
University of South Carolina University of South Carolina 

Scholar Commons Scholar Commons 

Theses and Dissertations 

Fall 2023 

Nonparametric Tests of Interaction for the Two-Way Design With Nonparametric Tests of Interaction for the Two-Way Design With 

Skewed Distributions Skewed Distributions 

Michael Ethan Hornsby Brown 

Follow this and additional works at: https://scholarcommons.sc.edu/etd 

 Part of the Educational Psychology Commons 

Recommended Citation Recommended Citation 
Hornsby Brown, M. E.(2023). Nonparametric Tests of Interaction for the Two-Way Design With Skewed 
Distributions. (Doctoral dissertation). Retrieved from https://scholarcommons.sc.edu/etd/7596 

This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in 
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please 
contact digres@mailbox.sc.edu. 

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F7596&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/798?utm_source=scholarcommons.sc.edu%2Fetd%2F7596&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/7596?utm_source=scholarcommons.sc.edu%2Fetd%2F7596&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu


 
 

NONPARAMETRIC TESTS OF INTERACTION FOR THE TWO-WAY DESIGN WITH 

SKEWED DISTRIBUTIONS 

 

by 

Michael Ethan Hornsby Brown 

Bachelor of Science 

University of South Carolina Aiken, 2015 

Master of Applied Statistics 

University of South Carolina, 2019 

 

_______________________________________________ 

 

 

Submitted in Partial Fulfillment of the Requirements 

For the Degree of Doctor of Philosophy in 

Educational Psychology and Research 

College of Education 

University of South Carolina 

2023 

Accepted by: 

Michael Seaman, Major Professor 

Christine DiStefano, Committee Member 

Angela Starrett, Committee Member 

Ryan Carlson, Committee Member 

Ann Vail, Dean of the Graduate School 



ii 
 

© Copyright by Michael Ethan Hornsby Brown, 2023 

All Rights Reserved. 



iii 
 

ACKNOWLEDGEMENTS 

 I would like to extend my most heartfelt appreciation to my advisor, Dr. Michael 

Seaman, for his wisdom, knowledge, and patience throughout this process. I feel 

incredibly fortunate to have such an advisor throughout this process. A special thank you 

to the members of my committee as well for their guidance and feedback in pushing my 

work to be the best it could be. 

 I would also like to extend a special thanks to my assistantship advisor, Dr. 

Vasanthi Rao, for her wisdom, support, motivation, and patience throughout my time as a 

student and research assistant. These were invaluable resources that had monumental 

impact. 

 I am deeply grateful for the patience and support from my husband, Kenny. Thank 

you to my friends, especially Brent and Brandy, who were supportive from beginning to 

end. Thank you to my family. Finally, thank you to my grandmother, Barbara, who is not 

here to see the end of this journey but was and is paramount in my becoming who I am 

today. 



iv 
 

ABSTRACT 

 The most common parametric procedure used to test main and interaction effects 

in the two- or more-groups factorial design is the analysis of variance (ANOVA) F test. 

Researchers in the behavioral and social sciences fields require statistical methods that 

are robust in the presence of deviations from the common parametric ANOVA 

assumptions of (a) normality, (b) homogeneity of variances among groups, and (c) 

independence of observations. When there is concern that the parametric assumptions are 

violated, nonparametric procedures can be employed that do not make as many initial 

assumptions about the parent populations. Of particular interest in the two-factor design 

is the test for interaction among the factors. This paper seeks to contribute to the research 

of nonparametric methods by exploring the properties of various nonparametric tests in 

detecting and inferring interaction effects when the population distributions are skewed or 

asymmetrical. A review of rank-based nonparametric tests for interaction is provided to 

determine what methods have been proposed to test for interaction and how these 

methods have performed in comparative research studies. This review includes research 

findings regarding normal scores to determine the potential of a normal scores 

transformation when testing for interaction. A comparative study of nonparametric 

methods that have been shown by past research to provide reasonable power and Type I 

error control is conducted to determine if these methods also perform well when testing 

for interaction effects using Monte Carlo simulated data with skewed and asymmetric 

distributions. A second comparative study explores the performance of three novel 
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nonparametric tests for interaction. These three tests are the rank transform test, aligned 

rank transform test, and McSweeney test with a Van der Waerden normal scores 

transformation in place of a rank transformation. For the studied designs, the aligned rank 

transform test, the aligned rank transform test using normal scores, and the McSweeney 

test using normal scores provide nonparametric tests of interaction that maintain Type I 

error rate, are as powerful as the ANOVA F test when the underlying population is 

normal, and have more power when the underlying population is not normal. 
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CHAPTER 1 

INTRODUCTION 

 The most common parametric procedure used to test main and interaction effects 

in the two- or more-groups factorial design is the analysis of variance (ANOVA) F test 

(Jenkins et al., 1984; Sawilowsky, 1990). In this research design, there are participants in 

all combinations of levels for the two or more categorical predictor variables. For each 

participant, the level of each predictor variable as well as the numerical response variable 

of interest is recorded. The goal is to infer if sample group differences in central tendency 

are representative of true group differences in central tendency of the parent populations. 

This method of inference is critical in research in the education and social science fields 

where researchers often want to generalize treatment effects from observed samples to 

target populations. 

The parametric F test relies on population assumptions of (a) normality, (b) 

homogeneity of variances among groups, and (c) independence of observations. There is 

concern regarding power and Type I error rate robustness of the parametric F test in the 

presence of violations to these assumptions (Bishop, 1976; Blair, 1980; Blair & Higgins, 

1980a, 1980b, 1981; Box, 1953, 1954; Bradley, 1968, Brown & Forsythe, 1974; Goodard 

& Lindquist, 1940; Hornsnell, 1953; Lindquist, 1953; Randolph & Barcikowski, 1989; 

Rogan & Keselman, 1977; Scheffe, 1959; Snedecor & Cochran, 1980; Tomarkin & 

Serlin, 1986; Welch, 1937; Wilcox et al., 1986). This concern is exacerbated by the lack 

of a standard quantitative definition of robustness (Blair & Higgins, 1981; Bradley, 
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1978). When there is concern that the parametric assumptions are violated, nonparametric 

procedures can be employed that do not make as many initial assumptions about the 

parent populations. These nonparametric procedures are critical to applied researchers in 

the education and social science fields where virtually no measures are found to be 

normal (Micceri, 1989). 

 A “nonparametric test” is a statistical test that is not conditioned on specified 

parameters of the target population of interest in order to make valid inference. Most 

common nonparametric tests fall into one of two types: (1) tests of a categorical response 

variable and (2) tests of a ranked response variable. A ranked variable can be viewed as 

an ordered categorical variable, so these two types could collectively be considered as the 

analysis of a categorical variable (Nussbaum, 2015; Stevens, 1946). Rank 

transformations of a numerical response variable provide a way for researchers who 

suspect the common parametric assumptions have been violated to perform tests of 

differences in central tendency. 

 Rank transformations as a data transformation can be used independently or in 

combination with other methods of data transformation. When transforming two or more 

sets of scores to ranks for the purpose of performing a statistical test, the sets of scores 

are commonly combined prior to ranking (Conover & Iman, 1976, 1981; Iman, 1974; 

Iman and Conover, 1976). While transforming one set of scores to ranks will produce a 

distribution that is rectangular, when transforming two or more sets of pooled scores to 

ranks the distributions of the individual set ranks will no longer be necessarily 

rectangular. Differences in group measures of variance, skew, kurtosis, and bimodality 
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are retained after methods of rank transformation albeit with reduced magnitude 

(Zimmerman, 2011). 

 Rank based nonparametric procedures demonstrate potential in two- or more-

sample tests of difference in central tendency in the one-factor design. The Mann-

Whitney U test, the two-sample test of location shift using ranks (also referred to as the 

Wilcoxon rank sum test), demonstrates performance more powerful than the t test with 

many nonnormal data distributions (Blair, 1980; Blair & Higgins, 1985; Mann & 

Whitney, 1947; Randles & Wolfe, 1979; Smitley, 1981; Wilcoxon, 1945, 1947). The 

multiple-group extension of the two-sample Mann-Whitney U test for the one-factor 

design is the Kruskal-Wallis test (Kruskal & Wallis, 1952). The rank-based Kruskal-

Wallis test demonstrates power comparable or greater than the parametric one-way 

ANOVA F test when groups have identical distributions shapes from nonnormal 

distributions (Andrews, 1954; Conover, 1980; Kruskal, 1952; Hodges and Lehmann, 

1956). 

Statement of the Problem 

 Researchers in the behavioral and social sciences fields require statistical methods 

that are robust in the presence of deviations from the common parametric ANOVA 

assumptions. Real world education and psychological measures often occur having 

mixed-normal distributions (Bradley, 1978, 1980a, 1980b, 1980c, 1982; Blair, 1980; 

Micceri, 1989; Still & White, 1981; Tan, 1982). Education and social sciences measures, 

such as sum scores from measures using Likert scales, often have ceiling and floor effects 

that result in the need for methods capable of handling censored and truncated 

distributions (DeWees et al., 2020; Feng et al., 2019; Liu & Wang, 2021; McBee, 2010). 
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Other frequent departures from normality found in psychometric measures include 

asymmetry, multimodality, and skew (Bradley, 1977; Micceri, 1989). 

For example, Micceri’s (1989) meta-analysis analyzed 440 large sample 

educational and psychological measures and found all to be significantly nonnormal via 

some class of contamination. Of the 440 measures analyzed by Micceri, only 15.2% had 

both tail weights at or about normal, 50.2% had at least one tail heavier than normal, and 

14.8% had both tail weights less than normal. Of the remainder, 3.2% were concluded as 

uniform and 16.6% were concluded as Laplace. The Laplace distribution, or double 

exponential distribution, is a continuous distribution symmetric about the location 

parameter with a higher peak, fatter tails, and lower shoulders than the normal 

distribution. From Figure 1, we note the plot of a standard normal distribution: a normal 

distribution with a mean of 0 and a variance of 1. We can use this to compare against a 

Laplace distribution with a location parameter of 0 and a scale parameter of 1 (Figure 2). 

 

Figure 1.1 

Plot of a Standard Normal Distribution 
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Figure 1.2 

Plot of a Laplace(0, 1) 

 

Additionally, of the 440 measures, 40.7% were concluded as moderately asymmetric, 

19.5% as extremely asymmetric, and 11.4% as having exponential asymmetry. Of the 

categories for the measures analyzed by Micceri, nonnormal tail weights and asymmetry 

is demonstrated most prevalent in measures of criterion mastery, where 60% of measures 

were found to be distributed as Laplace, 37.1% of measures had extreme asymmetry, and 

57.1% of measures had exponential asymmetry. Thus, Micceri suggests the existence of 

normally distributed data in educational and psychological measures is as improbable as 

the existence of a unicorn.  

Micceri’s (1989) findings not only directly conclude the prevalence of the Laplace 

distribution in education and social science measures but also provide evidence of the 

prevalence of the logistic distribution by highlighting the frequency of mixed-normal 

measures and criterion mastery measures. The logistic distribution is often used to 

approximate mixed-normal distributions, model distributions of subjective quantitative 
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measures, and is prevalent in item response theory analysis (Hellstrom, 1993; Noortgate 

et al., 2003; Savalei, 2006). The logistic distribution is also a continuous, symmetric 

distribution with thicker tails and a higher peak than the normal distribution, though the 

tails are not as thick and the peak not as high as that of the Laplace distribution. For 

reference, Figure 3 plots a logistic distribution with a location parameter of 0 and a scale 

parameter of 1. 

 

Figure 1.3 

Plot of a Logistic(0, 1) 

 

This would imply that researchers in these fields who limit their methods of analysis to 

those dependent upon the assumption of normality will rarely be using methods as robust 

and powerful as available alternative nonparametric methods of analysis. Given the 

prevalence of measures distributed as Laplace, measures distributed as logistic, and 

measures having varying degrees of asymmetry, methods of analysis capable of handling 

these variables are crucial for researchers in education and social science fields. 
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 Of particular interest in the two-factor design is the test for interaction. It has been 

argued that the few proposed nonparametric tests capable of testing for interaction effects 

are either computationally intensive or less powerful, leaving only the parametric 

ANOVA F test available for researchers to use when testing for interaction effects (Gaito, 

1959; Gardner, 1975). Sawilowsky (1990) offers a comprehensive review of rank-based 

nonparametric tests for interaction proposed in the literature for behavioral and social 

science researchers. Sawilowsky comprehensively reviews the literature for ten 

nonparametric tests for interaction. In the time since publication of Sawilowsky’s review, 

there has been no additional study of some of the tests discussed in the review. 

Simulation studies have been conducted on some of the other tests, though the findings of 

these studies were not encouraging as the tests yielded lower power than other available 

methods or were found to be too computationally intensive for the technology available 

to the average researcher situated in the behavioral and social sciences at the time. 

Further, this research focused primarily on designs with small cell sample sizes or 

heterogeneity of variance between groups. To date, no research has been performed to 

determine the value of these methods when the population distributions have 

multimodality, skew, and asymmetry: deviations from normality found frequently 

occurring in the behavioral and social sciences (Micceri, 1989). 

 Of the methods reviewed by Sawilowsky (1990), the rank transform test and the 

adjusted rank transform test demonstrated the most potential given their demonstrated 

power and robustness properties and thus warrant further study. The rank transform test is 

performed by pooling and ranking all observations prior to calculating the parametric 

statistic on the ranks (Conover & Iman, 1976, 1981; Iman, 1974; Iman and Conover, 
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1976). The rank transform test is robust in 2 x 2 designs under the normal distribution but 

lacks power compared to the parametric F test (Sawilowsky, 1989). Further research is 

needed to determine the power of the rank transform test compared to the parametric F 

test for skewed and asymmetric distributions. 

Thompson (1991) conducted research into the asymptotic properties of the rank 

transform test for 2 x 2 designs and suggested that a chi-square test statistic, rather than 

an F statistic, should be used for the critical value for such tests. This suggestion requires 

further study. 

The adjusted rank transform test is performed by aligning the data prior to pooling 

and ranking observations. This is a modification of the alignment procedure outlined by 

Hodges and Lehmann (1962). The usual parametric test statistic is then calculated using 

aligned and rank-transformed data. The outcomes of simulation studies of the adjusted 

rank transform test demonstrate strong power and slightly liberal Type I error rates (Blair 

& Sawilowsky, 1990). The McSweeney test (1967) is to align and rank as well, but a chi-

square test statistic, rather than an F statistic, is used for a test of the hypothesis. While 

Sawilowsky does not comprehensively review the McSweeney test, it is mentioned as a 

reference for other rank-based tests. Studies conducted since Sawilowsky’s 1990 review 

demonstrate that the McSweeney test has strong power, yet at the cost of liberal Type I 

error rates for small sample sizes (Harwell, 1991; Toothaker & Newman, 1994). 

 Some of the methods Sawilowsky (1990) reviewed are normal scores-based tests. 

Studies of these tests suggest strong potential for Type I error rate control and power, but 

further study is needed. There are three types of normal scores: Terry-Hoeffding normal 

scores (Hoeffding, 1951; Terry, 1952), Van der Waerden normal scores (Van der Waerden, 
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1952, 1953, 1956), and Bell-Doksum normal scores (Bell & Doksum, 1965). Using 

normal scores can result in strong performance in the one-way two- or more-sample test 

of differences in central tendency (Hodges & Lehmann, 1961; McSweeney, 1967; 

Penfield & McSweeney, 1968). McSweeney (1967) suggests applying normal scores 

transformations in place of ranking for both her proposed inferential test as well as for 

other tests of interaction. 

My intent in writing this dissertation is to contribute to the research of 

nonparametric methods by exploring the properties of various nonparametric tests in 

detecting and inferring interaction effects when the population distributions are skewed or 

asymmetrical. The following research questions will guide the investigation: 

 

1. What does published literature regarding proposed nonparametric tests of 

interaction in the factorial analysis of variance design demonstrate regarding 

their asymptotic properties, power, and Type I error rates in the presence of 

nonnormally distributed data, varying cell sample sizes, and heterogeneity of 

variances? 

2. How do nonparametric tests of interaction that have already been 

demonstrated robust in the 2 x 2 factorial analysis of variance design perform 

for distributions having varying degrees of skew and asymmetry? 

3. Can normal scores be used in combination with alignment-based data 

transformation procedures to provide powerful and robust nonparametric tests 

of interaction effects? 
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I will conduct a comprehensive review of nonparametric tests for interaction to 

determine what methods have been proposed to test for interaction and how these 

methods have performed in comparative research studies. I will also review research 

findings regarding normal scores to determine the potential of a normal scores 

transformation when testing for interaction. In two empirical articles, I will do a 

comparative study of nonparametric methods that have been shown by past research to 

provide reasonable power and Type I error control to determine if these methods also 

perform well when testing for interaction effects using Monte Carlo simulated data with 

skewed and asymmetric distributions. In the first empirical article, I will compare power 

and Type I error rates of four rank-based nonparametric tests of interaction: the rank 

transform test, the aligned rank transform test, the McSweeney test, and the Thompson 

rank transform test. In the second empirical article, I will explore the performance of 

three novel nonparametric tests for interaction. These three tests are the rank transform 

test, aligned rank transform test, and McSweeney test with a Van der Waerden normal 

scores transformation in place of a rank transformation. I will highlight strengths and 

weaknesses of proposed nonparametric tests of interaction for varying cell sample sizes 

and in the presence and absence of significant main effects. 
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CHAPTER 2 

A REVIEW OF NONPARAMETRIC TESTS OF INTERACTION 

In 1990, Review of Educational Research published Shlomo Sawilowsky’s article 

titled “Nonparametric Tests of Interaction in Experimental Design.” A “nonparametric 

test” is a statistical test that is not conditioned on specified parameters of the underlying 

population distribution in order to make valid inferences (Hettmansperger et al., 2000; 

Marascuilo & Serlin, 1988; Nussbaum, 2015; Sawilowsky, 1990). The most common 

nonparametric tests can broadly be considered one of three types: (1) tests of a 

categorical response variable, (2) tests of a ranked response variable, or (3) 

randomization tests based on the sign of the response variable. Sawilowsky’s review 

focuses on addressing the power, Type I error rate, and robustness of rank-based 

nonparametric methods. A ranked variable can be viewed as an ordered categorical 

variable, so these two types could collectively be considered as the analysis of a 

categorical variable (Nussbaum, 2015; Stevens, 1946). Due to this relationship, this 

review will primarily focus on rank-based and category-based nonparametric tests.  

Sawilowsky offers two primary reasons for reviewing nonparametric tests of 

interaction. (1) Nonnormally distributed variables are prominent in experimental 

research, particularly in the fields of the behavioral and social sciences (Blair & Higgins, 

1981; Bloom, 1984; Bradley, 1968, 1977; Walberg et al., 1984), and many nonparametric 

methods do not rely on a condition of normally distributed data for valid inference 

(Nunnally, 1975, 1978). (2) Researchers often question the necessity and viability of 
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nonparametric methods of analysis. This skepticism is prompted by beliefs that may be 

incorrect or only partially correct. These include the belief that: (a) common parametric 

methods of analysis are usually robust to violations of parametric assumptions regarding 

population distributions (Boneau, 1960; Box, 1954; Glass et al., 1972; Lindquist, 1953), 

(b) nonparametric methods are less powerful than parametric analogues (Kerlinger, 1973; 

Nunnally, 1975), and (c) nonparametric methods are not available for addressing data 

obtained from complicated research and experimental designs (Bradley, 1968). Each of 

these concerns over the viability of nonparametric methods of analysis warrants further 

discussion. 

There is evidence to suggest nonnormally distributed populations are common in 

the behavioral and social science fields. A high frequency of mixed-normal distributions 

in real world data is observed in education and psychological measures (Bradley, 1978, 

1980a, 1980b, 1980c, 1982; Blair, 1980; Micceri, 1989; Still & White, 1981; Tan, 1982). 

Ceiling effects and floor effects in measurement ranges provide for the existence of 

censored-normal and truncated-normal distributions in education and social science 

measures (DeWees et al., 2020; Feng et al., 2019; Liu & Wang, 2021; McBee, 2010). 

These effects occur frequently with the use of Likert scales and other self-reported 

measures. Other frequent departures from normality found in psychometric measures 

include asymmetry, multimodality, and skew (Bradley, 1977; Micceri, 1989). The 

presence of deviations from normality alone does not necessitate research into 

alternatives to traditional parametric tests without evidence that the performance of these 

parametric tests suffers in the presence of these deviations. 
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The concern over robustness of parametric tests to departures from parametric 

assumptions about data distributions has yielded extensive study. Claims and conclusions 

regarding the robustness of parametric tests are subject to a degree of variability as there 

is no commonly agreed upon quantitative definition or standard of robustness (Blair & 

Higgins, 1981; Bradley, 1978). Consequently, claims of robustness are left to the 

conclusion of the author rather than the attainment of a standardized performance. 

Traditional parametric tests of location equality among two or more groups, such as the t 

test and analysis of variance (ANOVA) F test, build on population assumptions that 

include a normally distributed population, independence of observations, and 

homogeneity of group variances (Fisher, 1922, Hildebrand, 1986; Winer, 1971). The t test 

demonstrates reasonable to strong robustness to minimal departures from normality in 

some circumstances (Boneau, 1960; Sawilowsky & Blair, 1992), but fails to maintain 

reasonable robustness in others, such as when distributions are extremely skewed or 

when normality deviations occur in the presence of small group sample sizes (Blair, 

1980; Blair & Higgins, 1980a, 1980b, 1981; Bradley, 1968; Hemelrijk, 1961). Some 

argue that the ANOVA is robust to various minor deviations from population normality 

(Baker et al., 1966; Boneau, 1960, 1962; Box, 1954; Cochran, 1947; Cochran & Cox, 

1950; Fisher, 1922; Glass et al., 1972; Goodard & Lindquist, 1940; Guilford & Fruchter, 

1978; Hack, 1958; Havlicek & Peterson, 1974; Lunney, 1970; Mandeville, 1972; 

Pearson, 1929; Rider, 1929; Scheffe,1959), while others express skepticism (Blair, 1980; 

Blair & Higgins, 1980a, 1980b, 1981; Bradley, 1968). Another common factor analyzed 

in discussion of the robustness question is equality, or lack thereof, in group sample sizes. 

Error rates for ANOVA inflate with violations to the homogeneity of variance assumption 
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(Bishop, 1976; Box, 1954; Brown & Forsythe, 1974; Goodard & Lindquist, 1940; 

Hornsnell, 1953; Lindquist, 1953; Welch, 1937; Wilcox et al., 1986), increasingly so in 

the presence of unequal group sample sizes (Box, 1953; Randolph & Barcikowski, 1989; 

Rogan & Keselman, 1977; Scheffe, 1959; Snedecor & Cochran, 1980; Tomarkin & 

Serlin, 1986). Although there is evidence to suggest lack of robustness for common 

parametric tests with violations to common parametric data assumptions, viability of 

nonparametric tests as preferred alternatives requires their demonstrated competitive 

performance in the presence of these assumption violations. 

Early studies demonstrated strong potential in the viability of rank based 

nonparametric test procedures, often performing more powerfully than the t test in two-

sample research designs in the presence of nonnormal data (Chernoff & Savage, 1958; 

Dixon, 1954; Hodges & Lehmann, 1956; Neave & Granger, 1968). The Mann-Whitney U 

test, also referred to as the Wilcoxon rank sum test, has more power than the t test with 

various nonnormal population distributions (Blair, 1980; Blair & Higgins, 1985; Mann & 

Whitney, 1947; Randles & Wolfe, 1979; Smitley, 1981; Wilcoxon, 1945, 1947). When the 

normality and homogeneity of variance assumptions are satisfied, a randomization test of 

the original scores performs as efficiently as the t test (Hoeffding, 1952; Lehmann & 

Stein, 1959). Alterations to the t test by first transforming the data has the potential to 

avoid loss of power when the standard conditions for valid inference are violated. 

(Rasmussen, 1985, 1986). 

The multiple-group extension of the two-sample Mann-Whitney test is the 

Kruskal-Wallis test (Kruskal & Wallis, 1952). The Kruskal-Wallis test is a rank-based 

alternative to the one-way ANOVA. The Kruskal-Wallis test has power comparable or 



15 
 

greater than the one-way ANOVA when groups have identical distribution shapes, 

including nonnormal distributions, with asymptotic relative efficiencies (AREs) ranging 

from 0.864 to infinitely larger than 1. (Andrews, 1954; Conover, 1980; Kruskal, 1952; 

Hodges and Lehmann, 1956). Similar to ANOVA, the Kruskal-Wallis test demonstrates 

inflated error rates when the homogeneity of variance assumption is violated, 

increasingly so in the presence of unequal group sample sizes (Feir-Walsh & Toothaker, 

1974; Keselman et al., 1977; Tomarkin & Serlin, 1986). The multiple-group extension of 

the sign test is the Friedman test, which has much more variable power relative to the 

ANOVA than the Kruskal-Wallis test but still maintains the ARE above 1 for some 

distributions (Friedman, 1937; Hollander & Wolfe, 1973; Noether, 1967; Van Elteren & 

Noether, 1959). The Friedman test also suffers inflated error rates from violating the 

homogeneity of variance assumption (Harwell & Serlin, 1989b). 

Some researchers do not believe that nonparametric methods are available or 

appropriate to use for more complicated research designs. One reason for this belief is 

that nonparametric methods, including rank-based procedures, do not capture and use the 

full scope of information available in the data and consequently result in lower power 

than parametric procedures (Wilcoxon, 1949). This myth can be dispelled with the 

demonstratable power studies, though further study of these methods is warranted. 

Historically, nonparametric tests for interactions have been considered complicated or 

computationally intensive (Bradley, 1968). As technology advances, these limitations can 

be iteratively revisited to check if they remain justified. Nonparametric methods testing 

for an interaction effect using ordinal categorical variables often focus on the median, 

which provides a test of location shift if the distributions have the same form, or a test of 
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equivalent distributions if distributional form is unknown (Brunner & Neumann, 1984; 

Kleijnen, 1987; Noether, 1981). Tests of equivalent distributions capture location shifts as 

well as other distributional differences. 

Over thirty years have passed since Sawilowsky (1990) brought nonparametric 

tests of interaction to the attention of behavioral and social researchers. Thus, the purpose 

of this literature review is to update the findings from studies of the nonparametric tests 

of interaction that Sawilowsky presented in his review as well as to discuss 

nonparametric tests of interaction proposed subsequently. Discussion of the power and 

Type I error rates of tests includes robustness properties in the presence of deviations 

from parametric data assumptions such as normality and homoskedasticity. Discussion of 

test power and Type I error rate in the presence of nonnormal data distributions includes 

research into robustness of tests in the presence of data having distributions with 

asymmetry and skew. Research into robustness of tests includes performance in the 

presence of unequal group sample sizes. Discussion includes research into relative 

efficiencies and asymptotic relative efficiencies where available. The relative efficiency 

of two tests is a ratio of the sample size necessary for two tests to achieve the same power 

level at an equal nominal alpha value. The asymptotic relative efficiency, or Pitman 

efficiency (Pitman, 1948), is a ratio that compares the relative efficiency of two tests 

when the sample size is infinitely large and the treatment effect is infinitely small. While 

real world conditions do not meet the assumptions of infinitely large sample sizes, 

asymptotic relative efficiency can be a useful metric of the relative power nonparametric 

tests have to parametric tests in Monte Carlo studies (Blair, 1981; Blair & Higgins, 1981; 

Hollander & Wolfe, 1973; Randles & Wolfe, 1979; Smitley, 1981). This research also 
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highlights areas where these nonparametric tests still need to be assessed for their use in 

the behavioral and social sciences. 

Nonparametric Methods for Addressing Interaction Reviewed by Sawilowsky 

 The methods to be discussed in this section were previously discussed in 

Sawilowsky’s review of nonparametric tests for interaction. These methods include: (1) 

the rank transform test, (2) the adjusted rank transform test, (3) the Puri and Sen L test, 

(4) the McSweeney test, (5) the collapsed-reduced test, (6) the approximate 

randomization test, (7) the moment approximation test, (8) the random normal and 

expected normal scores test, (9) the Hettmansperger test, (10) the extended median test, 

and (11) the small-samples Patel and Hoel test. Sawilowsky dedicates a section of his 

review for each of these methods barring the McSweeney test which is only referenced 

with passing mentions while discussing other methods. However, discussion of the 

McSweeney test falls in logical sequence after discussions of the rank transform test, the 

adjusted rank transform test, and the Puri and Sen L test. This review will include more 

recent studies of relative efficiency, asymptotic behavior, and other mathematical 

properties, as well as more recent comparative research into the potential of these 

methods as alternatives to traditional parametric methods. 

Rank Transform Test 

 Initial exploration into outlining and exploring the viability of the rank transform 

(RT) method is published in a line of inquiry by Conover and Iman (Conover & Iman, 

1976, 1981; Iman, 1974; Iman and Conover, 1976). It should be immediately noted that 

data can be ranked both within groups and between groups, and that ranking as a data 

transformation can be used independently or in conjunction with other forms of data 
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transformation (Conover & Iman, 1981). Subsequent to the series of data transformations, 

the data can then be referred to any inferential statistic. Most commonly, what is referred 

to as the rank transform test is the method of ranking the entire set of observations from 

smallest to largest altogether and then performing the traditional parametric analysis of 

variance using the ranks instead of the scores. 

When converting scores to ranks for the purpose of performing a parametric 

analysis in this way, the two or more sets of scores are combined prior to ranking. While 

transforming one set of scores to ranks will produce a distribution that is rectangular, 

when transforming two or more sets of pooled scores to ranks the distributions of the 

individual set ranks will no longer be necessarily rectangular. Differences in group 

measures of variance, skew, kurtosis, and bimodality are retained after methods of rank 

transformation albeit with reduced magnitude (Zimmerman, 2011). The magnitude of the 

reduction in these measures is sufficient to influence Type I and Type II error rates of the 

Wilcoxon-Mann-Whitney test. Despite having similar measures of variance, skew, and 

kurtosis, individual groups do not necessarily retain the same shape after score to rank 

transformations. 

Evidence is provided to suggest both viability for the rank transform method as 

well as sufficient concern to warrant further study for most research designs. A rank 

transform Hotelling’s T2 statistic demonstrates robustness to loss of power in repeated 

measures randomized complete block designs given low sample correlations among the 

measures (Agresti & Pendergast, 1986; Kepner & Robinson, 1988). Further study 

demonstrates that the power of the rank transform test can vary substantially when testing 

for interaction in the presence of main effects (Akritas, 1990). The rank transform 
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analysis of covariance (RT ANCOVA) demonstrates potential with favorable results 

compared to the parametric ANCOVA (Olejnik & Algina, 1984), but performs with less 

power compared to some proposed alternative rank transform nonparametric statistics 

(Harwell & Serlin, 1988; Stephenson & Jacobson, 1988). Good performance is also 

demonstrated for rank transform multivariate tests of independence for two sets of 

variables (Habib & Harwell, 1989). 

Of particular interest is the viability of the rank transform ANOVA as an 

alternative to the factorial, parametric ANOVA. Problems with the rank transform test 

include rejecting null main effects after testing for interaction effects in a 4 x 3 design 

(Lemmer, 1980), inflated Type I error in the 4 x 3 design in the presence of both nonnull 

main effects (Blair et al., 1987), and inflated Type I error in the 2 x 2 x 2 design 

(Sawilowsky et al., 1989). The rank transform ANOVA is demonstrated to be robust in 

the 2 x 2 layout but lacks power over the parametric ANOVA for larger effect sizes 

(Sawilowsky, 1989). Given these results, the rank transform ANOVA may not be a 

reasonable alternative to parametric ANOVA. 

Thompson (1991) studied the asymptotic properties of the rank transform 

ANOVA statistic for testing interactions in the balanced two-way design and proved that 

in a two-way design with exactly two levels of both main effects (or when there is only 

one main effect) the test statistic for interaction is asymptotically a chi-square divided by 

the degrees of freedom. In a two-way design with two levels for both main effects, this 

means that the interaction statistic has a distribution that is asymptotically a chi-square 

with one degree of freedom. Thompson also proved that for some effect sizes in two-way 

designs with more than two levels of the main effects, it is possible for the interaction test 
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statistic to converge to infinity. This would, in turn, cause Type I error rates to converge 

to 1. This result is consistent with previous studies demonstrating inflated Type I error 

rates for the rank transform ANOVA. Thompson surmises that for designs larger than the 

2 x 2, the use of the rank transform may lead to confusions about effects that are instead, 

at least in part, due to the nonlinearity of the mapping from data to ranks. 

Simulation studies exploring the viability of the rank transform ANOVA have 

emerged with consistent frequency. The rank transform ANOVA has inflated Type I error 

and reduced power of the rank transform ANOVA compared to the parametric ANOVA in 

the 2 x 2 x 2 factorial design for populations which are normal, uniform, or exponential 

(Sawilowsky, 2000). The rank transform ANOVA demonstrates competitive viability in 

testing the presence of effects in one-way ANOVA designs and inflated Type I error and 

reduced power in more complex designs (McKean and Vidmar, 1994). However, Blair, 

Sawilowsky, and Higgins (1987) found inflated Type I error rates when testing for 

interaction in the two-way layout in the presence of nonnull main effects. Sawilowsky, 

Blair, and Higgins (1989) found inflated Type I error rates in the presence of nonnull 

main effects in the 2 x 2 x 2 layout. Sawilowsky (1985) found Type I error rate and power 

are dependent on how treatment effects are modelled in the 2 x 2 x 2 layout. Lemmer 

(1980) found the rank transform ANOVA to demonstrate inflated Type I error for main 

effects when in the presence of nonnull interaction effects. Remarkably, there seems to be 

little discussion of cell sample sizes in these studies beyond highlighting that they are 

based on small samples. McKean and Vidmar (1994) used n = 5 cell sample sizes, 

Toothaker and Newman (1994) used n = 5 and n = 10 cell sample sizes, and Sawilowsky 

(2000) used n = 2 and n = 20 cell sample sizes. Focus of the viability of the rank 
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transform ANOVA in this line of inquiry has been situated primarily on population 

distribution and research design and less on ensuring results remain consistent across 

varying ranges of sample sizes. Varying this additional facet of research design could 

potentially warrant further discussions of power and Type I error comparisons. 

 Another point of view on the shortcomings of the rank transform ANOVA for the 

two-way design is provided by Lemmer (1980, 2001). Lemmer noted that the presence of 

a significant interaction effect can cause significant main effects to be detected even if 

they are not present. Lemmer proposed not using the rank transform ANOVA to test for 

main effects until no interaction has been detected or the interaction effect can be 

demonstrated as small enough to not influence testing for main effects. The goal of this 

proposed solution is to keep the rank transform ANOVA viable in the two-way design. 

Another attempt to tackle this angle of keeping the rank transform ANOVA viable in the 

two-way design is the work of Marden and Muyot (1995) where, in the two-way ANOVA 

design, alterations are made to the conventional definition of interaction. The traditional 

null hypothesis of no interaction effect would imply the effect of main effect A is the 

same for all levels of B and vice versa (p. 1392). Marden and Muyot (1995) built on the 

work and ideas of de Kroon and van der Laan (1981), Akritas and Arnold (1994), and 

Patel and Hoel (1973) to redefine interaction into a null hypothesis of main effect A being 

concordant within all levels of main effect B and vice versa (p. 1392). That is, after the 

pooled rank transformation is performed, vectors of the ranked observations taken from 

levels of main effect A will have the same distributions as vectors of the ranked 

observations from levels of main effect B. Test statistics with asymptotic chi-square 

distributions are derived. 
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 Application of the rank transform procedure has been explored in designs more 

complex than the two-way ANOVA as well. Repeated-measures ANOVA on rank-

transformed data demonstrates competitive power and Type I error rates to the parametric 

repeated measures ANOVA (Zimmerman & Zumbo, 1993). The rank transform analysis 

of covariance (RT ANCOVA) procedure demonstrates robustness to most violations of 

the usual parametric assumptions while maintaining competitive power (Harwell, 2003; 

Rheinheimer & Penfield, 2001). Brunner and Dette (1992) derived a test statistic using 

partial rank transformations for mixed models and found it to reduce to Friedman’s 

statistic if no interactions are present and cell frequencies are equal. Akritas and Brunner 

(1997) derived rank-based statistics for hypotheses of fixed treatment effects and 

interactions in mixed models which they found to have liberal Type I error for repeated 

measures, nested repeated measures, partially nested, and cross-classified repeated 

measures designs. 

Adjusted Rank Transform Test (Aligned Rank Transform Test) 

 What is referred to as the adjusted rank transform test is also commonly referred 

to as the aligned rank transform test. Reinach (1965, 1966) provided an early 

demonstration of the procedure. The motivation of the aligned rank procedure is to adjust 

the rank transform test so that it does not suffer reduced power and increased Type I error 

rates in the presence of nonnull main and interaction effects in a factorial ANOVA design. 

The procedure is performed by first aligning the data, then pooling and ranking the data, 

and finally referring the aligned and rank-transformed scores to the parametric ANOVA 

procedure. The goal of aligning is to treat whichever of the two main or interaction 

effects not currently being tested as nuisance parameters and remove them from the 
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model. When testing for interaction, this means subtracting main effect estimates (means 

calculated within levels of each main effect) from the observations. This leaves only the 

interaction effect to be tested. One main effect and the interaction effect can be removed 

as well in balanced designs to test for the other main effect (Marascuilo & McSweeney, 

1977). Simulation study of the adjusted rank transform test demonstrates strong power 

properties and slightly liberal Type I error rates (Blair & Sawilowsky, 1990). 

 The process of aligning and ranking the data as a test for interaction in the two-

way layout, most often performed by subtracting main effect mean estimates from each 

observation, is a modification of the aligned rank process proposed by Hodges and 

Lehmann (1962). It is worthwhile to note that while main effect mean estimates are most 

often used to align the data prior to ranking, Hodges and Lehmann note that other 

methods of alignment are also possible (specific alternatives mentioned are trimmed or 

Winsorized means). Additionally, Hodges and Lehmann note that any test statistic can be 

used subsequent to the aligning and ranking process. Peterson (2002) explored testing for 

interaction in the 4 x 3 design with n = 5, 10, 15, and 20 cell sample sizes for various 

nonnormal distributions (specifically those highlighted by Micceri, 1989) while aligning 

on alternative effect estimates such as the median, Winsorized means with different 

degrees of trim, and other estimators to find aligning on the mean and median performed 

most favorably. While the process of aligning the data based on main effect mean 

estimates and ranking can be used in combination with different test statistics, further 

research is needed in aligning the data with different main effect estimators. 

 Early studies demonstrated promising results of the adjusted rank-transform test 

(ART test) but often resulted in finding that, when the procedure could not be done by 
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hand, computing power was too laborious for the technology of the time for complex 

research designs (Conover & Iman, 1976). Consequently, there are increasing simulation 

studies into the viability of the ART test in recent decades. The ART test has strong power 

while being robust for populations from normal, uniform, logistic, exponential, double 

exponential, and lognormal distributions (Blair & Sawilowsky, 1990; Fawcett & Salter, 

1984; Groggel,1987; Mansouri & Chang, 1995; Salter & Fawcett, 1985, 1993). The ART 

test performs with larger power than the parametric test with non-normal distributions 

likely to be observed in psychological research such as the truncated normal, student, and 

gamma distributions (Leys & Schumann, 2010). The ART test also holds power 

advantages over other common nonparametric methods when testing for interaction until 

both main effects become large (Headrick & Vineyard, 2000; Leys & Schumann, 2010). 

Viability of the ART test to detect interaction effects in more complex research 

designs has been studied as well. The ART test demonstrates strong power when testing 

for interaction in the two-way design with one observation per cell (Hartlaub et al., 

1999). Beasley and Zumbo (2009) found aligned-rank based tests of location shift 

sensitive and robust to nonnormality when testing for interactions in multiple group 

repeated measures designs with unequal cell sample sizes. Davis and McKean (1993) 

extend the ART test for use in multivariate linear models. Shiraishi (1991) derived and 

outlined aligned rank-based statistics for tests of main effects and interactions in balanced 

two-way multivariate analysis of variance designs (MANOVA), including a formula for 

calculating asymptotic relative efficiency which is dependent upon the number of 

response variables and their multivariate variance-covariance matrix. 
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Puri and Sen L Test 

 The Puri and Sen L statistic (1985) is a large sample approximation of the Puri 

and Sen aligned ranks technique (1969). Because the Puri and Sen aligned ranks 

technique (1969) refers to the exact form of the test statistic, it becomes computationally 

intensive for larger sample sizes. The large sample approximation of the Puri and Sen L 

statistic is provided to adjust for large samples with the L test presented in trace criterion 

form in Harwell (1990) and Harwell and Serlin (1989a). Calculation of the Puri and Sen 

L statistic first requires that all observations are pooled and rank-transformed. Harwell 

and Serlin (1989a) present calculation of the L statistic as follows: 

 𝐿 = (𝑁 − 1) ∑ 𝑟𝑠
2

𝑠

𝑠=1

 ( 1 ) 

 

where the 𝑟𝑠
2 [s = 1, 2, … , S = min(p, q)] represent squared canonical correlations. 

Assuming a multivariate general linear model, p is the length of the vector of dependent 

variables and q is the length of the vector of predictor variables. L is asymptotically 

distributed as chi-square with pq degrees of freedom and tested as such. An alternative 

and equivalent calculation for the L statistic can be calculated using output from the 

ANOVA table on the ranked observations using: 

 

 𝐿 = (𝑁 − 1) x (𝑆𝑆Effect / 𝑆𝑆Total) ( 2 ) 

 

where the calculated L statistic is tested using a chi-square distribution with degrees of 

freedom equal to that of the effect being tested. Harwell (1990) noted the purpose of the 

model is testing one or more population regression coefficients against zero. 
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 The general trend for the performance of the Puri and Sen L statistic is that it 

performs exceptionally conservatively (i.e., lower than expected Type I error rates) until 

sample sizes become large (Harwell, 1991; Harwell & Serlin, 1989; Toothaker & 

Newman, 1994) . For designs with population distributions having varying combinations 

of symmetry and tail thickness, it can take the L statistic sample sizes as large as n = 400 

for acceptable Type I error rates to converge and sample sizes as large as n = 100 to 

demonstrate power advantages over the parametric ANOVA or rank transform test 

(Harwell & Serlin, 1989a). Harwell (1991) found the L statistic to perform more 

conservatively than the approaches of Hettmansperger (1984) and McSweeney (1967) for 

normal, double exponential, Cauchy, and chi-square distributions with sample sizes n = 3, 

5, 8, and 12. The L statistic demonstrates similar ultra-conservatism compared to the rank 

transform test, Hettmansperger test, and McSweeney test for normal, exponential, and 

mixed normal distributions with 2 x 2, 2 x 4, and 4x4 designs having cell sizes n = 5 and 

n = 10 (Toothaker & Newman, 1994). Similar poor performance of the L statistic over 

alternative nonparametric methods is demonstrated in analysis of covariance designs by 

Olejnik and Algina (1984), Headrick and Vineyard (2000), and Rheinheimer and Penfield 

(2001). 

McSweeney Test 

McSweeney’s test is similar to the adjusted rank transform test and the Puri and 

Sen L test (McSweeney, 1967). Construction of the McSweeney test requires the data to 

be aligned and rank transformed. However, rather than using ANOVA with the aligned 

and rank transformed data, the same statistic calculated in the Puri and Sen L test is used. 

As with the Puri and Sen L test, the ANOVA table can be used to calculate the test 
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statistic with the aligned and rank transformed data. To calculate a p value, the test 

statistic is referred to a chi-square distribution with degrees of freedom that would be 

used for the effect of interest in the parametric analysis of variance. In summary, the 

difference between the McSweeney test and the Puri and Sen L test is the McSweeney 

test employs the alignment procedure prior to ranking. 

Simulation studies of the viability of this test yield mixed results. For normal, 

mixed-normal, exponential, double exponential, and chi-square population distributions 

in combination with small cell sample sizes, the McSweeney test demonstrates strong 

power at the cost of liberal Type I error (Harwell, 1991; Toothaker & Newman, 1994). 

Kelley et al. (1994) explored viability of the McSweeney test in the 2 x 2 x 2 factorial 

design for normal, uniform, t, and exponential population distributions with sample sizes 

of n = 7, 21, and 35. Results demonstrate a failure to maintain Type I error rates for null 

effects in treatment conditions but competitive results when the number of nonnull effects 

and effect sizes became large. The McSweeney test demonstrates power competitive to 

the parametric analysis of covariance for designs where parametric assumptions are 

violated as well (Olejnik & Algina, 1985). 

Bradley’s Collapsed-Reduced Test 

Bradley’s (1979) nonparametric technique of testing for interaction is limited to 

balanced designs and assumes no tied observations. When testing for interactions, the 

data is entered into a matrix where it is collapsed and reduced until it is subjected to the 

appropriate nonparametric test for the effect. Researchers can choose from various 

approaches to entering the data into a matrix and the results of the test will change 

depending on this choice (Bradley, 1979; Sawilowsky, 1990). The test suffers from high 
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variability even with the same data and p values can be altered by researchers who enter 

the data into the matrix in different ways. The technique is also found to have low power 

when compared to other readily available nonparametric methods (Kelley et al., 1994). 

For these reasons, it has not been heavily researched and will not be discussed further in 

this review. 

Approximate Randomization Test 

 Randomization tests and approximate randomization tests have seen significant 

increases in research over recent decades. This increase is directly related to the increase 

in computing power readily available for computing permutations of samples. The 

randomization test was first introduced by Fisher (1935) and yields efficient results 

which, at the time, were impractical to perform except with small samples. This is 

because randomization tests require all possible permutations of the data for each new 

sample taken (Bradley, 1968). Randomization tests are performed by calculating the test 

statistic of interest on all possible permutations of the observed scores among conditions 

and assessing the probability of obtaining a test statistic as large, or larger than, the one 

observed. Early attempts to mitigate the computation time necessary were to perform 

randomization tests on ranks (Bradley, 1968; Siegel, 1956). That is because the 

distribution created by permuting ranks depends only on the sample size so that 

computation is less intensive. Edgington (1969, 1980) outlined an approximate 

randomization test where a random sample of possible data permutations is taken to 

mitigate the computation intensiveness required. 

 Still and White (1981) were the first to study the use of an approximate 

randomization test applied to a test for interaction. They demonstrate their approach in 
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the 2 x 2 design and in the 2 x 2 design with repeated measures on one factor. Instead of 

permuting the scores themselves, a randomization test is performed on aligned scores 

given that their focus was on testing for interaction. Given a levels of the first main 

effect, b levels of the second main effect, and n observations per cell, (abn)! permutations 

are performed generating (abn)!/(a!b!n!) distinct F values. Rejection of the null 

hypothesis of no effect occurs if the proportion of F values equal to or greater than the F 

value for the original observations is less than or equal to α. In exploring the efficiency of 

this technique on normal and nonnormal simulated data in the 2 x 2 design with n = 5 cell 

sizes, Still and White (1981) conclude that when sampling distributions are unknown, the 

approximate randomization test is preferable as it is unlikely to ever be less efficient than 

the parametric F test. They note the primary limiting factor is the computational 

intensiveness needed. Bradbury (1987) found that the approximate randomization test 

performs better than the parametric F for smaller interaction effect sizes, though the F 

statistic closes the power gap with larger effect sizes. Umlauft et al (2017) performed 

research into rank-based permutation approaches for factorial designs using various 

Wald-type and Kruskal-Wallis statistics with results demonstrating a permutation-based 

Wald-type statistic is finitely and asymptotically exact, controls Type I error rate, and 

yields larger power than non-permutation-based Wald-type statistics based on ranks. 

Ditzhaus et al. (2021) found similar exactness, robustness, and power results in their 

research using Wald-type statistics with quantile-based permutation methods (QANOVA) 

for factorial designs. 

 There is study into the application of randomization tests for various research 

designs in a variety of disciplines. The asymptotic behavior of randomization tests of 
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different forms has been compared to resampling techniques such as the bootstrap 

(Romano, 1989), under approximate symmetry assumptions (Canay et al., 2017), and has 

been used to construct corresponding confidence intervals (Garthwaite, 1996). Mielke 

and Berry (1994) and Manly (1995) performed simulation studies comparing the power 

of randomization tests for two-sample tests of location when the equal variance 

assumption cannot be assumed, yielding results of inflated Type I error rates that remain 

competitive to parametric alternatives. Christensen and Zabriskie (2022) studied 

randomization test robustness for two-sample tests of location when differing parametric 

assumptions are violated and when the data is subjected to various transformations and 

found the power of two-tailed permutation tests can equal zero in some designs with 

samples which are skewed and have unequal sample sizes. The application of 

randomization tests for making inference is used in a variety of fields, including 

behavioral studies (Craig & Fisher, 2019; Elliffe & Elliffe, 2019; Peres-Neto & Olden, 

2001), biomedical research (Goulden et al., 2010; Helwig, 2019; Ludbrook & Dudley, 

1998), econometrics (Kennedy, 1995), politics (Erikson et al., 2010), and ecology (Pillar, 

2013; Potvin & Roff, 1993). Reviews of software packages capable of performing these 

techniques as computing power becomes more readily available to researchers are 

available as well (Arnholt, 2007; Chen & Dunlap, 1993; Hayes, 1998; LaFleur & Greevy, 

2009). 

Moment Approximation Test 

 The Berry and Mielke’s (1983) moment approximation test was derived to 

overcome the intense computation requirement of randomization tests. The test procedure 

is to calculate a test statistic from an observed data set, derives the moments of the 
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sampling distribution of the test statistic, and calculate a p value from the constructed 

distribution. A simulation by Berry and Mielke found the test to be robust and powerful in 

a one-way design with three levels and a total sample size of N = 13. However, no further 

research has been conducted to explore this technique, so no research exists on using it 

for the test of an interaction. This is likely because the ever-increasing computing power 

readily available to researchers negates the need to compromise by altering the 

randomization test approach. 

Normal Scores Transformation Methods 

Normal scores tests are a combination of a normal scores data transformation and 

most commonly either a normal or chi-square test statistic compared to their respective 

distributions. Three methods for performing a normal scores data transformation of the 

response variable are outlined here. The commonly used chi-square test statistic for the 

one-way design is also outlined in this section. While performing a normal scores data 

transformation does not limit a researcher to using a normal or chi-square test statistic, 

minimal research has explored using a normal scores data transformation in combination 

with other test statistics for the use of making inference. In summary, what is commonly 

referred to as a normal scores test is one of three normal scores data transformations in 

combination with a chi-square test statistic. 

There are three methods for making inferences about group differences using 

normal score transformations: the Bell-Doksum normal scores test (Bell & Doksum, 

1965), the Terry-Hoeffding normal scores test (Hoeffding, 1951; Terry, 1952), and the 

Van der Waerden normal scores test (Van der Waerden, 1952, 1953, 1956). Fisher and 

Yates (1949) and Bell and Doksum (1965) proposed using a random normal scores 
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transformation, a procedure where ranks of original scores are replaced by randomly 

drawn normal deviates with corresponding ranks. Bradley (1968) refined this technique 

by limiting the variates drawn to those of a standard normal distribution, creating a more 

powerful form of the test statistic. As the deviates drawn in the Bell-Doksum test are 

random, two researchers analyzing the same data with this test may arrive at different 

conclusions. 

Hoeffding (1951) and Terry (1952) refined this procedure further to replace ranks 

of the original observations with expected normal scores. As these expected normal 

scores are constant values dependent only upon sample size, researchers have calculated 

tables of expected normal order statistics (Harter, 1961) and tables of appropriate chi-

square critical values for total sample sizes less than or equal to 20 (Klotz, 1964). Owen 

(1962) tabled large sample approximation normal theory critical values. Sawilowsky 

(1990) refers to the data transformation procedure outlined in the Bell-Doksum test as a 

random normal scores transformation (RNST) and the procedure outlined in the Terry-

Hoeffding test as the expected normal scores transformation (ENST). 

Expected normal scores transformations are adaptable to any hypothesis in 

experimental research designs (Conover, 1980; Gibbons, 1985). Lu and Smith (1979) 

found the ENST robust and powerful compared to the parametric ANOVA F in the one-

way design. Sawilowsky (1985, 1989) found both the RNST and ENST to be more 

powerful and robust than the rank transform test but less powerful and robust than the 

parametric F test in the 2 x 2 x 2 design with small sample sizes (n = 2) for various 

distributions. Feir-Walsh and Toothaker (1974) concluded that the Terry-Hoeffding 

normal scores test yielded less power than the ANOVA F test and the Kruskal-Wallis test 



33 
 

for total sample sizes as large as 200. Wiedermann and Alexandrowicz (2011) 

demonstrated a modified Terry-Hoeffding test is a robust and powerful normal scores test 

for two-sample paired data when compared to the t test. 

Van der Waerden (1952, 1953, 1956) proposed an alternative normal scores 

transformation. This test uses a rank transformation in combination with the inverse 

standard normal distribution function. The Van der Waerden normal scores 

transformation is as follows: 

 𝑧𝑖𝑗 =  Φ−1 (
𝑅(𝑋𝑖𝑗)

𝑁 + 1
) (3) 

where Xij represents the ith value in the jth group (j = 1, 2, …, k), R(Xij) represents the 

pooled rank of observation Xij, and Φ-1 denotes the inverse standard normal distribution 

function. The chi-square test statistic is calculated as: 

 𝑊 =  
1

𝑠2
∑ 𝑛𝑗

𝑘

𝑗=1

𝑧𝑗̅
2 (4) 

where nj represents the sample size for the jth group, 

 𝑠2 =  
1

𝑁 − 1
∑ ∑ 𝑧𝑖𝑗

2

𝑛𝑗

𝑖=1

𝑘

𝑗=1

 (5) 

and  

 𝑧𝑗̅ =  
1

𝑛𝑗
∑ 𝑧𝑖𝑗

𝑛𝑗

𝑖=1

 (6) 

The null hypothesis that k groups yield the same observations is rejected when: 

 𝑊 >  𝜒𝛼,𝑘−1
2  (7) 

McSweeney (1967) studied the fit of the asymptotic chi-square distribution of the 

normal scores test statistic in the presence of small sample sizes for the one-way c-sample 
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design, concluding that both the Terry-Hoeffding and Van der Waerden normal scores 

test statistics with small sample sizes are well-approximated by the chi-square 

distribution with k – 1 degrees of freedom. Transforming original scores to normal scores 

for conducting a one-way two- or more-sample test of differences in central tendency can 

result in equivalent or larger power than traditional parametric t and F tests, the Wilcoxon 

rank sum test (also called the Mann-Whitney U test), and the Kruskal-Wallis test while 

still controlling the Type I error rate at or near the nominal level (Hodges & Lehmann, 

1961; Keselman & Toothaker, 1973; Kruskal & Wallis, 1952; Mann & Whitney, 1947; 

McSweeney, 1967; Penfield, 1994; Penfield & McSweeney, 1968; Thompson et al., 

1966; Van der Laan, 1964; Van der Laan & Oosterhoff, 1965, 1967; Wilcoxon, 1945, 

1947). This power increase is shown to be larger for large- or heavy-tailed distributions 

(Curtis & Marascuilo, 1992; Lu & Smith, 1979; Padmanabhan, 1977). Zimmerman 

(1996) demonstrated via simulation that rank transformations, including the Van der 

Waerden normal scores transformation, can be used to reduce group variance 

heterogeneity in two-sample tests of location difference. 

Hettmansperger Test 

 Hettmansperger (1984) outlined an aligned-rank based test which can be used to 

test for significant interactions. First, the data are aligned by subtracting mean main effect 

estimates and then ranked akin to the aligned rank test. At this point, the ranks are 

standardized. From the aligned, ranked, and standardized observations, the 

Hettmansperger test is to calculate the interaction sums of squares. Hettmansperger offers 

two critical values to test against. The first is a chi-square critical value with degrees of 

freedom equal to that of the interaction effect being tested. The second is an F critical 
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value with degrees of freedom 1 equal to that which would be used in the parametric 

analysis and degrees of freedom 2 equal to the within degrees of freedom. The latter is 

suggested for samples of smaller size due to more liberal Type I error rates of the chi-

square critical value. 

 Toothaker and Newman (1994) found the Hettmansperger test to maintain power 

comparable to other nonparametric methods but demonstrate liberal Type I error rates 

with small sample sizes. The study used data from normal, exponential, and mixed 

normal population distributions in 2 x 2, 2 x 4, and 4 x 4 designs with small cell sample 

sizes of n = 5 and n = 10. The test has similar Type I error rates as other nonparametric 

methods, such as the Puri and Sen L and McSweeney test, but has more power than these 

methods for normal, double exponential, Cauchy, and chi-square distributions. It also has 

larger power than the parametric ANOVA F test for all but the normal distribution 

(Harwell, 1991). Headrick and Vineyard (2000) compared the test to the Puri and Sen L 

and the adjusted rank transform test across a variety of treatment effect sizes, conditional 

distributions, and cell sample sizes of n = 10 and n = 20 and recommended the 

Hettmansperger test as an alternative to the parametric ANOVA provided cell sample 

sizes are at least 10. The Hettmansperger test also demonstrates potential in analysis of 

covariance research designs with performance stronger than several other nonparametric 

techniques (Rheinheimer & Penfield, 2001). 

Extended Median Test 

 Shoemaker’s extended median test (1986) is based on the proportions of the count 

of observations in each cell of one main effect that are above and below the median of 

observations based on the level of the other main effect within that cell. The test statistic 
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is distributed as a Pearson chi-square statistic with degrees of freedom equal to the 

interaction effect degrees of freedom using parametric ANOVA. Mohebbi and Shoemaker 

(1990) extend upon this proposed median test in the analysis of variance layout providing 

evidence it performs with more power than the parametric ANOVA for highly skewed 

distributions assuming cell sizes of at least 10. Freidlin and Gastwirth (2000) argue that 

the median test should be retired from general use given its low power compared to the 

parametric ANOVA for normally distributed data and less power than the Wilcoxon rank 

sum test or modified Wilcoxon rank sum test (Fligner & Policello, 1981) for nonnormal 

designs. 

Small-Samples Patel and Hoel Test 

 The Patel and Hoel technique (1973) is difficult to compute in applied situations. 

The technique is a nonparametric test for interaction that demonstrated promise at the 

time of publication for large sample sizes and heavy tailed distributions. The Patel and 

Hoel technique is a test of interaction in the 2 x 2 design where a null hypothesis of H0: μ 

= 0 is tested where: 

 𝜇 = 𝑃(𝑋12 ≤  𝑋11) −  𝑃(𝑋22 ≤  𝑋21) ( 8 ) 

 

 Krauth (1988) refined a small-sample modification of the Patel and Hoel technique that 

is not distribution free, assumes no tied observations, and is easier to compute. The test 

requires critical values from a hypergeometric distribution. There are no further studies of 

this test, perhaps due to the complexity of this method. 

Nonparametric Tests of Interaction Published After 1990 

The methods to be discussed in this section are novel nonparametric tests of 

interaction published subsequent to Sawilowsky’s review of nonparametric tests for 
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interaction. These methods include: (1) Gao and Alvo’s Row-Column Test and (2) De 

Neve and Thas’s Interaction Probability of Superiority. This review will include 

calculations of relative efficiency, asymptotic behavior, and other mathematical 

properties, as well as comparative research into the potential of these methods as 

alternatives to traditional parametric methods. 

Gao and Alvo Row-Column Test 

 Gao and Alvo (2005a) construct a novel composite linear rank-based 

nonparametric statistic to test for interaction effects in the two-factor design. In 

calculating the test statistic, each observation is first given two ranks: one respective to its 

value relative to all observations in the same level of factor A and the other respective to 

its value relative to all observations in the same level of factor B. Two vectors are created 

containing the sums of factor level rank scores within each cell. The proposed test 

statistic is a composite of the variance-covariance matrices calculated from these two 

vectors. Under the null hypothesis of no interaction, the proposed test statistic follows an 

asymptotic chi-square distribution with (I – 1)(J – 1) degrees of freedom where I is the 

number of levels of main effect A and J is the number of levels of main effect B. Gao and 

Alvo present simulations to compare results of the proposed row-column test to the 

ANOVA F test and aligned rank transform test in the 4 x 3 design using n = 10 and n = 20 

cell sample sizes for normal, contaminated normal, and Cauchy distributions. Results 

demonstrate competitive power of the row-column test as the cost of liberal Type I error 

rates ranging from 0.058 to 0.099. 

Gao and Alvo note the test can be extended to unbalanced designs with different 

cell sample sizes using weighted row and column ranks. Gao and Alvo (2005b) 
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subsequently expand upon using the composite linear weighted rank-based nonparametric 

statistic to test for main, interaction, and nested effects. Asymptotic relative efficiency 

(ARE) of the proposed test relative to the ANOVA F test is calculated revealing values of 

0.908, 1.046, and 1.092 for normal, logistic, and double-exponential distributions, 

respectively, when testing for interaction effects. De Neve and Thas (2017) conclude the 

Gao and Alvo row-column test does not control Type I error rates for small (n = 5) cell 

sample sizes in balanced designs and in unbalanced designs for normally distributed data. 

Type I error rates are concluded as acceptable for n = 10, but the test considerably lacks 

power in the presence of heteroskedasticity in balanced designs and when there are 

significant main effects in unbalanced designs. 

De Neve and Thas Interaction Probability of Superiority 

 De Neve and Thas (2017) propose a rank-based test that builds upon the score-

type test of location shift for interaction proposed by Bhapkar and Gore (1974). De Neve 

and Thas highlight a traditional measure of an interaction effect: 

 𝛼 = (𝜇11 −  𝜇21) −  (𝜇12 −  𝜇22) ( 9 ) 

 

From this, two transformed outcomes are defined: Z = Y11 – Y21 and Z* = Y12 – Y22. The 

statistic proposed to quantify the interaction effect, named the interaction probability of 

superiority (IPS), is defined as: 

 𝛽 = P(𝑍 ≤  Z∗) ( 10 ) 

 

Under the null hypothesis of no interaction (α = 0), it is noted that β = 0.5. Using an 

estimate of β calculated from the observed data, an asymptotic chi-square test statistic is 

constructed having (K – 1)(L – 1) degrees of freedom where K is the number of levels of 

main effect A and L is the number of levels of main effect B. Asymptotic relative 
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efficiencies of the test relative to the ANOVA F are calculated for the following 

distributions: 0.91 for uniform, 0.99 for normal, 1.07 for logistic, 1.24 for Laplace, 1.59 

for exponential, and 3.81 for log-normal. 

 For balanced designs with n = 5 and n = 10 cell sample sizes, De Neve and Thas 

(2017) show the IPS test to control Type I error rates, perform with power competitive to 

the ANOVA F test and other nonparametric tests, and be robust in the presence of 

heteroskedasticity and varying error distributions. The test yields similar results in 

unbalanced designs with the exception of inflated Type I error rates in the presence of 

outliers. 

Summary 

 For the thirteen methods discussed to test for the presence of an interaction effect, 

design factors are highlighted for which each method has been studied to evaluate Type I 

error and power properties for the factorial design in Table 1. The design factors included 

in Table 1 are nonnormal distributions, heteroskedasticity, unequal cell sample sizes, and 

designs more complex than the factorial design. Power and Type I error results are 

summarized for each method in the presence of varying design factors. 
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Table 2.1 

Design factors studied for each nonparametric test of an interaction effect 

 

Tests: Nonnormal 

Distributions 

Heteroskedasticity Unequal 

Cell 

Sample 

Sizes 

More 

Complex 

Designs 

Rank Transform Studied for use 

with normal, 

uniform, 

exponential, and 

mixed-normal 

distributions 

yielding varying 

results  

Differences in 

group measures of 

variance, skew, 

kurtosis, and 

bimodality are 

retained after rank 

transformation 

albeit with 

reduced 

magnitude 

 Extended for 

use with 

ANCOVA, 

MANOVA, 

and repeated-

measures 

ANOVA 

Aligned 

(Adjusted) Rank 

Transform 

Competitive or 

larger power 

than ANOVA for 

normal, 

truncated 

normal, 

exponential, 

student’s t, 

uniform, 

logistic, 

exponential, 

double 

exponential, 

lognormal, and 

gamma 

distributions 

 Robust to 

nonnormal-

ity with 

unequal 

cell sample 

sizes 

Extended for 

use in 

MANOVA 

and repeated 

measures 

designs 
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Table 2.1 

Design factors studied for each nonparametric test of an interaction effect 

 

Tests: Nonnormal 

Distributions 

Heteroskedasticity Unequal 

Cell 

Sample 

Sizes 

More 

Complex 

Designs 

Puri and Sen L Performs 

conservatively 

for power and 

Type I error 

compared to 

ANOVA, rank 

transform, 

Hettmansperger, 

and McSweeney 

until samples 

become large for 

normal, mixed-

normal, chi-

square, 

exponential 

double 

exponential, and 

Cauchy 

  Similar 

conservatism 

is 

demonstrated 

in analysis of 

covariance 

design 

McSweeney Strong power at 

the cost of 

liberal Type I 

error rates for 

small sample 

sizes with 

normal, mixed-

normal, uniform, 

student’s t, chi-

square, 

exponential, and 

double 

exponential 

  Power 

competitive 

to parametric 

ANCOVA 

Bradley’s 

Collapsed-

Reduced 

Lacks power 

compared to 

parametric and 

nonparametric 

alternatives 

  Limited to 

balanced 

designs 
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Table 2.1 

Design factors studied for each nonparametric test of an interaction effect 

 

Tests: Nonnormal 

Distributions 

Heteroskedasticity Unequal 

Cell 

Sample 

Sizes 

More 

Complex 

Designs 

Approximate 

Randomization 

Strong power 

but 

computationally 

intensive, 

competitive or 

larger power 

compared to 

ANOVA 

Type I error rates 

inflate in the 

presence of 

unequal sample 

variances 

  

Moment 

Approximation 

    

Normal Scores 

Transformation 

Can result in 

power increases 

compared to t 

and F tests, 

including large 

or heavy-tailed 

distributions 

Normal scores 

transformations 

can be used to 

reduce group 

variance 

heterogeneity 

  

Hettmansperger Liberal Type I 

error rates and 

power 

competitive to 

ANOVA F, Puri 

and Sen L, and 

McSweeney for 

normal, mixed-

normal, chi-

square, 

exponential 

double 

exponential, and 

Cauchy 

  Demonstrat-

es potential 

in analysis of 

covariance 

research 

designs 

Extended 

Median 

Less power than 

ANOVA F test 

for normal 

distribution 

   

Small-Samples 

Patel and Hoel 
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Table 2.1 

Design factors studied for each nonparametric test of an interaction effect 

 

Tests: Nonnormal 

Distributions 

Heteroskedasticity Unequal 

Cell 

Sample 

Sizes 

More 

Complex 

Designs 

Gao and Alvo 

Row-Column 

AREs of 0.908 

for normal, 

1.046 for 

logistic, and 

1.092 for double 

exponential 

compared to 

ANOVA when 

testing for an 

interaction effect 

Considerably 

lacks power in the 

presence of 

heteroskedasticity 

Considera-

bly lacks 

power with 

significant 

main 

effects in 

unbalanced 

designs 

 

De Neve and 

Thas Interaction 

Probability of 

Superiority 

Controls Type I 

error rates and 

has power 

competitive to 

ANOVA F 

Robust to 

heteroskedasticity 

Robust to 

Type I 

error for 

unbalanced 

designs 

except in 

the 

presence of 

outliers 

 

 

Regarding testing for interactions in behavioral and social science research, 

recommendations for which test to use to detect interaction effects has changed over 

time. When one can safely assume the common parametric assumptions are satisfied, the 

parametric ANOVA is the most powerful option. When these parametric assumptions are 

not satisfied, several alternative nonparametric methods are available. While the rank 

transform test demonstrates strong power, the adjusted rank transform demonstrates 

equivalent or larger power and better robustness in Type I error rates for most designs. 

The McSweeney test demonstrates strong power as well but with slightly liberal Type I 

error rates. Normal scores data transformations demonstrate potential in competitive 
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power for the normal distribution and mitigating the effects of heteroskedasticity between 

groups. Using normal scores data transformations with other nonparametric statistics has 

seen minimal research. A significant, recent change is the increasing emergence of 

randomization tests. These demonstrate power equal to or larger than the parametric F 

test and are distribution free. The computational power commonly available to most 

researchers proves this technique a competitive option for designs with small sample 

sizes. 

A researcher needing a nonparametric test of interactions has competitive options 

from which to choose. Given that the performance of each option often depends on the 

design, the effect of interest, and the sample size, the above review can be used to select a 

method based on the particular study characteristics. The recommendation of a 

nonparametric test over a parametric one requires the nonparametric test to be robust to 

Type I error rate, maintain competitive power properties when normality can safely be 

assumed, and yield an increase in power for multiple types of nonnormally distributed 

data. No nonparametric test of interaction discussed in this review has been researched 

thoroughly enough to conclude it is always a preferable alternative to the common 

parametric ANOVA F test, that is, the above conditions can always be safely concluded 

as having been met. However, several of the discussed tests of interaction demonstrate 

potential in having met one or more of these conditions. Further study is needed to 

determine if the discussed methods that demonstrate this potential meet the conditions 

necessary to be considered preferable to the ANOVA F test or if any of the other methods 

could potentially be refined to address demonstrated properties of conservatism or liberal 

Type I error rates. 
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Discussion 

 The contribution of comprehensive theoretical and simulation research into these 

proposed nonparametric tests lacks momentum. While there is promising simulation 

research into how these tests compare for populations of various nonnormal distributions, 

it is noteworthy that little of this research contributes to the study of using these 

nonparametric tests for the other deviations from normality (asymmetry, multimodality, 

and skew) noted by Micceri (1989) as common in behavioral and social science research. 

Nonparametric tests have been proposed in the literature that may prove robust and 

competitive to parametric tests. The properties of these tests must still be thoroughly 

explored. 

The so-called parametric method of analysis of variance is widely used in two-

factor designs to detect and make inferences about the interaction of the two factors in 

their influence on a response variable. The method can be shown to be the most powerful 

when the underlying populations adhere to the conditions for valid inference. This is 

often not the case. Thus, the analysis of variance will often be less powerful or yield 

higher Type I error rates than alternative nonparametric methods. Researchers should 

carefully consider the nature of the populations from which they draw samples before 

selecting an inferential method for analyzing two-factor interactions. 
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CHAPTER 3 

NONPARAMETRIC TESTS OF INTERACTION FOR THE TWO-WAY DESIGN 

WITH SKEWED DISTRIBUTIONS 

 

Abstract 

This study compares the ANOVA F test and four nonparametric competitors with two-

factor designs for empirical Type I error rate and power when testing for an interaction of 

the factors. I perform simulations of 2 x 2 designs with cell sizes of 5, 10, 30, and 50.  I 

use samples having distributions commonly found in the educational and social sciences 

including skew normal, skew logistic, and asymmetric Laplace distributions each having 

four levels of skew and asymmetry effects. The ANOVA F is robust for Type I error but 

lacks power compared to nonparametric alternatives for skew logistic and asymmetric 

Laplace samples. The aligned rank transform test demonstrates competitive Type I error 

and considerable power advantages over ANOVA F for the skew logistic and asymmetric 

Laplace distributions. The McSweeney test performs with larger power than ANOVA F in 

similar situations at the cost of more liberal Type I error. 

Keywords: Nonparametric Statistics, Rank Transform, Aligned Rank Transform 
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Introduction 

In 1990, Review of Educational Research published Shlomo Sawilowsky’s article 

titled “Nonparametric Tests of Interaction in Experimental Design.” A “nonparametric 

test” is a statistical test that is not conditioned on specified parameters of the underlying 

population distribution in order to make valid inferences (Hettmansperger et al., 2000; 

Marascuilo & Serlin, 1988; Nussbaum, 2015; Sawilowsky, 1990). The most common 

nonparametric tests can broadly be considered one of two types: (1) tests of a categorical 

response variable and (2) tests of a ranked response variable. A ranked variable can be 

viewed as an ordered categorical variable, so these two types could collectively be 

considered as the analysis of a categorical variable (Nussbaum, 2015; Stevens, 1946). 

Sawilowsky’s review focuses on addressing the power, Type I error rate, and robustness 

of rank-based nonparametric methods. 

Sawilowsky offers two primary reasons for reviewing nonparametric tests of 

interaction. (1) Nonnormally distributed variables are prominent in experimental 

research, particularly in the fields of the behavioral and social sciences (Blair & Higgins, 

1981; Bloom, 1984; Bradley, 1968, 1977; Walberg et al., 1984), and many nonparametric 

methods do not rely on a condition of normally distributed data for valid inference 

(Nunnally, 1975, 1978). (2) Researchers often question the necessity and viability of 

nonparametric methods of analysis. This skepticism is prompted by beliefs that may be 

incorrect or only partially correct. These include the belief that: (a) common parametric 

methods of analysis are usually robust to violations of parametric assumptions regarding 

population distributions (Boneau, 1960; Box, 1954; Glass et al., 1972; Lindquist, 1953), 

(b) nonparametric methods are less powerful than parametric analogues (Kerlinger, 1973; 
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Nunnally, 1975), and (c) nonparametric methods are not available for addressing data 

obtained from complicated research and experimental designs (Bradley, 1968). Each of 

these concerns over the viability of nonparametric methods of analysis warrants further 

discussion. 

There is evidence to suggest nonnormally distributed populations are common in 

the behavioral and social science fields. A high frequency of mixed-normal distributions 

in real world data is observed in education and psychological measures (Bradley, 1978, 

1980a, 1980b, 1980c, 1982; Blair, 1980; Micceri, 1989; Still & White, 1981; Tan, 1982). 

Ceiling effects and floor effects in measurement ranges provide for the existence of 

censored-normal and truncated-normal distributions in education and social science 

measures (DeWees et al., 2020; Feng et al., 2019; Liu & Wang, 2021; McBee, 2010). 

These effects occur frequently with the use of Likert scales and other self-reported 

measures. Other frequent departures from normality found in psychometric measures 

include asymmetry, multimodality, and skew (Bradley, 1977; Micceri, 1989). Micceri’s 

(1989) meta-analysis analyzed 440 large sample educational and psychological measures 

and found all to be significantly nonnormal via some class of contamination. Of the 440 

measures analyzed by Micceri, only 15.2% had both tail weights at or about normal, 

50.2% had at least one tail heavier than normal, and 14.8% had both tail weights less than 

normal. Of the remainder, 3.2% were concluded as uniform and 16.6% were concluded as 

Laplace. Additionally, of the 440 measures, 40.7% were concluded as moderately 

asymmetric, 19.5% as extremely asymmetric, and 11.4% as having exponential 

asymmetry. Of the categories for the measures analyzed by Micceri, nonnormal tail 

weights and asymmetry is demonstrated most prevalent in measures of criterion mastery, 
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where 60% of measures were found to be distributed as Laplace, 37.1% of measures had 

extreme asymmetry, and 57.1% of measures had exponential asymmetry. Thus, Micceri 

suggests the existence of normally distributed data in educational and psychological 

measures is as improbable as the existence of a unicorn. Micceri’s findings not only 

directly conclude the prevalence of the Laplace distribution in education and social 

science measures but also provide evidence of the prevalence of the logistic distribution 

by highlighting the frequency of mixed-normal measures and criterion mastery measures. 

The logistic distribution is often used to approximate mixed-normal distributions, model 

distributions of subjective quantitative measures, and is prevalent in item response theory 

analysis (Hellstrom, 1993; Noortgate et al., 2003; Savalei, 2006). This would imply that 

researchers in these fields who limit their methods of analysis to those dependent upon 

the assumption of normality will rarely be using methods as robust and powerful as 

available alternative nonparametric methods of analysis. Given the prevalence of 

measures distributed as Laplace, measures distributed as logistic, and measures having 

varying degrees of asymmetry, methods of analysis capable of handling these variables 

are crucial for researchers in education and social science fields. The presence of 

deviations from normality alone does not necessitate research into alternatives to 

traditional parametric tests without evidence that the performance of these parametric 

tests suffers in the presence of these deviations. 

The concern over robustness of parametric tests to departures from parametric 

assumptions about data distributions has yielded extensive study. Claims and conclusions 

regarding the robustness of parametric tests are subject to a degree of variability as there 

is no commonly agreed upon quantitative definition or standard of robustness (Blair & 
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Higgins, 1981; Bradley, 1978). Consequently, claims of robustness are left to the 

conclusion of the author rather than the attainment of a standardized performance. 

Traditional parametric tests of location equality among two or more groups, such as the t 

test and analysis of variance (ANOVA) F test, build on population assumptions that 

include a normally distributed population, independence of observations, and 

homogeneity of group variances (Fisher, 1922, Hildebrand, 1986; Winer, 1971). Another 

common factor analyzed in discussion of the robustness question is equality, or lack 

thereof, in group sample sizes. The t test demonstrates reasonable to strong robustness to 

minimal departures from normality in some circumstances (Boneau, 1960; Sawilowsky & 

Blair, 1992), but fails to maintain reasonable robustness in others, such as when 

distributions are extremely skewed or when normality deviations occur in the presence of 

small group sample sizes (Blair, 1980; Blair & Higgins, 1980a, 1980b, 1981; Bradley, 

1968; Hemelrijk, 1961). Some argue that the ANOVA is robust to various minor 

deviations from population normality (Baker et al., 1966; Boneau, 1960, 1962; Box, 

1954; Cochran, 1947; Cochran & Cox, 1950; Fisher, 1922; Glass et al., 1972; Goodard & 

Lindquist, 1940; Guilford & Fruchter, 1978; Hack, 1958; Havlicek & Peterson, 1974; 

Lunney, 1970; Mandeville, 1972; Pearson, 1929; Rider, 1929; Scheffe,1959), while 

others express skepticism (Blair, 1980; Blair & Higgins, 1980a, 1980b, 1981; Bradley, 

1968). Error rates for ANOVA inflate with violations to the homogeneity of variance 

assumption (Bishop, 1976; Box, 1954; Brown & Forsythe, 1974; Goodard & Lindquist, 

1940; Hornsnell, 1953; Lindquist, 1953; Welch, 1937; Wilcox et al., 1986), increasingly 

so in the presence of unequal group sample sizes (Box, 1953; Randolph & Barcikowski, 

1989; Rogan & Keselman, 1977; Scheffe, 1959; Snedecor & Cochran, 1980; Tomarkin & 
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Serlin, 1986). Although there is evidence to suggest lack of robustness for common 

parametric tests with violations to common parametric data assumptions, viability of 

nonparametric tests as preferred alternatives requires their demonstrated competitive 

performance in the presence of these assumption violations. 

Early studies demonstrated strong potential in the viability of rank based 

nonparametric test procedures, often performing more powerfully than the t test in two-

sample research designs in the presence of nonnormal data (Chernoff & Savage, 1958; 

Dixon, 1954; Hodges & Lehmann, 1956; Neave & Granger, 1968). The Mann-Whitney U 

test, also referred to as the Wilcoxon rank sum test, has more power than the t test with 

various nonnormal population distributions (Blair, 1980; Blair & Higgins, 1985; Mann & 

Whitney, 1947; Randles & Wolfe, 1979; Smitley, 1981; Wilcoxon, 1945, 1947). When the 

normality and homogeneity of variance assumptions are satisfied, a randomization test of 

the original scores performs as efficiently as the t test (Hoeffding, 1952; Lehmann & 

Stein, 1959). Alterations to the t test by first transforming the data has the potential to 

avoid loss of power when the standard conditions for valid inference are violated. 

(Rasmussen, 1985, 1986). 

The multiple-group extension of the two-sample Mann-Whitney test is the 

Kruskal-Wallis test (Kruskal & Wallis, 1952). The Kruskal-Wallis test is a rank-based 

alternative to the one-way ANOVA. The Kruskal-Wallis test has power comparable or 

greater than the one-way ANOVA when groups have identical distribution shapes, 

including nonnormal distributions, with asymptotic relative efficiencies (AREs) ranging 

from 0.864 to infinitely larger than 1. (Andrews, 1954; Conover, 1980; Kruskal, 1952; 

Hodges and Lehmann, 1956). Similar to ANOVA, the Kruskal-Wallis test demonstrates 
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inflated error rates when the homogeneity of variance assumption is violated, 

increasingly so in the presence of unequal group sample sizes (Feir-Walsh & Toothaker, 

1974; Keselman et al., 1977; Tomarkin & Serlin, 1986). The multiple-group extension of 

the sign test is the Friedman test, which has much more variable power relative to the 

ANOVA than the Kruskal-Wallis test but still maintains the ARE above 1 for some 

distributions (Friedman, 1937; Hollander & Wolfe, 1973; Noether, 1967; Van Elteren & 

Noether, 1959). The Friedman test also suffers inflated error rates from violating the 

homogeneity of variance assumption (Harwell & Serlin, 1989). 

Some researchers do not believe that nonparametric methods are available or 

appropriate to use for more complicated research designs. One reason for this belief is 

that nonparametric methods, including rank-based procedures, do not capture and use the 

full scope of information available in the data and consequently result in lower power 

than parametric procedures (Wilcoxon, 1949). This myth can be dispelled with the 

demonstratable power studies, though further study of these methods is warranted. 

Historically, nonparametric tests for interactions have been considered complicated or 

computationally intensive (Bradley, 1968). As technology advances, these limitations can 

be iteratively revisited to check if they remain justified. Nonparametric methods testing 

for an interaction effect using ordinal categorical variables often focus on the median, 

which provides a test of location shift if the distributions have the same form, or a test of 

equivalent distributions if distributional form is unknown (Brunner & Neumann, 1984; 

Kleijnen, 1987; Noether, 1981). Tests of equivalent distributions capture location shifts as 

well as other distributional differences. 
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Over thirty years have passed since Sawilowsky (1990) brought nonparametric 

tests of interaction to the attention of behavioral and social researchers. In this article, 

Monte Carlo simulation results are presented for five statistical methods to test for 

interaction effects: (a) the parametric ANOVA F test, (b) the rank transform test, (c) the 

aligned rank transform test, (d) the McSweeney test, and (e) the rank transform test using 

a chi-square critical value building on the theoretical advancements in research published 

by Thompson (1991). While simulation studies have researched the performance of these 

tests for various nonnormal distributions, there is minimal research into these methods in 

the presence of skew and asymmetry. This study addresses this gap by exploring the 

properties of nonparametric tests in the presence of skewed distributions. 

Tests for Interaction 

In this section I briefly describe each of the four methods included in this study. 

The ANOVA F test is also included as a reference. Further details about each method can 

be found in the cited references. 

Rank Transform Test 

Initial exploration into outlining and exploring the viability of the rank transform 

(RT) method is published in a line of inquiry by Conover and Iman (Conover & Iman, 

1976, 1981; Iman, 1974; Iman and Conover, 1976). The steps for perform a rank 

transform test in the two-way design is to pool the observations, rank the observations, 

and calculate the parametric ANOVA F statistic on the ranks for the effect of interest 

(Conover & Iman, 1981). Significance is determined by referring the calculated F 

statistic to the parametric ANOVA numerator and denominator degrees of freedom. 
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When converting scores to ranks for the purpose of performing a parametric 

analysis in this way, the two or more sets of scores are combined prior to grouping. While 

transforming one set of scores to ranks will produce a distribution that is rectangular, 

when transforming two or more sets of pooled scores to ranks the distributions of the 

individual set ranks will no longer be necessarily rectangular. Differences in group 

measures of variance, skew, kurtosis, and bimodality are retained after methods of rank 

transformation albeit with reduced magnitude (Zimmerman, 2011). Of particular interest 

is the viability of the rank transform ANOVA as an alternative to the factorial, parametric 

ANOVA. Problems with the rank transform test include rejecting null main effects after 

testing for interaction effects in a 4 x 3 design (Lemmer, 1980), inflated Type I error in 

the 4 x 3 design in the presence of both nonnull main effects (Blair et al., 1987), and 

inflated Type I error in the 2 x 2 x 2 design (Sawilowsky et al., 1989). The rank transform 

ANOVA is demonstrated to be robust in the 2 x 2 layout but lacks power over the 

parametric ANOVA for larger effect sizes (Sawilowsky, 1989). The rank transform test is 

included here for further examination of its performance using data having asymmetry 

and skew. 

Aligned Rank Transform Test 

The motivation of the aligned rank procedure is to adjust the rank transform test 

so that it does not suffer reduced power and increased Type I error rates in the presence of 

nonnull main and interaction effects in a factorial ANOVA design. The procedure is 

performed by first aligning the data, then pooling and ranking the data, and finally 

referring the aligned and rank-transformed scores to the parametric ANOVA procedure. 

The goal of aligning is to treat whichever of the two main or interaction effects not 
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currently being tested as nuisance parameters and remove them from the model. When 

testing for interaction, this means subtracting main effect estimates (means calculated 

within levels of each main effect) from the observations. This leaves only the interaction 

effect to be tested. One main effect and the interaction effect can be removed as well in 

balanced designs to test for the other main effect (Marascuilo & McSweeney, 1977). 

Reinach (1965, 1966) provides an early demonstration of the procedure. 

The process of aligning and ranking the data as a test for interaction in the two-

way layout, most often performed by subtracting main effect mean estimates from each 

observation, is a modification of the aligned rank process proposed by Hodges and 

Lehmann (1962). Simulation study of the aligned rank transform (ART) test demonstrates 

strong power properties and slightly liberal Type I error rates (Blair & Sawilowsky, 

1990). The ART test has strong power while being robust for populations from normal, 

uniform, logistic, exponential, double exponential, and lognormal distributions (Blair & 

Sawilowsky, 1990; Fawcett & Salter, 1984; Groggel,1987; Mansouri & Chang, 1995; 

Salter & Fawcett, 1985, 1993). The ART test performs with larger power than the 

parametric test with non-normal distributions likely to be observed in psychological 

research such as the truncated normal, student, and gamma distributions (Leys & 

Schumann, 2010). The ART test also holds power advantages over other common 

nonparametric methods when testing for interaction until both main effects become large 

(Headrick & Vineyard, 2000; Leys & Schumann, 2010). 

The McSweeney Test 

The McSweeney HY statistic is an asymptotically chi-square test statistic used to 

test the hypothesis of no effect based on the ranks of aligned observations (McSweeney, 
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1967). Prior to calculating the McSweeney test statistic, the data must be pooled, aligned, 

and ranked. Taking the aligned and ranked data, the McSweeney statistic is calculated by 

multiplying the effect sums of squares by the total degrees of freedom and dividing by 

the total sums of squares. This statistic is tested against a chi-square distribution with 

degrees of freedom equal to what the effect degrees of freedom would be in a parametric 

analysis. 

Simulation studies of the viability of this test yield mixed results. For normal, 

mixed-normal, exponential, double exponential, and chi-square population distributions 

in combination with small cell sample sizes, the McSweeney test demonstrates strong 

power at the cost of liberal Type I error (Harwell, 1991; Toothaker & Newman, 1994). 

Kelley et al. (1994) explored viability of the McSweeney test in the 2 x 2 x 2 factorial 

design for normal, uniform, t, and exponential population distributions with sample sizes 

of n = 7, 21, and 35. Results demonstrate a failure to maintain Type I error rates for null 

effects in treatment conditions but competitive results when the number of nonnull effects 

and effect sizes became large. 

The Thompson T Test 

Calculation of the test statistic for the Thompson T test when used for interaction 

effects is equal to the test statistic calculated in the rank transform test. However, the test 

statistic is referred to a chi-square distribution with one degree of freedom instead of 

being referred to an F distribution. Thompson (1991) studied the asymptotic properties of 

the rank transform ANOVA statistic for testing interactions in the balanced two-way 

design, proving that in a two-way design with exactly two levels of both main effects (or 

when there is only one main effect) the test statistic for interaction is asymptotically a 
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chi-square divided by the degrees of freedom. In a two-way design with two levels for 

both main effects, this means that the interaction statistic has a distribution that is 

asymptotically a chi-square with one degree of freedom. There are no empirical studies 

employing this procedure to test for interaction effects. 

Methods 

 Monte Carlo simulation methods were employed to compare Type I error rates 

and power properties of the following tests for two-factor main and interaction effects: 

the ANOVA F test, the rank transform test (RT), the aligned rank transform test (ART), 

the aligned rank McSweeney HY test, and the rank transform Thompson T test. Usage of 

the parametric analysis of variance F test assumes the residuals are normally distributed, 

an assumption Micceri (1989) found violated in all observed cases in education and 

social sciences measures. Thus, simulation of residuals in this study employs 

distributions that Micceri observed as frequently occurring in education and social 

science measures in his meta study, including the Laplace distribution, the logistic 

distribution, and distributions having mild to severe measures of asymmetry. 

Measures of skew and asymmetry lying several standard deviations above the 

main body of the distribution are common in psychometric and achievement measures 

(Micceri, 1989; Walberg et al., 1984). Of the 440 measures observed by Micceri (1989), 

49.1 percent had extreme to exponential tail weights and 30.9 percent had extreme to 

exponential asymmetry (note, the exponential distribution has a skewness of 2). 

Additionally, when using small sample sizes, the value of skewness present in the sample 

may increase due to potential sample-population mismatch (Tipton et al., 2017). Thus, in 

comparing the varying tests in the presence of increasingly severe measures of 
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asymmetry, each of three different skewed distributions in combination with four 

different levels of the skew parameter is used to simulate the residuals. A skew-normal 

distribution was used with a mean of 0, a variance of 1, and skew values of -3, -2, -1, 0, 

1, 2, and 3. A skew value of  0 for the skew-normal distribution indicates no skew (a 

standard normal) with increasing severities of left and right skew as the skew parameter 

deviates negatively or positively, respectively. A skewed logistic distribution was used 

with a mean of 0, a variance of 1, and skew values of 0.25, 0.33, 0.5, 1, 2, 3, and 4. A 

skew value of  1 for the skewed logistic distribution indicates no skew (a symmetric 

logistic) with increasing severities of left skew for skew parameters less than 1 and right 

skew for skew parameters larger than 1. An asymmetric Laplace distribution was used 

with a mean of 0, a variance of 1, and skew values of 4, 3, 2, 1, 0.5, 0.33, and 0.25. A 

skew value of  1 for the asymmetric Laplace distribution indicates no skew (a symmetric 

Laplace) with increasing severities of left skew for skew parameters larger than 1 and 

right skew for skew parameters smaller than 1. 

These twenty-one distributions were crossed with four levels of cell sample size 

(5, 10, 30, and 50) and all possible combinations of the presence or absence of each main 

and interaction effect in the two-factor design. It is common for researchers who are 

considering nonparametric methods to select a method based on asymptotic relative 

efficiency, though this ratio assumes large sample sizes and is not realistically 

representative of research study conditions faced by researchers in educational and social 

science fields. Thus, the total sample sizes selected for this study, ranging from N = 20 to 

N = 200, are more representative of these common research conditions. Additionally, 

using a range of smaller to larger cell sample sizes will reveal power and robustness 
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properties that occur as a result of potential sample-population mismatch that can occur 

by random chance in small sample sizes (Tipton et al., 2017). 

The nonnull effect size was chosen for each cell sample size such that the power 

to detect each effect would be 80% under the standard normal theory, that is, for n = 5 the 

nonnull effect size simulated is 0.67, for n = 10 the nonnull effect size is 0.46, for n = 30 

the nonnull effect size is 0.26, and for n = 50 the nonnull effect size is 0.20. Because the 

designs simulated are two-way designs with two levels of each main effect, these effect 

sizes result in 80% power under the standard normal theory for their respective cell 

sample sizes for both main and interaction effects given each effect has 1 degree of 

freedom. This raw effect size was added or subtracted from each cell based on level of 

each main and interaction effect. As normality with a mean of 0 and a variance of 1 is 

assumed in generation of the effect sizes, these raw effect sizes are standardized effect 

sizes for the normal distribution as well. A nominal α of 0.05 is used. In total, this creates 

672 configurations of residual distributions, sample sizes, and effect size combinations 

that were simulated with 5,000 replications to obtain the Type I error rate and power. The 

R programming language (R Core Team, 2021) was used in conjunction with the ‘sn’, 

‘glogis’, and ‘LaplacesDemon’ packages to simulate the data. Table 1 summarizes the 

design factors used. 

Table 3.1 

Design factors and levels of each design factor used in simulation 

 

Design Factor: Levels: 

Residual distributions 3 

Severities of skew for each residual distribution 7 

Cell sample size 4 

Null and nonnull main and interaction effect combinations 8 
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Using 5,000 simulations creates a 95% margin of error of 0.006 for the Type I 

error estimates and a 95% margin of error of 0.011 for the power estimates under 

standard normal theory. The 95% margin of error of 0.006 for Type I error estimates is 

close to the stringent error band interval of 0.005 proposed by Bradley (1978) for 

examining the robustness of Monte Carlo simulated Type I error rates for hypothesis 

testing. This error band interval becomes ±0.005 when a nominal α of 0.05 is used. 

Bradley also proposed a second more liberal error band that becomes ±0.02 when a 

nominal α of 0.05 is used, and that is the band adopted in this study to indicate whether a 

method is robust. That is, any proposed hypothesis test with an empirical Type I error rate 

greater than 0.07 is deemed as not being robust to violations of symmetry or adequate 

sample size assumptions for that simulated design. Thus, power comparisons for the 

proposed hypothesis tests will only be considered for those tests maintaining an empirical 

Type I error rate that is less than or equal to 0.07 for each simulated design. Proposed 

testing methods will be called slightly conservative or slightly liberal if they maintain an 

empirical Type I error rate which deviates less than 0.01 below and above 0.05, 

respectively. Methods will be called conservative or liberal if their Type I error rate 

deviates 0.02 or more from 0.05. Both main and interaction effects are estimated and 

recorded, yet the primary empirical measures of interest refer to performance of a test for 

detecting an interaction. Results are provided in table format for all simulated designs. 

Results 

 These results summarize the comparison of the testing methods ability to detect 

an interaction. The focus is on the empirical Type I error rate and the power results when 
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testing for interaction in the presence and absence of main effects for all three 

distributions. 

Skew-normal Distribution 

The only times any of the included methods resulted in liberal rejection of the null 

hypothesis in the skew-normal distribution designs were when n = 5. When n = 5, the 

Thompson T statistic often demonstrates an empirical Type I error rate greater than 0.07 

in the presence of only one nonnull main effect. When n = 5 or n = 10 and both main 

effects are nonnull, the rank transform test and Thompson T test performed demonstrably 

conservative as shown in Tables 2 and 3. This conservatism for these two tests becomes 

negligible when n becomes 30 or larger. When n becomes 30 or larger, all proposed 

testing methods are competitive with negligible differences in power, that is, power 

differences less than 0.01. Notably, the ANOVA F test performed marginally better than 

the remaining tests with larger cell sample sizes and less extreme levels of skew. 

However, the aligned rank transform test performs competitively to the ANOVA F for 

power and Type I error regardless of nonnull main effect presence and in the presence of 

extreme skew as shown in Tables 3, 4, and 5. This suggests that for all cell sample sizes 

and levels of skew severity for the skew-normal distribution, the aligned rank transform 

test performs competitively to the ANOVA F test for power and Type I error rate. Tables 

3, 4, and 5 also demonstrate that the McSweeney HY test performs with competitive 

power to the ANOVA F test regardless of whether nonnull main effects are present and in 

the presence of extreme skew. Type I error rates of the McSweeney HY test remain 

competitive to the ANOVA F for all cell sample sizes apart from n = 5 where the 

McSweeney HY test has error rates between 0.06 and 0.07. This suggests that for all but n 
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= 5 cell sample sizes and for all levels of skew severity for the skew-normal distribution, 

the McSweeney HY test performs competitively compared to the ANOVA F test. These 

results remain consistent in designs not represented in the provided tables. 

Table 3.2 

Type I Error and Power Results for Skew-normal with two nonnull main effects and a 

skew parameter of 1 

 

 Null interaction effect  Nonnull interaction effect 

Cell size: 5 10 30 50  5 10 30 50 

ANOVA 0.0554 0.0482 0.0518 0.0488  0.92 0.921 0.9286 0.919 

Rank 

Transform 
0.0092 0.0354 0.0512 0.0482 

 
0.7094 0.8706 0.9148 0.9102 

ART 0.0582 0.05 0.0526 0.0456  0.914 0.9128 0.9166 0.9142 

McSweeney 0.0698 0.054 0.0546 0.0466  0.9264 0.9168 0.9178 0.9154 

Thompson 0.017 0.0406 0.0536 0.0498  0.7662 0.8852 0.9178 0.9116 

Note. ART refers to the aligned rank transform test. 

 

Table 3.3 

Type I Error and Power Results for Skew-normal with two nonnull main effects and a 

skew parameter of 3 

 

 Null interaction effect  Nonnull interaction effect 

Cell size: 5 10 30 50  5 10 30 50 

ANOVA 0.0486 0.0538 0.049 0.0528  0.9886 0.9902 0.9896 0.9914 

Rank 

Transform 
0.0048 0.0258 0.0424 0.0502 

 
0.743 0.9602 0.9894 0.9912 

ART 0.0558 0.0536 0.0484 0.0544  0.9852 0.9908 0.9926 0.992 

McSweeney 0.0676 0.0566 0.0496 0.055  0.9878 0.9914 0.993 0.9926 

Thompson 0.008 0.0312 0.0438 0.0524  0.7978 0.9656 0.9898 0.9918 

Note. ART refers to the aligned rank transform test. 
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Table 3.4 

Type I Error and Power Results for Skew-normal with one null and one nonnull main 

effect and a skew parameter of 3 

 

 Null interaction effect  Nonnull interaction effect 

Cell size: 5 10 30 50  5 10 30 50 

ANOVA 0.0464 0.0472 0.057 0.0496  0.9874 0.9872 0.9896 0.9904 

Rank 

Transform 
0.0434 0.0512 0.0568 0.0476 

 
0.9824 0.985 0.9908 0.9918 

ART 0.0534 0.0486 0.0526 0.0468  0.9884 0.9898 0.9922 0.9918 

McSweeney 0.0632 0.0526 0.054 0.048  0.9906 0.9902 0.9922 0.992 

Thompson 0.0606 0.0568 0.0588 0.0486  0.9876 0.9878 0.9916 0.992 

Note. ART refers to the aligned rank transform test. 

 

Table 3.5 

Type I Error and Power Results for Skew-normal with two null main effects and a skew 

parameter of 3 

 

 Null interaction effect  Nonnull interaction effect 

Cell size: 5 10 30 50  5 10 30 50 

ANOVA 0.048 0.0534 0.051 0.0468  0.9882 0.9876 0.99 0.9898 

Rank 

Transform 
0.0528 0.0538 0.0518 0.045 

 
0.9844 0.988 0.992 0.9922 

ART 0.055 0.053 0.0514 0.046  0.9882 0.988 0.992 0.9924 

McSweeney 0.066 0.0566 0.0522 0.0464  0.9906 0.9892 0.9924 0.9924 

Thompson 0.0692 0.0606 0.0532 0.0462  0.9894 0.9898 0.9924 0.9922 

Note. ART refers to the aligned rank transform test. 

 

Skewed Logistic Distribution 

Once again, any of the proposed testing methods result in liberal rejection only 

when the cell sample size equals 5 and at least one main effect is null. For designs with n 

= 5 cell sample size and one nonnull main effect, the Thompson T statistic yielded an 

empirical alpha greater than 0.07 for multiple skew severities. However, once the cell 

sample size became 10 or larger, the aligned rank transform test, the McSweeney HY test, 
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and the Thompson T test performed more powerfully than the parametric ANOVA for all 

cell sample sizes and severities of the skew parameter while maintaining empirical Type I 

error rates within the acceptable range as shown in Tables 6, 7, 8, and 9. For larger 

sample sizes, power advantages of the nonparametric tests compared to the ANOVA F 

test range from 2-5 percentage points, increasing as the severity of the skew parameter 

increases. These results remained consistent in the presence and absence of nonnull main 

effects. Additionally, these results remain consistent in designs not represented in the 

provided tables. 

Table 3.6 

Type I Error and Power Results for Skew Logistic with two nonnull main effects and a 

skew parameter of 1 

 

 Null interaction effect  Nonnull interaction effect 

Cell size: 5 10 30 50  5 10 30 50 

ANOVA 0.0448 0.0476 0.0458 0.0484  0.3566 0.336 0.344 0.331 

Rank 

Transform 
0.0408 0.0516 0.0448 0.0458 

 
0.3318 0.343 0.3606 0.3554 

ART 0.0524 0.0488 0.046 0.0468  0.3766 0.3522 0.3644 0.3564 

McSweeney 0.0636 0.053 0.0472 0.0476  0.4116 0.3618 0.3698 0.3592 

Thompson 0.058 0.058 0.0464 0.0472  0.381 0.3686 0.367 0.3608 

Note. ART refers to the aligned rank transform test. 
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Table 3.7 

Type I Error and Power Results for Skew Logistic with two nonnull main effects and a 

skew parameter of 2 

 

 Null interaction effect  Nonnull interaction effect 

Cell size: 5 10 30 50  5 10 30 50 

ANOVA 0.0462 0.048 0.0482 0.0474  0.4756 0.47 0.4584 0.4632 

Rank 

Transform 
0.039 0.0402 0.0502 0.0514 

 
0.4182 0.4712 0.4864 0.4972 

ART 0.054 0.0452 0.0536 0.0506  0.4982 0.489 0.4866 0.5058 

McSweeney 0.0658 0.048 0.0548 0.0514  0.5316 0.4986 0.4898 0.5068 

Thompson 0.0556 0.049 0.0536 0.0528  0.479 0.4968 0.4942 0.5038 

Note. ART refers to the aligned rank transform test. 

 

Table 3.8 

Type I Error and Power Results for Skew Logistic with two nonnull main effects and a 

skew parameter of 3 

 

 Null interaction effect  Nonnull interaction effect 

Cell size: 5 10 30 50  5 10 30 50 

ANOVA 0.0488 0.052 0.0554 0.0452  0.52 0.499 0.5068 0.5082 

Rank 

Transform 
0.0352 0.047 0.056 0.0456 

 
0.4496 0.5138 0.541 0.5544 

ART 0.0524 0.0504 0.0572 0.0454  0.5456 0.5368 0.549 0.5558 

McSweeney 0.0622 0.055 0.058 0.0462  0.5814 0.5458 0.5524 0.5584 

Thompson 0.05 0.0564 0.058 0.0474  0.5074 0.5344 0.5482 0.5582 

Note. ART refers to the aligned rank transform test. 

 



66 
 

Table 3.9 

Type I Error and Power Results for Skew Logistic with two nonnull main effects and a 

skew parameter of 4 

 

 Null interaction effect  Nonnull interaction effect 

Cell size: 5 10 30 50  5 10 30 50 

ANOVA 0.05 0.0454 0.0512 0.0508  0.5578 0.5436 0.5274 0.5228 

Rank 

Transform 
0.039 0.0508 0.052 0.051 

 
0.4838 0.5478 0.5686 0.5716 

ART 0.0582 0.0546 0.0532 0.0512  0.5836 0.582 0.572 0.576 

McSweeney 0.0692 0.0574 0.0548 0.0518  0.6206 0.591 0.576 0.5792 

Thompson 0.0544 0.0572 0.0538 0.0528  0.545 0.5746 0.575 0.5758 

Note. ART refers to the aligned rank transform test. 

 

Asymmetric Laplace Distribution 

It is again only when the cell sample size equals 5 that any of the proposed testing 

methods resulted in liberal rejection of the null hypothesis. Furthermore, it is only the 

McSweeney HY statistic and Thompson T statistic that become liberal. The McSweeney 

HY statistic exceeded the liberal Type I error rate threshold of 0.07 for multiple 

asymmetry severity levels and combinations of null and nonnull main effects. The 

Thompson T statistic yielded Type I error rate above 0.07 when there was one nonnull 

main effect for n = 5 cell sample sizes. These methods remained competitive and within 

the acceptable empirical Type I error band interval once the cell sample size became 10. 

For small cell sample sizes, the rank transform method performs most powerfully when 

there is an absence of both main effects and extreme levels of asymmetry while never 

resulting in a liberal rejection for Type I error rates as shown in Table 9. For small cell 

sample sizes and the presence of both nonnull main effects, the McSweeney HY test 

performs most powerfully in the presence of extreme asymmetry as shown in table 10. 
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The McSweeney HY test performs powerfully for either case of main effects in the 

presence of less extreme asymmetry parameters as shown in Tables 11 and 12. Tables 11 

and 12 also capture that for smaller sample sizes and less extreme asymmetry parameters, 

the rank transform test and rank transform T test perform powerfully where there are no 

main effects but lose considerable power when there are main effects. For larger cell 

sample sizes, all nonparametric methods remain competitive with data from an 

asymmetric Laplace distribution as demonstrated in Tables 10, 11, 12, and 13. The 

ANOVA F statistic, however, performs with noticeably less power compared to the 

nonparametric tests for larger cell sample sizes. For larger cell sample sizes, the power 

advantage of the nonparametric tests range from 12-17 percentage points, increasing as 

the severity of the asymmetry parameter increases. results remain consistent in designs 

not represented in the provided tables. 

Table 3.10 

Type I Error and Power Results for Asymmetric Laplace with two null main effects and 

an asymmetry parameter of 1/4 

 

 Null interaction effect  Nonnull interaction effect 

Cell size: 5 10 30 50  5 10 30 50 

ANOVA 0.045 0.045 0.0478 0.0532  0.1892 0.1932 0.1766 0.165 

Rank 

Transform 
0.0536 0.0474 0.0506 0.0522 

 
0.2942 0.3254 0.3436 0.3458 

ART 0.0578 0.0522 0.052 0.0516  0.254 0.2858 0.3132 0.321 

McSweeney 0.066 0.054 0.0526 0.0516  0.2808 0.2918 0.3156 0.3214 

Thompson 0.073 0.0528 0.0526 0.0536  0.3378 0.3478 0.3518 0.3498 

Note. ART refers to the aligned rank transform test. 
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Table 3.11 

Type I Error and Power Results for Asymmetric Laplace with two nonnull main effects 

and an asymmetry parameter of 1/4 

 

 Null interaction effect  Nonnull interaction effect 

Cell size: 5 10 30 50  5 10 30 50 

ANOVA 0.0472 0.0482 0.0528 0.0518  0.2098 0.1872 0.1732 0.171 

Rank 

Transform 
0.049 0.05 0.0542 0.05 

 
0.2352 0.2654 0.3036 0.3228 

ART 0.0554 0.0518 0.0538 0.0524  0.2734 0.2808 0.3094 0.3234 

McSweeney 0.0658 0.054 0.0544 0.0524  0.3018 0.2866 0.3096 0.324 

Thompson 0.0672 0.0574 0.0564 0.0512  0.2826 0.284 0.311 0.3258 

Note. ART refers to the aligned rank transform test. 

 

Table 3.12 

Type I Error and Power Results for Asymmetric Laplace with two null main effects and 

an asymmetry parameter of 1 

 

 Null interaction effect  Nonnull interaction effect 

Cell size: 5 10 30 50  5 10 30 50 

ANOVA 0.0446 0.052 0.0488 0.048  0.7962 0.8014 0.8026 0.7894 

Rank 

Transform 
0.0492 0.0532 0.0484 0.0462 

 
0.8428 0.8856 0.9046 0.9134 

ART 0.0504 0.0552 0.0484 0.0492  0.8362 0.8742 0.8996 0.9116 

McSweeney 0.0622 0.057 0.0496 0.0492  0.855 0.8792 0.9006 0.9128 

Thompson 0.068 0.06 0.051 0.0478  0.8746 0.8962 0.9066 0.915 

Note. ART refers to the aligned rank transform test. 
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Table 3.13 

Type I Error and Power Results for Asymmetric Laplace with two nonnull main effects 

and an asymmetry parameter of 1 

 

 Null interaction effect  Nonnull interaction effect 

Cell size: 5 10 30 50  5 10 30 50 

ANOVA 0.0468 0.0486 0.0436 0.0514  0.8004 0.8112 0.8012 0.804 

Rank 

Transform 
0.0148 0.0366 0.0464 0.0536 

 
0.6284 0.7884 0.8728 0.8974 

ART 0.0558 0.0488 0.0464 0.0554  0.845 0.8794 0.9026 0.9174 

McSweeney 0.0642 0.0506 0.047 0.0566  0.8666 0.8846 0.9046 0.918 

Thompson 0.025 0.0444 0.0492 0.0546  0.6916 0.8078 0.8772 0.8986 

Note. ART refers to the aligned rank transform test. 

 

Standard Normal Distribution 

 Tables 14, 15, and 16 provide results for the standard normal distribution with 2 

null, 1 null and 1 nonnull, and 2 nonnull main effects, respectively. These tables are 

provided to give a reference of how the nonparametric tests compare to the ANOVA F 

test when the normality assumption can safely be assumed. As shown in Table 16, the 

conservatism demonstrated by the rank transform test and the Thompson T test for small 

cell sample sizes in the presence of two nonnull main effects is present for the standard 

normal distribution. The McSweeney test demonstrates liberal Type I error rates for small 

cell sample sizes but converges to similar Type I error rates and power to that of the 

aligned rank transform test as cell sample sizes increase. The aligned rank transform test 

maintains acceptable Type I error rates and has similar power to the ANOVA F test for 

small cell sample sizes. The ANOVA F test performs with up to 2 percentage points of 

larger power at the largest cell sample size (n = 50, N = 200). These results suggest that 
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when normality can be safely assumed, the aligned rank transform test performs 

competitively to the ANOVA F test. 

Table 3.14 

Type I Error and Power Results for Standard Normal with two null main effects 

 

 Null interaction effect  Nonnull interaction effect 

Cell size: 5 10 30 50  5 10 30 50 

ANOVA 0.0488 0.055 0.0536 0.049  0.8044 0.7952 0.8 0.8 

Rank 

Transform 
0.0522 0.055 0.0518 0.0512 

 
0.7908 0.7824 0.778 0.7792 

ART 0.0516 0.0556 0.052 0.0512  0.8006 0.7814 0.7816 0.7772 

McSweeney 0.0624 0.0592 0.0538 0.0516  0.8228 0.7904 0.7856 0.7792 

Thompson 0.0682 0.0626 0.0552 0.0516  0.8234 0.802 0.785 0.7832 

Note. ART refers to the aligned rank transform test. 

 

Table 3.15 

Type I Error and Power Results for Standard Normal with one null and one nonnull 

main effects 

 

 Null interaction effect  Nonnull interaction effect 

Cell size: 5 10 30 50  5 10 30 50 

ANOVA 0.0504 0.0518 0.0522 0.051  0.7972 0.813 0.807 0.8058 

Rank 

Transform 
0.0496 0.0496 0.0544 0.051 

 
0.77 0.781 0.7952 0.7808 

ART 0.0538 0.0532 0.054 0.0526  0.7916 0.7956 0.7936 0.7794 

McSweeney 0.066 0.0558 0.055 0.0534  0.8202 0.8034 0.799 0.7808 

Thompson 0.0678 0.0576 0.0566 0.0522  0.8106 0.8036 0.8002 0.7842 

Note. ART refers to the aligned rank transform test. 
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Table 3.16 

Type I Error and Power Results for Standard Normal with two nonnull main effects 

 

 Null interaction effect  Nonnull interaction effect 

Cell size: 5 10 30 50  5 10 30 50 

ANOVA 0.0538 0.051 0.049 0.0562  0.8092 0.7982 0.795 0.7972 

Rank 

Transform 
0.0276 0.0436 0.0474 0.0546 

 
0.6378 0.7548 0.7722 0.7766 

ART 0.0574 0.0502 0.0474 0.055  0.8008 0.7844 0.777 0.7784 

McSweeney 0.0666 0.053 0.0496 0.0554  0.8264 0.7916 0.7808 0.7826 

Thompson 0.0402 0.0514 0.0486 0.0556  0.6986 0.7756 0.7796 0.78 

Note. ART refers to the aligned rank transform test. 

 

Discussion 

 Micceri (1989) highlights the need for tests capable of handling the prevalence 

and range of variability in the skew and asymmetry present in the fields of the behavioral 

and social sciences. The recommendation of a nonparametric test over a parametric one 

requires the nonparametric test to be robust to Type I error rate, maintain competitive 

power properties when normality can safely be assumed, and yield an increase in power 

for multiple types of nonnormally distributed data. In testing for two-factor interactions, 

the simulation results presented in this study suggest that there is not a uniformly most 

powerful test that maintains acceptable Type I error rates for all designs. However, there 

are situations in which some tests can be clearly ruled out as viable, particularly if the 

presence of null or nonnull main effects can be confirmed. Furthermore, given that 

nonparametric methods demonstrate competitive empirical power compared to the 

ANOVA F test even when normality and symmetry assumptions are met and competitive 

to larger power when normality and symmetry are not safe assumptions, there is no need 



72 
 

to use the traditional parametric test and gamble that the assumptions for valid inference 

are satisfied. The results provided demonstrate that an alternative nonparametric test 

exists with little to no risk. 

Results suggest, particularly with regard to cell sample size and method, increased 

data scrutiny can contribute to considerable increases in power. Because of the strong 

conservative often demonstrated by the rank transform test and the Thompson T test in 

the presence of two nonnull main effects for small sample sizes and the similar power 

properties compared to the ART test for larger cell sample sizes, these two tests can be 

dismissed as viable nonparametric tests of interaction. When these two tests demonstrated 

minor power increases over the ART test, they also demonstrated increases in Type I error 

rate. When data is asymmetrically Laplace distributed, the ART test maintains Type I 

error rate within the liberal rejection region and always demonstrates larger power than 

the ANOVA F test, that is, power increases of 7-17 percentage points depending upon cell 

sample size. This power advantage increases as the asymmetry effect increases 

suggesting the ART test is preferable for the asymmetric Laplace distribution. The ART 

test performs similarly for the skew logistic distribution. The ART test maintains Type I 

error rates within the liberal rejection region and performs with larger power (2-5 

percentage points depending upon cell sample size) than the ANOVA F for all sample 

sizes and levels of skew. This power advantage over the ANOVA F also increases as the 

skew parameter increases. While the McSweeney test also performs with larger power 

than the ANOVA F once cell sample sizes become 10 or more, the ART test maintains a 

more conservative Type I error rate with competitive power. These results suggest the 

ART is preferable for the skew logistic design as well. Admittedly, the ANOVA F remains 
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robust and competitive for the standard and skew-normal distribution for all cell sample 

sizes and degrees of skew. However, as the ART test is competitive in both Type I error 

rates and power for the standard and skew-normal as well, there appears minimal 

disadvantages to using it compared to all other testing methods when there is uncertainty 

about the population distribution. These results highlight the danger of incorrectly 

assuming normality when using the ANOVA F test. Simulations results presented indicate 

using the ART in place of the ANOVA F test can mitigate power loss from incorrectly 

assuming normality by as much as 17 percentage points. 

Restated, the recommendation of a nonparametric test over a parametric one 

requires the nonparametric test to be robust to Type I error rate, maintain competitive 

power properties when normality can safely be assumed, and yield an increase in power 

for multiple types of nonnormally distributed data. The presented results demonstrate that 

that the aligned rank transform test is robust to Type I error rate, maintains competitive 

power properties when normality can be safely assumed, and yields an increase in power 

compared to the ANOVA F test for all simulated designs except for the standard normal 

distribution with large cell sample sizes where the ANOVA F test yields up to 2 

percentage points in larger power. This suggests that unless normality is a truly safe 

assumption, which would necessitate a cell sample size on the larger end of the sizes 

simulated in this research, the aligned rank transform test becomes the preferable test of 

interaction effect. If no assumption can be made regarding underlying distribution, or 

when cell sample sizes are small regardless, the aligned rank transform test meets all of 

the required criteria to be the recommended test given its power advantages for 

nonnormally distributed data. 
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This research employs simulations of residuals following only normal, logistic, 

and Laplace distributions with varying severities of skew. I studied the nonparametric 

tests based on ranks using seven levels of skew severity for each of the three mentioned 

distributions. This study includes only a two-factor design with two levels of each main 

effect. This line of research naturally reveals several subsequent lines of inquiry. As 

Micceri (1989) acknowledges, there should also be acknowledgement in the field of 

psychometric measures of the prevalence of multimodality, lumpiness, and other 

frequently occurring deviations from normality in population distributions apart from 

skew. Additionally, further study is needed regarding the suggested nonparametric tests in 

the presence of designs having more than two levels of each main effect, having 

unbalanced cell sample sizes, and in designs where cell residuals have different 

distributions including but not limited to different severities of skew. Admittedly, there is 

research into efficacy comparisons of some parametric methods under some of these 

conditions (Akritas, 1990). Further research is needed in calculation of effect sizes for 

significant nonparametric test results when using nonparametric tests based on ranks. 

This research supports the use of nonparametric tests in testing for the presence of 

an interaction location shift by demonstrating their larger power than the parametric 

ANOVA F test for the nonnormal distributions. Given this increased power, the use of 

these nonparametric tests may provide for a more accurate way of estimating effect sizes 

as opposed to calculating mean differences. Given the results demonstrated in this study 

and the prevalence of nonparametric techniques introduced, a proportionate increase in 

efficacy comparisons for these methods is needed to ensure that robust testing methods 
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which require fewer distributional assumptions than traditional parametric tests do not 

fall through the cracks and their potential left untapped. 
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CHAPTER 4 

NONPARAMETRIC TESTS OF INTERACTION USING VAN DER WAERDEN 

NORMAL SCORES FOR THE TWO-WAY DESIGN WITH SKEWED 

DISTRIBUTIONS 

 

Abstract 

This study compares the ANOVA F test and three nonparametric competitors with two-

factor designs for empirical Type I error rate and power when testing for an interaction of 

the factors. These nonparametric competitors are the rank transform test, aligned rank 

transform test, and McSweeney test with a Van der Wearden normal scores data 

transformation in place of the rank transformation. I perform simulations of 2 x 2 designs 

with cell sizes of 5, 10, 30, 50, 100, 200, and 500. I employ samples having distributions 

commonly found in the educational and social sciences including skew normal, skew 

logistic, and asymmetric Laplace distributions each having four levels of skew and 

asymmetry effects. The ANOVA F is robust for Type I error but lacks power compared to 

nonparametric alternatives for skew logistic and asymmetric Laplace samples. The 

aligned rank transform and McSweeney tests with Van der Waerden normal scores data 

transformations demonstrate competitive Type I error and considerable power advantages 

over ANOVA F for the skew logistic and asymmetric Laplace distributions. 

Keywords: Nonparametric, Rank Transform, Aligned Rank Transform, Normal Scores 
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Introduction 

Researchers in the behavioral and social sciences fields require statistical inference 

methods that are robust in the presence of deviations from the common parametric 

analysis of variance (ANOVA) assumptions. Real world education and psychological 

measures often occur having mixed-normal distributions (Bradley, 1978, 1980a, 1980b, 

1980c, 1982; Blair, 1980; Micceri, 1989; Still & White, 1981; Tan, 1982). Education and 

social sciences measures, such as Likert scales and other self-reported measures, often 

have ceiling and floor effects that result in the need for methods capable of handling 

censored and truncated distributions (DeWees et al., 2020; Feng et al., 2019; Liu & 

Wang, 2021; McBee, 2010). Other frequent departures from normality found in 

psychometric measures include asymmetry, multimodality, and skew (Bradley, 1977; 

Micceri, 1989). Micceri’s (1989) meta-analysis analyzed 440 large sample educational 

and psychological measures and found all to be significantly nonnormal via some class of 

contamination. Of the 440 measures analyzed by Micceri, only 15.2% had both tail 

weights at or about normal, 50.2% had at least one tail heavier than normal, and 14.8% 

had both tail weights less than normal. Of the remainder, 3.2% were concluded as 

uniform and 16.6% were concluded as Laplace. Additionally, of the 440 measures, 40.7% 

were concluded as moderately asymmetric, 19.5% as extremely asymmetric, and 11.4%as 

having exponential asymmetry. Of the categories for the measures analyzed by Micceri, 

nonnormal tail weights and asymmetry is demonstrated most prevalent in measures of 

criterion mastery, where 60% of measures were found to be distributed as Laplace, 37.1% 

of measures had extreme asymmetry, and 57.1% of measures had exponential asymmetry. 

Thus, Micceri suggests the existence of normally distributed data in educational and 
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psychological measures is as improbable as the existence of a unicorn. Micceri’s findings 

not only directly conclude the prevalence of the Laplace distribution in education and 

social science measures but also provide evidence of the prevalence of the logistic 

distribution by highlighting the frequency of mixed-normal measures and criterion 

mastery measures. The logistic distribution is often used to approximate mixed-normal 

distributions, model distributions of subjective quantitative measures, and is prevalent in 

item response theory analysis (Hellstrom, 1993; Noortgate et al., 2003; Savalei, 2006). 

This would imply that researchers in these fields who limit their methods of analysis to 

those dependent upon the assumption of normality will rarely be using methods as robust 

and powerful as available alternative nonparametric methods of analysis. Given the 

prevalence of measures distributed as Laplace, measures distributed as logistic, and 

measures having varying degrees of asymmetry, methods of analysis capable of handling 

these variables are crucial for researchers in education and social science fields. 

The concern over robustness of parametric tests to departures from parametric 

assumptions about data distributions has yielded extensive study. Of particular interest in 

the two-factor design is the test for interaction among the factors. It has been argued that 

the few proposed nonparametric tests capable of testing for interaction effects are either 

computationally intensive or less powerful, leaving only the parametric ANOVA F test 

available for researchers to use when testing for interaction effects (Gaito, 1959; Gardner, 

1975). To address this problem, McSweeney (1967) proposed a nonparametric test that 

can be used to test for the presence of both main and interaction effects. The McSweeney 

test (McSweeney, 1967) uses an alignment data transformation. The goal of aligning is to 

treat whichever of the two main or interaction effects not currently being tested as 



92 
 

nuisance parameters and remove them from the model (Hodges & Lehmann, 1962). 

When testing for interaction, this means subtracting main effect estimates (means 

calculated within levels of each main effect) from the observations. This leaves only the 

interaction effect to be tested. Prior to calculating the McSweeney statistic, the data must 

be aligned, pooled, and ranked. Using the aligned and ranked data, the McSweeney 

statistic is calculated using: 

 𝐻𝑌 = (𝑁 − 1) (
𝑆𝑆𝐸𝑓𝑓𝑒𝑐𝑡

𝑆𝑆𝑇𝑜𝑡𝑎𝑙
) (1) 

The null hypothesis of no effect for the McSweeney test is rejected when: 

 𝐻𝑌 >  𝜒𝛼,𝑑𝑓𝐸𝑓𝑓𝑒𝑐𝑡

2  (2) 

Simulation studies of the viability of this test yielded mixed results. For normal, 

mixed-normal, exponential, double exponential, and chi-square population distributions 

in combination with small cell sample sizes, the McSweeney test demonstrates strong 

power at the cost of liberal Type I error (Harwell, 1991; Hornsby Brown, 2023; Toothaker 

& Newman, 1994). Kelley et al. (1994) explored the viability of the McSweeney test in 

the 2 x 2 x 2 factorial design for normal, uniform, t, and exponential population 

distributions with sample sizes of n = 7, 21, and 35. Results demonstrate a failure to 

maintain Type I error rates for null effects in treatment conditions but competitive results 

when the number of nonnull effects and effect sizes became large. Hornsby Brown (2023) 

explored using the McSweeney test in the 2 x 2 design for the normal, logistic, and 

Laplace distributions with varying severities of skew and cell sample sizes of n = 5, 10, 

30, and 50. Results demonstrate strong power but liberal Type I error rates for small 

sample sizes. McSweeney (1967) makes two suggestions that have yet to be researched: 

(1) derive a new test for interaction based on normal scores or conduct normal scores 
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tests for interaction that retain the advantage of removing by alignment the influence of 

main effects, (2) modify the proposed McSweeney test to perform a normal scores 

transformation in place of a rank transformation. 

There are three methods for making inferences about group differences using 

normal score transformations: the Bell-Doksum normal scores test (Bell & Doksum, 

1965), the Terry-Hoeffding normal scores test (Hoeffding, 1951; Terry, 1952), and the 

Van der Waerden normal scores test (Van der Waerden, 1952, 1953, 1956). Fisher and 

Yates (1949) and Bell and Doksum (1965) proposed using a random normal scores 

transformation, a procedure where ranks of original scores are replaced by randomly 

drawn normal deviates with corresponding ranks. Bradley (1968) refined this technique 

by limiting the variates drawn to those of a standard normal distribution, creating a more 

powerful form of the test statistic. As the deviates drawn in the Bell-Doksum test are 

random, two researchers analyzing the same data with this test may arrive at different 

conclusions. 

Hoeffding (1951) and Terry (1952) refined this procedure further to replace ranks 

of the original observations with expected normal scores. As these expected normal 

scores are constant values dependent only upon sample size, researchers have calculated 

tables of expected normal order statistics (Harter, 1961) and tables of appropriate chi-

square critical values for total sample sizes less than or equal to 20 (Klotz, 1964). Owen 

(1962) tabled large sample approximation normal theory critical values. Sawilowsky 

(1990) refers to the data transformation procedure outlined in the Bell-Doksum test as a 

random normal scores transformation (RNST) and the procedure outlined in the Terry-

Hoeffding test as the expected normal scores transformation (ENST). 
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Expected normal scores transformations are adaptable to any hypothesis in 

experimental research designs (Conover, 1980; Gibbons, 1985). Lu and Smith (1979) 

found the ENST robust and powerful compared to the parametric ANOVA F in the one-

way design. Sawilowsky (1985, 1989) found both the RNST and ENST to be more 

powerful and robust than the rank transform test but less powerful and robust than the 

parametric F test in the 2 x 2 x 2 design with small sample sizes (n = 2) for various 

distributions. Feir-Walsh and Toothaker (1974) concluded that the Terry-Hoeffding 

normal scores test yielded less power than the ANOVA F test and the Kruskal-Wallis test 

for total sample sizes as large as 200. Wiedermann and Alexandrowicz (2011) 

demonstrated a modified Terry-Hoeffding test is a robust and powerful normal scores test 

for two-sample paired data when compared to the t test. 

Van der Waerden (1952, 1953, 1956) proposed an alternative normal scores 

transformation. This test uses a rank transformation in combination with the inverse 

standard normal distribution function. The Van der Waerden normal scores 

transformation is as follows: 

 𝑧𝑖𝑗 =  Φ−1 (
𝑅(𝑋𝑖𝑗)

𝑁 + 1
) (3) 

where Xij represents the ith value in the jth group (j = 1, 2, …, k), R(Xij) represents the 

pooled rank of observation Xij, and Φ-1 denotes the inverse standard normal distribution 

function. The chi-square test statistic is calculated as: 

 𝑊 =  
1

𝑠2
∑ 𝑛𝑗

𝑘

𝑗=1

𝑧𝑗̅
2 (4) 

where nj represents the sample size for the jth group, 
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 𝑠2 =  
1

𝑁 − 1
∑ ∑ 𝑧𝑖𝑗

2

𝑛𝑗

𝑖=1

𝑘

𝑗=1

 (5) 

and  

 𝑧𝑗̅ =  
1

𝑛𝑗
∑ 𝑧𝑖𝑗

𝑛𝑗

𝑖=1

 (6) 

The null hypothesis that k groups yield the same observations is rejected when: 

 𝑊 >  𝜒𝛼,𝑘−1
2  (7) 

McSweeney (1967) studied the fit of the asymptotic chi-square distribution of the 

normal scores test statistic in the presence of small sample sizes for the one-way c-sample 

design, concluding that both the Terry-Hoeffding and Van der Waerden normal scores 

test statistics with small sample sizes are well-approximated by the chi-square 

distribution with k – 1 degrees of freedom. Transforming original scores to normal scores 

for conducting a one-way two- or more-sample test of differences in central tendency can 

result in equivalent or larger power than traditional parametric t and F tests, the Wilcoxon 

rank sum test (also called the Mann-Whitney U test), and the Kruskal-Wallis test while 

still controlling the Type I error rate at or near the nominal level (Hodges & Lehmann, 

1961; Keselman & Toothaker, 1973; Kruskal & Wallis, 1952; Mann & Whitney, 1947; 

McSweeney, 1967; Penfield, 1994; Penfield & McSweeney, 1968; Thompson et al., 

1966; Van der Laan, 1964; Van der Laan & Oosterhoff, 1965, 1967; Wilcoxon, 1945, 

1947). This power increase is shown to be larger for large- or heavy-tailed distributions 

(Curtis & Marascuilo, 1992; Lu & Smith, 1979; Padmanabhan, 1977). Zimmerman 

(1996) demonstrated via simulation that rank transformations, including the Van der 
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Waerden normal scores transformation, can be used to reduce group variance 

heterogeneity in two-sample tests of location difference. 

Minimal research has been performed in modifying the McSweeney test by using 

a normal scores data transformation in place of the rank transformation after the 

alignment procedure or in using the aligned normal scores data transformation to test for 

interaction effects. Van der Laan (1964) hypothesizes that normal scores tests might 

perform better than rank transformation tests for samples from asymmetric distributions. 

Weber (1972) explores replacing the rank transformation data step in the McSweeney test 

with a Terry-Hoeffding normal scores data transformation. Results of the test outlined by 

Weber indicate power competitive to the ANOVA F test when testing for interaction 

effects in the 2 x 3 design with n = 10 cell sample sizes but Type I error rates slightly 

larger than nominal α levels. No research has been performed in modifying the 

McSweeney test by using a Van der Waerden normal scores data transformation in place 

of the rank transformation data step. This research aims to address this gap by conducting 

a study that explores using the alignment data transformation in combination with the 

Van der Waerden normal scores transformation while using the analysis of variance F 

and the McSweeney Hy test statistics to test for interaction effects for skewed and 

asymmetrical distributions. 

Methods 

 Monte Carlo simulation methods are employed to compare Type I error rates and 

power properties of the following four test procedures for two-factor main and interaction 

effects: (1) the ANOVA F test , (2) a Van der Waerden normal scores transformation 

tested with an F statistic (V-F), (3) an alignment data transformation in combination with 
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a Van der Waerden normal scores transformation tested with an F statistic (A-V-F), and 

(4) an alignment transformation in combination with a Van der Waerden normal scores 

transformation using the McSweeney HY statistic (A-V-M). It should be noted here that 

method 4 (A-V-M), an alignment transformation in combination with a Van der Waerden 

normal scores transformation tested by the McSweeney statistic, is an equivalent test to 

performing a Van der Waerden normal scores transformation with use of a chi-square test 

statistic subsequent to performing an alignment data transformation. Usage of the 

parametric analysis of variance F test assumes the residuals are normally distributed, an 

assumption Micceri (1989) found violated in all observed cases in education and social 

sciences measures. Thus, simulation of residuals in this study employs distributions that 

Micceri observed as frequently occurring in education and social science measures in his 

meta study, including the Laplace distribution, the logistic distribution, and distributions 

having mild to severe measures of asymmetry. 

Measures of skew and asymmetry lying several standard deviations above the 

main body of the distribution are common in psychometric and achievement measures 

(Micceri, 1989; Walberg et al., 1984). Of the 440 measures observed by Micceri (1989), 

49.1 percent had extreme to exponential tail weights and 30.9 percent had extreme to 

exponential asymmetry (note, the exponential distribution has a skewness of 2). 

Additionally, when using small sample sizes, the value of skewness present in the sample 

may increase due to potential sample-population mismatch (Tipton et al., 2017). Thus, in 

comparing the varying tests in the presence of increasingly severe measures of 

asymmetry, each of three different skewed distributions in combination with four 

different levels of the skew parameter is used to simulate the residuals. A skew-normal 
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distribution is used with mean of 0, a variance of 1, and skew values of 0, 1, 2, and 3. A 

skewed logistic distribution is used with a mean of 0, a variance of 1, and skew values of 

1, 2, 3, and 4. An asymmetric Laplace distribution is used with a mean of 0, a variance of 

1, and skew values of 1, 0.5, 0.33, and 0.25. A skew-normal distribution with a skew 

value of 0, a skew logistic with a skew of 1, and an asymmetric Laplace with an 

asymmetric value of 1 are symmetric distributions. As the skew parameters are altered, 

the skew becomes increasingly larger to the right. 

 These twelve distributions are crossed with seven levels of cell sample size (5, 10, 

30, 50, 100, 200, and 500) and all possible combinations of the presence or absence of 

each main and interaction effect in the two-factor design. It is common for researchers 

who are considering nonparametric methods to select a method based on asymptotic 

relative efficiency, though this ratio assumes large sample sizes and is not realistically 

representative of research study conditions faced by researchers in educational and social 

science fields. Thus, the total sample sizes selected for this study, ranging from N = 20 to 

N = 2000, are more representative of these common research conditions. Additionally, 

using a range of smaller to larger cell sample sizes will reveal power and robustness 

properties that occur as a result of potential sample-population mismatch that can occur 

by random chance in small sample sizes (Tipton et al., 2017). The nonnull effect size is 

chosen for each cell sample size such that the power to detect each effect would be 80% 

under the standard normal theory, that is, for n = 5 the nonnull effect size simulated is 

0.67, for n = 10 the nonnull effect size is 0.46, for n = 30 the nonnull effect size is 0.26, 

for n = 50 the nonnull effect size is 0.20, for n = 100 the nonnull effect size is 0.14, for n 

= 200 the nonnull effect size is 0.10, and for n = 500 the nonnull effect size is 0.06. 
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Because the designs simulated are two-way designs with two levels of each main effect, 

these effect sizes result in 80% power under the standard normal theory for their 

respective cell sample sizes for both main and interaction effects given each effect has 1 

degree of freedom. This raw effect size is added or subtracted from each cell based on 

level of each main and interaction effect. As normality with a mean of 0 and a variance of 

1 is assumed in generation of the effect sizes, these raw effect sizes are standardized 

effect sizes for the normal distribution as well. A nominal α of 0.05 is used. In total, this 

creates 672 configurations of residual distributions, sample sizes, and effect size 

combinations that are simulated with 5,000 replications to obtain the Type I error rate and 

power. The R programming language (R Core Team, 2021) was used in conjunction with 

the ‘sn’, ‘glogis’, and ‘LaplacesDemon’ packages to simulate the data. Table 1 

summarizes the design factors used. 

Table 4.1 

Design factors and levels of each design factor used in simulation 

 

Design Factor: Levels: 

Residual distributions 3 

Severities of skew for each residual distribution 4 

Cell sample size 7 

Null and nonnull main and interaction effect combinations 8 

 

Using 5,000 simulations creates a 95% margin of error of 0.006 for the Type I 

error estimates and a 95% margin of error of 0.011 for the power estimates under 

standard normal theory. The 95% margin of error of 0.006 for Type I error estimates is 

close to the stringent error band interval of 0.005 proposed by Bradley (1978) for 

examining the robustness of Monte Carlo simulated Type I error rates for hypothesis 

testing. This error band interval becomes ±0.005 when a nominal α of 0.05 is used. 
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Bradley also proposed a second more liberal error band that becomes ±0.02 when a 

nominal α of 0.05 is used, and that is the band adopted in this study to indicate whether a 

method is robust. That is, any proposed hypothesis test with an empirical Type I error rate 

greater than 0.07 is deemed as not being robust to violations of symmetry or adequate 

sample size assumptions for that simulated design. Thus, power comparisons for the 

proposed hypothesis tests will only be considered for those tests maintaining an empirical 

Type I error rate that is less than or equal to 0.07 for each simulated design. Proposed 

testing methods will be called slightly conservative or slightly liberal if they maintain an 

empirical Type I error rate which deviates less than 0.01 below and above 0.05, 

respectively. Methods will be called conservative or liberal if their Type I error rate 

deviates 0.02 or more from 0.05. Both main and interaction effects are tested and 

recorded, yet the primary empirical measures of interest refer to performance of a test for 

detecting an interaction. Results are provided in table format for all simulated designs. 

Results 

 These results contain the comparison of the testing methods ability to detect an 

interaction. Restated, the testing methods are: (1) the ANOVA F test , (2) a Van der 

Waerden normal scores transformation tested with an F statistic (V-F), (3) an alignment 

data transformation in combination with a Van der Waerden normal scores transformation 

tested with an F statistic (A-V-F), and (4) an alignment transformation in combination 

with a Van der Waerden normal scores transformation using the McSweeney HY statistic 

(A-V-M). The focus is on the empirical Type I error rate and the power results when 

testing for interaction in the presence and absence of main effects for all three 

distributions.  
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Skew-normal Distribution 

 No method is rejected for Type I error rates being too liberal for any combination 

of significant main effects, skew severity, and cell sample size. While no Type I error 

rates for any method exceed the liberal error band of 0.07, Type I error rates often fall 

between 0.05 and 0.07 for smaller cell sample sizes. For the n = 5 cell sample size, 

methods V-F, A-V-F, and the ANOVA F test often result in similar Type I error rates with 

method A-V-M having a Type I error rate around 1 percentage point larger. Hornsby 

Brown (2023) notes strong conservative results of the rank transform test when testing 

for an interaction effect in the presence of two nonnull main effects. Replacing the rank 

transformation with a Van der Waerden normal scores transformation (method V-F) does 

not mitigate this problematic conservatism sufficiently enough to consider this a viable 

test as shown in tables 2 and 3. While method V-F is not viable for this reason, favorable 

results are noted for methods A-V-F and A-V-M. As noted in tables 2, 3, 4, and 5, method 

A-V-F maintains Type I error rates comparable to the ANOVA F test and equal to larger 

power than the ANOVA F test for all levels of skew and cell sample sizes. At n = 10 or 

larger cell sample sizes, method A-V-M maintains Type I error rates less than 0.06 levels 

for all combinations of significant main effects, cell sample sizes, and severity of skew. 

Method A-V-M also maintains competitive power to the ANOVA F and method A-V-F 

for all levels of skew severity. 
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Table 4.2 

Type I Error and Power Results for Skew-normal with two nonnull main effects and a 

skew parameter of 0 

 

Cell 

Size: 
5 10 30 50 100 200 500 

Method: Null interaction effect 
ANOVA 0.0494 0.0488 0.0436 0.0522 0.0494 0.051 0.052 
V-F 0.0206 0.0418 0.042 0.0514 0.0498 0.0498 0.0514 
A-V-F 0.0494 0.0504 0.0472 0.0534 0.0488 0.0494 0.052 
A-V-M 0.0602 0.0548 0.0486 0.054 0.0494 0.0494 0.0522 
 Nonnull interaction effect 
ANOVA 0.7946 0.791 0.7918 0.7982 0.8088 0.791 0.8076 
V-F 0.6278 0.756 0.7844 0.7938 0.8058 0.7912 0.8066 
A-V-F 0.7806 0.784 0.787 0.7948 0.8074 0.7912 0.8068 
A-V-M 0.8064 0.798 0.7924 0.7986 0.8084 0.7914 0.807 

 

Table 4.3 

Type I Error and Power Results for Skew-normal with two nonnull main effects and a 

skew parameter of 3 

 

Cell 

Size: 
5 10 30 50 100 200 500 

Method: Null interaction effect 
ANOVA 0.0484 0.0516 0.0502 0.0542 0.052 0.0528 0.052 
V-F 0.0028 0.0268 0.0502 0.0592 0.0538 0.0548 0.0528 
A-V-F 0.0512 0.0514 0.052 0.055 0.0512 0.0534 0.051 
A-V-M 0.0596 0.0564 0.0532 0.0556 0.0512 0.0538 0.0512 
 Nonnull interaction effect 
ANOVA 0.9868 0.9902 0.9892 0.9886 0.9886 0.991 0.989 
V-F 0.7396 0.9516 0.9828 0.9868 0.9886 0.9934 0.9944 
A-V-F 0.983 0.9896 0.9928 0.9938 0.9952 0.9962 0.9954 
A-V-M 0.9868 0.9914 0.9928 0.994 0.9952 0.9962 0.9954 
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Table 4.4 

Type I Error and Power Results for Skew-normal with one null and one nonnull main 

effect and a skew parameter of 3 

 

Cell 

Size: 
5 10 30 50 100 200 500 

Method: Null interaction effect 
ANOVA 0.0524 0.0498 0.048 0.054 0.0574 0.0496 0.0496 
V-F 0.0516 0.0488 0.0492 0.0522 0.0578 0.0504 0.0492 
A-V-F 0.052 0.0498 0.048 0.0514 0.0584 0.0506 0.0488 
A-V-M 0.0614 0.0546 0.049 0.0528 0.0586 0.0506 0.0488 
 Nonnull interaction effect 
ANOVA 0.985 0.9878 0.9906 0.9888 0.9898 0.9908 0.9892 
V-F 0.9818 0.987 0.9956 0.993 0.9958 0.9952 0.995 
A-V-F 0.984 0.988 0.9958 0.9942 0.9956 0.9956 0.9948 
A-V-M 0.9884 0.9898 0.996 0.9942 0.9958 0.9956 0.9948 

 

Table 4.5 

Type I Error and Power Results for Skew-normal with two null main effects and a skew 

parameter of 3 

 

Cell 

Size: 
5 10 30 50 100 200 500 

Method: Null interaction effect 
ANOVA 0.0446 0.047 0.0498 0.051 0.0528 0.0464 0.0484 
V-F 0.0476 0.049 0.0492 0.0542 0.052 0.0468 0.0474 
A-V-F 0.0464 0.0496 0.0502 0.053 0.0528 0.0462 0.0468 
A-V-M 0.0558 0.0542 0.0522 0.0536 0.0534 0.0462 0.0468 
 Nonnull interaction effect 
ANOVA 0.992 0.9872 0.9888 0.9906 0.9912 0.9926 0.9894 
V-F 0.989 0.988 0.9936 0.9946 0.995 0.9974 0.996 
A-V-F 0.9858 0.987 0.993 0.9942 0.9944 0.9972 0.996 
A-V-M 0.9898 0.9874 0.9936 0.9942 0.9946 0.9972 0.9962 

 

Skew Logistic Distribution 

 There is no test rejected for the skewed logistic design for Type I error rates being 

too liberal. There is no combination of skew severity, significant main effects, or cell 

sample sizes for which Type I error rate for any method exceeds 0.06. As shown in tables 

6 and 7, method V-F performs conservatively in the presence of two nonnull main effects 

for the logistic distribution as well leading to less power than other methods including the 
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ANOVA F test in the presence of small cell sample sizes. This result further supports the 

conclusion that method V-F should be rejected as a viable test. As shown in tables 6, 7, 8, 

and 9, methods A-V-F and A-V-M result in larger power than the ANOVA F test for all 

combinations of significant main effects, cell sample sizes, and skew severities. The 

tabled Type I error rate results also indicate that methods A-V-F and A-V-M are robust for 

the skew logistic distribution. 

 

Table 4.6 

Type I Error and Power Results for Skew Logistic with two nonnull main effects and a 

skew parameter of 1 

 

Cell 

Size: 
5 10 30 50 100 200 500 

Method: Null interaction effect 
ANOVA 0.0502 0.056 0.0506 0.0476 0.0448 0.0486 0.0506 
V-F 0.044 0.056 0.0512 0.0468 0.0464 0.0488 0.0496 
A-V-F 0.0494 0.053 0.0494 0.0478 0.046 0.0498 0.0496 
A-V-M 0.0598 0.0588 0.0506 0.0486 0.046 0.05 0.0498 
 Nonnull interaction effect 
ANOVA 0.3476 0.3394 0.3384 0.3338 0.3488 0.3286 0.341 
V-F 0.329 0.3442 0.3516 0.3474 0.3634 0.3462 0.3526 
A-V-F 0.3512 0.346 0.3562 0.3482 0.3662 0.3442 0.353 
A-V-M 0.3812 0.3616 0.3606 0.3524 0.3672 0.345 0.3532 
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Table 4.7 

Type I Error and Power Results for Skew Logistic with two nonnull main effects and a 

skew parameter of 4 

 

Cell 

Size: 
5 10 30 50 100 200 500 

Method: Null interaction effect 
ANOVA 0.0464 0.0518 0.0516 0.053 0.0516 0.0464 0.0462 
V-F 0.0326 0.0502 0.0496 0.0548 0.0534 0.0474 0.0462 
A-V-F 0.0446 0.0524 0.051 0.053 0.0514 0.0484 0.0472 
A-V-M 0.055 0.0568 0.052 0.0532 0.0522 0.0486 0.0472 
 Nonnull interaction effect 
ANOVA 0.5354 0.5272 0.5242 0.5308 0.5268 0.5208 0.5304 
V-F 0.446 0.5116 0.5458 0.564 0.571 0.5716 0.5862 
A-V-F 0.5412 0.5612 0.5786 0.5898 0.5868 0.5864 0.5946 
A-V-M 0.5756 0.577 0.5838 0.5912 0.589 0.5878 0.5948 

 

Table 4.8 

Type I Error and Power Results for Skew Logistic with one null and one nonnull main 

effect and a skew parameter of 4 

 

Cell 

Size: 
5 10 30 50 100 200 500 

Method: Null interaction effect 
ANOVA 0.0448 0.0518 0.0484 0.0442 0.0504 0.0564 0.047 
V-F 0.0482 0.049 0.0484 0.0426 0.0488 0.0566 0.0462 
A-V-F 0.0434 0.0492 0.0476 0.0438 0.0476 0.0562 0.0466 
A-V-M 0.0534 0.0548 0.049 0.0448 0.048 0.0562 0.0466 
 Nonnull interaction effect 
ANOVA 0.546 0.5384 0.5224 0.5422 0.5126 0.5232 0.5326 
V-F 0.5478 0.5696 0.5842 0.6026 0.5804 0.5882 0.5924 
A-V-F 0.555 0.5648 0.5838 0.5966 0.5812 0.589 0.5926 
A-V-M 0.5924 0.5808 0.5892 0.5994 0.5824 0.5894 0.5932 
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Table 4.9 

Type I Error and Power Results for Skew Logistic with two null main effects and a 

skew parameter of 4 

 

Cell 

Size: 
5 10 30 50 100 200 500 

Method: Null interaction effect 
ANOVA 0.049 0.0488 0.0536 0.0488 0.053 0.0446 0.049 
V-F 0.0524 0.0504 0.0526 0.049 0.0528 0.0444 0.0486 
A-V-F 0.0504 0.0516 0.0528 0.0506 0.053 0.0454 0.0488 
A-V-M 0.0598 0.0556 0.0536 0.0512 0.0534 0.0456 0.0488 
 Nonnull interaction effect 
ANOVA 0.5336 0.5366 0.5348 0.5372 0.5276 0.531 0.5278 
V-F 0.5554 0.5818 0.588 0.5962 0.5908 0.5922 0.59 
A-V-F 0.54 0.5708 0.583 0.5954 0.5896 0.5922 0.5884 
A-V-M 0.5794 0.5858 0.587 0.598 0.5902 0.5928 0.5884 

 

Asymmetric Laplace Distribution 

 Once again, no method is rejected for having Type I error rates outside the liberal 

error band of 0.07. Methods A-V-F and A-V-M have strong Type I error rate and power 

results across all asymmetry severities, cell sample size, and significant main effect 

combinations for the asymmetric Laplace distribution. As shown in tables 10, 11, 12, 13, 

and 14, the Type I error rates of all methods remain consistently below 0.06. 

Furthermore, methods A-V-F and A-V-M consistently result in considerably larger power 

than the ANOVA F test. The tabled Type I error rate and power results indicate that 

methods A-V-F and A-V-M are more robust for the asymmetric Laplace distribution than 

the ANOVA F test. Method V-F shows similar conservatism for small cell sample sizes in 

the presence of two nonnull main effects but both Type I error and power results 

converge to A-V-F and A-V-M method results as cell sample size increases. 
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Table 4.10 

Type I Error and Power Results for Asymmetric Laplace with two null main effects and 

an asymmetry parameter of 1 

 

Cell 

Size: 
5 10 30 50 100 200 500 

Method: Null interaction effect 
ANOVA 0.0456 0.0484 0.0524 0.0474 0.0506 0.046 0.0508 
V-F 0.0512 0.0478 0.054 0.0488 0.0486 0.046 0.0512 
A-V-F 0.0494 0.0506 0.0522 0.0488 0.0492 0.0456 0.0516 
A-V-M 0.0574 0.0538 0.0534 0.0492 0.0494 0.0462 0.0516 
 Nonnull interaction effect 
ANOVA 0.8024 0.7924 0.805 0.8016 0.8076 0.8122 0.8028 
V-F 0.8184 0.8336 0.875 0.8784 0.8848 0.8892 0.8926 
A-V-F 0.8028 0.8278 0.8712 0.8738 0.8828 0.8884 0.8922 
A-V-M 0.8308 0.8374 0.8736 0.8754 0.8828 0.8886 0.8922 

 

Table 4.11 

Type I Error and Power Results for Asymmetric Laplace with two nonnull main effects 

and an asymmetry parameter of 1 

 

Cell 

Size: 
5 10 30 50 100 200 500 

Method: Null interaction effect 
ANOVA 0.0454 0.041 0.0534 0.0486 0.049 0.0476 0.05 
V-F 0.0184 0.0362 0.0542 0.0478 0.0496 0.0484 0.051 
A-V-F 0.046 0.043 0.0544 0.0472 0.0498 0.0468 0.0522 
A-V-M 0.0562 0.0476 0.0564 0.0484 0.05 0.047 0.0522 
 Nonnull interaction effect 
ANOVA 0.8066 0.7964 0.8014 0.8078 0.8002 0.797 0.8038 
V-F 0.619 0.7606 0.8412 0.8586 0.8656 0.8684 0.8808 
A-V-F 0.8102 0.8308 0.8644 0.8786 0.8724 0.8764 0.8834 
A-V-M 0.8332 0.843 0.8674 0.8796 0.8728 0.8768 0.884 
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Table 4.12 

Type I Error and Power Results for Asymmetric Laplace with two null main effects and 

an asymmetry parameter of 1/4 

 

Cell 

Size: 
5 10 30 50 100 200 500 

Method: Null interaction effect 
ANOVA 0.0444 0.0498 0.0476 0.047 0.054 0.0506 0.0516 
V-F 0.052 0.049 0.046 0.0484 0.0524 0.0522 0.0516 
A-V-F 0.045 0.0466 0.0426 0.046 0.0488 0.0476 0.0508 
A-V-M 0.0536 0.049 0.043 0.0458 0.0484 0.0478 0.0506 
 Nonnull interaction effect 
ANOVA 0.1998 0.1874 0.1758 0.1708 0.165 0.1762 0.1734 
V-F 0.3058 0.3422 0.4132 0.447 0.4564 0.48 0.5086 
A-V-F 0.2498 0.2866 0.3564 0.3966 0.42 0.455 0.4914 
A-V-M 0.2732 0.2932 0.3572 0.3976 0.4198 0.4546 0.4914 

 

Table 4.13 

Type I Error and Power Results for Asymmetric Laplace with one null and one nonnull 

main effect and an asymmetry parameter of 1/4 

 

Cell 

Size: 
5 10 30 50 100 200 500 

Method: Null interaction effect 
ANOVA 0.0478 0.0478 0.0514 0.0484 0.05 0.0488 0.049 
V-F 0.0586 0.0516 0.0524 0.0482 0.0508 0.0488 0.0488 
A-V-F 0.0514 0.0444 0.0462 0.0474 0.0472 0.0454 0.0494 
A-V-M 0.0592 0.046 0.0462 0.0476 0.0472 0.0452 0.0492 
 Nonnull interaction effect 
ANOVA 0.2014 0.1786 0.1702 0.1704 0.1692 0.164 0.163 
V-F 0.2728 0.3046 0.3882 0.404 0.4534 0.4662 0.4822 
A-V-F 0.2432 0.276 0.3598 0.3838 0.4336 0.4554 0.4764 
A-V-M 0.2684 0.285 0.3604 0.3836 0.4334 0.4552 0.4762 
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Table 4.14 

Type I Error and Power Results for Asymmetric Laplace with two nonnull main effects 

and an asymmetry parameter of 1/4 

 

Cell 

Size: 
5 10 30 50 100 200 500 

Method: Null interaction effect 
ANOVA 0.0524 0.0548 0.0506 0.046 0.048 0.0496 0.0486 
V-F 0.0548 0.0546 0.051 0.0528 0.0502 0.0522 0.0506 
A-V-F 0.0514 0.0512 0.0452 0.0464 0.0468 0.0498 0.0514 
A-V-M 0.0588 0.0528 0.0452 0.0464 0.047 0.05 0.0514 
 Nonnull interaction effect 
ANOVA 0.1998 0.187 0.1804 0.1696 0.1628 0.1724 0.1674 
V-F 0.2026 0.2406 0.3134 0.3406 0.3732 0.4058 0.4484 
A-V-F 0.2406 0.2834 0.3662 0.3902 0.4274 0.4562 0.483 
A-V-M 0.2628 0.2926 0.368 0.3912 0.4272 0.4556 0.4828 

 

Discussion 

 The purpose of this study is to explore the usage of Van der Waerden normal 

scores data transformation in combination with the rank transform, aligned rank 

transform, and McSweeney nonparametric tests. Methods A-V-F and A-V-M maintained 

Type I error rate for all simulated designs indicating these tests are robust to Type I error 

rate even when used in combinations with small sample sizes. Method A-V-F uses an 

alignment procedure in combination with a Van der Waerden normal scores data 

transformation prior to referring the transformed data to the ANOVA F statistic. Method 

A-V-M uses an alignment procedure in combination with a Van der Waerden normal 

scores data transformation prior to referring the transformed data to the McSweeney 

statistic. Both methods A-V-F and A-V-M occasionally demonstrated mildly liberal Type 

I error rates for small (n = 5 and n = 10) cell sample sizes. However, using the Type I 

error rate cutoff bands outlined by Bradley (1978), both methods remain viable tests for 

all cell sample sizes. Comparing these results to those of Hornsby Brown (2023), 
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replacing the rank transformation with a Van der Waerden normal scores transformation 

does improve small sample size Type I error rates for the McSweeney test. 

 Power results likewise remained consistent or improve when using a Van der 

Waerden normal scores transformation in combination with the McSweeney statistic. 

Methods A-V-F and A-V-M are consistently as or more powerful than the ANOVA F test 

for all simulated distributions. Notably, for the asymmetric Laplace distribution, using a 

Van der Waerden normal scores transformation with the McSweeney test provided for 

larger power increases relative to the ANOVA F test than the base McSweeney test does 

as cell sample size increases based on the results of Hornsby Brown (2023). Based on 

these results, it is safe to conclude that using an alignment procedure in combination with 

a Van der Waerden normal scores data transformation provides for a more powerful test 

with both the ANOVA F statistic and McSweeney Hy statistic compared to the ANOVA F 

test. Both of these testing methods provide for a more powerful and more robust test than 

the ANOVA F test. 

 The tabled results demonstrate the power loss consequence of incorrectly 

assuming the normality assumption is satisfied when analyzing data. Effect size for each 

cell sample size is chosen to yield 80% power under standard normal theory. It is evident 

from the tabled results that the ANOVA F test suffers a more significant power reduction 

due to lack of robustness than the two viable nonparametric testing methods. Results 

demonstrate using the nonparametric methods can mitigate power loss by as much as 6 

percentage points for the logistic distribution and 31 percentage points for the Laplace 

distribution with larger power mitigation occurring as skew parameters increase. For 

researchers in the behavioral and social sciences, fields where Micceri (1989) notes 
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virtually no measures are normally distributed, the recommended nonparametric tests 

provide increased power in testing for both main and interaction effects than when using 

the parametric analysis of variance F test while making no assumption regarding residual 

distribution. 

 The results from this study demonstrate that using a Van der Warden normal 

scores data transformation in combination with the McSweeney test provides for a more 

powerful and more robust test than the ANOVA F test. The provided alternative 

nonparametric tests appear to be risk-free alternatives to the parametric ANOVA F test 

that are just as powerful when normality assumptions are satisfied and more powerful 

when normality assumptions are not satisfied for the simulated distributions. This broad 

result is beneficial for researchers situated in the behavioral and social sciences in need of 

powerful and robust statistical inference methods for the factorial two- or more- way 

design. Further research is needed to ensure these favorable results remain consistent in 

the presence of other common distributions, heteroskedasticity, unequal group sample 

sizes, and for more complex designs. 

This research employs simulations of residuals following only normal, logistic, 

and Laplace distributions with varying severities of skew. I studied the nonparametric 

tests based on ranks using four levels of skew severity for each of the three mentioned 

distributions. This study includes only a two-factor design with two levels of each main 

effect. This line of research naturally reveals several subsequent lines of inquiry. As 

Micceri (1989) acknowledges, there should also be acknowledgement in the field of 

psychometric measures of the prevalence of multimodality, lumpiness, and other 

frequently occurring deviations from normality in population distributions apart from 
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skew. Additionally, further study is needed regarding the suggested nonparametric tests in 

the presence of designs having more than two levels of each main effect, having 

unbalanced cell sample sizes, and in designs where cell residuals have different 

distributions including but not limited to different severities of skew. Given the results 

demonstrated in this study and the prevalence of nonparametric techniques introduced, a 

proportionate increase in efficacy comparisons for these methods is needed to ensure that 

robust testing methods which require fewer distributional assumptions than traditional 

parametric tests do not fall through the cracks and their potential left untapped. 
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CHAPTER 5 

DISCUSSION 

 Researchers in the behavioral and social sciences are often faced with data which 

does not satisfy the traditional assumptions of common parametric methods of analysis. 

Micceri’s (1989) meta-analysis analyzed 440 large sample educational and psychological 

measures and found all to be significantly nonnormal via some class of contamination. Of 

the 440 measures analyzed by Micceri, only 15.2% had both tail weights at or about 

normal, 50.2% had at least one tail heavier than normal, and 14.8% had both tail weights 

less than normal. Of the remainder, 3.2% were concluded as uniform and 16.6% were 

concluded as Laplace. Additionally, of the 440 measures, 40.7% were concluded as 

moderately asymmetric, 19.5% as extremely asymmetric, and 11.4% as having 

exponential asymmetry. Of the categories for the measures analyzed by Micceri, 

nonnormal tail weights and asymmetry is demonstrated most prevalent in measures of 

criterion mastery, where 60% of measures were found to be distributed as Laplace, 37.1% 

of measures had extreme asymmetry, and 57.1% of measures had exponential asymmetry. 

Thus, Micceri suggests the existence of normally distributed data in educational and 

psychological measures is as improbable as the existence of a unicorn. Micceri’s findings 

not only directly conclude the prevalence of the Laplace distribution in education and 

social science measures but also provide evidence of the prevalence of the logistic 

distribution by highlighting the frequency of mixed-normal measures and criterion 

mastery measures. The logistic distribution is often used to approximate mixed-



121 
 

normal distributions, model distributions of subjective quantitative measures, and is 

prevalent in item response theory analysis (Hellstrom, 1993; Noortgate et al., 2003; 

Savalei, 2006). This would imply that researchers in these fields who limit their methods 

of analysis to those dependent upon the assumption of normality will rarely be using 

methods as robust and powerful as available alternative nonparametric methods of 

analysis. Given the prevalence of measures distributed as Laplace, measures distributed 

as logistic, and measures having varying degrees of asymmetry, methods of analysis 

capable of handling these variables are crucial for researchers in education and social 

science fields.  

 In this dissertation, I examine select rank-based and normal score-based 

nonparametric tests of interaction to determine their power and robustness in the presence 

of deviations from normality. My study focuses on the performance of seven 

nonparametric tests of interaction effects and compares these to the commonly used 

parametric test for the 2 x 2 design using Monte Carlo simulation techniques. Power and 

Type I error rates are recorded and tabled for each test using data from normal, logistic, 

and Laplace distributions with various levels of a skew parameter. I explore these 

distributions with all combinations of null and nonnull main and interaction effects and 

with a range of cellsample sizes so as to study both small- and large-sample robustness. I 

use a nominal α of 0.05 for all simulations.  

Nonparametric Tests Based on Ranks 

 In this study I compared four nonparametric tests of interaction along with the 

parametric ANOVA F test. These methods are: (1) the rank transform test, (2) the aligned 

rank transform test, (3) the McSweeney test, and (4) the rank transform Thompson T test. 
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The rank transform test procedure is to pool and rank all data prior to referring the 

transformed data to the ANOVA F statistic. The aligned rank test procedure is to align the 

data to remove both main effects estimated from the observed data prior to pooling, 

ranking, and referring the data to the ANOVA F statistic. The McSweeney test procedure 

is also to align the data prior to pooling and ranking. However, the McSweeney statistic is 

calculated as: 

 𝐻𝑌 = (𝑁 − 1) (
𝑆𝑆𝐸𝑓𝑓𝑒𝑐𝑡

𝑆𝑆𝑇𝑜𝑡𝑎𝑙
) (1) 

The null hypothesis of no effect for the McSweeney test is rejected when: 

 𝐻𝑌 >  𝜒𝛼,𝑑𝑓𝐸𝑓𝑓𝑒𝑐𝑡

2  (2) 

The rank transform Thompson T test procedure is to pool and rank the data, the ANOVA 

F statistic is calculated, and significance is also determined using a chi-square test 

statistic as in the McSweeney test. 

 For large cell sample sizes, the rank transform test provides power that is similar 

to the aligned rank transform test and the McSweeney test while also maintaining Type I 

error rates at the nominal level. However, in the presence of two nonnull interaction 

effects, the test has lower power and Type I error rates when testing for an interaction. 

This power reduction ranges from 0-24 percentage points for the skew-normal, 0-4 

percentage points for the skew logistic, and 0-24 percentage points for the asymmetric 

Laplace compared to the aligned rank transform test and the McSweeney test, with larger 

power reductions occurring as cell sample size decreases and severity of the skew 

parameter increases. Furthermore, when testing for interactions in the presence of two 

nonnull main effects, the rank transform test yields less power than the ANOVA F test for 

small cell sample sizes (n = 5) as well. 
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Power and Type I error rates converge to those of the aligned rank transform test 

and McSweeney test as cell sample sizes increase, reaching competitive levels for all 

distributions and skew severities once n = 50. Given the increasing feasibility of using the 

aligned rank transform test for large sample sizes with the modern computing power that 

is available, coupled with the robustness of this test for all combination of null and 

nonnull main effects, I recommend the rank transform test be dismissed as a viable test. 

The aligned rank transform test has power that compares favorably to that of the 

ANOVA F test for all distributions, severities of skew, null and nonnull main and 

interaction effect combinations, and cell sample sizes. The power of the aligned rank 

transform test is near that of the ANOVA F test when the underlying population follows a 

skew-normal distribution, becomes 5 percentage points higher for the logistic 

distribution, and as much as 15 percentage points higher for the Laplace distribution. The 

test has mildly liberal Type I error rates for small cell sample sizes before converging to 

rates comparable to the ANOVA F test but never exceeds a liberal error band cutoff of 

0.07. Thus, the aligned rank transform test offers a robust and powerful nonparametric 

alternative to the ANOVA F test that has little risk, at least for the designs used in this 

research. The robust Type I error and power properties of the aligned rank transform test 

observed in this study align with previous research supporting the robustness of the test in 

the presence of nonnormal data (Blair & Sawilowsky, 1990; Fawcett & Salter, 1984; 

Groggel,1987; Mansouri & Chang, 1995; Salter & Fawcett, 1985, 1993). I recommend 

the aligned rank transform test for use instead of the ANOVA F test under empirical 

conditions similar to the designs included in this study. Furthermore, given it is robust in 

the presence of two nonnull main effects unlike the rank transform test, never yields Type 
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I error rates greater than 0.07 for any cell sample size, and has competitive power for all 

cell sample sizes compared to other nonparametric tests, I also recommend using this test 

instead of the rank transform test, McSweeney test, and Thompson T test. 

The McSweeney test has power similar to the aligned rank transform test but has 

liberal Type I error rates for small (n = 5) cell sample sizes. These Type I error rates often 

exceed the liberal error band cutoff of 0.07. The liberal Type I error rates for small cell 

sample sizes observed in this study align with results in previous research (Harwell, 

1991; Kelley et al., 1994; McSweeney, 1967; Toothaker & Newman, 1994). While the 

Type I error rate converges to that of the ANOVA F test for larger cell sample sizes, the 

test is not a competitive, robust, and risk-free alternative to the parametric F test as is the 

case with the aligned rank transform test for all cell sample sizes. Therefore, I do 

recommend selecting the McSweeney test instead of the ANOVA F test once cell sample 

sizes become n = 10 or larger, though the aligned rank transform test continues to be a 

good choice for these cell sizes, as well as for smaller sample sizes. 

The Thompson T test is conservative when it is used to test for an interaction 

effect in the presence of two nonnull main effects, as is the case with the rank transform 

test. Also akin to the rank transform test, power and Type I error rates converge to those 

of the aligned rank transform test and McSweeney test as cell sample size increases. 

However, unlike the rank transform test, the Thompson T test has Type I error rates that 

exceed the liberal error band cutoff of 0.07 for varying designs when cell sample sizes are 

small (n = 5). Due to these properties, I recommend choosing the aligned rank transform 

test instead of the Thompson T  test regardless of cell sample size. 
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Nonparametric Tests Based on Normal Scores 

 Although no prior research has explored power and robustness properties of the 

McSweeney test to the presence of increasing severities of skew for various distributions, 

the liberal Type I error rates of the McSweeney test for small cell sample sizes found in 

this study is consistent with results from previous research using different distributions 

(Harwell, 1991; Kelley et al., 1994; McSweeney, 1967; Toothaker & Newman, 1994). 

McSweeney (1967) suggested using a normal scores data transformation as a method of 

potentially mitigating the small sample liberal Type I error rates. Weber (1972) reported 

favorable results when replacing the rank transformation data step in the McSweeney test 

with a Terry-Hoeffding normal scores data transformation. No prior research has explored 

the viability of replacing the rank transformation with a Van der Waerden normal scores 

data transformation when using the McSweeney statistic. The three novel nonparametric 

tests for interaction that I proposed are the equivalent of using the rank transform test, the 

aligned rank transform test, and the McSweeney test, yet with a Van der Waerden normal 

scores data transformation in place of a rank transformation. These methods can be 

viewed as: (1) a Van der Waerden normal scores data transformation in combination with 

an F statistic (V-F), (2) an alignment data transformation prior to a Van der Waerden 

normal scores data transformation in combination with an F statistic (A-V-F), and (3) an 

alignment data transformation prior to a Van der Waerden normal scores data 

transformation in combination with the McSweeney statistic (A-V-M). 

Power and Type I error properties vary across the proposed testing methods. I 

recommended excluding the rank transform test as a viable method due to conservative 

Type I error results and smaller power than the ANOVA F, aligned rank transform, and 
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McSweeney tests when testing for an interaction effect in the presence of two nonnull 

main effects. Further, replacing the rank transformation with a Van der Waerden normal 

scores transformation (V-F) does not mitigate this effect to a degree that would warrant 

recommendation of this procedure. However, power levels of method V-F in the presence 

of two nonnull main effects converge to those of method A-V-F at around n = 30 cell 

sample sizes for the standard normal and skew-normal distributions and at around n = 10 

for the skew logistic distribution with small skew severities, but do not converge up to n 

= 500 cell sample sizes for the skew logistic distribution with large skew severities and 

for the asymmetric Laplace distribution. In contrast, the test yields favorable results when 

testing for an interaction effect in the presence of two null main effects. In the presence of 

two null main effects, method V-F has competitive power to the ANOVA F test for the 

skew-normal distribution, larger power (1-6 percentage points) for the skew logistic 

distribution for all cell sample sizes, and larger power (1-32 percentage points) for the 

asymmetric Laplace, increasing as cell sample sizes and skew severity increases. Method 

V-F has larger power than the ANOVA F test for all designs studied once cell sample 

sizes become n = 30 or larger. Despite these comparisons, I cannot recommend method 

V-F because the Type I error properties of the method are dependent on the presence of 

null or nonnull main effects for small cell sample sizes. 

Methods A-V-F and A-V-M are strong competitors to the parametric ANOVA F 

test. A-V-F and A-V-M occasionally result in mildly liberal Type I error rates for small (n 

= 5 and n = 10) cell sample sizes. However, using the Type I error rate cutoff bands 

outlined by Bradley (1978), both methods remain viable tests for all cell sample sizes. 

Comparing these results to those of the base McSweeney test, replacing the rank 
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transformation with a Van der Waerden normal scores transformation does improve small 

sample size Type I error rates for the McSweeney test. Power results likewise remain 

consistent or improve when using a Van der Waerden normal scores transformation in 

combination with the McSweeney statistic. Methods A-V-F and A-V-M are consistently 

as or more powerful than the ANOVA F test for all simulated distributions and cell 

sample sizes. Method A-V-F has power similar to the ANOVA F test for the standard 

normal and all skew-normal designs and has power advantages over the ANOVA F test as 

large as 6 percentage points for the skew logistic and 31 percentage points for the 

asymmetric Laplace, with the power advantage increasing as skew severity and cell 

sample size increases. Method A-V-M also has power similar to that of the ANOVA F test 

and method A-V-F for the standard normal and all skew-normal designs. Method A-V-M 

demonstrates as high, or higher power, than method A-V-F for the skew logistic and 

asymmetric Laplace. This power advantage is as large as 3 percentage points for the skew 

logistic and 2 percentage points for the asymmetric Laplace, increasing in power as cell 

sample size decreases. Power of method A-V-M is larger than method A-V-F for small 

cell sample sizes with the skew logistic and asymmetric Laplace before the two methods 

converge to similar power as cell sample sizes increase. These results suggest that using 

an alignment procedure in combination with a Van der Waerden normal scores data 

transformation provides for strong testing potential using either the F statistic or 

McSweeney Hy statistic. 

Both methods A-V-F and A-V-M provide for a more powerful and more robust 

test than the ANOVA F test. Furthermore, both methods A-V-F and A-V-M demonstrate 

power competitive to the aligned rank transform test for all distributions and cell sample 
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sizes. For small cell sample sizes (n = 5 and n = 10), the aligned rank transform test 

demonstrates power advantages of up to 2 percentage points for the skew logistic 

distribution and up to 3 percentage points for the asymmetric Laplace compared to 

method A-V-F. However, method A-V-F converges to power levels up to 3 percentage 

points larger for the skew logistic and up to 7 percentage points larger for the asymmetric 

Laplace once cell sample sizes become n = 50. Method A-V-M has competitive power to 

the aligned rank transform test for small cell samples sizes for the skew logistic and 

asymmetric Laplace distributions. Once cell sample sizes become n = 50, method A-V-M 

converges to power levels up to 1 percentage point larger for the skew logistic and up to 6 

percentage points larger for the asymmetric Laplace compared to the aligned rank 

transform test. In summary, the choice between the aligned rank transform test and 

method A-V-F is dependent on cell sample size but I recommend method A-V-M over the 

aligned rank transform test for all cell sample sizes. 

 In this study, I found that three nonparametric tests of interactions are powerful, 

robust, and risk-free alternatives to the ANOVA F test. These three tests are: (1) the 

aligned rank transform test, (2) the aligned rank transform test with a Van der Waerden 

normal scores data transformation in place of the rank transformation (method A-V-F), 

and (3) the McSweeney test with a Van der Waerden normal scores data transformation in 

place of the rank transformation (method A-V-M). I can recommend all three of these 

tests as alternatives to the ANOVA F test for the studied distributions. I recommend 

method A-V-M as the best of these three for the test of interaction with the studied and 

simulated distributions because of its robust Type I error properties and strong small- and 

large-sample power properties compared to the other two nonparametric tests. The 
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McSweeney statistic used in combination with an alignment data transformation and a 

Van der Waerden normal scores data transformation yields the most favorable power and 

Type I error properties of all methods compared. There is strong potential in this testing 

method that requires further study to ensure strong power and robust Type I error rates 

when residuals have nonnormal distributions other than the ones included in this study. 

The following example demonstrates the benefit of using the recommended 

nonparametric tests when the distribution of the residuals indicates skewed or nonnormal 

data. 

Example 

 Consider a hypothetical study in which a researcher will test for the presence of 

nonnull effects for two dichotomous categorical treatment variables on a criterion 

mastery response variable for a balanced sample of 60 students. (The data for this study 

are Appendix C.) These factors in this study might be, for example, the presence or 

absence of supplemental tutoring (factor A) and a traditional and alternative method of 

instruction (factor B). Though the effects of both tutoring and alternative instruction are 

of interest, the first step is to determine if these two factors interact so that the effect of 

one treatment differs for the different levels of the other treatment. The common course 

of action is for a researcher to assume normal sampling distributions for the effects of 

interest. Typically, this is a reasonable assumption because of the sample size of 60. 

Thus, the researcher performs a parametric analysis of variance setting the 

maximum tolerance for errors at 0.05 for each of the three hypothesis tests in this study 

(these being factor A, factor B, and the interaction of factor A with factor B). Table 3 is 

the ANOVA table using the example data. 
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Table 5.1 

Example ANOVA Table 

 

 Df SS MSE F-value p-value 

A 1 0.1 0.057 0.01 0.922 

B 1 5.9 5.87 0.987 0.325 

A*B 1 14.3 14.278 2.4 0.127 

Residuals 56 333.2 5.95   

 

From these results, we conclude that there is a small interaction effect present in the 

sample but we do not have substantial evidence to infer an interaction effect in the larger, 

target population (p = 0.13). The researcher would not conclude that application of either 

or both treatment effects has an influence on the response variable. 

Rather than assuming normal sampling distributions, we will first look at the 

distribution of residuals using our model estimates. From Figure 3, a histogram of these 

residuals, we note a skew effect and kurtosis that could potentially be better modelled 

with a Laplace distribution instead of a normal distribution. Micceri (1989) noted that 

60% of observed criterion mastery measures he studied were Laplace distributed. 
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Figure 5.1 

Histogram of Residuals 

 

This preliminary analysis prompts us to the McSweeney test with a Van der Waerden 

normal scores data transformation in place of the rank transformation (Method A-V-M). 

Table 4 is the results using the McSweeney test with a Van der Waerden normal score 

data transformation. 

Table 5.2 

Example data results using Method A-V-M 

 

 Effect SS HY p-value 

A 0.0869 0.0964 0.7562 

B 6.3761 7.0725 0.0078 

A*B 7.858 8.7163 0.0032 

 

From this table, the researcher would not only conclude and infer the presence of a 

significant interaction effect between the treatments, but also a significant effect for 

treatment B as well. The estimated effect size for treatment B is 0.3128 and the estimated 

effect size for the interaction effect is 0.48782. The researcher would conclude that 
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treatment B has a positive impact on the response variable and that the two treatment 

effects used in combination also have a positive impact on the response variable. 

The original data was simulated using a 0 effect size for the A effect, a 0.2 effect 

size for the B effect, and a 0.55 effect size for the interaction effect. A researcher using 

the nonparametric method recommended in this dissertation, the McSweeney test in 

combination with a Van der Waerden normal scores data transformation, would have 

concluded both the presence of the B and interaction effects and generalized the effect 

sizes to the larger, target population using the predetermined alpha level. 

Limitations and Future Research 

 I used simulations of residuals following only normal, logistic, and Laplace 

distributions with varying severities of skew. I studied the nonparametric tests based on 

ranks using seven levels of skew severity and the nonparametric tests based on normal 

scores using four levels of skew severity. This study includes only a two-factor design 

with two levels of each main effect. 

 Results tabled in this dissertation provide clear evidence that robust 

nonparametric methods are needed for the behavioral and social sciences. The parametric 

ANOVA F test suffers severe power reduction when residuals are not normally 

distributed. Further research into nonparametric methods capable of testing for 

interaction effects is needed. The novel nonparametric test proposed and simulated of 

aligning the observed data, performing a Van der Waerden normal scores data 

transformation, and calculating the McSweeney Hy statistic requires further research both 

in its asymptotic properties and its performance in the presence of research design aspects 

not represented in this study. These include designs with residuals from distributions 



133 
 

other than those simulated in this dissertation, designs with more than two main effects, 

designs with more than two levels of each main effect, and more complicated designs 

than the two- or more-groups factorial design. Of particular interest is the uniform 

distribution, which is the only distribution not simulated in the designs included in this 

dissertation. This may not be relevant, as Micceri (1989) found the uniform distribution 

to comprise 3.2% of achievement and psychometric measures. 

 Using nonparametric tests based on ranks, including those tests based on normal 

scores, to make inference regarding an interaction effect requires discussion of the 

interpretation of results when the test result is a significant p-value. A significant p-value 

resulting from a nonparametric test of interaction based on ranks implies the existence of 

a nonzero interaction effect between levels of the treatment effects. For the nonparametric 

tests included in this study, there is no method of quantifying the effect size of the 

significant interaction effect other than resorting to the group mean differences a 

researcher would typically calculate when using the parametric ANOVA F test. Research 

is needed to determine if there are more accurate methods of measuring a significant 

interaction effect size when using nonparametric tests of interaction based on ranks. 

Conclusion 

 The results of this dissertation provide evidence of the consequences of 

incorrectly assuming normally distributed data. Results demonstrate an incorrect 

normality assumption in combination with use of the ANOVA F test can result in over 45 

percentage points in less power than expected when the distribution is logistic rather than 

normal and 60 percentage points in less power than expected when the distribution is a 

Laplace distribution, the actual power loss depending upon sample size and skew 
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severity. While the recommended nonparametric tests for interaction do not always 

ensure the 80% power based on the normal theory effect size used in this study, the tests 

mitigated the power loss by as much as 6 percentage points for the logistic distribution 

and 31 percentage points for the Laplace distribution depending upon sample size and 

skew severity. 

 A statistically significant p-value resulting from a nonparametric test of 

interaction based on ranks or normal scores implies the existence of a nonzero interaction 

effect between levels of the treatment effects. This effect can be estimated using group 

mean differences just as when using the common parametric ANOVA F test. Statistically 

significant results of a nonparametric test of interaction imply there is an interaction 

effect, just as when using the parametric F test, and the same measures of the size of this 

effect remain valid. 

 Results presented in this dissertation provide evidence of a method for which 

researchers situated in the behavioral and social sciences can use the novel, proposed, and 

recommended McSweeney test with a Van der Waerden normal scores transformation to 

test hypotheses of significant main and interaction effects in the 2 x 2 design. The 

proposed test is adaptable to all factorial designs with categorical predictor variables, 

although further research is needed to ensure power and Type I error properties remain 

favorable for higher level designs. The McSweeney test with a Van der Waerden normal 

scores data transformation provides for a nonparametric test of interaction that is robust 

to Type I error, competitive to the ANOVA F test when normality can be safely assumed, 

and more powerful than the ANOVA F test for distributions concluded as those occurring 

in applied measures in the behavioral and social sciences by Micceri (1989). Restated, 
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these measures are predominantly those which are asymmetric, have larger tail weights 

than the normal distribution, or are Laplace. The results in this dissertation provide 

evidence that the McSweeney test with a Van der Waerden normal scores data 

transformation is more powerful than the ANOVA F test for all of the distributions found 

by Micceri (1989) as occurring in achievement and psychometric measures except for the 

uniform distribution, which Micceri found to comprise only 3.2% of observed measures. 

Therefore, it is strongly recommended that the McSweeney test with a Van der Waerden 

normal scores data transformation be used for analysis with achievement, psychometric, 

and other applied measures over the F test. It is hoped this dissertation contributes to the 

field of research on powerful and robust nonparametric tests of interaction, as well as the 

use of nonparametric methods in practice when such methods can help researchers have 

more power to detect effects. 
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APPENDIX A 

CHAPTER 3 R CODE 

#Create empty vectors for storing p-values. 

for (s in c(4, 3, 2, 1, 1/2, 1/3, 1/4)) { 

 

for (a in c(0, 0.199079)) { 

for (b in c(0, 0.199079)) { 

for (c in c(0, 0.199079)) { 

 

my.vector.anova.a <- vector() 

my.vector.rt.a <- vector() 

my.vector.art.a <- vector() 

my.vector.hl.a <- vector() 

 

my.vector.anova.b <- vector() 

my.vector.rt.b <- vector() 

my.vector.art.b <- vector() 

my.vector.hl.b <- vector() 

 

my.vector.anova.i <- vector() 

my.vector.rt.i <- vector() 

my.vector.art.i <- vector() 

my.vector.hl.i <- vector() 

 

my.vector.rt.i2 <- vector() 

my.vector.rt.i3 <- vector() 

 

#Open the loop to perform the simulation. 

for (i in 1:5000) {  
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mu = 0 

beta1 = a 

beta2 = b 

beta3 = c 

 

#Select cell sample size, distribution, and skew effect. 

 

A = c(rep(c(-1), 100), rep(c(1), 100)) 

B = rep(c(rep(c(-1), 50), rep(c(1), 50)), 2) 

e = ralaplace(200, 0, 1, s) 

 

 

y = mu + beta1*A + beta2*B + beta3*B*A + e 

 

 

my.data = data.frame(cbind(A, B, y)) 

 

my.data$A <- factor(my.data$A) 

my.data$B <- factor(my.data$B) 

 

#Create output for ANOVA F test and store p-values. 

 

aov.model = aov(y ~ A*B, data=my.data) 

 

 

my.vector.anova.a <- c(my.vector.anova.a,  

 summary(aov.model)[[1]][[1,"Pr(>F)"]]) 

my.vector.anova.b <- c(my.vector.anova.b,  

 summary(aov.model)[[1]][[2,"Pr(>F)"]]) 

my.vector.anova.i <- c(my.vector.anova.i,  

 summary(aov.model)[[1]][[3,"Pr(>F)"]]) 
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my.data$y.ranked <- rank(my.data$y) 

 

#Create model for rank transform test and store p-values. 

 

aov.model.rt = aov(y.ranked ~ A*B, data = my.data) 

 

 

my.vector.rt.a <- c(my.vector.rt.a,  

 summary(aov.model.rt)[[1]][[1,"Pr(>F)"]]) 

my.vector.rt.b <- c(my.vector.rt.b,  

 summary(aov.model.rt)[[1]][[2,"Pr(>F)"]]) 

my.vector.rt.i <- c(my.vector.rt.i,  

 summary(aov.model.rt)[[1]][[3,"Pr(>F)"]]) 

 

#Create model for aligned rank transform test and store p-values. 

 

art.model <- art(my.data$y ~ my.data$A * my.data$B) 

 

 

my.vector.art.a <- c(my.vector.art.a, anova(art.model)[[1,"Pr(>F)"]]) 

my.vector.art.b <- c(my.vector.art.b, anova(art.model)[[2,"Pr(>F)"]]) 

my.vector.art.i <- c(my.vector.art.i, anova(art.model)[[3,"Pr(>F)"]]) 

 

#Create models for McSweeney test and store p-values. 

 

align.interact <- art.model$aligned.ranks$`my.data$A:my.data$B` 

align.A <- art.model$aligned.ranks$`my.data$A` 

align.B <- art.model$aligned.ranks$`my.data$B` 

 

 

fit.A <- aov(align.A ~ A*B, data = my.data) 

summary(fit.A) 

 

df.T = summary(fit.A)[[1]][[1,"Df"]] +  
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 summary(fit.A)[[1]][[2,"Df"]] +  

 summary(fit.A)[[1]][[3,"Df"]] +  

 summary(fit.A)[[1]][[4,"Df"]] 

 

SS.G = summary(fit.A)[[1]][[1,"Sum Sq"]] 

 

SS.T = summary(fit.A)[[1]][[1,"Sum Sq"]] +  

 summary(fit.A)[[1]][[2,"Sum Sq"]] +  

 summary(fit.A)[[1]][[3,"Sum Sq"]] +  

 summary(fit.A)[[1]][[4,"Sum Sq"]] 

 

H <- df.T*SS.G/SS.T 

H 

 

p <- 1 - pchisq(H, summary(fit.A)[[1]][[1,"Df"]]) 

p 

 

 

my.vector.hl.a <- c(my.vector.hl.a, p) 

 

 

fit.B <- aov(align.B ~ A*B, data = my.data) 

summary(fit.B) 

 

df.T = summary(fit.B)[[1]][[1,"Df"]] +  

 summary(fit.B)[[1]][[2,"Df"]] +  

 summary(fit.B)[[1]][[3,"Df"]] +  

 summary(fit.B)[[1]][[4,"Df"]] 

 

SS.G = summary(fit.B)[[1]][[2,"Sum Sq"]] 

 

SS.T = summary(fit.B)[[1]][[1,"Sum Sq"]] +  

 summary(fit.B)[[1]][[2,"Sum Sq"]] +  

 summary(fit.B)[[1]][[3,"Sum Sq"]] +  
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 summary(fit.B)[[1]][[4,"Sum Sq"]] 

 

H <- df.T*SS.G/SS.T 

H 

 

p <- 1 - pchisq(H, summary(fit.B)[[1]][[2,"Df"]]) 

p 

 

my.vector.hl.b <- c(my.vector.hl.b, p) 

 

 

fit.inter <- aov(align.interact ~ A*B, data = my.data) 

summary(fit.inter) 

 

df.T = summary(fit.inter)[[1]][[1,"Df"]] +  

 summary(fit.inter)[[1]][[2,"Df"]] +  

 summary(fit.inter)[[1]][[3,"Df"]] +  

 summary(fit.inter)[[1]][[4,"Df"]] 

 

SS.G = summary(fit.inter)[[1]][[3,"Sum Sq"]] 

 

SS.T = summary(fit.inter)[[1]][[1,"Sum Sq"]] +  

  summary(fit.inter)[[1]][[2,"Sum Sq"]] +  

  summary(fit.inter)[[1]][[3,"Sum Sq"]] +  

  summary(fit.inter)[[1]][[4,"Sum Sq"]] 

 

H <- df.T*SS.G/SS.T 

H 

 

p <- 1 - pchisq(H, summary(fit.inter)[[1]][[3,"Df"]]) 

p 
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#Create model and store p-values for rank transform test 

#using Thompson statistic. 

 

my.vector.hl.i <- c(my.vector.hl.i, p) 

 

my.vector.rt.i2 <-  

  c(my.vector.rt.i2,  

 1 - pchisq(summary(aov.model.rt)[[1]][[3,"F value"]],  

 summary(aov.model.rt)[[1]][[3,"Df"]])) 

 

my.vector.rt.i3 <- c(my.vector.rt.i3,  

 1 - pchisq(summary(fit.inter)[[1]][[3,"F value"]],  

 summary(fit.inter)[[1]][[3,"Df"]])) 

 

} 

Print model effects, Type I error rates, and power. 

 

print("The skew effect") 

print(s) 

 

print("The A effect:") 

print(a) 

 

print("The B effect:") 

print(b) 

 

print("The Interaction effect:") 

print(c) 

 

print("A p-value:") 

print(NROW(my.vector.anova.a[my.vector.anova.a < 0.05]) /  

        NROW(my.vector.anova.a)) 

print(NROW(my.vector.rt.a[my.vector.rt.a < 0.05]) /  

 NROW(my.vector.rt.a)) 
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print(NROW(my.vector.art.a[my.vector.art.a < 0.05]) /  

 NROW(my.vector.art.a)) 

print(NROW(my.vector.hl.a[my.vector.hl.a < 0.05]) /  

 NROW(my.vector.hl.a)) 

 

print("B p-value:") 

print(NROW(my.vector.anova.b[my.vector.anova.b < 0.05]) /  

        NROW(my.vector.anova.b)) 

print(NROW(my.vector.rt.b[my.vector.rt.b < 0.05]) /  

 NROW(my.vector.rt.b)) 

print(NROW(my.vector.art.b[my.vector.art.b < 0.05]) /  

 NROW(my.vector.art.b)) 

print(NROW(my.vector.hl.b[my.vector.hl.b < 0.05]) /  

 NROW(my.vector.hl.b)) 

 

print("Interaction p-value:") 

print(NROW(my.vector.anova.i[my.vector.anova.i < 0.05]) /  

        NROW(my.vector.anova.i)) 

print(NROW(my.vector.rt.i[my.vector.rt.i < 0.05]) /  

 NROW(my.vector.rt.i)) 

print(NROW(my.vector.art.i[my.vector.art.i < 0.05]) /  

 NROW(my.vector.art.i)) 

print(NROW(my.vector.hl.i[my.vector.hl.i < 0.05]) /  

 NROW(my.vector.hl.i)) 

print(NROW(my.vector.rt.i2[my.vector.rt.i2 < 0.05]) /  

 NROW(my.vector.rt.i2)) 

print(NROW(my.vector.rt.i3[my.vector.rt.i3 < 0.05]) /  

 NROW(my.vector.rt.i3)) 

} 

} 

} 

} 
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APPENDIX B 

CHAPTER 4 R CODE 

#Create empty vectors for storing p-values. 

 

for (s in c(1, 1/2, 1/3, 1/4)) { 

 

for (a in c(0, 0.0626754)) { 

for (b in c(0, 0.0626754)) { 

for (c in c(0, 0.0626754)) { 

 

my.vector.anova.a <- vector() 

my.vector.nsanova.a <- vector() 

my.vector.ansanova.a <- vector() 

my.vector.ansanovam.a <- vector() 

 

my.vector.anova.b <- vector() 

my.vector.nsanova.b <- vector() 

my.vector.ansanova.b <- vector() 

my.vector.ansanovam.b <- vector() 

 

my.vector.anova.i <- vector() 

my.vector.nsanova.i <- vector() 

my.vector.ansanova.i <- vector() 

my.vector.ansanovam.i <- vector() 

 

my.vector.ans.i <- vector() 

 

#Open the loop to perform the simulation. 

 

for (i in 1:5000) { 
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mu = 0 

beta1 = a 

beta2 = b 

beta3 = c 

 

#Select cell sample size, distribution, and skew effect. 

 

A = c(rep(c(-1), 1000), rep(c(1), 1000)) 

B = rep(c(rep(c(-1), 500), rep(c(1), 500)), 2) 

e = ralaplace(2000, 0, 1, s) 

 

 

y = mu + beta1*A + beta2*B + beta3*B*A + e 

 

my.data = data.frame(cbind(A, B, y)) 

 

my.data$A <- factor(my.data$A) 

my.data$B <- factor(my.data$B) 

 

#Create output for ANOVA F test and store p-values. 

 

aov.model = aov(y ~ A*B, data=my.data) 

 

my.vector.anova.a <- c(my.vector.anova.a,  

 summary(aov.model)[[1]][[1,"Pr(>F)"]]) 

my.vector.anova.b <- c(my.vector.anova.b,  

 summary(aov.model)[[1]][[2,"Pr(>F)"]]) 

my.vector.anova.i <- c(my.vector.anova.i,  

 summary(aov.model)[[1]][[3,"Pr(>F)"]]) 

 

# Create model and record p-values for rank transform test 

# with a normal scores data transformation in place of rank. 

my.data$y.ns <- qnorm(rank(my.data$y)/(NROW(my.data$y)+1)) 
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aov.model.nsanova = aov(y.ns ~ A*B, data = my.data) 

 

my.vector.nsanova.a <-  

    c(my.vector.nsanova.a,  

 summary(aov.model.nsanova)[[1]][[1,"Pr(>F)"]]) 

my.vector.nsanova.b <-  

    c(my.vector.nsanova.b, 

 summary(aov.model.nsanova)[[1]][[2,"Pr(>F)"]]) 

my.vector.nsanova.i <-  

    c(my.vector.nsanova.i,  

 summary(aov.model.nsanova)[[1]][[3,"Pr(>F)"]]) 

 

# Create model and record p-values for aligned rank transform test 

# with a normal scores data transformation in place of rank. 

 

 

art.model <- art(my.data$y ~ my.data$A * my.data$B) 

 

align.interact <- art.model$aligned.ranks$`my.data$A:my.data$B` 

align.A <- art.model$aligned.ranks$`my.data$A` 

align.B <- art.model$aligned.ranks$`my.data$B` 

 

ans.A <- qnorm(align.A/(NROW(align.A)+1)) 

ans.B <- qnorm(align.B/(NROW(align.B)+1)) 

ans.interact <- qnorm(align.interact/(NROW(align.interact)+1)) 

 

 

fit.A <- aov(ans.A ~ A*B, data = my.data) 

my.vector.ansanova.a <- c(my.vector.ansanova.a,  

 summary(fit.A)[[1]][[1,"Pr(>F)"]]) 

 

fit.B <- aov(ans.B ~ A*B, data = my.data) 

my.vector.ansanova.b <- c(my.vector.ansanova.b,  
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 summary(fit.B)[[1]][[2,"Pr(>F)"]]) 

 

fit.interact <- aov(ans.interact ~ A*B, data = my.data) 

my.vector.ansanova.i <-  

  c(my.vector.ansanova.i, summary(fit.interact)[[1]][[3,"Pr(>F)"]]) 

 

# Calculate and record p-values for McSweeney test 

# with a normal scores data transformation in place of rank. 

 

df.T = summary(fit.A)[[1]][[1,"Df"]] +  

 summary(fit.A)[[1]][[2,"Df"]] +  

 summary(fit.A)[[1]][[3,"Df"]] +  

 summary(fit.A)[[1]][[4,"Df"]] 

 

SS.G = summary(fit.A)[[1]][[1,"Sum Sq"]] 

 

SS.T = summary(fit.A)[[1]][[1,"Sum Sq"]] +  

 summary(fit.A)[[1]][[2,"Sum Sq"]] +  

 summary(fit.A)[[1]][[3,"Sum Sq"]] +  

 summary(fit.A)[[1]][[4,"Sum Sq"]] 

 

H <- df.T*SS.G/SS.T 

H 

 

p <- 1 - pchisq(H, summary(fit.A)[[1]][[1,"Df"]]) 

p 

 

my.vector.ansanovam.a <- c(my.vector.ansanovam.a, p) 

 

 

df.T = summary(fit.B)[[1]][[1,"Df"]] +  

 summary(fit.B)[[1]][[2,"Df"]] +  

 summary(fit.B)[[1]][[3,"Df"]] +  

 summary(fit.B)[[1]][[4,"Df"]] 
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SS.G = summary(fit.B)[[1]][[2,"Sum Sq"]] 

 

SS.T = summary(fit.B)[[1]][[1,"Sum Sq"]] +  

 summary(fit.B)[[1]][[2,"Sum Sq"]] +  

 summary(fit.B)[[1]][[3,"Sum Sq"]] +  

 summary(fit.B)[[1]][[4,"Sum Sq"]] 

 

H <- df.T*SS.G/SS.T 

H 

 

p <- 1 - pchisq(H, summary(fit.B)[[1]][[2,"Df"]]) 

p 

 

my.vector.ansanovam.b <- c(my.vector.ansanovam.b, p) 

 

 

df.T = summary(fit.interact)[[1]][[1,"Df"]] +  

 summary(fit.interact)[[1]][[2,"Df"]] +  

 summary(fit.interact)[[1]][[3,"Df"]] +  

 summary(fit.interact)[[1]][[4,"Df"]] 

 

SS.G = summary(fit.interact)[[1]][[3,"Sum Sq"]] 

 

SS.T = summary(fit.interact)[[1]][[1,"Sum Sq"]] +  

 summary(fit.interact)[[1]][[2,"Sum Sq"]] +  

 summary(fit.interact)[[1]][[3,"Sum Sq"]] +  

 summary(fit.interact)[[1]][[4,"Sum Sq"]] 

 

H <- df.T*SS.G/SS.T 

H 

 

p <- 1 - pchisq(H, summary(fit.interact)[[1]][[3,"Df"]]) 

p 



173 
 

 

my.vector.ansanovam.i <- c(my.vector.ansanovam.i, p) 

 

ns.factor = c(rep(c(2), NROW(align.interact)/4), rep(c(1),  

 NROW(align.interact)/2), rep(c(2), NROW(align.interact)/4)) 

 

# record p-values for Van der Waerden test of interaction. 

# This is run only as a test as it should match the  

# McSweeney test with a Van der Waerden normal scores 

# transformation in place of the rank transformation. 

 

my.data.2 <- data.frame(cbind(align.interact, ns.factor)) 

my.data.2$ns.factor <- factor(my.data.2$ns.factor) 

nsi.test <- VanWaerdenTest(align.interact ~ ns.factor,  

 data = my.data.2) 

 

my.vector.ans.i <- c(my.vector.ans.i, nsi.test$p.value) 

} 

 

# Print model effects, Type I error rates, and power. 

 

print("The skew effect") 

print(s) 

 

print("The A effect:") 

print(a) 

 

print("The B effect:") 

print(b) 

 

print("The Interaction effect:") 

print(c) 

 

print("A p-value:") 
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print(NROW(my.vector.anova.a[my.vector.anova.a < 0.05]) /  

 NROW(my.vector.anova.a)) 

print(NROW(my.vector.nsanova.a[my.vector.nsanova.a < 0.05]) /  

 NROW(my.vector.nsanova.a)) 

print(NROW(my.vector.ansanova.a[my.vector.ansanova.a < 0.05]) /  

 NROW(my.vector.ansanova.a)) 

print(NROW(my.vector.ansanovam.a[my.vector.ansanovam.a < 0.05]) /  

 NROW(my.vector.ansanovam.a)) 

 

print("B p-value:") 

print(NROW(my.vector.anova.b[my.vector.anova.b < 0.05]) /  

 NROW(my.vector.anova.b)) 

print(NROW(my.vector.nsanova.b[my.vector.nsanova.b < 0.05]) /  

 NROW(my.vector.nsanova.b)) 

print(NROW(my.vector.ansanova.b[my.vector.ansanova.b < 0.05]) /  

 NROW(my.vector.ansanova.b)) 

print(NROW(my.vector.ansanovam.b[my.vector.ansanovam.b < 0.05]) /  

 NROW(my.vector.ansanovam.b)) 

 

print("Interaction p-value:") 

print(NROW(my.vector.anova.i[my.vector.anova.i < 0.05]) /  

 NROW(my.vector.anova.i)) 

print(NROW(my.vector.nsanova.i[my.vector.nsanova.i < 0.05]) /  

 NROW(my.vector.nsanova.i)) 

print(NROW(my.vector.ansanova.i[my.vector.ansanova.i < 0.05]) /  

 NROW(my.vector.ansanova.i)) 

print(NROW(my.vector.ansanovam.i[my.vector.ansanovam.i < 0.05]) /  

 NROW(my.vector.ansanovam.i)) 

print(NROW(my.vector.ans.i[my.vector.ans.i < 0.05]) /  

 NROW(my.vector.ans.i)) 

} 

} 

} 

} 
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APPENDIX C 

CHAPTER 5 EXAMPLE DATA 

Factor A Level Factor B Level Response y 

-1 -1 3.115813 

-1 -1 0.664418 

-1 -1 0.804796 

-1 -1 1.065934 

-1 -1 1.751445 

-1 -1 0.643708 

-1 -1 4.83077 

-1 -1 11.93704 

-1 -1 2.290986 

-1 -1 0.556997 

-1 -1 0.178869 

-1 -1 0.647733 

-1 -1 1.233566 

-1 -1 0.200879 

-1 -1 2.652717 

-1 1 5.064044 

-1 1 1.486174 

-1 1 0.872977 

-1 1 0.753693 

-1 1 2.951995 

-1 1 -0.38633 

-1 1 2.375272 

-1 1 1.79895 

-1 1 0.862123 

-1 1 2.399837 

-1 1 0.112025 

-1 1 8.202698 

-1 1 0.813087 

-1 1 0.479686 

-1 1 -0.46117 

1 -1 -0.00509 

1 -1 0.108623 

1 -1 7.207883 

1 -1 0.115328 
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1 -1 -0.4595 

1 -1 -0.25915 

1 -1 0.790421 

1 -1 -0.40838 

1 -1 6.560586 

1 -1 -0.82946 

1 -1 -0.71608 

1 -1 -0.49341 

1 -1 -0.31225 

1 -1 1.333793 

1 -1 6.231697 

1 1 2.649382 

1 1 4.484691 

1 1 5.423211 

1 1 2.771467 

1 1 3.097686 

1 1 2.309422 

1 1 0.959578 

1 1 1.224494 

1 1 3.382787 

1 1 4.397402 

1 1 1.185864 

1 1 2.589569 

1 1 2.849444 

1 1 2.968131 

1 1 2.59024 
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