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Abstract

Database security holds paramount importance as it safeguards an organization’s

most valuable assets: its data. In an age marked by escalating cyber threats, protect-

ing sensitive information stored in databases is essential to preserve trust, prevent

financial losses, and maintain legal compliance. In this dissertation, an exploration

into the realm of relation database security is undertaken. The research introduces a

cryptographic secure shuffling algorithm designed to fortify database security. Addi-

tionally, the dissertation presents a series of innovative solutions aimed at bolstering

both the security and efficiency of the shuffling algorithm.

Encryption algorithms have long served as a mean of safeguarding sensitive and

proprietary data. However, the proposed shuffling algorithm offers distinct advan-

tages over the encryption methods: Firstly, the shuffling algorithm preserves the orig-

inal data, minimizing the likelihood of arousing suspicion. Secondly, it can comple-

ment encryption, offering an additional layer of data protection. Lastly, the shuffling

algorithm can introduce the deception, thereby rendering certain adversary techniques

such as honeypot is more effective.

Nonetheless, whether employing encryption or shuffling techniques, data security

preservation technologies impose a substantial volume of I/O requests on the system.

To enhance efficiency, various endeavors have been made, encompassing the intro-

duction of novel storage data structures, the adoption of column-oriented storage

schemes, and the integration of computational storage devices. Empirical findings

from experiments reveal that these design modifications notably mitigate the associ-

ated overhead.
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Simultaneously, efforts have been made towards enhancing the security aspects

of the research, incorporating strategies such as attribute-aware bundle shuffling,

multi-level shuffling, and matrix shuffling. All these efforts collectively contribute

to concealing the traces of shuffling and render the shuffling process irreversible in

the absence of the shuffling sequence. A comprehensive security analysis has demon-

strated the cryptographic robustness of the proposed shuffling algorithm.
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Chapter 1

Introduction

In today’s era of the Internet and big data, database security and the protection of

database data play a particularly crucial role in preventing the leakage of sensitive

information. Databases, serving as the repository for sensitive and proprietary data,

have become one of the primary target scenarios for cybercriminals seeking valuable

information. The escalating frequency of data leaks and the increasing complexity

and sophistication of attacks pose significant threats to organizations and commu-

nities, resulting in substantial financial losses, legal liabilities, and damage to their

reputation [1]. These threats ultimately have repercussions on individuals as well.

In August 2023, the aftermath of the MOVEit security incident is still ongoing, with

the ransomware group CL0P launching more attacks against government agencies

[2], including the Colorado Department of Health Care Policy & Financing and many

government contractors. Sensitive data and personal information, including SSNs

and health records, of millions of people have been compromised, and more data is

still being exposed.

Currently, cryptographic encryption stands as one of the most widely adopted

protection methods to address database attacks and data breaches. Various encryp-

tion techniques, such as transparent data encryption, token-based systems, and fully

homomorphic encryption, have been employed for this purpose. In Transparent data

encryption, the pages in the database are encrypted before being written to disk and

decrypted when read into memory. This approach ensures that even if the database

server is breached, the malicious attacker gains no valuable information. However,
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encryption in the database can reveal file importance, attracting attackers. Token-

based systems like CryptDB [3] and searchable encryption [4] allow searching over

encrypted data but face criticism from Grubbs et al. [5] for potential issues. It is

worth noting that achieving semantic security [6] becomes challenging if even a single

token value is known to attackers. Fully homomorphic encryption [7] enables alge-

braic operations on ciphertext without decryption but may have efficiency concerns

due to large encryption keys in practical use [8].

In this dissertation, a novel shuffling approach to enhance the security of rela-

tional database is proposed. This cryptographically strong algorithm is based on

permutation to shuffle the data values in each field of the database table, in order

to assure the privacy and reduce the risk of data compromise and aforementioned

identity theft attacks. Randomization is applied in our algorithms to make sure the

different fields would follow totally distinct shuffling parameters. Semantic check and

statistical test are also performed to identify highly associated attributes which will

be shuffled together as a bundle. There are two remarkable advantages of this bun-

dle shuffling design. First, even if the attacker is able to defeat the encryption and

hack into the shuffled database, he will not be able to detect that the database has

been shuffled because the shuffling is attribute association aware. On the other hand,

legitimate users of the database will not feel the existence of shuffling or restoring,

because these procedures are transparent to them. Second, the tuples extracted from

the shuffled database cannot be used for identity theft attacks because they contain

mismatching attribute values; if the attacker tries to use the shuffled tuples, it may

even touch the previously established honeypot and trigger an alert.

The design also integrates the shuffling algorithm with a column-oriented storage

scheme and the computational storage device (CSD) to enhance the security and

efficiency of the relational database management systems. A collection of two-column

association tables is leveraged to record the disk locations of the actual data and

2



their corresponding indexes. With the assistance of these association tables, shuffling

can be accomplished without physically relocating the data, resulting in significant

savings in time and system resources.

A computational storage drive (CSD) is a “in storage computing”. The conception

of “in storage computing” or “near storage computation” was proposed as early as

the 1990s, where the disk was designed to execute most processing tasks to proces-

sors inside the disk [9], [10]. However, this conception began to gain attention and

development around the early 2010s [11], [12]. By deploying the in storage comput-

ing devices in database servers, certain tasks like shuffling and encryption can be

offloaded to the storage devices. When shuffling or encryption requests are received,

the host forwards these requests to the storage. The processor within the storage

retrieves the necessary data from storage to its internal DRAM, where it handles

the processing requests. Subsequently, the outcomes are written back to the storage.

It also eliminates the need for such data to traverse the lengthy path through the

system bus, spanning storage, RAM, cache, and processors. It reduces data transfer

latency and enhances data processing efficiency by introducing processing capabilities

inside the storage. CSD is able to accelerate the shuffling algorithm, including soft-

ware and hardware architectures, ensuring that the performance overhead of shuffling

algorithms does not affect the execution of other tasks in the database system.

There are five chapters in the following part of this dissertation. Chapter 2 de-

scribes the general knowledge and works that are related to this research. Chapter 3

discusses the database security problem and proposed the shuffling algorithm with at-

tribute association aware design. Chapter 4 discusses the shuffling in column-oriented

storage database and the novel data structure for efficient data shuffling. Chapter

5 introduces how computational storage devices are involved with database shuffling

for better performance and describes the improvement on the shuffling algorithm. At

last, chapter 6 concludes this dissertation and lists the major conclusion as well as

3



some future work.
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Chapter 2

Background and Brief Literature Review

2.1 Background

2.1.1 Column-oriented Database

Column-oriented database is not a new technique. It can be traced back to a storage

system called TAXIR focused on biology information retrieval in 1969 [13]. How-

ever, due to the hardware limitations and application scenarios of early databases,

the mainstream OLTP (Online Transactional Processing) databases adopted row-

oriented storage. Along with the emerging development of OLAP (Online Analytical

Processing), column-oriented storage becomes prevalent again.

In traditional OLTP databases, all the attributes are stored as a concatenated

tuple, which serves as the base unit of storage. When combining with B-tree [14],

B+ tree [15], or SS-table [16] for indexing, the corresponding data of the tuple can be

efficiently retrieved using the primary key. The employment of row-oriented storage

is well-suited for OLTP because most operations in OLTP revolve around entities,

making CRUD (Create, Read, Update, and Delete) operations on a tuple the norm.

Therefore, consolidating all attributes of a tuple together is a practical choice. How-

ever, in OLAP, typical operations involve traversing the entire relation and following

grouping, sorting, and aggregation actions. Thus, the advantages of row-oriented

storage diminish. Even worse, the SQL statements in OLAP often only require a

few specific attributes, but those unrelated attributes still have to be included in the

processing.
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In addition to the analytical query, column-oriented storage is superior in data

encoding and compression. No matter for in-disk databases or in-memory databases,

typically IO is the system performance bottleneck, and reasonable compression could

decrease the disk usage, but also reduce the IO throughput and increase the load

performance.

Taking C-Store [17] as an example, based on two factors: 1) if the data is sorted,

and 2) the number of distinct values, the data encoding can be divided into the

following 4 situations:

• Sorted and not many distinct values: A series of tuples (v, f, n) will be used to

represent the data, which means value v appears starting from line f and the

total number is n. In other words, the values of line f to f + n − 1 are all v.

For example, value 4 are seen in line 12 to line 18 can be written as (4, 12, 7).

• Not sorted and not many distinct values: Build one binary sequence b for

each value v to indicate the position bitmap of v. For instance, one column

of attributes in a relation is 0, 0, 1, 1, 2, 1, 0, 2, 1, then the encoding could be

(0, 110000100), (1, 001101001), and (2, 000010010). Because of the sparse fea-

ture of bitmap, they can be coded for one more step using run-length coding.

• Sorted and many distinct values: For this case, one delta will be add to each

value except the first one of course. For example 1, 4, 7, 7, 8, 12 could be modified

to 1, 3, 3, 0, 1, 4. Clearly, coded data is easily to be a densepack [17], and the

compression ratio is higher.

• Not sorted and many distinct values: That is not properly conducted in C-Store.

Data Compression in Column-oriented Database

Data size in the storage of database becomes increasingly sensitive due to the cost of

network bandwidth and storage media along with the business development. Thus
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data compression is critical in the database management system. Column-oriented

database has an overwhelming advantage on the compression ratio comparing to the

row-oriented database because the unit of storage is one column and all the data

in this column is of the same data type. Since all compression algorithms can be

applied on column-oriented databases, we will not discuss their details due to space

constraint. Various compression schemes for column-oriented database are briefly

described in the followings.

Lempel-Ziv Codes. Lempel-Ziv [18], often written as LZ77 or LZ78 depend-

ing on which kind of variant is used, is one of the oldest, most simplistic, and most

widespread lossless compression scheme in now days. This compression scheme re-

places variable-sized pattern with fixed length codes. The Lempel-Ziv method is an

incremental parsing strategy in which the coding process is interlaced with a learning

process for varying source characteristics. The primary difference between LZ77 and

LZ78 is the encoding of the phrases that LZ77 uses direct pointers to the preceding

text while LZ78 uses pointers to a separate dictionary.

Dictionary Codes. In dictionary compression [19], variable length substrings

are replaced by short and possibly fixed length codes. The dictionary D here is a

collection of phrases, and the text T which is going to be compressed will be factorized

into a sequence of phrases so that each phrase can be replaced by a code that acts as

a pointer to the certain place in the dictionary.

Run Length Encoding. Run length encoding [20] is based the idea of combining

the same value occurring many consecutive times and storing only a singe value with

its count. For example, a sequence of same value can be represented as the following

form: (v, s, l) in which v means the value, s means the start position and l means

the lasting length. In row-oriented database, run length encoding is very suitable for

the text fields that have many blanks or repeated characters. But in column-oriented

database, sorting is typically applied before the compression, so run length encoding
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is useful in more places such as the columns that have less distinct values.

Zero Suppression. Zero suppression can actually be one kind of trimming before

storing the data since it means the removal of redundant zeroes from a number [21].

For example, the first several zeros in one integer can be removed, and last several

zeros in the decimal part of a number. After the general zero suppression, the number

can be compressed further more with other compression schemes. The other way to

utilize this technique is to omit the zeros in a sparse array that most of elements

are zero. For instance the array (0, 1, 0, 0, 0, 2, 5, 0, 4, 0, 0, 1) can be compressed into

({2, 1}, {6, 2}, {7, 5}, {9, 4}, {12, 1}). Of course, this example doesn’t seem efficient

on the compression ratio, but it will save much more space when dealing with a large

sparse array.

Hybrid Columnar Compression. Hybrid columnar compression is one method

from Oracle for organizing data within a database block which utilizes a combination

of both row and columnar methods [22]. Similar to many other compression schemes,

this compression scheme replaces the value from a row with a much smaller symbol,

so the length of the entire row reduces. When data is loaded, column data from a set

of rows are grouped together and compressed, and then stored in a compression unit.

Actually, this compression scheme is invented for the row-oriented database for the

purpose of increasing the compression ratio while avoiding the performance shortfalls

of a pure columnar format.

2.1.2 SmartSSD

The SmartSSD CSD possesses the capability to perform computations directly within

the storage device itself. As illustrated in Fig. 2.1, this SmartSSD CSD comprises

a high-performance Samsung Enterprise SSD and a specialized Kintex Ultrascale+

FPGA from Xilinx (now part of AMD). These components are interconnected by a

fast private peer-to-peer (P2P link, facilitating seamless data transfer between the
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SSD controller and the FPGA [23].

Figure 2.1 SmartSSD architecture

Xilinx provides a sophisticated development target shell characterized by high-

performance capabilities, thereby facilitating the creation of customized acceleration

applications tailored specifically for the SmartSSD CSD platform [24]. Within the

architectural framework of the SmartSSD CSD, a pivotal component is the PCIe

switch, which exhibits three distinct ports. The upstream port establishes a connec-

tion to the host system, while the downstream port establishes a link with the SSD

controller. Intriguingly, an internal end port is dedicated to interact with the FPGA.

This dedicated internal port serves as the conduit for enabling acceleration functions

within the SmartSSD CSD.

One of the salient advantages offered by this architectural design is the ability to

offload user application code either partially or in its entirety to the FPGA’s DRAM.

Additionally, data essential for FPGA-based operations, residing within the SSD

storage, can be efficiently transmitted via the P2P link. This innovative approach

significantly mitigates the need for the conventional round-trip data traffic between

the storage and the host CPU.

This architecture refinement translates into real benefits in terms of computational
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efficiency, particularly when dealing with resource-intensive operations such as data

shuffling and encryption, both of which involve substantial I/O interactions. The

reduction in I/O latency and data transfer overhead is instrumental in optimizing

the overall performance.

2.2 Database Security

2.2.1 Searchable Encryption

The management of the data in database is conducted by the database management

system (DBMS), and the DBMS is consisted of several layers responsible for SQL

statement parsing, index management, data reading and writing, ensuring data con-

sistency and integrity, backup, etc. The engineering development of such a system is

instructed by accumulative experience. In this context, the searchable encryption [25]

solutions for the database are typically implemented not within but atop the DBMS,

functioning as middleware. This middleware serves to translate encrypted queries to

the DBMS while safeguarding plaintext data, subsequently decrypting the outcomes.

CryptDB

CryptDB is a system that provides practical and provable confidentiality for online

applications backed by SQL databases [3]. It works by executing SQL queries over en-

crypted data using a collection of efficient SQL-aware encryption schemes. CryptDB

can also chain encryption keys to user passwords, so that a data item can be de-

crypted only by using the password of one of the users with access to that data. As

a result, a database administrator never gets access to decrypted data, and even if

all servers are compromised, an adversary cannot decrypt the data of any user who

is not logged in.

CryptDB works by intercepting all SQL queries in a database proxy, which rewrites

queries to execute on encrypted data. The proxy encrypts and decrypts all data, and

10



changes some query operators, while preserving the semantics of the query. The

DBMS server never receives decryption keys to the plaintext so it never sees sensitive

data, ensuring that a curious DBA cannot gain access to private information. To

guard against application, proxy, and DBMS server compromises, developers anno-

tate their SQL schema to define different principals, whose keys will allow decrypting

different parts of the database.

SQL-aware encryption is a collection of efficient encryption schemes that CryptDB

uses to execute SQL queries over encrypted data. These schemes are designed to

preserve the semantics of SQL queries while providing confidentiality for the data.

CryptDB adjusts the encryption scheme dynamically based on the query being exe-

cuted, so that the DBMS server can compute certain functions over the data items

based on encrypted data. For example, if the DBMS needs to perform a GROUP BY on

column C, the DBMS server should be able to determine which items in that column

are equal to each other, but not the actual content of each item. Therefore, the proxy

needs to enable the DBMS server to determine relationships among data necessary

to process a query. By using SQL-aware encryption, CryptDB is careful about what

relations it reveals between tuples to the server.

CryptDB addresses two threats. The first threat is a curious database administra-

tor (DBA) who tries to learn private data (e.g., health records, financial statements,

personal information) by snooping on the DBMS server; here, CryptDB prevents the

DBA from learning private data. The second threat is an adversary that gains com-

plete control of application and DBMS servers. In this case, CryptDB cannot provide

any guarantees for users that are logged into the application during an attack, but

can still ensure the confidentiality of logged-out users’ data.
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MONOMI

MONOMI [26] is a system designed to securely execute analytical workloads over

sensitive data on an untrusted database server. It encrypts the entire database and

runs queries over the encrypted data. The system employs split client/server query

execution, which enables the execution of arbitrarily complex queries over encrypted

data. Additionally, MONOMI utilizes several techniques to enhance performance,

such as per-row precomputation, space-efficient encryption, grouped homomorphic

addition, and pre-filtering. To optimize for different types of queries, MONOMI

includes a designer for selecting an efficient physical design for a given workload, and

a planner for determining an efficient execution plan for a specific query at runtime.

A prototype of MONOMI built on top of Postgres can execute most of the queries

with minimal overhead compared to an unencrypted Postgres database.

Arx

Arx is a database system that encrypts data with strong encryption schemes and

computes on the encrypted data [27]. It is the first practical and functionally rich

database system that provides the same level of security as regular AES-based en-

cryption without sacrificing functionality. Arx uses a set of new mechanisms that em-

bed computation into data structures built on top of traditional encryption schemes,

such as AES. This enables strong security guarantees and helps performance due to

hardware implementations of AES. Arx also introduces two new database indices,

Arx-RANGE and Arx-EQ, which are data structures built on top of AES and provide

rich computation with strong security.

Arx-RANGE and Arx-EQ are two new database indices introduced by Arx. Arx-RANGE

is used for range and order-by-limit queries, while Arx-EQ is used for equality queries.

Both indices are data structures built on top of AES. Arx-RANGE uses a cryptographic

tool for one-time obfuscation at each node in an index tree to provide rich computa-
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tion with strong security. This allows running an obfuscated program at each index

node that implements the desired comparisons without leaking the data it compares.

Arx-EQ works by embedding a counter into each repeating value, ensuring that the

encryption of two equal values is different and the server does not learn frequency

information. This enables building a regular database index over the encryptions.

When searching for a value v, the client can provide a small token to the server,

which the server can expand into many search tokens for all the occurrences of v.

Arx works by encrypting data with strong encryption schemes and computing

on the encrypted data. It embeds computation into data structures built on top of

traditional encryption schemes, such as AES, instead of embedding the computation

into special encryption schemes as in Fully Homomorphic Encryption and CryptDB.

Arx provides strong security guarantees and helps performance due to hardware im-

plementations of AES.

Seabed

Seadbed was proposed by Papadimitriou et al. [28] for the purpose of efficient analytic

over large encrypted databases. It uses a novel, additively symmetric homomorphic

encryption scheme (ASHE) to perform large-scale aggregations efficiently. Seabed also

introduces a randomized encryption scheme called Splayed ASHE (SPLASHE) that

can prevent frequency attacks based on auxiliary data. The system is designed to hide

all cryptographic operations from users, allowing them to interact with the system in

the same way as they would with a standard Spark system. Seabed supports a wide

range of big data analytics applications and can perform operations such as computing

sums, averages, counts, and minimum values. It also supports more complex analytics

such as anomaly detection, linear regression, and decision trees. Seabed provides

secure and efficient analytics over encrypted datasets, allowing enterprises to keep

their data confidential and hidden from cloud operators.
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An additively symmetric homomorphic encryption scheme (ASHE) is a type of

encryption scheme that allows for the addition of two ciphertexts to obtain a cipher-

text that decrypts to the sum of the two encrypted values. In other words, it enables

computations on encrypted data such that the computed result, when decrypted,

matches the result of the equivalent computation performed on unencrypted data.

ASHE is designed to be efficient and fast, making it a practical alternative for per-

forming operations on large data sets. It is up to three orders of magnitude faster

than other encryption schemes like Paillier [29].

SPLASHE is an encryption scheme introduced in the document. It stands for

Splayed ASHE and is designed to protect against attacks by splaying sensitive columns

into multiple columns. Each new column corresponds to data for each unique element

in the original column. SPLASHE combines splaying and deterministic encryption

to defeat frequency attacks while limiting storage and computational overhead. It is

used in the Seabed system to provide efficient analytics over large encrypted datasets.

Other Searching Over Encrypted Data

The exploration of searching encrypted data has yielded significant advancements,

ranging from symmetric to asymmetric ciphers, as documented in seminal works

by Song and Wagner [30] and Boneh and Franklin [31], respectively. Subsequent

research has delved into executing intricate search queries on encrypted databases,

encompassing conjunctive searches [32], rich and range queries [33]–[36], and dynamic

queries accommodating data modifications subsequent to encryption [37], [38].

2.2.2 Database Security with Auxiliary Hardware

Trusted Execution Environment (TEE) is an isolated environment that safeguards

processed data by encrypting the incoming and outgoing data. It provides mecha-

nisms to ensure the computation is correctly executed with an integrity guarantee.
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Additionally, TEE protects the data and computation against any potentially mali-

cious entity residing in the system (including the kernel, hypervisor, etc.). Current

TEEs can be classified into two categories: TEE supports simple stateless func-

tions and TEE supports complex stateful functions. Many TEE designs focus on the

latter, including TPM/vTPM, Intel TXT, Intel SGX, ARM’s TrustZone, Sanctum,

KeyStone, and AMD SEV. TEE exhibits a broad range of security features to achieve

confidentiality and integrity of the computation, including secure boot, attestation,

and isolated execution.

The use of TEE in secure database queries aims to implement data query tasks

with optimal performance while ensuring confidentiality and integrity. Encrypted

databases provide a hardware and software infrastructure for securely storing sensi-

tive data and offering data query services to authorized users. TEE-based secure

computation enables isolated execution of user-defined programs within enclaves,

maintaining sensitive data in protected memory areas. This isolation helps prevent

unauthorized access to the data during query processing. Additionally, TEE offers

security mechanisms like secure boot, attestation, and sealing to further strengthen

the protection of the database and its queries. The promising avenue of leveraging

auxiliary hardware as secure coprocessing platforms has been a subject of exploration,

offering security assurance for specific operations.

TrustedDB [39] is an outsourced database prototype that allows clients to exe-

cute SQL queries with privacy and under regulatory compliance constraints without

having to trust the service provider. It leverages server-hosted tamper-proof trusted

hardware in critical query processing stages. Despite the cost overhead and perfor-

mance limitations of trusted hardware, the costs per query are orders of magnitude

lower than any (existing or) potential future software-only mechanisms. It is built

and runs on actual hardware, and its performance and costs have been evaluated.

Arasu et al. [40] describes a novel secure FPGA-based query coprocessor that
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can be tightly integrated with a commercial database system such as SQL Server

to provide strong security guarantees and a flexible, cost-effective way of ensuring

the efficient migration of database applications to the cloud. The coprocessor en-

ables the execution of SQL queries on encrypted data entirely in the cloud without

handling plaintext data or cryptographic keys in a conventional server where a user

with root privileges could gain access. The paper discusses different alternatives

for securing cloud database processing and presents the design of an FPGA-based

specialized database stack machine with a modest footprint, only needing to imple-

ment expression evaluation in the trusted processor. The paper also reports initial

results demonstrating the effectiveness of the system for real-world cloud database

applications.

EncDBDB [41] is a high-performance, encrypted cloud database that supports

analytic queries on large datasets. EncDBDB utilizes Intel Software Guard Exten-

sions (SGX) to create a secure environment called an enclave, where sensitive data

is protected from any other code, including application code, other enclaves, and the

operating system. EncDBDB works by storing data in a column-oriented, dictionary-

encoded format in memory. This allows for efficient processing of analytic workloads

and reduces the storage space overhead of large encrypted datasets. The database

offers nine different encrypted dictionaries that provide varying levels of security, per-

formance, and storage efficiency. Users can choose the appropriate dictionary for each

column based on the sensitivity of the data and their specific requirements.

EnclaveDB [42] is a database system designed to protect sensitive data and ensure

confidentiality, integrity, and freshness for both queries and data. It is built on top

of Intel’s Software Guard Extensions, a hardware-based security feature that enables

the creation of protected regions of memory called enclaves. EnclaveDB assumes that

table definitions and stored procedures are pre-defined and known to all users, and

that only authorized users can execute stored procedures. When a user creates an
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instance of EnclaveDB, they compile all table definitions and stored procedures in

their own trusted environment and embed the public keys of all authorized users in a

well-known section of the trusted kernel binary. The database administrator repeats

this process and deploys their version of the package on an untrusted server. Once the

database is initialized, any user can use remote attestation to check that the database

enclave has been correctly initialized and initiate the creation of a secure channel.

The enclave authenticates requests for creating a secure channel using public keys

embedded in the trusted kernel binary. Once a secure channel is established, the user

can send requests to execute any of the pre-compiled stored procedures. EnclaveDB

ensures that users learn nothing more than the response of the transactions they

execute.

ObliDB [43] is an enclave-based oblivious database engine that efficiently runs

general relational read workloads over multiple access methods. It stores tables, au-

thenticated and encrypted, in unprotected memory and obliviously accesses them as

needed by the various supported operators. The encryption key for data stored in un-

protected memory always resides inside the enclave, encrypting/decrypting blocks of

data as they are written or read from unprotected memory. ObliDB can store data via

two methods: flat and indexed. The indexed method utilizes a B+ tree, whereas the

flat method requires scanning the whole table on each query to ensure obliviousness.

ObliDB supports oblivious versions of the operators SELECT, INSERT, UPDATE,

DELETE, GROUP BY and JOIN as well as the aggregates COUNT, SUM, MIN,

MAX, and AVG. It also includes a query planner that chooses between operator

implementations for selection and join queries.

StealthDB [44] is an encrypted database system built using Intel SGX technology.

It provides a way to protect sensitive data in untrusted infrastructures. StealthDB

has a small trusted computing base, scales well to large transactional workloads,

requires minimal changes to the underlying database management system, and offers

17



strong security guarantees during both steady-state operation and query execution.

The system uses AES-CTR encryption [45] to encrypt all data items in the database.

When a client submits a query, it is first encrypted and sent to the server. An enclave-

based query parser within StealthDB then decrypts the ciphertext and parses the

query, converting it to a form where all constants are encrypted before it is executed

on the database.

2.2.3 Transparent Data Encryption

Furthermore, the adoption of transparent data encryption (TDE) [46], [47] by promi-

nent industry stakeholders, including Microsoft, IBM, and Oracle, constitutes a note-

worthy development. Transparent Data Encryption works by encrypting the data

stored in a database on the hard drive and on any backup media. This means that

even if an attacker gains access to the physical hard drive or backup media, they

would not be able to read the data without the decryption key. The process of using

TDE typically involves creating a master key, which is used to create a certificate that

is then used to protect the database master key. The database master key is then

used to encrypt the data stored in the database. When a user attempts to access the

encrypted data, the database management system uses the appropriate decryption

key to decrypt the data before presenting it to the user. This process is transparent

to the user, meaning that they do not need to take any special actions to access the

encrypted data.

2.3 Shuffling

In the realm of data privacy, Dalenius and Reiss introduced the concept of “data-

swapping” in the 1980s [48], a technique designed to facilitate secure data sharing

and analysis while minimizing the risk of sensitive information disclosure.

The paper proposed by Muralidhar et al. [49] discusses several methods for mask-
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ing numerical data, including data swapping, rank-based proximity swap, differential

privacy, and data shuffling. Data shuffling protects data by minimizing the risk of

disclosure while providing a high level of data utility. This is achieved through a

procedure that involves generating observations from a conditional distribution and

replacing original values with these generated values. The resulting data preserves the

desirable properties of perturbation methods and performs better than other masking

techniques in terms of both data utility and disclosure risk. Data shuffling is a non-

parametric method for masking and can be implemented using only rank-order data.

It is particularly useful when dealing with small or large datasets. Additionally, data

shuffling ensures conditional independence between the original data and the masked

data given the sensitive attribute, thereby providing strong security against both

value and identity disclosures.

UberShuffle [50] is a coded shuffling system designed to optimize the communi-

cation cost of data shuffling in modern large-scale learning algorithms. The shuffling

process involves redistributing data among compute instances after each epoch to im-

prove the statistical performance of the algorithm. The UberShuffle algorithm works

by constructing a directed acyclic graph (DAG) between the columns of the encoding

tables. In this DAG, a directed edge from column i of table A to column j of table B

exists if and only if i = j and A ∈ B. Then, the algorithm finds a flow on the DAG

corresponding to packet reallocations to reduce the total number of encoded packets.

The shuffling mechanism used in the paper proposed by Meehan et al. [51] involves

a trusted shuffler that mediates upon the noisy responses received from the data

owners. The data owners first randomize their inputs. The shuffler then receives

these noisy responses and applies a permutation to them, resulting in the final output

sequence which is sent to the untrusted data analyst. The permutation is determined

by the shuffling mechanism, which can be implemented using a trusted execution

environment similar to Google’s Prochlo [52]. The shuffling provides anonymity to
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the data owners, reducing the amount of noise required to achieve the same level of

privacy compared to the local model.

Multi-media Format Shuffling

In the paper proposed by Gao et al. [53], an image total shuffling matrix is used to

shuffle the positions of image pixels. This matrix is generated using the logistic map

equation: xn+1 = 4xn(1 − xn), starting with a given initial value x0. After several

iterations, a new x0 is obtained, which is used to determine the position of each row

in the matrix. This process is repeated for each row in the matrix, resulting in a new

position matrix. To shuffle the columns of the matrix, the current value of x0 is used

in the logistic map equation again, followed by a similar process of determining the

position of each column based on the resulting values. This process is repeated for

each row in the matrix, resulting in a new image total shuffling matrix. The time

complexity of this algorithm depends on the size of the image, with larger images

requiring more iterations to complete the shuffling process.

In the paper proposed by Ali et al. [54], the 3D content is encrypted through a

process that involves several steps. First, the 3D mesh model is shuffled using a 3D

Lorenz chaotic map and an encrypted texture map. The vertices of the model are then

encrypted using a 2D logistic chaotic map and a 2D key, resulting in an encrypted

3D mesh model. Finally, the encrypted 3D mesh model is further encrypted using a

1D tent chaotic map and a 1D key, resulting in the final encrypted 3D content.

In the audio shuffle algorithm designed by Tamimi et al. [55], the audio file is

encrypted or shuffled using a novel algorithm that employs a shuffling procedure and

the stream cipher method. The algorithm uses a private key to perform key dependent

and data dependent encryption. It takes an audio file and a key as input and regards

the audio file as a stream. Then, for each iteration, a single bit called fixBit is

chosen by a hash function based on the key and iteration number. A shuffle vector is
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constructed by listing the numbers of bytes that have the value of bit number fixBit

equal to zero, followed by the numbers of bytes that have the value of bit number

fixBit equal to one. This vector gives a mapping that specifies the new location of each

byte in the partially encrypted stream. This step is repeated for several iterations.

Each iteration uses a different fixBit and applies the same steps to the new partially

encrypted stream that resulted from the preceding iteration. Finally, the bytes of the

current stream are substituted so that the new location of byte (j) is byte (Shuffle[j]).

2.4 Column-oriented Database

C-Store is one of the first OLTP database management systems which are optimized

for data reading. There is no big difference on the logic view of C-Store with the logic

view of traditional relational database management systems. However, the logic views

will be divided into several projections inside C-Store, and each projection contains

one ore more columns. Of course, each column must exist in at least one projec-

tion. This feature of projection brings the following two advantages because of the

redundancy of projection since one column can be included by multiple projections:

1) reduce of query cost by choosing the optimized projection, and 2) improvement of

availability due to the existing of redundancy.

MonetDB [56] and ClickHouse [57] implemented vectorized query execution in

order to make the most use of hardware especially CPU and improve the efficiency of

querying. ClickHouse is based on the SIMD and SSE instruction set, so that in the

level of CPU registers, one instruction can parallelly operate multiple pieces of data.

Apache Parquet [58] is a column-oriented data storage format instead of a entire

database management system. Parquet was inspired by the record shredding and

assembly algorithm described in the Dremel paper [59]. Parquet is independent of

platform and programming language, and it is compatible with many query engines

such as Hive, many computation frameworks such as MapReduce and Spark, and
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many object models such as Avro, Thrift. The biggest difference between Parquet

storage format with the storage formats in other column-oriented database is that

Parquet supports complex nested data structure such as json.

2.5 Computational Storage Device

One of the original conceptions of computational storage device comes from [10].

Computational storage refers to the use of processing power within storage devices

to perform more complex processing and optimizations. This trend towards “excess

compute power in storage systems” has been driven by the increasing performance

and decreasing cost of processors and memory, which has caused system intelligence to

move from the central processing unit (CPU) to peripherals like storage devices. Stor-

age system designers have taken advantage of this trend by incorporating processing

power into storage devices, allowing them to perform tasks such as data compression,

encryption, and caching at the storage level. This can significantly improve overall

system performance and efficiency by reducing the amount of data that needs to be

moved between the storage device and the CPU.

In the paper proposed by Kang et al. [12], one computational storage device

called Smart SSD is used in conjunction with a Hadoop MapReduce framework and

an in-storage processing engine to perform in-storage processing tasks. The in-store

processing engine is an event-driven processing framework that executes tasklets,

which are C programs cross-compiled for the ARM processors in the device. These

tasklets are loaded onto the Smart SSD and memory space for input and output

objects is reserved. By performing some of the processing tasks within the storage

device itself, the Smart SSD can help save host CPU, I/O bandwidth, and memory

resources.

Wang et al. [60] explored offloading list intersection tasks, which is crucial in

search engine and analytic, onto the Samsung SmartSSD CSD research prototype.
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They developed an analytical model to understand key performance factors, and their

experiments indicated that SmartSSD CSD can enhance list intersection processing

while reducing energy consumption.

Torabzadehkashi et al. [61] designed a computational storage device platform

featuring a Linux operating system running on a quad-core ARM processor.

The paper proposed by Lee et al. [62] proposes an SSD with an onboard FPGA,

which allows for computation to be offloaded within the SSD. This addresses the issue

of the disparity between the aggregate SSD throughput and CPU-based computing

capabilities, which limits the scalability of modern systems. The authors perform

a detailed model-based evaluation to assess the end-to-end performance and energy

benefits of SmartSSD for representative data analytic workloads using Spark SQL

and Parquet columnar data format. They find that SmartSSD has the potential

to significantly improve performance (up to 3.04x) and reduce energy consumption

(down to 45.8% of the conventional CPU-based approach).

NASCENT [63] is Near-Storage Acceleration of Database Sort on Smart SSD.

It is a method that improves the performance and energy efficiency of sorting large

amounts of data on Solid State Drives. According to the provided figures, NASCENT

outperforms CPU baselines in terms of execution time and energy consumption when

data is stored in DRAM or FPGA. Additionally, it is shown that NASCENT’s dic-

tionary decoder kernel has a higher input and total bandwidth compared to CPU

inputs for different ranges of input and output bit widths.

SmartSSD CSD are not limited to data analytics; they are also employed to

accelerate neural network model training [64], [65].

Additionally, Hedam et al. [66] introduced Delilah, a design for computational

storage that uses a host-controller transport protocol implemented through a driver

module in the host kernel and a controller on the device. The design and implemen-

tation of Delilah is the first publicly described system supporting BSD Packet Filter
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code offload on a real computational storage platform, OpenSSD Daisy.

Kim et al. [67] proposes a computational storage platform that can significantly

boost the performance of a graph-based nearest neighbor search algorithm. The plat-

form uses the SmartSSD which allows computing capabilities to be placed directly on

the storage, enabling data to be processed in place with significantly less data move-

ment. The paper also proposes a software/hardware co-design approach to make

the target graph-based algorithm more suitable for the computational storage plat-

form. The proposed platform achieves impressive results, outperforming conventional

CPU-based and GPU-based systems in terms of speed and energy efficiency.
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Chapter 3

Shuffling Algorithm and Attribute Association

Aware Shuffling

This chapter describes the initial design of the shuffling algorithm and the attribute

association aware shuffling. Some security analysis are also provided.

In this chapter, a novel shuffling approach to enhance the security of relational

database storage is introduced. The contributions of the chapter are twofold. First,

an attack that is capable of recovering the entire database with only the individual

data files in the MySQL environment is identified and discussed. It is essentially a

feature of the database management system, but malicious users can employ it to

get access to the database data if they can break into the server’s operating system.

Second, a cryptographically strong algorithm based on permutation to shuffle the data

values in each field of the database table is proposed, in order to assure the privacy

and reduce the risk of data compromise and identity theft attacks. Randomization

is applied in the proposed algorithms to make sure the different fields would follow

totally distinct shuffling parameters. Statistical tests are performed to identify highly

associated attributes which will be shuffled together as a bundle.

There are two remarkable advantages of the proposed shuffling algorithm: First,

even if the attacker is able to defeat the cipher and hack into the shuffled database,

he will not be able to detect that the database has been shuffled because the shuffling

is attribute association aware. On the other hand, legitimate users of the database

will not feel the existence of shuffling or restoring, because these procedures are
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transparent to them. Second, the tuples extracted from the shuffled database cannot

be used for identity theft attacks because they contain mismatching attribute values;

if the attacker tries to use the shuffled tuples, it may even trigger an alert and be

reported to law enforcement. Therefore, we regard our approach as an extra layer of

protection on top of existing encryption schemes.

3.1 The problems

This section identifies and delves into a potential attack capable of recovering the

MySQL database using solely the individual data files within its environment. It is

essentially a feature of the database management system, but it could be exploited by

malicious actors in the event of a successful breach of the server’s operating system.

3.1.1 Database Recovery Attack

The MySQL InnoDB storage engine is used here as an illustrative example to demon-

strate a potential database recovery attack. As previously mentioned, this method

of database recovery can be exploited as an attack technique, enabling unauthorized

access to the entire database if an intruder gains possession of the essential data

files, which include “db.opt” “.frm”, and “.ibd”. Importantly, this “attack” can occur

even when the hacker does not possess the secret password of the database manage-

ment system. Furthermore, this “attack” method is designed to be covert, leaving no

discernible traces of the breach attempts.

The recovery attack proceeds with the following steps:

1. Establish an empty database on a separate machine. Extract the database

name and encoding settings from the “db.opt” file.

2. Create an empty table. Utilize the “*.frm” file to define the table’s format.

Employ a tool like dbsake [68], to parse the “.frm” file and generate the necessary
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DDL (Data Definition Language) statements for table creation.

3. Transfer the “*.ibd;; file to the MySQL data directory. Adjust file permissions

in accordance with the operating system’s requirements.

4. Reconstruct the tablespace. By rebuilding the tablespace, the attacker gains

unfettered access to the original database without any data loss.

3.1.2 Types of Attackers and Targets

Before delving into the threat model, it is imperative to identify the categories of

attackers and the potential attack targets. In the context of compromising the data

confidentiality and privacy of semi-trusted databases, there exist two primary cate-

gories of attackers [69]:

• Outside attackers: These individuals or entities lack the inherent authority

to gain direct access to the database. However, they possess the capability to

potentially access the database either directly or indirectly through malicious

actions. For instance, an outside attacker may exploit vulnerabilities within

the operating system to obtain administrator permissions, subsequently gaining

access to the database.

• Inside attackers: An inside attacker is an individual who possesses the nec-

essary privileges to execute malicious actions. What sets them apart is their

potential advantage of being intimately familiar with the network architecture

and system protocols. For instance, a maintenance engineer or other employees

within a cloud service provider may misuse or abuse their legitimate rights to

disrupt or exploit the database for nefarious purposes.

Additionally, three types of attack targets are categorized based on the extent of

information known to the attacker:
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• The attacker knows little about the database. The attacker possesses

minimal information about the database. In this scenario, the attacker is un-

aware of whether the stored database has undergone shuffling. Their objective

is to determine the presence or absence of shuffling. For instance, the attacker

might manually inspect tuples for any anomalies, such as a female first name

associated with a male gender.

• The attacker already knows that the stored database is shuffled but

does not know any correct combination. Therefore, their goal is to identify

some correct attribute combinations, aiming to discover clues that can help

them break the shuffling scheme. Certain combinations of data, such as credit

card information and names, can be verified.

• The attacker knows not only the fact that the stored database is shuf-

fled but also a few correct combinations such as the tuple about his

personal data. In this case, their objective aligns with the previous scenario:

to identify additional combinations and uncover clues that can aid in breaking

the shuffling.

3.1.3 Threat Model

In the provided threat model, the scope encompasses an application responsible for

managing sensitive data within a relational database, hosted on a server situated

either in a private or public cloud environment. The design primarily targets potential

attackers focusing on the database server rather than the client side. It assumes that

these attackers lack the permissions to read data on the client side and are restricted

to accessing server-side components.

This model considers both types of server-side attackers, who can access almost

all kinds of information: the data files and log files of the entire database, all the

data stored in memory, and network communications. While certain databases may
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be safeguarded by user passwords, preventing unauthorized entry to the database

server, the threat model acknowledges that all database data files remain accessible.

Consequently, the potential exists for these attackers to retrieve sensitive data by

reconstructing the database. Additionally, it is assumed that these attackers act

passively, refraining from any unauthorized modification or deletion of tuples within

the database.

This scenario mirrors real-world use cases in both private and public cloud envi-

ronments. In the event of database table restoration, attackers could exploit unen-

crypted information, including details such as names, birthdays, credit card numbers,

and even Social Security numbers. Such actions may result in financial losses or, in

more severe instances, identity theft, underscoring the critical nature of this threat

model.

3.2 Proposed Solution

In this section, the proposed solution is presented in detail, with the core objective

of disrupting the relationship between data tuples in a database and the connections

among the fields within individual data tuples. The primary goals are to thwart the

attacker’s ability to compromise the entire database through a single storage server

breach and to hinder their capacity to retrieve comprehensive information about a

specific individual or entity by tracking all the fields within the same data tuple. To

illustrate this concept, we employ a straightforward example demonstrated in Table

3.1 and Table 3.2.

Table 3.1 depicts the conventional method of data storage. In this scenario, each

tuple consists of three fields: name, credit card number, and Social Security number.

When an attacker infiltrates the storage server and accesses the files stored within the

DBMS, they can extract sensitive identification information related to each individual,

potentially enabling identity theft attacks.
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Table 3.1 Data Tuples Before Shuffling

id name credit_card_no ssn

1 Sipes 4251546446736274 473-34-5897
2 Shank 4703038231755507 768-12-5834
3 Howell 5393619347816820 583-35-5681
4 Kohler 6011220281842771 981-34-6481
5 Ramona 4688678394067007 781-59-1384

Table 3.2 Data Tuples After Shuffling

id name credit_card_no ssn

1 Sipes 6011220281842771 583-35-5681
2 Shank 5393619347816820 981-34-6481
3 Howell 4688678394067007 768-12-5834
4 Kohler 4251546446736274 781-59-1384
5 Ramona 4703038231755507 473-34-5897

Table 3.2 demonstrates the core concept of the approach being proposed. The

method involves applying secure shuffling based on cryptographic-strength permuta-

tion to each field. This process relies on a deranged permutation sequence securely

stored in an external key vault server. It is essential to emphasize that, to ensure

the efficacy of shuffling, exclusively deranged permutation is considered. This type

of permutation rearranges elements in a manner that ensures no element remains

in its original position. Consequently, even if an attacker successfully breaches the

storage system and acquires a copy of the file, deriving the corresponding credit card

numbers and Social Security numbers for individuals becomes a formidable challenge.

Any attempt by the attacker to use attribute values from the same tuple is likely to

result in errors, potentially exposing their malicious activities and raising the risk of

detection by law enforcement authorities.

Next, the main algorithms in the solution will be introduced, encompassing the

shuffling algorithm, the algorithm for the discovery of associations between attributes,
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and the restoring algorithm.

3.2.1 Shuffling Algorithm

Let l represent the total number of tuples in the relational database table, which is

partitioned into equal-sized blocks. We denote w as the number of elements con-

tained within one block, and (k[1], k[2], . . . , k[n]) as the random deranged permutation

sequences used as the shuffling parameters. The default value assigned to w is 20,

except for the last block, which may contain fewer elements. The selection of the

value 20 is based on a balance between ensuring a sufficiently large key space and

managing the shuffling process with a reasonable level of overhead.

Multiple level shuffling. Multiple levels of shuffling can be applied based on

the total number of tuples within the table. The shuffling parameters, represented

as the set (k[1], k[2], . . . , k[n]), delineate the manner in which shuffling occurs across n

levels. If the number of “elements” at a given level exceeds 20, an additional level

is introduced. Notably, these 20 “elements” are treated as a single element in the

newly added level, which prevents exponential growth in the value of n. For instance,

a database table containing 3 million tuples can be effectively managed with just 5

levels of shuffling, as 205 exceeds 3 million.

Each deranged permutation sequence k[i] for level i in (k[1], k[2], . . . , k[n]) is ran-

domly selected from the set of all possible deranged permutation sequences. To

achieve this, we have designed and implemented a function denoted as dp(w). This

function is responsible for generating a random deranged permutation sequence of 0,

1, 2, ..., w − 1. The operation of the dp(w) function involves the uniform random

generation of a permutation sequence, followed by a check to ascertain if it qualifies as

a deranged permutation. If it does, the function outputs this permutation; otherwise,

it repeats the random generation process until a deranged permutation is obtained.

Empirical testing has demonstrated the practicality of this function. Tests involving
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the generation of 10K, 50K, 100K, and 500K deranged permutations have consistently

shown that, on average, only around 1.6 attempts of random permutation generation

are needed to obtain a random deranged permutation.

To visualize the shuffling process, Figures 3.1 and 3.2 illustrate how shuffling is

performed, considering the permutation sequence and the position of each element

within the block.

Figure 3.1 Example of shuffling at the first level.

Figure 3.1 provides a visual representation of the shuffling process at the first

level. To elucidate the steps involved in shuffling, we use a block of 4 elements as an

example. Given that w = 4, there exist a total of !w = 9 deranged permutations,

where !w denotes the sub-factorial and represents the count of deranged permutations.

In this process, the original block is shuffled in accordance with the chosen permu-

tation sequence. The permutation sequence k[i] specifies that the element currently

situated at the position indicated by the value of k
[i]
j will be relocated to position j

following the shuffling. For instance, consider a block containing elements (a, b, c, d)

and a permutation sequence k = (1, 3, 0, 2). According to this sequence, the element

at position k0 = 1, which is element b, will be relocated to position 0, while the

element at position k1 = 3, which is element d, will be moved to position 1. After

shuffling has been performed for every position, the block transforms into (b, d, a, c).

The same shuffling process is applied to all other blocks, with the difference that

another sequence will be used for the last block if its number of elements does not

align with the regular value of w.
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Figure 3.2 Example of shuffling the blocks in multiple levels.

Figure 3.2 provides an illustration of the shuffling process across multiple levels,

using an example with 825 elements in the field (i.e., l = 825). In this scenario, there

are 41 full blocks, each containing 20 elements, and 1 block containing the remaining

5 elements.

After shuffling within each block at the first level, we progress to level 2. The

shuffling process at this level resembles that of the first level in Figure 3.1, but the

unit of shuffling here comprises the blocks, each consisting of several blocks from the

previous level. The 42 blocks from the first level are considered as 3 blocks at level 3.

Regarding the permutation sequences, the sequence k[1] for the first level is ran-

domly chosen from the range of !20 deranged permutations, while the range of the last

block’s permutation sequence is !5. For level 2, sequence k[2] is one random sequence

from !20 deranged permutations, and the range of permutation sequences for the last

2 remaining blocks is !2. In level 3, shuffling can be directly applied to the combined

three “elements” without requiring further levels.

For each field (attribute) within a given table, the algorithm selects a distinct

set of random permutation sequences (k[1], k[2], . . . , k[n]). This ensures that each at-

tribute undergoes independent shuffling, effectively breaking the original association

between attribute values belonging to a tuple. For instance, let’s consider a tuple from
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a database that stores user details for an online merchant’s website: User(“Mike”,

“Johnson”, “01011965”, 4012888888881881, “04/17”, ...). This tuple com-

prises fields such as first name, last name, birthday, credit card number, card ex-

piration date, and other fields in their respective order. After shuffling, the credit

card number field could now contain Tina’s credit card number, while the expiration

date field might reflect Fisher’s card expiration date. Consequently, the shuffled ta-

ble appears garbled but remains indistinguishable from a genuine table to potential

attackers.

3.2.2 Discovery of Attribute Associations and Bundle Shuffling

A notable challenge with shuffling arises when dealing with highly related attributes

within a tuple. Shuffling these attributes independently can sever their inherent

relationships. For instance, consider email addresses chosen by users, which are often

linked to their first and last names or initials. Similarly, gender is highly associated

with the first name. In a healthcare provider’s database, diagnosis codes related to

obstetrics and gynecology must be inherently associated with female patients.

When such highly correlated attributes are shuffled individually and indepen-

dently, the resulting discordant attribute values within the same tuple can be easily

discerned by an attacker. This exposure may indicate the presence of shuffling. To

mitigate this issue, bundling these closely associated attributes together and shuffling

them as a group can create a more deceptive appearance for the shuffled table. This

approach makes it less likely for an attacker to recognize the table as valuable data,

enhancing the security of the shuffling process.

Association-aware bundle shuffling is achieved through a combination of two meth-

ods. Firstly, attributes that are semantically related, such as those mentioned in the

previous paragraph, are manually identified. These related attributes are then shuf-

fled together using the same set of permutation sequences. Secondly, to avoid over-

34



looking any hidden statistical correlations between attributes that may not appear to

be semantically related, we introduce an algorithm designed to discover associations

between attributes by quantifying the statistical strength of their relationship.

The statistical strength between two attributes can be measured using various

techniques, depending on the data type of each attribute. For instance, when both

attributes are categorical, the χ2 Chi-squared test can be employed [70]. If both

attributes are numerical, the Pearson Correlation Coefficient (PCC), also known as

Pearson’s r, is a suitable test [71]. When one attribute is categorical and the other is

numerical, the analysis of variance (ANOVA) test can be utilized [72].

The pseudocode of the association discovery algorithm is presented in Algorithm

1.

In the algorithm, the χ2 test, Pearson correlation coefficient test, and ANOVA test

were utilized to discover associations among the database attributes. Each attribute

in the database was modeled as a vertex in a graph denoted as G, initially lacking any

edges. The statistical test involved the analysis of two complete attributes, producing

a statistical strength value, commonly referred to as the P-value. If the P-value fell

below the threshold of 0.05, a standard significance level, the algorithm established

an edge connecting the corresponding vertices in graph G for those attributes. This

process was systematically applied to all possible pairs of attributes. Upon the algo-

rithm’s completion, the final graph G was obtained. Within this graph, each strongly

connected component was designated as a bundle, and the attributes contained within

the same bundle were grouped together for shuffling. These associated attributes were

then shuffled using the same set of permutation sequences (k[1], k[2], . . . , k[n]). This

approach ensured that attributes displaying statistical associations were collectively

processed during the shuffling procedure.
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Algorithm 1 Discovery of association between attributes
Input: R(A1, . . . , An) tuple R with attributes A1, . . . , An

Output: S = {S1, . . . , Sk} where Si is a set of attributes such that Si ∈ {A1, . . . , An}
1: def connect_vertices(A1, A2, w, E):
2: if w ≤ 0.05 then
3: E.append((A1, A2))
4: end if
5:
6: V = {A1, . . . , An} // vertices
7: E = { } //edges
8: G = (V, E) // draw an undirected graph
9: for i in 1 to n do

10: for j in 1 to n do
11: if i ̸= j then
12: if Ai and Aj are categorical then
13: x = measure Ai and Aj using Chi-squared test
14: connect_vertices(Ai, Aj, x, E)
15: else if Ai and Aj are numerical then
16: y = measure Ai and Aj using PCC test
17: connect_vertices(Ai, Aj, y, E)
18: else
19: z = measure Ai and Aj using ANOVA test
20: connect_vertices(Ai, Aj, z, E)
21: end if
22: end if
23: end for
24: end for
25: S = strongly connected components sets in G
26: return S

3.2.3 Restoring Algorithm

An integral component of our approach is the restoring algorithm, which reverts the

shuffled database to its original state, enabling it to be presented to authorized users.

The inverse permutation sequence, denoted as −k[i], contains the same elements as the

permutation sequence k[i] used in the shuffling process but with opposite implications.

In other words, the element situated at position j will be relocated to the position

indicated by the value of k
[i]
j .
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3.2.4 Key Vault

The randomly generated permutation sequences used for shuffling the fields can be

encoded into a wallet file in plaintext and subsequently encrypted using symmetric

encryption ciphers like Triple DES and AES. Once the shuffling process is applied,

the security of the wallet file becomes paramount within the system. To address this

concern, we have incorporated an existing application known as the key vault.

The key vault server serves as a protective mechanism for cryptographic keys

and secrets, encompassing elements such as authentication keys, encryption keys,

and even credential files, by centrally managing them. By segregating the wallet

file and the database into distinct cloud environments, we significantly enhance data

confidentiality. Even in scenarios where malicious employees are present, their ability

to decrypt the wallet file is greatly restricted.

Without access to the correct secret key required for decrypting the shuffling pa-

rameters, an attacker cannot retrieve genuine data from the database. Furthermore,

the implementation of attribute association-aware bundle shuffling enhances the ap-

pearance of the shuffled database, making it deceptively “genuine”. For instance,

with fields such as full name, credit card number, Social Security number, address,

birthday, and cell phone number, any combination of values from these fields may

appear plausible, rendering it exceedingly challenging to discern that shuffling has

taken place.

3.3 Analysis

In this section, an analysis of the security of the proposed shuffling algorithm is

presented, encompassing key space, key sensitivity, guess countering, and performance

evaluation.
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3.3.1 Key space analysis

In cryptography, one cryptosystem’s key space means the set of all possible distinct

keys based on key length. In the shuffling algorithm, the key space analysis is to

show the range of all possible permutations of the shuffling parameters and to show

the difficulty to successfully conduct the brute-force attack on shuffling algorithm.

Theoretically, the key space should be large enough to make the brute-force attack

infeasible, and the key space of the shuffling algorithm can be assessed from the

following two perspectives: 1) arbitrary key space, and 2) global key space. Arbitrary

key space stands for the key space of one single attribute’s shuffling parameter. If

the brute-force attack succeeds, the adversary can restore the original order of all

tuples in this attribute. This restoring doesn’t violate confidentiality (if the data are

encrypted), integrity, and availability since the only difference is the order of those

tuples. However, this may bring some concerns on the privacy preservation due to

the revealing of data order. For example, in the relation Salary in which all attributes

are ordered by ascending salary amount, shuffling on the attribute could remove the

underlying relationship that Bob’s salary is lower than Alice’s because the id of Alice

is bigger. As to the global key space, it indicates the maximum number of shuffling

parameters to try for restoring the entire relation.

For one relation with m tuples and n attributes, the size of the global key space

is at least m!
m∑

i=0

(−1)i

i!

n

(3.1)

which is expressed as the (!m)n in combinatorics. For the sake of simplicity, the factor

of multi-level shuffling is not considered, so the actual key space is even larger for

multi-level shuffling. The arbitrary key space for any attribute with m tuples would

be !m which is unfolded as

m!
m∑

i=0

(−1)i

i! (3.2)
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The above expression clearly indicates that the key space is highly dependent on

the scale of relation. Because of the factorial in the global key size function, a small

increase in the number of tuples will lead to huge growth. For instance, the key

space of the relation with 5 tuples and 2 attributes is 1936, and when the number of

tuples rises to 20 tuples and if there are 5 attributes, the size of the global key space

dramatically grows to 5.74e+89. This number is even larger than the estimated total

number of particle in the observable universe [73]. This key space is sufficiently large

to protect the shuffling from brute-force attacks trying to guess the correct shuffling

parameters.

3.3.2 Key Sensitivity Analysis

Effective data masking method, like the shuffling algorithm we employ, should exhibit

sensitivity to even minor alterations in the secret keys. Confusion and diffusion were

identifier by Claude Shannon in his paper [74]. In Shannon’s original definitions,

confusion refers to making the relationship between the key and the ciphertext as

complex as involved as possible. It means that a good encryption or data protection

technique should be sensitive to a tiny change on the secret key. As for the shuffling

algorithm, it’s necessary to make sure that all the tuples move after the shuffling.

In most instances, any modification to the shuffling parameters (k[1], k[2], . . . , k[n])

results in a rearrangement of tuples. To illustrate this sensitivity, we define a “coin-

cidence” as a tuple in which one or more attributes remain in the same position after

shuffling. Furthermore, a “strong coincidence” is a shuffled tuple in which either two

or more of its attributes originate from the same tuple before shuffling or the tuple

qualifies as a “coincidence”.

If the number of tuples is small enough to carry out the shuffling with one level,

it is straightforward that there is no coincidence or strong coincidence in the shuffled

data since the definition of deranged permutation requires that no element appears
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in its original position. However, multiple levels of shuffling could possibly move the

tuple back to its original position theoretically. To assess this sensitivity, experiments

were conducted on four distinct data tables, each containing a different number of

tuples: 5,000; 10,000; 50,000; and 100,000, all with 10 attributes. Each dataset will

be shuffled for 1000 rounds with different randomly generated shuffling parameters

and then each shuffled dataset will be compared to the original dataset for counting

the number of coincidence and the number of strong coincidence accumulatively.

The results revealed that, across all cases, the average occurrence probabilities of

both coincidences and strong coincidences remained at zero. Therefore, it can be

confidently concluded that the proposed shuffling algorithm is highly sensitive to

modifications in the shuffling parameters, with any changes resulting in the generation

of an entirely distinct shuffled table.

3.3.3 Countering Guessing Attacks

Three types of attack targets were delineated in subsection 3.1.2 based on the extent of

prior knowledge possessed by the attacker regarding the database. In this subsection,

an examination is conducted to elucidate how the proposed algorithm can effectively

counter these attacks.

In the case that the attacker doesn’t know if the stored database table is shuffled

or not, one method the attacker can apply is to open the database and find out all the

attributes of a tuple, identify the attributes that should or may be associated, and

scan through the database table to see if there is any tuple that contains non-matching

attribute values. For instance, the attribute related to obstetrics and gynecology

(OB-GYN) treatments should be associated with the attribute sex; otherwise, the

attacker can find the inconsistency. Through the bundle shuffling, the proposed

shuffling algorithm can resist this kind of guessing attack by bundling semantically

related attributes, so that the attributes like “ob-gyn_treatment” and “sex” will be
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shuffled together. Moreover, manually bundling is also supported in the design. For

example, it is required that each issuer entity’s payment card number must follow the

standard ISO/IEC 7812 [75], which allows an attacker to find mismatching attribute

values such as the attribute “credit_card_no” has a card number belonging to VISA

but the attribute “bank_name” has the value “Mastercard”. Since the credit card

number has the feature of uniqueness that the computed association between attribute

“credit_card_no” and attribute “bank_name” is not that tight, manually bundling

is a way to complement this.

If the attacker knows that the database is shuffled but does not know any correct

tuple, the attacker’s target will be to locate at least one correct tuple or more. The

attacker has to randomly pick some information combinations such as {name, birth-

day, phone_no, credit_card_no, zip_code} to try on the merchant website. Thanks

to the huge key space as given in subsection 3.3.1, it’s extremely difficult to find out

even one correct tuple.

If the attacker is aware of the presence of shuffling along with a few correct com-

binations such as his own data, then his target becomes to locate more combinations

and find a chance to reveal the entire database. Because the default number of ele-

ments in one block as 20, the attacker needs to master at least 19 tuples in this block

to ascertain the secret shuffling parameter for this level. Otherwise, he can only use

the brute-force method and verify one by one. As discussed in subsection 3.3.1 that

the size of the key space ascends dramatically along with the number of tuples, it

is not feasible for the attacker to restore the original tuples. Even if the attacker

happens to know all the tuples in the same block (which is highly unlikely, because if

so the attacker must be very familiar with the target database and does not need to

launch such guessing attack) and thus be able to compute the shuffling parameter for

this level and restore all other blocks in this level, the attack still has no idea about

the shuffling parameter for the next higher levels if the total number of tuples in the
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table is large enough for multiple levels. Based on the preceding analysis, it can be

concluded that the approach outlined in this dissertation is robust in thwarting the

attacker’s attempts to achieve the three identified targets.

3.3.4 Performance Evaluation

One simple prototype of proposed shuffling algorithm was implemented on a PC with

4.0GHz Intel Core i7-6700K CPU and 32GB RAM running Ubuntu 18.04. The data

structure used to store the data is B+ tree [76]. Five random datasets was generated

with sizes of 10K, 50K, 100K, 500K, and 1 million items to build the primary key

index, and each item contains an index of type integer and data of type string. For

every dataset, the evaluation measured and compared the elapsed time of two cases:

when shuffling is not applied on the dataset, and when shuffling is applied on the

dataset (that is, shuffle the tuples before storing to hard drive and restore the tuples

to normal order after loading to memory). The storing and loading of each dataset

for 10 rounds were executed, during which the average elapsed time was recorded.

Additionally, the ratio of the time expended on the shuffling and restoring procedures

to the overall elapsed time was calculated, as summarized in Table 3.3. Notably, the

outcomes of these experiments reveal that the shuffling and restoring procedures

within our algorithm entail only a minimal time investment in comparison to the

time required for the conventional storage and retrieval of data. This observation

reaffirms the feasibility and practicality of our algorithm, underscoring its efficiency

and suitability for real-world applications.

3.4 Contribution

In this chapter, the challenges and opportunities in utilizing a shuffling algorithm

is studied to enhance the security and privacy of storing relational database. The

proposed approach not only individually works to mask the data relationship, but
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Table 3.3 Extra time of shuffling and restoring

Number of Items 10K 50K 100K 500K 1 million
Elapsed time without shuffling or
restoring (ms)

50.51 284.27 586.44 3262.31 6673.19

Elapsed time with shuffling (ms) 54.22 292.21 598.72 3299.15 6727.93
Elapsed time with restoring (ms) 54.17 292.45 599.98 3298.60 6733.24
Ratio of time with shuffling 7.34% 2.79% 2.09% 1.13% 0.82%
Ratio of time with restoring 7.24% 2.88% 2.31% 1.11% 0.90%

also provides an additional layer of security along with encryption.
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Chapter 4

Shuffling Column-Oriented Relational

Database

In Chapter 3, a robust shuffling algorithm with cryptographic strength is introduced.

The primary objective of the algorithm was to shuffle the data values within each

attribute of the database relation, thereby safeguarding against data confidentiality

violations that may arise from compromise of the database storage disk. However,

considering the computational overhead associated with shuffling in the row-oriented

storage scheme, our algorithm was originally designed for offline storage rather than

the online running instance of the database management system.

In this chapter, a novel improvement mainly on the efficiency is described. The im-

provement combines the shuffling algorithm with a column-oriented storage strategy

to augment the security and efficiency of relational database management systems.

It also utilizes a set of two-column association tables to document the disk locations

of the authentic data alongside their corresponding indexes. This table allows the

database to perform shuffling operations without the need for physically relocating

the data, thereby leading to substantial reductions in both time and system resource

consumption.

Considering the requirements of supporting online shuffling in addition to offline

shuffling, the following research challenges have been identified:

RC1: How can shuffling be performed while the database is running?

RC2: What measures can be taken to improve the efficiency of the shuffling algo-
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rithm?

RC3: How to strike a balance between the security requirements and the performance

requirements?

4.1 Design

4.1.1 Threat Model

Attackers can be classified into three categories based on their access points and

privileges: intruders, insiders, and administrators [77]. An intruder is an individual

who gains unauthorized access to a computer system in order to extract valuable

information. An insider, belonging to the trusted user group, seeks unauthorized

access to restricted information. An administrator, possessing system privileges,

abuses his rights to extract valuable information. These attackers can employ at

least four attack strategies, as discussed below:

• Physical storage attacks directly target the storage media and hardware ar-

chitectures used by database management systems and their backup systems.

Examples include cloning the disk or disrupting the power supply.

• System storage attacks aim at compromising the storage of database manage-

ment systems through methods other than attacking the hardware directly. This

can involve exploiting administrator privileges or hacking into the database log

server.

• Memory attacks focus on exploiting the memory where database cache data are

stored. Attackers attempt to manipulate or gain unauthorized access to the

data in the memory.
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• Transmission attacks occur during the data transmission between the database

server and the database clients. Attackers target this communication channel

to intercept or manipulate the data being transmitted.

In the threat model, the following assumptions are made:

• The database management system is trusted.[78] We place our trust in the

database management system to accurately carry out operations such as disk

reading and writing, ensuring that no vulnerabilities are created for attack-

ers to exploit. Additionally, we assume that the operating system housing

the database management system is free from malicious software and that the

memory space utilized by the database management system is adequately safe-

guarded. Hence, we do not need to focus on protecting against memory attacks.

• The communications among the database management system clusters are trusted.

This aspect pertains to network security, and encryption during data transmis-

sion, such as SSL and IPSec, is extensively employed to safeguard communica-

tions. Consequently, our focus does not need to be directed towards protection

against transmission attacks.

• The hardware architectures or software systems where the database management

system is located are vulnerable to compromise.[78] Trusted database manage-

ment systems commonly rely on the storage system offered by the underlying

operating system. However, the vulnerability of the operating system creates a

potential avenue for attackers to illicitly access the valuable information stored

within the database.

• The data in the database management system are beneficial from the attacker’s

perspective. Network attacks can provide benefits to the attackers, which may

include unauthorized access to valuable information, financial gain through theft

or fraud, and competitive advantage through industrial espionage.
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4.1.2 Deranged Permutation Generation

As mentioned in Chapter 3, shuffling relies on a deranged permutation sequence.

In order to improve the efficiency of the shuffling, in which deranged permutation

generation is a necessary step, a new design is proposed. The new design can generate

a deranged permutation in constant time, based on the work of Korsh and LaFollette

[79].

Previously, the method involved randomly generating a permutation and then

testing if it was deranged. However, as the tuple size w increases, the hit ratio

(the probability of generating a deranged permutation) decreases due to the ratio R

between the number of permutations Np and the number of deranged permutations

Ndp, where R = Ndp/Np. Consequently, generating a deranged permutation becomes

increasingly time-consuming.

To enhance the efficiency of the shuffling process, an integration has been imple-

mented, combining the constant-time deranged permutation algorithm with a mem-

orization algorithm. This integrated approach optimizes the time required to obtain

deranged permutation sequences. When a deranged permutation sequence for a tuple

size of wi is initially requested, all potential permutation sequences for wi are calcu-

lated and stored in a sequence pool. Subsequent requests involve selecting a sequence

from the pool, eliminating the necessity for re-computation. This enhancement no-

tably boosts the efficiency of the shuffling algorithm itself and effectively addresses

the challenge RC2.

4.1.3 Data Storage with BAIT

In disk-optimized database management systems, data is typically managed using a

combination of block-level and file-level access to the disk, rather than direct control

of disk blocks by the database engine or reliance on the operating system’s file system

for data storage [80]. Data files are treated as raw disk storage, with the operating sys-
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tem responsible for mapping logical blocks within data files to corresponding physical

blocks on the disk. The block size may vary among different database management

systems, resulting in the possibility of multiple logical blocks residing within a single

data file, each assigned a unique block number for future reference. To minimize

the need for multiple hard disk I/O operations, these blocks are first transferred to

memory. Within memory, pages store the content of these blocks, and a component

known as the “buffer manager” is tasked with the retrieval of blocks into the buffer

cache and the writing of pages back to disk blocks in the event of any modifications

[81]. Consequently, the terms “page” and ‘block” are sometimes used interchangeably

to denote the fundamental unit for operations on data files. Thus, data files are struc-

tured as collections of pages, with each page assigned a distinct identifier [82]. The

prevailing layout scheme for a page is often referred to as a “slotted page”, consisting

of a header, a slot array, and values. The slot array serves as a mapping between the

slot identifier (slot_id) and the starting position offset of the corresponding value.

The main difference between row-oriented storage and column-oriented storage

is how the data are organized in data files [83]. In row-oriented storage, one tuple

which consists of multiple attributes occupies one slot in the page file, so that the

slot_id can be used for future addressing and each attribute can be traversed based

on the attribute length predefined in relation scheme. In the design, the page files

only store the values from one single attribute, and each value will be assigned one

slot_id. Because of the fixed size of one page along with the growing number of

tuples in the relation and the requirement of atomicity, the size of one page is usually

a few kilobytes such as 4KB in SQLite and Oracle, thus one attribute may be stored

in multiple pages. Given the page_id and slot_id, every value can be addressed.

For the purpose of improving security and preserving privacy, shuffling algorithm

is applied to attributes. As mentioned earlier, the attributes in one relation may be

located on different pages due to the size limit, thus directly moving the attributes
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according to the permutation generated by the algorithm is extremely inefficient for

the following reasons: 1) high diffusion feature and deranged permutation of our

algorithm will move every attribute to another location, which requires a mass of

I/O operations on data files, and 2) the newly inserted tuples need the shuffling to

provide the security and privacy on those new tuples, and frequent insertions will

hugely increase the time of reading and writing accesses.

Instead of directly moving the values themselves, our approach is inspired by the

physical data model of MonetDB [56]. MonetDB represents relational data using Bi-

nary Association Tables (BATs) consisting of two columns. The right column stores

the actual value, while the left column contains the object identifier (OID) of the cor-

responding tuple. In a relation R with m attributes, there are m BATs, and attribute

values within the same tuple share the same OID. The OID values are generated in

an ascending sequence during tuple insertion, indicating the explicit position of the

tuple. In this design, the Binary Association Index Tables (BAITs) is proposed in the

physical data model. As illustrated in Fig. 4.1 which depicts the architecture, the

BAIT is positioned between the Indexing module and Record module, responsible for

managing querying indexes and unordered data records, respectively.

There are two main differences between MonetDB’s BAT and our BAIT:

• In BAIT, the OID in the left column represents the iterator of either the indexing

data structure or the record data structure. However, unlike the ascending

sequence used in MonetDB, our design generates random and hashed OID values.

• The right column in BAIT does not store the actual data; instead, it holds the

address of the storage location.

Left Column: The OID in the left column serves as the iterator for either the

indexing data structure or the record data structure, depending on whether the col-

umn is indexed or not. To ensure the persistence of the iterator, each record or
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Figure 4.1 System architecture of the database with BAIT integrated.

indexing iterator is assigned a unique identifier. To generate the OID, a highly effi-

cient hash algorithm called xxHash [84] is employed. This algorithm operates at RAM

speed limits, enabling fast processing. The value range of the random OID generator

does not need to be excessively large to maintain optimal performance. To ensure

the uniqueness of the OID, generated random number and the current timestamp

are concatenated. This concatenation is then passed through the xxHash algorithm,

which guarantees both uniqueness and speed. The random number acts as a salt

for the hash function, enhancing the security of the hash result and preventing at-

tacks such as rainbow table attacks [85]. Since the hash result is not used for integrity

verification, the randomness of the salt does not pose any issues for storage and reuse.

Right Column. The data stored in the right column are the concatenated ad-

dress only, represented as page_id + slot_id, rather than the actual value. This

unified indexing approach significantly reduces the frequency of I/O operations by

operating solely on the BAIT files, instead of reading and writing all the page files

during the shuffling process. The BAITs can be efficiently utilized in memory, al-

lowing for faster shuffling operations. Moreover, if the size of the BAIT files exceeds

the available memory, cache replacement policies such as LRU (Least Recently Used)

[86] can be employed to manage memory usage effectively. This ensures optimal

performance even when the BAIT files cannot be entirely held in memory.

One example of BAIT is shown in Fig. 4.2. With the perspective of the implemen-
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tation of the database system, the BAIT is typically located between the Indexing

Module and Record Management Module. Therefore, the left column of the BAIT

is connected to the Indexing, while the right column of the BAIT holds the address

of the record, which is the unique identifier of the record in Record Management

Module. By only shuffling one column of the BAIT, the shuffling of the attributes

of the relation can be achieved without actually moving the physical data in storage

medium.

Figure 4.2 Example Data Representation of BAIT

4.1.4 Shuffling and Restoring

Based on the BAIT storage format, the entire shuffling on the relation doesn’t have

to touch the actual data files; only the left column of BAIT files will be changed.

Comparing to the actual data, BAIT files are much smaller, so it is feasible and

efficient to put BAIT files in memory during the running of the database management

system. In an extreme case, every data insertion or update will trigger the full

shuffling to guarantee the data security and privacy. Another extreme case is to

execute the shuffling only before the shutdown of the database management system,

which only provides the protection on offline storage. To balance the performance

and security, a time interval can be set as the countdown to trigger the shuffling.
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The efficiency of attribute statistical association bundle shuffling has significantly

improved due to the adoption of column-oriented storage. In the computation of

association strength, all values within a column are involved. However, when using

a row-oriented storage scheme, this computation incurs a substantial amount of file

I/O operations. In contrast, the column-oriented storage scheme benefits from a

larger page size, such as the 1MB page size in Amazon Redshift. Consequently,

measuring statistical strength can be achieved with just a few I/O requests, as the

related columns are stored together. By leveraging the advantages of column-oriented

storage, bundle shuffling processing can be accelerated.

4.2 Implementation

This section describes the implementation of the database which combines the shuf-

fling algorithm and the column-oriented database.

4.2.1 Parameter Settings

It is necessary to stay with consistent shuffling parameters for the transparent restor-

ing (i.e., unshuffling) of the data. For the shuffling of each relation, K, as a three-layer

structure, records the shuffling parameters as shown in Fig. 4.3. In the first layer,

the shuffling parameters are represented as K : (K0, K1, ..., Kn) in which K0 means

the shuffling parameters for the first attribute and Kn means the shuffling parame-

ters for the last attribute. Coming to the next layer, each k[i] indicates the shuffling

parameters for each level. The sequence (k0, k1, ..., kn) stands for the shuffling pa-

rameters inside each block. Among these parameters, only the sequence of (k0, k1,

..., kn) is generated, and the sequence plays the role of leaf in the tree. Accordingly,

the database engine randomly generates the shuffling sequence (k0, k1, ..., kn), and

constructs all the shuffling sequences together.
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K
K0

k[0]

(k0, k1, ... , k8)
K1

k[0]

(k0, k1, ... , k41)
k[1]

(k0, k1, ..., k4)
...

Figure 4.3 General view of the shuffling parameter collection for one relation. K
stands for root, next level contains the shuffling parameters of each attribute, then
next level contains the shuffling parameters for each level.

4.2.2 Datasets and Implementation

A portion of the IMDB dataset was utilized for evaluating the performance of our

proposed design. The dataset comprises alphanumeric unique identifiers of individ-

uals, along with essential information. It was obtained from [87] and has a size of

approximately 400 MB. Initially, the dataset was in CSV format, but we converted

it to SQL files for improved convenience during the analysis.

Both the column-oriented storage scheme and row-oriented storage scheme are im-

plemented for the purpose of comparison. The experimental environment is equipped

with an Intel i7-10700 CPU and 32 GB of memory, running Debian 11. The shuffling

parameters are stored in a separate machine functioning as the security key vault.

Both the dataset server and key vault are connected to the same switch. Therefore,

the time required for reading and storing the shuffling parameters in the actual prod-

uct may vary depending on the connection between the database server and the key

vault server.
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4.2.3 Shuffling Overhead

To simplify the performance evaluation process, the following assumptions are made:

1) The shuffling process is triggered based on the number of tuples that are inserted,

deleted, or updated in the database; 2) All columns in the relation are indexed to

optimize query performance. The system performance was evaluated using a collec-

tion of insertion and query statements denoted as Q. The overall execution time

without shuffling enabled is denoted as TQ
off, while the execution time with shuffling

enabled is denoted as TQ
on. To demonstrate the overhead of shuffling, the evaluation

tests is conducted using 50,000 and 100,000 statements for INSERT and SELECT

operations. The average results of 10 rounds are shown in Table 4.1.

Table 4.1 Running Times When Shuffling is Disabled and Enabled.

Operation # of Statements TQ
off TQ

on Difference
INSERT 500000 5.46 s 5.98 s 0.52 s
INSERT 1000000 9.49 s 10.18 s 0.69 s
SELECT 500000 281.45 ms 286.36 ms 4.91 ms
SELECT 1000000 376.29 ms 377.87 ms 1.58 ms

Based on the results, the following observations can be made: 1) The time con-

sumed by the shuffling process is small compared to the overall execution time. It in-

dicates that the shuffling operation has minimal impact on the system’s performance.

2) For INSERT operations, the time taken for shuffling increases proportionally with

the number of tuples being inserted. This demonstrates that the shuffling process

scales well with the size of the dataset. 3) Enabling shuffling for SELECT opera-

tions does not significantly affect the execution time. This is because no additional

steps are performed during the querying process for SELECT operations, resulting

in minimal overhead. These results confirm the practicality and scalability of the

amelioration on column-oriented storage scheme.
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4.3 Analysis

This section provides an analysis on the security of our the shuffling algorithm in

terms of correlation coefficient and distribution.

4.3.1 Correlation Coefficient Analysis

The correlation coefficient analysis can be used to measure the strength of a linear

association between two variables, which are an unshuffled table and a shuffled table

in our case. The correlation value 1 means a perfect positive correlation, value 0

means no correlation, and the value −1 means a perfect negative correlation. The

correlation coefficient can reflect to what extent the shuffling algorithm strongly re-

sists the statistical attack [88], so it’s a success if the correlation coefficient value

of our algorithm ranges between 0 and −1 with high probability. Due to the ran-

domness of shuffling parameters, the output of every new round is rarely the same

as last round, so the correlation coefficient values are fluctuant. Experiments were

conducted on data tables containing different number of tuples: 5K, 10K, 50K, and

100K respectively, with the number of attributes set as 10 for all four cases. The

results of 1,000 rounds show that the probability of the correlation coefficient value

falling between 0 and −1 is around 75%. This means that the shuffling algorithm can

effectively resist the statistical attack.

4.3.2 Distribution analysis

In Shannon’s original definitions, confusion and diffusion are two properties of a se-

cure cipher. Confusion refers to making the relationship between the secret key and

ciphertext as complex as possible, while diffusion refers to dissipating the statisti-

cal structure of plaintext over the bulk of ciphertext which basically means making

the relationship between plaintext and ciphertext as complex as possible. In the key

sensitivity analysis of Chapter 3, complex relationship between secret key and cipher-
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text has been described, which is the sensitivity between our shuffling parameters and

permutations. To show that the shuffling algorithm achieves good diffusion, a distri-

bution analysis is undertaken. Each tuple is put in one attribute as one dot into one

axis system in which the X-axis represents the index of the tuple in the attribute,

and Y-axis represents the attribute value. By comparing the locations of those dots

before and after shuffling, the analysis can assess whether the relationship between

plaintext and ciphertext is well diffused.

Figure 4.4 Distribution of 100 tuples in the simulation. Gray dots represent original
attributes, and black crosses represent the shuffled attributes.

The distribution simulation of 100 tuples in one attribute using 100 randomly

generated data pairs (x, y), where x stands for the index and y stands for the attribute

value, and the result is shown as Fig.4.4. x values increase by 1 from 1 to 100, and y

values scatter randomly within the range (1, 100). The shuffling is only carried out on

Y-axis and not on X-axis in order to use X-axis as the reference of comparison. The

outcome can obviously conclude from the figure that there is no clear relationship

between the two distributions, thus a good diffusion is achieved by our algorithm.
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4.4 Contribution

In this chapter, SCORD is introduced to apply the shuffling in the running instance

of the database system. Within SCORD, the column-oriented storage scheme and

the novel data structure BAIT are adopted to sharply improve the efficiency of the

shuffling algorithm.
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Chapter 5

SmartSSD-Accelerated Shuffling

Chapter 4 explores one way to mitigate the performance burden of the data shuffling

in database system, while there are still many methods to achieve the improvement

on efficiency and security of the proposed shuffling algorithm. This chapter propose a

design to further enhance the security of shuffling algorithm and improve the efficiency

by employing SmartSSD computational storage device from Samsung and AMD.

Looking back at the era when mechanical hard drives were the absolute dominant

storage medium, one significant bottleneck for database performance was the read

and write speed of mechanical hard drives, especially for random read and write

operations. This was due to the internal structure of mechanical hard drives. In

comparison to mechanical hard drives, solid state drives (SSDs) are better suited

for scenarios with high-speed read and write and high I/O demands. SSDs offer

faster access speeds, lower latency, better random read and write capabilities, and

lower power consumption [89]. However, the rapid development of SSDs has shifted

the system bottleneck from storage medium to the time spent on data transfer [90].

For example, when a significant amount of data pages are required from storage for

tasks such as shuffling and encryption, these data pages must be transferred from

storage to memory through interfaces like PCIe, SATA, and SAS. Afterward, the

CPU accesses and processes the data, with high-speed cache playing a supporting

role when necessary.

The conception of “in storage computing” or “near storage computation” was

proposed as early as the 1990s, where the disk was designed to execute most process-
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ing tasks to processors inside the disk [9], [10]. However, this conception began to

gain attention and development around the early 2010s [11], [12]. By deploying the in

storage computing devices in database servers, certain tasks like shuffling and encryp-

tion can be offloaded to the storage devices. When shuffling or encryption requests

are received, the host forwards these requests to the storage. The processor within

the storage retrieves the necessary data from storage to its internal DRAM, where

it handles the processing requests. Subsequently, the outcomes are written back to

the storage. This architecture avoids competition between data requiring shuffling or

encryption and other data. It also eliminates the need for such data to traverse the

lengthy path through the system bus, spanning storage, RAM, cache, and processors.

A computational storage drive (CSD) is a “in storage computing”. It reduces data

transfer latency and enhances data processing efficiency by introducing processing

capabilities inside the storage. There are several commercial products in the market

from companies like NGD Systems, ScaleFlux, Pliops, SNIA, and Xilinx (acquired by

AMD). The core of the SmartSSD CSD is the AMD FPGA programmable platform

and Samsung’s SSD controller [23]. A dedicated high-speed P2P link connects the

SSD controller to the FPGA for low-latency processing.

In this chapter, a revised design that combines SmartSSD CSD and shuffling

algorithms is depicted for enhancing database data security with minimal additional

performance overhead. The main contributions of the chapter are listed as follows:

• This chapter demonstrates how to use SmartSSD CSD to accelerate the shuffling

algorithm, including software and hardware architectures, ensuring that the

performance overhead of shuffling algorithms does not affect the execution of

other tasks in the database system.

• This chapter proposes effectiveness and security enhancement for the shuffling

algorithm.
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• This chapter optimizes the shuffling algorithm further using the built-in FPGA

accelerator of the SmartSSD CSD to improve efficiency.

5.1 Design and Implementation

This section introduces the design of the relational database with accelerated shuffling

on CSD. To the best of our knowledge, this is the first public description of such a

system that utilizing CSD on the database security.

At its essence, the revised database system comprises three integral components:

1) modules pertaining to relational databases, excluding storage considerations, 2)

the BAIT and storage module, and 3) a module dedicated to accelerating data shuf-

fling processes. Within the domain of relational databases modules, some modules

have been developed, which encompasses an SQL parser, a system manager respon-

sible for overseeing DDL (Data Definition Language) statement, a query manager

responsible for handling DML (Data Manipulation Language) statements, and an

indexing component. The BAIT and storage module have the primary responsibility

of managing page I/O operations and shuffling processes. Consequently, this module

exhibits a close association with SmartSSD CSD. It is noteworthy that while the

source code of this module within the prototype may not exhibit distinctiveness from

the relational database modules, it is conceptually delineated as a separate entity.

Given that SmartSSD CSD incorporates embedded FPGA chips, this section also

introduces an acceleration module to optimize the shuffling operation by harnessing

the computational capabilities of the FPGA.

5.1.1 Matrix-Shuffling Algorithm

The multi-level shuffling described in Chapter 3 primarily focuses on account of per-

formance and security considerations. The rationale to conduct the shuffling in the

form of multiple level is grounded in the following key factors:
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• Efficiency of Computation: When dealing with lengthy columns, it is more

computationally efficient to partition them into multiple blocks since both gen-

erating a single large permutation sequence and verifying if this sequence re-

mains deranged can be highly time-consuming processes.

• Information Disclosure: Another compelling reason for multi-level shuffling

is to reduce the potential information leakage during the “segmented” shuffling

process. By shuffling elements within the confines of their respective blocks, the

degree of diffusion is restricted, which may unintentionally reveal the presence

of the shuffling.

However, it is essential to acknowledge that even with the multi-level shuffling,

certain patterns may persist in the distribution of the shuffled column. This ob-

servation holds particularly true for columns characterized by data that follows a

monotonically increasing or decreasing pattern, such as timestamps or serial num-

bers. In such cases, the effectiveness of concealing the original data distribution may

be limited, and certain underlying patterns may still be discernible in the shuffled

outcome.

As depicted in Fig. 5.1, a straightforward shuffling experiment involving a col-

umn with parameters l = 256 and w = 16 reveals obvious patterns in multi-level

shuffling. In this visualization, black dots signify monotonic data points with random

increments ranging between 0 and 5, while the gray dots represent the positions of

these data points following the shuffling process. The previous key sensitive analysis

suggests that data points are unlikely to return to their original positions, an evalu-

ation of the statistical distribution can still readily unveil the presence of shuffling.

Consequently, potential attackers may focus their efforts on exploiting weaknesses in

the shuffling process.

As a solution, an enhanced Matrix-Shuffling algorithm based on SCORD’s shuf-
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Figure 5.1 Distribution of monotonic data. Black dots represent the original data
points before shuffling, while gray dots depict the shuffled data points. The horizontal
axis represents the index of the data, and the vertical axis represents the correspond-
ing values of the data points.

fling technique is proposed in this chapter. Instead of employing multiple levels of

shuffling, our algorithm adopts a matrix-based approach. The tuples within a given

column, denoted as x0, x1, ..., xl−1, are organized into an l/w × w matrix denoted as

X

X = (Xij) =



x0 x1 · · · xw−1

xw xw+1 · · · x2w−1

... ... . . . ...

x(l/w−1)w x(l/w−1)w+1 · · · xl−1


according with the unique representation of each integer in 0, 1, ..., l − 1 as

iw + j, 0 ≤ i ≤ l/(w − 1), 0 ≤ j ≤ w − 1
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so that Xij = xiw+j.

The transpose XT is expressed as

Y = (Yi′j′) =



x0 xw · · · x(l/w−1)w

x1 xw+1 · · · x(l/w−1)w+1

... ... . . . ...

xw−1 x2w−1 · · · xl−1


= XT

Within the matrix framework, each row undergoes shuffling according to one

deranged permutation sequences, followed by independent shuffling of each matrix

column. Considering data structure conventions, a matrix is commonly represented

as a two-dimensional vector or array. Therefore, to execute column-wise shuffling on

the matrix, a matrix transpose operation becomes necessary. It is noteworthy that

the column cannot be reorganized into a matrix all the time and the remainder l%w

is suggested to do the shuffling in-situ.

The pseudocode of the Matrix-Shuffling is shown as follows:

num_rows = number of rows of the matrix

num_cols = number of columns of the matrix

matrix = initialize a num_rows by num_cols matrix

index = 0

for i from 0 to (num_rows - 1):

for j from 0 to (num_cols - 1):

matrix[i][j] = tuple[index]

index++

for i from 0 to (num_rows - 1):

p = generate shuffling sequence
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shuffle the row i based on p

matrix = transpose matrix

for j from 0 to (num_cols - 1):

p = generate shuffling sequence

shuffle the column i based on p

5.1.2 Shuffling Offloading

In regular computer systems, the host processor engages in a sequence of communica-

tions with the storage devices, wherein data from the storage devices is read into the

memory hierarchy, and subsequent computational operations are performed. Upon

completion of these computations, the data is then written back to the storage devices

from the memory.

When an SmartSSD CSD is installed in the system, the accelerated host compu-

tation may fall into one of the following two scenarios: 1) the host processor reads

the data from the SmartSSD storage and transfers them into the memory dedicated

to the SmartSSD CSD, and 2) the processor inside the SmartSSD CSD communicate

directly with the storage inside the SmartSSD CSD via the fast and private P2P link,

enabling it to access and retrieve the data directly. In the former case, data must

traverse through the host memory before reaching the FPGA DRAM. Data stored in

SmartSSD CSD follows a path that includes traversal through the SmartSSD storage

controller, the SmartSSD PCIe switch, the host memory, the SmartSSD PCIe switch

once again, and finally, the FPGA DRAM. Conversely, the latter scenario involves

direct communication between the FPGA and the storage, and there is no reliance

on host resources for data transfer. Therefore, the P2P communication approach can

significantly reduce latency and is less resource-intensive on the host system.
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Figure 5.2 shows the interaction between the SmartSSD CSD and the host sys-

tem in the context of SQL querying. The host system initiates this interaction by

dispatching instructions and, where necessary, pertinent data essential for executing

SQL statements, such as data to be inserted or updated. The SmartSSD CSD then

starts to load data from the SmartSSD storage to the FPGA DRAM via the P2P

communication link, with data being loaded in page-sized units. Once all the rele-

vant pages have been successfully loaded into the FPGA DRAM, the de-shuffling and

subsequent processing procedures are initiated. Upon the completion of these oper-

ations, the pages are subjected to shuffling once again and then stored back into the

SmartSSD storage. At the same time, the processing results will be put to the output

buffer and then returned to the host side. This approach empowers the SmartSSD

CSD to effectively offload a significant portion of the I/O-intensive tasks, thereby

conserving computational resources on the host for other concurrent operations.

Figure 5.2 System Architecture with SmartSSD CSD

5.1.3 Acceleration Module

The SmartSSD CSD contains one Xilinx Kintex Ultrascale+ KU15P FPGA with

1.143 million SLCs (system logic cells) and approximate 300,000 LUTs (Look Up

Tables). These SLCs and LUTs are key components in FPGA that play a crucial role

in accelerating applications as they can be configured to implement various digital
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logic functions. With the help of the FPGA, an acceleration unit to accelerate the

generation of deranged permutation has been designed.

As described in previously-mentioned sections, a deranged permutation plays a

vital role in the shuffling. Generating a permutation is faster than generating a

deranged permutation, especially as the length of the sequence increases. Since high

efficient algorithms such as Fisher-Yates shuffle can help to generate the permutation,

the generation of the deranged permutation can be concluded as two steps:

• Uniformly generating a permutation sequence at random.

• Verifying whether the generated permutation meets the criteria of being de-

ranged. If it does, the algorithm outputs this permutation as the result. If

not, the process is iteratively repeated, generating random permutations until

a valid deranged permutation is obtained.

In general, the acceleration module covers the verifying that if the generated

permutation is deranged based on linear array model. This acceleration module

employes a linear array based on the FPGA to accelerate the check of deranged

permutation. The linear array model is consisted of 2w identical processors (w is the

size of one block) and these processors organized in two one-dimensional structure.

Except for the first one, the i − th processor, for 1 < i < w, has local connection to

processor i − 1. All first w processors have the local connection to processor i + w.

Every processor has a finite number of registers, and can execute basic instructions.

This linear array model belongs to the SIMD class of computer architectures. During

the execution of the derangement checking, processors work in synchronous manner

and perform in parallel the same sequence of instructions. It is recommended that

one selected processor, such as the first one, may have some additional features and

can control work of the others. The structure of the model is shown in the figure 5.3.
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Figure 5.3 Linear array model of parallel computations

During the verification, all elements in the sequence before shuffling would be

stored in the processors 0 to w − 1, and all elements in the shuffled sequence would

be stored in the processors w to 2w − 1. As one pair of processors, the processor i

and the processor i + w would conduct the comparison in parallel to accelerate the

verification of derangement. The pseudocode is shown in below.

module Derangement_Checker (

input [w-1:0] orig,

input [w-1:0] perm,

output reg is_derangement

);

reg flag = 1;

always @(*) begin

integer i;

flag = 1;

for (i = 0; i < w; i = i + 1) begin

if (orig[i] == perm[i]) begin

flag = 0;

break;
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end

end

is_derangement = flag;

end

endmodule

5.2 Experiment Evaluation and Analysis

To evaluate the efficiency of shuffling with SmartSSD CSD, a prototype of the design

on a workstation with SmartSSD installed is implemented. The specifications of the

SmartSSD CSD are detailed in Table 5.1. Notably, the bandwidth between DRAM

and FPGA is around 20 GB/s, and the bandwidth between NAND flash storage and

FPGA is around 3 GB/s.

Table 5.1 SmartSSD CSD Specifications

Form Factor 2.5" (U.2)
Storage Capacity 3.84 TB

Host Interface PCIe Gen3x4
Sequential Read Up to 3,300 MB/s
Sequential Write Up to 2,000 MB/s

Random Write Up to 800,000 IOPS
Random Read Up to 110,000 IOPS

System Logic Cells 1.143 Million
Available LUTs ∼300 K

Accelerator-dedicated RAM 4 GB DDR4 @ 2400 Mbps

The prototype is written with C++ in AMD Vitis Unified Software Platform

2023.1. The experiments are conducted on a workstation machine with one Intel

i7-10700F processor and 32GB of DDR4 memory. It’s important to note that the

SmartSSD CSD is designed for server environment, which typically equipped with

68



powerful cooling system and native U.2 interface. To facilitate the experiments, one

U.2 to PCIe x4 adapter and one additional 70mm × 70mm fan are used. These

measures were taken to prevent the FPGA and NAND components from reaching

their thermal thresholds, and they can be seen in Fig. 5.4. The SmartSSD CSD

driver and the AMD Vitis development environment were both installed on an Ubuntu

20.04.6 system, with an additional installation of an older version of the Linux Kernel

to accommodate the development requirement.

Figure 5.4 SmartSSD adapter and cooling.

In the performance evaluation, an IMDB review dataset is employed, as sourced

from [91]. This dataset consists of numeric unique identifiers for reviews, accompanied

by associated information such as reviewers, movies, ratings, and more. It contains

over 5 million review records. To enhance its usability for our purposes, the dataset

are converted from its original json format to sql format.
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5.2.1 Shuffling Performance Evaluation

To simplify the performance evaluation process, the following assumptions must be

clarified: 1) The shuffling process is initiated when the number of tuples l is a multiple

of w (size of the block). This approach ensures that no remaining tuples are left during

the conversion from a list of tuples to a matrix. 2) All columns within the relation

have been indexed to maximize query performance.

To practically examine the performance of the design, the comparative analysis

is conducted between two systems. In one system, SmartSSD CSD was enabled, and

in the other, it was disabled. In the former, shuffling and storage operations were

offloaded to the SmartSSD CSD, while in the latter, all processing was executed solely

by the host CPU. The system performance evaluation uses a collection of insertion and

update statements denoted as Q. The total execution time without shuffling enabled

is represented as TQ
OFF. Meanwhile, the execution time with shuffling enabled on a

CPU-only platform is denoted as TQ
CPU, and the execution time with shuffling enabled

with the involvement of SmartSSD CSD is denoted as TQ
CSD. The evaluation tests

encompasses both INSERT and UPDATE operations involving 50,000 and 100,000

statements. The average results of 10 rounds are shown in Table 5.2.

Table 5.2 Running Times Under Three Cases

Operation # of Statements TQ
OFF TQ

CPU TQ
CSD

INSERT 50,000 5.27 s 5.88 s 5.42 s
INSERT 100,000 9.31 s 10.42 s 9.69 s
UPDATE 50,000 242.18 ms 306.85 ms 254.19 ms
UPDATE 100,000 387.11 ms 498.23 ms 399.65 ms

Based on the results, the following observations can be made:

• Minor Impact of Shuffling Process: The time consumed by the shuffling

process is found to be relatively small when compared to the overall execution

time. Moreover, the integration of SmartSSD CSD demonstrates its capability
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to further minimize the time allocated to shuffling. This suggests that the shuf-

fling operation, when accelerated by SmartSSD CSD, exerts minimal influence

on the system’s overall performance. Consequently, a greater portion of com-

putational resources can be directed towards other critical operations, such as

data processing and index building.

• Substantial Performance Enhancement: The execution of statements in-

volving SmartSSD CSD participation exhibits a notable improvement in relative

performance from 5 to 10 × faster, when compared to scenarios where only the

CPU is engaged in shuffling computations. This substantial enhancement un-

derscores the significant reduction in overhead time associated with shuffling

when SmartSSD CSD is employed.

5.2.2 Distribution and Information Entropy Analysis

For the purpose of eliminating the distribution traces of shuffled tuples, we ameliorate

the shuffling algorithm. We conduct the same experiment as Section 5.1.1, and the

distribution of monotonic data is reflected in Fig. 5.5. Our shuffling based on matrix

could clearly state a better randomness on the data points distribution after shuffling.

Information entropy is one of the most important feature of randomness [92]. High

entropy is crucial for security-critical applications, and high entropy means that the

outcomes are more unpredictable and random. Let m be the procedure of shuffling;

the formula for calculating the information entropy can be expressed as follows:

H(m) = −
n∑

i=1
p(xi) · log2(p(xi))

where n represents the number of possible positions for the tuple to move during the

shuffling, and p(xi) represents the probability of selecting each position xi. Table 5.3

records the different information entropy with various column size under multi-level

71



Figure 5.5 Distribution of monotonic data under matrix shuffling. Blacks dots are
data points before shuffling, while gray dots are shuffled data points. Horizontal
coordinate represents the index of the data, and vertical coordinate holds the value.

shuffling and matrix shuffling. We can clearly see that the matrix shuffling could

provide a much larger information entropy for a better randomness.

Table 5.3 Information Entropy Under Different Shuffling Algorithm

Column Size 64 256 1024 1024
Multi-level Shuffling 24 64 160 4096
Matrix Shuffling 295.995 1683.996 8769.006 43250.047

5.3 Contribution

In this chapter, a solution for enhancing database security through the use of SmartSSD-

accelerated is described for cryptographic shuffling. The approach accelerates the
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shuffling algorithm using SmartSSD CSD, including software and hardware archi-

tectures, and optimizes the algorithm further using the built-in FPGA. Several per-

formance evaluations have been conducted to show the performance improvements

the SmartSSD CSD brings to the shuffling algorithm. The proposed solution pro-

vides a promising direction for enhancing database security and protecting sensitive

information.
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Chapter 6

Conclusion

In summary, this research has made significant contributions to the field of database

security by introducing an innovative shuffling algorithm. The paper discusses the

significance of database security in protecting an organization’s valuable data assets

in the face of increasing cyber threats The shuffling algorithm in relational database

is a novel way to enhance the database security and preserve the data privacy with-

out modifying the data themselves. Efforts have been made to improve the efficiency

of the shuffling algorithm through novel storage data structures, column-oriented

storage schemes, and computational storage device integration. With the assistance

of column-oriented database and SmartSSD computational storage devices, the pro-

posed shuffling algorithm could promote the security with just a minor overhead on

the performance.

The contributions in this dissertation are listed below:

1. The shuffling could not only protect the offline database data storage but also

apply the shuffling to the running database.

2. Two shuffling schemes are proposed for different scenarios, the schemes include

the multi-level shuffling and matrix-shuffling.

3. Attribute association aware feature is proposed to mitigate the risk of statistical

attack.

4. A new data storage data structure is proposed for the shuffling without actually

moving the data inside the storage.
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5. Hardware accelerators have been utilized to promote the shuffling algorithm,

especially the deranged permutation generation on which the shuffling relies.

In the realm of relational database design, the shuffling algorithm exhibits notable

advantages and contributions. However, it is essential to acknowledge that certain

facets of this design could benefit from further improvement. Improving these aspects

represents a critical avenue for future research endeavors aimed at enhancing the

design’s security, performance, and usability.

At present, the remarkable performance of the algorithm is contingent upon

column-oriented storage. Nevertheless, it is noteworthy that there exist scenarios

where row-oriented storage outperforms column-oriented storage in terms of both

performance and compatibility. As elucidated in Chapter 4, data manipulation is

more facile in row-oriented storage, while specific queries faster execution in column-

oriented storage. The potential establishment of a converter holds promise in influ-

encing the overall performance of the design.

Notably, certain modules in the current implementation require refinement. Ar-

eas such as the indexing of BAIT and the acceleration of modules beyond shuffling

within the relational database are identified as areas requiring attention. Undertak-

ing further research endeavors is imperative to address these deficiencies and fortify

the overall design.
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