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Abstract

This dissertation focuses on theory and application of discrete data methods, particu-

larly approaches to over- and underdispersion relative to the Poisson distribution and

an application of random forest and logistic regression modeling. The first chapter

derives a score test for over- and underdispersion in the heaped generalized Pois-

son distribution. Equi-, over-, and underdispersed heaped generalized Poisson and

heaped negative binomial data are simulated to evaluate the performance of the score

test by comparing the power it achieves to that of Wald and likelihood ratio tests.

We find that the score test we derive performs comparably to both the Wald and

likelihood ratio tests. The second chapter explores the application and limitations of

a model for the dispersion parameter in the double Poisson distribution utilizing a

logistic-like link function. Data are simulated under various dispersion structures and

a set of models assuming different maximum dispersion values are estimated for each.

Through the simulation and a case study, we assess the application of the proposed

model and identify potential improvements to aid in its effective utilization. Finally,

the third chapter evaluates the performance of, and identifies important items in, a

screening and a diagnostic tool for tic disorders in children. We also compare their

results in terms of their ability to correctly predict tics in children and determine

that the random forest models are more effective at reducing Type II errors.
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Chapter 1

Derivation of a Score Test for Over- and

Underdispersion Based on the Heaped

Generalized Poisson Distribution

Two of the most common problems encountered when modeling count data are heap-

ing and overdispersion. Heaping occurs when subjects fail to report exact counts and

arises due to subjects’ digit preferences or their tendency to round estimations. As

heaping is a measurement error, it may lead to biased estimation due to increased

variance if left unaddressed.

The term overdispersion indicates that the variance exceeds the mean, violat-

ing the assumption of equidispersion inherent in the Poisson distribution, that is

E(Y )=Var(Y ). Failure to properly address excess variance can lead to underestima-

tion of standard errors and, thus, incorrect inference about regression parameters.

Although the Poisson model is the standard approach to analyze such count data,

there are no inherent mechanisms in the distribution to deal with either phenomena.

One proposed technique to handle heaped count data is to utilize a mixture of re-

scaled distributions [13]. A mixture of re-scaled Poisson distributions can be used in

the case of equidispersion, however, in the presence of overdispersion, an alternative

distribution must be used. Although there are many possibilities [19, 40, 11, 36], the

distribution that will be the focus of this paper is the generalized Poisson [10].

To justify the use of a mixture of rescaled generalized Poisson distributions rather

than a mixture of rescaled Poisson distributions, analysts must present evidence
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against the assumption of equidispersion. Likelihood ratio and Wald tests provide

two possible justifications, however Rao’s score test has the advantage of only requir-

ing estimation under the null hypothesis [32, 33]. Therefore, we present a derivation

of the score test for overdispersion based on a heaped generalized Poisson model and

evaluate the performance of the test’s power through simulation.

1.1 Heaped Generalized Poisson

The heaped generalized Poisson is a mixture distribution comprising of m+1 mixture

components and their associated weights. The mixture components are the gener-

alized Poisson distributions PC with mean µ and dispersion parameter α modeling

reporting behaviors B = 1, ...,m+ 1. Their corresponding mixture weights assume a

multinomial probability function given by PM , which models the probability of each

behavior.

The probability mass function (PMF) for the generalized Poisson is given by,

PC(Yi = yi) = θi(θi + αyi)yi−1 exp(−θi − αyi)
yi!

, yi = 0, 1, 2, ... (1.1)

where θi > 0 and max(−1,−θi/4) < α < 1. The mean and variance are then,

E(Yi) = µi = θi
1− α

Var(Yi) = θi
(1− α)3 = 1

(1− α)2E(Yi)

From the noted relationship between the mean and variance, it is clear that when

α > 0, there is overdispersion relative to the mean and when α < 0 there is under-

dispersion. We can also see that when α = 0, the distribution reduces to the Poisson

with parameter θi.
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Behaviors B = 2, ...,m + 1 correspond to reporting on the heaping values k =

k2, ..., km+1. Thus, a respondent under behavior m would provide a response that is

heaped on a multiple of km. Note that, given the notation, we assume m different

known heaping values. Under behavior 1, respondents provide exact counts. This

can also be described as heaping on k = 1.

Suppose we have a vector of count responses Y = (Y1, ..., Yn) where Yi and Yj

are independent and identically distributed for all i 6= j. To estimate the mixture

components, we associate covariatesX and parameters β with the mean µb via the log-

link function, log(kbµb)=X β. Note that this is equivalent to log(µb)=X β− log(kb),

thus the link functions for all behaviors are the same save for the offset term log(kb).

The mixture weights are estimated via a multinomial model using covariates Z and

parameters γb [20]. Taking all this, the probability model is given by,

P (Y = y) =
m+1∑
b=1

PMb
(B = b|Z,γb)PCb

(Y = y

kb
|µb = exp(Xβ − log(k)), α)Ikb

, (1.2)

where

Ikb
= I(y mod kb = 0),

PM1(B = 1|Z,γb) = 1
1 + exp(Zγ2) + ...+ exp(Zγm+1) , and

PMb
(B = b|Z,γb) = exp(Zγb)

1 + exp(Zγ2) + ...+ exp(Zγm+1) , b = 2, ...,m+ 1.

1.2 Derivation of the Score Test

Suppose Y = Y1, Y2, ..., Yn, is an independent, identically distributed sample from the

heaped GP density function heaped on multiples of k1, k2...km+1 where k1 = 1. The

log-likelihood is then,

3



L =
n∑
i=1

log


m+1∑
b=1

PMb
(B = b|Z,γb)PCb

(Y = y

kb
|µb = exp(Xβ − ln(k), α)Ikb


=

n∑
i=1

log


m+1∑
b=1

PMb
PCb

Ikb


=

n∑
i=1

logLi.

(1.3)

Taking derivatives in terms of α gives,

∂L
∂α

=
n∑
i=1

1
Li

m+1∑
b=1

PMb

∂PCb

∂α
Ikb

(1.4)

=
n∑
i=1

{∑m+1
b=1 PMb

Ikb
PCb

Ab∑m+1
b=1 PMb

Ikb
PCb

}
(1.5)

and

∂2L
∂α2 =

n∑
i=1

1
Li

m+1∑
b=1

PMb

∂2PCb

∂α2 Ikb
−

n∑
i=1

[ 1
Li

m+1∑
b=1

PMb

∂PCb

∂α
Ikb

]2
(1.6)

=
n∑
i=1

{∑m+1
b=1 PMb

Ikb
PCb

(A2
b −Bb)∑m+1

b=1 PMb
Ikb
PCb

}
−

n∑
i=1

{∑m+1
b=1 PMb

Ikb
PCb

Ab∑m+1
b=1 PMb

Ikb
PCb

}2

, (1.7)

where

Ab = −1
1− α + (µb − yb) + (yb − 1)(yb − µb)

µb(1− α) + αyb
(1.8)

Bb = 1
(1− α)2 + (yb − 1)(yb − µb)2

[µb(1− α) + αyb]2
(1.9)

The score test statistic for testing H0 : α = 0 against the alternative H1 : α 6= 0 is

then,

S(α) =

[
∂L
∂α

]2
E
[
− ∂2L

∂α2

] , (1.10)
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evaluated at β = β̂, γ = γ̂ and α = 0. Under these conditions, PCb
is the probability

function of the Poisson with mean µ = µ̂ and

Ab = −1 + (µ̂b − yb) + (yb − 1)(yb − µ̂b)
µ̂b

(1.11)

Bb = 1 + (yb − 1)(yb − µ̂b)2

µ̂2 . (1.12)

If we consider the case in which there is no heaping (m = 0), the score test statistic

simplifies to

1
2n
[ n∑
i=1

(y − µ)2 − y
µ

]2
, (1.13)

matching the result given in Yang et al and, thus, extending it to the case of heaping

[43]. Full details of the score test statistic calculation are provided in the Appendix.

1.3 Simulation Study

The simulation study conducted in Stata seeks to compare the proposed score test

with the Wald and likelihood ratio tests [38]. The heapr package in Stata was

modified to include our derived score test [13]. Empirical powers of the score, Wald,

and likelihood ratio tests for the dispersion parameter in the heaped generalized

Poisson model are examined. Data are simulated based on a heaped generalized

Poisson distribution (both over- and underdispersed) and a heaped negative binomial

distribution (only overdispersed).

Data were simulated using the heaped generalized Poisson distribution and the

heaped negative binomial distribution such that,

kbE(Y) = kbµb = exp(1 + 0.25x1 − 0.25x2) (1.14)

.
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where x1i and x2i are generated from continuous uniform [0, 1] distributions. We

simulate two heaping behaviors k2 = 3 and k3 = 4. Recall k1 = 1, corresponding to

reports of true values.

Using a series of different values of the dispersion parameter, α, in the heaped

generalized Poisson and the probability of success on a single trial, p, in the negative

binomial, samples of size n = 100, 250, and 500 are taken from both the heaped gen-

eralized Poisson and the heaped negative binomial distributions. Power estimations

for each situation are based on 10,000 replications.

To test the presence of over- or underdispersion in the data, we fit a heaped

Poisson and a heaped generalized Poisson regression model with the same covariates,

x1 and x2, then conduct Wald and likelihood ratio tests as well as a score test based

on equation (1.10). The significance level of each test is set as α = 0.05. As we are

testing for both over- and underdispersion (H0 : vs. H1 :), this is a two-sided test

and the asymptotic distribution is χ2
1. Thus, the critical value is χ2

1,1−α = 3.84 under

the nominal level. The empirical power of the tests can be calculated as,

#(S > χ2
1,1−α)

R
,

which is the proportion of times S is greater than our critical value based on R =

10, 000 replications. Results for the empirical power calculations for the data simu-

lated based on a heaped generalized Poisson distribution are provided in Table A.1

and Figure A.1.

When the dispersion parameter α = 0, that is the true model is a heaped Poisson

model, we expect the power of the tests to be equal to the significance level, 0.05.

Results suggest that the score test tends to reject more often than expected in this

case, indicating a preference toward the heaped generalized Poisson relative to the

Wald and likelihood ratio tests. Larger sample sizes dampen this preference, however.

As dispersion values increase, we expect the power of the tests to increase as well.
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This is generally true, however, when sample sizes are small, we see slight decreases

in power for all three tests when there are small increases in the dispersion parameter

(e.g. α = 0.01 relative to α = 0). This effect is lessened by increases in the sample

size. For all tests and sample sizes, n = 100, 250 and 500, power begins steadily

increasing when α = 0.06.

Note we see that the likelihood ratio test tends to outperform the Wald and score

tests as the dispersion parameter, α, increases. The Wald and score tests perform

comparably to each other, however the score test outperforms the Wald test when

the sample size is small (n = 100). This may suggest that the likelihood ratio test

is best for detecting overdispersion in a heaped generalized Poisson relative to the

heaped Poisson. However, as noted above, the likelihood ratio test requires estimation

of both the heaped Poisson and heaped generalized Poisson models making it more

computationally expensive.

A similar pattern of increase in power was observed for increasingly negative values

of dispersion (indicating underdispersion relative to the heaped Poisson). These data

are not reported to avoid redundancy.

Table A.2 and Figure A.2 display empirical power results for the three tests con-

ducted based on the data simulated using a heaped negative binomial distribution.

The negative binomial distribution converges to the Poisson as the probability of

success, p, approaches 1. Thus, we expect the power of the three tests to be approx-

imately equal to the significance level, 0.05, when p is large. As we can see, when

p = 0.99, the power of the tests under all sample sizes is near 5%. As p increases,

the power of the tests also increase. The power of the likelihood ratio test, again,

increases at a faster rate than that of the Wald and score tests. The Wald and score

tests perform comparably to each other.
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1.4 Case Study

A case study was conducted using the National Health and Examination Survey

(NHANES) 2009-2010 data [18]. We model the average number of cigarettes smoked

per day during the past 30 days as a function of the participant’s age, gender, and

race. The original variable ridereth1 was recoded to be an indicator variable for

non-Hispanic white race versus other races. The riagendr variable was also recoded

to be an indicator variable for gender. Characteristics of the variables included in

our model are provided in Table A.3.

To evaluate the presence of heaping, we created a histogram of the frequency for

number of cigarettes smoked during the past 30 days. This plot is provided in Figure

A.3. From the plot, we can see heaps occur on multiples of five. Therefore, we specify

a heaping value of five in our models.

We began by estimating a heaped Poisson regression model. The results of this

regression model are provided in Figure A.4. As this model is considered the restricted

model, we conducted a score test of H0 : α = 0 vs. H1 : α 6= 0. We then estimated

a heaped generalized Poisson regression model, the results of which are provided in

Figure A.5. Using this model, we conducted a Wald test for over- or underdispersion

relative to the heaped Poisson (i.e. H0 : α = 0 vs. H1 : α 6= 0). Finally, we

compare the log-likelihood of each model in a likelihood ratio test to evaluate the

same hypotheses. Results of all three tests are provided in Table A.4. All three tests

indicated that the dispersion parameter was significantly different than 0, suggesting

over- or underdispersion relative to the heaped Poisson with heaping behavior at

multiples of five.
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1.5 Discussion

In this paper, we established that the score test derived within performs compara-

bly to the Wald and likelihood ratio tests. Using simulated data, we evaluated the

performance of all three tests in terms of their power at different values of the dis-

persion parameter, α, for heaped generalized Poisson distributed data and different

values of the probability of success on a single trial, p for heaped negative binomial

distributed data. While the likelihood ratio tests consistently achieved higher power

than both the Wald and score tests, it was only slightly higher and it has the down-

side of requiring estimation of both the full (heaped generalized Poisson) model and

the restricted (heaped Poisson) model. Similarly, the Wald tests requires estimation

of the full model.

Although all three tests are appropriate in situations in which the dispersion

structure is assumed to be a scalar, the score tests requires only estimation of the

restricted model, making it computationally inexpensive in comparison to the other

two tests. When estimating a heaped Poisson model, the score test can and should

be conducted to determine if the more complex heaped generalized Poisson would

be more appropriate. In the case that the score test fails to reject the null, it can

confidently be concluded that the data are equidispersed relative the mean and the

heaped Poisson is an appropriate approach to modeling and there is no need to esti-

mate that more complex model. Therefore, we believe our derived score test provides

an attractive alternative to both the Wald and likelihood ratio tests in detecting the

presence of over- and underdispersion relative the heaped Poisson distribution.
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Chapter 2

Modeling the Dispersion Parameter in the

Double Poisson Distribution

2.1 Introduction

When presented with count data, the first inclination to model the data is to use

regression based on the Poisson distribution. Taking this approach requires the as-

sumption of equidispersion, that is, the mean is assumed to be equal to the variance

(E(Y ) = Var(Y )). However, for observed data this is often not the case [7] [16].

In the case of over- or underdispersed data, this approach will under- or overesti-

mate standard errors, respectively, and, therefore, lead to incorrect inference about

regression parameters.

As this is a considerable limitation, a number of alternative approaches have been

proposed allowing the variance to vary independent from the mean [11] [36] [10]

[40]. One such distribution is the double Poisson [19]. In his paper detailing the

double exponential family of distributions including double Poisson, Efron provides

a generalized linear model framework relating a linear model to not only the count

outcome but also the dispersion parameter.

In this paper, we explore the application and limitations of Efron’s proposed

model for the dispersion parameter. Via a simulation study using Stata software

developed for this paper, we test the model for different structures of the dispersion

parameter. This includes simulating data with constant dispersion, data that are

over- or underdispersed and the value of the dispersion parameter changes with the
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value of an independent variable, and data that goes from over- to under-dispersed

dependent on the value of an independent variable. We hope to determine the role

of the statistician selected maximum value of dispersion, M , and whether Efron’s

suggested approach to M is appropriate in practice.

2.2 Double Poisson Distribution

The double Poisson distribution was first proposed by Efron [19] as a member of the

double exponential family of distributions. The distribution is a combination of two

Poisson distributions, P (µ) and P (y), so that

fµ,φ(y) = c(µ, φ)f ∗µ,φ (y) = c(µ, φ)φ 1
2 [P (µ)]φ[P (y)]1−φ (2.1)

where c(µ, φ) is a normalizing constant that depends on µ and φ. This constant is

nearly equal to 1 and is included to ensure the density sums to unity. Thus, the exact

probability mass function is given by,

P (Y = y) = fµ,φ(y) = c(µ, φf ∗µ,φ (y) = c(µ, φ)
(
φ

1
2 e−φµ

)(e−yyy
y!

)(
eµ

y

)φy
, (2.2)

where y = 0, 1, 2, .... Because this constant is an infinite series, ∑∞y=0 f ∗µ,φ (y), an

exact closed form is not available [19] [45].

Efron[19] proposed an approximation for this normalizing constant based on the

a three-term Edgeworth expansion. The closed form approximation is then,

1
c(µ, φ) =

∞∑
y=0

f ∗µ,φ (y) ≈ 1 + 1− φ
12µφ

(
1 + 1

µφ

)
(2.3)

This closed-form approximation performs well, however the estimations produced

are not exact [22] [42]. The approximation provided by the Edgeworth expansion

becomes particularly unreliable when µ is small. For example, when µ = .1 and

φ = 2, the approximation is negative ( 1
c(µ,φ) = −1.50).
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Due to this limitation, researchers have taken alternative approaches to the nor-

malizing constant. One approach is to ignore the constant entirely. Although this

provides a simplified PMF, the sum of the likelihoods will no longer equal unity. Zhu

[44] evaluated the performance of the double Poisson without the normalizing con-

stant and found that while it captured the mean well, it did not provide accurate

estimates of the variance.

Another approach is to approximate c(µ, φ) via a k-th partial sum,

1
c(µ, φ) =

∞∑
y=0

fµ,φ(y) ≈
k∑
y=0

fµ,φ(y). (2.4)

Zou, Geedipally, and Lord [45] recommend that k be no smaller than twice the

sample mean. This method involves significantly more computing power than ignoring

the constant or utilizing the closed from approximation provided by the Edgeworth

expansion, however it provides much higher accuracy in estimations.

The mean and variance referring to the exact density are

E(Y ) = µ+O(n−2) ≈ µ = g(xβ)

VarY ) = µ

φ
[1 +O(n−2)] ≈ µ

φ
,

where φ > 0. Notice if φ is equal to one, the distribution reduces to the Poisson,

signifying that the data are equidispersed. When φ is greater than one, the variance

is less than the mean implying that the data are underdispersed. Conversely, when φ

is less than one, the variance is greater than the mean and the data are overdispersed.
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2.3 Regression Models

2.3.1 Modeling Count Outcomes

To utilize this distribution in a generalized linear model framework, suppose Y =

Y1, Y2, ..., Yn represents an independent, identically distributed sample from a double

Poisson distribution with parameters µ and φ. The log-likelihood function is then

given by

L(µ, φ|Y ) =
n∑
i=1

[1
2 ln(φ)− φµ− yi + yi ln yi − ln Γ(yi + 1) (2.5)

+ φyi(lnµ− ln yi + 1)− ln(c(µ, φ))
]

The expected outcome can then be linked to the independent variables x via the

link function

E(Y ) ≈ µ = exp(Xβ),

where β is the vector of coefficients to be estimated. This is the same link function

used in traditional Poisson regression and allows for a familiar interpretation of the

coefficients.

2.3.2 Modeling Dispersion

To model the dispersion parameter, φ, Efron suggests utilizing a logistic-like regres-

sion model using the link-function,

φ = M

1 + exp(−sα) , (2.6)

where s are the covariates, α is the vector of coefficients to be estimated, and M > 0

is the maximum value the dispersion parameter can attain [19]. Efron refers to this
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link function as logistic-like because it closely resembles the link function used in

logistic regression,

p = 1
1 + exp(−sα) .

In logistic regression this link function is motivated by a desire to ensure the

probability of interest remains between zero and one. When modeling the dispersion

parameter, Efron suggests we have a similar desire to ensure that the dispersion

parameter remains positive but still small. Thus, Efron suggests keepingM above one

but low, to avoid having the Poisson distributionM = 1, on the edge of the parameter

space [19]. Although there is no straightforward interpretation of the coefficients,

such a model allows for investigation into the relationship between covariates and

dispersion.

2.4 STATA Syntax

The syntax for the dpoisson command is a familiar construction similar to other

regression commands in Stata, including the poisson command [38]. The syntax is

dpoisson depvar [indepvars] [if] [in] [weight] [,options]

which is the command to fit a double Poisson regression of depvar on indepvars, where

depvar is a non-negative count variable. There are also a set of qualifiers and options

that are familiar to users of Stata. Including the if qualifier requires an expression

and restricts the command to values for which the expression is true. Similarly, the

in qualifier restricts the command to values within the provided range. The weight

qualifier indicates the weight that should be attached to each observation.
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2.4.1 Options

In addition to options that are familiar to users of the poisson command in Stata,

there are also a set of options that are unique to the dpoisson command. A list of

covariates to be included in the model for variable dispersion can be provided with

the optional vd(itvarlist). If the option is not included, the model estimates the

dispersion, φ, as a constant.

The maximum value, M , of the dispersion parameter is set by efron(#). If no M

value is provided (i.e. efron()), the user will receive an error message as the default

value is set to -1. If efron(#) is not stated at all, the link function will be treated as

a log-link.

Three options are provided for estimating the normalizing constant, c. The default

approximation, sca, is the estimation provided in equation 2.3. The second, sce, uses

the finite sum approximation suggested by Zou, Geedipally, and Lord [45]. Finally,

the constant can be set equal to 1 using sc1.

2.5 Simulation Study

A simulation study was conducted to test the application and limitations of the pro-

posed dispersion model. Each simulation was run with 10,000 repetitions for sample

sizes of 100, 250, and 500 observations. To evaluate the performance of the model un-

der a variety of dispersion structures, data were simulated to be overdispersed with

φ dependent on an independent variable, underdispersed with φ dependent on an

independent variable, over- to underdispersed with φ dependent on an independent

variable, and with constant dispersion. The count data outcomes were simulated

using the double Poisson distribution such that,

E(Y ) ≈ µ = exp(Xβ) = exp(1− 1.5x1 + 0.25x2),
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where x1 ∼ Bernoulli(0.5) and x2 ∼ Uniform(0,1). The different structures of φ used

to simulate data are provided in Table B.1. Under each of these dispersion structures,

four different models were estimated. Three of these models involved setting the

maximum allowable value of the dispersion, M , to values 1.25, 2, and 2.5. The fourth

model assumed constant dispersion. Each of these models was repeated for the three

different approaches to calculating the normalizing constant using options sc1, sca,

and sce.

2.5.1 Overdispersed Simulation

The first set of data was simulated using dispersion,

φ = 2
1 + exp(−(−1 + 0.5x1)) ,

where x1 ∼ Bernoulli(0.5) as above. Note that the true values of the coefficients,

t0 and t1 are -1 and 0.5, respectively, when M = 2. Because x1 can only take on

values of 0 or 1, φ ≈ 0.538 when x1 = 0 and φ ≈ 0.755 when x1 = 1. Thus,

dispersion is dependent on x1 and data are consistently overdispersed relative to the

Poisson distribution. The mean values and 95% confidence intervals for t0 and t1 or

φ, where appropriate, for each of the models estimated for this set of simulated data

are provided in Table B.2.

One notable result is the very large standard errors for t1 under some model con-

ditions, particularly when the maximum allowable value of dispersion, M , was small

(1.25). This occurs for all sample sizes when calculating the normalizing constant us-

ing Efron’s approximation or the k-th partial sum approach. When the normalizing

constant was assumed equal to 1, the standard error for t1 was very large only for sam-

ple size n = 100. Standard errors were also large for t1 for all tested values ofM when

sample size was n = 100 and the normalizing constant was calculated using the k-th

partial sum. Finally, the standard error was large for t1 when M = 1.25, sample size
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was n = 100, and the normalizing constant was calculated using the Efron’s approx-

imation. All models treating φ as a constant estimated φ < 1, correctly indicating

overdispersion relative to the Poisson.

For the models estimated setting the maximum allowable value of dispersion to

be M = 2, we expect the values of the coefficients to be equal to the values used

to simulate the data. This proved true for the models estimated using the k-th

partial sum approach to calculating the normalizing constant. For these models, the

mean value of t0 and t1 ranged from 0.513 and -0.989, respectively when n = 500 to

0.588 and -0.929, respectively when n = 100, slightly overestimating the true values.

Despite the slight over-estimations, the true values of t0 and t1 were contained within

the 95% confidence intervals. Models estimated assuming the normalizing constant

was 1 also performed well, slightly underestimating the value of t0 and overestimating

the value of t1 by approximately 0.21 for all sample sizes, however the true value of t1

was not contained within the 95% confidence interval for larger sample sizes, n = 250

and n = 500.. Models estimated using Efron’s estimation of the normalizing constant

performed the worst. Such models consistently overestimated the value of t0 by over

0.20 and overestimating the value of t1 by over 1.25.

Due to the lack of a straightforward interpretation of the coefficients, the values

of the dispersion parameter, φ, for the possible values of x1 are provided in Table

B.3. Dispersion when x1 = 0 was estimated fairly accurately by all models, with

models using the k-th partial sum approach for calculating the normalizing constant

performing the best and models using Efron’s estimation performing the worst. Sim-

ilarly, the models estimated using the k-th partial sum approach for the normalizing

constant also performed best in estimating dispersion when x1 = 1 and the models

using the Efron estimation performed the worst. In fact, all such models, on aver-

age, estimated the dispersion to be greater than one, incorrectly indicating that data

would be underdispersed, when x1 = 1. Despite the drawbacks of assuming the nor-
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malizing constant equals one, models using this approach performed relatively well

in estimating the dispersion under different values of x1.

2.5.2 Underdispersed Simulation

The second set of data was simulated such that dispersion was dependent on x1 and

data were underdispersed for all values of x1. Dispersion was simulated using,

φ = 2
1 + exp(−(1 + 0.5x1)) ,

where x1 ∼ Bernoulli(0.5) and the true values of the coefficients are t0 = 1 and

t1 = 0.5 when M = 2. Thus, when x1 = 0, φ ≈ 1.462 and when x1 = 1, φ ≈ 1.635.

The mean values and 95% confidence intervals for t0 and t1 or φ, where appropriate,

for each of the models estimated for this set of simulated data are provided in Table

B.4.

Standard errors were very large under some model conditions. Models estimated

using smaller maximum allowable values of dispersion, M = 1.25, had large standard

errors for all sample sizes. Standard errors remained large for models in which the

normalizing constant was estimated by the k-th partial sum and the Efron estimation

even when using the larger M = 2. Standard errors were more reasonable for all

models estimated usingM = 2.5 when sample sizes were n = 500. All models treating

φ as a constant estimated φ > 1, correctly indicating underdispersion relative to the

Poisson.

For models estimated using M = 2, we expect the mean value of the parameters,

t0 and t1, to be near the values used to simulate the data, however, this was not often

the case. Unlike in the case of data with consistent overdispersion discussed above, the

models estimated assuming the normalizing constant was equal to 1 did not provide

mean values of the parameters approximately equal to their true value. Additionally,

the mean value of t1 was negative for all sample sizes, indicating that that the level
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of underdispersion decreases as x1 increases, which is contrary to the true dispersion

structure. The models estimated using M = 2 and the k-th partial sum for the

normalizing constant also did not accurately estimate the value of the parameters.

Both t0 and t1 were consistently overestimated in these models. The model that

performed the best in terms of the parameter estimates for this dispersion structure

was the model using Efron’s approximation for the normalizing constant when sample

sizes were large n = 500. The true values of both t0 and t1 were contained within the

appropriate 95% confidence intervals in this model.

The values of the dispersion parameter, φ, for the possible values of x1 are provided

in Table B.5. For all models estimated using M = 1.25, parameter estimates were

large, leading to φ ≈ 1.250 for both x1 = 0 and x1 = 1. Recall that the true

value of the φ is greater than 1.25 for both x1 = 0 and x1 = 1. As previously

noted, the models estimated using M = 2 and assuming the normalizing constant

was one, yielded estimates for t1 indicating that the dispersion parameter decreases

as x1 increases. This pattern continued for such models usingM = 2.5. Models using

M = 2 and M = 2.5 and estimating the normalizing constant through either a k-th

partial sum or the Efron estimation, all accurately determine that φ increases with

x1. The model that most accurately estimated the true values of dispersion for both

x1 = 1 and x1 = 1 was the model usingM = 2.5 and the k-th partial sum approach to

the normalizing constant when sample sizes were large (n = 500), however the model

using M = 2 and the Efron estimation of the normalizing constant also performed

well for this sample size.

2.5.3 Over- to Underdispersed Simulation

The third set of data was simulated using,

φ = 2
1 + exp(−(−1 + 2x1)) ,
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where x1 ∼ Bernoulli(0.5), t0 = −1, and t1 = 2 when M = 2. Thus, when x1 = 0,

φ ≈ 0.538 indicating that data are overdispersed relative to the Poisson distribution.

Then, when x1 = 1, φ ≈ 1.462 indicating that data are underdispersed. The mean

values and 95% confidence intervals for t0 and t1 or φ, where appropriate, for each of

the models estimated for this set of simulated data are provided in Table B.6.

As observed in previously discussed dispersion structures, the standard errors

under some model conditions were very large. Again, this was particularly true for

parameter t1 in models estimated using M = 1.25 for all sample sizes. Standard

errors for t1 are also large in models estimated using the k-th partial sum approach

to estimating the normalizing constant when using M = 2 for all sample sizes and

when using M = 2.5 for sample sizes n = 100 and n = 250. They remained large in

the model using M = 2 and treating the normalizing constant as equal to one when

sample size was n = 100.

Models which treated φ as a constant and either assumed the normalizing con-

stant equals one or utilized a k-th partial sum to estimate the normalizing constant,

estimated φ < 1 indicating overdispersion. Utilizing this approach would lead to

incorrect conclusions about the pattern of dispersion in the data, as we would not

recognize that data are underdispersed relative to the Poisson when x1 = 1. Fur-

ther, the model treating φ as a constant and utilizing the Efron estimation of the

normalizing constant, estimated φ with one in its 95% confidence interval for sample

size n = 100. This would lead to incorrectly concluding that the data are Poisson

distributed.

All models estimated using the maximum allowable value of dispersion M = 2

provided reasonable approximations of t0 and t1 for sample size n = 500, however

corresponding 95% confidence intervals often did not contain the true value of the

parameters. The confidence intervals for the parameters in the model estimated using

the k-th partial sum approach to the normalizing constant contained the true value
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of the parameters for sample sizes n = 250 and n = 500. Note that the standard

errors for t1 were very large in both of these models. Models estimated assuming that

the normalizing constant was one, consistently underestimated the value of t1 while

models using the Efron estimation consistently overestimated the value.

The values of the dispersion parameter, φ, when x1 = 0 and x1 = 1 are provided

in Table B.7. The models estimated assuming the normalizing constant is one, under-

estimated the value of the dispersion parameter for both x1 = 0 and x1 = 1 for large

sample sizes. Models using the Efron approximation overestimated the dispersion

when x1 = 0 for all sample sizes. The models that most accurately estimated the

values of φ for the different values of x1 were those estimated using the k-th partial

sum approach to the normalizing constant.

2.5.4 Constant Dispersion Simulation

Finally, data were simulated to have constant dispersion, φ = 0.75. The mean values

and 95% confidence intervals for t0 and t1 or φ, where appropriate, for each of the

models estimated for this set of simulated data are provided in Table B.8. For all

models in which φ is not assumed to be a constant, we expect the coefficient t1 = 0

and the value of t0 to change depending on the value of M . When M = 2, we expect

t0 ≈ −0.511. For models estimated using M = 1.25, we expect t0 ≈ 0.405. Finally,

when models are estimated using M = 2.5, we expect t0 ≈ −0.847.

Models using the k-th partial sum approach to estimate the normalizing constant

performed the best. For large sample sizes, the true values for the coefficients t0 and

t1 were contained in their 95% confidence intervals, and this was often true for smaller

sample sizes as well. Both models assuming the normalizing constant was one and

models using the Efron approximation, the value of t1 was consistently overestimated,

such that the 95% confidence intervals did not include one. This would lead us to

incorrectly conclude that dispersion is dependent on the value of x1.
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Among the models that correctly treated φ as a constant, both the models as-

suming the normalizing constant is one and the model using the k-th partial sum

approach provided estimates of φ with 95% confidence intervals including the true

value of φ = 0.75. The model using the Efron approximation estimated φ to be near

one for all sample sizes. When n = 100, this approach incorrectly estimated φ > 1,

which would indicate underdispersion relative to the Poisson distribution. The values

of the dispersion parameter, φ, for the possible values of x1 are provided in Table B.9.

2.6 Example

The following example demonstrates a regression model for the dispersion parameter

in the double Poisson distribution. The data set, recorded between 1978 and 1985,

consists of 126 observations of corporate takeover activity [24] [9] [34]. The dependent

count variable is the number of takeover bids made on the company. There are

nine explanatory variables in the dataset, including five indicator variables and four

continuous variables. The five indicator variables indicate if there was a change in

the ownership structure of the company proposed, whether the company launched

a legal defense, if there was a proposed change in asset structure, if the company’s

management invited third party friendly bids, and whether the justice department

intervened in the takeover process. The first of the continuous explanatory variables

is the percentage of institutional holding. The second and third explanatory variables

are the size of the company in billions of dollars and the size of the company squared,

to account for non-linearity. Finally, the fourth continuous variable is the bid premium

calculated by the bid price divided by the market price of stock for 14 business days

prior to the takeover. This variable is mean-centered. Selected characteristics of the

given variables are provided in Table B.10.

First, we estimated a model assuming constant dispersion. This yielded an esti-

mated value of φ = 1.644 with a 95% confidence interval (1.321, 2.047). This indicates
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that the number of bids is significantly underdispersed relative to the Poisson. Full

results of this regression are provided in Figure B.1.

The second regression model was aimed at examining the relationship between the

bid premium and the dispersion in the number of bids. The results of the regression

are provided in Figure B.2. As the bid premium was mean-centered, we can use the

constant value of 0.057 to estimate that the dispersion parameter of the number of

bids at the mean value of the bid premium is 1.800. This indicates that the number

of bids is underdispersed relative to the Poisson when the bid premium is at its mean.

Further, based on the sign of the coefficient for the mean-centered bid premium, we

can conclude that the dispersion parameter increases for bid premiums greater than

the mean. For the minimum value of the mean-centered bid premium (-0.404), the

dispersion parameter is estimated to be 0.542, indicating overdispersion. We can also

determine that the number of bids is overdispersed for bid premiums lower than 0.224

below the mean and is underdispersed for any bid premiums greater than that.

2.7 Discussion

Based on the results of the simulation study and the case study, we can conclude that

the regression model for the dispersion parameter proposed by Efron [19] performs

well, particularly when using the k-th partial sum approximation of the normalizing

constant. However, as utilizing this approximation is computationally expensive, the

approaches assuming the normalizing constant equals one or the Efron approximation

both provide adequate performance, especially in the case of overdispersion. Con-

cerns arise when dealing with any underdispersion in the data, particularly with the

assumption that the constant is one.

Beyond the performance of the model, one consideration this study aimed to

address was the choice of the maximum allowable value for the dispersion parameter,

M . Despite Efron’s suggestion of choosing a value of M that is only slightly larger
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than one, the results of our simulations indicate that utilizing a larger value will

tend to lead to more stable estimates. An intuitive approach may be to use at least

double the dispersion estimate from a model that treats the parameter as a constant.

There seem to be few downsides to choosing anM that is much larger than necessary.

When choosing a very largeM , parameter estimates will be small in cases where data

are overdispersed, but our simulations indicate that the estimated dispersion should

remain relatively accurate.

Particular care should be taken with data that appear to be equidispersed relative

to the Poisson when evaluated only through a model that assumes constant dispersion.

If a consideration of the pattern of dispersion is of interest, such a result from a model

assuming constant dispersion should not be taken to mean dispersion is constant. It

may be the case that there is a change in direction of dispersion as the value of a

covariate increases. In this case, we run the risk of incorrectly concluding that the

data are Poisson distributed.

This model can be used in instances where the relationship between a covariate

(or group of covariates) and the dispersion is of interest and/or when there is concern

that the dispersion is not scalar. In the case that the covariates of interest are

categorical, we can explore the possibility of a non-scalar structure by estimating

the mean and variance of the data for each category and determining if their ratio

remains constant across categories. In the case that the ratio is not constant, this

would suggest that the dispersion parameter is not a scalar. Similarly, in the case

of continuous covariates, we can create categories based on value groupings of the

covariates and take the same approach.

Additionally, while there are other available approaches to modeling dispersion

based on other distributions such as the generalized Poisson or negative binomial,

the choice of which approach should be used comes down to the variance structure.

The double Poisson approach will be most appropriate in data which has a variance
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structure that closely resembles that of the model.
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Chapter 3

Evaluating and Improving Identification of Tic

Disorders in Children

3.1 Introduction

Tics are defined as "sudden, rapid, recurrent, nonrhythmic motor movement[s] or

vocalization[s]" and are a defining feature of three types of recognized tic disorders:

Tourette syndrome (TS), persistent motor or vocal tic disorder, and provisional tic

disorder [3]. The prevalence of isolated tic behaviors in children, which may lead to

a diagnosis of provisional tic disorder, has been estimated to be as high as 20% [35].

TS and persistent motor or vocal tic disorder, while less common, have estimated

prevalence of 3 to 8 and 4 to 9 cases per 1000 school-aged children, respectively [35].

Two recently developed tools aimed at improved identification of potential or ex-

isting tic disorders in children are the Motor or Vocal Inventory of Tics (MOVeIT)

provided in Table C.2, developed as a screening tool, and the Description of Tic

Symptoms (DoTS) provided in Table C.1, a diagnostic measure. The MOVeIT ques-

tionnaire consists of 10 items with ordinal response categories of "never", "sometimes",

and "often". The screening portion of the DoTS questionnaire includes 4 multi-part

questions (totaling 10 items). Four of these items have "yes"/"no" responses and six

have ordinal responses of "never", "sometimes", "often", and "always". Both tools

can be completed by the child, their parent, or the child’s teacher. Due to data

availability, this paper focuses only on child and parent responses.

We aim to utilize logistic regression and random forest modeling to evaluate the
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performance of these existing questionnaires as well as to identify individual items

within the existing questionnaires that play an important role in the prediction of tic

disorders in children. Utilizing both methods will allow us to compare their results

and develop a more comprehensive picture of the items’ contribution to accurate

identification.

3.2 Data and Methods

3.2.1 Participants

Data were collected from 1,307 participants in five separate studies conducted at the

University of South Florida (USF), the University of Florida College of Medicine (UF),

and the University of Rochester Medical Center (URMC). Each study used at least

one gold standard measure for identifying tic disorder status. These measures include

the Yale Global Tic Severity Scale (YGTSS) [28], the Schedule for Affective Disorder

and Schizophrenia for School-Age Children - Present and Lifetime tic disorder module

(K-SADS) [26], and/or tic expert evaluation. Tic disorder status and a MOVeIT

or DoTS questionnaire fully or partially completed by the child and/or parent was

available for 1,205 children. Details on sample size, source population, and gold

standards used in each study are available in Table C.3.

The first study, the Project to Learn about Youth Mental Health (PLAY-MH),

aimed to better understand prevalence and treatment for child mental health disor-

ders [15]. Among the data collected in this school-based multistage study was parent

and child completed DoTS questionnaires. Children with potential tic disorders as in-

dicated by the completed DoTS questionnaire were then invited to UF for assessment

using the K-SADS.

The second study, conducted through USF, was focused on development of the

MOVeIT tool and included both parent and child responses [29]. Participants were

recruited at a specialty clinic, however investigators were unaware of tic disorder
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status prior to recruitment. To determine whether a child had a tic disorder, the

YGTSS was administered to all participants.

The third study was a case-control study to evaluate the sensitivity and specificity

of both the DoTS and MOVeIT tools, including both parent and child responses,

conducted by URMC [1]. This was done by comparing the questionnaire results to

an evaluation conducted by a clinician with expertise in diagnosis and treatment of tic

disorders. Participants were recruited at a tic disorder specialty clinic while controls

were community-based.

The fourth study aimed to determine if the MOVeIT could be used to identify tics

in children with stereotypy [39]. Thus, participants were recruited at a developmental

and behavioral pediatrics clinic. It included only parent responses to the question-

naire and, similar to the third study, tic expert evaluation was used to determine the

presence of a tic disorder.

The fifth and largest study recruited participants from a primary care pediatric

clinic and aimed to evaluate the performance of various screening measures, including

both the MOVeIT and DoTS in a pediatric care setting. A secondary aim was to

determine if identification of tics could be used as a marker for symptoms of other

conditions. Following child and/or parent completion of the screening tools, the

YGTSS and K-SADS were administered as the gold standard. This study’s data is

yet unpublished.

The dataset created by combining the data collected in these five studies includes

demographic information about the participants (age, sex, and race (non-Hispanic

White, non-Hispanic Black, and other or multiple races and/or ethnicities)), child-

and/or parent-reported responses to the MOVeIT and/or DoTS questionnaires (where

available), and tic disorder status.
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3.2.2 Logistic Regression

Logistic regression models the probability of an event occurring by utilizing the logit-

link function giving the probability of the i-th child as,

pi =
exp[β0 +∑m

j=1 βjxij]
1 + exp[β0 +∑m

j=1 βjxij]
(3.1)

= 1
1 + exp[−(β0 +∑m

j=1 βjxij)]
, (3.2)

thus the log-odds of that child having a tic disorder is given by

log
( pi

1− pi

)
= β0 +

m∑
j=1

βjxij, (3.3)

where β0 is the intercept, m is the number of predictor variables, βj are the derived

coefficients, and xij are the covariates (demographic variables and/or responses to

questionnaire items).

Often, a predicted probability above .5 will result in a positive prediction (i.e.

that the child has a tic disorder) while any value below .5 will result in a negative

prediction (i.e. that the child does not have a tic disorder). However, the cutoff value

can be adjusted to make predictions more sensitive (lower cutoff values) or more

specific (higher cutoff values).

To identify the individual items that have a significant relationship with tic dis-

order diagnosis, we utilize a Wald test of significance for each individual coefficient

at a significance level of α = 0.10. We chose a significance level higher than the com-

monly used α = 0.05 because we are interested in being more inclusive as to which

items should be considered for inclusion in future tools. The strength and direction

of this relationship is determined by the size and sign of the coefficient, respectively.

Coefficients are transformed to odds ratios (OR) for interpretability.
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3.2.3 Random Forest

Building upon ideas of bootstrap aggregation (bagging) [5] and random feature se-

lection [23] [2], random forest is an ensemble machine learning algorithm that trains

multiple decision trees, the weak learners, to create a forest of trees, the strong learner

[6]. By aggregating the predictions of multiple classification trees, random forests pro-

duce more accurate results than an individual tree [17] and avoid overfitting without

the need for pruning [21].

The algorithm to build a random forest consisting of J classification trees is as

follows.

Random Forest Algorithm

Suppose we have a training dataset D = {(x1, y1), ..., (xn, yn)}, where xi =

(xi,1, ..., xi,p)T are the predictors and yi is the associated binary response.

1. Select a bootstrap sample, Dj, of size n from D.

2. Construct a classification tree using Dj.

a. Begin with all observations in Dj in a single root node.

b. Select m predictors randomly from the p predictors.

c. Identify the best binary split among the m selected predictors.

d. Split the node into two subsequent nodes using the identified best

split.

e. Repeat steps b. through d. recursively until the stopping criterion is

met.

3. Repeat the first two steps until J classification trees have been constructed.

The predicted classification for an observation classified by the random forest model
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is most often determined by the majority vote, though this can be adjusted to allow

for lower or higher cutoff values. Thus predictions are given by,

f̂(x) = argmax
y

J∑
j=1

I(ĥj(x) = y), (3.4)

where ĥj(x) is the prediction at x using the jth tree [14].

The best split at each node is typically determined by a purity measure. If there

are K classes and pk is the proportion of observations in class k, one such purity

measure, the Gini index, is given by

Q =
K∑
k 6=k′

pkpk′ . (3.5)

Large values of Q indicate poor classification. As each node is split into two descen-

dant nodes, two values of Q will be calculated for each split, QL and QR. These can

be multiplied by the number of observations in the descendant nodes and summed to

give QS = nLQL + nRQR. Note that QS is calculated only for splits based on the m

predictors randomly selected at the node.

As random forests utilize bagging, the observations not selected in the bootstrap

sample for building an individual tree in the forest are referred to as out-of-bag

(OOB). Each observation has a probability of being selected in each sample of (1− 1
n
)n

and this probability tends towards 1
e
as n increases toward infinity. Thus, we can con-

clude that there will be a set of approximately one-third the number of observations

in D that is not included in the jth sample, Dj and are, therefore, OOB.

This set of observations can be used to estimate the generalization error by deter-

mining the proportion of OOB observations that are incorrectly classified by the trees

for which they are out-of-bag. That is, if the prediction for an OOB observation, xi,

is given by
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f̂oob(xi) = argmax
y

∑
j /∈Dj

I(ĥj(xi) = y), (3.6)

then the generalization error rate can be estimated by the OOB error rate, given by

Eoob = 1
n

n∑
i=1

I(yi 6= f̂oob(xi)). (3.7)

OOB data can also be used to determine variable importance. This is done by

first determining predictions for the OOB observations and calculating the OOB

error rate. Values of a particular predictor are then permuted while leaving all other

predictor values fixed. The permuted OOB data are then used to compute new

predictions and a new OOB error rate is calculated. The difference between the

two error rates provides a measure of variable importance. Thus, if changing the

values for a particular predictor greatly decreases the error rate, that predictor will

be considered important.

Unlike many other methods utilizing decision tress, random forests are not sensi-

tive to a large number of trees, Ntree, or the size of the trees. If the random forest is

too small, however, the OOB error rate will be biased upward [8]. Because of this and

the tendency of random forests to avoid overfitting, the chosen Ntree should be large

but does not require tuning. One parameter that random forest may be sensitive to is

the number of predictors randomly selected to determine the best split at each node,

m [14]. We tune for this parameter using the area under the ROC curve.

3.2.4 Statistical Analysis

Six models were estimated based on three non-mutually exclusive subsets of data.

These subsets were determined by completion of the MOVeIT or DoTS questionnaire

by a parent, the child, or both a parent and the child. A random forest and a logistic

regression model were estimated based on each of the three subsets. To estimate each

model, 70% of the subset was randomly selected to be the training data set while the
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remaining 30% was used as a validation set to assess the performance of the model.

Statistical analysis was conducted in R [31] [27] [30] [37].

The predictive ability of the model was assessed using sensitivity, specificity, neg-

ative predictive value (NPV), and a weighted Youden’s index.

sensitivity = TP

TP + FN
,

specificity = TN

TN + FP
,

NPV = TN

TN + FN
,

weighted Youden’s = 3(sensitivity) + specificity,

where TP, TN, FP, and FN are true positives, true negatives, false positives, and false

negatives, respectively. The final cutoff values were determine using the weighted

Youden’s index. As we aim to correctly identify children that require further evalua-

tion for tic disorders, avoiding false negatives is more important than incurring false

positives. Thus, sensitivity and NPV are the most important indicators to consider.

The weighted Youden’s index was also chosen with this goal in mind. Weighting

sensitivity more heavily than specificity placed more importance on limiting false

negatives but still ensured that the number of false positives would be taken into

consideration.

To identify the items in the questionnaires that should be considered in future

tools, we considered the results of both the logistic regression and random forest

models. As previously mentioned, a Wald test of significance at significance level α =

0.10 was used to assess whether individual predictors have a significant relationship

with the presence of tic disorders. Further, variable importance (as measured by the

decrease in accuracy when OOB values of predictors are permuted) was calculated

for each item in the random forest models.
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3.2.5 Sensitivity Analysis

Of the five studies, three (the USF MOVeIT development study, the UR validation

study, and the UR AUCD Project) recruited children from tic disorder or develop-

mental and behavioral specialty clinics. Thus, sensitivity analyses were conducted to

assess model performance when including only children recruited from general pop-

ulation settings. All logistic regression and random forest models were re-assessed

excluding these three studies. Wald tests of significance were conducted and variable

importance measures were calculated for each logistic regression and random forest

model, respectively.

3.3 Results

3.3.1 Population Characteristics

Of the 1,307 children recruited across the six studies, 1,205 (92.20%) had known tic

disorder status as determined by at least one gold standard as well as partial or com-

plete responses from a parent and/or the child to either or both of the DoTS and

MOVeIT questionnaires. The median age of the 1,205 included children was 9, with

a range of ages from 2 to 20-years-old. Although there were 441 (36.51%) children

under the age of 8, all self-reported responses to either questionnaire were provided

by children 8-years-old and older. There were 705 (58.51%) male children and 500

(41.49%) female children. The racial and ethnic background of the children included

537 (44.56%) children identifying as non-Hispanic White, 335 (27.80%) identifying as

non-Hispanic Black, and 325 (26.97%) identifying as other or multiple races and/or

ethnicities. Eight (0.07%) children did not have a provided racial/ethnic identifica-

tion. Detailed breakdown of demographic information is available in Table C.4.
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3.3.2 Prediction of Tic Disorder

Prediction results for models estimated based on DoTS questionnaire responses are

provided in Table C.5. As we are most interested in correctly identifying children with

tic disorders, achieving high sensitivity and NPV is important. Logistic regression

and random forest models based on DoTS responses all achieved high sensitivity and

NPV (greater than or equal to 85% and 96%, respectively). They also maintained

high specificity, with all three logistic models having specificity greater than 94% and

the three random forest models having specificity greater than 83%.

Table C.6 provides prediction results for the logistic regression and random forest

models estimated using responses to MOVeIT questionnaires. All logistic regres-

sion models based on MOVeIT data achieve sensitivity above 76% and NPV above

87% while maintaining specificity above 55%. The random forest models consis-

tently outperform their corresponding LR models in terms of sensitivity and NPV.

All random forest models achieved sensitivity and NPV greater than 84% and 94%,

respectively. However, they under-performed logistic models in terms of specificity

(minimum specificity achieved was 43.5%).

3.3.3 Logistic Regression Significant Items

Logistic regression results for the three DoTS models are summarized in Table C.7.

The effects of parent responses to DoTS items 1a and 4a and child responses to DoTS

item 4a were significant and positive in all logistic models in which the responses

were included, indicating that increasingly affirmative responses were associated with

greater odds of tic disorder. Other significant and positive effects include parent

responses to DoTS item 2 and child responses to DoTS item 1c. Each of these were

significant in only one model in which they were included.

DoTS responses with significant and negative effects in at least one model include

parents responses to item 1e and child responses to item 1b, indicating that increas-
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ingly affirmative responses to these items is associated with lower odds of tic disorder.

Additionally, children who were neither non-Hispanic Black nor non-Hispanic White

were indicated to have significantly lower odds of having a tic disorder diagnosis rela-

tive to non-Hispanic White children in all three DoTS logistic models. Non-Hispanic

black children had significantly lower odds of tic disorder relative to non-Hispanic

White children in the DoTS logisitc model including only child responses. Females

also had significantly lower odds of tic disorder relative to males in this model.

A summary of logistic regression results for MOVeIT models are provided in Table

C.8. Child responses to MOVeIT item 10 had significant positive effects in all logistic

MOVeIT models in which they were included. Other MOVeIT item responses with

significant positive effects in at least one model include parent responses to items 5

and 7 and child responses to items 1 and 9.

MOVeIT item responses with significant negative effects in at least one model

include child responses to items 7 and 8. Additionally, the effect of sex was significant

and negative in two of the MOVeIT logistic regression models, indicating females had

lower odds of having a tic disorder than males. Non-Hispanic Both Black children

and children who identified as neither non-Hispanic Black nor non-Hispanic White

had significantly lower odds of having a tic disorder relative to non-Hispanic White

children in two of the MOVeIT logistic models.

3.3.4 Variable Importance Results

Table C.9 includes variable importance measures from the DoTS random forest mod-

els. Parent responses to DoTS items 1a, 1c, 2, and 4a were among the five most

important features in all models in which they were included. Child responses to

DoTS item 4a was also among the most important features in all models including

that variable. Features identified as among the most important in only one model

include parent responses to DoTS item 4b and child responses to DoTS items 1c,
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1d, and 4b. Race was also among the most important features in the DoTS random

forest model including only child responses.

Features with negative variable importance were also identified in the DoTS ran-

dom forest models, indicating that prediction accuracy increased when these values

were permuted. One such feature was parent responses to item 1e, which had neg-

ative variable importance in all models in which it was included. Sex had negative

variable importance in two of the DoTS random forest models in which it was in-

cluded. Child responses to items 1b, 1f, and 3 had negative variable importance in

the DoTS random forest model including only child responses. This suggests that

removing these features may improve prediction of tic disorder status.

Variable importance results for the MOVeIT random forest models are in Table

C.10. Features that were identified as among the most important in all models in

which they were included were parent responses to MOVeIT items 1, 4, 5, and 6 as

well as child responses to item 9. Child responses to items 1, 2, 4, and 6 were among

the most important items in the MOVeIT random forest models including only child

responses. Age was identified as among the most important features in the model

including on parent responses.

Features with negative variable importance in at least one MOVeIT random forest

model include sex and age. Sex had negative variable importance in the random forest

model including only parent responses while age had negative variable importance in

the model including both parent and child responses.

3.3.5 Sensitivity Analysis

Sensitivity analyses were conducted excluding data collected in studies recruiting par-

ticipants from tic specialty or developmental and behavioral specialty clinics. Results

from logistic regression and random forest models including DoTS questionnaire data

are provided in Tables C.11 and C.12,respectively. Parent responses to DoTS item
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4a were no longer significant in the logistic regression model including only parent

responses. However, this item remained important in the corresponding random for-

est model. Child responses to item 4a was no longer significant in the logistic model

including both parent and child responses. However, child responses to item 4b were

significant in that model. Similarly, child responses to item 1b was no longer signifi-

cant in the full model but was significant in the model including only child responses.

There were no changes in the sign of variable importance for any of these items. The

sign of variable importance changed for child responses to item 1a in the model in-

cluding only child responses and parent responses to item 1d in all models in which

it was included. The sign change indicates that permuting the OOB values of these

responses actually improves the accuracy of the random forest models.

Logistic regression and random forest results from models including MOVeIT ques-

tionnaire data are provided in Tables C.13 and C.14,respectively. In the original ran-

dom forest models, all features had positive variable importance in all random forest

models. In the sensitivity analysis, parent responses to items 2 and 3 were no longer

positive in the model including all responses and child responses to items 5, 6, 7, and

8 were no longer positive in the models including only child responses. Additionally,

parent responses to item 5 was no longer significant in the logistic model including

only parent responses while parent responses to item 6 became significant. Similarly,

child responses to item 1 was no longer significant in the model including only child

responses while child responses to item 2 became significant in this model. Child

responses to items 7, 9, and 10 were also no longer significant in the model including

all responses. Child responses to item 10 was also no longer significant in the logistic

model including only child responses.

The role of demographic variables were also affected by the exclusion of this data.

In the DoTS models, the sign of variable importance for race changed from positive to

negative in all models. The coefficient associated with other/multiple races were also
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no longer significant in the model including only parent only responses. The same

was true for the coefficient associated with the non-Hispanic Black racial category in

the model including only child responses. The coefficient for age became significant

in the model including parent only responses.

In the MOVeIT models, the sign of the variable importance measure for race

changed from positive to negative in all models and coefficients for racial categories

were no longer significant. Additionally, the sign of the variable importance for sex

changed from positive to negative in the model including only parent responses and

the coefficient associated with sex was no longer significant in the model including all

responses. The coefficient associated with age was also no longer significant in any

models. Variable importance for this feature also changed signs in the random forest

model including all responses and the model including only child responses.

3.4 Discussion

The random forest model is a popular alternative to logistic regression because the

algorithm favors prediction over explanation [12] and this is reflected in the com-

parison of prediction results in our data. As expected, random forest tended to

outperform logistic regression in the prediction of tic disorders, particularly in the

MOVeIT models. All random forest models achieved sensitivity equal to or greater

than their corresponding logistic regression models. While the accuracy of these mod-

els is determined by adjusting the cutoff values, the adjustment is on a finer scale for

the random forest models due to the larger number of unique predicted probabilities

produced by this type of model. By estimating across random subgroups, random

forest models produce empirical distributions of probabilities that better reflect the

variability in the data while the logistic regression models produce only one set of

predicted probabilities. This results in random forest models being more effective at

reducing Type II errors (false negatives).
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Logistic regression, on the other hand, has the benefit of not only providing the

strength of an item’s association with tic disorder presence, but also the direction

of the relationship. Variable importance calculated from random forest models can

not provide information about the direction of the relationship without the assistance

of partial dependence plots [12]. Logistic regression, however, suffers in this context

because of the existence of multicollinearity between independent variables. Variable

importance in random forest models may also be affected by dependence between

features. These is evidence that the measure may be overinflated when there is

correlation between features [4], however this is of less concern in this context because

we are seeking to eliminate non-informative items rather than exclude correlated

items.

Combining the results of the Wald tests of significance for the coefficients esti-

mated in the logistic regression models and the calculated variable importance results

from the random forest models, several items from the DoTS questionnaire were de-

termined to provide useful information in predicting tic disorders. Parent responses

to items 1a, 2, and 4a and child responses to items 1b and 4a were significant in at

least one of the estimated models in which they were included and remained signifi-

cant in a least one model in the sensitivity analysis. Parent responses to items 1a, 2,

and 4a and child responses to item 4a also had high variable importance in random

forest models although parent responses to item 2 and child responses to item 4a had

lower variable importance in the sensitivity analysis.

There were conflicting results between the Wald tests of significance in the logistic

regression models and the variable importance measure in the random forest models

for some items. For example, parent responses to DoTS item 1e was significant in

one logistic regression model but had negative variable importance in both random

forest models in which it was included. Similarly, child responses to DoTS item 1b

was significant in one logistic regression model while having negative variable impor-
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tance in one random forest model. These items had negative variable importance in

sensitivity analyses as well. Additionally, child responses to DoTS items 1f and 3

had negative variable importance in both the full and sensitivity analyses. Including

results with negative variable importance may reduce the predictive ability of the

tools and, thus, questions with negative importance should be considered for removal

in future screening tools.

The performance of the MOVeIT models was less consistent. For example, parent

responses to items 5 and 7 and child responses to items 1, 7, 9, and 10 were significant

in at least one model in which they were included, however only parent responses to

item 7 remained significant in at least one model in the sensitivity analysis. Simi-

larly, all questionnaire item responses had positive variable importance in the original

analysis but parent responses to items 2 and 3 and child responses to items 5, 6, 7,

and 8 were negative in the sensitivity analysis.

The results of these analyses can be used to inform the development of future

screening and diagnostic tools for identifying tic disordered in children. Utilizing the

items identified as important in the logistic and/or random forest models in future

tools may allow for a screening measure with higher sensitivity and has the potential

to improve identification of tic disorders in a clinical setting and future studies.
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Appendix A

Appendix - Derivation of a Score Test for

Over- and Underdispersion Based on the Heaped

Generalized Poisson Distribution

A.0.1 Derivation of the Score Test

Given the log-likelihood function of the heaped generalied Poisson model, the linear

form first derivatives of the components of the regression model are given by the

following equations,

∂L
∂ηCβ

=
n∑
i=1

1
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n∑
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gCαi.

When evaluated under the null hypothesis, H0 : α = 0, the score vector is then given

by,

U(ηCβ , ηMγu
, α)′
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.
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The negative expected values of the second derivatives of the log-likelihood form

the Fisher’s Information Matrix. The seccond derivatives are given by,
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Note that,
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= ∂PCb

∂µb
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∂ηCβ

and since µb = exp(ηCβ ),

∂µb
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= µb.

As we are dealing with the heaped generalized Poisson distribution, PCb
is given

by,

PCb
=
{
µb(1− δ) [µb(1− δ) + δyb]yb−1

}
exp {− [µb(1− δ) + δyb]} /yb!

and
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Further, as we assume m heaping values other than 1, the multinomial probabili-

ties are given by,
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and

PMb
(B = b|Z,γb) = exp(Zγb)

1 + exp(Zγ2) + ...+ exp(Zγm+1) , b = 2, ...,m+ 1.
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Based on the above and the structure of U(ηCβ , ηMγu
, α)′ |
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γu
,0)
, we obtain the

score statistic as in (1.10).
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Figure A.1 Plots of the power (%) of the Wald, likelihood ratio (SSR-LRT), and
score tests for heaped generalized Poisson distributed simulated data at different
values of the dispersion parameter, α. Plots were constructed using R [31] [41] [25].
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Figure A.2 Plots of the power (%) of the Wald, likelihood ratio (SSR-LRT), and
score tests for heaped negative binomial distributed simulated data at different
values of the probability of success on a single trial, p. Plots were constructed using
R [31] [41] [25].
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Table A.3 Selected characteristics of the variables included in the models
estimated in the case study (n = 1, 504).

Variable Mean Range
Name (Std. Dev.) (Min., Max.)

Cigarettes smoked per day in smd650 11.549 (9.982) (1, 95)
the past 30 days
Age ridageyr 40.735 (16.644) (13, 80)

Freq. %
Gender gendernew

Females 669 44.481
Males 835 55.519

Race racenew
Non-Hispanic white 749 49.801
Other races 755 50.199
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Figure A.3 Histogram of the number of cigarettes participants smoked per day for
the past 30 days.
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Figure A.4 Results of the estimated heaped Poisson regression model for number
of cigarettes smoked in the past 30 days.
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Figure A.5 Results of the estimated heaped generalized Poisson regression model
for number of cigarettes smoked in the past 30 days.
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Table A.4 Results of the Wald, likelihood ratio (SSR-LRT), and derived score test
for H0 : α = 0 and H1 : α 6= 0.

Test χ2 value p-value
Wald 547.570 < 0.001
SSR_LRT 1036.910 < 0.001
Score 649.311 < 0.001
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Appendix B

Appendix - Modelling the Dispersion Parameter

in the Double Poisson Distribution

Table B.1 Structures of the dispersion parameter used to simulate data.
Structure of φ Value of x1 φ Description

2
1+exp(−(−1+0.5x1))

0 0.538 Dispersion depends on x1 and data are
1 0.755 overdispersed for all values of x1.

2
1+exp(−(1+0.5x1))

0 1.462 Dispersion depends on x1 and data are
1 1.635 underdispersed for all values of x1.

2
1+exp(−(−1+2x1))

0 0.538 Data are overdispersed when x1 = 0 and
1 1.462 underdispersed when x1 = 1.

0.75 0 0.75 Dispersion is constant.1 0.75
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Table B.3 Estimated values of the dispersion parameter, φ, at different values of
x1 calculated using the mean values of the parameters for dispersion models
estimated based on data simulated to be dependent on x1 and consistently
overdispersed. The dispersion structure used to simulate data was 2

1+exp(−(−1+0.5x1)) .

sample size
n=100 n=250 n=500

x1=0 x1=1 x1=0 x1=1 x1=0 x1=1

sc1
M=1.25 0.536 0.890 0.515 0.831 0.509 0.823
M=2 0.532 0.848 0.514 0.827 0.508 0.821
M=2.5 0.531 0.847 0.514 0.826 0.508 0.820

sca
M=1.25 0.642 1.250 0.626 1.249 0.624 1.244
M=2 0.639 1.462 0.624 1.459 0.619 1.446
M=2.5 0.633 1.450 0.618 1.435 0.614 1.261

sce
M=1.25 0.573 1.184 0.551 1.161 0.543 0.778
M=2 0.566 0.831 0.549 0.777 0.542 0.766
M=2.5 0.565 0.800 0.548 0.773 0.542 0.765
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Table B.5 Estimated values of the dispersion parameter, φ, at different values of
x1 calculated using the mean values of the parameters for dispersion models
estimated based on data simulated to be dependent on x1 and consistently
underdispersed. The dispersion structure used to simulate data was 2

1+exp(−(1+0.5x1)) .

sample size
n=100 n=250 n=500

x1=0 x1=1 x1=0 x1=1 x1=0 x1=1

sc1
M=1.25 1.250 1.250 1.250 1.250 1.250 1.250
M=2 1.856 1.208 1.523 1.173 1.437 1.163
M=2.5 1.639 1.196 1.457 1.171 1.429 1.164

sca
M=1.25 1.250 1.250 1.250 1.250 1.250 1.250
M=2 1.800 2.000 1.556 1.669 1.488 1.671
M=2.5 1.656 1.725 1.508 1.722 1.464 1.718

sce
M=1.25 1.250 1.250 1.250 1.250 1.250 1.250
M=2 1.892 1.998 1.599 1.993 1.505 1.795
M=2.5 1.708 2.500 1.516 1.722 1.485 1.666
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Table B.7 Estimated values of the dispersion parameter, φ, at different values of x1
calculated using the mean values of the parameters for dispersion modelsestimated
based on data simulated to be overdispersed when x1 = 0 and underdispersed when
x1 = 1. The dispersion structure used to simulate data was 2

1+exp(−(−1+2x1)) .

sample size
n=100 n=250 n=500

x1=0 x1=1 x1=0 x1=1 x1=0 x1=1

sc1
M=1.25 0.535 1.250 0.515 1.250 0.509 1.130
M=2 0.531 1.140 0.514 1.109 0.508 1.100
M=2.5 0.610 1.246 0.514 1.108 0.508 1.100

sca
M=1.25 0.632 1.250 0.612 1.250 0.603 1.250
M=2 0.637 2.000 0.616 1.672 0.609 1.650
M=2.5 0.633 1.737 0.612 1.706 0.605 1.278

sce
M=1.25 0.573 1.250 0.551 1.250 0.542 1.250
M=2 0.565 2.000 0.548 1.814 0.542 1.570
M=2.5 0.563 1.772 0.547 1.523 0.542 1.487
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Table B.9 Estimated values of the dispersion parameter, φ, at different values of
x1 calculated using the mean values of the parameters for dispersion models
estimated based on data simulated to have a scalar dispersion structure, φ = 0.75.

sample size
n=100 n=250 n=500

x1=0 x1=1 x1=0 x1=1 x1=0 x1=1

sc1
M=2 0.723 0.845 0.695 0.824 0.686 0.818
M=1.25 0.758 0.900 0.699 0.828 0.688 0.820
M=2.5 0.720 0.843 0.694 0.824 0.686 0.818

sca
M=2 0.830 1.448 0.805 1.428 0.797 1.408
M=1.25 0.869 1.247 0.812 1.245 0.803 1.242
M=2.5 0.820 1.437 0.796 1.401 0.788 1.383

sce
M=2 0.795 0.819 0.767 0.771 0.757 0.761
M=1.25 0.857 1.250 0.773 0.831 0.760 0.772
M=2.5 0.791 0.793 0.732 0.734 0.757 0.759
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Table B.10 Selected characteristics of the variables included in the models
estimated in the case study (n = 126).

Variable Mean Range
Name (Std. Dev) (Min., Max.)

Number of Bids numbids 1.738 (1.432) (0, 10)
Size size 1.219 (0.018, 22.169)
Size2 sizesq 10.999 (0.000, 491.465)
% Institutional Holding insthold 0.252 (0.186) (0, 0.904)
Centered Bid Premium cbidprem 0 (-0.404, 0.720)

Freq. %
Legal Defense leglrest

Yes 72 57.143
No 54 42.857

Change in Asset realrest
Structure Yes 23 18.254

No 103 81.746
Change in finrest
Ownership Yes 13 10.317

No 113 89.683
3rd Party Bid whtknght

Yes 75 59.524
No 51 40.476

Intervention by regulatn
Fed Yes 34 26.984

No 92 73.016

72



Figure B.1 Results of the double Poisson regression model of the number of
takeover bids assuming a scalar dispersion structure.
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Figure B.2 Results of the double Poisson regression model of the number of
takeover bids. Dispersion is modeled as a function of mean-centered bid premium.
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Appendix C

Appendix - Evaluating and Improving

Identification of Tic Disorders in Children

Table C.1 DoTS items included in the parent report. Items in the self report are
similar.

DoTS - Parent Report
1a My child makes noises (like grunts)

that he/she can’t stop.
Never Sometimes Often Always

1b Parts of my child’s body jerk again
and again, that he/she can’t con-
trol.

Never Sometimes Often Always

1c At times my child has the same
jerk or twitch over and over.

Never Sometimes Often Always

1d My child can’t control all of
his/her movements.

Never Sometimes Often Always

1e My child seems to feel pressure to
talk, shout, or scream.

Never Sometimes Often Always

1f My child has habits or movements
that come out more when he/she
is nervous.

Never Sometimes Often Always

2 Does your child make short move-
ments over and over?

No Yes

3 Does your child make short sounds
over and over?

No Yes

4a Do you think that your child ever
had tics?

No Yes

4b Do you think that your child cur-
rently has tics?

No Yes
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Table C.2 MOVeIT-10 items included in the parent report. Items in the self report
are similar.

MOVeIT 10 – Parent Report
Please answer the questions below by circling your response. Some of the
questions may sound similar, but please answer each the best you can.
1 My child makes the same twitches, move-

ments, noises, words or sounds over and
over

Never Sometimes Often

2 My child feels like they have to make a
noise or say a word even if they don’t want
to

Never Sometimes Often

3 My child feels like they have to move
parts of their body even if they don’t want
to - like constant blinking, twitching the
nose, moving mouth or jaw, shrugging the
shoulders, jerking arms or legs

Never Sometimes Often

4 My child makes the same twitches, move-
ments, noises, words or sounds over and
over that are hard to keep from doing –
like grunts, coughs, blinking, shrugging
the shoulders

Never Sometimes Often

5 My child has the same jerk or twitch over
and over – like constant blinking, twitch-
ing the nose, moving mouth or jaw, shrug-
ging the shoulders, jerking arms or legs

Never Sometimes Often

6 My child makes the same twitches, move-
ments, noises, words or sounds over and
over - like grunts, coughs, blinking, shrug-
ging shoulders

Never Sometimes Often

7 My child makes the same noises or sounds
over and over that are hard to keep from
doing

Never Sometimes Often

8 My child feels like they have to make a
noise or say a word, or move parts of my
body even if they don’t want to

Never Sometimes Often

9 My child makes the same noises or says
the same words over and over

Never Sometimes Often

10 My child makes the same movements over
and over that are hard to keep from doing

Never Sometimes Often
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Table C.5 Prediction results for DoTS logistic regression (LR) and random forest
(RF) models estimated using both child and parent responses, only parent
responses, and only child responses. Sensitivity, NPV, Youden’s indicies, weighted
Youden’s indices, and specificity reported at the cutoff value that maximizes
weighted Youden’s index Y3.

LR DoTS LR DoTS Parent LR DoTS Self
Cutoff 0.48 0.28 0.34
Sensitivty 0.909 0.850 0.938
NPV 0.974 0.961 0.976
Youden’s Index 0.859 0.799 0.810
Y2 2.768 2.649 2.747
Y3 3.677 3.499 3.685
Y4 4.586 4.349 4.622
Y5 5.495 5.199 5.560
Specificity 0.950 0.949 0.872

RF DoTS RF DoTS Parent RF DoTS Self
Cutoff 0.500 0.500 0.350
Sensitivty 0.909 0.850 0.938
NPV 0.974 0.961 0.975
Youden’s Index 0.834 0.786 0.767
Y2 2.743 2.636 2.705
Y3 3.652 3.486 3.642
Y4 4.561 4.336 4.580
Y5 5.470 5.186 5.517
Specificity 0.925 0.936 0.830
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Table C.6 Prediction results for MOVeIT logistic regression (LR) and random
forest (RF) models estimated using both child and parent responses, only parent
responses, and only child responses. Sensitivity, NPV, Youden’s indicies, weighted
Youden’s indices, and specificity reported at the cutoff value that maximizes
weighted Youden’s index Y3.

LR MOVeIT LR MOVeIT Parent LR MOVeIT Self
Cutoff 0.04 0.12 0.08
Sensitivity 0.767 0.804 0.846
NPV 0.873 0.933 0.907
Youden’s Index 0.554 0.547 0.411
Y2 2.320 2.351 2.258
Y3 3.087 3.155 3.104
Y4 3.854 3.959 3.950
Y5 4.620 4.763 4.796
Specificity 0.787 0.743 0.565

RF MOVeIT RF MOVeIT Parent RF MOVeIT Self
Cutoff 0.02 0.10 0.04
Sensitivity 0.967 0.843 0.962
NPV 0.969 0.943 0.968
Youden’s Index 0.475 0.554 0.396
Y2 2.442 2.398 2.358
Y3 3.408 3.241 3.319
Y4 4.375 4.084 4.281
Y5 5.342 4.927 5.242
Specificity 0.508 0.711 0.435
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Table C.7 Logistic regression coefficients and odds ratios with 95% confidence
intervals for Description of Tic Symptoms (DoTS) models. Race - Black indicates
non-Hispanic Black and Race - Other indicates other or multiple races and/or
ethnicities.

DoTS DoTS Parent DoTS Self
OR (95%
CI)

p-value OR (95%
CI)

p-value OR (95%
CI)

p-value

Sex (female) 0.88
(0.31,
2.45)

0.80 0.840
(0.348,
2.029)

0.70 0.40**
(0.16,
0.99)

0.05**

Race - Black 0.39
(0.13,
1.22)

0.11 0.657
(0.242,
1.785)

0.41 0.40*
(0.15,
1.09)

0.07*

Race - Other 0.19**
(0.05,
0.78)

0.02** 0.379*
(0.132,
1.085)

0.07* 0.32*
(0.11,
1.00)

0.05*

Age 1.05
(0.88,
1.25)

0.61 1.080
(0.971,
1.200)

0.16 1.03
(0.88,
1.21)

0.69

Parent 1a 2.83**
(1.12,
7.18)

0.03** 1.75*
(0.91,
3.34)

0.09*

Parent 1b 0.88
(0.18,
4.41)

0.88 0.83
(0.31,
2.20)

0.71

Parent 1c 3.20
(0.53,
19.23)

0.20 2.28
(0.85,
6.07)

0.10

Parent 1d 1.35
(0.42,
4.29)

0.62 1.25
(0.66,
2.35)

0.49

Parent 1e 0.78
(0.25,
2.40)

0.66 0.48*
(0.21,
1.07)

0.07*

Parent 1f 0.82
(0.35,
1.90)

0.64 1.15
(0.66,
2.00)

0.63

Parent 2 1.55
(0.16,
15.19)

0.71 2.67*
(0.93,
7.70)

0.07*

Parent 3 0.82
(0.13,
5.26)

0.83 1.92
(0.66,
5.60)

0.24
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DoTS DoTS Parent DoTS Self
OR (95%
CI)

p-value OR (95%
CI)

p-value OR (95%
CI)

p-value

Parent 4a 4.68*
(0.78,
28.07)

0.09* 4.66**
(1.11,
19.50)

0.04**

Parent 4b 1.442
(0.10,
20.13)

0.79 1.90
(0.38,
9.31)

0.43

Self 1a 0.76
(0.31,
1.88)

0.56 1.35
(0.71,
2.57)

0.36

Self 1b 0.34**
(0.12,
0.99)

0.05** 0.64
(0.30,
1.38)

0.25

Self 1c 1.53
(0.63,
3.72)

0.35 1.82*
(0.92,
3.57)

0.08*

Self 1d 1.41
(0.69,
2.89)

0.35 1.67
(0.87,
3.21)

0.12

Self 1e 1.23
(0.66,
2.30)

0.52 0.64
(0.36,
1.12)

0.12

Self 1f 0.85
(0.44,
1.65)

0.64 0.75
(0.44,
1.28)

0.29

Self 2 2.02
(0.70,
5.84)

0.20 1.55
(0.62,
3.85)

0.35

Self 3 1.60
(0.50,
5.13)

0.43 1.78
(0.65,
4.83)

0.26

Self 4a 8.55***
(2.13,
34.37)

0.00*** 9.84***
(3.11,
31.14)

0.00***

Self 4b 0.35
(0.08,
1.62)

0.18 0.81
(0.25,
2.64)

0.73
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Table C.8 Logistic regression coefficients and odds ratios for 10 item Motor or
Vocal Inventory of Tics (MOVeIT-10) models. Race - Black indicates non-Hispanic
Black and Race - Other indicates other or multiple races and/or ethnicities.

MOVeIT MOVeIT Parent MOVeIT Self
OR (95%
CI)

p-value OR (95%
CI)

p-value OR (95%
CI)

p-value

Sex (female) 0.24*
(0.05,
1.10)

0.07* 0.68
(0.38,
1.23)

0.20 0.19***
(0.07,
0.53)

0.00***

Race - Black 0.22*
(0.04,
1.33)

0.10* 0.72
(0.38,
1.40)

0.33 0.40*
(0.14,
1.18)

0.10*

Race - Other 0.24
(0.04,
1.47)

0.12 0.31***
(0.13,
0.72)

0.01*** 0.36*
(0.11,
1.17)

0.09*

Age 0.96
(0.72,
1.27)

0.75 1.07*
(0.99,
1.15)

0.05* 1.05
(0.87,
1.26)

0.61

Parent 1 1.04
(0.20,
5.55)

0.96 1.42
(0.79,
2.58)

0.24

Parent 2 0.18
(0.02,
1.52)

0.12 1.14
(0.63,
2.08)

0.67

Parent 3 0.89
(0.19,
4.20)

0.89 1.04
(0.57,
1.91)

0.90

Parent 4 2.92
(0.54,
15.69)

0.21 1.33
(0.66,
2.67)

0.42

Parent 5 2.79
(0.53,
14.61)

0.22 2.35***
(1.23,
4.49)

0.01***

Parent 6 0.67
(0.13,
3.52)

0.63 1.66
(0.77,
3.61)

0.20

Parent 7 11.91***
(2.34,
60.54)

0.00*** 1.09
(0.54,
2.17)

0.82

Parent 8 0.90
(0.17,
4.84)

0.90 1.50
(0.77,
2.91)

0.24
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MOVeIT MOVeIT Parent MOVeIT Self
OR (95%
CI)

p-value OR (95%
CI)

p-value OR (95%
CI)

p-value

Parent 9 4.65
(0.71,
30.37)

0.11 0.73
(0.39,
1.36)

0.32

Parent 10 0.85
(0.22,
3.19)

0.80 0.98
(0.54,
1.79)

0.94

Self 1 2.38
(0.68,
8.30)

0.17 2.51**
(1.11,
5.67)

0.03**

Self 2 0.44
(0.11,
1.81)

0.26 1.96
(0.73,
5.28)

0.18

Self 3 0.95
(0.29,
3.15)

0.94 1.05
(0.47,
2.38)

0.90

Self 4 1.60
(0.34,
7.55)

0.55 1.25
(0.52,
2.97)

0.62

Self 5 0.78
(0.22,
2.76)

0.70 1.23
(0.56,
2.71)

0.61

Self 6 0.92
(0.24,
3.55)

0.90 1.27
(0.49,
3.31)

0.62

Self 7 0.22**
(0.05,
0.94)

0.04** 0.94
(0.34,
2.59)

0.90

Self 8 0.55
(0.16,
1.90)

0.35 0.42*
(0.17,
1.06)

0.07*

Self 9 4.63***
(1.55,
13.87)

0.01*** 1.72
(0.66,
4.52)

0.27

Self 10 4.73***
(1.54,
14.55)

0.01*** 2.39*
(0.97,
5.90)

0.06
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Table C.9 Random forest variable importance results for Description of Tic
Symptoms (DoTS) models. All responses to questionnaire items are treated as
categorical.

Item DoTS DoTS Parent DoTS self
Sex -1.05 -0.68 3.92
Race 4.95 8.28 12.35
Age 5.91 8.13 1.03
Parent 1a 23.61 15.80
Parent 1b 8.89 11.90
Parent 1c 22.35 23.32
Parent 1d 8.35 9.30
Parent 1e -2.26 -1.04
Parent 1f 1.23 9.48
Parent 2 10.42 12.93
Parent 3 6.14 6.24
Parent 4a 17.29 32.00
Parent 4b 9.80 21.70
Self 1a 0.68 4.01
Self 1b 1.08 -0.07
Self 1c 4.30 9.93
Self 1d 5.11 5.50
Self 1e 8.29 1.41
Self 1f 0.67 -0.55
Self 2 2.57 0.68
Self 3 2.94 -0.38
Self 4a 13.04 30.43
Self 4b 5.83 20.99
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Table C.10 Random forest variable importance results for 10 item Motor or Vocal
Inventory of Tics (MOVeIT-10) models All responses to questionnaire items are
treated as categorical.

Item MOVeIT MOVeIT Parent MOVeIT self
Sex 2.571 -0.332 12.814
Race 8.04 12.79 13.435
Age -0.517 18.202 0.159
Parent 1 17.834 16.614
Parent 2 2.205 7.433
Parent 3 5.133 9.865
Parent 4 14.612 18.816
Parent 5 15.301 27.224
Parent 6 15.53 19.081
Parent 7 13.026 4.779
Parent 8 5.361 9.102
Parent 9 9.455 5.88
Parent 10 8.556 16.107
Self 1 9.033 18.184
Self 2 4.968 14.953
Self 3 0.591 6.323
Self 4 8.317 16.822
Self 5 0.751 8.734
Self 6 5.492 14.282
Self 7 1.876 11.206
Self 8 1.297 4.531
Self 9 17.18 14.887
Self 10 9.009 11.387
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Table C.11 Sensitivity analysis logistic regression coefficients and odds ratios with
95% confidence intervals for Description of Tic Symptoms (DoTS) models excluding
data from studies recruiting from tic specialty or developmental and behavioral
specialty clinics. Race - Black indicates non-Hispanic Black and Race - Other
indicates other or multiple races and/or ethnicities.

DoTS DoTS Parent DoTS Self
OR (95%
CI)

p-value OR (95%
CI)

p-value OR (95%
CI)

p-value

Sex (female) 1.10
(0.37,
3.27)

0.86 0.60
(0.26,
1.39)

0.23 0.46
(0.18,
1.15)

0.10*

Race - Black 0.60
(0.20,
1.8)

0.36 0.63
(0.25,
1.59)

0.32 0.58
(0.22,
1.54)

0.27

Race - Other 0.15**
(0.03,
0.69)

0.02** 0.46
(0.17,
1.24)

0.12 0.26**
(0.08,
0.84)

0.02**

Age 0.94
(0.80,
1.10)

0.43 1.13**
(1.02,
1.24)

0.02** 0.87
(0.74,
1.03)

0.10

Parent 1a 2.22*
(0.91,
5.41)

0.08* 3.06***
(1.4,
6.69)

0.01***

Parent 1b 1.46 (0.3,
7.03)

0.63 0.78
(0.25,
2.40)

0.66

Parent 1c 2.72
(0.57,
13.08)

0.21 1.45
(0.39,
5.40)

0.58

Parent 1d 0.84
(0.13,
5.24)

0.85 0.60
(0.25,
1.45)

0.26

Parent 1e 0.61
(0.16,
2.31)

0.47 0.54
(0.23,
1.27)

0.16

Parent 1f 0.76
(0.32,
1.8)

0.53 1.20
(0.69,
2.09)

0.52

Parent 2 3.03
(0.41,
22.2)

0.28 2.85*
(0.91,
8.96)

0.07*

Parent 3 0.55
(0.07,
4.13)

0.56 0.92
(0.28,
3.01)

0.89
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DoTS DoTS Parent DoTS Self
OR (95%
CI)

p-value OR (95%
CI)

p-value OR (95%
CI)

p-value

Parent 4a 4.61*
(0.81,
26.26)

0.09* 2.36
(0.60,
9.37)

0.22

Parent 4b 1.27
(0.09,
17.13)

0.86 1.16
(0.21,
6.52)

0.87

Self 1a 0.98
(0.31,
3.11)

0.97 0.74
(0.26,
2.09)

0.57

Self 1b 0.61
(0.23,
1.62)

0.32 0.4 0*
(0.15,
1.04)

0.06*

Self 1c 1.84
(0.74,
4.56)

0.19 2.38
(1.12,
5.07)

0.02

Self 1d 1.11
(0.51,
2.41)

0.8 0.91
(0.46,
1.79)

0.78

Self 1e 1.28
(0.69,
2.37)

0.43 1.13
(0.66,
1.95)

0.65

Self 1f 0.67
(0.33,
1.33)

0.25 1.10
(0.62,
1.95)

0.74

Self 2 3.36
(1.10,
10.31)

0.2 1.61
(0.59,
4.38)

0.35

Self 3 0.58
(0.14,
2.34)

0.45 1.08
(0.36,
3.22)

0.89

Self 4a 4.23
(1.11,
16.16)

0.03 5.21***
(1.5,
18.16)

0.01***

Self 4b 0.21*
(0.04,
1.15)

0.07* 0.30
(0.07,
1.28)

0.10
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Table C.12 Sensitivity analysis random forest variable importance results for
Description of Tic Symptoms (DoTS) models excluding data from studies recruiting
from tic specialty or developmental and behavioral specialty clinics. All responses
to questionnaire items are treated as categorical.

Item DoTS DoTS Parent DoTS self
Sex -2.10 3.65 -1.11
Race -0.79 -4.06 -0.09
Age 5.79 10.56 2.81
Parent 1a 15.88 18.15
Parent 1b 1.62 0.04
Parent 1c 8.46 1.52
Parent 1d -2.54 -8.32
Parent 1e -4.07 -1.97
Parent 1f 1.83 -9.38
Parent 2 4.24 0.94
Parent 3 0.40 -3.87
Parent 4a 5.74 10.50
Parent 4b 2.21 6.68
Self 1a 4.06 -3.61
Self 1b -0.90 -0.01
Self 1c 7.07 4.92
Self 1d 1.54 -0.20
Self 1e 4.83 2.25
Self 1f 3.00 -0.94
Self 2 1.39 -0.83
Self 3 1.33 -0.23
Self 4a 5.51 5.10
Self 4b 0.27 2.41
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Table C.13 Sensitivity analysis logistic regression coefficients and odds ratios with
95% confidence intervals for 10 item Motor or Vocal Inventory of Tics (MOVeIT-10)
models excluding data from studies recruiting from tic specialty or developmental
and behavioral specialty clinics. Race - Black indicates non-Hispanic Black and
Race - Other indicates other or multiple races and/or ethnicities.

MOVeIT MOVeIT Parent MOVeIT Self
OR (95%
CI)

p-value OR (95%
CI)

p-value OR (95%
CI)

p-value

Sex (female) 0.49
(0.09,
2.62)

0.41 0.61
(0.31,
1.19)

0.15 0.34*
(0.09,
1.21)

0.10*

Race - Black 0.60
(0.10,
3.68)

0.58 0.85
(0.40,
1.80)

0.67 0.91
(0.25,
3.38)

0.89

Race - Other 0.88
(0.14,
5.30)

0.89 1.00
(0.50,
2.01)

0.99 0.69
(0.16,
3.07)

0.63

Age 0.80
(0.53,
1.21)

0.29 1.05
(0.97,
1.14)

0.20 1.02
(0.80,
1.30)

0.87

Parent 1 1.49
(0.21,
10.84)

0.69 1.49
(0.78,
2.85)

0.23

Parent 2 0.61
(0.06,
5.95)

0.67 0.89
(0.48,
1.65)

0.72

Parent 3 1.25
(0.24,
6.46)

0.79 1.08
(0.57,
2.07)

0.81

Parent 4 5.93
(0.41,
85.25)

0.19 1.40
(0.70,
2.80)

0.35

Parent 5 1.96
(0.19,
20.03)

0.57 1.41
(0.72,
2.76)

0.31

Parent 6 1.24
(0.06,
24.57)

0.89 2.13**
(1.01,
4.48)

0.05**

Parent 7 7.90**
(1.28,
48.78)

0.03** 0.80
(0.39,
1.66)

0.55

Parent 8 0.66
(0.09,
5.05)

0.69 0.97
(0.46,
2.06)

0.94
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MOVeIT MOVeIT Parent MOVeIT Self
OR (95%
CI)

p-value OR (95%
CI)

p-value OR (95%
CI)

p-value

Parent 9 0.09
(0.00,
2.19)

0.14 1.05
(0.57,
1.92)

0.89

Parent 10 0.44
(0.08,
2.32)

0.33 1.07
(0.57, 2)

0.84

Self 1 1.11
(0.26,
4.64)

0.89 1.33
(0.47,
3.72)

0.59

Self 2 1.93
(0.49,
7.5)

0.35 2.69*
(0.95,
7.56)

0.06*

Self 3 3.53*
(0.88,
14.1)

0.07* 1.01
(0.35,
2.94)

0.98

Self 4 0.75
(0.10,
5.41)

0.78 0.93
(0.30,
2.93)

0.90

Self 5 1.02
(0.23,
4.54)

0.98 0.80
(0.26,
2.47)

0.70

Self 6 1.88
(0.33,
10.75)

0.48 1.57
(0.44,
5.61)

0.49

Self 7 0.35
(0.07,
1.72)

0.20 0.55
(0.16,
1.87)

0.34

Self 8 0.67
(0.15,
2.97)

0.60 0.87
(0.27,
2.81)

0.81

Self 9 1.29
(0.34,
4.87)

0.71 1.72
(0.56,
5.26)

0.34

Self 10 2.71
(0.65,
11.34)

0.17 2.08
(0.79,
5.47)

0.14
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Table C.14 Sensitivity analysis random forest variable importance results for 10
item Motor or Vocal Inventory of Tics (MOVeIT-10) models excluding data from
studies recruiting from tic specialty or developmental and behavioral specialty
clinics. All responses to questionnaire items are treated as categorical.

Item MOVeIT MOVeIT Par-
ent

MOVeIT self

Sex -3.51 -1.43 1.10
Race -2.30 -1.14 -2.78
Age 2.30 3.12 -1.51
Parent 1 7.52 3.66
Parent 2 -2.06 1.01
Parent 3 -0.56 1.67
Parent 4 8.32 9.16
Parent 5 4.62 11.88
Parent 6 5.23 10.02
Parent 7 7.69 4.75
Parent 8 1.10 0.43
Parent 9 0.58 2.09
Parent 10 2.27 5.30
Self 1 2.00 0.57
Self 2 2.16 4.80
Self 3 5.44 0.90
Self 4 3.04 2.73
Self 5 4.79 -0.86
Self 6 2.25 -1.92
Self 7 1.68 -2.18
Self 8 1.50 -0.34
Self 9 0.82 0.09
Self 10 2.75 3.27
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