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Abstract

Increased vulnerability of water systems to extreme events and climate change is

among the profound challenges facing the management of water resource systems

around the world. Extreme events, including droughts, floods, and natural hazards

have become more frequent and intensive, particularly in coastal regions. Floods, for

instance, caused tens of billions of US dollars losses and put the lives of thousands

in danger, globally. To cope with the adverse consequences of floods, a wide range of

structural, non-structural, and emergency measures are studied and deployed by flood

management sectors. Various flood simulation, mapping, and forecast systems have

been developed to predict flood events, warn the public and inform decision-makers to

react accordingly for making better decisions to protect lives and property. Develop-

ment and level of accuracy of these systems, however, rely heavily on the availability

and quality of temporal and spatial data received from ground-based gauge sensing,

remote sensing, and more recently crowdsourcing. While all these data sources pro-

vide useful information, they have their limitations, such as the small spatial scale

of in-situ gauging or satellites’ long revisit period. Recent advancements in Artificial

Intelligence provide a unique opportunity to gather and analyze complementary flood

information from new and unconventional sources of data and accelerate flood mod-

eling. This research aims to introduce a vision-based framework using surveillance

imageries to enhance the monitoring, modeling, and management of water resources,

using Computer Vision and Deep Learning techniques. This vision-based framework

interprets visual features of the captured images into water-related numerical param-

eters, such as water level and inundation area. Such a framework will support flood
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modeling by providing real-time input information for data assimilation and inform

decision-makers and first responders to undertake appropriate actions and adaptation

strategies facing flood risk.
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Chapter 1

Introduction
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Extreme events, such as droughts, floods, and natural hazards have become more

frequent and intensive, due to global warming and climate change, and their associ-

ated damages and socio-economic inverse impacts are increasing (Zscheischler et al.

2020). Flood, for example, is among the most devastating natural hazards, and its

intensity and frequency are anticipated to occur even more in the future, especially

in the coastal regions (Webster 2013; Piecuch et al. 2018). According to (Hirabayashi

et al. 2013), reported annual losses caused by floods reached tens of billions of US

dollars and thousands of people were killed each year. In order to cope with the ad-

verse consequences of floods, a wide range of structural and emergency actions may

be considered, among which developing flood early warning systems and mapping are

of high importance.

Early warnings and monitoring systems of flood can protect human lives and pre-

vent further damages by providing timely information needed to plan for evacuation,

emergency management, and relief work (Gebrehiwot et al. 2019). Flood inundation

models are often developed to simulate and predict affected areas and the degree of

damage caused by storm events. These models rely heavily on temporal and spa-

tial hydroclimate data received from ground-based gauges, remote sensing (Lo et al.

2015), and more recently crowdsourcing (Howe 2008). However, all these sources have

their own shortages and limitations. For example, gauge sensing is only capable of

measuring stream flow data at specific locations, and therefore, provides inadequate

information about the spatial distribution of flood (Lo et al. 2015). Remote sensing

data is constrained by the limited revisit intervals of satellites, cloud covering, and

systematic departures (or biases) (Panteras and Cervone 2018). Finally, the relia-

bility and confidence level of crowdsourcing methods have been criticized due to the

lack of verification (Schnebele, Cervone, and Waters 2014; Goodchild 2007).

In addition to the limitations associated with the flood data collection methods,

modeling techniques and underlying mathematical equations used to simulate flood
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processes and watershed responses are highly complex and uncertain due to the dy-

namic nature of flood generation and propagation (Mosavi, Ozturk, and Chau 2018).

The challenges are imposed by the non-linearity of hydrological processes, temporal

and spatial variability of effective parameters, and equifinality (Fatichi et al. 2016).

These limitations (i.e., lack of adequate data and limited knowledge about physical

processes in hydrology) have compelled researchers of the water resources community

to adopt data-driven and Machine Learning (ML) approaches to simulate flood and

other hydrological processes. These models are capable of discovering the underlying

physical relationships existing in different hydrological parameters while extracting

and interpreting these relationships are still a challenge. In addition to solving prob-

lems, ML models have shown great capabilities for pre-processing and analyzing big

data using decomposition, dimensionality reduction, anomaly detection, and denois-

ing techniques (Quilty and Adamowski 2018). Moreover, recent advances in ML,

specifically in Deep Learning (DL), configure model architectures to better deal with

(RGB) images (Krizhevsky, Sutskever, and Hinton 2012), which allows analyzing and

processing digital images for the purpose of extracting visual contexts and numeri-

cal information from those. Thus, this research aims to introduce images and videos

captured by ground-based cameras as a new source of data for measuring hydrological

data and monitoring water systems, particularly in the context of floods.

The proposed framework is able to extract actual field information such as water

stage, flood extent, and flow rate (Chow, Maidment, and Larry 1988) with high spatio-

temporal resolution from the processed time-lapse images. High-resolution data will

be used to support flood models to better estimate flood inundation and water level in

a real-time manner at different monitored locations. Developing such a vision-based

framework requires access to comprehensive and large image datasets for training and

testing DL-based models and analyzing water visual features and textures as visual

objects in digital images. Unfortunately, such a dataset and exclusive DL-based model
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customized for semantic segmentation of water does not exist. Thus, the first phase

of this research focused on developing a new water-related semantic segmentation

image dataset and an exclusive DL-based model for semantic segmentation of water

and water-related objects from ground-based (RGB) images.

In the following chapter– Literature Review– existing flood data sources and mea-

surement techniques are reviewed, and their advantages and disadvantages are dis-

cussed. The flood modeling frameworks and their required parameters are presented,

and a technical overview of ML and its application in the water engineering field are

described to draw potential pathways toward using DL-based techniques for solving

existing challenges in flood detection, monitoring, and modeling research. This chap-

ter is followed by the proposed research plan and presents the research questions,

hypotheses, and objectives. The third chapter is devoted to describing the first phase

of research which includes the development of a water-related image dataset and

DL-based model for semantic segmentation of different waterbodies in digital (RBG)

images. The fourth chapter introduces ATeX, a new image dataset for the classifi-

cation and texture analysis of water in different surrounding environments. Finally,

in the fifth chapter, the proposed framework for using surveillance imagery as a data

source to extract numerical water data is presented.
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Literature Review
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This chapter reviews the different hydrological data sources and flood modeling

approaches. First, an overview of the measurement method is explained. This is

followed by a discussion of important benefits and drawbacks. Different flood in-

undation modelings as well as Machine Learning techniques are reviewed afterward.

The chapter is concluded with my research plan to introduce surveillance imagery

as a new source of flood data using recent advances in Computer Vision and Deep

Learning.

2.1 Sources of flood data

2.1.1 In-situ Gauge Sensing

The measurements from in-situ gauges are often used for calibration and simulation

purposes of models. hydrological processes vary in space and time, and are random or

probabilistic, in character. These uncertainties create a requirement for hydrological

measurement to provide observed data at or near the location of interest so that

conclusions can be drawn directly from on-site observations (Chow, Maidment, and

W. 1964). Stream gauges provide near real-time flooding information (e.g. water

height, stream flow) for monitored locations (Turnipseed and Sauer 2010). Although

the in-situ gauging stations are considered the most accurate approach for estimating

river discharge, they have some inherent problems as follows:

• These stations are expensive to maintain and in many cases, they are not in-

stalled systematically along any given waterway (King, Neilson, and Rasmussen

2018)

• Some locations are technically, logistically, and politically difficult to access

which leads to dispersed measurements and insufficient information to map the

flooded area completely (Li et al. 2018).
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• Stream gauges are not useful when the water level rises beyond the limit of

ground-based gauges, and stream flow can wash the gauges away during intense

floods (Li et al. 2018).

• In-situ gauges are vulnerable to external interferences and they have relatively

high operating costs for regular calibration (Gao et al. 2019).

2.1.2 Remote Sensing

The use of remote sensing data to produce inundation mapping (Townsend and Walsh

1998) and to assess flood hazards in near real-time has been popular over the past few

decades (Gebrehiwot et al. 2019). Multispectral images have been utilized for extract-

ing the characteristics of hydrological surfaces, including topography, soil saturation

status, and delineation of flooding zones (Qiao et al. 2012). However, thus far, studies

on the remote measurement of water levels have mainly focused on large-area water-

bodies, such as oceans, interior lakes, lagoons, and large rivers (width > 100m) (Lo

et al. 2015). These studies showed, by integration of remote sensing and topographic

data, water stage (Schumann et al. 2009; Alsdorf, Rodriguez, and Lettenmaier 2007),

discharge (Bjerklie et al. 2003; Smith and Pavelsky 2008) are retrievable.

Remote altimetry technology can be used to continuously measure the water level

variation within a large area and can thus be used to extensively monitor an entire

flood event (Alsdorf, Rodriguez, and Lettenmaier 2007). Data from both optical and

microwave sensors can be used for this mission. Synthetic Aperture Radar (SAR)

systems offer the possibility to operate day and night and they can penetrate clouds

and heavy rainfall. This feature is of special importance considering the weather

conditions under which flood events usually occur (Schlaffer et al. 2015). Moreover,

the number of automatic image processing algorithms to derive flooding from SAR

data has increased since the launch of the high-resolution Synthetic Aperture Radar

(SAR) satellite systems TerraSAR-X, Radarsat-2, and Cosmo-SkyMed constellation
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(CSK) for the timely provision of crisis information during inundation events (Mar-

tinis, Kersten, and Twele 2015). However, due to the restriction of orbital cycles and

inter-track spacing of satellite movements, the limitation of remote measurement data

in continuous monitoring and the observation of fixed points is a key problem. So, it

is difficult to use remote sensing technology for long-term and real-time monitoring

at a fixed region of interest.

2.1.3 Crowdsourcing

Crowdsourcing is the act of taking a job traditionally performed by a designated agent

(usually an employee) and outsourcing it to an undefined, generally large group of

people in the form of an open call (Howe 2008). With respect to recent investments

of municipalities and related authorities in the concept of sensor networks for ad-

dressing security and surveillance issues, humans themselves can be considered as a

specific type of sensor network. Each person is equipped with five senses and the

intelligence to compile and interpret what they sense. This network of human sensors

has over a billion components, each an intelligent synthesizer, and interpreter of local

information.

Volunteered geographic information (VGI), a variant of crowdsourcing, certainly

focuses on geographic information systems (GIS) and more generally on the disci-

pline of geography and its relationship to the public (Goodchild 2007). VGI can be

considered an effective use of “user-generated content” for flood studies, enabled by

the pervasive use of social media. The proliferation of social media platforms such as

Twitter, Facebook, and Instagram has led to the generation of massive amounts of

user-generated geospatial data from real-time data streams. The temporal resolution

of social media is much higher than that of remote sensing data. In fact, the crowd-

sourced data via social media can be generated and published almost instantaneously

after the occurrence of an incident, which makes it very suitable for situational aware-
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ness applications (Yin et al. 2015). Social media and particularly Twitter (Huang,

Wang, and Li 2018) tend to be utilized by ordinary people during the occurrence of

a disaster and natural hazard, providing real-time information which is very valuable

for the disaster management agencies (Palen et al. 2010).

However, the reliability and confidence level associated with VGI have been crit-

icized due to the lack of verification (Schnebele, Cervone, and Waters 2014). The

participants are largely untrained, their actions are almost always voluntary, and the

results may or may not be accurate (Howe 2008). These systems completely rely on

self-motivated citizens who have no obvious incentive to spend time creating the con-

tent of VGI. Moreover, there are no elaborate standards and specifications to govern

the production of geographic information and the content is asserted by its creator

without citation, reference, or other authority. Moreover, such contribution is still

largely unavailable to most of the world’s population who live in developing countries

due to inaccessibility to the required technology, such as the Internet, smartphones,

and social media.

The collected data from different sources is fed into flood inundation models for

model calibration or prediction purposes. These models require different input data

and subsequently provide different output information. The following section outlines

different types of flood modelings and their features.

2.2 Flood inundation modeling

Generally, efficient modeling requires paying attention to data availability, desired

output variables, and their time and space scales, as well as the level of accuracy,

computational resources, and algorithms. The end users should concern about these

differences to wisely select a model balancing their demands against model complex-

ity and data requirements (Teng et al. 2017). For flood forecasting, as an example,

models must have fast run time for real-time data assimilation (Sharma and Machi-
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wal 2021). These models require time series data of river stage and the amount

of rainfall occurring on a real-time basis. For flood hazard mapping, on the other

hand, maximum flood extent and water depth may be sufficient (Huang, Wang, and

Li 2018). Several studies have been conducted for flood inundation mapping, which

could roughly break into three categories:

2.2.1 Hydrodynamic models

These models are widely used to simulate detailed flood dynamics. They can be

directly linked to hydrological models and river models to provide flood risk mapping,

flood forecasting, and scenario analysis (Teng et al. 2017). Depending on their spatial

representation of the floodplain flow, the models can be dimensionally grouped into

1D, 2D, and 3D models. 2D hydrodynamic models are perhaps the most widely used

models in flood extent mapping and flood risk estimation studies. These models

can solve full shallow water equations and they are able to simulate the timing and

duration of inundation with high accuracy. Nevertheless, they are computationally

intensive. Generally, hydrodynamic models have no analytical solution, but can be

solved using numerical techniques. These methods need to be satisfied by flood

information (e.g., water height and stream flow).

2.2.2 Simplified (non-physics-based) methods

These models can be labeled as simplified conceptual models and are based on

more modest representations of physical processes and have run times orders of

magnitudes shorter than hydrodynamic models, making them useful tools for large-

scale applications where only final (maximum) flood extent and water levels are re-

quired (Teng et al. 2017). One of these models is the Rapid Flood Spreading Method

(RFSM) (Lhomme et al. 2008) which divides the floodplain into elementary areas

that represent topographic depressions in the preprocessing. It then spreads the
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flood volumes by filling these areas using a filling/spilling process. Another simpli-

fied conceptual model is based on the so-called theory of “planar method” or “bathtub

method”. It derives the flood extent by intersecting a series of planes at fine inter-

vals with a high-resolution DEM and instantly links the water stage/volume with the

flood extent (Teng et al. 2015).

As conceptual models can be run just by one input, i.e., water height, in addition

to in-situ gauges, various types of tools can be used to provide water height to obtain

flood mapping. For example, spatio-temporal data retrieved by VGI can provide the

required information for these models to create hazard maps (Schnebele and Cervone

2013; Cervone et al. 2016; Cervone et al. 2017; Li et al. 2018; Huang, Wang, and Li

2018).

2.2.3 Remote Sensing

Remote sensing techniques are the alternatives for efficient post-event flood map-

ping using multispectral (optical) imagery, radar data, and digital elevation models

(DEMs). These data allow for delineating flood extent over large areas in near real-

time depending on the satellite’s spatio-temporal resolution (Munoz et al. 2021).

Many image-processing techniques exist to successfully derive flood areas and extent.

Recently, some studies integrated multi-source satellite-based data, such as backscat-

tering radar data with either multispectral imagery or DEMs, for land cover classifi-

cation tasks using different techniques (Xu et al. 2019; Feng et al. 2019; Muñoz et al.

2021). These methods have been successfully applied for flood mapping in riverine

and coastal floodplains, too (Munoz et al. 2021).

2.2.4 Machine Learning

ML techniques have been commonly used among water resources research commu-

nities over the past decades for different purposes, such as time series analysis, re-
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gression, and classification (Maier and Dandy 2000). There are several studies that

comprehensively reviewed the application of ML models in water resources, hydrol-

ogy, and flood prediction (Iqbal et al. 2021; Sit et al. 2020; Mosavi, Ozturk, and Chau

2018; Nourani et al. 2014; Shen 2018; Razavi 2021). This implies that the application

and development of ML techniques to water-related topics can be considered as new

mainstream of earth and environmental sciences.

Stream flow forecasting was traditionally done by using physical-based approaches

to model the behavior of the water systems (Paniconi and Putti 2015; Fatichi et al.

2016). These models often need a variety of calibration data that are not accessible

or can be computationally expensive (Razavi 2021). Data-driven methods have long

been used as an alternative for rainfall-runoff modelling (Hsu et al. 2002; Kişi 2007;

Rasouli, Hsieh, and Cannon 2012; Erdal and Karakurt 2013; Sun, Wang, and Xu

2014; Shortridge, Guikema, and Zaitchik 2016; Hosseini and Mahjouri 2016; Lima,

Hsieh, and Cannon 2017; Adnan et al. 2019; Cheng et al. 2020; Xiang, Yan, and

Demir 2020). Among the most used ML methods in hydrological modeling are neural

networks (Chiang, Chang, and Chang 2004; Cigizoglu 2005; Mutlu et al. 2008; Anus-

ree and Varghese 2016) Support Vector Machines (SVM) (Vapnik 1999; Collobert

and Bengio 2001; Dibike et al. 2001; Wu, Chau, and Li 2009; Tikhamarine, Souag-

Gamane, and Kisi 2019) and regression trees (Senthil Kumar et al. 2013; Charoenporn

2017). More recently, DL-based models including Long Short-Term Memory (LSTM)

network (Kratzert et al. 2018; Kratzert et al. 2019) and Temporal Convolutional Net-

works (TCN) (Lea et al. 2017; Bai, Kolter, and Koltun 2018), have been applied for

rainfall-runoff modeling (Yan et al. 2020; Duan, Ullrich, and Shu 2020).

Accurate urban land-use mapping is a challenging task in remote sensing data

analysis. ML models can play a critical role in solving spatial problems using pre-

diction, classification, and clustering models. These models can be applied to both

types of satellite data, optical and radar images. For example, ML classifiers such as
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SVM, Naive Bayes (NB), classification and regression tree (CART), K-nearest neigh-

bor (KNN), and random forest classifier have been used for per-pixel and object-

based classification on multispectral satellite images (Huang, Davis, and Townshend

2002; Pal 2005; Adam et al. 2014; Qian et al. 2014). Recently, with more experi-

ence and improved methodology, there are some successes in using ML models for

land-use classification and flood detection using Synthetic Aperture Radar (SAR)

satellite imagery (Tanim et al. 2022). Moreover, fusing multifrequency SAR and op-

tical multispectral data for land cover applications such as crop classification and

waterbody mapping have been done using both ML models (Garg et al. 2022) and

DL models (Muñoz et al. 2021). Some of these studies designed model architecture

customized for the classification of multisource RS images (Feng et al. 2019; Kussul

et al. 2017).

2.3 Research Plan

As it is mentioned, flood models commonly need some initial inputs, and boundary

conditions to perform. This information is normally measured by in-situ gauging,

remote sensing, and more recently crowdsourcing. In this section, we aim to introduce

a vision-based framework as a new source for measuring hydrological data. This

framework uses time-lapse images captured by surveillance cameras for estimating

the characteristics of stream flow.

Vision-based analysis of waterbodies can provide important insights for monitor-

ing, analyzing, and managing water resource systems (e.g., visual flood detection).

Vision-based analysis can complement conventional ground-based gauging and re-

mote sensing systems to address their existing shortages for measuring flood data,

such as water stage, and flow rate, needed for modeling.

Developing such a vision-based framework requires detecting water in digital im-

ages. Water, however, is a challenging object for image processing. Inherently, water
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is shapeless and transparent, but it appears in different forms, textures, and colors

depending on the surrounding environment. So, detection, classification, and tracking

of water in images and videos are difficult tasks. There are still some visual differences

resulting from the texture and color of water in different waterbodies which provide

potential information needed for DL-based models to better analyze water images.

Thus, developing a vision-based framework for measuring physical water parameters

from videos and images during flood events, requires answering three underlying and

interrelated research questions:

1. Considering all visual challenges associated with water and water-related ob-

jects, can DL-based models detect and classify water types and waterbodies in

ground-based digital images?

2. What are the visual features of water in digital RGB images that can better

represent different water types and waterbodies?

3. By having DL-based models capable of detecting, classifying, and segmenting

different water types in digital images, does surveillance imagery provide enough

information for estimating characteristics of stream flows such as water level and

discharge?

As DL-based approaches always require large-scale training data with necessary

ground-truth annotations, and the lack of such a public dataset for waterbody seg-

mentation significantly impedes the research on this problem, I hypothesize that i)

Developing a new image dataset for semantic segmentation of waterbodies and water-

related objects can enable applied research studies on water and water-related issues

and determine whether the DL-based models can analyze and process water and wa-

terbodies.

The recognition strategy of CNN-based approaches is to follow “local” to “global”

features in various stages of the visual pathways. It means CNN models recognize
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objects through the analysis of texture and shape-based clues– local and global repre-

sentations and their relationship in the entire field of view. So, I hypothesize that ii)

Developing a classification image dataset emphasizing color and texture analysis of

water in digital (RGB) images facilitates discovering representative visual features and

properties of different water types and waterbodies. Such information is necessary for

developing DL-based models customized for water and water resources applications.

I also hypothesize iii) estimating the geometric properties of a surveillance cam-

era enables the potential which can be exploited by Computer Vision techniques for

estimating flow characteristics.

2.4 Research objectives and methods

The main objectives of this proposal are, i) developing a dataset for semantic seg-

mentation of natural and artificial waterbodies and related objects. ii) developing a

dataset for the task of classification, as well as texture, and color analysis of water in

digital images and iii) developing a vision-based framework for measuring character-

istics of stream flow using computer vision and deep learning techniques.

2.4.1 Developing a dataset for semantic segmentation

Large-scale annotated datasets, such as COCO (Lin et al. 2014), PASCAL Con-

text (Mottaghi et al. 2014), ADE20K (Zhou et al. 2019), Mapillary Dataset (Neuhold

et al. 2017) and BDD100K (Yu et al. 2020), make it possible for researchers to develop

DL-based models for real-world applications. Considering the most related dataset

to water resources problems, (Gebrehiwot et al. 2019) collected a small number of

top-view waterbody datasets (100 images) using Unmanned Aerial Vehicles (UAVs)

which contains only four categories (i.e., water, building, vegetation, and road). In

addition, (Sazara, Cetin, and Iftekharuddin 2019) introduced a larger dataset (253

images) which just focuses on flood region segmentation. Sarp et al. 2020 provided a
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dataset that consists of 441 annotated roadway flood images. However, these datasets

have limitations in either the number of annotated images, or the categories they cov-

ered, and none of those considers more complex classes of waterbodies such as sea,

lake, river, reservoir, and wetland. Therefore, we will develop a new dataset as the

first large-scale annotated dataset to provide a wide range of waterbodies and water-

related objects.

This dataset is designed and developed with the goal of including different water

types, either those that exist in the natural environment or in artificial water sys-

tems. So, labels are based on the most frequent objects used in water-related studies

or can be found in real-world scenes. General labels (e.g., human, car, vegetation)

are also considered for providing contextual information related to different water-

boides. In order to gather a corpus of images, we use Flickr API to query and collect

“medium-sized” unique images for each label based on “Creative-Commons” licenses.

Downloaded images are sieved in accordance with the opinion of experts in water re-

sources. Finally, images are annotated by annotators who have a decent background

in water resources engineering as well as experience working with the CVAT, which

is a free, open-source, and web-based image annotation tool.

2.4.2 Developing a classification dataset for water

Considering different water features and their combinations, water can appear in

completely different forms and colors. The classification dataset is designed and

developed with the goal of representing various textures and colors in which water

usually appears in different waterbodies. Images are derived from the semantic seg-

mentation dataset. In computer science, texture analysis has been widely applied for

different purposes such as facial recognition and expression analysis (Liu et al. 2014).

Facial expression analysis refers to developing models for automatically analyzing

and recognizing facial motions and feature changes from visual information (Tian,
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Kanade, and Cohn 2005). These features can be extracted either by hand-designed

filters (Zhang et al. 1998; Zhao and Pietikainen 2007) or trained ML models (Meng

et al. 2017). So far, many researchers have attempted to improve the feature extrac-

tion techniques to provide better facial recognition (Tong, Liao, and Ji 2007). There

are still challenging factors in the facial recognition task associated with expression,

illumination changes, and aging. These dynamic features changing from one face

to another, arguably make this type of problem similar to waterbody classification.

In both cases, developed models must differentiate the same objects in essence from

each other using different subtleties. In the case of water, however, the lack of wa-

ter datasets covering wide ranges of different waterbodies prevents researchers from

performing the texture analysis on water.

2.4.3 Vision-based surveillance setup

The core of this task is to develop a vision-based framework using surveillance im-

ageries for measuring water levels in the community’s local stream or river, using

computer vision and deep learning techniques. This task can be divided into the

following sub-tasks:

Data Acquisition

In order to create a 3D point cloud of the study area iPhone LiDAR scanner is used.

The ground control points (GCPs) are also needed to define a local coordinate sys-

tem. The GCPs are measured with a total station, and both 3D point cloud and

camera coordinates will be transformed into the GCPs coordinate system. At least,

eight permanent GCPs will be set up and measured with a total station. The per-

manent GCPs are ArUco markers laminated with waterproof pouches. These GCPs

will be used to determine the exterior calibration parameters– camera’s position and

orientation– for a series of images that are captured during each period of observation.
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Two different single-board computers (SBC) are used in this study, Raspberry Pi

for capturing time-lapse images of a river scene and Arduino for measuring water

level as the ground truth data. These devices are designed to communicate with

each other. During capturing time-lapse images, the Pi camera device triggers the

ultrasonic sensor for measuring the corresponding water level.

Semantic segmentation of water

The water extent can be automatically determined on the 2D image plane with the

help of DL-based models. The task of semantic segmentation is applied in this step

to delineate the water line on the left and right banks of the river. Different DL-based

approaches will be trained and tested.

Projective Geometry

Computer vision techniques are used for different purposes, in this step. First, CV

models are used for camera calibration. The process of estimating the parameters

of a camera is called camera calibration. They include focal length, optical center,

radial distortion, camera rotation, and translation. The interior camera parameters

are estimated by Checkerboard (Zhang 2000). The exterior calibration parameters

will be estimated via “spatial resection” using the non-linear Levenberg-Marquardt

minimization scheme (Madsen, Nielsen, and Tingleff 2004).

Machine Learning for Image Measurements

Using the projection matrix, the 3D point cloud is projected on the 2D image plane.

The projected (2D) point cloud is intersected with the water line pixels, the output

of the DL-based model (Module 1), to find the nearest point cloud coordinate. For

this purpose, K-Nearest Neighbors (KNN) algorithm is used. The indices of the

selected points are the same for both the 3D point cloud and the projected (2D)
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correspondences. So, using the indices of the selected projected (2D) points, the

corresponding real-world 3D coordinates are retrievable.

2.5 Overview of Next Chapter

According to the research questions and hypotheses mentioned in this section, the

following chapter introduces ATLANTIS, a benchmark for semantic segmentation of

waterbody images.
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Chapter 3

ATLANTIS: A Benchmark for Semantic

Segmentation of Waterbody Images 1

1Erfani, S.M.H., Wu, Z., Wu, X., Wang, S. and Goharian, E., 2022. Environmental Modelling
& Software, 149, p.105333. Reprinted here with permission of the publisher.
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Every year, floods claim tens of billions of US dollars losses and thousands of lives

globally (Hirabayashi et al. 2013). Accurate detection, measurement, and tracking

of the waterbodies can help both the public and decision-makers to take appropriate

actions to minimize the risk and losses (Huang, Wang, and Li 2018; Gebrehiwot et al.

2019). With the popularity of smartphones and airborne imagery, various data at

flooding sites can be collected rapidly and continuously to provide more useful and

heterogeneous information source (Eltner et al. 2021; Hosseiny 2021; Eltner et al.

2018; Cervone et al. 2016; Schnebele and Cervone 2013), compared to the conventional

gauge sensing and remote sensing (Lo et al. 2015). As a fundamental step to leverage

such collected images for modeling and decision-making, we need first to conduct a

refined semantic segmentation of included waterbodies and related objects in such

scenes, which we focus on in this paper.

With the advancement of deep neural networks, semantic segmentation has achieved

great success in recent years on various kinds of images, such as natural images (Lin

et al. 2014), street images (Cordts et al. 2016; Yu et al. 2020), and medical im-

ages (Bernal et al. 2017; Jha et al. 2020). These successes have motivated the appli-

cation of deep learning across a wide range of disciplines (Razavi 2021). However, wa-

terbody images pose many new unique challenges for semantic segmentation. In some

forms, water preserves intrinsic properties such as reflection, transparency, shapeless

and colorless visual features; which in turn, brings difficulties to the semantic segmen-

tation of water and related objects. Moreover, in some other forms, these properties

can be affected by illumination sources from surroundings, turbidity, and turbulence.

Different-labeled waterbodies, such as river and canal, or lake and reservoir, often

have similar visual characteristics that make the task of semantic segmentation even

harder. As shown in our later experiments, these unique challenges may significantly

affect the performance of the existing semantic segmentation networks.
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Meanwhile, deep-learning-based approaches always require large-scale training

data with necessary ground-truth annotations. The lack of such a public dataset for

waterbody segmentation significantly impedes the research on this problem. The col-

lection and annotation of such a dataset can be very laborious and time-consuming to

cover a wide range of waterbodies and related objects. There is no specific repository

providing relevant images. In addition, team members and annotators are required

to have prior knowledge of water resources engineering to be capable of selecting and

precisely annotating the images.

In this paper, we present a new benchmark, ATLANTIS (ArTificiaL And Natural

waTer-bodIes dataSet). For the first time, this dataset has covered a wide range of

natural and man-made (artificial) waterbodies such as sea, lake, river, canal, reser-

voir, and dam. ATLANTIS includes 5,195 pixel-wise annotated images split into

3,364 training, 535 validation, and 1,296 testing images. As shown in Table 3.1,

in addition to 35 waterbody and water-related objects, ATLANTIS also covers 21

general labels. Moreover, we construct ATLANTIS Texture (ATeX) dataset, which

consists of 12,503 patches for the water-bodies texture classification, sampled from

15 kinds of waterbodies in ATLANTIS.

Table 3.1 List of the ATLANTIS labels.

Artificial
breakwater; bridge; canal; culvert; dam; ditch; levee; lighthouse;
pipeline; pier; offshore platform; reservoir; ship; spillway;
swimming pool; water tower; water well.

Natural
cliff; cypress tree; fjord; flood; glaciers; hot spring; lake; mangrove;
marsh; puddle; rapids; river; river delta; sea; shoreline; snow;
waterfall; wetland.

General
road; sidewalk; building; wall; fence; pole; traffic sign; vegetation;
terrain; sky; train; person; car; bus; truck; bicycle; parking meter;
motorcycle; fire hydrant; boat; umbrella.

In order to tackle the inherent challenges in the segmentation of waterbodies,

AQUANet is developed which takes an advantage of two different paths to process
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the aquatic and non-aquatic regions, separately. Each path includes low-level fea-

tures and cross-path modulation, to adjust features for better representation. The

results show that the proposed AQUANet outperforms the other ten state-of-the-art

semantic-segmentation networks on ATLANTIS, and the ablation studies justify the

effectiveness of the components of the proposed AQUANet.

3.1 Related Work

All existing semantic segmentation approaches share the same goal to classify each

pixel of a given image but differ in the network design, including low-resolution rep-

resentations learning (Long, Shelhamer, and Darrell 2015; Chen et al. 2017a), high-

resolution representations recovering (Badrinarayanan, Handa, and Cipolla 2015;

Noh, Hong, and Han 2015; Lin et al. 2017), contextual aggregation schemes (Yuan

and Wang 2018; Zhao et al. 2017; Yuan, Chen, and Wang 2020), feature fusion and

refinement strategy (Lin et al. 2017; Huang et al. 2019; Li et al. 2019; Zhu et al. 2019;

Fu et al. 2019). Typically, method designs are dependent on their respective datasets

and all the mentioned networks are developed by training on benchmark datasets such

as Cityscapes (Cordts et al. 2016), COCO (Lin et al. 2014) and VOC (Everingham et

al. 2010) where the inter-class boundary is clear even for the within-group categories

(e.g., car and truck). As mentioned above, waterbody images pose new challenges

to semantic segmentation. Previous works on waterbody segmentation mainly use

satellite imagery (Munoz et al. 2021). In this work, we focus on natural waterbody

images terrestrially captured by various cameras and design AQUANet, a new two-

path semantic segmentation network, by including an aquatic branch explicitly for

waterbody classes.
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Figure 3.1 (a) The frequency distribution of images for different waterbodies in
ATLANTIS (b) The Percentage of pixels for waterbody labels.

3.2 ATLANTIS Dataset

The ATLANTIS dataset is designed and developed with the goal of capturing a wide

range of water-related objects, either those that exist in the natural environment or

the infrastructure and man-made (artificial) water systems. In this dataset, labels

were first selected based on the most frequent objects, used in water-related studies

or can be found in real-world scenes. Aside from the background objects, a total of

56 labels, including 17 artificial, 18 natural waterbodies, and 21 general labels, are

selected (Table 3.1). These general labels are considered for providing contextual

information that most likely can be found in water-related scenes. After finalizing

the selection of waterbody labels, a comprehensive investigation on each individual
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label was performed by annotators to make sure all the labels are vivid examples of

those objects in real-world. Moreover, sometimes some of the water-related labels,

e.g., levee, embankment, and floodbank, have been used interchangeably in the water

resources field; thus, those labels are either merged into a unique group or are removed

from the dataset to prevent an individual object receives different labels.

In order to gather a corpus of images, we have used Flickr API to query and

to collect “medium-sized” unique images for each label based on eight commonly

used “Creative-Commons”, “No Known Copyright Restrictions” and “United States

Government Work" licenses. Downloaded images were then filtered by a two-stage

hierarchical procedure. In the first stage, each annotator was assigned to review a

specific list of labels and remove irrelevant images based on that specific list of labels.

In the second stage, several meetings were held between the entire annotation team

and the project coordinator to finalize the images which appropriately represent each

of 56 labels.

This sieving procedure has been applied four times in order to meet the limit

and reach the current number of images. The percentage of image acceptance rate

for the third and fourth phases are 14.41% and 5.06%, respectively. It means if

we want to add 1000 more images to the dataset, we should process at least 20,000

images. Finally, images were annotated by annotators who have solid water resources

engineering background as well as experience working with the CVAT (Sekachev et al.

2020), which is a free, open-source, and web-based image/video annotation tool.

3.2.1 Dataset statistics

Figure 3.1 shows the frequency distribution of the number of images and the per-

centage of pixels for waterbody labels. Such a long-tailed distribution is common for

semantic segmentation datasets (Lin et al. 2014; Zhou et al. 2019) even if the number

of images that contain specific labels is pre-controlled. Such frequency distribution
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for pixels would be inevitable for objects existing in the real-world. Taking “water

tower” as an example, despite having 219 images, the percentage of pixels is less than

many other labels in the dataset. Figure 3.2 shows the positive but weak correlation

between the number of images for each label and the corresponding pixels. In total,

only 4.89% of pixels are unlabeled, and 34.17% and 60.94% of pixels belong to water-

bodies (natural and man-made) and general labels, respectively. As it is evident, the

main proportion of pixels belongs to general labels. This clearly shows the impor-

tance of general labels for better scene understanding (Caesar, Uijlings, and Ferrari

2018) and accurate object classification in a semantic segmentation network.
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Figure 3.2 Correlation between a number of images for each label and the corre-
sponding pixels.

Spatial analysis

Following ADE20K dataset (Zhou et al. 2019), a spatial analysis, known as “mode of

the object segmentation” has been done on the ground truth segmentation map for

each label. Specifically, considering a waterbody label L with n images in ATLANTIS,
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we resize their corresponding n ground-truth segmentation maps to 512 × 512 pixels.

We then count the most frequent label at each pixel of the map and construct a “mode

of segmentation” map for label L, as shown in Figure 3.3. This map demonstrates the

spatial distributions of the most frequent co-occurred labels with respect to a given

waterbody label. Based on this, we equipped our proposed network with cross-path

feature modulation to cope with the difficulties associated with the recognition of

waterbody labels having visual similarities.

Figure 3.3 Spatial analysis of four different waterbody labels.

3.2.2 Image annotation

Annotation pipeline

ATLANTIS was annotated by six annotators having prior knowledge in the area of

water resources. The goal of the annotation task is to balance speed and quality.

Generally, time spent on a single image can range from 4 minutes to 25 minutes

depending on the image’s complexity. In this project, each kind of waterbody was

assigned to a specific annotator. Before the annotation of a label, all the images
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of that label are scrutinized and discussed by a group of experts in water resources

engineering. We can see that the annotation of complex flood scenes takes more

time since such images are usually captured in urban areas and have more elaborated

components as shown in Figure 3.4.

Figure 3.4 Two samples of complex flood scenes

Consistency analysis

While one image is annotated by one annotator for ATLANTIS, we perform additional

consistency analysis across annotators and over time for an annotator. We choose

52 images from ATLANTIS, by including both images that are highly susceptible

to wrong labeling and those contain objects prone to be either left unannotated or

wrongly annotated. We ask three annotators to annotate them again and compare

the results against the already approved ground truth in ATLANTIS. The accuracy

and mIoU in terms of all 52 images (total) and the subsets of images that had been

annotated by themselves before (individual) are shown in Table 3.2. We can see that

an annotator can process the images that he/she annotated before with much better

consistency.

3.2.3 ATLANTIS Texture (ATex)

Waterbodies usually bear texture appearance and it is an interesting problem to study

whether different kinds of waterbodies may show subtle differences associated with
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Table 3.2 Consistency analysis for three annotators.

Annotator 1 Annotator 2 Annotator 3

Total acc 84.00 79.93 79.00
mIoU 62.29 59.33 57.34

Individual acc 91.11 90.44 94.69
mIoU 72.83 76.14 75.69

the texture features. For this purpose, we construct a new waterbody texture dataset,

ATeX, by cropping patches from ATLANTIS and taking the corresponding annotated

waterbody label as the label of the patch. We set patch size to 32 × 32 pixels and all

pixels in a cropped patch must have the same waterbody label in the original image.

We also ensure there is no partial overlap between any two patches. In total we

collected 12,503 patches with 15 waterbody labels: Two waterbody labels “estuary”

and “swamp” are added based on the nearby tree species– mangrove “estuary” and

cypress for “swamp”, while four waterbody labels “canal”, “ditch”, ”reservoir” and

“fjord” are omitted because of high visual similarities with other labels. Sample

images of ATeX dataset are shown in Figure 3.5. We split ATeX into 8,753 for

training, 1,252 for validation and 2,498 for testing. In the later experiment, we train

different models to evaluate their classification performance on ATeX images.

3.3 AQUANet

Typically, existing semantic segmentation networks are designed based on a strong

backbone (e.g. ResNet (He et al. 2016)) to extract features from images with addi-

tional feature aggregation schemes such as ASP-OC (Yuan and Wang 2018) and PPM

(Zhao et al. 2017). Because of difficulties associated with the semantic segmentation

of waterbodies, we design AQUANet to segment aquatic and non-aquatic categories,

separately, as shown in Figure 3.6.
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Figure 3.5 Samples of ATeX texture images.

3.3.1 Network architecture

According to Figure 3.6, the input image is first fed into a ResNet-101 (pre-trained on

ImageNet (Deng et al. 2009)) to extract the feature F with a size of C×H×W . Then,

the feature is sent into two separate paths for further processing. The aquatic path

is to segment different types of waterbodies including sea, river, waterfall, wetland

and etc., while the non-aquatic path is to segment other categories such as ship

and bridge. In each path, the feature F is first modulated by the low-level feature

Fl extracted from the third convolutional layer of ResNet-101, and then passed into
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Figure 3.6 The network architecture of proposed AQUANet.

ASP-OC (Yuan and Wang 2018) to produce the probability map. In the last step, two

cross-path modulation blocks are applied to adjust the probability maps P1 and P2

in parallel. Finally, the resulting probability maps are concatenated and upsampled

to the size of the original image.

3.3.2 Feature modulation

The goal of the feature modulation M is to adjust a feature map F1 given feature

map F2 to represent the adjusted feature F ′
1. It can be formulated as:

F ′
1 = M(F1|F2). (3.1)

To generate the modulated feature F ′
1, the parameters α and β are learned from

F2 via the feature modulation that consists of three downsampling layers, six 1 × 1

convolutional layers and two leakyReLU layers as shown in Figure 3.7. The learned

parameters α and β have the shape as the F1. Then, the resulting feature F ′
1 is

constructed as follows according to (Wang et al. 2018; Park et al. 2019):

F ′
1 = α · F1 + β + F1. (3.2)

Low-level feature modulation

To enhance the low-level texture representation of the waterbodies, we propose to

use the low-level feature Fl to modulate the feature F and the resulting feature F ′ is

defined as:

F ′ = M(F |Fl). (3.3)
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Figure 3.7 An illustration of the feature modulation.

Note that different channels of the receptive field in the third convolutional layer of

ResNet-101 are used to construct the low-level feature Fl for the two paths.

Cross-path modulation

We also propose a cross-path modulation to aggregate the outputs of the probability

maps. The adjusted probability maps resulting from this module are defined as:

P ′
1 = M(P1|P2), (3.4)

P ′
2 = M(P2|P1), (3.5)

where the P ′
1 and P ′

2 represent the final probability maps for the aquatic and non-

aquatic objects, respectively. Note that the modulation layer is not sharing weights

across the two paths.

3.3.3 Loss function

The proposed network is trained in a fully supervised fashion constrained by the

widely-used cross-entropy loss function on both final prediction P (main loss) and

the intermediate feature produced by the fourth block of the ResNet-101 (auxiliary

loss). Following (Zhao et al. 2017), the weights of the main and the auxiliary loss

are set to 1 and 0.4, respectively.
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3.4 Experiments

To demonstrate the effectiveness of the proposed method for water-bodies semantic

segmentation, we train AQUANet on the proposed ATLANTIS dataset. For perfor-

mance evaluation, we take the mean of class-wise intersection over union (mIoU) and

the per-pixel accuracy (acc) as the main evaluation metrics. To further evaluate the

performance of the waterbodies, we calculate the mean IoU for aquatic categories

(A-mIoU) and the accuracy in the aquatic region (A-acc). Aquatic categories include

17 labels showing just water content in different forms and bodies, e.g., sea, river,

lake, etc.

3.4.1 Experimental settings

The AQUANet is implemented using PyTorch. During training, the base learning

rate is set to 2.5 × 10−4 and it is decayed following the poly policy (Zhao et al.

2017). The network is optimized using SGD with a momentum of 0.9 and weight

decay of 0.0001. In total, we train the network for 30 epochs, around 80K iterations

with a batch size of 2. The training data are augmented with random horizontal

flipping, random scaling ranging from 0.5 to 2.0, and random cropping with the size

of 640 × 640.
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Table 3.3 The per-category results on the ATLANTIS test set by current state-of-the-art methods and our AQUANet. The
best and the second best results are highlighted with bold font and underline, respectively.
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PSPNet 53.8 29.0 42.9 46.5 57.2 53.9 29.7 54.7 38.2 29.8 28.8 65.5 63.5 49.9 47.7 48.4 47.5 66.19 46.29 72.72 40.85

DeepLabv3 52.5 27.2 52.3 43.8 58.7 42.5 31.1 54.2 46.0 32.4 27.1 51.1 61.5 46.3 53.6 52.8 52.9 65.83 46.25 69.21 36.23

DANet 50.5 34.1 37.1 37.0 51.0 61.6 23.8 51.5 42.8 30.2 31.5 63.5 60.4 50.8 43.1 55.2 54.6 62.00 45.80 74.12 39.60

CCNet 41.1 17.4 35.2 26.9 43.7 47.9 18.6 43.8 29.9 16.6 23.7 48.3 53.3 47.6 38.4 51.1 34.1 51.98 36.33 70.84 36.11

EMANet 46.1 16.6 27.1 23.0 53.8 63.7 17.2 43.6 42.2 17.2 21.0 68.6 53.5 47.3 36.1 52.1 36.2 55.88 39.13 71.93 36.43

ANNet 50.9 22.8 31.6 32.0 53.1 58.1 25.6 52.9 48.4 20.8 28.6 56.8 60.4 51.1 43.9 57.9 51.4 61.51 43.90 74.06 39.79

GCNet 56.6 19.0 44.7 34.8 46.9 36.1 35.8 39.4 39.9 41.6 32.4 67.0 62.2 46.4 42.9 50.7 59.7 69.89 44.48 68.64 37.73

DNLNet 54.4 26.3 48.8 36.3 63.2 55.3 35.5 52.3 40.4 32.1 31.3 37.1 61.7 48.3 52.4 48.7 54.6 67.72 45.80 71.95 39.97

OCNet 56.4 33.6 48.0 37.3 57.7 55.2 29.2 50.6 43.8 35.1 35.6 65.9 62.7 47.2 47.9 53.1 54.9 67.97 47.89 73.54 41.19

OCRNet 52.4 19.4 46.9 34.9 48.3 58.8 30.4 39.7 42.5 29.8 31.9 55.5 55.4 47.3 43.6 56.8 51.5 65.90 43.83 71.66 36.17

Ours 55.0 27.7 53.4 47.0 63.1 60.5 33.2 54.4 46.3 39.0 34.7 63.2 64.2 50.3 44.9 53.0 66.1 68.63 50.34 75.18 42.22
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Image OCNet GCNet PSPNet DANet AQUANet GT

Figure 3.8 Visualisation comparison of AQUANet and four well-known methods on
the ATLANTIS validation set.

3.4.2 Comparisons

We use several state-of-the-art networks to perform training and testing on AT-

LANTIS, including PSPNet (Zhao et al. 2017), DeepLabv3 (Chen et al. 2017b),

CCNet (Huang et al. 2019), EMANet (Li et al. 2019), ANNet (Zhu et al. 2019),

DANet (Fu et al. 2019), DNLNet (Yin et al. 2020), GCNet (Cao et al. 2019), OCNet

(Yuan and Wang 2018), OCRNet (Yuan, Chen, and Wang 2020). For a fair compar-

ison, we train all the networks with the same backbone (ResNet-101) for 30 epochs.

As shown in Table 3.3, the proposed AQUANet outperforms all these networks on

waterbody image semantic segmentation. Figure 3.8 shows the visualization results

of some samples from ATLANTIS validation set. Considering the ground truth and

in comparison with other networks’ outputs, the boundaries between different classes

are better preserved in AQUANet output. Compared with (Chen et al. 2017b), (Zhao

et al. 2017), (Fu et al. 2019), and (Yuan and Wang 2018), our method achieves better

results in both the aquatic and non-aquatic regions.
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3.4.3 Failure cases

Due to the challenges associated with the segmentation of waterbody images, there

are still many failure cases we found in the testing stage. Three failure examples are

shown in Figure 3.9, from which we observe that many aquatic classes are vulnerable

to misclassification– here sea is misclassified to lake and river (row 1-2) and river is

misclassified to canal (row 3).

Image Ours GroundTruth

Figure 3.9 Failure cases from the ATLANTIS val set.

3.4.4 Ablation studies

We also conduct ablation studies to compare a number of different model variants

of the proposed network, including the design of aquatic and non-aquatic paths, and

the two feature modulations. The results are shown in Table 3.4. We can see that

the design of two paths can improve the performance of waterbody image semantic

36



segmentation. Moreover, both the proposed low-level feature modulation (LM) and

the cross-path modulation (CM) can achieve certain performance gains in terms of

acc and mIoU.

Table 3.4 Ablation study of each proposed component of AQUANet on the AT-
LANTIS dataset.

Two Paths LM CM A-acc A-mIoU acc mIoU

67.27 44.53 73.28 38.81
√

67.73 47.89 75.29 40.28
√ √

68.11 47.90 75.29 40.28
√ √

67.21 46.63 75.81 40.57
√ √ √

68.85 48.42 76.18 40.83

Compared with other state-of-the-art semantic segmentation models, AQUANet

provides the highest mIoU and accuracy. In addition, by considering just labels that

include water content, AQUANet still works better than others (mIoU=50.34%). In

this regard, OCNet provides the second highest performance (mIoU=47.89%) and

GCNet also provides the best results for canal, lake and reservoir. These results

approved AQUANet is well customized for analysis of waterbodis and water-related

scenes. However, considering mIoU as a more informative metric for semantic segmen-

tation task, all approaches could only achieve 36.11%∼42.22% mIoU on the proposed

dataset. It shows that the semantic segmentation of waterbodies and related objects

is a challenging task and needs more research.

3.4.5 ATeX Experimental results

We further train ten well-known classification models including VGG (Simonyan

and Zisserman 2014), ResNet (He et al. 2016), SqueezeNet (Iandola et al. 2016),

DenseNet (Huang et al. 2017), GoogLeNet (Szegedy et al. 2015), ShuffleNet v2 (Ma

et al. 2018), MobileNetV2 (Sandler et al. 2018), ResNeXt (Xie et al. 2017), Wide
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ResNet (Zagoruyko and Komodakis 2016) and EfficientNet (Tan and Le 2019) on

the proposed ATeX dataset. All models are implemented using PyTorch. The cross-

entropy loss function is applied for training networks. We train all the networks with

the same 30 training epochs, SGD optimizer with a momentum of 0.9 and weight

decay of 0.0001, and batch size is set to 64. For all networks, the learning rate is

first set to 2.5 × 10−4, then it is adjusted based on the decaying rate of the resulting

loss function during training. Table 3.5 shows the training time and learning rate for

each model over certain 30 epochs.

Table 3.5 The performance result on ATeX test set by well-known classification
models.

Networks Time LR Val Test
[mm:ss] Acc. Prec. Recall F1

Wide-ResNet-50-2 06:56 2.5E-4 91 77 75 75
VGG-16 04:38 2.5E-4 90 75 72 72
SqueezeNet 00:47 7.5E-4 82 81 81 81
ShuffleNet V2 ×1.0 01:46 1.0E-2 90 90 90 90
ResNeXt-50-32 × 4d 03:15 2.5E-4 90 77 75 75
ResNet-18 01:28 2.5E-4 87 74 72 72
MobileNet V2 01:35 2.5E-4 88 74 72 72
GoogLeNet 01:51 5.0E-3 89 88 88 88
EffNet-B7 12:42 1.0E-2 90 91 91 91
EffNet-B0 02:38 7.5E-3 91 90 90 90
DenseNet-161 06:15 2.5E-4 91 81 79 79

Three common performance metrics including Precision, Recall, and F1-score are

reported to evaluate the performance of the models on ATeX. Table 3.5 shows the

weighted average (averaging the support-weighted mean per label) of these three

metrics on the test set. Accordingly, EffNet-B7, EffNet-B0, and ShuffleNet V2 ×1.0

provide the best results. Considering training time, ShuffleNet V2 ×1.0 can be pre-

sented as the most efficient network.
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3.5 Conclusion

In this paper, we introduced ATLANTIS, a large-scale dataset for semantic segmen-

tation of waterbodies and water-related scenes, by carefully collecting images of the

diverse area from the internet (Flickr) and providing high-quality annotations with

the help of annotators majoring in water resources engineering. We further provided

a comprehensive analysis of the characteristic of ATLANTIS and reported the per-

formance of the current state-of-the-art by training and testing the networks on our

dataset. A novel baseline network AQUANet is also proposed for waterbody image

semantic segmentation and achieves the best performance on ATLANTIS. Addition-

ally, we constructed ATLANTIS Texture (ATeX) dataset which is derived from AT-

LANTIS for classification and texture analysis of water. The performance of several

baseline classification networks on ATeX was also evaluated and reported.

In general, digital image processing of water and water-related objects has been

a complex task due to the visual challenges which are inherent in water. ATLANTIS

includes images and categories beyond a specific purpose and does not focus on a cer-

tain surrounding environment for a specific purpose or limited applications. Covering

such broad and diverse water and water-related categories, ATLANTIS poses signif-

icant challenges for semantic segmentation which we believe will boost new insights

in both water resources engineering and computer vision communities.
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Chapter 4

ATeX: A Benchmark for Image Classification of

Water in Different Waterbodies Using Deep

Learning Approaches 1 2 3

1Erfani, S.M.H. and Goharian, E., 2022. Journal of Water Resources Planning and Management,
148(11), p.04022063. Reprinted here with permission of the publisher.

2Erfani, S.M.H. and Goharian, E., 2023. Vision-based texture and color analysis of waterbody
images using computer vision and deep learning techniques. Journal of Hydroinformatics, 25(3),
pp.835-850. Reprinted here with permission of the publisher.

3Received the 2023 award for the ‘Best Research Oriented Paper’ of the Journal of Water Re-
sources Planning and Management.
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Artificial Intelligence (AI) and machine learning (ML) techniques have been com-

monly used among water resources research communities over the past decades for dif-

ferent purposes, such as prediction, forecasting, and classification (Maier and Dandy

2000). Recently, deep learning (DL), as a subset of ML, has made major advances in

solving problems that the AI community has not been able to resolve for many years

(LeCun, Bengio, and Hinton 2015). Since 2012, as a sign of progress, DL has continu-

ously gained more popularity for solving computer vision (CV) and visual recognition

challenges (Schmidhuber 2015). These signs of success have motivated the use of DL

across a wider research scope beyond computer science (Razavi 2021). DL is ca-

pable of discovering complex structures in high-dimensional data, and is therefore,

applicable to various real-world problems (LeCun, Bengio, and Hinton 2015) such as

autonomous driving (Cordts et al. 2016). In the water resources engineering field,

although the application of ML techniques is so diverse (Mosavi, Ozturk, and Chau

2018), the adoption of DL has so far been gradual (Shen 2018). One of the main

reasons for such slow progress, in particular for DL vision-based models, is indeed

“water” itself.

Water scene images provide substantial information compared to the conventional

water measurement methods (Lo et al. 2015), but training deep learning models on

these images to derive meaningful information still remains a challenge. It is because

water has certain inherent nature making the image processing tasks very difficult. In

some forms and settings, water preserves intrinsic properties, such as transparency,

shapelessness, and colorlessness, which brings more complications to the image pro-

cessing of water and related objects. These properties can further be affected by

surrounding illumination sources, and flow conditions such as sun glints, water sur-

face reflections, turbidity, and turbulence. Moreover, different waterbodies, such as

rivers and canals, or lakes and reservoirs, may have similar visual characteristics that

make the task of classification of waterbody even harder.
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In addition to the aforementioned inherent complexities of water for image anal-

ysis, the lack of a public dataset for water-related images significantly impedes the

research community to apply ML and DL-based approaches to water resources prob-

lems. Existence of large-scale image datasets in other fields, such as ImageNet (Deng

et al. 2009), PASCAL VOC (Everingham et al. 2010), Labeled Faces in the Wild

(Huang et al. 2008) and more recently ADE20K (Zhou et al. 2019), Mapillary Vistas

Dataset (Neuhold et al. 2017) and BDD100K (Yu et al. 2020), provide a great oppor-

tunity for researchers to develop DL-based models for real-world applications. For

example, in the medical field, an exclusive large collection of annotated medical image

datasets of various clinically relevant anatomies is publicly available which facilitates

the development of DL-based semantic segmentation models in this field (Simpson

et al. 2019; Mzurikwao et al. 2020).

Our extensive search to find a relevant image dataset that adequately focuses on

water and water-related objects led to a few image datasets with limited applications.

(Gebrehiwot et al. 2019) collected a small number of top-view waterbody datasets

(100 images) taken by Unmanned Aerial Vehicles (UAVs). This dataset contains

only four classes (i.e., water, building, vegetation, and road). (Sazara, Cetin, and

Iftekharuddin 2019) introduced a larger dataset (253 images) while it just includes

segmentation of flooded regions in images within certain types of the surrounding

environments. More recently, (Sarp et al. 2020) put together a dataset that consists

of 441 annotated images of flooded roads. However, all these datasets pose multiple

limitations either in terms of the number of images, the diversity of the water cat-

egories, and the specific application (semantic segmentation) they focused on. This

is mainly due to the difficulties associated with the mass collection of various water-

related images, which can be a very laborious and time-consuming task. There is no

specific repository providing relevant images and also team members are required to

have prior knowledge in the water resources engineering field to be able to correctly
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select relevant images for each label. This calls for the development of an image

dataset, which

• Covers a wide range of natural and built waterbodies, and doe not consider

“water” just as a general class,

• Emphasizes classification and texture analysis of water images, which are vital

backbones for developing ML and DL-based models for many other CV tasks,

• Includes images beyond a specific purpose, and does not focus on a certain

surrounding environment for the limited application, and

• Contains a large enough number of images for training, validation, and testing

DL models.

As our first effort and to cope with the lack of a water dataset, we have previously

developed ATLANTIS, a benchmark for semantic segmentation of waterbody images,

which covers a wide range of fully annotated natural and man-made (artificial) water

objects in images, such as seas, lakes, rivers, reservoirs, canals, and piers. ATLANTIS

includes 5,195 pixel-wise annotated images which are divided into 3,364 training, 535

validation, and 1,296 testing images. In addition to the 35 waterbody and water-

related objects, this dataset covers 21 general labels, such as car, vegetation, road,

etc.

In this chapter, we introduced a new benchmark, ATeX (ATLANTIS TeXture) for

classification and texture analysis of water (in different waterbodies) affected by differ-

ent surrounding environments. Classification is one of the core problems in CV that,

despite its simplicity, has a large variety of practical applications. Moreover, many

other seemingly distinct CV tasks (such as object detection, and segmentation) can

be reduced to image classification. For the first time, this dataset has covered a wide

range of waterbodies such as estuary, swamp, glacier, puddles, etc. as shown in Figure
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4.1. ATeX includes patches with 32 × 32 pixels of 15 waterbodies. ATeX consists of

12,503 patches split into 8,753 for training, 1,252 for validation and 2,498 for testing.

Moreover, this chapter aimed to investigate vision-based texture and color analysis

techniques on the water to find visual features which can distinguish water in different

waterbodies. Texture information is applicable to configuring the architecture of the

CNN-based models as the recognition strategy of CNNs follows local to global features

in different layers of the forward pass. Thus, three different approaches, including

two conventional methods (based on the hand-craft features) and a Deep Learning

(DL) model, were built to extract texture features of water. The quality of extracted

features was then evaluated using K-Nearest Neighbors (KNNs). This section rep-

resents a portion of the results from (Erfani and Goharian 2023). Furthermore, ten

well-known deep learning models including VGG-16 (Simonyan and Zisserman 2014),

ResNet-18 (He et al. 2016), SqueezeNet (Iandola et al. 2016), DenseNet-161 (Huang

et al. 2017), GoogLeNet (Szegedy et al. 2015), ShuffleNet V2×1.0 (Ma et al. 2018),

MobileNetV2 (Sandler et al. 2018), ResNeXt-50-32 × 4d (Xie et al. 2017), Wide

ResNet-50-2 (Zagoruyko and Komodakis 2016), EfficientNet-B0 and EfficientNet-B7

(Tan and Le 2019) are trained on ATeX images and results are reported and discussed

in the following sections.

4.1 Dataset Discription

Water does not preserve the same texture, form, and visual features in different en-

vironments. The physical and chemical properties of water affect water appearance

of different waterbodies. Turbidity, color, temperature, suspended particles, and

dissolved substances are among those water characteristics that potentially play im-

portant role in water appearance. Moreover, water depth, flow rate, and regular form

of its container (such as the form of a reservoir or channel) are among those prop-

erties which can dictate the flow regime and appearance of water. Water has also a
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Figure 4.1 Samples of ATeX patches. Water in different waterbodies displays dif-
ferent image textures.

STEP 1 STEP 2 STEP 3

Figure 4.2 ATeX patches are derived from ATLANTIS (ArTificiaL And Natural
waTer-bodIes dataSet). Waterbodies’ parts are extracted from images using a ground-
truth mask (Step 1), the irrelevant pixels are cut based on waterbodies’ coordination
(Step 2), and the outputs are cropped 32 × 32 to create ATeX patches (step 3).

reflective surface. For example, under laminar flow conditions, depending on ambient

light, the consistent reflection can be dominant, while under turbulent flow, unique

features of the flow regime such as eddies result in varying reflection from the water

surface (e.g., white water effect). Moreover, turbulent regime plays a critical role

in terms of accretion and transport of sediment as well as contaminant mixing and

dispersion in rivers having a direct effect on water turbidity and visual appearance.
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Considering different water features and their combinations, water can appear

in completely different forms and colors. The ATeX dataset is designed and devel-

oped with the goal of representing various textures in which water usually appears

in different waterbodies. ATeX’s images are derived from ATLANTIS (ArTificiaL

And Natural waTer-bodIes dataSet). ATLANTIS is a semantic segmentation dataset

including 5,195 pixel-wise annotated images that covers a wide range of natural and

artificial waterbodies such as sea, lake, river, reservoir, canal, and pier. ATLANTIS

images are manually annotated by trained students with adequate prior knowledge

of water resources and hydraulic structures. ATeX will be also utilized in DL-based

model development for digital image processing of water. Training and transfer learn-

ing of Deep Neural Network (DNN) architectures that serve as the backbones of many

modern ML algorithms using ATeX can be applied in turbidity measurement, water

quality estimation (Peterson, Sagan, and Sloan 2020), land-use/land-cover and flood

mapping (Gebrehiwot et al. 2019), and better surface water monitoring and measure-

ment (Moy de Vitry et al. 2019). Figure 4.2 shows the pipeline through which the

ATeX images are cropped from ATLANTIS images. As it is shown in this figure, there

are no partial overlaps between patches. Figure 4.3 shows the frequency distribution

of the number of images for each waterbody label in ATeX.

4.2 Methodology

4.2.1 Texture Representations

Facial recognition and expression task is very similar to water detection and clas-

sification. In face recognition texture representations and spatial patterns of face

components (eyes, nose, lips, etc.) provide valuable information for recognition. For

water, however, spatial information provides no significant information, as pattern

subelements (textons) resulting from filter-based texture representations do not fol-

low any specific spatial coordinates (Julesz 1981). Thus, in this case, the texture of
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Figure 4.3 The frequency distribution of the number of images for 15 waterbodies.

the water is the only source of information for the accurate classification of waterbod-

ies. In this section, Gabor kernels filter and local binary patterns (LBP) descriptor

are used to extract texture information. The quality of the resulting texture repre-

sentations is then evaluated and compared with the KNNs classification method in

the following section.

Gabor Filters

Gabor wavelets have been commonly used for the task of face recognition (Shen and

Bai 2006; Vinay et al. 2015). Frequency and orientation representations of Gabor

filters are claimed to be very similar to those of human visual system (Olshausen

and Field 1996). They have been found to be particularly appropriate for texture

representation and discrimination. In the spatial domain, a 2D Gabor filter is a

Gaussian kernel function that is modulated by a sinusoidal plane wave. The Gabor

wavelet representation facilitates the recognition without correspondence (hence, no

need for manual annotations) as it captures the local structure which corresponds to

spatial frequency (scale), spatial localization, and orientation selectivity. As a result,

the Gabor wavelet representation is not sensitive to changes caused by illumination
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changes and subtle nuances (Liu and Wechsler 2002). The texture representations

resulting from Gabor filters on ATeX waterbody patches are shown in the figure 4.4a.

(a) (b)

Figure 4.4 (a) The visual results of four different scales and orientation Gabor filters
on three waterbody patches. (b) The real part of the Gabor kernels at five scales and
eight orientations with the following parameters: σ = π, kmax = π/2, and f =

√
2.

Gabor wavelets (kernels, filters) in this paper are defined based on (Liu and Wech-

sler 2002) as follows:

ψµ,ν(z) = ∥kµ,ν∥2

σ2 e(∥kµ,ν∥2∥z∥2/2σ2)
[
eikµ,νz − e−σ2/2

]
(4.1)

where µ and ν define the orientation and scale of the Gabor kernels, z = (x, y), and

∥.∥ denotes the norm operator. Wave vector kµ,ν is defined as follows:

kµ,ν = kνe
iϕµ (4.2)

where kν = kmax/f
ν and ϕµ = πµ/8. Maximum frequency, kmax, is the spacing factor

between kernels in the frequency domain. Five different scales, ν ∈ {0, . . . , 4}, and

eight orientations, µ ∈ {0, . . . , 7} are applied with the following parameters: σ = 2π,

kmax = π/2, and f =
√

2. The kernels exhibit desirable characteristics of spatial

frequency, spatial locality, and orientation selectivity. Figure 4.4b shows different

combinations of frequency and orientation of the filters applied in this study.
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In this study, we set σ = π to decrease the size of the kernels and alleviate

computational complexity, because 2D Gabor filters are Gaussian-based, so the values

of a Gaussian function at a distance larger than 3σ from the mean are small enough

to be ignored (Gonzalez 2009). The experiments have been separately run for RGB,

grayscale, and HSV color space of ATeX patches to compare texture representations

within each color space. The following steps discuss the experimental procedure for

grayscale images as it is shown in Figure 4.5:

Figure 4.5 Augmented feature tensor pipeline for Gabor Kernels.

1. First, ATeX patches are imported as gray values (N×32×32) where N represents

the number of patches.

2. Multi-scale and multi-orientation Gabor filters are applied and corresponding

Gabor magnitude responses are obtained. Then, all responses are concatenated

to build an augmented feature tensor for each patch N×32×32×40.

3. Each augmented feature tensor is downsized in space from 32×32 to 16×16

using “MaxPooling” operator which results in size of N×16×16×40.

4. Finally, all 10,240 features, resulting from 16×16×40, for each patch, are re-

duced to the top 500 dimensions of the data with the highest variance using

Principal Component Analysis (PCA).
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The same procedure is repeated for RBG and HSV color spaces, while the first

step is just different to represent the color channels of images. In HSV (RGB) exper-

iments, input patches have an additional dimension N×32×32×3, which represents

Hue, Saturation, and Value (Red, Green, and Blue) of each patch. Accordingly, Ga-

bor filters are constructed dimensionally compatible, but Gabor magnitude responses

and resulting augmented feature tensor have the same dimensions as described for

the grayscale patches.

Local Binary Patterns

Local binary patterns (LBP) is a type of visual descriptor used for classification in

computer vision. The original LBP operator is introduced by (Ojala, Pietikäinen,

and Harwood 1996). The operator labels the pixels of an image by comparing the

3×3 surrounding neighborhood of each pixel with the center value using a binary

system. The corresponding location of the pixel on the binary map gets 1 if the value

of the surrounding pixel is more than the center pixel and it gets 0 vice versa. Then

the histogram of the labels can be used as a texture descriptor. Figure 4.6a shows

the basic LBP operator (Ahonen, Hadid, and Pietikäinen 2004).

(a) (b)

Figure 4.6 (a) The basic LBP operator Ahonen, Hadid, and Pietikäinen 2004. (b)
Circularly symmetric neighbor sets for different (P,R) (Ojala, Pietikainen, and Maen-
paa 2002).

The LBP operator can be extended to include more neighbor pixels Ojala, Pietikainen,

and Maenpaa 2002. The circular approach and bilinearly interpolating the pixel val-

ues enable any radius and number of surrounding pixels. In this approach, we will
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use the notation (P,R) which means P sampling points on a circle of radius of R.

Figure 4.6b shows different sampling points for different radius.

Another extension to the original LBP operator considers so-called “uniform”

patterns (Ojala, Pietikainen, and Maenpaa 2002). A Local Binary Pattern is called

uniform if it contains at most two bitwise transitions from 0 to 1 or vice versa when the

binary string is considered circular. For example, 00000000, 00011110 and 10000011

are “uniform” patterns.

When surrounding pixels are all black or all white, then that image region is

flat. Groups of consecutive black or white pixels are considered “uniform” patterns.

“Uniform” patterns can be interpreted as corners or edges. If pixels switch back

and forth between black and white, the pattern is considered “non-uniform”. The

following notation is used for the LBP operator in this study: LBP u2
P,R. The subscript

represents using the operator in a (P,R) neighborhood, and superscript u2 stands for

using only uniform patterns and labeling all remaining patterns with a single label.

Figure 4.7 shows an example of LBP u2
24,3 on the river delta patch from ATeX, where

the flat, edge-like, and corner-like regions of the image are highlighted on images and

histograms.

The histogram of labeled image fl(x, y) is defined as

Hi =
∑
x,y

I{fl(x, y) = i}, i = 0, . . . , n− 1 (4.3)

where n is the total number of different labels produced by the LBP operator and

I{A} =


1 A is True

0 A is False.
(4.4)

Different parameters, i.e., sampling points P , radius R, and uniform or non-

uniform pattern, offer different resulting histograms. So it is important to adjust the

parameters based on the problem. In this study, sampling points, radius, and pattern
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Figure 4.7 Different patterns are highlighted on both image and histogram resulting
from LBP response.

are considered 8, 1, and “uniform,” i.e., LBP u2
8,1, respectively. Another consideration

is histograms cannot preserve the spatial information across the image. So, for the

face recognition problem, it is suggested to implement regional LBP for different

parts of the face to preserve the spatial information (Ahonen, Hadid, and Pietikäinen

2004). In the case of water, however, due to the irregularity of water features in

spatial coordinates, regional LBP would not be effective. Moreover, several possible

dissimilarity measures have been proposed for histograms. Log-likelihood, Chi-square,

and Kullback-Leibler Divergence are provided in this study according to the following

equations:

• Log-likelihood statistic:

L(P,Q) = −
∑

P logQ (4.5)
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• Chi-square statistic:

χ2(P,Q) =
∑ (P −Q)2

P +Q
(4.6)

• Kullback-Leibler Divergence:

DKL(P∥Q) =
∑

P ln P
Q

(4.7)

Where, P and Q are two probability distributions.

Deep Learning-based Representations

Preliminary classification results on low-level vision-based methods (section ??) showed

the important role of texture information in the better performance of KNNs in clas-

sifying different waterbodies. In this section, we investigate the performance of the

DL-based model in feature extraction. DL models are capable of automatically learn-

ing patterns from raw data through multiple layers of processing (LeCun, Bengio, and

Hinton 2015). It is because in these models, each layer transforms the input repre-

sentation into a higher-level representation which let the deeper layers learn more

important aspects of the raw data and discard irrelevant variations (higher-level rep-

resentation) (Eltner et al. 2021).

We train ShuffleNet V2×1.0 (Ma et al. 2018), a DL-based classification model

designed for mobile devices with very limited computing power, on ATeX dataset.

The PyTorch pre-trained ShuffleNet V2×1.0 is fine-tuned on 32×32 patches with 30

training epochs, we use SGD optimizer with a momentum of 0.9 and weight decay of

0.0001, and the learning rate and batch size are set to 1.0×10-2 and 64, respectively.

ShuffleNet V2 is an efficient Convolutional Neural Network (CNN) architecture

inspired by ShuffleNet (Zhang et al. 2018). ShuffleNet is a network architecture widely

adopted in low-end devices such as mobiles. In ShuffleNet architecture, “bottleneck”

building block (He et al. 2016) is modified by two new operations, pointwise group

convolution and channel shuffle, to greatly reduce computation cost while maintaining
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accuracy. Pointwise group convolution is introduced to reduce computation complex-

ity of 1×1 convolution (bottleneck). Channel shuffle operation is also provided to

overcome the side effects brought by group convolutions (Figure 4.8a).

(a) (b)

Figure 4.8 (a) Channel shuffle with two stacked group convolutions. GConv stands
for group convolution (Zhang et al. 2018). (b) ShuffleNet Units. 1) bottleneck unit
(He et al. 2016); 2) ShuffleNet unit with depthwise convolution (DWConv) (Chollet
2017; Howard et al. 2017), pointwise group convolution (GConv) and channel shuffle
Zhang et al. 2018; 3) ShuffleNet V2 unit (Ma et al. 2018) using channel split operator.

In ShuffleNet V2, the ShuffleNet unit is modified and a simple operator called

“channel split” is introduced at the beginning of each unit (Figure 4.8b). The two

1×1 convolutions are no longer group-wise (unlike (Zhang et al. 2018)) and the same

“channel shuffle” operation as in (Zhang et al. 2018) is used to enable information

communication between the two branches.

4.2.2 Application of Deep Learning Models

Deep learning algorithms are capable of learning patterns from raw data through

multiple layers of processing based on artificial neural networks (ANNs). Each layer

transforms the input features into higher-level (more complicated) features. Consid-

ering different types of problems, the deeper layers detect and learn more important

features from the raw input data (related to the problem) while discarding irrele-

vant information (Eltner et al. 2021). The advancement in Deep Learning has been
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constructed primarily over a particular algorithm, Convolutional Neural Networks

(ConvNets). ConvNets are very similar to ordinary ANNs. They are made up of

neurons that have learnable weights and biases. Each neuron receives some inputs,

performs a dot product and optionally follows it with a non-linearity. The whole net-

work still expresses a single differentiable score function; from the raw image pixels on

one end to class scores at the other end, and has a loss function (e.g. SVM/Softmax)

on the last (fully-connected) layer.

ConvNets have been successfully used in a variety of computer vision tasks.

ConvNets can be used for classification, making predictions for the whole input

(Krizhevsky, Sutskever, and Hinton 2012; Russakovsky et al. 2015; Szegedy et al.

2015; Simonyan and Zisserman 2014; He et al. 2015; Huang et al. 2017; Hu, Shen,

and Sun 2018; Zoph et al. 2018) or object detection (localization), which provides

not only the classes but also additional information regarding the spatial location

of those classes (Girshick et al. 2014; Ren et al. 2015; He et al. 2017), and finally,

semantic segmentation which achieves fine-grained inference by making dense predic-

tions inferring labels for every pixel, so that each pixel is labeled with the class of

its enclosing object or region (Long, Shelhamer, and Darrell 2015; Chen et al. 2017a;

Badrinarayanan, Handa, and Cipolla 2015; Noh, Hong, and Han 2015; Lin et al. 2017;

Yuan and Wang 2018; Zhao et al. 2017; Yuan, Chen, and Wang 2019).

In ConvNet architecture, it is explicitly assumed that the inputs are images, which

allows encoding certain properties (pixel intensity values) into the architecture. These

customized architectures make the forward function more efficient to implement and

vastly reduce the number of parameters in the network. Unlike a regular ANN, the

layers of a ConvNet have neurons arranged in 3 dimensions: width, height, and depth.

As it is shown in Figure 4.9, the input images in ATeX are the input volume of activa-

tions, and the volume has dimensions 32×32×3 (width, height, depth respectively).

The neurons in a layer are only connected to a small region of the layer before it.
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FULLY CONNECTEDINPUT CONVOLUTION + RELU POOLING
[32x32x12][32x32x3] [16x16x12]

Figure 4.9 A ConvNet arranges its neurons in three dimensions (width, height,
depth), as visualized in one of the layers. Every layer of a ConvNet transforms the
3D input volume to a 3D output volume of neuron activations. In this example, the
green input layer holds the image, so its width and height would be the dimensions
of the image, and the depth would be 3 (Red, Green, Blue channels).

The final output layer has 1×1×15 dimensions for ATeX, because, by the end of the

ConvNet architecture, the full image size is reduced into a single vector of class scores,

arranged along the depth dimension.

A simple ConvNet consists of a sequence of layers, and every layer of a Con-

vNet transforms one volume of activations to another through differentiable func-

tions. Three main types of layers are generally used to build ConvNet architectures:

Convolutional Layer, Pooling Layer, and Fully-Connected Layer (similar to regular

ANNs). These layers are stacked to form a full ConvNet architecture (Figure 4.9).

ConvNets transform the original image from the original pixel values to the final

class scores through all the layers. Input [32×32×3] holds the raw pixel values of

the image, in this case an image with 32 width, 32 height, and three color channels

of R, G, B. “Convolution” layer computes the output of neurons that are connected

to the local regions of the input. The computations are dot products between their

weights (of filters) and a small region they are connected to in the input volume.

This may result in volume such as [32×32×12] if we decided to use 12 filters. The

CONV layer’s parameters consist of a set of learnable filters. Each filter has a small
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size (width and height) but extends through the full depth of the input volume. For

example, a typical filter on a first layer of a ConvNet may have a size of 5×5×3 (i.e.

5 pixels width and height, and 3 because images have depth 3, the color channels).

“ReLU” layer will apply an element-wise activation function, such as the max(0, x)

thresholding at zero. This leaves the size of the volume unchanged ([32×32×12]).

The “Pooling” layer performs a downsampling operation along the spatial dimensions

(width, height), resulting in volume such as [16×16×12]. The “Fully Connected” layer

computes the class scores, resulting in a volume of size [1×1×15], where each of the

15 numbers corresponds to a class score, such as among the 15 categories of ATeX. In

this layer (Fully Connected) computation is like ordinary Neural Networks, i.e. each

neuron in this layer will be connected to all the neurons in the previous volume.

Table 4.1 summarizes the important features and properties of all CNN-based

models trained on ATeX in this study. Mobilenets (Howard et al. 2017) and Shuf-

fleNet (Zhang et al. 2018) is not used in this study, but they are presented in this

table to better explain their next generations MobileNetV2 (Sandler et al. 2018) and

ShuffleNet V2 (Ma et al. 2018).

Experimental settings

In order too evaluate the performance of different ConvNets on ATeX, 11 well-

known pre-trained models, including VGG-16, ResNet-18, SqueezeNet, DenseNet-

161, GoogLeNet, ShuffleNet V2×1.0, MobileNet V2, ResNeXt-50-32 × 4d, Wide

ResNet-50-2 and EfficientNet (EffNet-B0 and EffNet-B7), are fine-tuned using the

ATeX train set images. The networks are trained using a fully supervised fash-

ion constrained by the widely-used cross-entropy loss function. For the sake of fair

comparison between networks, all networks are trained for a similar 30 epochs us-

ing Stochastic Gradient Descent (SGD) optimizer method with a momentum of 0.9

and weight decay of 0.0001, and batch size of 128. The learning rate is first set to
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Table 4.1 The important features of the networks trained on ATeX.

Network Year Significant Properties References

VGG 2014
Deep architecture
Small CONV filters (3×3)
Fewer parameters

(Simonyan and Zisserman 2014)

GoogLeNet 2015

“Inception” module
Split-transform-merge strategy
No fully connected layers
Significantly less parameters
Parallel filter operations
“Bottleneck”, 1×1 CONV layers
“Auxiliary” classification outputs

(Szegedy et al. 2015)

ResNet 2016 Introduced “Residual blocks”
Train up to hundreds of layers (He et al. 2016)

Wide ResNet 2016

Wider residual blocks
Increasing width instead of depth
Increasing the filter sizes
Considering “dropout”
Efficient GPU computations

(Zagoruyko and Komodakis 2016)

SqueezeNet 2016

Smaller network, fewer parameters
“Squeeze” and “expand” layers
3×3 replaced with 1×1 filters
3×3 input channels

(Iandola et al. 2016)

ResNeXt 2017 “Cardinality”
“Grouped convolutions” (Xie et al. 2017)

DenseNet 2017 Maximized information flow
Connected all layers directly Huang et al. 2017

Mobilenets 2017 Light weight deep neural networks
“Depthwise separable convolutions” (Howard et al. 2017)

MobileNetV2 2018
Inverted residual structure
Shortcut connections
No non-linearities for narrow layers

(Sandler et al. 2018)

ShuffleNet 2018
Limited computing power
“Pointwise group convolution”
“Channel shuffle”

(Zhang et al. 2018)

ShuffleNet V2 2018 “Channel split”
No “group-wise” CONV (Ma et al. 2018)

EfficientNets 2019
Balanced depth, width, resolution
Expand the network
No change in architecture unit

(Tan and Le 2019)
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Figure 4.10 The loss function of different models over time for the training set.

2.5 × 10−4, then it is adjusted based on a decaying rate of the loss function during

training. On the second trial, each of these models is trained using a customized

learning rate that works better for that particular network. Figure 4.10 shows the

training loss function results over time (training epochs) for all the networks. Ac-

cording to Figure 4.10 loss function decay rate on training epochs looks reasonable

in all networks. Table 4.3 also shows the training time (T-Time) and learning rate

(LR) used for each model over 30 epochs. In the case of GoogLeNet, as an exception,

the loss function imposes constrain on the final prediction P (main loss) and two

intermediate features (auxiliary losses) with weights of 1.0 and 0.4 for the main and

the auxiliary losses, respectively. During training, the base learning rate is set to

7.5 × 10−3 and it is decayed following the poly policy (Zhao et al. 2017).
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4.3 Results and Discussion

4.3.1 Texture Representations

Features extracted from different methods are fed into customized K-Nearest Neigh-

bors (KNNs) using different dissimilarity metrics (Euclidean [L2N], Chi-square [χ2],

Log-likelihood [LLV] and Kullback-Leibler Divergence [KLD]) for estimating the ac-

curacy of classification on the validation set. For raw images with different color

spaces, and texture features captured from Gabor magnitude responses, L2N is used

as the distance metric. In the case of LBP, the dissimilarity of histograms of “pat-

terns” resulting from LBP operation is compared using three different dissimilarity

measures including χ2, LLV, and KLD. In the case of the DL model, and in order

to achieve fair results, images of the validation set are first passed into the feature

layer of the pre-trained ShuffleNet V2×1.0 (on ATeX training set), then the extracted

features were fed into the KNNs.

Despite the fact that KNNs is considered machine learning tools, it is a simple

data-driven method that just compares the validation patches with all training ones

and reports the dissimilarity vector for each validation input. So, the final results

show just the performance of filters in extracting the features of patches, and the

classification method does not have any significant effect on the performance of filters.

The accuracy results are reported in Table 4.2. The results are categorized based

on image color space, feature extraction methods, model parameters, and metrics for

dissimilarity evaluation. The number of neighbors (K) for KNNs ranges from 1 to

500. Results show the highest performance of DL model features ranging from 88%

to 92% depending on the number of neighbors. After the DL model, the raw images

in HSV color space, and LBP methods (independent of dissimilarity measurement

method) offer the best performance with 50% and 35% accuracy, respectively. On

the other hand, raw images in RGB color space provide the lowest performance with
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6% accuracy. For grayscale images, Gabor magnitude responses show 29% accuracy,

while the highest performance for raw grayscale images does not exceed 24% accuracy.

It is worth mentioning that considering the high computational complexity and

processing time needed for convolution operation, Gabor operation is too expensive

compared with LBP operation.

Table 4.2 The experimental results on ATeX validation set. Raw images, Gabor
responses, and features extracted from ShuffleNet are evaluated based on L2N mea-
surement (numbers are in percent).

K Image Gabor Wavelets LBP DLRGB G HSV RGB G HSV KLD χ2 LLV
1 6 20 50 8 23 18 24 24 24 92
3 6 20 48 9 25 20 26 27 27 92
5 6 20 49 9 27 21 28 29 29 92
8 6 21 49 9 28 22 31 31 30 92
15 6 19 47 9 28 22 33 32 33 91
50 6 21 44 9 29 22 35 34 34 91
70 11 20 43 10 29 22 35 35 35 90
100 11 21 43 10 27 22 34 34 33 90
200 11 22 40 10 27 23 32 33 32 89
300 11 22 38 10 27 23 32 32 32 89
500 11 24 36 9 27 23 30 30 30 88

4.3.2 Deep Learning Models

Three common performance metrics, Precision, Recall, and F1-score are used to eval-

uate and compare the performance of trained models on ATeX test set images. Table

4.3 shows the weighted average (averaging the support-weighted mean per label) of

these three metrics for the test set. In addition to the performance metrics, i) learn-

able parameters (“Params” in Table 4.3), which includes the total weights and biases

of each model that are commonly used to measure the size of neural networks, ii)

FLOPs which stands for floating-point operations per second and refers to the to-

tal number of multiplication-addition operations for each model, and iii) total size

(“Size”) which covers the memory size for a batch of input images (128×32×32×3
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Table 4.3 The performance result on ATeX test set by well-known classification
models.

Networks T-Time LR Test Set Model Summary
[mm:ss] Prec. Recall F1 Params FLOPs (M) Size (MB)

Wide-ResNet 06:56 2.5E-4 77 75 75 66,864,975 368.99 260.30
VGG 04:38 2.5E-4 75 72 72 134,321,999 567.11 515.32
SqueezeNet 00:47 7.5E-4 81 81 81 743,119 10.61 3.99
ShuffleNet 01:46 1.0E-2 90 90 90 1,268,979 5.74 6.20
ResNeXt 03:15 2.5E-4 77 75 75 23,010,639 135.00 93.01
ResNet 01:28 2.5E-4 74 72 72 11,184,207 59.52 44.19
MobileNet 01:35 2.5E-4 74 72 72 2,243,087 10.12 9.63
GoogLeNet 02:51 7.5E-3 90 90 90 5,615,279 46.10 23.18
EffNet-B7 12:42 1.0E-2 91 91 91 62,185,247 179.22 244.20
EffNet-B0 02:38 7.5E-3 90 90 90 3,616,299 12.07 15.59
DenseNet 06:15 2.5E-4 81 79 79 26,505,135 234.26 108.16

in this study), as well as forward/backward pass memory size and size of parameters

are recorded for all the models (Table 4.3).

Model Evaluation Using Performance Metrics

By looking at the results from estimated performance metrics (Table 4.3), it is found

that EffNet-B7, EffNet-B0, GoogLeNet, and ShuffleNet V2 ×1.0 perform better in

comparison to the other models. Further, considering other factors such as training

time, the total number of parameters, and total memory usage, ShuffleNet V2 ×1.0

can be selected as the most efficient network among all implemented models. Con-

sidering relatively short training time, 1 minute and 46 seconds, this model provides

the second highest performance, 90 percent, on all three metrics. In the following

paragraphs, the performance of each model in terms of Precision, Recall, and F1-score

types is discussed in detail.

Precision

The precision of different networks is presented by heat-maps in Figures 4.11a for each

waterbody class. Considering two dimensions (‘actual’ and ‘predicted’) of confusion

matrix (Fawcett 2006), the precision is calculated as TP/(TP+FP ), where TP is the
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(a) (b)

Figure 4.11 Heat-maps of (a) precision and (b) recall performance of all models on
each label.

number of true positives and FP the number of false positives (Powers 2020). The

precision describes how precise the model is out of the total predicted positive, e.g.,

how many of those are ‘actual’ positive. River, puddle and sea classes have the least

average precision among all other classes (Figure 4.11a). As it is mentioned before,

the flow regime plays an important role in identifying water texture and extracting

relevant visual features. As these features are constantly changing in waterbodies such

as river and sea, it makes the correct classification task sophisticated for models. In

addition to turbulence, other visual features such as inconsistent texture and color

over waterbody images cause more complexity. For example, derived patches of sea

images near the shoreline represent white, chaotic, and wavy features, while further

offshore, sea images have generally calm and still surfaces with darker colors.

Recall

The recall is calculated by TP/(TP +FN), where TP is the number of true positives

and FN is the number of false negatives. The recall shows the ability of a classifier to

find all the positive samples, i.e., recall calculates the number of actual positives that

a model captures by labeling it as a positive (True Positive). River still has the lowest
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Figure 4.12 Heat-maps of the F-1score performance of all models on each label.

recall values among all other classes (Figure 4.11b). Recall scores of ResNet-18 for

river is 37%, while EffNet-B0, EffNet-B7, GoogLeNet present the best results, 81%,

79% and 74% recall scores, respectively. The average of recall score for flood class is

about 72%. Three networks including VGG-16, MobileNet V2 and ResNet-18 show

the lowest recall scores, all below 60% for flood prediction. ShuffleNet V2 ×1.0 has

68% recall score for river and 89% for flood class.

F-1 score

The F-β score is interpreted as the weighted harmonic mean of the precision and

recall, where an F-β score reaches its best value at 1 and worst score at 0. The

F-β score weights recall more than precision by a factor of β. β = 1.0 means ‘re-

call’ and ‘precision’ are equally important. Figure 4.12 shows that the lowest F-1

score belongs to river for all models. Six out of eleven models, Wide ResNet-50-2,

DenseNet-161, MobileNet V2, ResNet-18, ResNeXt-50-32×4d, and VGG-16, provide

the performance measure of less than 60% for river.
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4.4 Summary and Conclusion

This study introduced ATeX, the first image dataset for task classification of wa-

terbodies with a specific focus on textural, visual, and intrinsic properties of water

affected by surrounding environments. Moreover, Three different vision-based tex-

ture analysis techniques including Gabor kernels, LBP, and DL-based model were

applied in this study. LBP results showed that water texture analysis is a more dif-

ficult problem compared with the task of facial recognition in computer vision. The

classification results proved that the high-level image analysis method (i.e., DL-based

model), outperformed much better than early vision techniques for water feature ex-

traction. K-Nearest Neighbors results on raw images emphasized on the important

role of color and color space for water. Using HSV color space increased the accuracy

of classification results to 50%. Among early-vision techniques, LBP offers better re-

sults, depending on the parameters which should be adjusted based on the problem.

Furthermore, several well-known deep learning models were trained on ATeX train set

images. Comparing the performance of these models showed that EffNet-B7, EffNet-

B0, GoogLeNet, and ShuffleNet V2×1.0 provided the best results compared to other

models. However, narrowing down the search by considering additional factors i.e.,

training time, the total number of parameters, FLOPs and total memory usage, Shuf-

fleNet V2×1.0 suggested better performance in the shortest time, and thus, selected

as the best model trained on ATeX dataset.

In general, digital image processing of water and water-related objects has been

a complex task due to the visual challenges which are inherent in water. Water

naturally is shapeless and transparent, but it can dominantly be affected by ambient

illumination sources, and flow regimes. Since ATeX covers a wide range of complex

waterbodies, such as sea, lake, river, swamp, glacier, etc., it poses challenging research

questions not only for water resources scientists but also for others who work in fields

of Artificial Intelligence and Computer Vision. As the first step, ATeX provides
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a new and valuable benchmark for the research community to train or pre-train

Deep Learning/ Machine Learning models on this dataset for different water-related

applications such as flood detection, drought monitoring, ecological research, etc.

ATeX can be used in the future to develop, train and test Deep Neural Network

(DNN) architectures for classification tasks which is the backbone of many modern

Machine Learning and Deep Learning models. ATeX also enables this opportunity

for model developers to design DNN structures solely customized for classification,

detection, and semantic segmentation of water and water-related objects in natural

and built environments.
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Chapter 5

Eye of Horus: A Vision-based Framework for

Real-time Water Level Measurement 1

1Erfani, S.M.H., Smith, C., Wu, Z., Shamsabadi, E.A., Khatami, F., Downey, A.R., Imran, J.
and Goharian, E., 2023. Submitted to Hydrology and Earth System Sciences (HESS).
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5.1 Introduction

Flood forecasts and Flood Inundation Mapping (FIM) can play an important role in

saving human lives and reducing damages by providing timely information for evac-

uation planning, emergency management, and relief efforts (Gebrehiwot et al. 2019).

These models and tools are designed to identify and predict inundation areas and

the severity of damage caused by storm events. Two primary sources of data for

these models are in-situ gaging networks and remote sensing. For example, in-situ

stream gages, such as those operated by the United States Geological Survey (USGS)

provide useful streamflow information like water height and discharge at monitor-

ing sites (Turnipseed and Sauer 2010). However, they cannot provide an adequate

spatial resolution of streamflow characteristics (Lo et al. 2015). The limitation of in-

situ stream gages is further exacerbated by the lack of systematic installation along

the waterways and accessibility issues (Li et al. 2018; King, Neilson, and Rasmussen

2018). Satellite data and remote sensing can complement in-situ gage data by provid-

ing information at a larger spatial scale (Alsdorf, Rodriguez, and Lettenmaier 2007).

However, continuous monitoring data for a region of interest remains to be a problem

due to the limited revisit intervals of satellites, cloud cover, and systematic departures

or biases (Panteras and Cervone 2018). Crowdsourcing methods have gained atten-

tion as a potential solution but their reliability is questionable (Schnebele, Cervone,

and Waters 2014; Goodchild 2007; Howe 2008). To address these limitations and

enhance real-time monitoring capabilities, surveillance cameras are investigated here

as a new source of data for hydrologic monitoring and flood data collection. However,

this requires a significant investment in Computer Vision (CV) and Artificial Intelli-

gence (AI) techniques to develop reliable methods for detecting water in surveillance

images and translating that information into numerical data.

Recent advances in CV offer new techniques for processing image data for the

quantitative measurements of physical attributes from a site (Forsyth and Ponce
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2002). However, there is limited knowledge of how visual information can be used to

estimate physical water parameters using CV techniques. Inspired by the principle of

the float method, (Tsubaki, Fujita, and Tsutsumi 2011) used different image process-

ing techniques to analyze images captured by closed-circuit television (CCTV) sys-

tems installed for surveillance purposes to measure the flow rate during flood events.

In another example, (Kim, Han, and Hahn 2011) proposed a method for measuring

water level by detecting the borderline between a staff gauge and the surface of water

based on image processing of the captured image of the staff gage installed in the

middle of the river. As the use of images for environmental monitoring becomes more

popular, several studies have investigated the source and magnitude of errors common

in image-based measurement systems, such as the effect of image resolution, lighting

effects, perspective, lens distortion, water meniscus, and temperature changes (Elias

et al. 2020; Gilmore, Birgand, and Chapman 2013). Furthermore, proposed solutions

to resolve difficulties originating from poor visibility have been developed to better

identify readings on staff gages (Zhang et al. 2019). Recently, Deep Learning (DL) has

become prevalent across a wide range of disciplines, particularly in applied sciences

such as CV and engineering.

DL-based models have been utilized by the water resources community to deter-

mine the extent of water and waterbodies visible in images captured by surveillance

camera systems. These models can estimate the water level (Pally and Samadi 2022).

In a similar vein, (Vitry et al. 2019) employed a DL-based approach to identify flood-

water in surveillance footage and introduced a novel qualitative flood index, SOFI, to

determine water level fluctuations. SOFI was calculated by taking the aspect ratio of

the area of the water surface detected within an image to the total area of the image.

However, these types of methods, which make prior assumptions and estimate water

level fluctuation roughly, cannot serve as a vision-based alternative for measuring

streamflow characteristics. More systematic studies adopted photogrammetry to re-
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construct a high-quality 3D model of the environment with a high spatial resolution

to have a precise estimation of real-world coordination while measuring streamflow

rate and stage. For example, (Eltner et al. 2018; Eltner et al. 2021) introduced a

method based on Structure from Motion (SfM), and photogrammetric techniques, to

automatically measure the water stage using low-cost camera setups.

Advances in photogrammetry techniques enable 3D surface reconstruction with

a high temporal and spatial resolution. These techniques are adopted to build 3D

surface models from RGB imagery (Westoby et al. 2012; Eltner and Schneider 2015;

Eltner et al. 2016). However, most of the photogrammetric methods are still expen-

sive as they rely on differential global navigation satellite systems (DGNSS), ground

control points (GCPs), commercial software, and data processing on an external com-

puting device (Froideval et al. 2019). A LiDAR scanner, on the other hand, is now

easily available since the introduction of the iPad Pro and iPhone 12 Pro in 2020

by Apple. This device is the first smartphone equipped with a native LiDAR scan-

ner and offers a potential paradigm shift in digital field data acquisition which puts

these devices at the forefront of smartphone-assisted fieldwork (Tavani et al. 2022).

So far, the iPhone LiDAR sensor has been used in different studies such as forest

inventories (Gollob et al. 2021) and coastal cliff site (Luetzenburg, Kroon, and Bjørk

2021). The availability of LiDAR sensors to build 3D environments, and advance-

ments in DL-based models offer a great potential to produce numerical information

from ground-based imageries.

This paper presents a vision-based framework for measuring water levels from

time-lapse images. The proposed framework introduces a novel approach by utiliz-

ing the iPhone LiDAR sensor as a laser scanner, which is commonly available on

consumer-grade devices, for scanning and constructing a 3D point cloud of the region

of interest. During the data collection phase, time-lapse images and ground truth wa-

ter level values were collected using an embedded camera and ultrasonic sensor. The
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water extent in the captured images was determined automatically using semantic

segmentation DL-based models. For the first time, the performance of three differ-

ent state-of-the-art DL-based approaches, including Convolutional Neural Networks

(CNN), hybrid CNN-Transformer, and Transformers-Multilayer Perceptron (MLP),

was evaluated and compared. CV techniques were applied for camera calibration,

pose estimation of the camera setup in each deployment, and 3D-2D reprojection of

the point cloud onto the image plane. Finally, K-Nearest Neighbors (KNN) was used

to find the nearest projected (2D) point cloud coordinates to the water line on the

river banks, for estimating the water level in each time-lapse image.

5.2 Deep Learning Architectures

Since this study tends to cover a wide range of DL approaches, this section solely

focuses on reviewing different DL-based architectures. So far, different DL networks

were applied and evaluated for semantic segmentation of the waterbodies within the

RGB images captured by cameras (Erfani et al. 2022). All existing semantic segmen-

tation approaches–CNN and Transformer-based– share the same objective of classi-

fying each pixel of a given image but differ in the network design.

CNN-based models were designed to imitate the recognition system of primates

while possessing different network designs such as low-resolution representations learn-

ing (Shamsabadi, Xu, and Costa 2022; Long, Shelhamer, and Darrell 2015; Chen et

al. 2017a), high-resolution representations recovering (Badrinarayanan, Handa, and

Cipolla 2015; Noh, Hong, and Han 2015; Lin et al. 2017), contextual aggregation

schemes (Yuan and Wang 2018; Zhao et al. 2017; Yuan, Chen, and Wang 2020), fea-

ture fusion and refinement strategy (Lin et al. 2017; Huang et al. 2019; Li et al. 2019;

Zhu et al. 2019; Fu et al. 2019). CNN-based models follow local to global features in

different layers of the forward pass, which used to be thought of as a general intuition

of the human recognition system. In this system, objects are recognized through the
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analysis of texture and shape-based clues– local and global representations and their

relationship in the entire field of view. Recent research, however, shows significant

differences exist between the visual behavioral system of humans and CNN-based

models (Geirhos et al. 2018a), and reveal higher sensitivity of the visual systems in

humans to global features rather than local ones (Zheng et al. 2018). This fact drew

attention to models that focus on the global context in their architectures.

Developed by (Dosovitskiy et al. 2020), Vision Transformer (ViT) was the first

model that showed promising results on a computer vision task (image classification)

without using convolution operation in its architecture. In fact, ViT adopts “Trans-

formers,” as a self-attention mechanism, to improve accuracy. “Transformer” was

initially introduced for sequence-to-sequence tasks such as text translation (Vaswani

et al. 2017). However, as applying the self-attention mechanism on all image pixels

is computationally expensive, the Transformer-based models could not compete with

the CNN-based models until the introduction of ViT architecture which applies self-

attention calculations on the low-dimension embedding of small patches originating

from splitting the input image, to extract global contextual information. Success-

ful performance of ViT on image classification inspired several subsequent works on

Transformer-based models for different computer vision tasks (Liu et al. 2021).

In this study, three different DL-based approaches including CNN, hybrid CNN-

Transformer, and Transformers-Multilayer Perceptron (MLP) were trained and tested

for semantic segmentation of water. For these approaches, the selected models were

PSPNet (Zhao et al. 2017), TransUNet (Chen et al. 2021) and SegFormer (Xie et

al. 2021), respectively. The performance of these models is evaluated and compared

using conventional metrics, including class-wise Intersection over Union (IoU) and

per-pixel accuracy (ACC).
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5.3 Study Area

In order to evaluate the performance of the proposed framework for measuring the

water levels in rivers and channels, a time-lapse camera system has been deployed at

Rocky Branch, South Carolina. This creek is approximately 6.5 km long and collects

stormwater from the University of South Carolina campus and the City of Columbia.

Rocky Branch is subjected to rapid changes in water flow and discharges into the Con-

garee River (Morsy et al. 2016). The observation site is located within the University

of South Carolina campus behind 300 Main Street. An Apple iPhone 13 Pro LiDAR

sensor was used to scan the region of interest (see Figure 5.1a). Although there is no

official information about the technology and hardware specifications, (Gollob et al.

2021) reports the LiDAR module operates at the 8XX nm wavelength and consists of

an emitter (Vertical Cavity Surface-Emitting Laser with Diffraction Optics Element,

VCSEL DOE) and a receptor (Single Photon Avalanche Diode array-based Near In-

frared Complementary Metal Oxide Semiconductor image sensor, SPAD NIR CMOS)

based on direct-time-of-flight technology. Comparisons between the Apple LiDAR

sensor and other types of laser scanners including hand-held, industrial, and terres-

trial have been conducted by several recent studies (Mokroš et al. 2021; Vogt, Rips,

and Emmelmann 2021). (Gollob et al. 2021) tested and reported the performance

of a set of eight different scanning apps, and found three applications including 3D

Scanner App, Polycam and SiteScape suitable for actual practice tests. The objective

of this study is not the evaluation of the iPhone LiDAR sensor and app performance.

Therefore, the 3D Scanner App (LABS n.d.) was used with the following settings:

confidence = high, range = 5.0 m, masking = none, and resolution = 5 mm, for

scanning and 3D reconstruction processing. The scanned 3D point cloud is shown in

Figure 5.1b.

As the LiDAR scanner settings were set at the highest level of accuracy and

computational demand, scanning the whole region of interest at the same time was not
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possible. So, the experimental region was divided into several sub-regions and scanned

in multi-step. In order to assemble the sub-region LiDAR scans, several GCPs were

considered in the study area. These GCPs were measured by a total station (Topcon

GM Series). Moreover, 13 AruCo markers were installed for estimating extrinsic

camera parameters in each setup deployment. Since it was not possible to accurately

measure the real-world coordination of AruCo markers by the LiDAR scanner, the

coordinates of the top-left corner of markers were also measured by the surveying

total station. The 3D point cloud scanned for each sub-region was transformed into

the total station coordinate system, and the real-world coordinates of ArUco markers

were appended to the 3D point cloud for the following analyses.

5.4 Methodology

This study introduces the Eye of Horus, a vision-based framework for hydrologic

monitoring and real-time water level measurements in bodies of water. The proposed

framework includes three main components. The first step is designing two deployable

setups for data collection. These setups consist of a programmable time-lapse camera

run by Raspberry Pi and an ultrasonic sensor run by Arduino. After collecting data,

the first phase (Module 1) involves configuring and training DL-based models for

semantic segmentation of water in the captured images. In the second phase (Module

2), CV techniques for camera calibration, spatial resection, and calculating projection

matrix are discussed. Finally, in the third phase (Module 3), an ML-based model uses

the information achieved by CV models to find the relationships between real-world

coordinates of water level in the captured images (see Figure 5.2).

5.4.1 Data Acquisition

Two different single-board computers (SBC) were used in this study, Raspberry Pi

(Zero W) for capturing time-lapse images of a river scene, and Arduino (Nano 3.x)
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(a) (b)

(c)

Figure 5.1 Study area of the Rocky Branch Creek. (a) View of the region of interest,
(b) The scanned 3D point cloud of the region of interest including an indication of the
ArUco markers’ locations, and (c) The scalar field of left and right banks of Rocky
Branch in the region of interest (the colorbar and the frequency distribution of z
values for the captured points are shown on the right side).

75



Image K-Nearest Neighbor

Camera Intrinsic Matrix
Extrinsic Parameters

Spatial Resection

Rotation Vector

Mask

3D ArUco Markers

DL Model

2D Point Cloud

Contour

2D ArUco Markers

Translation Vector

Intrinsic Parameters
Indices of the Nearest 2D

Point Cloud

3D Coordinates of Water on
the Banklines

Perspective Projection

3D Point Cloud
Module 1 Module 2 Module 3

Figure 5.2 The Eye of Horus workflow includes three main modules starting from
processing images captured by the time-lapse camera to estimating water level by
projecting the waterline on river banks using CV techniques.

for measuring water level as the ground truth data. These devices were designed to

communicate with each other, i.e., to trigger the other to start or stop recording.

During capturing time-lapse images, the Pi camera device triggers the ultrasonic

sensor for measuring the corresponding water level. The camera device is equipped

with the Raspberry Pi Camera Module 2 which has a Sony IMX219 8-megapixel

sensor. This sensor is able to capture an image size of 4,256 × 2,832 pixels. However,

in this study, the image resolution was set to 1,920 × 1,440 pixels to balance image

quality and computational cost in subsequent image processing steps. This setup

is also equipped with a 1200 mAh UPS lithium battery power module to provide

uninterrupted power to the Pi SBC (see Figure 5.3a).

The Arduino-based device records the water level. The design is based on an

unmanned aerial vehicle (UAV) deployable sensor created by (Smith et al. 2022).

The nRF24L01+ single-chip 2.4 GHz transceiver allows the Arduino and Raspberry

Pi to communicate via radio frequency (RF). The chip is housed in both packages

and the channel, pipe addresses, data rate, and transceiver/receiver configuration

are all set in the software. The HC-SR04 ultrasonic sensor is mounted to the base

of the Arduino device and provides a contactless water level measurement. Two

permanent magnets at the top of the housing attach to a ferrous structure and allow

the ultrasonic sensor to be suspended up to 14 feet over the surface of the water. The

device also includes a microSD card module and DS3231 real-time clock, which enable
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data logging and storage on-device as well as transmission. The device is powered by

a rechargeable 7.4V 1500 mAh lithium polymer battery (see Figure 5.3b).

The Arduino device waits to receive a ping from the Raspberry Pi device to

initiate data collection. The ultrasonic sensor measures the distance from the sensor

transducer to the surface of the water. The nRF24L01+ transmits this distance to

the Raspberry Pi device and saves the measurement and a time stamp from the real-

time clock to an onboard microSD card. This acts as backup data storage, in case

transmission to the Raspberry Pi fails. The nRF24L01+ RF transceivers have an

experimentally determined range of up to 30 ft which allows flexibility in the relative

placement of the camera to the measuring site.

(a) (b)

Figure 5.3 Data acquisition devices. (a) Beena, run by Raspberry Pi (Zero W) for
capturing time-lapse images of the river scene; and (b) Aava, run by Arduino Nano
for measuring water level correspondence.

A dataset for semantic segmentation was created by collecting images from a

specific region of interest at different times of the day and under various flow regimes.

This dataset includes 1,172 images, with manual annotations of the streamflow in the

creek for all of them. The dataset is further divided into 812 training images, 124

validation images, and 236 testing images.
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5.4.2 Deep Learning Model for Water Segmentation

The water extent can be automatically determined on the 2D image plane with the

help of DL-based models. The task of semantic segmentation was applied within the

framework of this study to delineate the water line on the left and right banks of

the channel. Three different DL-based models were trained and tested in this study.

PSPNet, the first model, is a CNN-based semantic segmentation multi-scale network

which can better learn the global context representation of a scene (Zhao et al. 2017).

ResNet-101 (He et al. 2016) was used as the backbone of this model to encode in-

put images into the features. ResNet architecture takes the advantage of “Residual

blocks” that assist the flow of gradients during the training stage allowing effective

training of deep models even up to hundreds of layers. These extracted features are

then fed into a pyramid pooling module in which feature maps produced by small

to large kernels are concatenated to distinguish patterns of different scales (Minaee

et al. 2021).

TransUNet, the second model, is a U-shaped architecture that employs a hybrid

of CNN and Transformers as the encoder to leverage both the local and global con-

texts for precise localization and pixel-wise classification (Chen et al. 2021). In the

encoder part of the network, CNN is first used as a feature extractor to generate a

feature map for the input image, which is then fed into Transformers to extract long-

range dependencies. The resulting features are upsampled in the decoding path and

combined with detailed high-resolution spatial information skipped from the CNN to

make estimations on each pixel of the input image.

SegFormer, the third model, unifies a novel hierarchical Transformer, which does

not require the positional encodings used in standard Transformers, and MultiLayer

Perceptron (MLP) performs efficient segmentation (Xie et al. 2021). The hierarchi-

cal Transformer introduced in the encoder of this architecture gives the model the

attention ability to multiscale features (high-resolution fine and low-resolution coarse
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information) in the spatial input without the need for positional encodings that may

adversely affect a models performance when testing on a different resolution from

training. Moreover, unlike other segmentation models that typically use deconvo-

lutions in the decoder path, a lightweight MLP is employed as the decoder of this

network that inputs the features extracted at different stages of the encoder to gen-

erate a prediction map faster and more efficiently. Two different variants, including

SegFormer-B0 and SegFormer-B5, were applied in this study. The configuration of

the models implemented in this study is elaborated in Table 5.1. The total num-

ber of parameters (Params), occupied memory size on GPU (Total Size), and input

image size (Batch Size) are reported in Million (M), Megabyte (MB), and Batch

size×Height×Width×Channel (B, H, W, C ) respectively. BCE and BE stand for

Binary Cross Entropy and Cross Entropy, respectively.

Table 5.1 The configuration of models trained and tested in this study.

Model Names Params
(M)

Total Size
(MB)

Batch Size
(B, H, W, C ) Loss Function Optimizer LR

PSPNet 66.2 7,178 2×500×500×3 BCE SGD 2.50E-04
TransUNet 20.1 6,017 2×448×448×3 CE + Dice SGD 2.50E-04
SegFormer-B0 3.7 2,217 2×512×512×3 CE AdamW 6.00E-05
SegFormer-B5 82.0 27,666 2×1024×1024×3 CE AdamW 6.00E-05

The models were implemented using PyTorch. During the training procedure,

the loss function, optimizer, and learning rate were set individually for each model

based on the results of preliminary runs used to find the optimal hyperparameters.

In the case of PSPNet and TransUNet, the base learning rate was set to 2.5×10-4

and decayed using the poly policy (Zhao et al. 2017). These networks were optimized

using stochastic gradient descent (SGD) with a momentum of 0.9 and weight decay

of 0.0001. For SegFormer (B0 and B5), a constant learning rate of 6.0×10-5 was used,

and the networks were trained with the AdamW optimizer (Loshchilov and Hutter

2017). All networks were trained for 30 epochs with a batch size of two. The training

data for PSPNet and TransUNet were augmented with horizontal flipping, random
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scaling, and random cropping.

5.4.3 Projective Geometry

In this study, CV techniques are used for different purposes. First, CV models were

used for camera calibration. They include focal length, optical center, radial distor-

tion, camera rotation, and translation. These parameters provide the information

(parameters or coefficients) about the camera that is required to determine the rela-

tionship between 3D object points in the real-world coordinate system and its cor-

responding 2D projection (pixel) in the image captured by that calibrated camera.

Generally, camera calibration models estimate two kinds of parameters. First, the

internal parameters of the camera (e.g., focal length, optical center, and radial distor-

tion coefficients of the lens). Second, external parameters (refer to the orientation–

rotation and translation– of the camera with respect to the real-world coordinate

system.

To estimate the camera intrinsic parameters, OpenCV built-in was applied for

camera calibration using a 2D checkerboard (Bradski 2000). Intrinsic parameters are

specific to a camera. The focal length (fx, fy) and optical centers (cx, cy) can be used

to create a camera matrix. The camera matrix is unique to a specific camera, so once

calculated, it can be reused on other images taken by the same camera (Equation 5.1).

It is expressed as a 3×3 matrix:

camera matrix =


fx 0 cx

0 fy cy

0 0 1

 (5.1)

The camera extrinsic parameters were determined using the pose estimation prob-

lem which consists in solving for the rotation, and translation that minimizes the

reprojection error from 2D-3D point correspondences (Marchand, Uchiyama, and

Spindler 2015). For this purpose, the iterative method was applied which is based
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on a Levenberg-Marquardt optimization. In this task the function finds such a pose

that minimizes reprojection error, that is the sum of squared distances between the

observed projections “image point” and the projected “object points.” The initial

solution for non-planar 3D object points needs at least six points and uses the Direct

Linear Transformation (DLT) algorithm.


u

v

1

 =

K︷ ︸︸ ︷
fx 0 cx 0

0 fy cy 0

0 0 1 0



[R|t]︷ ︸︸ ︷

r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1





Xw

Yw

Zw

1


(5.2)

Equation 5.2 represents “Projection Matrix” consisting of two parts– the intrinsic

matrix (K) that contains the intrinsic parameters and the extrinsic matrix ([R | t])

that is a combination of 3×3 rotation matrix R and a 3×1 translation t vector.

2D points are represented with ArUco markers’ pixel coordinates on the 2D image

plane, and corresponding 3D object points are measured by the total station. Having

at least six 3D-2D point correspondences, the spatial position and orientation of the

camera can be estimated for each setup deployment. After retrieving all the necessary

parameters, a full-perspective camera model can be generated. Using this model, the

3D point cloud is projected on the 2D image plane. The projected (2D) point cloud

can represent 3D real-world coordinates of the nearest 2D pixel correspondence on

the image plane.

5.4.4 Machine Learning for Image Measurements

Using the projection matrix, the 3D point cloud is projected on the 2D image plane

(see Figure 5.4). The projected (2D) point cloud is intersected with the water line

pixels, the output of the DL-based model (Module 1), to find the nearest point cloud

coordinate. To achieve this objective, we utilize the K-Nearest Neighbors (KNN)
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algorithm. Notably, the indices of the selected points remain consistent for both the

3D point cloud and the projected (2D) correspondences. As a result, by utilizing

the indices of the chosen projected (2D) points, the corresponding real-world 3D

coordinates can be retrieved.

Figure 5.4 KNN is used to find the nearest projected (2D) point cloud (magenta
dots) to the water line (black line) on the image plane.

5.5 Results and Discussion

The results of this study are presented in two sections. First, the performance of

DL-based models is discussed. Then, in the second section, the performance of the

proposed framework is evaluated for five different deployments.

5.5.1 DL-based Models Results

The performance of DL-based models for the task of semantic segmentation is eval-

uated and compared in this section. Since the proposed dataset includes just two

classes, “river” and “non-river”, “non-river” was omitted from the evaluation process,

and the performance of models is only reported for the “river” class of the test set.

The class-wise intersection over union (IoU) and the per-pixel accuracy (ACC) were
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considered the main evaluation metrics in this study. According to Table 5.2, both

variants of SegFormer– SegFormer-B0, and SegFormer-B5– outperform other seman-

tic segmentation networks on the test set. Considering the models’ configurations

detailed in Table 5.1, SegFormer-B0 can be considered the most efficient DL-based

network, as it is comprised of only 3.7 M trainable parameters and occupies just 2,217

Megabytes of GPU ram during training. In Figure 5.5, four different visual represen-

tations of the models’ performance on the validation set of the proposed dataset are

presented. Since the water level is estimated by intersecting the water line on river

banks with the projected (2D) point cloud, precise delineation of the water line is of

utmost importance to achieve better results in the following steps. This means that

estimating the correct location of the water line on creek banks in each time-lapse im-

age plays a more significant role than performance metrics in this study. Taking the

quality of water line detection into account and based on the visual representations

shown in Figure 5.5, SegFormers’ variants still outperform DL-based approaches. In

this regard, a comparison of PSPNet and TransUNet showed that PSPNet can de-

lineate the water line more clearly, while the segmented area is more integrated for

TransUNet outputs.

Table 5.2 The performance metrics of different DL-based approaches.

Model Names IoU (River) ACC (River)
PSPNet 94.88% 95.84%
TransUNet 93.54% 96.89%
SegFormer-B0 99.38% 99.77%
SegFormer-B5 99.55% 99.81%

CNNs are typically limited by the nature of their convolution operations, leading

to architecture-specific issues such as locality (Geirhos et al. 2018b). Consequently,

CNN-based models may achieve high accuracy on training data, but their performance

can decrease considerably on unseen data. Additionally, compared to Transformer-

based networks, they perform poorly at detecting semantics that requires combining
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long- and short-range dependencies. Transformers can relax the biases of DL-based

models inducted by Convolutional operations, achieving higher accuracy in localiza-

tion of target semantics and pixel-level classification with lower fluctuations in varied

situations through the leverage of both local and global cues (Naseer et al. 2021).

Yet, various transformer-based networks may perform differently depending on the

targeted task and the network’s architecture. TransUNet adopts Transformers as part

of its backbone; however, Transformers generate single-scale low-resolution features

as output (Xie et al. 2021), which may limit the accuracy when multi-scale objects

or single objects with multi-scale features are segmented. The problem of produc-

ing single-scale features in standard Transformers is addressed in SegFormer variants

through the use of a novel hierarchical Transformer encoder (Xie et al. 2021). This

approach has resulted in human-level accuracy being achieved by Segformer-B0 and

-B5 in the delineation of the water line, as shown in Figure 5.5. The predicted masks

are in satisfactory agreement with the manually annotated images.

Image GT PSPNet TransUNet SegFormer-B0 SegFormer-B5

Figure 5.5 Visual representations of different DL-based image segmentation ap-
proaches on the validation dataset.
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5.5.2 Water Level Estimation

This section reports the framework performance based on several deployments in the

field. The performance results are separately shown for the left and right banks and

compared with ultrasonic sensor data as the ground truth. The ultrasonic sensor was

evaluated previously that documented an average distance error of 6.9 mm (Smith et

al. 2022). Four different efficiency criteria including coefficient of determination (R2),

Nash-Sutcliffe Efficiency (NSE), Root Mean Square Error (RMSE), and Percent bias

(PBIAS) are reported in Table 5.3. R2, as the most representative metric, emphasizes

how much of the observed dispersion can be explained by the prediction. However,

if the model systematically over- or under-estimates the results, R2 will still be close

to 1.0 as it only takes dispersion into account (Krause, Boyle, and Bäse 2005). NSE,

a traditional metric used in hydrology is also used to summarize model performance.

NSE normalizes model performance into an interpretable scale and is commonly used

to differentiate between ‘good’ and ‘bad’ models (Knoben, Freer, and Woods 2019).

RMSE represents the square root of the average of squares of the errors, the differences

between predicted values and observed values. The PBIAS of estimated water level,

compared against the ultrasonic sensor data was also used to show where the two

estimates are close to each other and where they significantly diverge (Lin et al.

2020).

The setup was deployed on several rainy days. In addition to Table 5.3, the results

of each deployment are visually demonstrated in Figure 5.6. The scatter plots show

the relationships between the ground truth data (measured by the ultrasonic sensor),

and the banks of the river. The scatter plots visually present whether the camera

readings overestimate or underestimate the ground truth data. Moreover, the time-

series plot of water level is shown for each deployment separately. A hydrograph,

showing changes in the water level of a stream over time can be a useful tool for

demonstrating whether camera readings can satisfactorily capture the response of a
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Table 5.3 The performance metrics of the framework for five different days of setup
deployment.

Deployment Date Position Metrics
R2 NSE RMSE PBIAS

Aug/17/2022 Left Bankline 0.8019 0.5258 0.0409 10.6401
Right Bankline 0.7932 0.7541 0.0294 -0.4848

Aug/19/2022 Left Bankline 0.7701 0.5713 0.0647 16.1015
Right Bankline 0.9678 0.9588 0.0201 -3.4752

Aug/25/2022 Left Bankline 0.7690 0.5700 0.0435 -7.7091
Right Bankline 0.8922 0.8711 0.0238 -1.7738

Nov/10/2022 Left Bankline 0.9461 0.8129 0.0511 -13.1183
Right Bankline 0.9857 0.9790 0.0171 -1.5210

Nov/11/2022 Left Bankline 0.9588 0.8881 0.0397 -10.3656
Right Bankline 0.9855 0.9829 0.0155 -1.7987

catchment area to rainfall. The proposed framework can be evaluated in terms of

its ability to accurately track and identify important characteristics of a flood wave,

such as the rising limb, peak, and recession limb.

The first deployment was done on Aug 17, 2022 (see Figure 5.6a). The initial water

level of the base flow and parts of the rising limb were not captured in this deployment.

Table 5.3 shows that the performance results of the right bank camera readings are

better than those of the left bank. R2 for both banks was about 0.80 showing a

strongly related correlation between the water level estimated by the framework and

ground truth data. Figure 5.6a shows how the left and right bank camera readings

perform during the rising limb; the right bank camera readings still underestimated

the water level during this time frame, and during the recession limb, the left bank

camera readings overestimated the water level. However, the hydrograph plot shows

that both left and right bank camera readings were able to capture the peak water

level.

The second deployment was done on Aug 19, 2022. In this deployment, all seg-

ments of the hydrograph were captured. According to Table 5.3, the performance of

the right bank camera readings was better than the left bank one; more than 0.95
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was reported for R2 and NSE of the right bankline. Figure 5.6b shows during the

rising limb and crest segment both banks estimated the water level similar to ground

truth. During the recession limb, the right bank water level estimation kept coin-

cident with ground truth, while the left bank overestimated the water level. The

third deployment was on Aug 25, 2022. This time water level of the recession limb

and the following base flow were captured (see Figure 5.6c). The right bank camera

readings with R2 of 0.89 performed better than the left bank. This time, left bank

camera readings underestimated the water level over the recession limb, but during

the following base flow, the water level was estimated correctly by cameras on both

banks.

The results indicate that the right bank camera readings performed better than

the left bank. Further investigation of the field conditions revealed that stream erosion

had a more significant impact on the concrete surface of the left bank, resulting in

patches and holes that were not scanned by the iPhone LiDAR. As a result, the

KNN algorithm used to find the nearest (2D) point cloud coordinates to the water

line could not accurately represent the corresponding real-world coordinates of these

locations. Figure 5.7 shows a box plot and scatter plot of the estimated water level

for a time-lapse image captured at 13:29 on Aug 19, 2022. The patches and holes

on the left bank surface caused instability in water level estimation for the region of

interest. The box plot of the left bank (Cam-L-BL) was taller than that of the right

bank (Cam-R-BL), indicating that the estimated water level was spread over larger

values in the left bank due to the presence of these irregularities.

After analyzing the initial results, the deployable setups were modified to enhance

the quality of data collection. The programming code of the Arduino device, Aava,

was modified to measure five different records for water level, each time it is triggered

by the camera device, Beena, and transmit the average distance to the Raspberry Pi

device. This modification decreased the number of noise spikes in the measured data
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(a)

(b)

(c)

Figure 5.6 Scatter plot and time series plot for estimated water level by the proposed
framework and measured by the ultrasonic sensor for setup deployment on (a) Aug
17, 2022 (b) Aug 19, 2022, and (c) Aug 25, 2022.
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Figure 5.7 Water level fluctuation along both left and right banks for the flow regime
for an image captured at 13:29 on Aug 19, 2022.

and allowed a better comparison between camera readings and ground truth data.

The case of the camera device, Beena, was redesigned to protect the single board

against rain without requiring an umbrella which makes the camera setup unstable

in stormy weather and causes a decrease in the precision of measurements. Moreover,

an opening is incorporated into the redesigned case to connect an external power bank

to enhance the run time. Finally, the viewpoint of the camera was subtly shifted to

the right to adjust the share of the river banks on the camera’s field of view.

The results of the deployments on Nov 10, 2022, and Nov 11, 2022, demonstrate

that modifications to the setup have significantly improved the results of the left bank

(as shown in Table 5.3). NSE improved from approximately 0.55 for the first three

setup deployments to over 0.80 for the modified deployments. Figure 5.8 shows the

setup performances during all segments of the flood wave. The peaks were captured

by the right bankline on both deployment dates, and there was no effect of noisy

spikes on either camera readings or ground truth data. However, the right bank

images still underestimated the water level during the rainstorms.

5.6 Conclusion

This study introduced Eye of Horus, a vision-based framework for hydrologic monitor-

ing and measuring real-time water-related parameters, e.g., water level, from surveil-
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(a)

(b)

Figure 5.8 Scatter plot and time series plot for estimated water level by the proposed
framework and measured by the ultrasonic sensor for setup deployment on (a) Nov
10, 2022, and (b) Nov 11, 2022.

lance images captured during flood events. Time-lapse images and real water level

correspondences were collected by Raspberry Pi camera and Arduino HC-SR05 ultra-

sonic sensor, respectively. Moreover, Computer Vision and Deep Learning techniques

were used for semantic segmentation of water surface within the captured images and

for reprojecting the 3D point cloud constructed with an iPhone LiDAR scanner, on

the (2D) image plane. Eventually, the K-Nearest Neighbor algorithm was used to

intersect the projected (2D) point cloud with the water line pixels extracted from the

output of the Deep Learning model, to find the real-world 3D coordinates.

A vision-based framework offers a new alternative to current hydrologic data col-

lection and real-time monitoring systems. Hydrological models require geometric

information for estimating discharge routing parameters, stage, and flood inundation

maps. However, determining bankfull characteristics is a challenge due to natural or
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anthropogenic down-cutting of streams. Using visual sensing, stream depth, water

velocity, and instantaneous streamflow at bankfull stage can be reliably measured.
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Chapter 6

Conclusion
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During flash or nuisance flooding in urban areas, real-time visual monitoring of

flood events can assist decision-makers and local authorities to take better hazard re-

duction actions, specifically for public disaster warnings. Conventional gauge sensing

systems, however, provide the water level data only in one spatial dimension which

cannot accurately represent the actual runoff-land interactions. Consequently, related

authorities cannot obtain sufficient visual field information for disaster control and

hazard reduction. Surveillance imagery networks, on the other hand, provide spatial

dynamics of the surface water extent in the monitored region. Using the vision-based

framework of this dissertation, such systems will be capable to provide disaster pre-

vention agencies with actual field information such as water stage and discharge for

over-bank flow states. Such information can be used for determining the water fluc-

tuation and measuring its elevation and flood intrusion with respect to real-world

coordinates which will be more helpful to real-time flood inundation modeling and

disaster-relieving operations.
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