continuous piecewise

function. A properly chosen intermediate power law would conform to our requirement,

which we explore below. We know of no other solution, complete or otherwise, offered in

the literature. Initially, as shown in graph (b) of figure 3.1, we shall use a circular arc acir(t)

to illustrate the geometry. The arc lies tangent to a1(t) at the end of inflation and tangent to

the now-displaced radiation-era scale factor noted with a prime, a′2(t). The a functions are

not to scale. The parameter ∆ to be determined is the time period from the end of inflation

until the time of continuity between acir(t) and a′2(t).

In the more detailed view of figure 4.1, we see five unknown variables:

• R — the radius of the circular arc

• ∆— the time between t f and the tangent point at which the circular arc acir(t) meets

the displaced radiation era a′2(t)

• a(t f − δ) — the a-axis value at t f − δ, aligned with the center of the arc

• δ— the measure of the t-axis displacement corresponding to the difference between

a(t f ) and a(t f − δ)

• a(t f +∆) — the scale factor at t f +∆, the t-axis point of tangency for acir(t) and a′2(t).
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The transitional function is just the equation of the circle

acir(t) = a(t f − δ) +
√

R2 − [t − (R + t f − δ)]2. (4.1)

If a(t f ) and a(t f − δ) were to coincide, we would be introducing another discontinuity into

the model, the change from the inflationary slope to the infinite slope of the circular arc.

With the displacement δ, the edge of the circular arc lies earlier on the timeline than t f , and

δ sets that duration. We note that a(t f − δ) is therefore never the physical value of the scale

factor and so has no direct effect on the expansion of space.

Figure 4.1 Five unknown parameters characterize the two points of tangency of acir(t)
with the period scale factors (not to scale).

We establish smoothness by equating the scale factors and their derivatives at the tan-

gent points. Thus, we have five unknown parameters in the four matching conditions. In

section 5.3, we invoke a fifth equation to specify the model completely.

Imposing a circular arc is an unreasonably strict condition to use to define an inter-

polating function. We shall continue now by exploring more general power-law solutions

for a(t) in the transition between the period scale factors. A properly chosen power-law

section would provide continuity but would also potentially lengthen one or the other pe-

riod, depending on its orientation. A power law with n < 1 has essentially no impact on
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the length of the radiation era. For a power law with n > 1, a very small increase in the

inflationary period could have a substantial impact on the scale factor, as discussed further

in section 4.2.

4.1 Interpolating Power Laws with n < 1

The power law takes the form

ap(t) = ap(t f − δ) + D [t − (t f − δ)]n. (4.2)

We use the notation ap(t) for power laws with n < 1. The subscript p denotes the rep-

resentative parabola for n = 1
2 , which opens to the right and has a horizontal axis. The

unknown coefficient D is the analog of the unknown radius of the circular arc. Additional

unknown parameters, ap(t f −δ), δ, ∆, and a(t f +∆), correspond to the parameters displayed

in figure 4.1 for the circular arc. We analyze the continuity of the forms of the scale factor

at the two points of tangency.

4.1.1 Smoothness at t f

For the first matching condition—continuity of a(t)—at t f , ap(t)
∣∣∣
t f
= a(t f ) implies

D =
a(t f ) − ap(t f − δ)

δn (4.3)

ap(t) = ap(t f − δ) +
a(t f ) − ap(t f − δ)

δn [t − (t f − δ)]n. (4.4)

The second matching condition at t f equates the time derivatives, generating an expression

for the a-axis vertex coordinate:

ȧp(t)
∣∣∣
t f
= ȧ1(t)

∣∣∣
t f
= T (t0) (4.5)

ȧp(t)
∣∣∣
t f
= n

[
a(t f ) − a(t f ) − δ

δn

]
δn−1 (4.6)

ap(t f − δ) = a(t f ) −
T (t0)δ

n
, (4.7)
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where we have used the relations in eqs. (3.3) and (3.7) to express these in terms of the

current temperature T (t0), since t = t0 also provides the calibration scale for a. With the

vertex coordinate from eq. (4.7), the scale factor is

ap(t) = a(t f ) −
T (t0)δ

n
+

T (t0)
nδn−1 [t − (t f − δ)]n. (4.8)

4.1.2 Smoothness at t f + ∆

The interpolating transition we have imposed between the end of inflation and the begin-

ning of the radiation era shifts the eq. (3.2) scale factor according to

a′2(t) = a(t f + ∆)

√
t

t f + ∆
, (4.9)

where we use the prime to distinguish this shifted expression. The vertex of the radiation-

era t1/2 scale factor remains at (t = 0, a = 0). The third matching condition, in which

the interpolating power-law equals a′2(t) at the point of tangency, yields the noninformative

solution

a′2(t)
∣∣∣
t f+∆
= ap(t f + ∆). (4.10)

However, the final smoothness condition equates the derivatives of the scale factors

a′2(t) and ap(t) at t f + ∆, so we have

ȧp(t)
∣∣∣
t f+∆
= ȧ′2(t)

∣∣∣
t f+∆

(4.11)

ȧ′2(t)
∣∣∣
t f+∆
=

ap(t f + ∆)
2(t f + ∆)

(4.12)

ȧp(t)
∣∣∣
t f+∆
=

T (t0)
δn−1 [t − (t f − δ)]n−1

∣∣∣∣∣
t f+∆

(4.13)

=
T (t0)
δn−1 (∆ + δ)n−1. (4.14)

Thus we ultimately arrive at the condition,

T (t0)
δn−1 (∆ + δ)n−1 =

ap(t f + ∆)
2(t f + ∆)

(4.15)

T (t0)
δn−1 (∆ + δ)n−1 =

1
2(t f + ∆)

[
a(t f ) −

T (t0)δ
n
+

T (t0)
nδn−1 (∆ + δ)n

]
. (4.16)
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The formalism leaves us with the need to fix ∆ to evaluate the model; ∆ and a(t f + ∆) are

physical but as yet unknown parameters. The others are mathematical constructs with no

direct physical meanings. After substituting the early universe parameter values assumed

in section 3.1, we find, for example, the solution for n = 1
2 at ∆ = 10−35 s

δ ≈ 2.65 × 10−6∆ (4.17)

(evaluated using Maple). Table 4.1 lists additional values of δ for a sample set of transition

durations ∆. The purpose of having three significant figures listed in the table is to illustrate

the relationship between the displacement and any changes to the transition scale.

We have accomplished the objective of parameterizing the transition from the inflation-

ary scale factor with a family of power-law scale factors that ensure sufficient smoothness

to have continuity of a and its first time derivative—although we have not imposed the

condition of continuity on any higher-order derivatives. The slope of the inflation-era scale

factor grows at a rate on the order of the Hubble parameter, and a requirement of continu-

ity on the second derivative would effectively extend inflation into the subsequent period,

rather than marking the physical end of inflation as the point at which the second derivative

becomes negative.

4.2 Power Laws with n > 1

To continue the study of alternative transitions, we now examine power laws with n > 1,

containing unknown parameters analogous to those analyzed in the previous section. The

scale factor formula is

av(t) = av(t f + δ) + E [t − (t f + δ)]n. (4.18)

The subscript v denotes the representative inverted parabola for n = 2 with the vertical axis

parallel to the a-axis. The displacement of the vertex from a(t f ) now places δ at a time later

than the tangent point at t f + ∆, as shown in figure 4.2.

62



Figure 4.2 The displacement δ necessarily places the vertex of the representative inverted
parabola with power law index n = 2 later than the end of inflation at t f and the tangency
point at t f + ∆ (not to scale). Increasing the duration over which the the interpolating scale
factor applies also shifts the vertex similarly.

Repeating the analysis of the matching conditions at t f and t f +∆ yields the scale factor

av(t) = a(t f ) +
T (t0)δ

n
+

T (t0)
n(−δ)n−1 [t − (t f + δ)]n (4.19)

and a fourth matching condition

T (t0)
(−δ)n−1 (∆ − δ)n−1 =

1
2(t f + ∆)

[
a(t f ) +

T (t0)δ
n
+

T (t0)
n(−δ)n−1 (∆ − δ)n

]
. (4.20)

Table 4.1 details the vertex displacements δ for power laws a(t) ∝ t1/2 and t2 for a sample

set of transition durations ∆ between the end of inflation and the beginning of the radiation

era. Increasing the duration ∆ for the power law n = 1
2 tends to set the displacement of the

vertex. However, because of the difficulty of establishing continuity with the inflationary

slope at t f , the displacement δ for the n = 2 interpolator is many orders of magnitude

greater. With its vertex located later on the timeline than t f , the table shows that increasing
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the transition has the effect of shifting the vertex of av(t) farther away from the end of

inflation. The vertex displacement δ for a power law with n = 2 and ∆ = 10−35 s is almost

six orders of magnitude farther from the point of tangency than that of the power law with

n = 1
2 . The power law ap(t) ∝ t1/2 can establish continuity with the slope of the inflationary

scale factor with such a minute displacement, because the power law has an infinite slope at

the vertex. However, the power law av(t) ∝ t2 has no such infinite slope, and the difficulty

of establishing continuity with the large slope at the end of inflation, ∼ 1011 s−1, manifests

itself in the displacement being many orders of magnitude greater than that of ap(t) ∝ t1/2.

Table 4.1 The vertex displacements δ for power laws a(t) ∝ t1/2 and t2 for a sample set of
transition durations.

Transition n ∆ (s) δ (s)

ap(t) 1
2 10−35 2.65 × 10−41

10−33 3.22 × 10−41

10−30 3.29 × 10−41

10−22 3.29 × 10−41

av(t) 2 10−35 1.50 × 10−35

10−22 1.50 × 10−22

Figure 4.3 displays the transitional scale factors of eqs. (4.8) and (4.19), rescaled by a

translation of the t-axis t → t′ = t f+t. The timeline starts at the arbitrarily small initial value

t = 10−43 s. The graphs represent power laws for n < 1 and n > 1 with a representative

sample of powers. The three av(t) scale factors with power laws t3/2, t2, and t5/2 essentially

overlay each other, and the ap(t) scale factor proportional to t1/4 approaches those of the

power laws with n > 1. The graph also shows the unsmoothed scale factor defined by

eq. (3.2), which exceeds that of ap(t) at t3/4. The t-axis timeline begins at t = 10−43 s after

inflation terminates, while the vertical dotted line at t = 10−35 s marks the nominal start

of the radiation era. However, the graphs of the scale factors themselves offer somewhat

limited insight into the evaluation of the quality of the interpolating functions. For that, we
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Figure 4.3 Scale factors a(t f + t) after inflation

now look instead to graphs of the Hubble parameter,

H(t f + t) =
ȧ(t f + t)
a(t f + t)

. (4.21)

In the transitional Hubble parameters below, Hin is the constant inflationary Hubble param-

eter, taken to be 1016 GeV. For the two classes of power laws, we find

Hp(t f + t) =

(
1 + t

δ

)n−1

1
Hin
− δn +

δ
n

(
1 + t

δ

)n (4.22)

Hv(t f + t) =

(
1 − t

δ

)n−1

1
Hin
+ δn −

δ
n

(
1 − t

δ

)n . (4.23)

Figure 4.4 shows graphs of the Hubble parameters of eqs. (4.22) and (4.23) corre-

sponding to the scale factors shown in figure 4.3. Once again, the graphs based on the

scale factors av(t) for t3/2, t2, and t5/2 essentially overlay each other. The discontinuity of

65



Figure 4.4 Hubble parameters H(t f + t) after inflation

the radiation-era Hubble parameter with Hin exceeds two orders of magnitude. The graph

based on scale factor ap(t) for t3/4 fails to display asymptotic behavior with Hin at small

times, because the timeline has the same t-axis translation and does not start at t f . Again

the vertical dotted line marks the start of the radiation era at t = 10−35 s. We note the

requirement of smoothness at the beginning of the radiation era causes abrupt shifts down-

ward and upward as t → ∆ for interpolating scale factors not proportional to t1/2. The

power laws with n > 1 that overlay each other in both figures 4.3 and 4.4 must exhibit the

shift downward to establish continuity with the radiation era Hubble parameter. Unable to

justify a physical basis for this behavior, we shall move forward in our analysis by elim-

inating these power laws as valid interpolating functions and focus on more specifically

determining workable interpolating functions with n < 1. We also note that as n→ 1
2 from

above or below, the scale factor ap(t) transforms more seamlessly into the radiation era. So
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at this stage, we expect that the most suitable interpolating functions will correspond to the

index value n = 1
2 , or something close to that. The power laws for the interpolating region

and the subsequent radiation-dominated era are both horizontally-opening parabolas (or

nearly so), which differ principally in their vertex placements and radii of curvature.
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Chapter 5

Additional Constraints

5.1 The Equation of State

We continue with the evaluation of the usefulness of the possible interpolations by con-

sidering a parameter ϵH, which is an alternative to the equation-of-state parameter w that

satisfies p = wρ, according to

ϵH =
d log(H−1)

d log a
=

3
2

(1 + w). (5.1)

Following a graphical technique described by Kaloian Lozanov [54], we shall interpret

the formula as the slope in a plot of the evolution of the scale factor from inflation to the

radiation-dominated era. Appendix D provides more information about this expression.

Figure 5.1 shows our version of the Lozanov graphical approach for the power law ap(t) ∝

tn, with n ranging from 0.05 to 0.95. Table 5.1 lists statistics for some of the graphed power

laws, as well as smaller and larger values of n.

Aside from the footnoted observations in Table 5.1, we note a further curious feature

of figure 5.1. The graphs at the upper and lower extremes of n display almost cusp-like

changes of slope between the transition and the radiation-dominated era at t = t f + ∆.

Between inflation and the start of the radiation-dominated era, ϵH changes from a value

much greater than 2 to less than 2 for n > 1
2 . Conversely, for n < 1

2 , the parameter starts

less than 2 and then becomes greater than 2. With our expectation that ϵH = 2, only the

power law n = 1
2 (the same power law index as in the radiation era itself) appears able

to transition seamlessly to the radiation era, which suggests that all powers except n = 1
2

result in a cusp in the evolution of ϵH. This motivates a closer inspection.
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Figure 5.1 Graphs of log H−1 by log a with 0.05 increments in n from 0.05 to 0.95. The
slopes of the graphs equal the parameter ϵH =

d log(H−1)
d log a .

Table 5.1 The displacement δ, parameter ϵH, and equation-of-state parameter w = 2
3ϵH−1

for power laws ap(t) ∝ tn, with values of n ranging between 0 and 1.

n δ (s) ϵH w

0.002 2.53 × 10−36 2.59 0.73 (b)

0.25 9.55 × 10−37 2.37 0.58
0.50 2.65 × 10−41 2.00 (a) 0.33
0.75 9.46 × 10−56 1.50 0.00 (c)

0.98 2.31 × 10−294 1.04 −0.31 (d)

(a) Computation sets this value more precisely at ≈ 2.00039. After interpolation us-
ing the linear relation associated with eq. (5.2), the expected ϵH = 2 for a radiation-
dominated scale factor occurs at n ≈ 0.5002.
(b) Values of ϵH → 2.6− and w ≈ 0.73 signify unphysical, exotic tachyon-like particles
with velocities greater than the speed of light, which section 5.2 discusses in detail.
(c) For ϵH ≈ 1.50 and w ≈ 0.00, we have a transition from inflation to an equation of
state that would be consistent with a matter-dominated universe. We take up consider-
ation of the single-component matter-dominated universe in section 5.3.
(d) As ϵH → 1.0+ and w → − 1

3 , the scale factor remains inflationary, effectively elimi-
nating the transition.

69



Figure 5.2 plots ϵH versus the power law index n at time (t f + ∆):

ϵH = 1 + (1 − n)
a(t f ) −

T (t0)δ
n +

T (t0)δ
n

(
1 + ∆

δ

)n

T (t0)δ
(
1 + ∆

δ

)n . (5.2)

For n > 1
2 , the negative term in the numerator of eq. (5.2) is small relative to the other terms

appearing in the fraction, which are on the order of a(t f ) and essentially cancel with the

factor of the same characteristic size in the denominator. The linear relation ϵH−1 ∝ (1−n)

remains, as the graph and Table 5.1 show. In contrast, for n < 1
2 , the scale factor a(t f ) is

small relative to the other terms in the fraction. As n→ 0, the fraction and (1 − n) are both

increasing, and ϵH increases to approximately 2.6.

Figure 5.2 The parameter ϵH = − Ḣ
H2 with power law ap(t) ∝ tn for n < 1 in 0.05 incre-

ments at the start of the radiation era, with the transition period ∆ = 10−35 s.

Figure 5.2 aligns with the possibility raised by figure 4.3 that only n = 1
2 results in a

transition to the radiation era without an awkward, cusp-like feature—whose very presence

would seem to be contrary to the dictum we have adopted of modeling the transitions in a

smooth fashion. However, precise calculations consistently indicate that a slightly different
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n ≈ 0.5002 actually produces the seamless transition. In the same way as the abrupt

shift that we cannot explain in the graph of the Hubble parameters tends to disqualify all

power laws except n = 1
2 , the cusp-like features again appear likely to signify unphysical,

unexplained behavior. However, before we attempt to resolve these conflicts, we shall

review additional constraints on the equation of state, starting with constraints related to

the speed of sound.

5.2 Speed of Sound Constraints

Another tool for evaluating the interpolators is the application of constraints on the speed

of sound to the equation of state. A speed of sound less than zero or greater than the speed

of light would violate stability or causality, respectively [56, 57]. Stability requires that the

speed must be real; imaginary phase speeds would correspond to imaginary frequencies,

or modes that grow exponentially with time. At the other end, special relativity imposes

the standard limitation that information carried by arbitrary quanta cannot propagate faster

than the speed of light c = 1 in vacuum. Thus, we expect the sound speed of the transition

waves to obey inequalities

0 ≤ v2
s ≤ 1. (5.3)

We assume, as is standard, that the inflaton wave oscillations are fast and thus adiabatic,

so that a passing wave brings about temperature changes without conductive heat transfer.

The thermodynamic behavior is reversible, and so the entropy per unit mass is constant [58]

as an inflaton wave passes through. Pressure p = p(s, ρ) becomes a function of the density

ρ only, p = p(ρ). We also make the assumption that the inflaton condensate at the end

of inflation is a perfect fluid, allowing us to apply a linear, single-component equation of

state, p = wρ, expressing the dependence of pressure on density in terms of a ρ-independent

equation-of-state parameter w. This environment yields a sound speed

v2
s =

1
dρ/dp

=
dp
dρ
= w, (5.4)
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and using w = 2
3ϵH − 1, the condition 0 ≤ w ≤ 1 implies 3

2 ≤ ϵH ≤ 3. At the precise end of

inflation, ∆ = 0 in eq. (5.2), leaving

ϵH = 1 + (1 − n)
a(t f )

T (t0)δ
= 1 +

(1 − n)
Hδ

. (5.5)

Figure 5.3 Values of the parameter ϵH = 1 + (1−n)
Hδ at the end of inflation, t f ≈ 4 × 10−39

s, for ap(t) ∝ tn with n ≈ 1
2 in increments of 0.001. The gray band depicts the permissible

values of ϵH, 3
2 ≤ ϵH ≤ 3, subject to the assumption that the inflaton condensate at the end

of inflation is a single-component perfect fluid with equation of state p = wρ.

Figure 5.3 displays the effect of enforcing the sound speed restrictions from eq. (5.3) on

ϵH; these conditions severely restrict the permissible range of power laws indices. The line

plot is a Python cubic spline interpolation of Maple-generated solutions for the parameter

ϵH from eq. (5.2) in 0.001 increments around n = 1
2 . The section of the spline interpolation

within the gray horizontal band contains valid values of ϵH, corresponding to interpolating

theories with stable, causal sound speeds. Reading off the graph, we see the permissible

physical power law band for the continuous function transitioning from the end of inflation

to the radiation era lies approximately between 0.4990 < n < 0.5005. This narrow band

is consistent with the large separation in figure 5.1 between the power law n = 1
2 and the

closely adjacent powers, n = 0.45 and n = 0.55.
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5.3 Continuity of the Equation of State

Although we have found restrictions on the allowed range of power law values, a tension

between the expected and derived equations of state for n = 1
2 actually remains. We do

not find that ϵH = 2 corresponds exactly to n = 1
2 . We instead recall the expected ϵH = 2

was associated with n ≈ 0.5002 reported in Table 5.1, and we now seek to understand the

reason for the slight discrepancies between these values and the derived ϵH ≈ 2.00039 that

corresponds to the exact n = 1
2 .

Comparison of the scale factor in eqs. (4.7) and (4.8) of section 4.1 with the first two

terms in the numerator of the fraction in the expression below,

ϵH derived = 1 + (1 − n)
a(t f ) −

T (t0)δ
n +

T (t0)δ
n

(
1 + ∆

δ

)n

T (t0)δ
(
1 + ∆

δ

)n , (5.6)

indicates that those two terms arise from the a-axis scale factor displacement ap(t f−δ) of the

interpolating function’s vertex. The third term in the numerator represents the functional

dependence of the scale factor on time.

Table 5.2 details parameters corresponding to power laws ap(t) with indices n = 1
2 and

n = 2
3 transitioning to radiation-dominated and matter-dominated eras with scale factors

likewise proportional to t1/2 and t2/3. The column ϵH derived reconstructs the parameter as the

sum of 1 and the contribution from the displacement and the time components. The differ-

ence between the expected and derived ϵH is separated into the relative contributions from

the components of the numerator, ϵH displacement and ϵH time. For comparison, we repeat the

analysis for a single-component, matter-dominated transition function establishing conti-

nuity between the end of inflation and a matter-dominated era (that is, with n = 2
3 power

laws). We see the results are qualitatively the same. The displacement of the vertex of the

scale factor along the a-axis is responsible for the discrepancies from ϵH expected.
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Table 5.2 Parameters corresponding to power laws ap(t) with indices n = 1
2 and n = 2

3
transitioning to radiation-dominated and matter-dominated eras.

n δ (s) ϵH expected ϵH derived ϵH displacement ϵH time

1
2 2.65 × 10−41 2 2.00039 0.00039 1.00000
2
3 7.71 × 10−42 1.5 1.50020 0.00020 0.50000

If not for the contribution of the vertex displacement, we would have seamless tran-

sitions of the equation of state between the interpolating power laws and the radiation or

matter eras. A first-order phase transition at (t f + ∆) might be responsible for the cusp, but

we reason against that possibility. The dynamics of the expansion of space at the tangent

point undergoes no change. Prior to and after (t f + ∆), the power law index n govern-

ing expansion remains approximately the same for each single-component era. Also, the

transition precedes the period of preheating described in chapter 7 and subsequent thermal-

ization, so that we expect temperature to evolve smoothly at t f + ∆.

Instead, invoking continuity of the equation of state at (t f +∆) and noting ϵH expected =
1
n

for a single-component universe, as appendix E shows, we solve eq. (5.6) for the displace-

ment δ and find

ϵHexpected =
1
n
= 1 + (1 − n)

a(t f ) −
T (t0)δ

n +
T (t0)δ

n

(
1 + ∆

δ

)n

T (t0)δ
(
1 + ∆

δ

)n (5.7)

1
n
=

a(t f ) −
T (t0)δ

n +
T (t0)δ

n

(
1 + ∆

δ

)n

T (t0)δ
(
1 + ∆

δ

)n . (5.8)

Substituting a(t f ) = T (t0)/H from eq. (3.7) with H = Hin yields

δ =
n
H
. (5.9)

Analysis of eq. (5.6) demonstrated that the displacement

ϵH displacement = a(t f ) −
T (t0)δ

n
(5.10)

caused the cusp-like feature. With the eq. (5.9) result, and recalling a(t f ) =
T (t0)

H , we instead

have ϵH displacement = 0, and the bump on the curve is gone.
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However, making the assumption of continuity of the equation of state at t f +∆ destroys

the smoothness of the scale factor that we imposed at both t f + ∆ and t f . So we must

reexamine the matching condition at t f +∆; returning to the fourth matching condition and

trying to solve for ∆, we see that

T (t0)
δn−1 (∆ + δ)n−1 =

1
2(t f + ∆)

[
a(t f ) −

T (t0)δ
n
+

T (t0)
nδn−1

(∆ + δ)n
]

(5.11)

T (t0)
(
1 +
∆

δ

)n−1

=
1

2(t f + ∆)

[
T (t0)

H
−

T (t0)δ
n
+

T (t0)δ
n

(
1 +
∆

δ

)n]
(5.12)

0 =
1
H
−
δ

n
+
δ

n

(
1 +
∆

δ

)n
− 2(t f + ∆)

(
1 +
∆

δ

)n−1

. (5.13)

With δ = n
H , this simplifies to

2(t f + ∆) =
1
H

(
1 +

H∆
n

)
(5.14)

∆ =

1
H − 2t f

2 − 1
n

. (5.15)

So the transition period ∆ is undefined for n = 1
2 , which invalidates the claim of first-

derivative smoothness imposed by the eq. (4.17) parameters, δ ≈ 2.65 × 10−6∆. For n ≈

0.5002, associated with ϵH = 2, the new formula’s value of ∆ is in fact less than zero. Since

∆ is supposed to represent the length of time over which the interpolating function applies,

this value is manifestly unphysical.

Furthermore, substituting δ = n/H in the interpolating scale factor,

ap(t) = a(t f ) −
T (t0)δ

n
+

T (t0)δ
n

(
1 +

t − t f

δ

)n

(5.16)

=
T (t0)δ

n

(
1 +

t − t f

δ

)n

, (5.17)

eliminates the a-axis displacement of ap(t). We introduced the displacement of the power-

law vertex in section 4.1.1 in order to enforce the smoothness condition at t f , but this would

be undone by the assumption of exact continuity of the equation of state.

The Lozanov graphical approach to analyzing the equation of state suggests a range of

power law indices, 0.5000 ≲ n ≲ 0.5002, are reasonable, and this is supported by the values
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that are permitted by the speed-of-sound constraints, 0.4990 ≲ n ≲ 0.5005. Having tried

unsuccessfully to establish continuity with the equation of state at t f + ∆, we now seek an

explanation of the discontinuity. If the transition represents a continuation and ultimately

a termination of inflation, a local discontinuity might result from a weak phase transition

of unknown character. A second explanation may be that a power law index not equal to

0.5 in the transition signals that the composition of the universe is not strictly radiation-

dominated as the transition ends, and so a single-component model is not sufficient to

describe the dynamics.
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Chapter 6

Summary of Numerical Results

We have found that a transition function with power-law index n can provide seamless first-

derivative smoothness over the period between the end of inflation and the development of

a single-component n-era universe, while obeying fundamental stability and causality con-

straints. During the transition, the scale factor increases by approximately an order of mag-

nitude more, compared with what it would have been in a model with a sharp cusp dividing

the inflationary from post-inflationary functional forms; and that additional accumulated

expansion factor remains as time progresses. Figure 6.1 shows the key comparisons.

Figure 6.2 depicts the increases toward asymptotic limits more clearly. Both figures 6.1

and 6.2 also reveal that these increases occur primarily in the vicinity of t = 10−37 s and

do not particularly depend on the duration of the transition ∆. Table 6.1 contains further

data, including how much larger, relatively speaking, the universes with the smooth inter-

polations are than the models without smoothing. The underlying numbers show that after

10−34 s, the asymptotic values 9.8 and 11.2 have completely stabilized (to over 12-decimal-

place precision). The percentages represent the degree to which the ratios have approached

the asymptotic values reached at 10−34 s. Even by 10−37 s, the increased expansion factors

have already grown to be within 2% of their asymptotic values.
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(a)

(b)

Figure 6.1 The growth in scale factors a(t f + t) for single-component universes with
smoothness enforced at t f + ∆ with ∆ = 10−35 s and 10−22 s in (a) and (b), respectively.
We note that the approximate order-of-magnitude increases in the power law scale factors
occur at around 10−37 s in all cases.
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Figure 6.2 The scale factor ratios ap(t)
a′2(t) . At approximately t = 10−37 s, the ratios reach

greater than 98% of the asymptotic values of 9.8 and 11.2 for ap(t) ∝ t1/2 and ap(t) ∝ t2/3,
respectively.

Table 6.1 The ratios of ap(t) to a′2(t) at different times during the interpolation period.

ap(t) ∝ t1/2 ap(t) ∝ t2/3

Time (s) Ratio % Ratio %

10−34 9.837 100 11.227 100

10−36 9.828 99.9 11.217 99.9
10−37 9.69 98.5 11.03 98.3
10−38 8.4 85.8 9.4 83.3

We are left with the interesting result about what happens when we insert an inter-

polating function after the end of inflation to smooth out the dynamics. Compared with

the models with discontinuous derivatives—signifying abrupt transitions between the in-

flationary period and a period with a different equation of state—the total expansion of the

scale factor is greater by about an order of magnitude (or between 2 and 3 e-folds). In a

way, this is unsurprising, since the interpolating function allows the inflationary expansion
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to tail off a bit more gradually, and so the net result is always a larger universe at later

times. This kind of increase in the scale factor will form the basis for our analysis of the

effect of continuity in the numerical analysis going forward.
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Chapter 7

The Smooth Scale Factor in the PreheatingModel

Having concluded that enforcing a smooth transition results in an order-of-magnitude in-

crease in the ultimate scale factor of the subsequent single-component universe, we shall

now examine the effects of this change on reheating, based on the preheating model of

KLS [50], in which the inflaton couples to a second scalar field χ in the era following after

inflation, which is taken to be a matter-dominated universe. We shall evaluate preheating

effects using a smooth interpolating power law with n = 2
3 , as described previously in sec-

tion 4.1 as an example of a power law with n < 1. We compare our results to those of the

KLS model, which employs the scale factor a(t) ≈ a f (t/t f )2/3 with a discontinuous slope.

Our numerical analysis shows that the larger scale factor in the smooth model decreases

the χ occupation numbers nk and dilutes the total number density nχ. The dilution arises

naturally out of the volume increase due to the greater expansion of space—although the

broad parametric resonance during preheating partially offsets the effect. Broad paramet-

ric resonance involves all modes of the scalar field χ less than a specific maximum being

involved in quasi-resonant interactions with the inflaton, and it causes an exponential in-

crease in the number of χ particles created. Appendix F summarizes the parameters used

in the numerical analysis, a description of each, and their units.

7.1 Occupation Numbers

In this section and section 7.2, we briefly summarize the foundations of the detailed, exten-

sive case that KLS present in support of their theory. The Lagrange density for the scalar
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field χ coupled to the inflaton,

L =
1
2
χ,µχ

,µ −
1
2

m2
χχ

2 −
1
2

g2ϕ2χ2, (7.1)

in expanding space with vanishing mass parameter mχ = 0, generates the equation of

motion

χ̈k +
3ȧ
a
χ̇k +

(
k2

a2 + g2ϕ2
)
χk = 0, (7.2)

where k =
√

k2, for the Fourier mode χk in momentum space. The inflaton at the end

of inflation is a coherently oscillating field of form ϕ(t) = Φ(t) sin(mt), with amplitude

envelope Φ(t) = MP√
3πmt

[52], so that

χ̈k +
3ȧ
a
χ̇k +

[
k2

a2 + g2Φ2(t) sin2(mt)
]
χk = 0. (7.3)

In slow roll inflation, chaotic inflation, and other inflationary models in which the friction

term 3Hϕ̇ in the equation of motion (2.36) becomes negligible, the inflaton exhibits sinu-

soidal oscillating behavior around ϕ = 0. (Here the argument of the sine function has time

t in units of m−1, the mass of the inflaton, which the KLS model uses throughout.) The

appearance of the Planck mass MP in Φ(t) derives from the Hubble parameter expressed in

terms of the gravitational constant. The units of k are m, and the scale factor, normalized

in the Robertson–Walker metric with a(t0) = 1 today, remains dimensionless.

Broad parametric resonance consists of non-adiabatic oscillation of the χ field in Fourier-

space regions where the equation of motion is unstable. The character of the instability is

revealed by converting eq. (7.3) into the standard Mathieu equation. Rescaling the scalar

field,

Xk = a3/2χk, (7.4)

eliminates the friction-like term and so yields

Ẍk +

[
k2

a2 + g2Φ2(t) sin2(mt)
]

Xk = 0. (7.5)
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Now, recasting the argument of the oscillating term by setting z = mt completes the con-

version into the Mathieu equation:

X′′k +
[
Ak + 2q cos(2z)

]
Xk = 0. (7.6)

The prime represents the derivative with respect to the argument z, and the two parameters

in the equation are

Ak =
k2

a2m2 + 2q, q =
g2Φ2(t)

4m2 . (7.7)

The resonance behavior of solutions to the Mathieu equation depends on the values of

these Ak and q, which determine the stable and unstable regions. Appendix G reproduces

the standard plot depicting the stability and instability regions in the q-Ak plane with a

graph of the Mathieu equation parameters.

The oscillations of the scalar field exhibit adiabatic instability when

ω̇

ω2 ≳ 1, (7.8)

and energy transfer occurs between the inflaton and the scalar field χ. Trial solutions of the

Mathieu equation,

Xk ∝ eµkz, (7.9)

are unstable for real values of the Floquet characteristic exponent µk [59, 60]. Section 7.2

discusses µk in more detail.

The mode occupation number nk is the energy of the mode in question, divided by the

single-particle energy ωk:

nk =
ωk

2

(
|Ẋk|

2

ω2
k

+ |Xk|
2
)
− nk 0. (7.10)

(The adjustment −nk 0 to account for the zero-point energy density is effectively negligi-

ble.) Figure 7.1 reproduces the results of the discontinuous scale factor of the KLS model,

for the scalar field mode amplitude Xk and the exponential increase in the corresponding
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occupation number log nk. The t-axis timeline of both graphs becomes a count of the num-

ber of oscillations of the inflaton after t is expressed in units of 2π
m , with which the revised

equation of motion (7.5) is

Ẍk + (2π)2
[
k2

a2 + g2Φ2(t) sin2(2πt)
]

Xk = 0. (7.11)

We have selected the specific mode of the KLS model with the wave number k = 4m,

where m = 10−6 MP, to maximize the growth of the occupation number. To reproduce the

broad-resonance exponential growth, we have used parameters g = 6.25 × 10−4, Ẋ(t f ) =

0.045, and Ẍ(t f ) ≈ 0; these were identified empirically, and varying the parameter values

away from these will decrease the observable resonance effect. The scalar field derivative

Ẋ(t f ) approximates what KLS advise—namely, that the positive-frequency solution Xk(t) ≈

exp
(
−iωkt/

√
2ωk

)
be applied as an initial condition.

(a) (b)

Figure 7.1 The scalar field and occupation number for the first 60 oscillations in the
model with a discontinuous scale factor

Broad parametric resonance preheating requires certain preconditions on Φ(t) and the

Mathieu equation parameter q, and it begins shortly after the end of inflation, after ap-

proximately one quarter of an oscillation of the inflaton. (KLS use this approximation to

advance their analysis.) With time defined in terms of the number of oscillation cycles,

84



t f =
π

2m ≈ 10−37 s, which makes the timeline consistent with that which we have found for

the continuous scale factor; our order-of-magnitude increase in the size of the cosmos also

appears at around 10−37 s.

In graph (b) of figure 7.1, the scalar field spans many instability bands in the first ∼ 10

oscillations, as q decreases substantially, and the resonances cause exponential growth in

the occupation number. From about 12 to 17 oscillations, the growth flattens as q lessens

while crossing the stability region corresponding to q values decreasing from about 2 to

1. Broad resonance and growth resume in the next 10 oscillations in the instability band

for q ≲ 1 and Ak ≈ 1, before ultimately terminating after ∼ 34 oscillations. Appendix H

also shows graph (b) of figure 7.1 superimposed on the final three instability regions of

figure G.1 (corresponding to decreasing q as time progresses).

(a) (b)

Figure 7.2 The scalar field and occupation number for the first 60 oscillations in a model
with the continuous scale factor

In figure 7.2, we repeat the presentation from figure 7.1 using the smooth transitional

scale factor in place of the kinked scale factor of the KLS model. The scalar field and

occupation number show sharp decreases from figure 7.1 to figure 7.2 because of the effect

of the order-of-magnitude increase in a(t). We can examine the effect of the continuous
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scale factor more precisely by analyzing the root mean squares of Xk and nk averaged over

the 10 oscillations following the end of preheating, which occurs after approximately 34

oscillations. With time t in units of m−1 according to the KLS formalism, we can convert

the scale factor units of time in seconds to oscillations,

a(t) ≈
[
t (s)
t f

]2/3
=

 t (s)
(

2π/m
s

)
π

2m


2/3

= (4t)2/3. (7.12)

We have also used the assumption for t f that broad parametric preheating begins after infla-

tion ends, at one fourth of an oscillation. Then we apply a factor of 10 for the approximate

order-of-magnitude increase in the continuous a(t),

a(t)→ 10a(t) ≈ 10(4t)2/3. (7.13)

For Xk (in the k = 4m mode), we find a modest decline of ∼ 0.03 in the root mean square,

due to the order-of-magnitude increase in the scale factor. Figure 7.3 shows log nk for both

forms of the scale factor for 10 oscillations following the end of broad resonance. The

decrease in log nk because of the effect of the larger scale factor causes a reduction of just

∼ 0.002 in the root mean square of the occupation number nk at 10 oscillations after broad

resonance terminates.

Local maxima in log nk for the smooth scale factor in figure 7.3 occur at every half

oscillation of ϕ at t = 1
2 , 1,

3
2 , . . .. At these points, where sin(2πt) = 0 in eq. (7.11), the

frequency reduces to

ωk = 2π
k
a
, (7.14)

with values less than one, 0.080 ≲ ωk ≲ 0.095. For the 10 oscillation periods under

consideration with the smooth scale factor model, this range of fractional frequencies has

the effect of increasing the contribution of the term containing the kinetic energy Ẋk in the

occupation number,

nk =
ωk

2

(
|Ẋk|

2

ω2
k

+ |Xk|
2
)
− nk 0, (7.15)

even as it tends to suppress the contribution of the potential-like Xk term. Thus, the small

fractional frequency generates the local maxima. The range of larger frequencies with the
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Figure 7.3 These plots compare 10 oscillations of log nk after the end of broad resonance
at ∼ 34 oscillations for the two functional forms of the scale factor.

cusped scale factor following the end of resonance, 0.80 ≲ ωk ≲ 0.95, has less of an effect

and intersperses some local minima, depending on the relative values of Ẋk and Xk at the

half-oscillation times.

We are able to provide some understanding of the differences in appearance of log nk—

that is, the greater degree of dispersion of the amplitudes above the average occupation

number in graph (b) of figure 7.2 in comparison with figure 7.1—by examining in de-

tail the effect of the fractional frequency. At oscillation 36, for example, the occupation

numbers log nk(36) are approximately 45.3 and 40.2 for the cusped and smooth scale fac-

tor models, respectively. The kinetic term in the energy, amplified by the frequency, for

the most part determines the occupation number in both models. The average occupation

numbers over 4 oscillations from oscillation 34 to 38 are approximately 43.9 and 36.8,

respectively—yielding an increase during this period of ∼ 0.03 with the cusped scale fac-

tor and ∼ 0.09 with the smooth model. The lower level of the scalar field in the smooth

model and (more importantly) its time derivative moderate what would otherwise be an ap-

proximately 10-fold difference in the increases based on the values of ωk alone. Thus, we

see the greater dispersion of amplitudes above the average log nk in figure 7.2. Appendix I
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contains a table that lists some of the supporting data associated with the behavior around

oscillation 36, as well as related graphs.

7.2 Number Density

The number density of the scalar field quanta has its basis in the process of broad para-

metric resonance KLS characterize in their paper as stochastic—that is, random. They

show that the variation in the phase θk of the scalar field χ in the course of semiclassical

interactions between the χ-particles and the oscillating inflaton field is very much greater

than π, which makes successive phases effectively random. However, this does not mean

that the there is no net energy flow from one sector to the other. In fact, a growth in the

number of particles between classical scattering events can be as much as 3 times as prob-

able as a decrease, based on the numerical effect of possible values for the phase angle in

the recurrence relation governing resonance. KLS also separate preheating into two time

periods. The first period precedes all backreaction and rescattering, and the second period

involves the effect of those interactions on number density, which can be significant. Back-

reaction and rescattering are quantum effects in which the created χ-particles interact with

the background inflaton field. In backreaction, interactions can alter the effective masses

of the particles and the frequency of the inflaton oscillations. Rescattering involves a cre-

ated particle scattering again, either off an inflaton or another χ-particle. However, KLS

conclude that the duration of the second period is so brief that during it they can safely

neglect the expansion of the universe, and their analysis of that part does not depend on the

scale factor. Therefore, here we shall determine the effect of the continuous scale factor on

number density conversely without including backreaction and rescattering.

Semiclassical scattering leading to quantum-mechanical χ-particle production involves

the interaction of the scalar field χ and the background inflaton field oscillating around zero.

KLS derive the number density of the χ field from the adiabatic approximation solution to
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eq. (7.5),

Xk(t) =
αk(t)
√
ωk

e−i
∫ t j

dtωk +
βk(t)
√
ωk

e+i
∫ t j

dtωk , (7.16)

with the scalar field phase θ j
k =

∫ t j dtωk and t j representing the time at end of the jth

oscillation—such that as time t → t j, the inflaton field is oscillating around its minimum,

ϕ → 0. The functions αk(t) and βk(t) are time-dependent Bogoliubov transformation coef-

ficients [61].

Around ϕ ≈ 0, eq. (7.5) becomes

Ẍk +

[
k2

a2 + g2Φ2(t)m2(t − t j)2
]

Xk = 0. (7.17)

The scalar field χ with an effectively random phase θ j
k completes a half-oscillation at time

t → t j for j = 1, 2, 3, . . .. As t → t j for each half-oscillation of χ, the inflaton field

concurrently oscillates near zero, creating a period of non-adiabatic energy transfer, which

leads to exponential growth in the number of χ-quanta according to eq. (7.8). At other

times, the number density nχ remains stable. Introduction of parameters

τ = k∗(t − t j) and κ =
k

ak∗
(7.18)

recasts eq. (7.17) as a differential equation with a parabolic cylinder function solution,

d2Xk

dτ2 + (κ2 + τ2)Xk = 0, (7.19)

which is also the Schrödinger equation with an unstable quadratic potential, V(ϕ) ∝ −τ2.

Appendix J derives the largest mode to participate in the broad parametric resonance, k∗ =√
gmΦ. The scattering of solutions Xk of eq. (7.5) leads to a recurrence relation for the

Bogoliubov coefficients, which may be represented by transfer matrix,α
j+1
k e−iθ j

k

β
j+1
k e+iθ j

k

 =


1
Dk

R∗k
D∗k

Rk
Dk

1
D∗k


α

j
ke
−iθ j

k

β
j
ke
+iθ j

k

 . (7.20)

KLS provide the reflection Rk and transmission Dk amplitudes from the solutions of the

parabolic cylinder equation and also the phase angle φk, which is a complicated function
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of the parameter κ,

φk = argΓ
(
1 + iκ2

2

)
+
κ2

2

(
1 + log

2
κ2

)
. (7.21)

With these, the recurrence relation becomesα
j+1
k

β
j+1
k

 =

√

1 + e−πκ2eiπφk ie−i π2 κ
2+2iθ j

k

−ie−i π2 κ
2−2iθ j

k

√
1 + e−πκ2e−iπφk


α

j
k

β
j
k

 . (7.22)

Noting that the occupation number nk in eq. (7.10) just depends on the Bogoliubov coeffi-

cient βk [62],

nk = |βk|
2, (7.23)

and that for for a coherent process nk ≫ 1, leads to the recurrence relation

n j+1
k ≈

[
1 + 2e−πκ

2
− 2 sin(θ j

tot) e−
π
2 κ

2
√

1 + e−πκ2
]

n j
k, (7.24)

with the accumulated phase

θ
j
tot = 2θ j

k − φk + arg β j
k − argα j

k. (7.25)

Because the variation in the phases θ j
k is very much greater than π, the randomness of θ j

k—

and by extension the randomness of α j
k and β j

k as functions of θ j
k—make θ j

tot stochastic.

Noting that resonance begins to be suppressed unless πκ2 ≲ 1, KLS find that for πκ2 ≪ 1,

a growth in the number of particles is three times as likely as a decrease. Within the range

0 < θ j
tot ≤ 2π, values of 0 < θ j

tot <
π
4 and 3π

4 < θ
j
tot ≤ 2π cause an increase in the number

of particles according to eq. (7.24); only over one quarter of the possible range of phases,

π
4 < θ

j
tot ≤

3π
4 , does the number of χ-particles decrease, as energy flows (incoherently) back

to the inflaton field. A second recurrence relation also obtainable [59] from the Mathieu

equation (7.6),

n j+1
k = n j

ke
2πµ j

k , (7.26)

in combination with eq. (7.24), yields the Floquet characteristic exponent,

µ
j
k =

1
2π

log
[
1 + 2e−πκ

2
− 2 sin(θ j

tot) e−
π
2 κ

2
√

1 + e−πκ2
]
. (7.27)
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Integration of nk for all modes that participate in broad parametric resonance gives rise

to the total number density of χ-quanta,

nχ =
1

(2πa)3

∫
d3k nk(t) =

1
4π2a3

∫
dk k2e2µkmt. (7.28)

The units of number density nχ are the expected m−3, since occupation number nk(t) is

dimensionless. KLS evaluate the integral on the far-right-hand side of eq. (7.28) by the

steepest descent method and estimate the number density to be

nχ ≈
k3
∗

64π2a3√πµmt
e2µmt. (7.29)

They also determine the maximum Floquet characteristic exponent µ associated with an

unknown maximum kmax, estimated as kmax ≈
k∗
2 .

We use the proportionality

nχ ∝
1

a3√µmt
e2µmt (7.30)

to perform a numerical analysis of the effect of the continuous scale factor by examining

the ratio

Rχ =
nχ a(t)smooth

nχ a(t)cusp

. (7.31)

The ratio Rχ between terms nχ a(t)smooth and nχ a(t)cusp represents the number density of the

smooth scale factor model to that with a discontinuous derivative at the end of inflation, as

used by KLS. We anticipate a decrease in the number density due to the increase in volume,

moderated to a certain amount by the dependence of the proportionality in eq. (7.30) on µ.

The use of the proportionality eliminates the dependence on the unknown mode k∗, which

KLS estimate as k∗(t) ≈
√

gmΦ(t), as detailed in Appendix J.

In the absence of e2µmt
√
µmt , the greater time allowed for the expansion of space as inflation

tails off in the smooth model would on its own cause dilution—that is, a decrease in the

number density. The order-of-magnitude increase in the smooth scale factor alone would

reduce the number density by the cube of the scale factor increase, ∼ 10−3. However, the

effect of the broad parametric resonance in preheating—in particular, the term e2µmt
√
µmt > 1—

partially offsets the dilution of the ∼ 10−3 increase in the volume of space. The extent of the
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Figure 7.4 The ratios Rχ represent the minimal dilution of the smooth scale factor. Max-
imizing the offset with total phase sin(θ j

tot) = −1 in eq. (7.27) minimizes the dilution.

offset is dependent on the stochastic sin(θ j
tot) in eq. (7.27). Figure 7.4 displays the ratio Rχ

of number density of the smooth scale factor to the discontinuous scale factor as a function

of time (again expressed as the number of oscillations). The value of the ratio at the start

of preheating, ∼ 10−3, reflects the effect only of the expansion of space. As preheating

progresses, however, Rχ rises to a level slightly greater than 1.7 × 10−3 at the end of broad

parametric resonance, at around 34 oscillations, in the limiting case in which sin(θ j
tot) is

consistently equal to −1. In contrast, as sin(θ j
tot) increases toward 1, Rχ decreases. For

example, at sin(θ j
tot) = 0, Rχ ∼ 1.6 × 10−3, and Rχ is about 1.3 × 10−3 at sin(θ j

tot) = 0.65.

With a slightly larger stochastic value, nχ a(t)cusp is not directly calculable via this method

at lower oscillations, and with a stochastic phase of 0.8, the calculations of both nχ a(t)cusp

and nχ a(t)smooth , even at the end of 34 oscillations, because that would require the Floquet

index µ in eq. (7.27) to be negative. The negative Floquet index signals an essentially

unphysical solution, which the model formalism does not support; physically this scenario

would describe a net energy flowing back into the inflaton field, while mathematically the

formalism breaks down because the saddle point integration method is no longer usable.

Thus, examination of the ratio Rχ places a bound on the effect of the continuous scale factor.
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The reduction of the number density due to the expansion of space alone, ∼ 10−3, increases

only slightly, by at most about 1.7 × 10−3 after preheating, depending on the values of the

stochastic sin(θ j
tot) angles.
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Chapter 8

Conclusion

This work has explored the consequences of applying the reasonable expectation of smooth-

ness to the physical expansion of space, as expressed by the characteristic scale factors

defining the early universe evolving through its generally-accepted, broadly-defined epochs.

We focused on the nearly instantaneous slice of time separating the inflationary era and the

subsequent era in which the stress-energy tensor was assumed to be dominated by a single

component, either radiation or matter. We focused on the transition out of inflation specifi-

cally because it is where we inevitably expect to find the sharpest change in the behavior of

the scale factor; assuming some realistic values for primordial parameters reveals that the

time derivative of the scale factor can decrease by a factor of 1
120 between inflation and the

radiation era. Rather than being guided by a specific equation of state model, we imposed

a first-derivative smoothness requirement upon the scale factor and looked at phenome-

nalistic interpolating functions that could connect the inflation and subsequent eras. The

assumption of a continuously, steadily declining (but not contracting) slope after the end of

inflation led to an in-depth examination of families of interpolating candidates with shifted

power-law dependencies on time. We imposed the same requirements of smoothness at the

beginning and at the end of the brief interpolating transition period.

From these matching conditions, we uncovered that it was necessary to place the ver-

tices of power law interpolating functions with indices n < 1 prior to the end of inflation

at t f and the vertices of functions with n > 1 subsequent to t f , with the displacement

in either case parameterized by δ. Also initially unknown was the transition period ∆—

the duration of the period between the end of inflation and the single-component universe
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(whether modeled as composed of radiation or matter). However, implicit in our transi-

tion model was a remaining uncertainty in the parameters of the model. We cannot find

specific expressions for all of them without imposing additional conditions, and we can

do no better than finally expressing the displacement δ in terms of the transition period ∆.

Graphical analysis of the Hubble parameter and the equation-of-state and speed-of-sound

stability and causality constraints allowed us to identify physically reasonable interpolating

power-law functions as those having indices that approached the power-law indices 1
2 and

2
3 for radiation and matter single-component universes, respectively. Numerical analyses

demonstrate the remarkable result that the actual transition lasts approximately 10−37 s, es-

sentially regardless of the composition of the single-component universe that follows the

transition and the duration ∆. In addition, the universe enters the single-component era

about an order of magnitude (or approximately 2–3 e-folds) larger than it would have been

if subject to a scale factor with a discontinuous slope, which switched instantaneously to

t1/2 or t2/3 behavior at the end of the inflationary epoch. Although the form of the inter-

polating function is not exponential, the increase in the lifespan of the universe, 10−37 s,

is not inconsequential compared to the assumption for the inflationary expansion of the

universe, N ≈ 60 e-folds. We understand the outcome to be a universe given an additional

short sliver of time in which to grow larger simply because we have imposed a condition of

smoothness on the physical expansion of space. The numerical analysis adds precision to

this result. For a radiation-dominated era following the transition, at 10−37 s the increase in

the size of the universe has attained 98.5% of its asymptotic value, and the corresponding

figure for a subsequent matter-dominated era is 98.3%. Generalizing the approach we have

used to a multiple-component universe would also be interesting, as would considering the

high-scale physics of inflation that might provide the friction needed to end inflation in a

smoother way.

We proceeded to examine the effect of the theoretical changes we had described to the

dynamic expansion of space (characterized by a smooth scale factor and the resulting pre-
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dicted increase in the size of the universe) on a subsequent preheating era. The evolution

of the universe after inflation remains highly speculative because of the challenges implicit

in experimental confirmation. A period of reheating appears to be required in order to

be consistent with the later stages of cosmological development, but the details of the re-

heating dynamics can depend sensitively on the nature of the particle species available to

be excited—including as-yet unobserved high-mass species that may not be accessible at

standard model scales but could nonetheless have been active participants in the dynamics

of the hot, dense early universe. However, we have also discussed the intricate, highly-

technical theory of preheating developed by Kofman, Linde, and Starobinsky to address

some generic problems with reheating. We applied the KLS formalism to our model with

a smooth interpolating scale factor leading into a matter-dominated universe, in order to

gauge the effects of the smoothing on the most sensitive χ-particle occupation number nk

and the corresponding number density nχ. We were able to estimate the numerical changes

compared with the results obtained using the standard cusped scale factor, and we con-

cluded that the differences are not necessarily numerically significant, apart from a dilution

in the total particle density that should be common to all models that predict somewhat

larger universes after the end of inflation. Specifically, for the occupation number of the

most aggressively growing χ mode, we find a modest decline in log nk= 4m of ∼ 2 × 10−3 in

the root mean square for 10 oscillations following the end of broad parametric resonance,

which is a consequence of a decrease of just ∼ 3 × 10−2 in the root mean square of the

scalar field χk over the same period. In addition, by constructing a relation consisting of

the ratio of the number density in the cosmology with the smooth scale factor to that with

the cusped scale factor, we determine a partial offset to the expected dilution of the quantity

of bosons produced by broad parametric resonance due to the approximate 103 increase in

the unit volume of space caused by the larger smooth scale factor. The stochastic nature

of broad parametric resonance precludes a specific prediction, but we find an additional

modest increase in the proportion, with an upper bound of ≲ 1.7 × 10−3.
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It may be somewhat surprising that the effect of a proposed smoothing of the scale fac-

tor is so minor—mostly limited to the natural rarefaction of the χ particles that comes with

a spatially larger universe. Regarding the possibility (in a case of optimal phase alignment)

of, at most, an additional near doubling per unit volume of number density, we note that a

doubling of a small number of something in a unit volume may easily be thought of as not

negligible. However, in terms of the many, many orders of magnitude of primal particles in

a unit volume of early space, we consider the outcome of having, at most, close to twice as

many as not of substance. Thus, we view the result of the numerical analysis of the effect

of a not insignificant increase in the size of the universe to represent confirmation of the

comparative invariance of the KLS preheating model to these kinds of modifications. We

are satisfied that result should represent a modestly useful contribution to the body of work

in support of this iconic theory.
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Appendix A

Non-zero Christoffel Symbols

The Appendix contains the remaining non-zero Christoffel symbols.

For l = m = 1:

Γr
ji =

1
2

grr

(
∂gri

∂x j +
∂gr j

∂xi −
∂gi j

∂xr

)
. (A.1)

Γr
tr =

1
2

grr

(
∂grr

∂xt +
∂grt

∂xr −
∂gtr

∂xr

)
=

ȧ
a
. (A.2)

Γr
rr =

kr
1 − kr2 ; Γr

θθ = −r(1 − kr2); Γr
ϕϕ = −(1 − kr2)[r sin2(θ)]. (A.3)

For 2 = m = 2:

Γθji =
1
2

gθθ
(
∂gθi
∂x j +

∂gθ j

∂xi −
∂gi j

∂xθ

)
. (A.4)

Γθtθ =
1
2

gθθ
(
∂gθθ
∂xt +

∂gθt
∂xθ
−
∂gtθ

∂xθ

)
=

ȧ
a
. (A.5)

Γθrθ ==
1
r

; Γθϕϕ = − sin(θ) cos(θ). (A.6)

For l = m = 3:

Γ
ϕ
ji =

1
2

gϕϕ
(
∂gϕi
∂x j +

∂gϕ j

∂xi −
∂gi j

∂xϕ

)
. (A.7)

Γ
ϕ
tϕ =

1
2

gϕϕ
(
∂gϕϕ
∂xt +

∂gϕt
∂xϕ
−
∂gtϕ

∂xϕ

)
=

ȧ
a
. (A.8)

Γ
ϕ
rϕ =

1
r

; Γϕθϕ =
cos(θ)
sin(θ)

. (A.9)
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Appendix B

Comoving Density Equations

This appendix derives the comoving density equations. A cosmological continuity equation

is the basis, which we obtain from the Friedmann and acceleration equations. Differentiat-

ing the first Friedmann equation ( ȧ
a

)2

=
8πG

3
ρt −

k
a2 , (B.1)

gives

−2
( ȧ
a

)3

+ 2
ȧä
a3 =

8πG
3
ρ̇ + 2k

ȧ
a3 . (B.2)

After substituting in the above formula k from the first Friedman equation and ä from the

acceleration equation,
ä
a
= −

4πG
3

(ρ + 3p), (B.3)

simplification yields

ρ̇ = −3
ȧ
a

(ρ + p). (B.4)

Equation B.4 is the continuity equation we seek.

Rearranging equation B.4 leaves

ρ̇

ρ
= −3

ȧ
a

(1 + w). (B.5)

with equation of state w = p/ρ. After integration, we arrive at

ρ = ρ0a−3(1+w. (B.6)

The equations of state for matter, radiation, and the vacuum are 0, 1
3 , and -1, respec-

tively, which represent a universe composed completely of dust, relativistic gas, or negative
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pressure. Thus, the comoving densities are

ρm =
ρm,0

a3 ; ρr =
ρr,0

a4 ; ρΛ = ρΛ,0. (B.7)

Although we derive these ratios from idealized, single-component universes, the trend in

flatness shown in Table 1.1 indicates the reasonableness of the assumption.

Direct inspection of the densities themselves brings about the same conclusions about

the ratios. A mass density has a comoving dependence of volume on a3 in the denominator.

A radiation density has the same inverse comoving volume dependence and added to it is

one more power of the scale factor due to the inverse length dependence of radiative energy,

E = hc
λ

. Finally, the vacuum has no dependence on length, so that ρΛ = ρΛ,0 without

adjustment.
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Appendix C

Temperature and the Scale Factor

In this appendix, we review the derivation of the inverse relation between the radiation

temperature of the universe and the scale factor, following the approach outlined by Ry-

den [11]. In an isothermal environment, the first law of thermodynamics

dQ = dE + p dV (C.1)

reduces to
dE
dt
= −p

dV
dt
. (C.2)

After substituting the pressure of a relativistic gas, pγ =
ργ
3 , and the CMB black body

energy density, ργ = 4σT 4, we get

d(ργV)
dt

= −
ργ

3
dV
dt
, (C.3)

dργ
dt

V + ργ
dV
dt
= −
ργ

3
dV
dt
, (C.4)

1
T

dT
dt
= −

1
3V

dV
dt
. (C.5)

In an expanding universe with volume element V = a3(t)L3, the relation becomes

1
T

dT
dt
= −

1
3a3(t)L3

d[a3(t)L3]
dt

= −
1
a

da
dt
, (C.6)

which is an elementary separable differential equation, satisfied for

T ∝ a−1. (C.7)
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Appendix D

The Equation of State

This appendix details the derivation of the working forms of the equation of state in flat

space, defined as

ϵH = −
Ḣ
H2 = −

ä/a − (ȧ/a)2

(ȧ/a)2 = 1 −
ä/a

(ȧ/a)2 . (D.1)

Substituting the first Friedmann equation in flat space,

H2(t) =
( ȧ
a

)2
=

8πG
3
ρ, (D.2)

and the acceleration equation,
ä
a
= −

4πG
3

(ρ + 3p), (D.3)

gives

ϵH = 1 −
−4πG

3 (ρ + 3p)
8πG

3 ρ
=

3
2

(1 + w), (D.4)

where w would be the coefficient of proportionality between pressure p and density ρ in

a single-component universe. For an exponential scale factor a = eHt, we clearly have

d log a = Hdt, but in fact this relationship holds more generally, as integrating it just gives

the definition of H. So we can alternatively express ϵH as

ϵH = −
Ḣ
H2 =

1
H

(
−

Ḣ
H

)
=

1
H

d
dt

log(H−1) =
d log(H−1)

d log a
, (D.5)

that is, as the slope along a plot of log(H−1) = − log H versus log a.
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Appendix E

Derivation of ϵH expected

The derivation of ϵH expected =
1
n for a single-component universe is:

an(t) = an(t0)
(

t
t0

)n
(E.1)

ȧn(t) = n
an(t0)

t n
0

t(n−1) =
n
t
an(t) (E.2)

än(t) = n
an(t0)

t n
0

(n − 1)t(n−2) =
n − 1

t
ȧn(t). (E.3)

Therefore,

ϵH = −
Ḣ
H2 = 1 −

ä/a
(ȧ/a)2 = 1 −

an(t)än(t)
ȧn(t)2 (E.4)

= 1 −
an(t)n−1

t ȧn(t)
ȧn(t)2 = 1 −

an(t)n−1
t

n
t an(t)

=
1
n
. (E.5)
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Appendix F

Parameters and Units

Below is a summary of parameters used in the numerical analysis and a description for

reference. Units are in mass unless otherwise noted.

• a(t) — [W] scale factor

• k — momentum of the mode

• m — mass of the inflaton; the fundamental unit of the analysis; m = 10−6Mp

• Mp — Planck mass

• nk(t) — [W] occupation number

• nk — [mass3] occupation number (density)

• nχ — [mass3] number density

• t — [mass−1] time

• µ— [W] Floquet characteristic exponent

• ϕ— inflaton

• Φ— inflaton amplitude

• χ, X — scalar field
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Appendix G

Mathieu Equation Stability-Instability chart

We reproduce here the well-known stability-instability chart [59, 60] showing the regions

of the parameter space in which the initial value problem solutions for the Mathieu equa-

tion (7.6) are either stable or unstable. Note that q and Ak decrease as time progresses.

Figure G.1 The areas highlighted in gray are the regions of instability in the q-Ak pa-
rameter space. The plot also depicts the Mathieu equation parameters associated with the
equation of motion solutions.
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Appendix H

Regions of Instability

The regions of instability in Figure G.1 correspond to the periods of sustained exponential

growth in nk during preheating. Figure H.1 superimposes the Mathieu equation instability

regions associated with the equation of motion in the KLS model on the time evolution of

log nk, to highlight this correspondence.

There are some interesting and noteworthy differences between the behavior in the

three broad-resonance growth regions for nk (at least for the particular, rapidly-growing

value k = 4m we have selected). There are small oscillations visible, in addition to the

secular growth in log nk. During periods when the parameters make the Mathieu equation

stable (the white bands in figure H.1), the oscillations are comparatively chaotic; this is

also what was seen in figure 7.3 after the last resonant growth period has ending. There is

a certain amount of approximately periodic behavior, due to the driving by the amplitude

squared of the inflaton field, so there are fairly stark features every half an inflaton oscilla-

tion period. (See figures H.2 and H.3.) However, underneath these is a chaotically varying

baseline. During the periods of resonance (the gray bands), the baseline behavior is differ-

ent, with approximately exponential growth in the occupation number, as is typical in an

unstable driven system. On top of this are additional oscillations, qualitatively similar in

some ways to those in the stability regions. However, there are also clear manifestations of

the nonlinearity of the Mathieu equation, in the form of period doubling or tripling. When

the exponential growth is subtracted, the residual still has, on average, one peak per half

oscillation of the inflaton field. However, these peaks are not evenly placed or of equal am-

plitude. During the second shown resonance region, the oscillating residuals have periods
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equal to the full inflaton oscillation period—a period doubling phenomenon. Within each

full oscillation are two dissimilar up-and-down cycles. (See figures H.4 and H.5.) More-

over, in the vicinity of and during the first, shortest resonant period there is period tripling,

with the periodic residuals taking one and half inflaton oscillation cycles to return fully to

their original phase space positions. (See figures H.6 and H.7.)

Figure H.1 The final three instability regions superimposed on the log nk resonance
growth. As the number of oscillations increases, we see exponential growth in occupa-
tion number as the q and Ak of figure G.1 decline toward zero and the equation of motion
crosses the last three instability regions.
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Figure H.2 Instability band for resonance with N ≈ 17.5 to 28.5.

Figure H.3 Resonance at half-periods of χk.
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Figure H.4 Instability band for resonance with N ≈ 9.5 to 12.

Figure H.5 Resonance at period-doubling of χk.

114



Figure H.6 Instability band for resonance with N ≈ 6.5 to 7.5.

Figure H.7 Resonance at 3
2 -periods of χk.
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Appendix I

Occupation Number Supporting Data

Table I.1 Data in support of the differences in appearance between graphs (b) of fig-
ures 7.1 and 7.2, in which the last column represents the increase in occupation number
log nk(36) compared to the average value over 4 oscillations from oscillation 34 to 38, and
43.9 and 36.8 are for the KLS and smooth scale factor models, respectively.

a(t) model ωk ωk|X|2
|Ẋ|2

ωk
log nk(36) Increase

cusped 0.91 4.62 × 1017 9.56 × 1019 45.3 0.03

smooth 0.091 8.71 × 1013 5.79 × 1017 40.2 0.09

Figure I.1 Plots of scalar field X and its time derivative Ẋ with the cusped scale factor for
10 oscillations following the end of broad parametric resonance.
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Figure I.2 Plots of scalar field X and its time derivative Ẋ with the smooth scale factor for
10 oscillations following the end of broad parametric resonance.
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Appendix J

Derivation of the Range ofModes

Figure J.1 The outer and inner pairs of dotted lines represent the ranges of ϕ(t) that par-
ticipate in parametric resonance. The wider outer band corresponds to the values of ϕ(t)
that participate in the resonance as k → 0, and the inner band is the preheating band of
broad parametric resonance as ϕ(t)→ 0.

Appendix J details the derivation of the range of modes k∗ that participate in the broad

parametric resonance process. KLS provide the typical frequency for the scalar field χ

oscillations, ω(t) =
√

k2 + g2ϕ2(t), subject to the adiabatic instability condition, eq. (7.8),

ω̇

ω2 ≳ 1 (J.1)

ω̇

ω2 =
g2ϕϕ̇(

k2 + g2ϕ2)3/2 ≳ 1. (J.2)

The instability condition yields the inequality defining the unstable modes. The inflaton

at the end of inflation is an oscillating field of the form ϕ(t) = Φ(t) sin(mt). For broad
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resonance, when ϕ(t) is small and the decaying envelope Ψ is approximately constant over

the period of a single oscillation, ϕ̇ ≈ mΦ. This makes the resonance condition

1 ≲
g2ϕmΦ(

k2 + g2ϕ2)3/2 (J.3)

k2 ≲
(
g2ϕmΦ

)2/3
− g2ϕ2. (J.4)

We find the maximum range of k by taking the derivative of the inequality (J.4) to maximize

the inflaton value ϕ∗,
2g4/3m2/3Φ2/3

3ϕ1/3
∗

− 2g2ϕ∗ = 0, (J.5)

for which the solution is

ϕ∗ = (3)−3/4

√
mΦ
g
≈

1
2

√
mΦ
g
. (J.6)

Substituting ϕ∗ ≈ 1
2

√
mΦ
g into k2

max ≲
(
g2ϕ∗mΦ

)2/3
− g2ϕ2

∗, we find

kmax ≲

√
gmΦ

2
. (J.7)

Taking k → 0 in eq. (J.3) generates an expression for the inflaton associated with the

minimum-range of mode k:
g2ϕmΦ(
g2ϕ2)3/2 ≳ 1 (J.8)

ϕ ≲

√
mΦ
g
. (J.9)

Figure J.1 shows a standard graphical representation of the bands of ϕ(t) associated

with the minimum and maximum ranges of k. The wider outer band corresponds to the

values of ϕ(t) that participate in the resonance for the minimal Fourier component—that is,

as k → 0. The inner band, −1
2

√
mΦ/g ≤ ϕ∗ ≤ 1

2

√
mΦ/g, corresponds to the participating

ϕ(t) associated for the modes with k∗ =
√

gmΦ. This is the preheating band of broad

parametric resonance. Explosive growth in the number of particles occurs as ϕ(t)→ 0. We

note that k2
max applies to a band of ϕ(t) for which |ϕ| ≤ 2ϕ∗. Thus, we find

k∗ =
√

gmΦ. (J.10)
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