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Abstract 

The South Carolina Department of Transportation (SCDOT) is currently engaged 

in a multi-year effort to assess the structural integrity of its inventory of over 9,000 bridges. 

This assessment process is expected to result in an increase in the number of bridges that 

require load postings, repairs, or replacements across South Carolina. This could 

potentially lead to adverse economic repercussions due to restricted truck routes, bridge 

closures, repair work, and the need for bridge replacements. To alleviate the escalating 

costs associated with these challenges, it is imperative to explore methods aimed at 

reducing the need for load postings and bridge closures or replacements.  

This study is a part of an ongoing multi-year research investigation, which is being 

funded and supported by SCDOT. The study has three main objectives: (a) to investigate 

methods to strengthen the skinny-leg channel girder bridges to reduce the number of load 

postings, (2) utilize acoustic emission (AE) parameters for condition assessment of in-

service bridges and determine the condition factor for load ratings of the bridges, and (3) 

extend the use of AE to determine the vehicle loads on the bridges while monitoring the 

deterioration. Three studies were performed to fulfill the objectives. 

The first study addresses the existing gap in research by investigating different 

methods for strengthening prestressed skinny-leg girder bridges. Aluminum alloys possess 

desirable properties that make them attractive as external reinforcement materials. 

However, while previous studies have investigated the use of aluminum alloys on 

reinforced concrete members, there is a lack of investigation on their use on full-scale 
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prestressed concrete bridge girders. To address this gap, this study investigates the 

feasibility of utilizing aluminum alloy channels as an external reinforcement material on 

full-scale prestressed concrete bridge girders. Nine girders obtained from decommissioned 

bridges in South Carolina were tested under monotonic loading to failure. The test program 

consisted of six unstrengthened girders, one strengthened with bonded aluminum channels 

(SE), one strengthened with bonded and bolted aluminum channels (SEB), and one 

strengthened with bolted aluminum channels (SB). The results indicate that externally 

anchoring aluminum alloy channels with bolts was the most effective strengthening method 

in terms of practicality and higher increase in the moment capacity. 

The second study proposes a data-driven condition assessment for in-service 

bridges using acoustic emission. The study aims to utilize AE parameters to assess the 

condition of the girders and to determine the condition factor used in the load rating of the 

bridges. Six prestressed concrete channel bridge girders, which were originally used in 30-

ft span bridges constructed in the 1960s, were subjected to flexural tests at the University 

of South Carolina (USC). Acoustic emission (AE) was used to monitor the girders during 

the tests. The girders were visually inspected prior to testing and each girder was assigned 

a condition rating based on the Specifications for the National Bridge Inventory (SNBI). 

Intensity analysis charts were developed based on the collected AE data. The charts may 

detect if the girders are operating within the specified design criteria and are calibrated to 

theoretical cracking load and findings of cumulative signal strength analysis. In addition, 

the charts  may assess the deterioration regardless of the initial girder condition, which can 

be utilized to determine the condition factor of the girders for load rating purposes. 
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The innovation of the third study lies in presenting a potential approach for 

predicting the vehicle loads on prestressed concrete girder bridges from the collected AE 

data. To achieve this goal, three improved machine learning algorithms based on artificial 

neural networks (ANN), AdaBoost, and random forest were adopted to analyze the AE 

data. An ensemble training strategy was employed to eliminate the imbalance issue while 

training machine learning models. The AE data was collected by conducting a flexural test 

on a full-scale prestressed concrete girder. In this study, load determination is considered 

a classification problem. The loading procedure was divided into load steps and the AE 

signals were classified to their corresponding load steps. The results show that the 

improved random forest algorithm outperformed the improved ANN and AdaBoost 

algorithms in classifying AE hits to their corresponding load steps. 
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1.1 Background 

Bridges are integral to the aging infrastructure throughout the United States. The 

state of South Carolina relies significantly on its numerous bridges for community 

connectivity, trade, and transportation. The state ranks 26th in the nation in bridge 

inventory, with more than 9,000 bridges. Most bridges were designed utilizing the H-10 or 

H-15 loading standards. In comparison, the current loading standard of HL-93, is much 

greater  [1], [2]. The South Carolina Department of Transportation (SCDOT) manages 

approximately 90% of all bridges. On average, the bridges in this area are 40 years old, 

approaching the 50-year service level, with 6.8% being load posted, 11% being structurally 

deficient, and 0.33% being reported closed [3]. This is a direct outcome of bridge 

deterioration and overloading due to their long service lives and increased vehicle loads. 

The SCDOT is currently engaged in a multi-year effort to assess the structural 

integrity of its inventory of over 9,000 bridges. This assessment process is expected to 

result in an increase in the number of bridges that require load postings, repairs, or 

replacements across South Carolina. This could potentially lead to adverse economic 

repercussions due to restricted truck routes, bridge closures, repair work, and the need for 

bridge replacements. To alleviate the escalating costs associated with these challenges, it 

is imperative to explore methods aimed at reducing the need for load postings and bridge 

closures or replacements. 

Initial findings from the effort have identified prestressed concrete channel girder 

bridges as one of the problematic superstructure types. Out of the 9,481 bridges in South 

Carolina, 377 are prestressed channel girder bridges. These bridges were built between 

1950 and 2000 with the majority being built in the 1960s. These bridges typically consist 
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of multiple spans and are supported by timber pile substructures. Figure 3.1 presents field 

picture of prestressed concrete channel bridge girders.  

 
 Figure 1.1 Photograph of a precast prestressed concrete channel bridge girders [4]   

 The prestressed concrete channel girders can be separated into two categories: 

skinny-leg channel girders and wide-leg channel girders. There are 103 skinny-leg channel 

girder bridges and 274 wide-leg channel girder bridges in South Carolina. This dissertation 

will focus on skinny-leg channel girders. The name comes from the cross-section shape 

that creates a channel along the span length. They are comprised of channel sections with 

a span length of 30 ft. The bridge cross-section typically consists of ten or more girders. 

Each girder is 30.5 in. or 33 in. wide. The girders are tied together by transverse tie rods at 

quarter points along the span. The thickness of the flanges is 5 in., while the web thickness 

tapers down to 2.5 in. at the bottom with five prestressing strands on each leg. Figure 1.2 

depicts a typical cross-section drawing of a skinny-leg channel girder obtained from an 

SCDOT drawing. 
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 Figure 1.2 Typical cross-section of skinny-leg channel girder (SCDOT drawing) 

The skinny-leg channel girder bridges are designed for H15-44 loading criteria, 

which is lower than the design vehicles used in current design standards (HL-93). The 

SCDOT conducted load ratings of these bridges, using the typical EV-3 truck as the 

controlling vehicle in the rating process. Among these bridges, almost all the skinny-leg 

channel girder bridges have a load rating factor (RF) below 1, indicating the need for load 

postings, repairs, or replacements due to capacity limitations (Figure 1.3) [5].  

 
 Figure 1.3 Rating factors (RF) of the skinny-leg channel girder bridges [5] 

Laboratory testing on the skinny-leg channel girders was a collaborative effort 

involving Clemson University and the University of South Carolina. This study, however, 

specifically examines the investigations conducted at the University of South Carolina, 

with the primary goal of addressing a particular challenge related to reducing load 
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restrictions on these bridges. In many cases, repairing and strengthening the sections with 

deficiencies presents a cost-effective and structurally efficient solution. Nevertheless, there 

has been a lack of substantial research dedicated to the design and implementation of repair 

and strengthening strategies for this class of structures. The motivation of this study is to 

explore strengthening techniques for skinny-leg girder bridges that are cost-effective and 

easily implemented in the field to extend their lifespan. 

Furthermore, the deterioration of concrete bridges is a crucial issue. Most in-service 

bridges have experienced various levels of deterioration. Visual inspection is primarily 

used in the United States by bridge owners to evaluate the condition, however, this method 

is not well suited for detecting concealed defects or those located in areas that are not easily 

accessible [6]. In addition, visual inspections are conducted periodically, typically every 2 

years [7]. The condition of the bridges may experience alterations during this period. 

However, in some cases, bridge inspectors are sent to the structure on an increased 

frequency, resulting in a more time-consuming and labor-intensive process [8]. 

Furthermore, the efficiency of bridge inspection procedures can be subjective to the 

expertise of the inspector [9]–[11]. To overcome these challenges, an alternative approach 

is to develop and install a structural health monitoring (SHM) system. When well-designed 

and properly implemented, the SHM system can effectively replace the frequency of 

manual inspections, often resulting in cost savings. Once critical structural parameters are 

identified for a structure’s performance, sensors that can continuously monitor its condition 

can be installed. This not only provides a more objective set of performance measurements 

but also allows for more frequent data collection, enabling precise and convenient tracking 

of historical trends. Furthermore, it offers immediate warning to the owner if specific 
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structural thresholds are exceeded. Engineers can monitor current and historical trends 

from a centralized location, reducing the necessity for unscheduled on-site inspections, 

unless the collected data suggests otherwise. In addition, it provides site-specific data on 

the condition of bridges for maintenance funding prioritization.  

Nondestructive approaches such as acoustic emission (AE) have been utilized in 

monitoring bridge degradation [12], [13]. AE was chosen over other methods due to its 

high sensitivity for detecting stress waves resulting from material changes, such as the 

formation of cracks [14]. Furthermore, being a passive non-destructive testing method, AE 

is a feasible candidate for structural health monitoring. The motivation for this study is to 

propose an SHM system utilizing AE that can evaluate the condition of the in-service 

bridges and determine the condition factor for load rating applications. In addition, this 

study explores the feasibility of predicting the vehicle loads that pass over the bridges from 

the collected AE data. Correlating AE criteria with load demand can provide meaningful 

insight into the extent of structural deterioration occurring in the structure. In addition, 

bridge loads are subject to a great deal of uncertainty, primarily due to live loads. One 

effective way to decrease uncertainty is to assess live loads and conduct load ratings by 

obtaining site-specific traffic data [15]. 

1.2 Research Significance 

One specific superstructure type, prestressed skinny-leg girders, is addressed in this 

study. The first study addresses the existing gap in research by investigating different 

methods for strengthening prestressed skinny-leg girder bridges. Aluminum alloys possess 

desirable properties that make them attractive as external reinforcement materials. 

However, while previous studies have investigated the use of aluminum alloys on 
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reinforced concrete members, there is a lack of investigation on their use on full-scale 

prestressed concrete bridge girders. To address this gap, this study investigates the 

feasibility of utilizing aluminum alloy channels as an external reinforcement material on 

full-scale prestressed concrete bridge girders. 

The second and third studies propose a data-driven condition assessment for in-

service bridges using acoustic emission. The second study aims to utilize AE parameters 

to assess the condition of in-service bridges and to determine the condition factor used in 

the load rating of the bridges. The study also presents deterioration quantification charts 

based on the collected AE data. In addition, the third study explores a potential approach 

for estimating the vehicle loads on prestressed concrete girder bridges from the collected 

AE data while monitoring the deterioration.  

The output of this work proposes potential strengthening methods for prestressed 

skinny-leg channel girder bridges that are cost-effective and easier to implement in the 

field to reduce the number of load-posted bridges. Furthermore, this work develops 

condition assessment tools for the evaluation of the current condition of bridges and 

estimates the condition factor for load rating purposes. In addition, this work extends the 

use of AE to predict the vehicle loads on prestressed girder bridges from the collected AE 

data while monitoring the deterioration. This approach may potentially provide site-

specific data for load and traffic conditions for load rating applications. 

1.3 Objectives 

This study is a part of an ongoing multi-year research investigation, which is being 

funded and supported by SCDOT. The study presented has three main objectives: (a) to 

investigate methods to strengthen the skinny-leg channel girder bridges to reduce the 
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number of load postings, (2) to utilize acoustic emission (AE) parameters for condition 

assessment of in-service bridges, and (3) to develop a potential approach for predicting 

vehicle loads that pass over bridges from the AE data collected while monitoring the 

bridge. To fulfill these objectives, three independent research studies were performed to 

achieve the goals. Each study had its own specific set of objectives, which can be 

summarized as follows:  

1.3.1 Full-Scale Experimental Investigation of Prestressed Concrete Channel Bridge 

Girders Strengthened with Aluminum Alloy Channels 

In this study, four-point bending tests were conducted on the prestressed skinny-leg 

channel girders until failure to study their flexural behavior before and after strengthening. 

The objectives of this study were: 

• Evaluate the prestressed skinny-leg channel girders' existing deterioration and its 

effect on the moment capacity. 

• Evaluate and investigate strengthening methods utilizing aluminum alloy channels 

externally bonded or bolted to the girders. 

1.3.2 Condition Assessment of Prestressed Concrete Channel Bridge Girders Using 

Acoustic Emission and Data-Driven Methods 

In this study, AE sensing was employed to evaluate the condition state of 

prestressed skinny-leg channel girders. The main objectives of this study were: 

• Utilize AE parameters for condition assessment of the prestressed skinny-leg 

channel bridge girders. 

• Quantify the deterioration in the girders observed during visual inspection using AE 

parameters. 
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• Determine the condition factor of the girders. 

1.3.3 An Automated Load Determination System for Bridges Based on Acoustic Emission 

and Machine Learning Techniques 

In this investigation, machine learning models were developed and implemented 

for predicting the vehicle loads that pass over prestressed skinny-leg girder bridges from 

the collected AE data. The primary objectives of this study were: 

• The classification of acoustic emission (AE) hits to their corresponding load steps. 

• Develop an optimized method for predicting vehicle loads that pass over prestressed 

concrete channel bridge girders from the collected AE data. 

1.4 Layout of dissertation 

 Six chapters are included in the dissertation. Chapter 1 serves as an introduction, 

providing background information, motivation, research significance, objectives, and 

layout of the dissertation. Chapter 2, titled "Literature Review," introduces background 

information from published literature. Chapter 3, Chapter 4, and Chapter 5 were prepared 

in the format of journal articles. Therefore, some essential explanations may be repeated. 

In Chapter 3, “Full-Scale Experimental Investigation of Prestressed Concrete 

Channel Bridge Girders Strengthened with Aluminum Alloy Channels”, a study that 

presents nine prestressed skinny-leg channel girders obtained from decommissioned 

bridges in South Carolina which were tested under monotonic loading to failure. The test 

program was comprised of six unstrengthened girders, one strengthened with bonded 

aluminum channels (SE), one strengthened with bonded and bolted aluminum channels 

(SEB), and one strengthened with bolted aluminum channels (SB). This chapter 



10 

 

demonstrates the feasibility of utilizing aluminum alloy channels as an external 

reinforcement material on full-scale girders. 

Chapter 4 is titled “Condition Assessment of Prestressed Concrete Channel Bridge 

Girders Using Acoustic Emission and Data-Driven Methods”. This chapter presents an 

effort to use non-destructive evaluation techniques, particularly AE, to evaluate the 

condition state of prestressed skinny-leg channel bridge girders. Six girders were subjected 

to flexural tests at the University of South Carolina. AE was used to monitor the girders 

during the tests. The study presents deterioration quantification charts based on the 

collected AE data. 

Chapter 5 is titled “An Automated Load Determination System for Bridges Based 

on Acoustic Emission and Machine Learning Techniques”. This chapter presents a 

potential approach for predicting the vehicle loads on prestressed concrete girder bridges 

from the collected AE data while monitoring the deterioration. Three improved machine 

learning algorithms based on artificial neural networks (ANN), AdaBoost, and random 

forest were adopted to analyze the AE data. The AE data was collected by conducting a 

flexural test on a full-scale prestressed concrete girder. The results obtained from all the 

models are discussed in this chapter. 

Chapter 6 includes a summary of the work carried out in the dissertation as well 

as conclusions based on this study. Moreover, within this chapter, recommendations for 

further research are also provided. 
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Chapter 2  

Literature review 
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2.1 Load rating 

Bridge load rating is the process of determining the safe load-carrying capacity of 

a bridge using analytical methods, experimental methods, or a combination of both. 

Bridges are evaluated to ensure that they have an adequate reserve structural capacity to 

meet the anticipated live load requirements, with a safety margin [16]. In cases where the 

reserve structural capacity is insufficient to support the anticipated live load demands, 

measures such as load posting, rehabilitation, or closure of the bridge may be necessary to 

guarantee public safety. 

Load rating is governed by the American Association of State Highway and 

Transportation Officials Manual for Bridge Evaluation (AASHTO MBE). SCDOT adheres 

to the load rating requirements specified in the AASHTO MBE, with certain adjustments 

tailored to align more effectively with the state’s bridge infrastructure. The AASHTO MBE 

manual provides three distinct methodologies for load rating bridges: Allowable Stress 

rating (ASR), Load Factor Rating (LFR), and Load and Resistance Factor Rating (LRFR). 

Among these methodologies, the LRFR stands out as the most recently developed approach 

for load rating. It sustains a consistent level of reliability by considering the structural 

deterioration that occurs over time utilizing a condition factor, in contrast with the other 

methods. The outcomes of the LRFR method are conveyed in the form of a rating factor. 

The LRFR equation for load rating analysis is: 

𝑅𝐹 =
𝐶−(𝛾𝐷𝐶)(𝐷𝐶)−(𝛾𝐷𝑊)(𝐷𝑊)−(𝛾𝑃)(𝑃)

(𝛾𝐿𝐿)(𝐿𝐿+𝐼𝑀)
   (Eq.1) 

where: 

𝑅𝐹 = Rating Factor 

𝐶 = Capacity (LRFD) 
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𝐷𝐶 = Dead load effect due to structural components and attachments 

𝐷𝑊 = Dead load effect due to wearing surface and utilities. 

𝑃 = Permanent loads other than dead loads 

𝐿𝐿 = Live load effect.  

𝐼𝑀 = Dynamic load allowance 

𝛾𝐷𝐶 = LRFD load factor for structural components and attachments 

𝛾𝐷𝑊 = LRFD load factor for wearing surfaces and utilities. 

𝛾𝑃 = LRFD load factor for permanent loads other than dead loads  

𝛾𝐿𝐿 = Evaluation live load factor  

and for strength limit states: 

𝐶 = ∅𝑐∅𝑠∅𝑅𝑛       (Eq.2)            

∅𝑐 = Condition factor 

∅𝑠 = System factor 

∅ = LRFD resistance factor                                                                                                        

𝑅𝑛 = Nominal member resistance 

Bridges subjected to evaluation using the LRFR method undergo comprehensive 

assessments that involve the application of various live load models. Three distinct 

procedures are employed: design load rating, legal load rating, and permit load rating. 

These procedures utilize design live loads, legal loads, and permit loads, respectively for 

evaluating the bridges. Design load rating holds particular significance as it acts as the 

primary assessment to determine whether a bridge needs to be posted. There are two 

distinct sub-classes of design load rating, known as inventory and operating levels. The 

inventory load rating is associated with a reliability level that surpasses that of the 
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operating load rating. In cases where the inventory rating factor is less than one, the 

operating rating factor must be checked. When the operating rating factor is less than one, 

the bridge must undergo separate evaluations for each truck specified in the legal load 

rating. This process is crucial for determining the appropriate load posting requirements 

of the bridge. 

The computation of the rating factor according to the LRFR method using 

equations (Eq.1 and Eq.2), entails the determination of several factors. Most of these 

factors can be updated in alignment with established codes, guidelines, and bridge 

specifications. However, the condition factor requires a visual inspection of the bridge. 

This inspection process is characterized by its time-consuming nature, labor-intensive 

requirements, and a substantial reliance on the expertise of the inspectors. An alternative 

approach involves the development and implementation of an SHM system, capable of 

determining the condition factor based on collected data. This method not only offers 

objectivity but also enables the continuous and real-time updating of load rating 

assessments. 

Currently, bridges are load rated using specified material properties from old bridge 

drawings. This method can underestimate the actual capacity of a bridge. Gunter et al. [4] 

performed a laboratory test on a decommissioned prestressed wide-leg channel bridge 

girder. The results revealed that the experimental moment capacity was higher than the 

AASTO calculations. This was attributed to the higher than specified material properties.  

 A series of experimental tests were conducted on prestressed skinny-leg girders 

obtained from decommissioned bridges in South Carolina[17]. The primary goal of this 

thesis was to contribute to the reduction of load-bridges by acquiring a deeper 
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understanding of the relationship between deterioration and capacity. Thirteen girders were 

tested at full scale for flexural resistance in the laboratory. The girders sustained 

deterioration throughout their service life. Spalling, cracking, and section loss were 

observed for most of the girders which led to several feet of an exposed strand(s). In 

addition, some girders contained visibly corroded strand(s). The condition of the girders 

was then assessed and categorized based on the Specifications for the National Bridge 

Inventory (SNBI) condition rating. Each girder was assigned a condition rating ranging 

from 0 to 9, based on the observed deterioration. The results revealed that the girders in 

good condition (NBI 6 or higher) had higher experimental moment capacity than the 

nominal capacity. This was attributed to the higher than specified material properties. In 

addition, the girders in poor condition (NBI 4 or lower) had lower experimental moment 

capacity than the nominal capacity. This was attributed to the deterioration observed prior 

to testing. The findings from this study highlight the potential discrepancy between 

specified and actual material properties, which could lead to inaccuracies in load ratings. 

Additionally, this research emphasizes the importance of inspection methods as a viable 

means to anticipate the effects of deterioration on the moment capacity,   

2.2 Review of literature relevant to strengthening methods utilizing aluminum alloys 

Several research studies have been carried out to improve the flexural strength of 

reinforced concrete (RC) beams utilizing aluminum alloy (AA) as an external 

reinforcement material.  

Rasheed et al. [18] conducted an experimental investigation to validate the 

feasibility and practicality of using AA plates as external reinforcement for enhancing the 

strength of reinforced concrete beams. The study assessed the performance of RC beams 
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strengthened with AA plates, both with and without the addition of carbon fiber reinforced 

polymers (CFRP) sheets acting as end-anchors. Ten RC beams were cast and tested under 

monotonic loading to failure. The beams were 10 in. thick, 5 in. wide, and 6 ft. long. One 

specimen served as a control specimen. The remaining beams were strengthened by 

attaching AA plates to the soffit using epoxy adhesive. Four strengthened beams had no 

end anchorages. Four strengthened beams had end anchorages, in the form of U-wrap 

CFRP sheets, which were applied in either a single-layer or double-layer configuration. In 

addition, one strengthened beam had three double-layer U-wrap CFRP sheets (one at mid-

span and two at the ends).  

The results of the study demonstrated that all strengthened beams exhibited a 

substantial increase of 13% to 40% in flexural strength compared to the control specimen. 

The authors reported that the strengthened beams without end anchors failed primarily in 

flexure with full debonding of AA plates, whereas the strengthened beams with end 

anchors failed due to localized debonding of AA plates and flexure. Moreover, 

strengthened beams without end anchorages showed a ductile response lower than the 

control specimen. However, end anchorages were observed to enhance the ductility of the 

strengthened beams to comparable levels of ductility of the control specimen. The authors 

reported that the strengthened beam having the extra midspan anchorage has the lowest 

ductility. 

Abuodeh et al. [19] investigated the effectiveness of using mechanically fastened 

(MF) aluminum alloy (AA) plates for flexural strengthening of RC members. The test 

program involved preparing 16 RC beams, one left unstrengthened, one strengthened with 

an externally bonded plate using epoxy, four strengthened with mechanically fastened 
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plates, and the remaining beams strengthened with epoxy-bonded and mechanically 

fastened plates of varying sizes, spacing, and layout. The beams were 10 in. thick, 5 in. 

wide and 6 ft. long. The results of the study demonstrated that all strengthened beams 

exhibited an increase that ranged between 16% to 35% in flexural strength compared to the 

unstrengthened beam. It was concluded that implementing epoxy and end anchor bolts is a 

viable approach to enhance the strength and ductility of reinforced concrete beams 

strengthened with aluminum alloy plates. In addition, analytical predictions were made to 

assess the advantages of using mechanically fastened systems. The authors concluded that 

the use of end anchors eliminated premature failure modes. Hence, the flexural capacity of 

the strengthened beams can be predicted following the design procedures in ACI 318-19 

code. 

Zhang et al. [20] conducted a study to investigate the use of aluminum alloy plates 

in the bolted side-plating (BSP) retrofitting technique for RC beams. The study aimed to 

examine the effects of several factors such as plate thickness, plate height, bolt spacing, 

anchoring techniques, and prestressing on the flexural strength, stiffness, and ductility of 

the beams. The test program involved conducting experiments on seven specimens with 

different configurations of aluminum plates and bolts. The beams were 14 in. thick, 8 in. 

wide, and 9 ft. long. The results of the study demonstrated that all strengthened beams 

exhibited an increase that ranged between 40% to 67% in flexural strength compared to the 

unstrengthened beam. However, all the strengthened beams demonstrated lower ductility 

than the unstrengthened beam. The study results show that increasing the thickness of 

aluminum plates and reducing the spacing of the bolts can significantly increase the 
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flexural capacity and stiffness of the beams. In addition, the prestressing of the AA plates 

recovered the deflection of the RC beam for 60% under service loading.  

2.3 Review of literature relevant to condition assessment using acoustic emission 

Elbatanouny et al. [21] employed AE to monitor eight prestressed concrete beams 

subjected to cyclic load testing (CLT). The primary objective of the research was to 

investigate the utilization of AE in assessing structural deterioration, serving as a 

supplement to conventional measurements used to evaluate the condition of a structure, 

following the acceptance criteria for CLT. The test program included eight prestressed 

concrete T-beams, each spanning 16 ft. Five specimens were pre-cracked, with varying 

levels of corroded tendons, while the remaining specimens served as control specimens. 

Four specimens exhibited a crack width of 0.016 in., while one specimen achieved a crack 

width of 0.032 in. The simply supported specimens were tested in a four-point bending test 

setup. Load application was carried out using cycles of increasing magnitudes. Sixteen AE 

sensors were mounted on each specimen. AE was monitored continuously throughout the 

load testing. 

Signal strength, energy, and amplitude were the three parameters used in 

establishing the AE evaluation criteria. Signal strength was of the AE hits used in the 

intensity analysis evaluation method. Intensity analysis was performed on all the specimens 

and only the AE data collected during the loading phase was used in this analysis. Intensity 

analysis evaluation charts were developed to assess the deterioration in the specimens. The 

results demonstrated that the method was successful in quantifying the existing 

deterioration in the specimens.  
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Energy associated with AE hits was used in the relaxation ratio evaluation method. 

Data collected during both the loading and unloading phases contributed to this analysis. 

The method is based on the impact of cracks present in a specimen. The relaxation ratio is 

computed as the ratio between the energy recorded during unloading and the energy 

recorded during loading. The presence of higher AE energy during the unloading phase, 

compared to the loading phase, serves as an indicator of deterioration. The results indicated 

that the relaxation ratio could detect a transition in the cracking behavior, shifting from 

micro-cracking (invisible) to macro-cracking (visible). However, this observation 

primarily applied to control specimens. No clear trend was observed for the pre-cracked 

specimens.  

The amplitude of the AE hits was used in the b-value evaluation method. The b-

value serves as an indication of degradation in the integrity of the specimen and is 

associated with the formation of cracks. When cracks begin to form, there is an increase in 

the number of hits with high magnitude, resulting in a reduction in the magnitude of the b-

value. The results revealed that the b-value analysis offered an early warning of 

deterioration accumulation in both the control and pre-cracked specimens. The authors 

concluded that utilizing AE data in conjunction with traditional load-deflection response 

data enables a better evaluation of structural health. 

Anay et al. [22] applied AE for the evaluation of the condition of a single-span 

prestressed concrete bridge during a proof test. This county-owned bridge, located in 

southern New Mexico, had no design plans. The bridge was composed of nine double-tee 

beams, each measuring 33 in. wide, 19.5 in. thick, and 32 ft. long. Based on National Bridge 

Inventory (NBI) condition ratings, the superstructure received a condition rating of 6 (out 
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of 9). Eight AE sensors were mounted on the stem of the middle beam, with four positioned 

near the support (shear region) and the other four positioned at midspan (moment region). 

The decision to instrument only the middle beam with AE sensors was made due to its 

higher strain levels than the other beams observed during a diagnostic test. 

The results indicated that the analysis of the cumulative signal strength (CSS) can 

effectively identify the onset of crack formation. This parameter served as an indicator of 

the susceptibility of the bridge to crack, both in the shear and moment regions. This was 

achieved by comparing the abrupt changes in CSS slopes observed in both regions. 

Moreover, intensity analysis provided insights into the extent of deterioration under 

specific loading conditions. The results highlighted a higher level of deterioration in the 

shear region compared to the moment region. AE was able to detect deterioration, whereas 

conventional instrumentation failed to reveal localized deterioration. The authors 

concluded that AE has the potential to be utilized as the primary instrumentation for proof 

testing, especially when monitoring crack growth during testing is of primary concern.  

2.4 Review of literature relevant to the prediction of load using acoustic emission 

Recently, K C et al. [23] investigated the potential of utilizing AE to predict 

vehicle loads on bridges. Two precast flat slabs were tested under a four-point bending 

test. The slabs were obtained from decommissioned bridges in rural areas of South 

Carolina. The slabs were 8.25 in. thick, 5.5 ft. wide, and 15 ft. long. The loading on the 

slabs was stepwise cyclic. Three load steps with a step size of 10 kip were performed, and 

AE data was collected during the test. The goal was to classify the AE data into their 

corresponding load steps. 
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The first endeavor in classification analysis involved the extraction of single 

attribute data from the test, with the aim of assessing if the attribute was a reliable 

indicator for classifying the AE hits into their respective load steps. This involved the 

examination of three AE parameters - rise time, amplitude, and energy - through basic 

statistical analysis to assign the AE hits to their corresponding load steps. The authors 

determined that although certain statistical differences were observed, classifying AE hits 

into their respective load steps through a single attribute analysis posed significant 

challenges. Consequently, this finding prompted the development of a machine-learning 

model capable of examining several attributes for the purpose of categorizing AE hits 

into their corresponding load steps. 

The authors employed the artificial neural network (ANN) algorithm by 

simultaneously analyzing 13 AE parameters. The results revealed the feasibility of ANN 

in classifying the AE hits to their corresponding load steps with an acceptable accuracy of 

86%. However, in this study, the classification was done on two load steps with a step 

size of 10 kip, and only the ANN algorithm was implemented. Moreover, this study is 

limited to precast RC flat slab bridges. Using AE to predict the vehicle loads on other 

typical bridges, such as girder bridges, was not studied. 
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Chapter 3  

Full-Scale Experimental Investigation of Prestressed Concrete 

Channel Bridge Girders Strengthened with Aluminum Alloy 

Channels1 
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3.1 Abstract 

South Carolina has over 9,000 bridges in its inventory, many of which were 

designed for H10 or H15 truckloads. The South Carolina Department of Transportation 

(SCDOT) identified prestressed concrete channel bridge girders as one superstructure type 

that has difficulty meeting sufficient load ratings related to flexure. Hence, it is imperative 

to explore strengthening methods for these girders. Aluminum alloys possess desirable 

properties that make them attractive as external reinforcement materials. However, while 

previous studies have investigated the use of aluminum alloys on reinforced concrete 

members, there is a lack of investigation on their use on full-scale prestressed concrete 

bridge girders. To address this gap, this study investigates the feasibility of utilizing 

aluminum alloy channels as an external reinforcement material on full-scale prestressed 

concrete channel bridge girders. The main goal of this paper is to reduce the number of 

load-posted bridges in the state of South Carolina. Nine girders obtained from 

decommissioned bridges in South Carolina were tested under monotonic loading to failure. 

The test program consisted of six unstrengthened girders, one strengthened with bonded 

aluminum channels (SE), one strengthened with bonded and bolted aluminum channels 

(SEB), and one strengthened with bolted aluminum channels (SB). Before testing, a visual 

inspection of the girders was conducted to identify any existing deterioration, and each 

girder was given a condition rating based on the  Specifications for the National Bridge 

Inventory (SNBI). The results indicate that externally anchoring aluminum alloy channels 

with bolts was the most effective strengthening method in terms of practicality and higher 

increase in the moment capacity. Moreover, the results also revealed that the measured 
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moment capacities of the girders varied based on the extent of the existing deterioration 

observed through visual inspection. 

Keywords: Bonding; Anchorage; Aluminum Alloy Channels; Full-scale tests; Prestressed 

Concrete, Flexural Strengthening; Bridges. 

3.2 Introduction 

Regular inspections and load tests are conducted on bridges to assess the condition 

of their components and determine whether they have enough structural capacity to support 

anticipated live load demands with an appropriate safety margin. This process is referred 

to as load rating. If the reserve structural capacity is inadequate, actions such as load 

posting, rehabilitation, or bridge closure may be taken to ensure public safety [16]. In South 

Carolina, the transportation infrastructure consists of multiple bridges in fair condition 

(47%) due to structural issues, such as outdated design loads and bridge deterioration. On 

average, the bridges are approximately 40 years old, approaching the 50-year service level, 

with 6.8% being load posted, 11% being structurally deficient, and 0.33% being reported 

closed [3]. 

The South Carolina Department of Transportation (SCDOT) is currently in the 

process of load rating its entire inventory of bridges. In South Carolina, there are 

approximately 9,400 highway bridges; out of those, 377 bridges are prestressed concrete 

channel girders built during the 1960’s [24]. These bridges typically consist of multiple 

spans and are supported by timber pile substructures. Figure 3.1 presents field picture of 

prestressed concrete channel bridge girders.  
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 Figure 3.1 Photographs of a precast prestressed concrete channel bridge girders [4] 

The prestressed concrete channel girders can be separated into two categories: 

skinny-leg channel girders and wide-leg channel girders. There are 103 skinny-leg channel 

girder bridges and 274 wide-leg channel girder bridges. This study will focus on skinny-

leg channel girders. Figure 3.2 shows a typical cross-section of a skinny-leg channel girder 

obtained from an SCDOT drawing. The name comes from the cross-section shape that 

creates a channel along the span length. They are comprised of precast prestressed concrete 

channel sections with a span length of 30 ft. The bridge cross-section typically consists of 

ten or more girders. Each girder is 30.5 in. or 33 in. wide. The girders are tied together by 

transverse tie rods at quarter points along the span. The thickness of the flanges is 5 in., 

while the web thickness tapers down to 2.5 in. at the bottom. 

 
 Figure 3.2 Typical cross-section of skinny-leg channel girder (SCDOT drawing)  
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The skinny-leg channel girder bridges are designed for H15-44 loading criteria, 

which is lower than the design vehicles used in current design standards (HL-93). The 

SCDOT conducted load rating of these bridges, using the typical EV-3 truck as the 

controlling vehicle in the rating process. Among these bridges, almost all the skinny-leg 

channel girders have a load rating factor (RF) below 1, indicating the need for load postings 

due to capacity limitations (Figure 3.3) [5]. Hence, the capacity of these bridges needs to 

be increased to satisfy current load demands and to decrease the number of load-posted 

bridges. The primary focus of the SCDOT is to assess the current state of these bridges and 

use cost-effective and easily implemented strengthening techniques to extend their 

lifespan. 

 
 Figure 3.3 Rating factors (RF) of the skinny-leg channel girder bridges [5] 

3.3 Literature Review 

Structural strengthening may be necessary for a bridge for several reasons. These 

could include deterioration caused by environmental conditions, accidents, extreme 

loading, or the requirement to withstand increased vehicle loads [25]. As a result, various 

strengthening materials and techniques emerged in the last decades. Steel and Fiber 
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reinforced polymers (FRP) have been used as externally bonded reinforcement for this 

purpose. As flexural reinforcement, steel plates and FRP sheets are usually bonded and 

may be anchored to the soffit or the sides of the beams to increase the flexural capacity 

[26]–[35]. 

Steel was utilized as an external reinforcement material due to its high tensile 

strength, ductility, and low cost. However, the susceptibility of steel to corrosion and its 

heavy weight made steel less attractive to use as an external reinforcing material. As a 

result, FRP emerged and has been the dominant external reinforcement material, primarily 

due to its superior tensile strength (5 times that of steel), lightweight, versatility, and 

corrosion resistance. However, the brittle behavior with no well-defined yield point, high 

cost, and rapid deterioration of FRP under high temperatures have driven researchers to 

seek alternative materials [18], [36]. As a result, aluminum alloys (AA) have emerged as 

potential candidates for external reinforcement applications. Aluminum alloys (AA) 

possess desirable characteristics such as their high tensile strength, lightweight (one-third 

the weight of steel), high ductility, and reasonable cost [18], [19], [36], [37].  

Several studies have been conducted to enhance the flexural capacity of reinforced 

concrete beams utilizing AA as an external reinforcing material. Rasheed et al. [18] 

conducted a study to validate the potential and practicality of employing Aluminum Alloy 

(AA) plates as an externally bonded reinforcement strengthening material for RC beams. 

The behavior of AA-strengthened beams was evaluated with and without carbon fiber 

reinforced polymers (CFRP) sheets (U-wrap) acting as end-anchors and spaced throughout 

the specimens. Ten RC beams were cast and tested. One beam was a control specimen 

without strengthening (CB). The remaining beams were strengthened by externally 
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bonding AA plates to the soffit of the beams using epoxy adhesive. All strengthened beams 

showed a higher increase in flexure strength than the control specimen in the 13% to 40% 

range. The authors reported that the strengthened beams without end anchorages failed 

primarily in flexure with full debonding along the length of the beam, whereas beams with 

end anchorage failed by localized debonding and flexure. Moreover, strengthened beams 

without end anchorages showed a ductile response slightly lower than the control 

specimen. However, end anchorages were observed to enhance the ductility of the 

strengthened beams to comparable levels of ductility of the control specimen. 

Abuodeh et al. [19] investigated the effectiveness of using mechanically fastened 

(MF) aluminum alloy (AA) plates for flexural strengthening of reinforced concrete (RC) 

members. The test program involved preparing 16 RC beams, one left unstrengthened, one 

strengthened with an externally bonded plate, and the remaining beams strengthened with 

mechanically fastened plates of varying sizes, spacing, and layout. The results showed that 

all the beams with mechanically fastened plates exhibited increased strength and ductility 

compared to externally bonded plates. In addition, analytical predictions were made to 

assess the advantages of mechanically fastened systems. It was concluded that 

implementing epoxy and anchor bolts is a viable approach to enhance the strength and 

ductility of reinforced concrete beams strengthened with aluminum alloy plates. 

Zhang et al. [20] conducted a study to investigate the use of aluminum alloy plates 

in the bolted side-plating (BSP) retrofitting technique for reinforced concrete (RC) beams. 

The study aimed to examine the effects of several factors such as plate thickness, plate 

height, bolt spacing, anchoring techniques, and prestressing on the flexural strength, 

stiffness, and ductility of the beams. The test program involved conducting experiments on 
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seven specimens with different configurations of aluminum plates and bolts. The study 

results show that increasing the thickness of aluminum plates, using adhesive bonding, and 

reducing the spacing of the bolts can significantly increase the flexural capacity and secant 

stiffness of the beams. In addition, prestressing of the AA plates recovered the deflection 

of the RC beam up to 60% under service loading.  

3.4 Research Significance 

There are several materials and techniques available to enhance and improve the 

flexural capacity of bridges, but each option has its own set of limitations. However, 

aluminum alloys have been identified as a promising external reinforcement material due 

to their high strength, lightweight, and reasonable cost. Although previous studies have 

investigated the use of aluminum alloys on reinforced concrete members, there has been a 

lack of investigation into their use on prestressed concrete bridge girders. To fill this gap, 

this paper explores the feasibility of utilizing aluminum alloy channels as an external 

reinforcement material on full-scale prestressed concrete channel bridge girders. The 

primary goal of this paper is to contribute to the reduction of load posted bridges in the 

state of South Carolina. The study involved conducting laboratory tests to document the 

strength of in-situ channel bridge girders and evaluate potential strengthening schemes. 

The current paper adds to the body of knowledge by reporting on the experimental behavior 

of prestressed concrete channel girders strengthened by attaching aluminum channels to 

the sides of the webs using three different schemes. In addition, the moment capacities of 

the girders are calculated based on the design methods in the AASHTO [7] and compared 

with the experimental results.  
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3.5 Experimental Program 

3.5.1 Test Specimens 

Nine prestressed concrete channels, which were originally used in 30-ft span 

bridges constructed in the 1950’s and 1960’s, were subjected to flexural tests at the 

University of South Carolina (USC). These girders had been stored in SCDOT facilities 

after their roughly 30 – 40 year service life. The dimensions and reinforcement details of 

the girders are shown in Figure 3.4 and were based on SCDOT drawings. The existing 

drawings of the girders indicate that the typical longitudinal reinforcement includes five 

No. 3 bars and ten 3/8 in. prestressing strands. The prestressing strands are draped 

downward at the midspan, except for the bottom strand. The top four strands were 

prestressed with 13,450 lb. during release, whereas the bottom strands were prestressed 

with 14,000 lb. In the transverse direction, the girders were reinforced with No. 4 bars and 

No. 4 stirrups spaced at 12 in. on center. In addition, the specified compressive strength of 

the concrete and the yield strength of the deformed steel bars were 5,000 psi and 40,000 

psi, respectively. The specified ultimate strength of the prestressing strands was 250,000 

psi.  
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Figure 3.4 Dimensions and reinforcement details of the girders 

Some of the girders were characterized by the presence of end diaphragms, while 

some had no end diaphragms, as shown in Figure 3.5. However, the cross-sections and 

reinforcement details of these girders matched with the existing plans for both girders 

with and without an end diaphragm. The experimental program was divided into two 

groups of specimens; an unstrengthened reference group (URG) and a group strengthened 

with aluminum alloy (AA) channels (SG). The URG consisted of six specimens that were 

tested to evaluate the performance of the unstrengthened girders and to serve as 

benchmarks for comparison with the strengthened girders. The SG consisted of three 

specimens that were strengthened in flexure by externally bonding or bolting aluminum 

alloy (AA) channels to the web sides. Table 3.1 presents the test program followed in this 

study. The unstrengthened specimens were identified by the letter “U” followed by the 

specimen number, whereas the strengthened specimens were identified by the letter “S” 

followed by the bonding technique of the AA channels, where “E” refers to bonding with 

epoxy and “B” refers to anchoring with bolts. 
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Figure 3.5 Cross-sections of the girders; left) with end diaphragms, right) without end 

diaphragms 

Table 3.1 Specimens designation 

Specimen 

Designation 

End 

diaphragm 

Strengthening 

(Yes/No) 

Note 

U1 Yes No Reference 

U2 Yes No Reference 

U3 Yes No Reference 

U4 Yes No Reference 

U5 Yes No Reference 

U6 No No Reference 

SE Yes Yes Strengthened with AA channels bonded 

with epoxy to the web sides 

SEB Yes Yes Strengthened with AA channels bonded 

with epoxy and anchored at the ends and 

midspan with aluminum bolts to the web 

sides 

SB No Yes Strengthened with AA channels 

anchored at the ends with steel bolts to 

the web sides 

3.5.2 Strengthening Procedures 

Three methods of applying AA channels to the web sides were investigated in this 

study, as shown in Figure 3.6. Table 3.2 presents the details of the 6061-T6 aluminum 

channel sections used in this study, as reported by the manufacturer. The aluminum 

channels had a specified yield strength of 40 ksi. SikaDur-30 is the epoxy adhesive used 
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in this study to bond the AA channels to the concrete surfaces. It has a compressive 

strength, flexural strength, and shear strength of 8600 psi, 6800 psi, and 3600 psi, 

respectively. The mechanical and physical properties of the epoxy can be found in the 

product datasheet provided by the manufacturer [38].  

 
Figure 3.6 Strengthening schemes: a) SE, b) SEB, and c) SB 

Table 3.2 Details of the aluminum channel section 

Designation Area 

(in2) 

Depth 

(in) 

Weight 

(lb./ft) 

Flange Web 

Thickness 

(in.) 

Yield 

Strength 

(ksi) 
Width 

(in.) 

Thickness 

(in.) 

6061-T6 

CH3X258 

1.410 3.000 1.729 1.498 0.170 0.258 40.000 

3.5.2.1 Girder (SE) 

The girder was strengthened by bonding two 25 ft. long AA channel sections to the 

sides of the webs using epoxy adhesive. Prior to applying the epoxy adhesive, the surfaces 

of the concrete and AA channels were roughened to enhance the bond with the epoxy. The 

concrete surfaces were prepared by needle scaling method utilizing a needle gun to attain 
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a minimum concrete surface profile (CSP) 3 as recommended [38]. In addition, the surface 

preparation for AA channels was carried out by sanding them with 400-grit sandpaper on 

only one side of the AA channels attached to the epoxy. Once the surfaces were prepared, 

the epoxy adhesive was applied on both surfaces, and the AA channels were pressed in 

place. Figure 3.7 presents photographs of the installation of AA channels for girder SE. 

The girder was tested after 7 days of applying epoxy.  

  
Figure 3.7 (left) surface preparation by needle gun; (right) Epoxy was applied, and the 

aluminum channels were placed. 

3.5.2.2 Girder (SEB) 

The girder was strengthened by bonding two 25 ft. long AA channel sections to the 

sides of the legs using epoxy adhesive. In addition, each AA channel was anchored at the 

ends and midspan by 0.625 in. aluminum threaded rods 6061. Table 3.3 presents the details 

of the 6061-T6 aluminum threaded rods as provided by the manufacturer. Drilled holes 

with a diameter of 0.75 in. were formed in the AA channels. Then, the Ground Penetrating 

Radar (GPR) was used to locate the prestressing strands and to determine the size of the 

rebar. These locations were then marked and used to coordinate hole drilling locations to 

avoid damaging any prestressing strands and avoid galvanic corrosion. Next, holes with a 
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diameter of 0.75 in. were drilled through the girder webs and cleaned thoroughly with an 

air compressor. Then, the same surface preparation procedures as girder SE were followed. 

Once the surfaces were prepared, the epoxy adhesive was applied on both surfaces, and the 

AA channels were anchored with aluminum threaded rods. The aluminum threaded rods 

were secured using aluminum hex nuts tightened using a 2 ft. wrench. Figure 3.8 displays 

photographs of the installation of AA channels for girder SEB. The girder was tested after 

7 days of applying epoxy. 

Table 3.3 Details of aluminum threaded rods 

Designation Diameter 

(in.) 

Yield Strength 

(ksi) 

Tensile 

Strength (ksi) 

Shear Strength 

(ksi) 

Aluminum 

Threaded Rod 

6061-T6 

0.625 40 45 30 

  
Figure 3.8 Aluminum channels bonded and bolted with aluminum threaded rods. 

3.5.2.3 Girder (SB) 

The girder was strengthened by attaching two 25 ft. long AA channel sections to 

the sides of the legs. Each AA channel was anchored at each end by four 0.625 in. diameter 

steel ASTM A193 Grade B7 threaded rods. Table 3.4 presents the details of the steel 

threaded rods as provided by the manufacturer. The spacing between the bolts was 18 in. 

and 6 in. from the end of the aluminum channel, as shown in Figure 3.6c. Drilled holes 
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with a diameter of 0.75 in. were formed in the AA channels. Then, the Ground Penetrating 

Radar (GPR) was used to locate the prestressing strands and determine the rebar's size. 

These locations were then marked and used to coordinate hole drilling locations to avoid 

damaging any prestressing strands. Next, holes with a diameter of 0.75 in. were drilled 

through the girder webs and cleaned thoroughly with an air compressor. Next, the AA 

channels were anchored with steel threaded rods. Finally, the steel threaded rods were 

secured in place using steel hex nuts tightened using a 2 ft. wrench. Figure 3.9 presents 

photographs of the installation of AA channels for girder SB. 

Table 3.4 Details of steel threaded rods 

Designation Diameter 

(in.) 

Yield Strength 

(ksi) 

Tensile 

Strength (ksi) 

Shear Strength 

(ksi) 

Steel ASTM A193 

Grade B7 threaded 

rod 

0.625 105 125 70 

  
Figure 3.9 Aluminum channels bolted with steel threaded rods. 

 

3.5.3 Test Setup 

The girders were subjected to monotonic loading until failure. The girders were 

simply supported and tested in flexure under four-point loading, as shown in Figure 3.10. 



37 

 

The girders were supported on two concrete blocks that were made to test heavy bridge 

girders. To minimize friction during the load application, the girders were positioned over 

neoprene bearing pads that were nine inchwide and placed above the concrete blocks. Two 

structural steel members supported the spreader beam, each resting on two neoprene 

bearing pads, forming four contact points. These points were intentionally positioned 

directly above the girder legs to establish a four-point bending test setup, as indicated in 

Figure 3.10. The center of one support to the other is 27 ft. long, with 1.5 ft. of overhang 

at each end. This was done to eliminate uneven bearing issues due to some girders missing 

concrete at the ends of their 30 ft. lengths. 

 
 

Figure 3.10 Test setup of the girders 
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Vertical displacement at the quarter-spans and the mid-spans of the girders were 

measured using string potentiometers during the testing. Strain gauges were placed on the 

AA channels at midspan, in the case of strengthened girders. The load application was 

carried out using a hydraulic actuator, and the load values were monitored using a 

calibrated load cell and pressure gauge. The load cell used had a capacity of 250 kip. 

Throughout the loading process, data was continuously recorded by a data acquisition 

system with 32 channels. Figure 3.11 shows photographs from the test setup of the girders.  

  

Figure 3.11 Photos of the test setup of the girders 

 

3.5.4 Material Properties 

3.5.4.1 Concrete 

Drilled concrete cores were extracted from all the girders after testing and tested 

for their compressive strength. The cylinders were drilled using a core drill and diamond-

impregnated drill bit. Concrete cores were obtained in accordance with ASTM C42/ C42M 

[39] and ACI 214.4R-03 [40], were capped in accordance with ASTM C617 [41], and 

tested in accordance with ASTM C39/ C39M [42]. However, the dimensions of the 

cylindrical concrete core specimens were 2 in. diameter by 4 in. long, which does not 

conform with ASTM C39/ C39M [42] or ACI 214.4R-03 [40]. The cores were limited to 
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the thickness of the flanges of the girders, which was 5 in. Table A.1 (Appendix A) 

summarizes the test results of the compressive strength of the cores taken from each girder. 

The core tests resulted in an average compressive strength of 10.2 ksi for 25 cores. The 

results indicate that the measured compressive strengths of the girders are well above their 

specified value of 5 ksi.  

3.5.4.2 Prestressing strands 

Prestressing strands were extracted from specified girders after testing and tested 

for their tensile ultimate strength at the SCDOT office of materials and research. Uniaxial 

tensile tests were conducted on 30 in. long specimens. Strands selected for testing were 

either the lowest strand or the second lowest strand (if possible). A total of eight 

prestressing strands were collected with various levels of corrosion and section loss. Prior 

to testing, the severity of strand deterioration was visually inspected. Four levels of 

corrosion deterioration were considered in the assessment based on the conditions of the 

strands. These levels were (1) no corrosion, (2) light corrosion, (3) pitting, and (4) heavy 

pitting, as shown in Figure 3.12. There was no observed wire loss (complete degradation 

of individual strand wires) or fracture (localized fracture of individual wires). The 

deterioration levels are also referred to as Deterioration Indices (DI) in this paper. The 

purpose of classifying strand conditions was to categorize strand strength results to better 

compare their measured tensile strength. Table A.4 (Appendix A) summarizes the test 

results of the ultimate tensile strength of the prestressing strands. Figure A.3 displays the 

strands extracted from the girders. However, only the strands extracted from girders U2, 

U3, U4, and U5 were tested for their ultimate strength during the early phases of the testing 

program. The data provided by the SCDOT materials lab recorded the failure loads. It is 

evident that the ultimate tensile stress for strands with DI 0 or 1 exceeds the specified 
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ultimate tensile stress of 250 ksi. The average ultimate tensile stress for strands with DI 0 

or 1 was 288 ksi.  

  
a) no corrosion (DI = 0)  b) light corrosion (DI = 1) 

  
c) Pitting (DI = 2) d) Heavy Pitting (DI = 3) 

Figure 3.12 Various strand deterioration conditions 

3.6 Visual Inspection 

Deterioration types and condition states for bridge components have been defined 

in the AASHTO Manual for Bridge Element Inspection (MBEI) [43] and the Specifications 

for the National Bridge Inventory (SNBI) inspection criteria [44]. The latter provides a 10-

scale condition rating for bridge components from “0” to “9” in which “9” refers to 

excellent condition, whereas “0” refers to the worst condition. Table 3.5 presents the 

equivalent member structural condition based on the condition rating. 

Table 3.5  Approximate conversion in selecting ∅𝑐  [7] 

Superstructure Condition 

Rating (NBI) 

Equivalent Member 

Structural Condition 
Condition factor (∅𝒄) 

6 or higher Good or Satisfactory (CS1) 1 

5 Fair (CS2) 0.95 

4 or lower Poor (CS3 and CS4) 0.85 

Prior to testing, a visual inspection was conducted on the girders to assess their 

condition. The girder's condition was categorized based on the SNBI inspection criteria. 

The girders sustained deterioration throughout their service life. Spalling, cracking, and 
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section loss were observed for most of the girders which led to several feet of an exposed 

strand(s). In addition, some girders contained visibly corroded strand(s). These types of 

deterioration for each girder can be seen in Figure 3.13.  

Each girder was assigned a condition rating ranging from 0 to 9, based on the 

observed deterioration. An equivalent member structural condition and a condition factor 

were assigned to each girder, based on the inspection condition rating. Table 3.6 

summarizes the condition rating for each girder. 

  
a) U1 specimen (NBI 4); left) wide crack near midspan, right) large spalling near 

midspan. 

  
b) U2 specimen (NBI 6); left) small spalling near midspan, right) large spalling at 

midspan. 
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c) U3 specimen (NBI 3); left) major defect, right) wide crack near midspan. 

  

d) U4 specimen (NBI 3); left) major defect at midspan, right) moderate defect near 

the quarter span.  
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e) U5 specimen (NBI 2); left) moderate defect near midspan, right) major defect, 

severely compromised. 

  
f) U6 specimen (NBI 7); left) flange spalling at quarter span, right) flange spalling 

at the end. 

  
g) SE specimen (NBI 4); left) exposed strand, major defect, right) wide crack near 

midspan  
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h) SEB specimen (NBI 7); left) large spalling near midspan, right) small spalling 

near midspan 

  
i) SB specimen (NBI 7); left) flange spalling near midspan, right) minor defect near 

midspan. 

Figure 3.13 Existing deterioration of the girders 

Table 3.6 Condition rating of each girder 

Specimen Visual Inspection NBI 

condition 

rating 

Equivalent 

Structural 

Condition 

Condition 

factor 

(∅𝒄) 

U1 -Widespread wide cracks at or near 

the soffit of legs with rust stains 

-Some leg spalling 

-Some flange spalling and isolated 

diaphragm spalling 

-Widespread moderate defects; 

strength is affected 

4 Poor 0.85 

U2 -Widespread flange spalling 

-Some leg spalling 

6 Good 1 
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-Isolated moderate leg spalling defect 

U3 -Some leg spalling 

-Several feet of exposed strand with 

corrosion at two distinct locations 

-Isolated wide crack on the soffit of 

the leg   

3 Poor 0.85 

U4 -Widespread flange spalling 

-Several feet of exposed strand with 

corrosion at multiple locations. 

-Some wide cracks on the exterior 

sides of the legs 

3 Poor 0.85 

U5 -Isolated wide crack 

-Several feet of exposed strand with 

corrosion at multiple locations 

-Rust stains and spalling of concrete 

along 75% of one leg soffit 

2 Poor 0.85 

U6 -Some flange spalling 

-Isolated spalling on the interior of 

the leg 

7 Good 1 

SE -Some leg spalling 

-Several feet of exposed strand with 

corrosion at one location 

4 Poor 0.85 

SEB -Some evidence of spalling in two 

locations 

7 Good 1 

SB -Some flange and leg spalling in two 

locations  

 

7 Good 1 

 

3.7 Results and discussion 

3.7.1 Flexural behavior of unstrengthened girders 

The moments and midspan vertical displacements of the unstrengthened girders are 

shown in Figure 3.14. The moment in the figure includes the moment from dead weight 

(including wearing surface if applicable) and the moment from the applied load. Three 

stages can characterize the general shape of the moment versus displacement plots. First, 

pre-cracking with a linear moment-deflection response. Second, non-linear phase with no 

obvious yield point. Third, a significant post-yielding phase up to the maximum load. 

Flexural failure of the girders was characterized by prestressing strand yield followed by 
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rupture of the bottom strand or simultaneous rupture of strands at the midspan region, as 

shown in Figure 3.15.  

 
Figure 3.14 Moment versus midspan displacement for the unstrengthened girders 

 

  
a) U1 specimen b) U2 specimen 
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c) U3 specimen d) U4 specimen 

  
e) U5 specimen f) U6 specimen 

Figure 3.15 Failure modes of the unstrengthened girders. 

Table 3.7 summarizes the test results of the unstrengthened girders. The measured 

moment capacity of the girders was compared to the nominal moment capacity. The 

nominal moment capacity was calculated in accordance with AASHTO LRFD Bridge 

Design Specifications [2] based on specified details from SCDOT drawings. The 

calculations for the nominal capacity of the unstrengthened girders are provided in 

Appendix B. The dotted line in Figure 3.14 demonstrates a nominal moment capacity of 

191 kip-ft.  

The results of the tests show that the measured moment capacities of specimens U1, 

U3, U4, and U5 with a condition rating below 4 (Poor) were 177 kip-ft, 172 kip-ft, 184 
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kip-ft, and 166 kip-ft, respectively. The measured moment capacities were lower than the 

nominal moment capacity (191 kip-ft), indicating that the capacities of the girders have 

been affected by the deterioration observed prior to testing. However, the measured 

moment capacities of specimens U2 and U6 with a condition rating higher than 6 (Good) 

were 202 kip-ft and 227 kip-ft, which were higher than the nominal moment capacity (191 

kip-ft). This can be attributed to the higher than specified material properties for both 

strands and concrete. The midspan displacements for the girders at failure were 6.6 in., 5.0 

in., 4.4 in., 2.9 in., 3.3 in., and 11 in. for specimen U1, U2, U3, U4, U5, and U6, 

respectively. It is worth noting that the girder (U6) that failed by simultaneous strand 

rupture had a higher displacement and measured moment capacity at failure than the other 

girders. 

Table 3.7 Summary of test results of unstrengthened girders 

Specimen Calculated 

Moment 

Capacity 

(Kip-ft) 

Measured 

Moment 

Capacity 

(kip-ft) 

Measured/Calculated 

ratio 

Displacement 

(in.) 

Condition 

rating 

prior to 

testing 

Failure 

mode 

U1 191 177 0.93 6.6 Poor * 

U2 191 202 1.06 5.0 Good * 

U3 191 172 0.90 4.4 Poor * 

U4 191 184 0.96 2.9 Poor * 

U5 191 166 0.87 3.3 Poor * 

U6 191 227 1.20 11.0 Good * 

Notes: 

*Yielding of prestressing strand(s) and then rupture. 

3.7.2 Flexural behavior of strengthened girders 

The moments and midspan vertical displacements of the strengthened girders are 

shown in Figure 3.16. The moment in the figure includes the moment from dead weight 

and the moment from the applied load. Two stages can characterize the general shape of 

the moment versus displacement plots. The first stage is pre-cracking with a linear 

moment-displacement response. Second, is a non-linear phase with no obvious yield point 

until failure. The failure mode of the SE specimen consisted of the full debonding of AA 



49 

 

channels along the length of the girder, as shown in Figure 3.17a. However, the failure 

mode of the SEB specimen consisted of the end bolt rupture followed by AA channel 

debonding, as shown in Figure 3.17b. In addition, the failure mode of the SB specimen was 

concrete splitting at the end bolts, as shown in Figure 3.17c. 

The girder strengthened with AA channels bonded and bolted (SEB) has a higher 

measured moment capacity than the girder strengthened with AA channels bonded only 

without end bolts (SE). However, it can be seen from Figure 3.16 that the moment-

displacement responses follow the same behavior, with SEB having a higher measured 

moment at failure. This may be attributed to the impact of end-bolting the AA channels. 

The end bolts prevented the AA channels from debonding, which had a significant impact 

on the moment capacity and ductility. As a result, the SEB girder continued to carry the 

load until the end bolts ruptured, whereas the SE girder failed by premature debonding. 

Furthermore, the SB girder has a higher measured moment capacity than SE and SEB 

girders. This can be attributed to the fact that bolting the AA channels without epoxy 

eliminated premature debonding failure.  



50 

 

 
Figure 3.16 Moment versus midspan displacement for the strengthened girders 

 

  
a) Debonding of the AA channels for specimen SE 
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b) End bolt rupture for Specimen SEB 

  
c) Concrete splitting at end bolt for Specimen SB. 

Figure 3.17 Failure modes for the strengthened girders 

Table 3.8 summarizes the test results of the strengthened girders. The measured 

moment capacities for SE, SEB, and SB were 190 kip-ft, 246 kip-ft, and 285 kip-ft, 

respectively. The displacement represents the midspan displacement at the full debonding 

of the AA channels, end bolt rupture, and failure of concrete at the bolts in the case of SE, 

SEB, and SB, respectively. The midspan displacements for specimens SE, SEB, and SB 

were 1.8 in., 2.7 in., and 8.0 in, respectively. The nominal moment capacity of the 

strengthened girders was calculated in accordance with AASHTO LRFD Bridge Design 

Specifications [2] based on specified details from SCDOT drawings and incorporating the 

AA channels. The failure mode assumed was the yielding of the AA channels at the 
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ultimate strain of 0.003 in./in. of concrete. A perfect bond was assumed between AA 

channels and the concrete substrate, in the case of using epoxy (SE and SEB). The steel 

bolts were designed to allow the AA channels to yield first (SB). The calculations for the 

nominal capacity of the strengthened girders are provided in Appendix B. A nominal 

moment capacity for the strengthened girders of 294 kip-ft is attained, which represents a 

54% increase compared to the unstrengthened nominal capacity (191 kip-ft). However, the 

measured moment capacities were different from the nominal moment capacity. The SE 

measured moment capacity was 190 kip-ft, which can be attributed to the existing 

deterioration of the girder and premature debonding of the AA channels. On the other hand, 

the SEB measured moment capacity was 246 kip-ft, and the failure was attributed to end 

bolt rupture. The recorded strain at the midspan of the AA channels at failure was 0.003 

in./in., which is lower than the specified yield strain (0.004 in./in.), as shown in Figure B.2 

in Appendix B. The SB measured moment capacity was 285 kip-ft, and the failure was 

attributed to the failure of the concrete at the end bolt. The recorded strain at the midspan 

of the AA channels at failure was 0.0025 in./in., which is lower than the specified yield 

strain (0.004 in./in.), as shown in Figure B.3 in Appendix B. The aluminum channels did 

not yield in both cases due to the premature failure that occurred. However, the measured 

moment capacity for the SB girder is 97% of the calculated moment capacity.  

Table 3.8 Summary of test results of strengthened girders. 

Specimen Calculated 

Moment 

Capacity 

(kip-ft) 

Measured 

Moment 

Capacity 

(kip-ft) 

Measured/Calculated 

ratio 

Displacement 

(in.) 

Condition 

rating 

prior to 

testing 

Failure 

mode 

SE 294 190.0 0.65 1.8 Poor Debonding 

of AA 

channels 

SEB 294 246.0 0.84 2.7 Good End bolt 

rupture 

followed 
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by 

debonding 

SB 294 285.0 0.97 8.0 Good Concrete 

splitting at 

end bolt 

3.8 Summary and comparison 

To compare the girders, the girders were grouped based on the condition rating 

assigned before testing. Five girders were assigned a condition rating below 4 (Poor): U1, 

U3, U4, U5, and SB, whereas four girders were assigned a condition rating higher than 6 

(Good): U2, U6, SEB, and SB. Figure 3.18 and Table 3.9 summarize the comparison 

between the girders.  

The moment-displacement responses of girders with a condition rating below 4 

(Poor) are presented in Figure 3.18a. The strengthened girder (SE) demonstrated a higher 

measured moment capacity compared to the unstrengthened girders (U1, U3, U4, and U5). 

The average measured moment capacity of the unstrengthened girders with a condition 

rating below 4 (Poor) was 175 kip-ft. The strengthened girder (SE) measured moment 

capacity was 9% greater than the average. Additionally, the midspan displacement at 

failure for the SE girder was 58% less than the average of unstrengthened girders (U1, U3, 

U4, and U5). The average midspan displacement for the unstrengthened girders (Poor) was 

4.3 in. The strengthening approach increased the moment capacity but had an adverse effect 

on the ductility due to premature debonding which prohibited the required behavior 

(Yielding of the AA channels).  

Figure 3.18b depicts the moment-displacement response of the girders with a 

condition rating of 6 or higher (Good). The unstrengthened girders exhibited different 

behaviors at failure, where the displacement and the failure mode varied. It is worth noting 

that U6 failed by rupture of the prestressing strands simultaneously, in contrast with U2 
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which failed by rupture of the bottom strands only. The average measured moment capacity 

and displacement for the unstrengthened girders (U2 and U6) at failure were 214 kip-ft and 

8 in., respectively. The strengthened girder (SEB) displayed a 15% higher measured 

moment capacity and a 66% lower midspan displacement at failure compared to the 

average of unstrengthened girders (U2 and U6). Once more, the reduced ductility can be 

attributed to the fact that the end bolt ruptured prior to the AA channels yielding. In 

addition, the strengthened girder (SB) exhibited a 33% higher measured moment capacity 

compared to the average of unstrengthened girders (U2 and U6). The measured midspan 

displacement was equal to the average of the unstrengthened girders (U2 and U6). The 

strengthening approach increased the moment capacity and provided similar ductility 

compared to the average of unstrengthened girders (U2 and U6).  

The measured moment capacity of the SE specimen was 190 kip-ft, equivalent to 

the nominal moment capacity (191 kip-ft). In addition, the measured moment capacities of 

the SEB and SB girders were 246 kip-ft and 285 kip-ft representing an increase of 29% 

and 49 % compared to the nominal moment capacity (191 kip-ft). The calculations for the 

rating factors utilizing the LFR and LRFR methods for the girders with the measured 

moment capacities are provided in Appendix B. It is observed that the rating factors after 

strengthening the girder (SB) is more than one. This implies that there is potential to 

eliminate any load posting requirements for the bridge. 
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a) Girders with condition factor lower than 4 (Poor) 

 
b) Girders with condition factor higher than 6 (Good) 

Figure 3.18 Moment versus midspan displacement for the girders 
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Table 3.9 Comparison of the test results 

Group Specimen Strengthening 

(Yes/No) 

Measured 

Moment 

Capacity 

(kip-ft) 

% Increase 

in Moment 

Capacity 

Displacement 

(in.) 

Girders 

with a 

condition 

rating 

factor 

below 4 

(Poor) 

U1 No 177 Na 6.6 

U3 No 172 Na 4.4 

U4 No 184 Na 2.9 

U5 No 166 Na 3.3 

SE Yes 190 8.7* 1.8 

Girders 

with a 

condition 

rating 

factor 6 or 

higher 

(Good) 

U2 No 202 Na 5.0 

U6 No 227 Na 11.0 

SEB Yes 246 15** 2.7 

SB Yes 285 33** 8.0 

Notes: 

*The average measured moment capacity of girders with a condition rating factor 

below 4 is 175 kip-ft. 

** The average measured moment capacity of girders with a condition rating factor 6 

or higher is 214 kip-ft. 

Na refers to not applicable 

3.9 Conclusions  

This study aimed to explore strengthening methods for enhancing the performance 

of prestressed concrete channel girders. To achieve this, nine decommissioned girders were 

subjected to flexural tests to failure. Prior to the testing, the girders were visually inspected 

to identify any existing deterioration that might result in reduced moment capacity. Six 

unstrengthened girders were tested to failure to assess their flexural behavior and serve as 

a benchmark to compare with the strengthened girders. Additionally, this paper presents 

an experimental framework that investigates the feasibility and efficacy of utilizing AA 

channels as an externally bonded or bolted strengthening method. Based on the 

experimental findings, the following conclusions can be drawn:   



57 

 

1. The measured moment capacities of the girders varied based on the condition rating 

of each girder, which was determined by the extent of existing deterioration 

observed through visual inspection. The girders with a condition rating above 6 

(good) exhibited measured moment capacities higher than the nominal moment 

capacity. This can be attributed to higher than specified material properties for both 

strands and concrete. Additionally, the measured moment capacities of the girder 

specimens with a condition rating below 4 (Poor) were less than the nominal 

moment capacity. This can be attributed to the deterioration observed prior to 

testing. 

2. Externally bonding AA channels with epoxy with or without anchorage may serve 

as strengthening techniques for bridge girders. The strengthened girders exhibited 

an increase in measured moment capacity of 9% and 15% for SE and SEB, 

respectively, compared to the unstrengthened girders. However, premature failure 

occurred due to the debonding of AA channels and end bolt rupture for SE and 

SEB, respectively. Further investigation is needed to assess the debonding failure 

for aluminum alloys attached with epoxy before actual field implementation. 

3. Externally anchoring AA channels with bolts was a more convenient method in 

terms of practicality, ease, and higher increase in the moment capacity. The 

strengthened girder (SB) exhibited an increase in the measured moment capacity of 

33% compared to the unstrengthened girders. In addition, a suitable protective 

coating should be applied to the steel threaded bolts for field applications. 

4. The design method in the AASHTO code can be used to accurately estimate the 

theoretical moment capacity for the strengthened girder (SB). This is demonstrated 
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by the results obtained from the calculations, which provided a good estimate with 

a difference of 3% between the calculated and the measured moment capacity. 
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Chapter 4  

Condition Assessment of Prestressed Concrete Channel Bridge Girders 

Using Acoustic Emission and Data-Driven Methods 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2Elbatanouny, E., Ai, L., Henderson, A., & Ziehl, P. (2023). Condition Assessment of 

Prestressed Concrete Channel Bridge Girders Using Acoustic Emission and Data-Driven 

Methods. To be submitted to Structures  
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4.1 Abstract 

Numerous bridges in the United States are aging and have experienced various 

levels of deterioration. Bridge inspections serve a crucial role in guaranteeing the safety 

and functionality of a bridge during its service life. Visual inspection is used in the United 

States by bridge owners to evaluate the condition, however, it can be subjective, time-

consuming, and labor-intensive. To address these challenges, an alternative solution 

involves the development and implementation of a structural health monitoring (SHM) 

system. An SHM system can provide a better evaluation of the condition of the bridges. 

Nondestructive approaches such as acoustic emission (AE) have been utilized in 

monitoring bridge degradation. AE was chosen over other methods because it is extremely 

sensitive to the initiation and propagation of damage in materials. This study proposes a 

data-driven condition assessment for in-service bridges using acoustic emission. The study 

aims to utilize AE parameters to assess the condition of the girders and to determine the 

condition factor used in the load rating of the bridges. Six prestressed concrete channel 

bridge girders, which were originally used in 30-ft span bridges constructed in the 1960s, 

were subjected to flexural tests at the University of South Carolina (USC). Acoustic 

emission (AE) was used to monitor the girders during the tests. The girders were visually 

inspected prior to testing and each girder was assigned a condition rating based on the 

Specifications for the National Bridge Inventory (SNBI). Intensity analysis charts were 

developed based on the collected AE data. The charts may detect if the girders are operating 

within the specified design criteria and are calibrated to theoretical cracking load and 

findings of cumulative signal strength analysis. In addition, the charts may assess the 
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deterioration regardless of the initial girder condition, which can be utilized to determine 

the condition factor of the girders for load rating purposes. 

Keywords: Prestressed Concrete Channel Girders; Bridges; Visual Inspection; Acoustic 

Emission; Intensity Analysis; Structural Health Monitoring.  

4.2 Introduction 

Over the past decades, the growing population has led to an increase in both traffic 

volumes and the weight of trucks required to facilitate the transportation of goods and 

services. Concurrently, the infrastructure has aged and been exposed to environmental 

conditions, which has contributed to its deterioration [45], [46]. Therefore, it is imperative 

to prioritize the structural assessment and rating of bridges.  

Bridge load rating is the process of determining the safe load-carrying capacity of 

a bridge using analytical methods, experimental methods, or a combination of both. 

Bridges are evaluated to ensure that they have an adequate reserve structural capacity to 

meet the anticipated live load requirements, with a safety margin [16]. Bridge load rating 

procedures are specified by AASHTO in the Manual for bridge evaluation [7].  

Bridge inspections serve a crucial role in guaranteeing the safety and functionality 

of a bridge during its service life [47], [48]. The primary purpose of these inspections is to 

evaluate the current condition of bridges and to detect any existing deterioration. Hence, a 

condition factor reflecting the bridge’s existing condition can be determined. This factor is 

used to revise the capacity of bridge members and to execute load rating assessments [7]. 

Visual inspection is primarily used in the United States by bridge owners to 

evaluate the condition, however, this method is not well suited for detecting concealed 

defects or those located in areas that are not easily accessible [6]. In addition, visual 
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inspections are conducted periodically, typically every 2 years [7]. The condition of the 

bridges may experience alterations during this period. However, in some cases, bridge 

inspectors are sent to the structure on an increased frequency, resulting in a more time-

consuming and labor-intensive process [8]. Furthermore, the efficiency of bridge 

inspection procedures and the precision of the data collected can be subjective to the 

expertise of the inspector [9]–[11]. 

To overcome these challenges, an alternative approach is to develop and install a 

structural health monitoring (SHM) system. When well-designed and properly 

implemented, such an SHM system can effectively replace the frequency of repetitive 

manual inspections, often resulting in cost savings. By identifying critical structural 

parameters for assessing a structure’s performance, sensors can be installed on the bridge 

and continuously monitor its condition. This not only provides a more objective set of 

performance measurements but also allows for more frequent data collection, enabling 

precise and convenient tracking of historical trends. Furthermore, it offers immediate 

warning to the owner if specific structural thresholds are exceeded. Engineers can monitor 

current and historical trends from a centralized location, reducing the necessity for 

unscheduled on-site inspections, unless the collected data suggests otherwise. In addition, 

it provides site-specific data to know the condition of bridges for purposes of maintenance 

funding prioritization.  

Nondestructive approaches such as acoustic emission (AE) have been employed in 

monitoring bridge degradation [12], [13]. Several studies have proven the ability of AE to 

monitor crack initiation and progression in both reinforced and prestressed concrete 

members [49], [50]. AE was chosen over other methods due to its high sensitivity to detect 
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stress waves resulting from material changes, such as the formation of cracks [14]. 

Furthermore, being a passive non-destructive testing method, AE is a feasible candidate 

for structural health monitoring. Most in-service bridges have experienced various levels 

of deterioration. The ability of AE to assess deterioration in members with different 

conditions should be investigated. In addition, there is a lack of investigations employed 

for the determination of the condition factor for load rating assessments using the collected 

AE data. 

This study proposes a data-driven condition assessment for prestressed concrete 

bridge girders using acoustic emission. Intensity analysis charts were developed to assess 

the condition of the girders. In addition, the charts were used to determine the condition 

factor of the girders to aid in the load rating procedures. Upon validation, this method may 

serve as a potential approach to provide an objective condition assessment of the bridges 

based on the collected AE data. 

4.3 Acoustic emission 

AE is the technique that detects and measures transient elastic waves generated by 

the sudden release of energy from localized sources within materials, such as cracking or 

deformation [14]. AE signals are captured through piezoelectric sensors positioned on the 

surface of the concrete. A "hit" is the recording of an individual signal, identified by 

parameters such as amplitude, duration, rise time, energy, and signal strength. AE can 

detect and locate various types of defects by analyzing the measured parameters [49], [51]. 

Various approaches were developed and implemented to assess deterioration in reinforced 

and prestressed concrete structures. The intensity analysis method has been utilized to 

quantify deterioration in structural elements [13], [52], [53]. Moreover, the cumulative 
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signal strength (CSS) parameter has been employed to detect crack growth and propagation 

[12], [13], [52]. In this study, signal strength, the measured area of the rectified AE signal 

with units proportional to volt seconds (pVs), is utilized to establish AE evaluation criteria.  

4.3.1 Intensity Analysis 

Intensity analysis is a method developed to characterize damage in structural 

elements. This type of analysis has proven effective for FRP pressure vessels [53], 

reinforced concrete[54], and prestressed concrete [21], [22], [55]. Intensity analysis is 

performed by calculating severity and historic index from signal strength. Severity, Sr, is 

computed as the average for the fifty events having the highest signal strength. This 

parameter can be constantly updated as new signals are recorded. A rapid increase in 

severity is typically associated with the onset or detection of structural damage [56]. 

Historic index, H(t), estimates changes in the slope of the recorded signal strength by 

comparing the signal strength of the recent hits with the cumulative signal strength of all 

hits. The historic index can mathematically locate and quantify the rises in the cumulative 

signal strength and hence give an assessment of the damage. Equations 4.1.a and 4.1.b 

calculate the historic index and severity, respectively [21], [22], [53]–[55]. The intensity 

of AE data is obtained by plotting the maximum severity-historic index calculated during 

each loading phase. Events associated with a higher degree of damage or significance 

will plot towards the top right corner of the chart.  

𝑆𝑟= 
1

50
 ∑ 𝑆𝑜𝑖

𝑖=50
𝑖=1  (4.1.a) 

H(t) = 
𝑁

𝑁−𝐾
 
∑ 𝑆𝑜𝑖

𝑁
𝑖=𝐾+1

∑ 𝑆𝑜𝑖
𝑁
𝑖=1

  (4.1.b) 

Where N = number of hits up to a specific time (t); 𝑆𝑜𝑖= signal strength of the ith event; 

and K = empirically derived factor that varies with the number of hits. One value of K 

that has been suggested is as follows [12], [13], [49], [57]: (1) not applicable if N ≤ 50; 

(2) N – 30 if 51 ≤ N ≤ 200; (3) 0.85N if 201 ≤ N ≤ 500; and (4) N – 75 if N ≥ 501. 
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4.4 Experimental procedure 

4.4.1 Test specimens 

Six girders having the same geometry and reinforcement details were tested in the 

laboratory at the University of South Carolina (USC). All girders were originally utilized 

in 30-ft. span bridges constructed during the 1950’s and 1960’s. Following their 

approximately 30 – 40 year service life, the girders were stored in SCDOT facilities. The 

dimensions and reinforcement details of the girders are depicted in Figure 4.1 and were 

based on SCDOT's existing drawings. According to these drawings, the typical 

longitudinal reinforcement consisted of five No. 3 bars spaced evenly along the width of 

the flange and ten 3/8 in. prestressing strands vertically spaced 1.5 in. on center. The top 

four strands were prestressed with 13,450 lb. during release, whereas the bottom strands 

were prestressed with 14,000 lb. The prestressing strands are draped downward at the 

midspan, except for the bottom strand. In the transverse direction, the girders were 

reinforced with No. 4 bars and No. 4 stirrups spaced at 12 in. on center. Furthermore, the 

specified compressive strength of the concrete was 5,000 psi, while the yield strength of 

the deformed steel bars was 40,000 psi. Additionally, the specified ultimate strength of 

the prestressing strands was 250,000 psi. 
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Figure 4.1 Dimensions and reinforcement details of the girders 

 4.4.2 Test setup 

A total of six girders were subjected to a four-point bending test in the laboratory. 

Figure 4.2 shows schematics of the test setup. The girders were simply supported on two 

concrete blocks that were made to test full-scale bridge girders. The girders were placed 

over nine inchwide neoprene bearing pads above the supports to minimize friction when 

applying the load. The span length of the girders from the centerline of bearings is 27 ft., 

with a 1.5 ft. overhang at each end. Two structural steel members support the spreader 

beam, each resting on two neoprene bearing pads to establish four contact points. These 

contact points are designed to rest directly over the girder legs and create a four-point 

bending test setup. 
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The load was applied using a hydraulic actuator. A calibrated load cell and 

pressure gauge were used to monitor the load values during the test. The capacity of the 

load cell was 250 kip. String potentiometers were utilized to measure vertical 

displacement at the mid-spans and quarter-spans of the girders. A data acquisition system 

with 32 channels recorded the data continuously during loading. 

AE data was collected using the Sensor Highway II data acquisition system along 

with eight sensors. Two types of AE sensors were used; four were WDI (broadband) and 

four were R6i (resonance), with an operating frequency range between 100-900 kHz and 

40-100 kHz, respectively. The surfaces of the specimens were first cleaned, then the 

Figure 4.2 Elevation (top) and plan view (bottom) of girders test setup 
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sensors were attached using double-bubble epoxy. An array of eight AE sensors were 

mounted on each specimen. The sensors were placed to detect AE activity and were 

connected to the data acquisition system. Figure 4.3 shows the AE sensors configuration. 

In accordance with ASTM E1316[14], pencil lead breaks were conducted to determine 

the wave speed and attenuation associated with each sensor. The test threshold was set to 

50 dB for all channels during testing. This value was chosen to minimize background 

noise while maintaining enough sensitivity to detect and record AE activity. Photos of the 

test setup are depicted in Figure 4.4. 

 

 
Figure 4.3 Elevation (top) and plan (bottom) instrumentation layout 
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Figure 4.4 Photos of the test setup of the girders 

4.4.3 Loading Protocol 

Specimens were loaded in increasing magnitude load cycles. All specimens were 

subjected to five load cycles. Figure 4.5 shows the load cycles versus time. The girders 

were originally designed to meet the H15-44 loading criteria. However, the current 

standards have shifted to HL-93 criteria, which involve the utilization of an HS-20 design 

truck and a design lane load of 0.64 kip/ft. The moments induced by both H15-44 and HL-

93 loading criteria were calculated and then converted into applied loads, considering the 

four-point test setup. Only one line of wheels was considered in the calculation. This is due 

to the limitation that only one line of the wheel will fit on a single girder at any given time. 

A live load distribution factor of 0.5 was assumed, which is a conservative estimate based 

on the worst-case scenario from a previous study. Furthermore, an impact factor of 33% 

was applied to both the H15-44 and HL-93 analyses. The theoretical cracking load was 

calculated utilizing specified material properties and dimensions based on SCDOT 

drawings. Figure 4.5 displays three distinct lines for each load level. 
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Figure 4.5 Load vs time  

4.5 Visual Inspection 

Condition states and types of deterioration have been established in both the 

AASHTO Manual for Bridge Element Inspection (MBEI) [43] and the Specifications for 

the National Bridge Inventory (SNBI) inspection criteria [44]. The latter provides a 10-

scale condition rating for bridge components from “0” to “9” in which “0” refers to the 

worst condition, whereas “9” refers to the excellent condition. Table 4.1 displays the 

equivalent member structural condition based on the condition information recorded in 

the form of NBI condition ratings [7].  

Table 4.1  Approximate conversion in selecting ∅𝑐  [7] 

Superstructure Condition 

Rating (NBI) 

Equivalent Member 

Structural Condition 
Condition factor (∅𝒄) 

6 or higher Good or Satisfactory (CS1) 1 

5 Fair (CS2) 0.95 

4 or lower Poor (CS3 and CS4) 0.85 

Before conducting the tests, a comprehensive inspection was carried out on all the 

girders to identify any existing deterioration. Deterioration was mapped and logged for 

each girder. The girders sustained deterioration throughout their service life. This 
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deterioration manifested in forms such as spalling, cracking, and section loss, which were 

prevalent in most of the girders. Furthermore, some girders had visibly corroded strands. 

These several types of deterioration are illustrated in Figure 4.6.  

Each girder received a condition rating ranging from 0 to 9, which was 

determined based on the observed deterioration. A condition factor and an equivalent 

structural condition were given to each girder, considering the inspection condition 

rating. Table 4.2 provides a summary of the condition ratings assigned to each girder.  

  
a) U1 specimen (NBI 4); left) wide crack near midspan, right) large spalling near 

midspan. 

  
b) U2 specimen (NBI 6); left) small spalling near midspan, right) large spalling at 

midspan. 
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c) U3 specimen (NBI 3); left) major defect, right) wide crack near midspan. 

  

d) U4 specimen (NBI 3); left) major defect at midspan, right) wide crack near the 

quarter span.  
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e) U5 specimen (NBI 2); left) wide crack near midspan, right) major defect, 

exposed strand. 

  
f) U6 specimen (NBI 7); left) flange spalling at quarter span, right) flange spalling 

at the end. 

Figure 4.6 Existing deterioration for the girders 

Table 4.2  Summary of condition state of each girder 

Specimen Visual Inspection NBI 

condition 

rating 

Equivalent 

Structural 

Condition 

Condition 

factor 

(∅𝒄) 

U1 -Wide crack at or near the soffit of 

legs with rust stains 

-Some leg spalling 

-Some flange spalling and isolated 

diaphragm spalling. 

-Widespread moderate defects; 

strength is affected 

4 Poor 0.85 

U2 -Widespread flange spalling 

-Some leg spalling 

-Isolated moderate leg spalling defect 

6 Good 1.00 

U3 -Some leg spalling 

-Several feet of exposed strand with 

corrosion at two distinct locations 

-Wide crack on the soffit of the leg   

3 Poor 0.85 

U4 -Widespread flange spalling 

-Several feet of exposed strand with 

corrosion at multiple locations. 

- Wide cracks on exterior sides of 

legs 

3 Poor 0.85 

U5 -Isolated wide crack 

-Several feet of exposed strand with 

corrosion at multiple locations 

2 Poor 0.85 
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-Rust stains and spalling of concrete 

along 75% of one leg soffit 

U6 -Some flange spalling 

-Isolated spalling on the interior of 

the leg 

7 Good 1.00 

 

4.6 Results and discussion 

4.6.1 Detection and assessment of active crack growth using cumulative signal strength. 

The girders were grouped based on the condition rating assigned prior to testing. 

Four girders were assigned a condition rating below 4 (Poor): U1, U3, U4, and U5, whereas 

two girders were assigned a condition rating higher than 6 (Good): U2 and U6. The 

detection of cracking, either visible or nonvisible, is associated with AE signals having 

high strength and sharp changes in the slope of the cumulative signal strength (CSS) curve 

[22], [55]. Figure 4.7 shows the CSS and load curves with respect to time for girders in 

good condition (U2 and U6). No sharp changes in the slope of the CSS curve were observed 

when loading was below the theoretical cracking load. However, as the load exceeded the 

theoretical cracking load, abrupt changes in the slope of the CSS curve were observed in 

the AE data, potentially indicating the presence of crack initiation and extension. The actual 

onset of AE occurred immediately after the load exceeded the theoretical cracking load, 

indicated by the first rise in the CSS data. 

 
Figure 4.7 CSS and Load curves versus time for girders in good condition 
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Figure 4.8 shows the CSS and load curves with respect to time for girders in poor 

condition (U1, U3, U4, and U5). Sharp changes in the CSS curve were observed before 

reaching the theoretical cracking load. This can be due to the presence of existing cracks. 

Under loading, AE can be generated due to existing cracks expansion and propagation. 

Furthermore, the findings of the CSS curves align with the visual inspection where cracks 

were observed for these girders. The rise in the CSS curve after exceeding the cracking 

load represents a combination of the initiation of new cracks and the propagation of 

existing cracks. It is worth noting that for girder U3 the CSS value at the end of load cycle 

five was equal to 9 x 1010 pVs.  

 
Figure 4.8 CSS and Load curves versus time for girders in poor condition 
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4.6.2 Intensity Analysis  

Intensity Analysis was conducted on all the girders utilizing Equations 4.1.a and 

4.1.b. The analysis was performed using AE data collected during the loading phases of 

tests only. The AE data collected during the unloading phases was excluded from the 

analysis, as the focus was on the direct effects of loading, particularly the initiation of 

cracks. The analysis was conducted employing data collected by all sensors.  

The data points for intensity analysis were computed as the maximum historic index 

and maximum severity recorded during each load step. The intensity analysis chart for the 

girders in good condition is shown in Figure 4.9. Data points in this chart are presented 

with respect to the theoretical cracking load; therefore, four different labels are used to 

show data before and after the theoretical cracking load in the two girders in good 

condition. For instance, the closed circle is for data points before the theoretical cracking 

load in girder U6 while the opened circle is for after the theoretical cracking load for the 

same girder. In accordance with the design criteria for Class U prestressed members, which 

do not allow cracking, the initiation of cracks was used to determine failure. It is worth 

noting that the CSS curves for the girders in good condition did not show any signs of 

cracking in the load cycles before reaching the theoretical cracking load. As depicted in 

Figure 4.9, the intensity analysis distinguishes between data points calculated before and 

after reaching the theoretical cracking load. Leveraging the information of the two girders 

in good condition (U2 and U6), the area in the intensity analysis chart where the girders 

are within the design criteria (did not crack) was determined.  
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Figure 4.9 Intensity analysis chart (girders in good condition) 

The intensity analysis chart developed on the girders in good condition was used to 

assess the deterioration of the girders in poor condition. An intensity analysis chart for 

girders in poor condition is shown in Figure 4.10. Similarly, data points in this chart are 

presented with respect to the theoretical cracking load; therefore, eight different labels are 

used to show data before and after the theoretical cracking load in the four girders in poor 

condition. The results show that the girders in poor condition fail the design criteria at 

lower loads than the theoretical cracking load. It was noticed that all the data points for all 

the girders in poor condition are plotted in the failed design criteria area; this indicates that 

the girders have already deteriorated, which is true based on the visual inspection. The 

results show that the intensity analysis can discriminate between the girders' initial 

conditions. In addition, the charts consider the existing deterioration in the girders. 
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Figure 4.10 Intensity analysis chart (girders in poor condition) 
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4.7 Conclusions 

This study summarizes an effort to use non-destructive evaluation techniques, 

particularly AE, to evaluate the condition state of prestressed concrete channel bridge 

girders. Six prestressed concrete channel bridge girders, which were originally used in 30-

ft span bridges constructed in the 1960s, were subjected to flexural tests at the University 

of South Carolina (USC). Acoustic emission was used to monitor the girders during the 

tests. The girders were visually inspected prior to testing and each girder was assigned a 

condition rating based on the SNBI condition rating descriptions. The main conclusions of 

the paper are summarized as follows: 

1. Cumulative signal strength (CSS) can be used as an assessment method to develop 

the Intensity Analysis design criteria for girders in good condition.  

2. Intensity analysis developed condition assessment charts may assess the 

deterioration in the girders in good condition. This can be utilized to determine 

whether the girders are operating in accordance with the design criteria. 

3. The charts may also quantify the existing deterioration regardless of the initial 

condition as seen in the results for the girders in poor condition. In the event that 

the girders do not meet the design criteria before reaching the required load, this 

information can be used to update the condition factor (∅𝑐) of the girders for load 

rating purposes. 

Many of the conclusions and results from this research can potentially be directly 

applied to structural health monitoring of prestressed skinny-leg girder bridges upon 

validation. Further studies should focus on developing intensity grading criteria for these 
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structures based on field testing. The test data from both field testing and laboratory work 

will provide a solid basis to begin developing these criteria.
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Chapter 5  

An Automated Load Determination System for Bridges based on 

Acoustic Emission and Machine Learning Techniques3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3Elbatanouny, E., Ai, L., Henderson, A., Laxman, K. C., & Ziehl, P. (2023). An 

Automated Load Determination System for Bridges based on Acoustic Emission and 

Machine Learning Techniques. Submitted to Construction and Building Materials. 
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5.1 Abstract 

Many bridges in the United States are aging and approaching the end of their design 

life. Most of these bridges were designed using standards from the 1950s that are now 

obsolete. Over the years, vehicles have become heavier than they were in the past, which 

has resulted in an overloading problem. Hence, an assessment of the bridges’ current 

condition, as well as an evaluation of safe load capacities, are required. With these 

measures taken, updated vehicle weight restrictions for these structures can be 

implemented. Nondestructive approaches such as acoustic emission (AE) have been widely 

used in monitoring bridge degradation, recently stimulated by developments in sensor 

technology and data analysis methodologies. The innovation of this paper lies in presenting 

a potential approach for predicting the vehicle loads on prestressed concrete girder bridges 

from the collected AE data while monitoring the damage. Upon validation, this method 

may serve as an alternative or to supplement the conventional method using weigh-in-

motion (WIM) sensors. To achieve this goal, three improved machine learning algorithms 

based on artificial neural networks (ANN), AdaBoost, and random forest were adopted to 

analyze the AE data. An ensemble training strategy was employed to eliminate the 

imbalance issue while training machine learning models. The AE data was collected by 

conducting a flexural test on a full-scale prestressed concrete girder. In this study, load 

determination is considered a classification problem. The loading procedure was divided 

into load steps and the AE signals were classified to their corresponding load steps. The 

results show that the improved random forest algorithm outperformed the improved ANN 

and AdaBoost algorithms in classifying AE hits to their corresponding load steps. 
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Keywords: Prestressed concrete girder, Acoustic emission, Structural health monitoring, 

Artificial neural network, AdaBoost, Random Forest 

5.2 Introduction 

Bridges are an integral part of our aging infrastructure throughout the United States 

and many other parts of the world. South Carolina relies significantly on its numerous 

bridges for community connectivity, trade, and transportation. The state ranks 26th in the 

nation in bridge inventory, with more than 9,000 bridges. Most bridges were designed 

utilizing the H-10 or H-15 loading standards, while the current loading standard, HL-93, is 

much greater [1], [2]. The South Carolina Department of Transportation (SCDOT) 

manages approximately 90% of all bridges. On average, the bridges are approximately 40 

years old, approaching the 50-year service level, with 6.8% being load posted, 11% being 

structurally deficient, and 0.33% being reported closed [3]. This is a direct outcome of 

bridge deterioration and overloading due to long service life and increased vehicle loads. 

Bridges are inspected regularly to evaluate the condition of their components. 

Additionally, they are evaluated to ensure that they possess adequate reserve structural 

capacity to accommodate the anticipated live load demands, with a safety margin. In cases 

where the reserve structural capacity is insufficient to support the anticipated live load 

demands, measures such as load posting, rehabilitation, or closure of the bridge may be 

necessary to guarantee public safety. As a result, load rating is a crucial asset management 

tool employed by bridge owners to determine the margin between the anticipated live load 

demands and the reserve structural capacity of the bridge [16]. 

Bridge loads are subject to a great deal of uncertainty, primarily due to live loads. 

One effective way to decrease uncertainty is by obtaining site-specific traffic data to assess 
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live loads [15]. Hence, weigh-in-motion (WIM) systems are installed at multiple locations 

to measure vehicle loads passing through bridges. The most widely utilized commercially 

available WIM sensors are piezoelectric, load cell, and bending plate sensors. However, 

WIM systems with load cells have large cross sections, bending plate sensors are 

cumbersome to install, and piezoelectric sensors can only be used to collect traffic data and 

cannot measure weight [58], [59]. In addition, the WIM sensors need to be embedded in 

the pavement, necessitating lane closure for a week or more, which might be problematic 

for certain bridges. As a result, it is crucial to investigate compact, efficient, and 

lightweight sensors for measuring vehicle loads that can be rapidly and easily deployed on 

bridges.  

Various sensors have been utilized in the structural health monitoring of structures 

as sensor technology has advanced [60]–[62]. For instance, Acoustic Emission (AE) 

sensors are widely utilized due to their ease of use, high damage sensitivity, and ability to 

monitor the response of structures regularly [63], [64]. With an array of piezoelectric 

sensors, AE detects the elastic waves generated by crack formation and growth. Structural 

damage can be detected and localized by AE emissions before it becomes visible at the 

surface of an element [65]. AE parameters were analyzed to assess structural damage, 

including crack detection, crack location, crack type, and corrosion [66], [67]. Measuring 

the vehicle loads while concurrently monitoring the bridge will be a great advantage as it 

saves time and money through its easy installation. 

Researchers analyzed AE data using various methods and parameters [68]–[71]. 

Statistical analyses for the AE parameters were utilized to evaluate and monitor the 

condition of bridge components. The validity of damage assessment of prestressed concrete 
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I-beams using conventional AE parameter-based methodology was examined by Zeng et 

al. [72]. A four-point bending test was conducted on a full-scale I-section prestressed 

concrete beam. To assess the response of the beam in terms of damage formation, the 

variance in AE signal activity throughout incremental loading cycles was analyzed. In 

addition, Worley et al. [73] investigated the potential of AE sensing techniques for crack 

detection and localization in prefabricated prestressed concrete girders. The results 

indicated that AE sensing could be applied as a quality control procedure for prefabricated 

bridge elements.  

Although many AE parameters are gathered, statistical analysis depends on a single 

parameter or correlation plots of two parameters. Hence, some information on the signals 

may be lost, resulting in a failure to make a strategic decision and lower productivity [74]. 

Several AE parameters should be considered simultaneously to overcome this limitation 

[75], [76]. Several machine learning algorithms, such as artificial neural network (ANN), 

AdaBoost, and random forest, were adopted to interpret multiple AE parameters 

concurrently. Machine learning is a method of supervised intelligent data processing [77]. 

It can analyze the data pattern and make a judgment by learning the features derived from 

the data [78]. 

Nair et al. [79] monitored the damage modes in CFRP-strengthened concrete 

structures. The main sources of AE activities were identified based on visual observation 

and damage mechanism expectation. AE data was clustered using the unsupervised k-

means technique. Each cluster was associated with one or more damage mechanisms. The 

ANN models, support vector machines (SVM), and multilayer perceptron (MLP) 

algorithms were then trained using the classified AE data. Finally, the trained models were 
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applied to identify the damage in similar specimens. The results pointed out the high 

performance of classification rates for both algorithms. Ai et al. [80] developed an 

automated impact detection system for aircraft components utilizing AE and machine 

learning algorithms. The authors employed ANN and AdaBoost algorithms. The results 

show that AdaBoost performed better than ANN in localizing the impact. Ai et al. [81] 

conducted a study to localize cracking on dry cask storage system canisters. The authors 

employed three machine learning algorithms (ANN, random forest, and stacked 

autoencoders) to analyze the AE data. The results revealed that the random forest method 

outperformed the ANN algorithm, with an accuracy of 91.5% for the random forest and 

80% for the ANN. These studies demonstrate the capacity of machine learning algorithms 

in the field of AE monitoring. 

Recently, K C et al. [23] investigated the potential of utilizing AE to predict vehicle 

loads on bridges. Two precast flat slabs were tested under a four-point bending test. The 

authors employed the ANN algorithm by simultaneously analyzing 13 AE parameters. The 

results revealed the feasibility of ANN in classifying the AE hits to their corresponding 

vehicle loads with acceptable accuracy. However, in this study, the classification was done 

on two load steps with a step size of ten kip, and only the ANN algorithm was implemented. 

Moreover, this study is limited to precast RC flat slab bridges. Using AE to predict the 

vehicle loads on other typical bridges, such as girder bridges, was not studied.  

The current study explores an improved load determination method for girder 

bridges based on previous work [23]. A laboratory experiment was performed on a 

prestressed concrete girder to simulate vehicle loads. AE data was collected and analyzed 

from four load steps with a step size of four kip. In addition, various machine learning 
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algorithms, ANN, AdaBoost, and random forest, were investigated. The main contribution 

of this paper is to develop an optimized method for predicting vehicle loads that pass over 

girder bridges from the collected AE data. Information on traffic loads can help 

transportation networks operate more efficiently and cost-effectively [82]. 

The remaining sections of this paper are arranged as follows. First, the experimental 

setup is presented in Section 5.3. Next, the data preprocessing and methodology are 

presented in Section 5.4. Section 5.5 details the results and discussion. Finally, section 5.6 

provides a summary of the conclusions and recommendations. 

5.3 Experimental Setup 

5.3.1 Test Specimen 

A flexural test was conducted at the University of South Carolina (USC) on a 

prestressed concrete girder. The girder was originally employed in a 30-ft span bridge built 

in the 1960s, which was later removed after 30 years of service and stored in an SCDOT 

facility. Figure 5.1 presents the dimensions and the reinforcement details of the girder. 

Based on SCDOT drawings, reinforcement details of the girder consist of five No. 3 bars 

and ten 3/8 in. prestressing strands longitudinally. Prestressing strands are draped 

downward at the midspan except for the bottom strand, as depicted in Figure 5.1. At 

release, the bottom strand was prestressed with 14,000 lb. for each leg, while the top four 

strands were prestressed with 13,450 lb. In addition, transverse reinforcement consists of 

No. 4 bars spaced at 12 in. on center and No. 4 stirrups spaced at 12 in. on center. The 

specified compressive strength of concrete and the yield strength of the deformed steel bars 

were 5,000 psi and 40,000 psi, respectively. The ultimate strength of the prestressing 

strands was 250,000 psi.  
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Figure 5.1 Dimensions and reinforcement details of girder 

5.3.2 Test Setup 

An experimental test was conducted to simulate the effect of a vehicle passing over 

the bridge girders. One 30-foot long, simply supported girder was subjected to a four-point 

bending test [83] in the lab at the University of South Carolina (USC). Fig. (2) shows 

schematics of the test setup. The girder was placed over nine inchwide neoprene bearing 

pads above the supports to lessen friction during the application of the load. Two structural 

steel members support the spreader beam, each resting on two neoprene bearing pads to 

establish four contact points. These contact points are designed to rest directly over the 

girder legs and create a four-point bending test setup, as shown in Figure 5.2. The span of 

the girder is 27 feet.  

String potentiometers were used to measure vertical displacement at the quarter-

spans and mid-spans of the girders. The load was applied using a hydraulic actuator. A 

calibrated load cell and pressure gauge were used to monitor the load values during the 

test. The capacity of the load cell was 250 kip. A data acquisition system with 32 channels 
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recorded the data continuously during loading. Figure 5.3 presents photos from the test 

setup.  

 

 

Figure 5.2 Test setup of the girder 
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Figure 5.3 Photos of the test setup of the girder 

Loading on the girder was stepwise cyclic to simulate the vehicle wheel loads 

passing over the bridge girders. The girder was initially loaded to 1 kip. Next, the load was 

raised to 4 kip, maintained there for 60 s, and then dropped back to 1 kip (referred to as 

load step 1, L1). Next, the load was raised to 8 kip, maintained there for 60 s, and then 

dropped back to 1 kip (referred to as load step 2, L2). The girder was then loaded to 12 kip, 

maintained there for 60 s, and then dropped back to 1 kip (referred to as load step 3, L3). 

Next, the load was raised to 16 kip, maintained there for 60 s, and then dropped back to 1 

kip (referred to as load step 4, L4). The girder was then loaded to 20 kip, maintained there 

for 60 s, and then dropped back to 1 kip (referred to as load step 5, L5). In this study, load 

steps 1 through 5 were designed to mimic the expected range of vehicle loads these girders 

may encounter throughout their lifespan. Figure 5.4 illustrates the load versus time graph 

for the test.  
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Figure 5.4 Load vs Time 

5.3.3 Acoustic emission 

The transient elastic waves within a material induced by the quick release of 

localized strain energy are known as Acoustic Emission (AE) [14]. Load determination 

was performed with the AE sensing system, which uses piezoelectric sensors coupled to 

the test specimen. AE sensors detect high-frequency stress waves created by a quick release 

of energy, such as a crack growth event. A "hit" is the recording of an individual signal, 

characterized by parameters such as amplitude, duration, rise time, energy, average 

frequency, and signal strength as shown in Figure 5.5. The collected AE parameters are 

extracted to understand the patterns better and develop filters to minimize the noise in the 

data set.  
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Figure 5.5 Schematic of acoustic emission parameters [84] 

AE data was collected using the Sensor Highway II data acquisition system and 

four resonant sensors (type R6i). An R6i sensor has an operating frequency range of 40 to 

100 kHz. AE sensors were installed on the specimen. The surface of the specimen was first 

cleaned, then the sensors were attached using double-bubble epoxy. An array of 4 AE 

sensors were mounted on the specimen. The sensors were placed strategically to detect AE 

activity and were linked to the data acquisition system. Figure 5.6 shows the AE sensors 

configuration. In accordance with ASTM E1316[14], pencil lead breaks were utilized to 

calculate the wave speed and attenuation associated with each sensor. The test threshold 

was set to 45 dB for all channels during testing. This value was chosen to reduce 

background noise while providing enough sensitivity to detect and record AE activity. 
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Figure 5.6 AE sensors configuration 

5.4 Data Processing and Methodology 

5.4.1 Data Filtering 

Before data analysis, it is critical to filter AE data to exclude any data irrelevant to 

the structure's response (noise). In laboratory conditions, mechanical and electrical noise 

is minimal[85]. In this test, wave reflections and friction between the loading apparatus 

and the specimens were the primary sources of irrelevant data. The latter was reduced by 

employing neoprene pads between the supports and the girders. In addition, front-end 

filters were employed to minimize reflections by setting peak definition time (PDT), hit 

definition time (HDT), and hit lockout time (HLT) values of 200 μs, 400 μs, and 800 μs, 

respectively. A description of terminology related to AE can be found in ASTM E1316 

[14].  

Two post-processing filters were implemented to reduce the collected data after 

testing. The first filter is an amplitude filter that excludes hits with an amplitude below a 

specified threshold, which was determined at 50 dB based on the characteristics of the AE 

signals. The second filter, typically known as a D-A filter or Swansong II filter [86], is 

based on duration and amplitude limits. A similar filtration procedure was adopted for 

prestressed concrete beams in [84], [85], [87]. Table 5.1 lists the limitations of the second 

filter. 
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Table 5.1 Limitations of the second filter [85] 

Filter 

Type 

Rejection limits Rejection limits Rejection limits 

Amplitude 

dB 

Duration 

μs 

Amplitude 

dB 

Duration 

μs 

Amplitude 

dB 

Duration 

μs 

Duration-

Amplitude 

44-46 >800 54-56 >2,500 70-75 >7,500 

46-48 >1,000 56-58 >3,000 75-80 >9,000 

48-50 >1,200 58-60 >3,500 90-100 >10,000 

50-52 >1,500 60-65 >4,500   

52-54 >2,000 65-70 >6,500   

5.4.2 Framework 

AE hits were collected during the flexural test for further analysis. Table 5.2 

presents the AE parameters and their definitions that were employed in this study. Three 

machine learning algorithms are used in this study to classify a group of AE hits to their 

corresponding load steps based on their corresponding AE parameters. The rationale 

behind this method is that the variances among the 14 AE parameters would enable the 

machine learning algorithm to classify the data points. In field applications, the AE data 

collected from a vehicle passing over a bridge will be a group of AE hits, not a single AE 

hit. Hence, the overall goal was to classify a group of AE hits to their corresponding load 

step.  

Table 5.2 AE signal parameters 

Number AE parameters Definitions 

1 Amplitude (dB) The maximum amplitude at the peak of the wave 

2 Count The number of threshold crossings 

3 Rise time (µs) The time interval between the first threshold 

crossing and the maximum amplitude 

4 Duration (µs) The time between the first and last threshold 

crossing of the signal 

5 Root mean square (RMS) (V) The effective voltage with a characteristic time 

TRMS for average ranging from 10 to 1000 ms 

6 Average signal level (ASL) (V) The effective voltage with a characteristic time 

TASL for average ranging from 10 to 1000 ms 
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7 Energy (10-14 V2s) The measure of the electrical energy measured for 

an AE signal 

8 Absolute energy The absolute measure of the electrical energy 

measured for an AE signal 

9 Reverberation frequency (kHz) Frequency after the peak 

10 Initial frequency (kHz) Frequency before the peak 

11 Signal strength A parameter to evaluate the AE source strength  

12 Counts to peak (PCNTS) The number of threshold crossings from the first 

threshold crossing to the peak  

13 Peak frequency (P-FRQ) (Hz) Frequency of maximum signal contribution 

14 Frequency centroid (C-FRQ) 

(Hz) 

A parameter to characterize the overall frequency 

content of an AE signal 

After the filtering process, the total data collected from the test was 30,274 hits. 

The girder was loaded stepwise cyclic (five load steps: L1, L2, L3, L4, and L5). The 

number of AE hits collected during the load step L1 (referred to as L1 hereafter) was 241. 

The number of AE hits collected from L2, L3, L4, and L5 were 1395, 5337, 8140, and 

15161, respectively. The classification was only performed on the AE hits collected from 

load steps L2, L3, L4, and L5 due to the lack of data gathered from L1. Figure 5.7 depicts 

the AE hits and their corresponding load step for the test. 



96 

 

 
Figure 5.7 Amplitude and load vs time for the test 

 

The machine learning model goes through three phases of classification: training, 

validation, and testing. Most of the AE hits in the total dataset from the test belonged to 

L5, which led to an imbalance issue in the machine learning model as reported in the 

findings of K C et al. [23]. To address the imbalance issue, an equal amount of data for 

each load step was fed into the machine learning model. It was determined that the ratio of 

the number of hits belonging to L3, L4, and L5 to L2 was 4 to 1, 6 to 1, and 12 to 1, 

respectively. The machine learning model was then fed with the total data from L2 and a 

random dataset from each L3, L4, and L5. To even out the data, a total of 288 data 

combinations (𝐶4
1 × 𝐶6

1 × 𝐶12
1 ) were composed to balance the data. Using these 

combinations as training data, 288 different models were trained and validated. This 

procedure is referred to as balanced training (BT). A group of AE hits consisting of 200 

hits from each load step (L2, L3, L4, and L5) was collected prior to training and validation. 

The testing data collected was used to test these models, and each model made a 
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classification vote. The majority rule applied to the votes of the model. Figure 5.8 shows 

the process of the framework.  

 
Figure 5.8 Balanced training (BT) and testing for the machine learning models  

 

It should be noted that if an AE hit is entered into the BT model shown in Figure 8, 

the predicted result is the load step to which this single AE hit belongs. However, the AE 

hits collected from the vehicle loads will be a group of AE hits, as presented in Figure 5.9, 

not a single AE hit. If all AE hits are entered into the BT model, a set of predicted loads 

will be obtained. Therefore, a decision-making process was developed in this application 

to finally determine the load step. As shown in Figure 5.9, the AE hits generated by the 

load step were assigned to the trained BT machine learning model. Then, the output was 

converted into the probabilities that this load belongs to the steps. The final determination 

was made based on the maximum probability. 
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Figure 5.9 Decision-making process 

The Artificial Neural Networks (ANN), AdaBoost, and random forest algorithms 

improved by the BT strategy were used in this study to classify the AE hits to their 

corresponding vehicle loads based on their corresponding AE parameters.  

5.4.2.1 Artificial Neural Network (ANN) 

The neural network used in this study is a backpropagation artificial neural network 

(BP-ANN), which is one of the most widely used ANN techniques [88]. It is comprised of 

an input layer, a series of hidden layers, and an output layer [89]. Each layer has several 

processing elements defined as neurons. Furthermore, each neuron is linked with every 

other neuron in the neighboring layers [90]. The number of neurons in the input and output 

layers correlates to the input variables and the output dimension [91]. 

Figure 5.10 depicts a typical three-layer artificial neural network comprised of 

layers i, j, and k. The number of neurons is a for layer i, b for layer j, and c for layer k. The 

weights between neurons in neighboring layers are denoted by W(ij) and W(kj). The values 

of a and c are related to the problem for solving, whereas the network designer determines 

b.  
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Figure 5.10 Three-layer artificial neural network 

A BP network is calculated using feedforward and error-backward computations. 

In feedforward computations, the input layer neurons receive the processed data, and Eq. 

(1) calculates the weighted sum corresponding to each neuron in the subsequent layer.  

𝑛𝑒𝑡(𝑖) =  ∑ 𝑊(𝑖𝑗) ∙ 𝑂(𝑗)
𝑛
𝑗=1   (1) 

Where net is the net input of the i-th neuron, 𝑊(𝑖𝑗) is the weight, and 𝑂(𝑗) is the output of 

the neuron.  

The weighted sum is submitted to the activation function, which may be linear, 

nonlinear, or a unit step function, to determine the output of the i-th neuron. The S-type 

activation function is represented in Eq. (2), which is typically used to explain the 

nonlinearity of the system. The result obtained by the output layer will be employed to 

generate an error. Error E is calculated as shown in Eq. (3). 

𝑂(𝑖) = 𝑓[𝑛𝑒𝑡(𝑖)] =  
1

1+𝑒
−𝑛𝑒𝑡(𝑖)

  (2) 

𝐸 =  
1

2
 ∑ [𝑑(𝑘) − 𝑂(𝑘)]2  𝑙

𝑗=1 (3) 
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Where, 𝑑(𝑘) is the label value. 𝑂(𝑘) is the prediction value in the k-th neuron of the 

output layer. 

The error of the output layer will be backpropagated to the previous adjacent layer 

using the gradient descent method and lastly propagated to the input layer to produce more 

accurate results. Eq. (4) yields the value of the weight change. All connection weights are 

initially assigned random values and subsequently changed based on the outcomes of the 

BP training process. Figure 5.11 depicts the mechanism of a backpropagation network. 

Δ𝑊(𝑘𝑗) = −α 
∂E

∂W(kj)
 (4) 

Where α is the learning rate that adjusts the amplitude of the weight change. 

 
 

Figure 5.11 Mechanism of a backpropagation network 

5.4.2.2 AdaBoost  

The Boosting algorithm is an integrated learning method that can improve multiple 

weak learning models[92]. "Adaptive Boosting" is referred to as AdaBoost. In contrast to 

the random forest, the weak learning model utilized in the AdaBoost algorithm is usually 
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just a decision node and two leaf nodes referred to as a decision stump (referred to as a 

stump hereafter). The stump can only use one variable to decide. AdaBoost is adaptive in 

that succeeding stumps are weighted in favor of instances misclassified by prior stumps. 

Each stump inside the AdaBoost obtains a function through multiple iterations. At the end 

of the iterations, each stump is assigned a weight. The final classification is voted from the 

results of all the stumps, considering the weight. In other words, some stumps get more say 

in the classification than others [93]. 

An initial weight set (W) is assigned to the AdaBoost model: W = (𝑊1, 𝑊2, …, 

𝑊𝑁). Every element in the weight set has the same initial weight of 1/N. Assuming the 

AdaBoost model has k stumps. Eq. (5) can calculate the kth stump, and the updated 

coefficient of the weight can be obtained by Eq. (6). 

ε𝑘 = ∑ 𝑊𝑘𝑖
𝑁
𝑖=1 , 𝑇𝑘(𝑋𝑖) ≠ 𝑦𝑖 (5) 

𝛼𝑘 = 
1

2
 ln (

1−ε𝑘 

ε𝑘
) (6) 

The updated weight 𝑊𝑘+1 for the next stump 𝑇𝑘+1 can be provided by Eq. (7) and Eq. 

(8): 

𝑊(𝑐𝑜𝑟𝑟𝑒𝑐𝑡)𝑘+1𝑖 =  
𝑊𝑘𝑖

𝑍𝑘
 𝑒−𝛼𝑘   (7) 

𝑊(𝑤𝑟𝑜𝑛𝑔)𝑘+1𝑖 =  
𝑊𝑘𝑖

𝑍𝑘
 𝑒𝛼𝑘   (8) 

𝑍𝑘 = sum (𝑊𝑘) (9) 

Where W(correct) refers to the weight assigned to the input data correctly classified 

by the last stump and W (wrong) refers to the weight assigned to the input data incorrectly 

classified by the last stump. 𝑍𝑘 is the normalization factor. The architecture of the 

AdaBoost algorithm is shown in Figure 5.12.  
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Figure 5.12 The architecture of the AdaBoost algorithm 

5.4.2.3 Random Forest  

Random forest is an ensemble learning algorithm, a bagging algorithm [94]. 

Multiple weak learning models are employed in this algorithm. To determine the outcome 

of the overall model, the outcomes of the weak learning models are voted on or averaged 

[95]. The model with a prediction accuracy marginally better than a random guess is 

referred to as a weak learning model. The decision tree is the weak (basic) learning model 

employed in the random forest. 

The decision tree classifies the dataset based on multiple features. There are two 

kinds of nodes: decision nodes and leaf nodes. The former contains a condition to split the 

data, and the latter helps us to define the class. At each node of the tree, the decision node 

of the following layer is branched based on the performance of the features. The sampling 
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categories incorporated in the decision nodes will gradually become consistent with layer-

by-layer branching, and the leaf node is the decision tree classification result.  

Bagging is the combination of bootstrapping and aggregation. Utilizing the 

bootstrapping method, a predefined number of samples from the training with replacements 

are obtained. Bootstrapping ensures that the same data is not used for each tree, so it helps 

the model to be less sensitive to the original training data. As a result, a sample set is created 

for each basic learning model. Because of the replacement sampling, specific samples may 

be drawn again, while others may not. Finally, the final classification result is voted or 

averaged from the results of all the basic models, which is called aggregation.  

The random forest algorithm is a combination of a decision tree and bagging. The 

decision tree, combined with bagging efficiently, reduces the variance of a single decision 

tree. This process results in a random forest, as shown in Figure 5.13. The Gini impurity 

of the node is employed as the branching criteria in this study for generating the decision 

tree. The Gini impurity of a node refers to the probability that the sample was incorrectly 

classified and is obtained by Eq. (10). If the Gini impurity is less than a predetermined 

threshold (typically zero), it indicates that the samples belong to the same class. Otherwise, 

the sample is split into two parts, N1 and N2, as given in Eq. (11), and then assigned to two 

sub-nodes.  

Gini (N) = 1 - ∑ 𝑃 (𝑖
𝑡⁄𝑘

𝑖=1 ) (10) 

Where 𝑃 (𝑖
𝑡⁄ ) is the probability of category i at node t. 

Gini (N, F) = 
𝑁1

𝑁
 Gini (N1) + 

𝑁2

𝑁
 Gini (N2) (11) 
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The random forest model can determine and assess the significance of features 

through the feature division process while classifying [81].The method is shown in Eqs. 

(12) and (13).  

 

𝐼𝑡 (𝐹) = 𝐺𝑖𝑛𝑖|(𝑁) − 𝐺𝑖𝑛𝑖(𝑁, 𝐹) (12) 

𝑆(𝐹) =  ∑ 𝐼𝑡 (𝐹)𝑡  (13) 

 

Where 𝐼𝑡  (𝐹) refers to the decrease of the Gini impurity before and after node t is 

split into two sub-nodes according to feature F. The absolute importance of feature 𝑆(𝐹) 

can be defined as the sum of 𝐼𝑡 (𝐹) at all nodes split by feature F. 

 
 

Figure 5.13 The architecture of the random forest 

5.5 Results and Discussion 

Three improved machine-learning models were developed to classify a group of 

AE hits using 14 parameters extracted from the Sensor Highway II system. The collected 
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AE data for a vehicle passing through a bridge in field applications will consist of a group 

of AE hits, rather than a single AE hit. Hence, the overall goal was to classify a group of 

AE hits to their corresponding load step.  

5.5.1 Performance of BT-ANN  

The ANN model was fed with data from the test, which included 30,233 AE hits. 

AE hits were divided into four data sets, with their corresponding parameters, and labeled 

as L2, L3, L4, and L5. As input, these data sets were fed into the BT-ANN (balanced 

training ANN). Prior to training and validation, a randomly selected group of AE hits (200 

hits) was taken from each data set for testing. To resolve the imbalance issue, a balanced 

training data set was developed where 288 different models were trained using even data 

from each load step. The ANN randomly selected 4/5 of the data for training and 1/5 of the 

data for validation. Then the models were tested, and each model voted. Most of the votes 

determined the classification of the AE hits.  

The AE hits gathered from the vehicle loads will be a group of AE hits rather than 

a single AE hit. Therefore, the classification aimed to identify the corresponding load step 

for each group of AE hits (200 hits). First, a group of AE hits (200 hits) was classified into 

their corresponding load step based on the maximum number of AE hits assigned to each 

load step.  

Figure 5.14 presents the outputs of the BT-ANN model and the decision-making 

process when the AE data generated by the vehicle loads are input to the model. For the 

data caused by L2, the number of AE hits correctly classified to L2 was 94, whereas 46, 

21, and 39 were incorrectly classified to L3, L4, and L5, respectively. Since the largest 

number of hits were classified as L2 for this group of AE hits (200), it can be considered 



106 

 

that the probability of the number of AE hits generated by L2 is the largest. Hence, this 

group of AE hits was classified correctly into L2.  

For the data generated by L3, the number of AE hits accurately assigned to L3 was 

85, while 29, 28, and 58 were inaccurately assigned to L2, L4, and L5, respectively. The 

probability of those AE hits being generated by L3 is the largest in this grouping. Therefore, 

this group of AE hits (200) was classified accurately into L3. According to the above rules, 

the AE data generated by L4 is incorrectly classified as L3. The data from L5 is correctly 

classified as L5. The results show that, except for misclassifying L4 as L3, the BT-ANN 

model correctly classifies each group of AE hits to its corresponding load step. 

 

 
Figure 5.14 Output of BT-ANN 

In addition, a scenario was developed to eliminate the randomness in the data 

selection and determine the model's overall accuracy. One hundred groups of AE hits were 

randomly selected, and the data was tested on the trained model (BT-ANN). This scenario 
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was named GTANN (Group Testing on ANN). The final classification (Figure 5.17a) 

presents the number of groups of AE hits that were assigned to their corresponding load 

step.  

5.5.2 Performance of BT-AdaBoost 

Similarly, the AdaBoost model was fed with data from the test. AE hits were 

separated into four data sets and labeled as L2, L3, L4, and L5. These data sets were the 

input for the BT-AdaBoost (balanced training AdaBoost). Before training and validation, 

a group of AE hits (200 hits) was randomly selected from each data set for testing. Even 

data from each load step was used to train 288 different models to address the imbalance 

issue. The AdaBoost model randomly selected 4/5 and 1/5 of the data for training and 

validation, respectively. Next, the models were tested, and each model cast a vote. AE hits 

were classified based on the majority of the votes.  

Following the procedure mentioned in section 5.5.1, the first step was to allocate a 

group of 200 AE hits to their associated load step based on the maximum number of AE 

hits allotted to each load step. Figure 5.15 shows the outputs of the BT-AdaBoost model 

and the decision-making process when the AE caused by the vehicle loads is input to the 

model. For the data generated by L2, the number of AE hits correctly assigned to L2 was 

92, while 19, 43, and 46 were incorrectly assigned to L3, L4, and L5, respectively. The 

majority of the AE hits were assigned to L2, showing the highest probability that this group 

of AE hits was correctly correlated to L2. Following the above rules, the AE data caused 

by L3 and L4 were incorrectly assigned to L5. The data from L5 was correctly assigned to 

L5. The results indicate that the BT-AdaBoost model correctly classified the group of AE 

hits belonging to L2 and L5 to their corresponding load step. However, the group of AE 

hits belonging to L3 and L4 were misclassified to L5. 
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Figure 5.15 Output of BT-AdaBoost 

 

Moreover, a scenario was created to reduce the randomization in data selection and 

assess the overall reliability of the model. One hundred random samples of group AE hits 

were chosen, and the data was evaluated on the trained model (BT-AdaBoost). This 

scenario was called GTAdaBoost (Group Testing on AdaBoost). Figure 5.17b shows the 

final classification of these groups of AE hits that were allocated to their respective load 

step.  

5.5.3 Performance of BT-RF 

A random forest model was developed to compare the results of ANN and 

AdaBoost models. The data from the test was fed to the BT-RF (balanced training random 

forest). AE hits were split into four data sets and labeled as L2, L3, L4, and L5. A group 

of AE hits (200 hits) was randomly selected from each data set for testing prior to training 

and validation. An equal amount of data from each load step was utilized for training 288 
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different models to solve the imbalance issue. The random forest model used 4/5 of the 

data for training and 1/5 for validation. Next, the models were tested, and each model voted 

on the class of AE hits. The majority of the votes rule was applied to obtain the final 

classification. 

First, a group of AE hits (200 hits) was assigned to their corresponding load step 

according to the maximum number of hits classified to each load step. Figure 5.16 displays 

the results of the BT-RF and the decision-making process when the AE data produced by 

the applied loads are input into the model. For the data produced by L2, the number of AE 

hits accurately classified to L2 was 112, whereas 48, 21, and 19 were misclassified to L3, 

L4, and L5, respectively. Since the maximum number of AE hits was allocated to L2 for 

this group of AE hits, the probability of those AE hits being allocated to L2 is the highest. 

Thus, this group of AE hits was accurately classified as L2. Following the same decision-

making process, the AE data generated by L3, L4, and L5 were correctly classified into 

L3, L4, and L5, respectively. The results show that the BT-RF model correctly classified 

each group of AE hits to their corresponding load step. 
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Figure 5.16 Output of BT-random forest 

 

Furthermore, a scenario was designed to decrease randomness in data selection and 

evaluate the overall credibility of the model. One hundred groups of AE hits were randomly 

selected, and the data was assessed on the trained model (BT-RF). This scenario was named 

GTRF (Group Testing on random forest). The final classification in Figure 5.17c depicts 

how many of these 100 groups of AE hits were assigned to their related load step. 
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Figure 5.17 The confusion matrixes of (a) GTANN; (b) GTAdaBoost; (c) GTRF 

4.5.4 Comparison and discussion 

A scenario was designed to assess the accuracy of the three improved machine 

learning models that were developed to classify a group of AE hits according to their 

respective load steps. The accuracy value is given by Eq. (14). The accuracies of the 

classification using three different machine learning algorithms are presented in Table 5.3. 

The approach using random forest (GT-RF) provides the highest accuracy of 97%, whereas 

the accuracies by the ANN approach (GT-ANN) and the AdaBoost approach (GT-

AdaBoost) are 78% and 55%, respectively.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑔𝑟𝑜𝑢𝑝𝑠 𝑜𝑓 𝐴𝐸 ℎ𝑖𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑜𝑢𝑝𝑠 𝑜𝑓 𝐴𝐸 ℎ𝑖𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡
 (14) 
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Table 5.3 Accuracies of the three algorithms 

Machine learning algorithm Accuracy 

GT-ANN 78% 

GT-AdaBoost 55% 

GT-RF 97% 

In addition to accuracy, the performance of the model can be evaluated by 

calculating the precision, recall, and F1 score of each class [96], [97]. The values of the 

precision and the recall are obtained by Eqs. (15) and (16), respectively. An F1 score is 

defined as the harmonic mean of precision and recall [96]. It can be calculated by Eq. (17).  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑔𝑟𝑜𝑢𝑝𝑠 𝑜𝑓 𝐴𝐸 ℎ𝑖𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑜𝑎𝑑 𝑠𝑡𝑒𝑝

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑔𝑟𝑜𝑢𝑝𝑠 𝑜𝑓 𝐴𝐸 ℎ𝑖𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑜𝑎𝑑 𝑠𝑡𝑒𝑝
(15) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑔𝑟𝑜𝑢𝑝𝑠 𝐴𝐸 ℎ𝑖𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑜𝑎𝑑 𝑠𝑡𝑒𝑝

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑜𝑢𝑝𝑠 𝑜𝑓 𝐴𝐸 ℎ𝑖𝑡𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑜𝑎𝑑 𝑠𝑡𝑒𝑝
(16) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (17) 

For the GT-ANN, the precisions of the four load steps are respectively 100%, 

100%, 10%, and 100% from L2 to L5. While the recalls are respectively 100%, 100%, 

53%, and 100% from L2 to L5. The F1 scores of the four load steps are respectively 100%, 

69%, 18%, and 100% from L2 to L5. Moreover, the precisions of the four load steps, L2 

to L5, for the GT-AdaBoost are 100%, 0%, 15%, and 100%, respectively. The recalls are 

respectively 100%, 0%, 100%, and 35% from L2 to L5. The F1 scores are respectively 

100%, 0%, 26%, and 58% from L2 to L5. The precision, recall, and F1 score for each load 

step was calculated for the GT-RF. Precisions of the four load steps are respectively 100%, 

95%, 93%, and 100%. Recalls of the four load steps are respectively 97%, 100%, 98%, and 

93%. F1 scores of the four load steps are 98.5%, 97.4%, 95.4%, and 96.4%, respectively. 

Figure 5.18 presents the evaluation of each load step for the three machine learning 

algorithms.  
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Figure 5.18 Evaluation of load steps (a) GT-ANN; (b) GT-AdaBoost; (c) GT-RF  

The F1 scores obtained by the three different machine algorithms are shown in 

Figure 5.19. It can be observed that the F1 scores of four load steps attained by the ANN 

and AdaBoost show a wide variety. However, the F1 scores obtained by the random forest 

are stable. In addition, the F1 scores of random forest are higher than ANN and AdaBoost. 

Hence, the random forest has the best performance for classifying the AE hits in each load 

step.  
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Figure 5.19 Comparison of F1 scores 

The performance of the random forest algorithm was better than the ANN and 

AdaBoost algorithms in classifying the AE hits to their corresponding load steps. One 

possible explanation could be related to how each machine-learning model deals with 

outliers. In machine learning, outliers are data points that differ from most of the data points 

in a data set. Fourteen AE parameters were fed to the machine learning models to classify 

the data points.  

AdaBoost is an ensemble learning method designed to enhance the performance of 

multiple weak learning models, referred to as decision stumps. During the AdaBoost 

process, each stump is trained over multiple iterations, resulting in a weighted function. At 

the end of these iterations, each stump receives a weight. The final classification is 

determined by a vote from all the stumps, considering their respective weights. AdaBoost 

can be impacted by outliers. This is due to outliers receiving higher weights in the iterative 

process, having a more significant impact on the final model. Similarly, ANN can be 

affected by outliers, potentially leading to poor performance. Outliers can mislead the 

model during training, causing it to overfit the training data. The model may try to fit the 
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outliers, resulting in inaccurate weight updates. This will result in poor performance when 

subjected to the testing data.  

On the other hand, random forest is an ensemble learning algorithm, specifically a 

bagging algorithm. It leverages multiple weak learning models, which are decision trees, 

to make predictions. The strength of this algorithm lies in the way it determines its final 

prediction: by averaging the outcomes of these decision trees. This approach helps mitigate 

the risk associated with individual trees making errors. In addition, random forests consider 

only a subset of features when constructing each decision tree, which effectively lessens 

the influence of outliers, resulting in a better classification outcome. This can be 

demonstrated by the performance of the three machine learning algorithms employed in 

this study. The robustness of the random forest model in classifying the AE data collected 

from other girders is presented in Appendix C. 

5.6 Conclusions and recommendations 

AE data was collected from a flexural test of a prestressed concrete girder. This 

paper considered three improved machine learning approaches to classify AE hits to their 

corresponding load steps (theoretical vehicle loads). ANN, AdaBoost, and random forest 

were used, and their performance was compared. The main conclusions of the paper are 

summarized as follows: 

1. Balanced training for the training data is essential to resolve the imbalance issue 

when unequal data sets are fed to the machine learning model. Since the machine 

learning model can be biased in the classification to the largest data set. 

2. The performance of the BT-RF algorithm was better than the BT-ANN and BT-

AdaBoost algorithms in classifying the AE hits to their corresponding load steps. 
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The BT-RF had an overall accuracy of 97%, whereas the BT-ANN and BT-

AdaBoost models had an accuracy of 78% and 55%, respectively. 

3. AE in conjunction with improved random forest may potentially be used to 

determine the vehicle loads on bridge girders. The F1-scores indicated that the 

performance of random forest is the best among the three algorithms. 

This study is limited to one 30-foot-long prestressed reinforced concrete girder. 

Since AE sensors depend on the surface properties to which they are attached, more 

research must be done on other typical structures. In addition, this study is limited to the 

application of a static load, whereas the vehicle loads are dynamic. Hence, future studies 

should focus on analyzing AE data acquired from the effects of dynamic loads.  
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Chapter 6  

Summary and Conclusions 
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6.1 Summary 

One specific superstructure type, prestressed skinny-leg girders, was addressed in 

this study. SCDOT manages several structurally deficient and load-posted prestressed 

skinny-leg channel girder bridges. The primary goal of this study is to address a particular 

challenge related to reducing load restrictions on these bridges. In many cases, repairing 

and strengthening the sections with deficiencies presents a cost-effective and structurally 

efficient solution. In addition, SCDOT is currently in the process of load rating its 

inventory of bridges. The load rating is based on the existing structural conditions, as well 

as the load and traffic conditions. Therefore, there is a need for non-destructive evaluation 

methods that can evaluate the condition of in-service bridges, provide site-specific traffic 

data, and perform continuous monitoring in case the bridge conditions change.  

In the first study, nine girders obtained from decommissioned bridges in South 

Carolina were tested under monotonic loading to failure. The test program consisted of six 

unstrengthened girders, one strengthened with bonded aluminum channels (SE), one 

strengthened with bonded and bolted aluminum channels (SEB), and one strengthened with 

bolted aluminum channels (SB). Before testing, a visual inspection of the girders was 

conducted to identify any existing deterioration, and each girder was given a condition 

rating based on the SNBI inspection criteria. The results of the tests were presented to 

evaluate the efficacy of the strengthening methods in enhancing the moment capacity of 

the girders. In addition, a correlation was established between the moment capacity and the 

condition rating to evaluate the impact of existing deterioration.  

In the second study, six prestressed concrete channel bridge girders, which were 

originally used in 30-ft span bridges constructed in the 1960s, were subjected to flexural 
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tests. AE was used to monitor the girders during the tests. The girders were visually 

inspected prior to testing and each girder was assigned a condition rating based on the 

SNBI inspection criteria. Intensity analysis charts were developed based on the collected 

AE data. The charts were utilized to determine the condition factor (∅𝑐) of the girders for 

load rating applications. 

In the third study, AE data was collected from a flexural test of a prestressed 

concrete girder. Three improved machine learning algorithms based on artificial neural 

networks (ANN), AdaBoost, and random forest were adopted to classify AE hits to their 

corresponding load steps (theoretical vehicle loads). In this study, load determination is 

considered a classification problem. The loading procedure was divided into load steps and 

the AE signals were classified to their corresponding load steps. The three models were 

tested, and their performance was compared. 

6.2 Conclusions of each study 

6.2.1 Full-Scale Experimental Investigation of Prestressed Concrete Channel Bridge 

Girders Strengthened with Aluminum Alloy Channels 

This study aimed to explore strengthening methods for enhancing the performance 

of prestressed concrete channel girders. To achieve this, nine decommissioned girders were 

subjected to flexural tests to failure. Prior to the testing, the girders were visually inspected 

to identify any existing deterioration that might result in reduced moment capacity. Six 

unstrengthened girders were tested to failure to assess their flexural behavior and serve as 

a benchmark to compare with the strengthened girders. Additionally, this paper presented 

an experimental framework that investigated the feasibility and efficacy of utilizing AA 
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channels as an externally bonded or bolted strengthening method. Based on the 

experimental findings, the following conclusions can be drawn:   

• The measured moment capacities of the girders varied based on the condition rating 

of each girder, which was determined by the extent of existing deterioration 

observed through visual inspection. The girders with a condition rating above 6 

(good) exhibited measured moment capacities higher than the nominal moment 

capacity, and the measured moment capacities of girders with a condition rating 

below 4 (Poor). Additionally, the measured moment capacities of the girder 

specimens with a condition rating below 4 (Poor) were less than the nominal 

moment capacity.  

• Externally bonding AA channels with epoxy with or without anchorage may serve 

as strengthening techniques for bridge girders. The strengthened girders exhibited 

an increase in measured moment capacity of 9% and 15% for SE and SEB, 

respectively, compared to the unstrengthened girders. However, premature failure 

occurred due to debonding of AA channels and end bolt rupture for SE and SEB, 

respectively. Further investigation is needed to assess the debonding failure for 

aluminum alloys attached with epoxy before actual field implementation. 

• Externally anchoring AA channels with bolts was a more convenient method in 

terms of practicality, easiness, and higher increase in the moment capacity. The 

strengthened girder (SB) exhibited an increase in measured moment capacity of 

33% compared to the unstrengthened girders. In addition, a suitable protective 

coating should be applied to the steel threaded bolts for field applications. 

• The design method in the AASHTO code can be used to accurately estimate the 
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theoretical moment capacity for the strengthened girder (SB) demonstrated by the 

results obtained from the calculations which provided a good estimate with a 

difference of 3% between the calculated and the measured moment capacity. 

6.2.2 Condition Assessment of Prestressed Concrete Channel Bridge Girders Using 

Acoustic Emission and Data-Driven Methods 

This study summarizes an effort to use non-destructive evaluation techniques, 

particularly AE, to evaluate the condition state of prestressed concrete channel bridge 

girders. Six prestressed concrete channel bridge girders, which were originally used in 30-

ft span bridges constructed in the 1960s, were subjected to flexural tests at the University 

of South Carolina (USC). Acoustic emission was used to monitor the girders during the 

tests. The girders were visually inspected prior to testing and each girder was assigned a 

condition rating based on the SNBI condition rating descriptions. The main conclusions of 

this study are summarized as follows: 

• Cumulative signal strength (CSS) can be used as an assessment method to develop 

the Intensity Analysis design criteria for girders in good condition.  

• Intensity analysis developed condition assessment charts may assess the 

deterioration in the girders in good condition. This can be utilized to determine 

whether the girders are operating in accordance with the design criteria. 

• The charts may also quantify the existing deterioration regardless of the initial 

condition as seen in the results for the girders in poor condition. In the event that 

the girders do not meet the design criteria before reaching the required load, this 

information can be used to update the condition factor (∅𝑐) of the girders for load 

rating purposes. 
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6.2.3 An Automated Load Determination System for Bridges Based on Acoustic Emission 

and Machine Learning Techniques 

AE data was collected from a flexural test of a prestressed concrete girder. This 

paper considered three improved machine learning approaches to classify AE hits to their 

corresponding load steps (theoretical vehicle loads). ANN, AdaBoost, and random forest 

were used, and their performance was compared. The main conclusions of the study are 

summarized as follows: 

• Balanced training for the training data is essential to resolve the imbalance issue 

when unequal data sets are fed to the machine learning model. Since the machine 

learning model can be biased in the classification to the largest data set. 

• The performance of the BT-RF algorithm was better than the BT-ANN and BT-

AdaBoost algorithms in classifying the AE hits to their corresponding load steps. 

The BT-RF had an overall accuracy of 97%, whereas the BT-ANN and BT-

AdaBoost models had an accuracy of 78% and 55%, respectively. 

• AE in conjunction with improved random forest may potentially be used to 

determine the vehicle loads on bridge girders. The F1-scores indicated that the 

performance of random forest is the best among the three algorithms. 

6.3 General conclusions 

The results of this study align with the established objectives and can be 

summarized as follows: 

• Three strengthening methods were investigated in this study. Externally anchoring 

AA channels with bolts was a more convenient method in terms of practicality, 

ease, and higher increase in the moment capacity. The strengthened girder (SB) 
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exhibited an increase in the measured moment capacity of 33% compared to the 

unstrengthened girders.  

• AE may be used as an SHM technique to evaluate the condition of in-service 

bridges. Intensity analysis developed condition assessment charts may be used to 

assess the deterioration in the girders and to determine the condition factor (∅𝑐) of 

the girders for load rating purposes. 

• AE in conjunction with an optimized random forest machine learning model may 

potentially be used to determine the vehicle loads on prestressed concrete channel 

bridge girders. 

6.4 Recommendations and Future Work 

In the first study, the goal was to investigate methods to strengthen the prestressed 

skinny-leg girder bridges. An experimental framework is presented that investigates the 

feasibility and efficacy of utilizing AA channels as an externally bonded or bolted 

strengthening method. Nevertheless, further investigation is needed to assess the 

debonding failure for aluminum alloys attached with epoxy before actual field 

implementation. Future studies may be conducted to evaluate the performance of the 

strengthening methods using bolted aluminum alloy channels on poor condition girders. In 

addition, a suitable protective coating should be applied to the steel threaded rods for field 

applications. Improving the reliability of the results could be achieved by conducting more 

tests on the available girders. Based on the findings of the flexural tests, it is recommended 

to conduct further assessments on bridges that seem to be in good condition. This additional 

evaluation is crucial to determine whether these bridges should be posted for load. This 

recommendation is based on the observation that the measured moment capacity of the 
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girders in good condition exceeded the calculated moment capacity using plan specified 

properties. 

In the second study, AE was used to perform condition assessment of the 

prestressed skinny-leg girders during a flexural test in the laboratory. Many of the 

conclusions and results from this research may potentially be directly applied to structural 

health monitoring of prestressed skinny-leg girder bridges upon validation. The limits 

established for the developed AE quantification charts are empirical, necessitating further 

investigations before employing these methods. Future studies should focus on developing 

intensity grading criteria for these structures based on field testing. The test data from both 

field testing and laboratory work will provide a solid basis in understanding field conditions 

in terms of noise level and required filtering techniques. Moreover, these limits should be 

verified and established for other typical structures. 

In the third study, the objective was to develop a potential approach to predict the 

vehicle loads that pass over prestressed concrete bridge girders from the collected AE data 

utilizing a machine learning model. Since AE sensors depend on the surface properties to 

which they are attached, more research must be done on other typical structures. In 

addition, this study is limited to the application of a static load, whereas the vehicle loads 

are dynamic. Hence, future studies should focus on analyzing AE data acquired from the 

effects of dynamic loads. Based on the findings of the robustness of the model when applied 

on another girder as detailed in Appendix C, enhancing the performance of the random 

forest model can be achieved by expanding the training dataset with more diverse and 

broader data. Future research may explore transfer learning methods for classifying AE 

data even without historical AE signals for training. Finite element models may be 
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developed to simulate the stress wave propagation and generate numerical AE signals. 

These signals could then be utilized to provide the models with a broader and more 

comprehensive training dataset.  
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Appendix A - Material Testing Results 
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A.1 Concrete compression test results: 

Drilled concrete cores were extracted from all the girders after testing and tested 

for their compressive strength. The cylinders were drilled using a core drill and diamond-

impregnated drill bit. Concrete cores were obtained in accordance with ASTM C42/ C42M 

[39] and ACI 214.4R-03 [40], were capped in accordance with ASTM C617 [41], and 

tested in accordance with ASTM C39/ C39M [42]. However, the dimensions of the 

cylindrical concrete core specimens were 2 in. diameter by 4 in. long, which does not 

conform with ASTM C39/ C39M [42] or ACI 214.4R-03 [40]. As the cores were limited 

to the thickness of the flanges of the girders, which was 5 in. The average compressive 

strength of the cores was 10,200 psi. 

Table A.1 Concrete compression test results 

Specimen Core Diameter 

(in.) 

Area 

(𝒊𝒏𝟐) 

Ultimate 

Load 

(lbs.) 

Compressive 

strength 

(𝒇𝒄𝒐𝒓𝒆) 

(psi) 

Failure 

type 

Average 

Compressive 

strength 

(𝒇𝒄𝒐𝒓𝒆) 

(psi) 

U1 1 2.090 3.43 32070 9340 3 9900 

2 2.086 3.42 33430 9780 2 

3 2.084 3.41 35880 10510 2 

U2 1 2.092 3.44 38600 11230 2 10400 

2 2.078 3.39 33600 9910 4 

3 2.094 3.44 34790 10100 2 

U3 1 2.043 3.28 38650 11790 1 10600 

2 2.041 3.27 37280 11400 2 

3 2.041 3.27 28260 8640 3 

U4 1 2.043 3.28 34800 10620 1 10600 

2 2.048 3.28 29180 8890 4 

3 2.043 3.28 40340 12310 1 

U5 1 2.038 3.26 37527 11510 5 10900 

2 2.043 3.27 35640 10880 2 

3 2.040 3.27 33752 10320 4 

U6 1 2.005 3.16 25960 8220 3 8580 

2 2.013 3.18 28450 8940 2 

SE 1 2.001 3.14 30320 9640 3 10400 

2 2.006 3.16 33530 10600 2 
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3 2.005 3.16 34640 10970 3 

SEB 1 1.998 3.14 30910 9850 3 10200 

2 2.002 3.15 34140 10840 3 

3 2.005 3.16 31110 9850 2 

SB 1 2.007 3.16 30150 9530 2 9700 

2 2.005 3.16 31120 9850 3 
Notes:  

The cores were 2 in. diameter and 4 in. long. 

Failure Type: 1) well-formed cones on both ends, 2) well-formed cone with vertical cracks, 3) 

columnar vertical   cracking, 4) diagonal fracture with no cracking, 5) side fracture at top or 

bottom corners, 6) like type 5 but end   of cylinder is pointed. Refer to ASTM C39/ C39M for 

further clarification. 

𝒇𝒄𝒐𝒓𝒆 = Ultimate load / Area 

To determine the equivalent specified strength (𝒇𝒄,𝒆𝒒
′ ), equation 6.4.3.1 discussed in ACI 

562-21 [98] was used and the results are displayed in Table A.2. The average equivalent 

specified strength of the girders was 9,100 psi. 

Table A.2 Equivalent specified strength results (𝑓𝑐,𝑒𝑞
′ ) 

Specimen Equivalent specified strength (𝑓𝑐,𝑒𝑞
′ ) 

U1 9,170 

U2 9,580 

U3 8,770 

U4 8,780 

U5 10,170 

U6 7,480 

SE 9,600 

SEB 9,300 

SB 9,100 

Equivalent specified strength (𝑓𝑐,𝑒𝑞
′ ) calculations: 

𝑓𝑐𝑒𝑞 = 0.9 𝑓𝑐
− [1 − 1.28√

(𝑘𝑐𝑉)2

𝑛
+ 0.0015     (A.1) 

where: 

𝑓𝑐𝑒𝑞 = Equivalent specified concrete strength 

𝑓𝑐
− = Average core strength after applying modification factors. 

𝑘𝑐 = coefficient of variation modification factor 

V = coefficient of variation of the core strengths 
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n = number of cores taken 

𝑓𝑐= 𝐹𝑙/𝑑 𝐹𝑚𝑐𝐹𝑑𝑖𝑎𝐹𝑑𝐹𝑐𝑜𝑟𝑒 (A.2) 

where: 

𝑓𝑐 = equivalent in place strength 

𝐹𝑙/𝑑 = strength correction factor account for the effect of length-to-diameter ratio 

𝐹𝑚𝑐= strength correction factor account for the effect of moisture condition of the core 

𝐹𝑑𝑖𝑎= strength correction factor account for the effect of diameter of the core 

𝐹𝑑 = correction factor account for the effect of damage due to drilling 

𝐹𝑐𝑜𝑟𝑒 = core strength 

Table A.3 Calculations of equivalent specified strength (𝑓𝑐,𝑒𝑞
′ ) 

Specimen 𝑓𝑐𝑜𝑟𝑒(psi) 𝑓𝑐(psi) 𝑓𝑐
−(psi) n kc V 𝑓𝑐,𝑒𝑞

′ (psi) 

U1 9,340 10,497 11,097 3 1.47 0.06 9,170 
9,780 10,985 
10,510 11,809 

U2 11,230 12,618 11,698 3 1.47 0.07 9,580 
9,910 11,131 
10,500 11,344 

U3 11,790 13,247 11,920 3 1.47 0.16 8,770 
11,390 12,803 
8,640 9,710 

U4 10,620 11,932 11,918 3 1.47 0.16 8,780 
8,890 9,992 
12,310 13,831 

U5 11,510 12,932 12,250 3 1.47 0.05 10,170 
10,880 12,228 
10,310 11,591 

U6 8,220 9,233 9,636 2 2.4 0.06 7,480 
8,935 10,039 

SE 9,640 10,830 11,688 3 1.47 0.06 9,600 
10,600 11,914 
10,970 12,321 

SEB 9,850 11,071 11,327 3 1.47 0.07 9,300 
10,840 12,176 
9,550 10,730 

SB 9,520 10,702 10,886 2 2.4 0.02 9,100 
9,850 11,070 

*Strength correction factors: 𝐹𝑙/𝑑=1, 𝐹𝑚𝑐=1, 𝐹𝑑𝑖𝑎=1.06, and 𝐹𝑑= 1.06 
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A.2 Prestressing strands ultimate tensile strength test results 

Prestressing strands were extracted from specified girders after testing and tested 

for their tensile ultimate strength at the SCDOT office of materials and research. Uniaxial 

tensile tests were conducted on 30 in. long specimens. Strands selected for testing were 

either the lowest strand or second lowest strand (if possible). A total of eight prestressing 

strands were collected with various levels of corrosion and section loss. Prior to testing, 

the severity of strand deterioration was visually inspected. Four levels of corrosion 

deterioration were considered in the assessment based on the conditions of the strands.  

 
Figure A.1 Strands extracted from specimens 

 

Table A.4 Ultimate tensile strength for strands tested. 

Girder Strand 

location 

Ultimate 

tensile load 

(𝑷𝒖)(lbs.) 

Ultimate 

tensile 

strength*** 

(ksi) 

𝑷𝒖/ 

𝑷𝒏𝒖** 

Deterioration 

Index* (DI) 

Measured 

moment 

capacity 

(kip-ft) 

U2 bottom 23,050 288 1.15 1 202 

one up 

from 

bottom 

23,100 289 1.16 1 

U3 bottom 14,150 NA 0.71 3 172 
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one up 

from 

bottom 

21,910 274 1.10 1 

U4 bottom 16,760 NA 0.84 2 184 

one up 

from 

bottom 

23,760 297 1.19 0 

U5 bottom 19,460 NA 0.97 2 166 

one up 

from 

bottom 

23,800 298 1.19 0 

Notes: 

*DI: 0) No corrosion, 1) Light corrosion, 2) Pitting with minor section loss, 3) Heavy Pitting 

with section loss. 

**𝑷𝒏𝒖 is the specified ultimate tensile load based on the specified ultimate tensile strength and 

the specified area of the prestressing strands. 𝑷𝒏𝒖= 250,000 * 0.08 = 20,000 lbs. 

*** Ultimate tensile strength = Ultimate load / specified area of prestressing strand 
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Appendix B - Calculations 
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B.1 Nominal moment capacity of the unstrengthened girders based on the specified 

drawings from SCDOT 

Geometrical and reinforcing details (SCDOT drawings): 

Concrete: 

Specified compressive strength of concrete, 𝑓𝑐
′ = 5 ksi 

Specified compressive strength of concrete at transfer, 𝑓𝑐𝑖
′  = 4 ksi 

Channel Properties: 

 

Figure B.1 Typical Channel Cross-Section (SCDOT drawing) 

Top flange width, B = 33.0 in. 

Flange thickness, 𝑡𝑠 = 5.0 in. 

Web thickness, 𝑡𝑤 = 12.0 in. 

Girder thickness, h = 17.0 in. 

Bottom web width, 𝑏𝑤𝑏= 2.5 in. 

Upper web width, 𝑏𝑤𝑢= 4.5 in. 
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Cross-section Area, 𝐴𝑔 

𝐴𝑔 = B 𝑡𝑠 + 2 (𝑏𝑤𝑏𝑡𝑤) + 4 (0.5 𝑡𝑤 
𝑏𝑤𝑢−𝑏𝑤𝑏

2
 )  

      = 33 x 5 + 2 (2.5 x 12) + 4 (0.5 x 12 x 
4.5−2.5

2
) = 249.0 in.2 

Distance between centroid of prestressing strands to bottom fiber at midspan, 𝑦𝑏𝑠 = 4.4 

in. 

Distance between centroid of prestressing strands to top fiber at midspan, 𝑑𝑝𝑠 = 12.7 in. 

Strands Properties: 

Specified area of one strand, 𝐴𝑆𝑡𝑟𝑎𝑛𝑑 = 0.08 in.2  

Number of strands, 𝑛𝑠𝑡𝑟𝑎𝑛𝑑𝑠 = 10 

Area of prestressing strands, 𝐴𝑝𝑠 = 10 x 0.08 = 0.8 in.2 

Specified ultimate tensile strength of prestressing strands, 𝑓𝑝𝑢= 250.0 ksi 

Ultimate tensile strength of prestressing strands before transfer, 𝑓𝑝𝑖= 0.70 x 250 = 175.0 

ksi 

Ultimate tensile strength of prestressing strands after transfer, 𝑓𝑝𝑒= 0.8 x 175 = 140.0 ksi 

Yield strength of prestressing strands, 𝑓𝑝𝑦 = 0.85 x 250 = 212.5 ksi (stress-relieved 

strands) 

Modulus of Elasticity of prestressing strands, 𝐸𝑝𝑠 = 28500 ksi (stress-relieved strands) 

Compression Steel Properties: 

Number of bars, 𝑛𝑏𝑎𝑟𝑠 = 5 

Specified area of one bar (#3), 𝐴𝑠
′  = 0.11 in.2  

Yield strength of bars, 𝑓𝑦
′ = 40 ksi 

Modulus of Elasticity of bars, 𝐸𝑠 = 29000 ksi 

Cross-Section Properties: 

Distance from neutral axis to top fiber, 𝑦𝑡𝑜𝑝 
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𝑦𝑡𝑜𝑝 = 
B 𝑡𝑠(

𝑡𝑠
2

 )+ 2 (𝑏𝑤𝑏𝑡𝑤)(𝑡𝑠+
𝑡𝑤
2

)+ 4 (0.5 𝑡𝑤 
𝑏𝑤𝑢−𝑏𝑤𝑏

2
 )(𝑡𝑠+

𝑡𝑤
3

 )+(𝑛𝑝𝑠−1)𝐴𝑝𝑠𝑑𝑝𝑠

𝐴𝑔+ (𝑛𝑝𝑠−1)𝐴𝑝𝑠 
 

         = 
33 x 5 x (

5

2
)+ 2 (2.5 x 12)(5+

12

2
)+ 4 (0.5 x 12 x 

4.5−2.5

2
)(5+

12

3
)+(6.65−1)(0.8)(12.6) 

249+(6.65−1)(0.8)
 = 5.3 in. 

Distance from neutral axis to bottom fiber, 𝑦𝑏 

𝑦𝑏 = h - 𝑦𝑡𝑜𝑝 = 17 – 5.3 = 11.7 in. 

Strands eccentricity at midspan, 𝑒𝑐 = 𝑦𝑏- 𝑦𝑏𝑠 = 11.7 – 4.4 = 7.3 in. 

Moment of Inertia, 𝐼𝑔  

𝐼𝑔 = 
B𝑡𝑠

3

12
 + B𝑡𝑠(𝑦𝑡 −

𝑡𝑠

2
)2 + 2 [

𝑏𝑤𝑏𝑡𝑤
3

12
 +(𝑏𝑤𝑏𝑡𝑤)(𝑦𝑡 − 𝑡𝑠 −

𝑡𝑤

2
)2] + 4 [

𝑏𝑤𝑢−𝑏𝑤𝑏
2

𝑡𝑤
3

36
 

+(0.5 𝑡𝑤  
𝑏𝑤𝑢−𝑏𝑤𝑏

2
) (𝑦𝑡 − 𝑡𝑠 −

𝑡𝑤

3
)2] + (𝑛𝑝𝑠 − 1)𝐴𝑝𝑠(𝑦𝑡 − 𝑑𝑝𝑠)2 = 

33x 53

12
 + 33 x 5 (5.3 −

5

2
)2 + 2 [

2.5 x 123

12
 +(2.5)(5.3 − 5 −

12

2
)2] + 4 [

4.5 − 2.5

2
 𝑥 123

36
 +(0.5 𝑥 12 𝑥 

4.5−2.5

2
) (5.3 − 5 −

12

3
)2] + (6.65 − 1)(0.8)(5.3 − 12.6)2 = 4824.3 in.4 

Section modulus for bottom fiber, 𝑆𝑏  

𝑆𝑏 = 
𝐼𝑔

𝑦𝑏
 = 

4824.3

11.7
 = 412.6 in.3 

Section modulus for top fiber, 𝑆𝑡  

𝑆𝑡 = 
𝐼𝑔

𝑦𝑡
 = 

4824.3

5.3
 = 909.0 in.3 

Cracking Moment, 𝑀𝑐𝑟  

Modulus of rupture of concrete, 𝑓𝑟 = 7.5 √𝑓𝑐
′ = 7.5 √5000 = 530.3 psi 

𝑃𝑝𝑒 = 𝐴𝑝𝑠 𝑓𝑝𝑒 = 0.8 x 140 = 112.0 kip 

𝑓𝑐𝑝𝑒 = 
𝑃𝑝𝑒

𝐴𝑔
 + 

𝑃𝑝𝑒𝑒𝑐

𝑆𝑏
 = 

112

249
 + 

112 𝑥 7.3

412.6
 = 2.4 ksi 

𝑀𝑐𝑟 = (𝑓𝑟 + 𝑓𝑐𝑝𝑒 ) 𝑆𝑏 = (0.53 + 2.4) x 412.6 x 1/12 = 100.7 kip-ft 

AASHTO-define Nominal Strength, 𝑀𝑛 

Assumptions: 

Plane sections remain plane.  

Concrete will not carry tension forces. 

Prestressing strands yield.  
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Concrete crushing occurs at failure and has a usable strain of 0.003 in./in. 

𝐾1 = 2(1.04 - 
𝑓𝑝𝑦

𝑓𝑝𝑢
 ) = 2 (1.04 - 

212.5

250
 ) = 0.38  

𝛽1 = 0.85 − (0.05 ∗ 
𝑓𝑐

′−4000 

1000
) = 0.85 − (0.05 ∗  

5000 − 4000 

1000
) = 0.8 

c = 
𝐴𝑝𝑠𝑓𝑝𝑢

0.85𝑓𝑐
′𝛽1𝐵+ 𝐾1 𝐴𝑝𝑠

𝑓𝑝𝑢

𝑑𝑝

 = 
0.8 𝑥 250

0.85 𝑥 5 𝑥 0.8 𝑥 33+0.38 𝑥 0.8 𝑥 
250

12.6

 = 1.7 in. 

a = 𝛽1 c = 0.8 x 1.7 = 1.4 in. 

a = 1.4 in. < 𝑡𝑠 = 5 in. “The depth of the equivalent stress block is less than the thickness 

of the compression flange.” 

check if compression steel yields. 

𝜀𝑠
′  = 0.003 

(𝑐− 𝑑𝑠
′)

𝑐
 = 0.003 x 

1.7−2.2

1.7
 = -8.8 x 10−4 in./in. 

𝜀𝑦
′  = 

𝑓𝑦

𝐸𝑠
 = 

40

29000
 = 1.4 x 10−3 in./in. 

𝜀𝑠
′  < 𝜀𝑦

′  . “Compression steel did not yield.” 

𝑓𝑝𝑠 = 𝑓𝑝𝑢 ( 1 - 𝐾1  
𝑐

𝑑𝑝
 ) = 250 (1 – 0.38 x 

1.7

12.6
) = 238 ksi 

𝑀𝑛= 𝐴𝑝𝑠𝑓𝑝𝑠 (𝑑𝑝 −  
𝑎

2
 ) = 0.8 x 238 (12.7 - 

1.4

2
 ) x 1/12 = 191 kip-ft 

B.2 Nominal moment capacity of the strengthened girders based on the specified 

drawings from SCDOT 

Geometrical and reinforcing details: 

Two aluminum channels sections (6061 Aluminum Alloy 3 x 0.258 x 1.498 x 300) 

Specified yield strength, 𝑓𝑦𝐴 = 40 ksi 

Modulus of Elasticity, 𝐸𝐴 = 10000 ksi 

Web Height = 3.0 in 

Flange Height = 1.5 in 

Thickness = 0.3 in 

𝑑𝑎𝑙 (distance between top fiber and c.g. of aluminum channels) = 13.5 in (2” from bottom 

+1/2 Web Height) (Similar to the test setup) 

Area of one aluminum channel, Aal= 1.4 in2  
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Cross-Section Properties: 

Distance from neutral axis to top fiber, 𝑦𝑡𝑜𝑝 

𝑦𝑡𝑜𝑝 = 
B 𝑡𝑠(

𝑡𝑠
2

 )+ 2 (𝑏𝑤𝑏𝑡𝑤)(𝑡𝑠+
𝑡𝑤
2

)+ 4 (0.5 𝑡𝑤 
𝑏𝑤𝑢−𝑏𝑤𝑏

2
 )(𝑡𝑠+

𝑡𝑤
3

 )+(𝑛𝑝𝑠−1)𝐴𝑝𝑠𝑑𝑝𝑠+𝑛𝑎𝑙𝐴𝑎𝑙𝑑𝑎𝑙

𝐴𝑔+ (𝑛𝑝𝑠−1)𝐴𝑝𝑠+𝑛𝑎𝑙𝐴𝑎𝑙
 

         

=
33 x 5 x (

5

2
)+ 2 (2.5 x 12)(5+

12

2
)+ 4 (0.5 x 12 x 

4.5−2.5

2
)(5+

12

3
)+(6.65−1)(0.8)(12.6)+2.3 𝑥 2 𝑥 1.41 𝑥 13.5 

249+(6.65−1)(0.8)+2.3 𝑥 2 𝑥 1.41
 

𝑦𝑡𝑜𝑝 = 5.5 in. 

Distance from neutral axis to bottom fiber, 𝑦𝑏 

𝑦𝑏 = h - 𝑦𝑡𝑜𝑝 = 17 – 5.5 = 11.5 in. 

Strands eccentricity at midspan, 𝑒𝑐 = 𝑦𝑏- 𝑦𝑏𝑠 = 11.5 – 4.4 = 7.1 in. 

Moment of Inertia, 𝐼𝑔  

𝐼𝑔 = 
B𝑡𝑠

3

12
 + B𝑡𝑠(𝑦𝑡 −

𝑡𝑠

2
)2 + 2 [

𝑏𝑤𝑏𝑡𝑤
3

12
 +(𝑏𝑤𝑏𝑡𝑤)(𝑦𝑡 − 𝑡𝑠 −

𝑡𝑤

2
)2] + 4 [

𝑏𝑤𝑢−𝑏𝑤𝑏
2

𝑡𝑤
3

36
 

+(0.5 𝑡𝑤  
𝑏𝑤𝑢−𝑏𝑤𝑏

2
) (𝑦𝑡 − 𝑡𝑠 −

𝑡𝑤

3
)2] + (𝑛𝑝𝑠 − 1)𝐴𝑝𝑠(𝑦𝑡 − 𝑑𝑝𝑠)2 + 𝑛𝑎𝑙𝐴𝑎𝑙(𝑦𝑡 − 𝑑𝑎𝑙)2= 

33x 53

12
 + 33 x 5 (5.5 −

5

2
)2 + 2 [

2.5 x 123

12
 +(2.5)(5.5 − 5 −

12

2
)2] + 4 [

4.5 − 2.5

2
 𝑥 123

36
 

+(0.5 𝑥 12 𝑥 
4.5−2.5

2
) (5.5 − 5 −

12

3
)2] + (6.65 − 1)(0.8)(5.5 − 12.6)2 + 

(2.3)(2 𝑥 1.41)(5.5 − 13.5)2= 5281.5 in.4 

Section modulus for bottom fiber, 𝑆𝑏  

𝑆𝑏 = 
𝐼𝑔

𝑦𝑏
 = 

5281.5

11.5
 = 459.3 in.3 

Section modulus for top fiber, 𝑆𝑡  

𝑆𝑡 = 
𝐼𝑔

𝑦𝑡
 = 

5281.5

5.5
 = 9060.3 in.3 

Cracking Moment, 𝑀𝑐𝑟  

Modulus of rupture of concrete, 𝑓𝑟 = 7.5 √𝑓𝑐
′ = 7.5 √5000 = 530.3 psi 

𝑃𝑝𝑒 = 𝐴𝑝𝑠 𝑓𝑝𝑒 = 0.8 x 140 = 112.0 kip 

𝑓𝑐𝑝𝑒 = 
𝑃𝑝𝑒

𝐴𝑔
 + 

𝑃𝑝𝑒𝑒𝑐

𝑆𝑏
 = 

112

249
 + 

112 𝑥 7.1

459.3
 = 2.2 ksi 

𝑀𝑐𝑟 = (𝑓𝑟 + 𝑓𝑐𝑝𝑒 ) 𝑆𝑏 = (0.53 + 2.2) x 459.3 x 1/12 = 103.8 kip-ft 

AASHTO-define Nominal Strength, 𝑀𝑛 
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Assumptions: 

Plane sections remain plane.  

Perfect bond between aluminum channels and concrete substrate. 

Concrete will not carry tension forces. 

Aluminum channel sections yield. 

Concrete crushing occurs at failure and has a usable strain of 0.003 in./in. 

𝐾1 = 2(1.04 - 
𝑓𝑝𝑦

𝑓𝑝𝑢
 ) = 2 (1.04 - 

212.5

250
 ) = 0.38  

𝛽1 = 0.85 − (0.05 ∗ 
𝑓𝑐

′−4000 

1000
) = 0.85 − (0.05 ∗  

5000 − 4000 

1000
) = 0.8 

c = 
𝐴𝑝𝑠𝑓𝑝𝑢+ 𝐴𝑠𝑓𝑦

0.85𝑓𝑐
′𝛽1𝐵+ 𝐾1 𝐴𝑝𝑠

𝑓𝑝𝑢

𝑑𝑝

 = 
0.8 𝑥 250+2 𝑥 1.41 𝑥 40

0.85 𝑥 5 𝑥 0.8 𝑥 33+0.38 𝑥 0.8 𝑥 
250

12.6

 = 2.6 in. 

a = 𝛽1 c = 0.8 x 2.6 = 2.1 in. 

a = 2.1 in. < 𝑡𝑠 = 5 in. “The depth of the equivalent stress block is less than the thickness 

of the compression flange.” 

check if compression steel yields. 

𝜀𝑠
′  = 0.003 

(𝑐− 𝑑𝑠
′)

𝑐
 = 0.003 x 

2.6−2.2

2.6
 = 5 x 10−4 in./in. 

𝜀𝑦
′  = 

𝑓𝑦

𝐸𝑠
 = 

40

29000
 = 1.4 x 10−3 in./in. 

𝜀𝑠
′  < 𝜀𝑦

′  . “Compression steel did not yield.” 

check if aluminum channels yield. 

𝜀𝑠= 0.003 
(𝑑𝑠− 𝑐)

𝑐
 = 0.003 x 

13.5−2.6

2.6
 = 0.012 in./in. 

𝜀𝑦= 
𝑓𝑦

𝐸𝑠
 = 

40

10000
 = 4 x 10−3 in./in. 

𝜀𝑠 > 𝜀𝑦 “Aluminum channels yielded.” 

𝑓𝑝𝑠 = 𝑓𝑝𝑢 ( 1 - 𝐾1  
𝑐

𝑑𝑝
 ) = 250 (1 – 0.38 x 

2.6

12.6
) = 230 ksi 

𝑀𝑛= 𝐴𝑝𝑠𝑓𝑝𝑠 (𝑑𝑝 −  
𝑎

2
 ) +  𝐴𝑠𝑓𝑦 (𝑑𝑠 −  

𝑎

2
 ) = 0.8 x 230 x (12.6 - 

2.1

2
 ) x 1/12 + 2 x 1.41 x 40 

(13.5 - 
2.1

2
 ) x 1/12  = 294 kip-ft  

% Increase in moment capacity = 
294−191

191
 x 100 = 54% 
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Calculation for the bolts 

5/8” ASTM A193 Grade B7 Steel threaded rod  

𝑓𝑢,𝑏𝑜𝑙𝑡 = 125 𝑘𝑠𝑖 

𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑏𝑜𝑙𝑡 = 0.563 ∗ 𝑓𝑢, 𝑏𝑜𝑙𝑡 =  70.3 𝑘𝑠𝑖 (AISC C-J3-3) 

𝑑 =
5

8
 𝑖𝑛. 

𝑇ℎ𝑟𝑒𝑎𝑑 𝑝𝑖𝑡𝑐ℎ (𝑃) =
𝑙𝑒𝑛𝑔𝑡ℎ

𝑛 # 𝑜𝑓 𝑡ℎ𝑟𝑒𝑎𝑑𝑠
=

1 𝑖𝑛.

14
= 0.0714 𝑖𝑛. 

𝐻 = 𝑃 ∗
√3

2
= 0.0619 𝑖𝑛. 

𝑑 𝑚𝑖𝑛𝑜𝑟,𝑏𝑜𝑙𝑡 = 𝑑𝑚𝑎𝑗𝑜𝑟,𝑏𝑜𝑙𝑡 − (2 ∗ (
5

8
) ∗ 𝐻) = 0.548 𝑖𝑛. 

𝐴𝑚𝑖𝑛𝑜𝑟,𝑏𝑜𝑙𝑡 = 0.236 𝑖𝑛2 

𝑓𝑦,𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 40 𝑘𝑠𝑖  

𝐴𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 1.41 𝑖𝑛.2 

To make the channel yield prior to bolt failure, the total force in the channel must be 

equal to: 𝐹𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝐴𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑓𝑦,𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 56.4 𝑘𝑖𝑝   

𝑑 =
5

8
 𝑖𝑛. 

# 𝑏𝑜𝑙𝑡𝑠 =  
𝐹𝑐ℎ𝑎𝑛𝑛𝑒𝑙

70.3 𝑘𝑠𝑖∗𝐴𝑚𝑖𝑛𝑜𝑟,𝑏𝑜𝑙𝑡
= 3.4 𝑏𝑜𝑙𝑡𝑠 → 𝑢𝑠𝑒 4 𝑏𝑜𝑙𝑡𝑠 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 in each shear span 

Bearing Stress Check: 

𝑑 =
5

8
 𝑖𝑛. 

𝐿𝑏𝑒𝑎𝑟𝑖𝑛𝑔 = 3.1 in. 

Surface Area Bolt in contact with concrete (SA) = 𝜋 𝑑 𝐿𝑏𝑒𝑎𝑟𝑖𝑛𝑔 = 𝜋 x 
5

8
 x 3.1 = 6.1 𝑖𝑛2 

𝐹𝑜𝑛𝑒,𝑏𝑜𝑙𝑡 =
𝐹𝑐ℎ𝑎𝑛𝑛𝑒𝑙

4 𝑏𝑜𝑙𝑡𝑠
= 14.1 𝑘𝑖𝑝𝑠 

𝜎𝑏𝑒𝑎𝑟𝑖𝑛𝑔 =
𝐹𝑜𝑛𝑒,𝑏𝑜𝑙𝑡

𝑆𝐴
= 2.3 𝑘𝑠𝑖 < ∅(0.85𝑓′𝑐) = 0.65 𝑥 0.85 𝑥 5 = 2.76 𝑘𝑠𝑖 
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B.3 Moment capacity (material tested) 

A summary of the calculated moment capacities using specified material properties and 

tested material properties for the girders in good condition is located in Table B.1.   

Table B.1 Moment capacity for different material properties 

Material 

Properties 

Compressive 

strength (ksi) 

Ultimate 

tensile 

strength (ksi) 

Calculated 

moment 

capacity(𝑀𝑛) 

(kip-ft) 

Mtested
∗ /Mn 

Specimen U2 

Mtested
∗∗ /Mn 

Specimen U6 

Plan 

Specified 

5.0 250 191 1.06 1.2 

USC tests 9.1 250 197 1.02 1.16 

*Measured moment capacity (𝑀𝑡𝑒𝑠𝑡𝑒𝑑) for specimen U2 was 202 kip-ft. 

** Measured moment capacity (𝑀𝑡𝑒𝑠𝑡𝑒𝑑) for specimen U6 was 227 kip-ft. 

 

B.4 Load rating of the girders: 

The load rating of the girders was carried out to obtain a safe live load capacity of 

the bridges in their current condition and to evaluate the performance of the strengthened 

girders. Load rating analyses, using LFR and LRFR methodologies were conducted at the 

design level for inventory strength. The experimental moment capacities for the girders 

were used in the calculation of the rating factors.  

For the LRFR method, a rating factor was obtained for inventory condition for the 

maximum live load obtained for a design truck load, HL-93, with a uniform design lane 

load (0.64 kip/ft). Only one line of wheels was considered in the calculations. This is due 

to the fact that only one line of wheels could fit on one channel at a time. Accurate live 

load distribution calculations could not be conducted due to the girders being tested 

individually and not as a system. Numerous factors can affect live load distribution, like 

transverse tie rod condition or reflective cracking on the surface. A live load distribution 

factor of 0.5 was obtained from the research conducted on similar type of prestressed 

concrete channel bridge by WSP report [99]. The rating factor for each girder was 
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calculated using Equation (A.1) where capacity is equal to the measured moment 

capacity from each test. 

RF =
C−(γDC)(DC)−(γDW)(DW)−(γP)(P)

(γLL)(LL+IM)
                                                  (B.1) 

where: 

RF = Rating Factor 

C = Capacity  

DC = Dead load effect due to structural components and attachments 

DW = Dead load effect due to wearing surface and utilities. 

P = Permanent loads other than dead loads 

LL = Live load effect  

IM = Dynamic load allowance 

γDC = LRFD load factor for structural components and attachments 

γDW = LRFD load factor for wearing surfaces and utilities. 

γP = LRFD load factor for permanent loads other than dead loads = 1.0 

γLL = Evaluation live load factor  

and for strength limit states: 

C = ∅c∅s∅Rn                                                                                       (B.2)            

∅c = Condition factor 

∅s = System factor 

∅ = LRFD resistance factor                                                                                                        

Rn = Nominal member resistance  

Table B.2 displays the results of the LRFR Strength I load ratings of the girders. 

The results indicate that the strengthened girder (SB) is the only girder with a rating 
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factor greater than one. This implies the potential of eliminating load postings 

requirements for this girder and proves the efficacy of the strengthening approach. 

Table B.2 LRFR Strength I design load ratings (inventory) 

Specimen Measured 

moment 

capacity 

(kip-ft) 

φc φs C 

(kip-

ft) 

γDC  DC 

(kip-

ft) 

γDW DW 

(kip-

ft) 

γLL LL 

(kip-ft) 

IM Rating 

Factor 

U1 177 NA NA 177 1.25 22.3 1.50 0 1.75 104 0.33 0.61 

U2 202 NA NA 202 1.25 22.3 1.50 0 1.75 104 0.33 0.72 

U3 172 NA NA 172 1.25 22.3 1.50 0 1.75 104 0.33 0.59 

U4 184 NA NA 184 1.25 22.3 1.50 0 1.75 104 0.33 0.64 

U5 166 NA NA 166 1.25 22.3 1.50 0 1.75 104 0.33 0.57 

U6 227 NA NA 227 1.25 22.3 1.50 0 1.75 104 0.33 0.82 

SE 190 NA NA 190 1.25 22.3 1.50 0 1.75 104 0.33 0.66 

SEB 246 NA NA 246 1.25 22.3 1.50 0 1.75 104 0.33 0.90 

SB 285 NA NA 285 1.25 22.3 1.50 0 1.75 104 0.33 1.05 

For the LFR method, a rating factor was obtained for inventory condition for the 

maximum live load obtained for a design truck load, HS20-44. Only one line of wheels 

was considered in the calculations. This is because only one line of wheels could fit on 

one channel at a time. Accurate live load distribution calculations could not be conducted 

due to the girders being tested individually and not as a system. Several factors can affect 

live load distribution, like transverse tie rod condition or reflective cracking on the 

surface. A live load distribution factor of 0.5 was obtained from the research conducted 

on similar type of prestressed concrete channel bridge by WSP report [99]. The rating 

factor for each girder was calculated using Equation (B.3) where capacity is equal to the 

measured moment capacity from each test. 

RF =
C− 𝐴1 D

𝐴2 (L)(1+I)
                                                  (B.3) 

where: 

RF = Rating Factor 

C = Capacity (ASD) 
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D = Dead load effect due to structural components and attachments 

LL = Live load effect  

I = Dynamic load allowance 

𝐴1= Factor for dead loads 

𝐴2= Factor for live loads 

Table B.3 displays the results of the LFR design load ratings of the girders. The results 

indicate that girders U6, SEB, and SB have higher rating factor than one.  

Table B.3 LFR design load ratings (inventory) 

Specimen Measured 

moment 

capacity 

(kip-ft) 

C  

(kip-ft) 

A1 D  

(kip-ft) 

A2 LL  

(kip-ft) 

I Rating 

Factor 

U1 177 177 1.3 22.3 2.17 65 0.33 0.75 

U2 202 202 1.3 22.3 2.17 65 0.33 0.88 

U3 172 172 1.3 22.3 2.17 65 0.33 0.73 

U4 184 184 1.3 22.3 2.17 65 0.33 0.79 

U5 166 166 1.3 22.3 2.17 65 0.33 0.70 

U6 227 227 1.3 22.3 2.17 65 0.33 1.00 

SE 190 190 1.3 22.3 2.17 65 0.33 0.82 

SEB 246 246 1.3 22.3 2.17 65 0.33 1.10 

SB 285 285 1.3 22.3 2.17 65 0.33 1.30 

B.5 Nominal capacity of the girders strengthened with fiber reinforced polymers 

(FRP) (SikaCarboDur S 812): 

Material Properties 

SikaCarboDur S (812) [100] : 

F*fu = 406 ksi, ε*fu = 0.0169 in/in, Ef = 23200 ksi, w = 3.15 in, and t = 0.0472 in. 

Calculations (ACI 440.2R-17) [101]  

Step 1: 

𝑓𝑓𝑢 = 𝑐𝑒 x 𝑓𝑓𝑢
∗  = 0.85 x 406 = 345.1 ksi 

𝜀𝑓𝑢= 𝑐𝑒 x 𝜀𝑓𝑢
∗  = 0.85 x 0.0169 = 0.0144 in./in. 

Step 2: 
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𝐸𝑐 = 33000 x ɤ𝑐
1.5 x √𝑓𝑐

′ = 33000 x 0.151.5x √5 = 4287 ksi 

𝜀𝑓𝑢= 𝑐𝑒 x 𝜀𝑓𝑢
∗  = 0.85 x 0.0169 = 0.0144 in./in. 

𝛽1= 1.05 – 0.05 x 𝑓𝑐
′ = 1.05 – 0.05 x 5 = 0.8 

𝐴𝑝𝑠= n x 𝐴𝑠𝑡𝑟= 10 x 0.08 = 0.8 in2 

𝐴𝑓= no of strips x 𝑡𝑓 x 𝑤𝑓 = 2 x 0.0472 x 3.15 = 0.2974 in2 

𝐴𝑐= 249 in2 

𝑦𝑡= 5.17 in 

𝐼𝑔= 4823.4 in4 

r = 4.4 in 

𝜀𝑝𝑒= 
𝑓𝑝𝑒

𝐸𝑝
 = 

140

28500
 = 0.00491 in./in. 

𝑃𝑒 = 𝑓𝑝𝑒 x 𝐴𝑝𝑠 = 140 x 0.8 = 112 ksi 

𝑒𝑐= 7.45 in 

𝑦𝑏= 11.83 in 

𝑑𝑝= 12.625 in 

𝑑𝑓= 13.5 in 

𝑀𝐷.𝐿. = 22.3 kip. ft 

Step 3: 

𝜀𝑏𝑖 = 
−𝑃𝑒

𝐸𝑐𝐴𝑐
 (1 + 

𝑒 𝑦𝑏

𝑟2  ) + 
𝑀𝐷.𝐿. 𝑦𝑏

𝐸𝑐 𝐼𝑔
 = 

−112

4287 𝑥 249
 x (1 + 

7.45 𝑥 11.83

4.42  ) + 
22.3 𝑥 12 𝑥 11.83

4287 𝑥 4823.4
 = -0.0004 

in./in. 

Step 4: 

𝜀𝑓𝑑 = 0.083 √
𝑓𝑐

′

𝑛𝑓𝐸𝑓𝑡𝑓
 = 0.083 x √

5

1 𝑥 23200 𝑥 0.0472 
 = 0.00561 in./in. 

𝜀𝑓𝑢= 0.0144 in./in. 

Check: 𝜀𝑓𝑑 < 0.9 x 𝜀𝑓𝑢  

0.00561 in./in. < 0.9 x 0.0144 = 0.0129 in./in. 

Step 5: 

𝑐𝑒𝑠𝑡 = 2.57 in. 
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Step 6: 

𝜀𝑓𝑒 = 0.003 ( 
𝑑𝑓−𝑐 

𝑐
 ) - 𝜀𝑏𝑖 = 0.003 ( 

13.5−2.57

2.57
 ) – 0.0004 = 0.013 in./in. 

𝜀𝑓𝑑 < 𝜀𝑓𝑒 , 0.00561 < 0.013 “Failure is governed by debonding.” 

𝜀𝑓𝑒 = 𝜀𝑓𝑑 = 0.00561 in./in. 

Step 7: 

𝜀𝑝𝑛𝑒𝑡 = (𝜀𝑓𝑒 + 𝜀𝑏𝑖 ) ( 
𝑑𝑝−𝑐

𝑑𝑓−𝑐 
 ) = (0.00561 + 0.0004) ( 

12.625−2.57

13.5−2.57
 ) = 0.005 in./in. 

𝜀𝑝𝑠 = 𝜀𝑝𝑒 + 𝜀𝑝𝑛𝑒𝑡 + = 
𝑃𝑒

𝐸𝑐𝐴𝑐
 (1 + 

𝑒2

𝑟2 ) = 0.00491 + 0.00508 + 
112

4287 𝑥 249
 x (1 + 

7.452

4.42  ) = 

0.0108 in./in. 

Check 𝜀𝑝𝑠 < 𝜀𝑝𝑢  

𝜀𝑝𝑠 = 0.0108 in./in. < 0.035 in./in. 

Step 8: 

for 𝜀𝑝𝑠 = 0.0104 in./in. > 0.0076 in./in. 

𝑓𝑝𝑠 = 250 - 
0.04

𝜀𝑝𝑠−0.0064
 = 250 - 

0.04

0.0108 −0.0064
 = 241 ksi 

𝑓𝑓𝑒 = 𝐸𝑓 𝜀𝑓𝑒 = 23200 x 0.00561 = 130 ksi 

Step 9: 

𝜀𝑐 = ( 𝜀𝑓𝑒+ 𝜀𝑏𝑖 ) ( 
𝑐

𝑑𝑓−𝑐
 ) = (0.00561 + 0.00039) ( 

2.57

13.5−2.57
 ) = 0.0014 in./in. 

𝜀𝑐
′  = 

1.7 𝑓𝑐
′

𝐸𝑐
 = 

1.7 𝑥 5

4287
 = 0.002 in./in. 

𝛽1 = 
4𝜀𝑐

′ − 𝜀𝑐

6𝜀𝑐
′ −2𝜀𝑐

 = 
4 𝑥 0.002−0.0014

6 𝑥 0.002−2 𝑥 0.0014
 = 0.72 

𝛼1 = 
3𝜀𝑐

′ 𝜀𝑐− 𝜀𝑐 𝜀𝑐

3𝛽1 𝜀𝑐
′2  = 

3 𝑥 0.002 𝑥 0.0014−0.0014 𝑥 0.0014 

3 𝑥 0.72𝑥 0.002 𝑥  0.002 
 = 0.75 

Step 10: 

c = 
𝐴𝑝𝑠𝑓𝑝𝑠+ 𝐴𝑓𝑓𝑓𝑒

𝛼1𝛽1𝑓𝑐
′𝑏

 = 
0.8 𝑥 241+0.2974 𝑥 130

0.75 𝑥 0.72  𝑥 5 𝑥 33
 = 2.57 in 

Step 11: 

𝑀𝑛𝑝 = 𝐴𝑝𝑠𝑓𝑝𝑠 ( 𝑑𝑝 - 0.5 x 𝛽1 x c) = 0.8 x 241 x (12.625 – 0.5 x 0.72 x 2.57) x 1/12 = 188 

kip-ft 
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𝑀𝑛𝑓 = ᴪ𝐴𝑓𝑓𝑓𝑒 ( 𝑑𝑓 - 0.5 x 𝛽1 x c) = 0.85 x 0.2974 x 130 x (13.5 – 0.5 x 0.72 x 2.653) x 

1/12 = 34.5 kip-ft 

𝑀𝑛 = 𝑀𝑛𝑝 + 𝑀𝑛𝑓 = 188 + 34.5 = 222.5 kip. ft 

Step 12: 

Unstrengthened moment capacity = 188.0 kip. ft 

Strengthened moment capacity = 222.5 kip. ft 

% Increase in moment capacity = 18 % 

Step 13: 

For 𝜀𝑝𝑠 < 0.010, Φ = 0.75 

For 𝜀𝑝𝑠 > 0.013, Φ = 1 

For 𝜀𝑝𝑠 = 0.0104 

Φ = 0.75 + 
0.25 ( 𝜀𝑝𝑠−0.010)

0.013−0.010
  = 0.75 + 

0.25 ( 0.0104−0.010)

0.013−0.010
= 0.78 

B.6 Cost of aluminum channels and FRP (SikaCarboDur S 812): 

Table B.4 presents the materials cost for the strengthening of each girder in the 

laboratory. Two strengthening materials were investigated aluminum channels and FRP-

pultruded strips, to compare the cost of the materials. Table A.7 presents the reason 

aluminum channels were chosen as the strengthening approach investigated in this study 

in oppose to FRP-pultruded strips. The price of the aluminum channels was acquired from 

Xometry Supplies. The cost of the FRP-pultruded strips was acquired from Ram Tool 

Construction Supply Co. It is worth noting that these materials were acquired in 2022.  

Table B.4 Materials cost for strengthening of the girders. 

Material Cost ($/ft) Total cost for each 

girder ($) 

% Increase in 

moment capacity** 

Aluminum Channel 

(6061-T6 

CH3X258) 

7.4 370* 56 

FRP 

(SikaCarboDur S 

812) 

34 1700* 18 
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*The total length required to strengthen each girder is 50 ft. 

** The increase in nominal moment capacity of strengthened girder with respect to the 

nominal moment capacity of unstrengthened girder. 

B.7 Strain vs time graphs for aluminum channels for girders SEB and SB: 

The following graphs present the recorded strain at midspan for the aluminum 

channels for girders SEB and SB. One strain gauge was attached to each aluminum channel 

at midspan of each girder. 

 
Figure B.2 Strain versus time for aluminum channels at midspan for girder (SEB) 
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Figure B.3 Strain versus time for aluminum channels at midspan for girder (SB) 
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Appendix C - Machine Learning Models 
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C.1 Support Vector Machine (SVM) 

The SVM model (Fine Gaussian SVM) was fed with data from the test, which 

included 30,233 AE hits. AE hits were divided into four data sets, and labeled as L2, L3, 

L4, and L5. As input, these data sets were fed into the BT-SVM (balanced training 

SVM). Prior to training and validation, a randomly selected group of AE hits (200 hits) 

was taken from each data set for testing. Even data from each load step was used to train 

288 different models to address the imbalance issue. The SVM model randomly selected 

4/5 and 1/5 of the data for training and validation, respectively. Next, the models were 

tested, and each model cast a vote. AE hits were classified based on the majority of the 

votes.  

First, a group of AE hits (200 hits) was assigned to their corresponding load step 

according to the maximum number of hits classified to each load step. Figure C.1 displays 

the results of the BT-SVM and the decision-making process when the AE data produced 

by the applied loads are input into the model. For the data produced by L2, the number of 

AE hits accurately classified to L2 was 118, whereas 38, 26, and 18 were misclassified to 

L3, L4, and L5, respectively. Since the maximum number of AE hits was allocated to L2 

for this group of AE hits, the probability of those AE hits being allocated to L2 is the 

highest. Thus, this group of AE hits was accurately classified as L2. Following the same 

decision-making process, the AE data generated by L3, L4, and L5 were correctly 

classified into L3, L4, and L5, respectively. The results show that the BT-SVM model 

correctly classified each group of AE hits to their corresponding load step. 
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Figure C.1 Output of BT-SVM 

Random forest and support vector machine algorithms correctly classified the 

group of AE hits to their corresponding load steps. Figure C.2 displays the maximum 

probability computed from BT-RF and BT-SVM. It is evident that the maximum 

probability for the random forest (BT-RF) is higher than (BT-SVM) in classifying the 

group of AE hits to their corresponding load step. Although BT-SVM correctly classified 

the group of AE hits to their corresponding load step, BT-RF is more reliable.  



161 

 

 
Figure C.2 The maximum probability a) BT-RF; b) BT-SVM 

C.2 Robustness of the random forest model 

The performance of random forest algorithm was better than the artificial neural 

network (ANN) and AdaBoost algorithms in classifying the AE hits to their corresponding 

load steps. Three different scenarios were employed to evaluate the performance of the 

model when tested on data from another girder. First, the random forest algorithm was 

trained on the AE data collected from five different girders (U1, U2, U3, U4, and U5) and 

tested on the AE data collected from another girder (U6). Figure C.3 presents the results of 

the classification of the AE hits. For the data produced by L2, the number of AE hits 

accurately classified to L2 was 158, whereas 38, 2, and 0 were misclassified to L3, L4, and 

L5, respectively. Since the maximum number of AE hits was allocated to L2 for this group 

of AE hits, the probability of those AE hits being allocated to L2 is the highest. Thus, this 

group of AE hits was accurately classified as L2. Following the same decision-making 

process, the AE data generated by L3 and L4 were misclassified into L2. In addition, the 

AE data generated by L5 was correctly classified into L5.  

a) Output of BT-RF b) Output of BT-SVM
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Figure C.3 Output of random forest trained on data from five girders and tested on 

another girder 

 

Second, the random forest algorithm was trained on the AE data collected from 

eight different girders (U1, U2, U3, U4, U5, SE, SEB, and SB) and tested on the AE data 

collected from another girder (U6). Figure C.4 presents the results of the classification of 

the AE hits. For the data produced by L2, the number of AE hits accurately classified to 

L2 was 170, whereas 16, 11, and 1 were misclassified to L3, L4, and L5, respectively. 

Since the maximum number of AE hits was allocated to L2 for this group of AE hits, the 

probability of those AE hits being allocated to L2 is the highest. Thus, this group of AE 

hits was accurately classified as L2. Following the same decision-making process, the AE 

data generated by L4 and L5 were correctly classified into L4 and L5, respectively. In 

addition, the AE data generated by L3 was incorrectly classified into L2. The results show 

that increasing the training data of the model provided a better performance for the model 

to classify AE hits to their corresponding load steps. Hence, a broader and more diverse 

data set is required to attain further enhancements in performance on different girders. 
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Figure C.4 Output of random forest trained on data from eight girders 

Third, the random forest algorithm was trained on the AE data collected from nine 

different girders (U1, U2, U3, U4, U5, U6, SE, SEB, and SB) and tested on the AE data 

collected from a random sample from all the girders. Figure C.5 presents the results of the 

classification of the AE hits. Following the same decision-making process, the AE data 

generated by L2, L3, L4, and L5 were correctly classified into L2, L3, L4, and L5, 

respectively. The results show that including representative training data from each girder 

for the model can help to increase the performance of the model. The model correctly 

classified the AE hits to their corresponding load steps. 
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Figure C.5 Output of random forest trained on data from nine girders and tested on 

random sample 
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Appendix D - Condition Assessment 
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D.1 Intensity Analysis 

Intensity Analysis was conducted on all the girders utilizing Equations 4.1.a and 

4.1.b. The analysis was performed using AE data collected during the loading phases of 

tests only. The data points for intensity analysis were computed as the maximum historic 

index and maximum severity recorded during each load step. The intensity analysis chart 

for the girders in good condition is shown in Figure D.1. Data points in this chart are 

presented with respect to the theoretical cracking load; therefore, eight different labels are 

used to show data before and after the theoretical cracking load in the four girders in good 

condition. For instance, the closed circle is for data points before the theoretical cracking 

load in girder U6 while the opened circle is for after the theoretical cracking load for the 

same girder. In accordance with the design criteria for Class U prestressed members, which 

do not allow cracking, the initiation of cracks was used to determine failure. As depicted 

in Figure D.1, the intensity analysis distinguishes between data points calculated before 

and after reaching the theoretical cracking load. The area in the intensity analysis chart 

where the girders are within the design criteria (did not crack) was determined.  
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Figure D.1 Intensity analysis chart (girders in good condition) 

The intensity analysis chart developed on the girders in good condition was used to 

assess the deterioration of the girders in poor condition. An intensity analysis chart for 

girders in poor condition is shown in Figure D.2. Similarly, data points in this chart are 

presented with respect to the theoretical cracking load; therefore, eight different labels are 

used to show data before and after the theoretical cracking load in the four girders in poor 

condition. The results show that the girders in poor condition fail the design criteria at 

lower loads than the theoretical cracking load. It was noticed that the data points in the red 

box for the girders in poor condition are plotted in the failed design criteria area; this 

indicates that the girders have already deteriorated, which is true based on the visual 

inspection. The results show that the intensity analysis can discriminate between the 

girders' initial conditions. In addition, the charts consider the existing deterioration in the 

girders. 
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Figure D.2 Intensity analysis chart (girders in poor condition) 
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