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Abstract

Discovering new materials and understanding their crystal structures and chemical

properties are critical tasks in the material sciences. Although computational method-

ologies such as Density Functional Theory (DFT), provide a convenient means for

calculating certain properties of materials or predicting crystal structures when com-

bined with search algorithms, DFT is computationally too demanding for structure

prediction and property calculation for most material families, especially for those

materials with a large number of atoms. This dissertation aims to address this limita-

tion by developing novel deep learning and machine learning algorithms for effective

prediction of material crystal structures and properties. Our data-driven machine

learning modeling approaches allow to learn both explicit and implicit chemical and

geometric knowledge in terms of patterns and constraints from known materials and

then exploit them for efficient sampling in crystal structure prediction and feature

extraction for material property prediction.

In the first topic, we present DeltaCrystal, a new deep learning based method

for crystal structure prediction. This data-driven algorithm learns and exploits the

abundant atom interaction distribution of known crystal material structures to achieve

efficient structure search. It first learns to predict the atomic distance matrix for a

given material composition based on a deep residual neural network and then employs

this matrix to reconstruct its 3D crystal structure using a genetic algorithm. Through

extensive experiments, we demonstrate that our model can learn the implicit inter-

atomic relationships and its effectiveness and reliability in exploiting such information

for crystal structure prediction. Compared to the global optimization based CSP
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method, our algorithm achieves better structure prediction performance for more

complex crystals.

In the second topic, we shift our focus from individually predicting the positions

of atoms in each material structure to the idea of crystal structure prediction based

on structural polyhedron motifs based on the observation that these atom patterns

appear frequently across different crystal materials with high geometric conservation,

which has the potential to significantly reduce the search complexity. We extract a

large set of structural motifs from a vast collection of material structures. Through the

comprehensive analysis of motifs, we uncover common patterns and motifs that span

across different materials. Our work represents a preliminary step in the exploration of

material structures from the motif point of view and exploiting such motif for efficient

crystal structure prediction.

In the third topic, we propose a machine learning based framework for discovering

new hypothetical 2D materials. It first trains a deep learning generative model

for material composition generation and trains a random forest-based 2D materials

classifier to screen out potential 2D material compositions. Then, a template-based

element substitution structure prediction approach is developed to predict the crystal

structures for a subset of the newly predicted hypothetical 2D formulas, which allows

us to confirm their structural stability using DFT calculations. So far, we have

predicted 101 crystal structures and confirmed 92 2D/layered materials by DFT

formation energy calculation.

In the last topic, we focus on machine learning models for predicting material

properties, including piezoelectric coefficients and noncentrosymmetric of nonlinear

optical materials, as they play important roles in many important applications, such

as laser technology and X-ray shutters. We conduct a comprehensive study on

developing advanced machine learning models and evaluating their performance for

predicting piezoelectric modulus from materials’ composition/structures. Next, we
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train several prediction models based on extensive feature engineering combined with

machine learning models and automated feature learning based on deep graph neural

networks. We use the best model to predict the piezoelectric coefficients for 12,680

materials and report the top 20 potential high-performance piezoelectric materials.

Similarly, we develop machine learning models to screen potential noncentrosymmetric

materials from 2,000,000 hypothetical materials generated by our material composition

generative design model and report the top 80 candidate noncentrosymmetric nonlinear

materials.
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Chapter 1

Introduction

1.1 Motivation

Materials play an important role in our daily life: clean water, fresh air, smart

living and transportation, and so on. With the development of emerging science and

technologies, as well as the increasing demands of various aspects, computational

discovery of novel functional materials is a non-trivial task for a variety of industries,

such as electric vehicles, cell phones, and quantum computing hardware [128]. The

flourishing of these industries relies on many materials with special properties or/and

structures. For example, piezoelectric materials serve as crucial units for energy-

harvesting equipment or as active parts of sensors and motors, because of their special

piezoelectric effect [151]. Two-dimensional(2D) materials have the potential to create

new electronics and technologies such as spintronics, catalysis, and membranes owing

to their exotic vibrational, electronic, optical, magnetic, and topological behaviors

[98].

Traditionally, material researchers primarily discovered and analyzed materials

and their properties based on experimental observations [152]. However, material

discovery, optimization, and property prediction are time-consuming, labor-intensive,

complex and expensive. Researchers should use more scientific and effective methods to

conduct research. Recently, material researchers focus on high-throughput simulation

methods such as Density Functional Theory (DFT) [37] which uses the quantum

mechanical laws to find out the electrical properties of atoms, molecules and solids.
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Furthermore, with the availability of faster communication technologies, vast amounts

of materials data can be easily collected, there are several large-scale open-source

materials databases that present opportunities for data-driven materials informatics

[124], such as Material Project Database [67], the Open Quantum Materials Database

(OQMD) [79], and Inorganic Crystal Structure Database (ICSD) [13].

In the footsteps of emerging computation technologies which include machine

learning (ML) [72], deep learning (DL) [87] and high-performance computing[25],

material science can benefit from those advanced approaches to efficiently and effec-

tively discover new materials. Specifically, inspired by cutting-edge machine learning

and deep learning methods which have achieved tremendous success in many fields

such as computer vision [59] and natural language processing [101], there are many

data-driven works are designed to determine material properties and structures that

are hard to measure or compute using traditional methods. Currently, there are still

many challenging tasks in the field of materials informatics. For example, how to

predict materials’ crystal structures only rely on their compound information, and

how to discover new target materials more efficiently. In this work, we aim to explore

three problems about predicting material structures and properties and make some

contributions to material informatics [48].

1.2 Scope of the proposed research

In this dissertation, we focus on the following four topics:

1. Crystal structures are fundamental and important descriptors for inorganic

compounds in the material science community [112]. Given only a material

composition or formula, predicting its crystal structure is a promising and chal-

lenging task because most traditional ab initio [3] methods rely on global search

with first principle free energy calculation which is time-consuming. Inspired by

the recent success of deep learning approaches for protein structure prediction,
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they use pairwise of amino acids to describe a single 3D structure [7]. Therefore,

exploiting the abundant atom interaction distribution in existing known crystal

structures, we present a new knowledge-based solution DeltaCrystal. It predicts

the atomic distance matrix of a target crystal material and then employs this

matrix to reconstruct its 3D crystal structures. Through a wealth of experi-

ments, we demonstrate the effectiveness and reliability of plentiful inter-atomic

relationships for structure prediction.

2. In material structures, a motif refers to a recurring and characteristic pattern or

arrangement of atoms within the crystal lattice. Motif represents a higher-level

atom pattern, it can be considered as building blocks or fundamental units that

contribute to the overall structure and properties of the material. Analyzing

and understanding motifs allows us to uncover common patterns, establish

relationships between structure and properties, and facilitate the design of new

materials with specific functionalities. Therefore, in this topic, we design a

method for extracting motifs from existing material structures. We empower

this method to extract a large number of motif structures, and subsequently

conducted comprehensive statistical analysis on these structures. This approach

allows us to gain insights into the prevalent motifs present in diverse materials

and understand their significance in relation to the overall structures.

3. Two-dimensional (2D) materials have emerged as promising functional materials

with many applications such as semiconductors and photovoltaics because of

their unique optoelectronic properties [98]. Although several thousand 2D ma-

terials have been screened in existing materials databases, discovering new 2D

materials remains to be challenging [164]. Herein, we propose a deep learning

generative model [46] for composition generation combined with a random forest

based 2D materials classifier to discover new hypothetical 2D materials. Fur-
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thermore, a template-based element substitution structure prediction approach

is developed to predict the crystal structures of a subset of the newly predicted

hypothetical formulas, which allows us to confirm their structural stability using

DFT calculations. Our results show that generative machine learning models

provide an effective way to explore the vast chemical design space for new 2D

materials discovery.

4. Piezoelectric materials are widely used in many industries and our daily life

[156]. However, discovering high-performance piezoelectric materials is much

more challenging than other material properties (such as formation energy and

band gap) [113]. Here, we propose a comprehensive study on designing and

evaluating advanced machine learning models for predicting piezoelectric modu-

lus from materials’ composition/structures. We train prediction models based

on extensive feature engineering combined with machine learning models and

automated feature learning based on deep graph neural networks [158]. We also

use it to predict the piezoelectric coefficients for 12,680 materials and report the

top 20 potential high-performance piezoelectric materials. Noncentrosymmetric

materials also play a critical role in many important applications such as laser

technology, communication systems, quantum computing, cybersecurity, etc

[56]. However, the experimental discovery of new noncentrosymmetric materials

is extremely difficult. Here we present a machine learning model that could

predict whether the composition of a potential crystalline structure would be

centrosymmetric or not. By evaluating a diverse set of composition features

calculated using matminer feature package [154] coupled with different machine

learning algorithms, we find that random forest classifiers give the best perfor-

mance for noncentrosymmetric material prediction. We apply our ML model

to screen potential noncentrosymmetric materials from 2,000,000 hypothetical

materials generated by the inverse design engine and report the top 20 candidate

4



noncentrosymmetric materials.

1.3 Structure of this dissertation

In Chapter 2, we briefly introduce some related deep learning and machine learning

methods as well as several prevalent research trends in Material Informatics. In

Chapter 3, we propose a new knowledge-based method DeltaCrystal to predict crystal

structures by exploiting the abundant atom interaction distribution. In Chapter 4, we

extract and analysis of structural motifs from crystal materials. In Chapter 5, we design

a model to discover new hypothetical 2D materials based on deep learning generative

model for composition generation and the random forest method for predicting class.

Chapter 6 focuses on predicting material properties, including piezoelectric coefficients

and noncentrosymmetric. Finally, we conclude our research work in Chapter 7.
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Chapter 2

Background

Machine learning and deep learning have gained significant traction in the field of

materials science, finding applications in various research areas. In this chapter,

we provide an overview of relevant deep learning and machine learning techniques

employed in material informatics. We also introduce the basic workflow of material

informatics and delve into some main research tasks, such as crystal structure prediction

and material properties prediction.

2.1 Deep Learning methods

Deep learning methods have driven rapid development in natural language processing,

computer vision, and data mining [72]. Various deep learning methods have been used

effectively in material informatics, these algorithms learn from existing material data,

which include input information represented by descriptors and output responses that

are usually material properties or/and performance of interest, in order to design and

discover new materials with targeted properties or structures [123]. In this section,

we present a few important and typical algorithms of related work.

Inspired by biological neural networks, in 1943, McCulloch and Pitts first proposed

a binary threshold unit as a computational model for an artificial neuron [70], which

promoted the development of neural network research. Artificial Neural Networks

(ANNs) [66] are the most common neural networks which have been used to solve a

wide variety of issues. ANNs can be regarded as weighted directed graphs in which

neurons are nodes and directed edges (with weights) are connections between neuron
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outputs and neuron inputs. According to whether there are feedback connections in

network structures, ANNs divide into feed-forward neural networks (FFNNs) and

recurrent neural networks (RNNs), as shown in Figure 2.1. Each network usually

consists of an input layer, hidden layers and an output layer.

Input layer Hidden layer Output layer

(a) feed-forward networks

Input layer Hidden layer Output layer

(b) recurrent networks

Figure 2.1 The comparison between FFNNs and RNNs, in (a) FFNNs there is only
one direction for the data to move, (b) RNNs in which loops occur because of feedback
connections.

Convolutional Neural Networks (CNNs) [51] are usually applied to image classifi-

cation algorithms, which take images as input, assign learnable weights and biases to

various aspects/objects in the image, and then this model can differentiate one from

the other. CNNs are able to successfully capture the spatial and temporal dependen-

cies in an image through the application of relevant filters. In a convolutional neural

network, like Figure 2.2, the hidden layers include layers that perform convolutions

which typically perform a dot product of the convolution kernel with the layer’s input

matrix.
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Subsampling Convolution Subsampling Full Connection

Figure 2.2 An example of convolutional neural networks

Residual Neural Networks (ResNets) [60] stack residual blocks on top of each other

to form a network by skip connections, this design had a profound influence on how

to build deep neural networks, as shown in Figure 2.3. The skip connections between

layers add the outputs from previous layers to the outputs of stacked layers which

results in the ability to train much deeper networks than what was previously possible.

weight layer

weight layer

+

𝑥

relu𝐹(𝑥)

𝐹 𝑥 + 𝑥

𝑥
identity

Figure 2.3 A building block in ResNets.

Graph neural networks (GNNs) [168] directly take graphs (composed of vertexes

and edges) as the input. Graph neural networks have wide applications in various

domains such as social networks, knowledge graphs, recommender systems, and life
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science. One of the significant advantages of graph neural networks is their capability

to learn or model dependencies (interactions) between nodes in a graph which is highly

suitable for modeling interactions between atoms in materials [159].

Generative Adversarial Networks (GANs) was proposed to solve the generative

modeling problem by investigating a set of training examples and learning the prob-

ability distribution that generated them [47]. The framework of GANs is shown in

Figure 2.4 which mainly includes the generative model (G) and the discriminative

model (D). G aims to capture the training data distribution with random noise, and

D focuses on distinguishing the sample from either the training set or generator with

an estimated probability, while GANs try to find an equilibrium solution between G

and D.

𝑋!"#$%

Random 
Noise

Real samples

Fake samplesGenerator

Discriminator

Discriminator
Loss

Generator
Loss

Figure 2.4 Schematic illustration of GANs

2.2 Machine Learning methods

Machine learning is developed along with the development of computer science, which

enables algorithms to learn from data and anticipate outcomes based on data [102].

Currently, machine learning plays an essential role in data analyses and data prediction

tasks [72]. As the foundation of the data-driven study of materials science, machine

learning algorithms were introduced with various intentions. In this section, several

related machine learning methods [102] are introduced.

Random Forest (RF) [90] is a kind of a supervised bagging ensemble learning
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algorithm. The idea behind random forests is to exploit the wisdom of the group.

RF builds many decision trees in a random way with low correlation among them.

After building the forest, when a new sample needs to be classified, each decision tree

makes a judgment separately to vote which category the sample belongs to. Random

forest improves the prediction accuracy without significantly increasing the amount of

computation, and it is relatively robust to unbalanced data.

The Support Vector Machine (SVM) algorithm is another machine learning algo-

rithm for classification, regression, and other tasks that works by creating a hyperplane

(s) in a high- or infinite-dimensional space. Support vector machines are very effective

in high-dimensional spaces, especially when the number of dimensions is greater than

the number of samples. This method has been widely used in material science research

[142, 1, 91].

The t-Distributed Stochastic Neighbor Embedding (t-SNE) method is a kind of

machine learning approach that usually be used for data visualization by reducing

high-dimensional data to two or three dimensions [144], it could address nonlinear

dimensionality reduction tasks and also is a great tool to understand high-dimensional

datasets. This data analysis tool has been applied in a variety of fields, such as

computer security, cancer biology, and bioinformatics [9].

2.3 Material Informatics

With the rapid developments to improve the accuracy and efficiency of experimental

and computational investigative approaches, there are huge volumes of collected

data that led the field of materials science into data-driven scientific research, which

promotes the advancement of computational techniques, and big-data analysis in

material informatics [152]. Materials informatics usually utilizes statistical and machine

learning methods to learn the relationship between materials and their physical and

chemical representations, such as formulas, crystal structures and chemical properties.
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Figure 2.5 Workflow of material informatics

The goal of materials informatics is to screen thousands of compounds at a much

faster rate for potential new industrial materials [128].

2.3.1 The basic workflow of material informatics

Figure 2.5 depicts the fundamental workflow of material informatics. The process

begins with researchers acquiring and preparing material data, which encompasses

material formulas, properties, and structures. To facilitate data analysis, various

representations of materials data are explored. These datasets are often sourced

from publicly available material databases such as Material Project [67], OQMD

(Open Quantum Materials Database) [79], and others. Subsequently, advanced data

analysis techniques and deep learning/machine learning (DL/ML) models are employed

to extract valuable insights from the vast material space. These methods enable

predictions of material properties and structures, offering valuable guidance for further

research. To validate the predicted outcomes, material engineering methods are

applied, such as density functional theory (DFT) [\cite {kohn1999nobel}]. These

experimental techniques serve to verify the accuracy and reliability of the predicted

results, ensuring their practical applicability in real-world scenarios.
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Currently, those data-driven material informatics can be divided into three cate-

gories: (1) constructing hypothetical crystal structures by learning the compositional

space of known materials [108, 63, 77, 22]; (2) forecasting properties and recognizing

special materials from existing databases [153, 159, 166, 43]; (3) generative design of

material structure and composition. These three issues can be independent subjects,

they also can be interconnected. For example, if we wanna design a novel supercon-

ductive material, we can generate potential novel compositions, and then predict their

crystal structures, after that, predict the highly-related material properties, according

to these predicted results, we pick up the final candidates to material scholars, they

calculate and verify those formulas and structures, which indeed speed up the discovery

of new materials.

In the following section, we introduce some remarkable achievements that are

related to our work in crystal structure prediction and material properties prediction.

2.3.2 Crystal structure prediction

Crystal structures play an important role in materials because they fundamentally

determine the properties of materials. Therefore, predicting structure is one of the

most important and essential works in material science, such as predicting properties

based on structural information, and exploring new materials with target structures

and properties. While crystal structure prediction (CSP) is a notoriously challenging

topic because material scientists have to discover crystal structures with the lowest

free energy for a given chemical composition under specific pressure-temperature

circumstances [97, 157, 95, 131]. However, most global free energy search-based

algorithms have an obvious obstacle that limits their successes [112, 162] due to their

dependence on the costly density functional theory (DFT) calculations of free energies

for sampled structures. Hence, how to efficiently predict crystal structures becomes a

key issue [111, 95]. To improve the sampling efficiency, a variety of strategies have
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been proposed such as exploiting symmetry[122], clustering, and machine-learning

interatomic potentials with active learning [121]. However, the scalability of these

approaches remains a challenging issue.

Recently, there are some emerging works using deep learning methods to predict

material structures. Ryan et al. [131] reconstructed the crystal structure prediction

problem as predicting the likelihoods of particular atomic sites in the structure. Their

model is able to distinguish chemical components based on the topology crystallo-

graphic environment. They also use the model to analyze templates derived from

known crystal structures in order to predict the likelihood of forming new compounds.

Cheng et al. [22] lately proposed a framework that uses a graph network model to

connect crystal structures and their formation enthalpies and then merged this model

with an optimization algorithm for CSP. Although they predicted 29 crystal structures,

the main disadvantage of this work is that it can only optimize some materials with

simple composition, and for complex compounds, sometimes it is impossible to obtain

good prediction results or even predict their structures.

2.3.3 Material properties prediction

Material properties give researchers and industries insight into the material’s mechani-

cal performance under specific conditions [104], such as hardness/softness, the density

of the particles, fracture toughness, resistivity and thermal expansion, which are

measured and determined by their structures [48]. Data-driven informatics methods

are becoming useful to determine material properties that are hard to measure or

compute using traditional methods, due to the cost, time or effort involved, but for

which reliable data either already exists or can be generated for at least a subset of

the critical cases. There are many approaches that typically employ the structural or

composition features of known materials to predict target properties [32]. According to

their representations, these methods can divide into two types: (1) composition-based
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properties prediction and (2) structure-based properties prediction.

With a sufficient amount of dataset, it has been shown that composition-based

ML models can achieve highly accurate models for formation energy [153, 68] and

band gap predictions [172]. However, some of those high-performance models are very

likely due to the high redundancy of datasets that have many highly similar samples.

Three recent solid benchmark evaluations have clearly shown that the structure-based

prediction models most often outperform those composition models [32, 12, 35]. For

example, Bartel et al. [12] showed that composition models failed to distinguish

inorganic materials’ relative stability. Instead, they found that including structure in

the representation can lead to non-incremental improvement in stability predictions,

which serves as a strong endorsement for structural models.
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3.1 Introduction

Computational discovery of novel functional materials has enormous potential in

transforming a variety of industries such as mobile communication, electric vehicles,

quantum computing hardware, and catalysts [112]. Compared to traditional Edisonian

or trial-and-error approaches which usually strongly depend on the expertise of the

scientists, computational materials discovery has the advantage of efficient search in the

vast chemical design space. Among these methods, inverse design[173, 76], generative

machine learning models [28, 15, 76, 108, 125], and crystal structure predictions [44,

109, 86] are among the most promising approaches for new materials discovery.

Crystal structure prediction (CSP) is a notoriously hard problem [97, 157, 95] since

scholars have to find a crystal structure with the lowest free energy for given chemical

composition (or a chemical system such as Mg-Mn-O with variable composition)

at given pressure-temperature conditions. With the crystal structure of a chemical

substance, many physicochemical properties can be predicted reliably and routinely

using first-principle calculation or machine learning models [159]. It is assumed

that lower free energy corresponds to the more stable arrangement of atoms. The

CSP approach for new materials discovery is especially appealing due to the efficient

sampling algorithm that generates diverse chemically valid candidate compositions

with low free energies[28]. CSP algorithms based on evolutionary algorithms [110] and

particle swarm optimization [150] have led to a series of new materials discoveries [111,

112, 149]. However, these global free energy search-based algorithms have a major

obstacle that limits their successes to relatively simple crystals [112, 162] (mostly

binary materials with less than 20 atoms in the unit cell[112, 149]) due to their

dependence on the costly density functional theory (DFT) calculations of free energies

for sampled structures. With a limited DFT calculations budget, how to efficiently

sample the atom configurations becomes a key issue [111, 95]. To improve the sampling
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efficiency, a variety of strategies have been proposed such as exploiting symmetry[122]

and pseudosymmetry[95], smart variation operators, clustering, and machine-learning

interatomic potentials with active learning [121]. However, the scalability of these

approaches remains an unsolved issue.

With the mature development of deep learning techniques, a number of studies use

those novel methods in the materials science area [4], especially in material property

prediction [92], material discovery [139], and material design[78]. Recently, there

are also several emerging works using deep learning methods to predict material

structures. Ryan et al. [131] reconstructed the crystal structure prediction problem

as predicting the likelihoods of particular atomic sites in the structure. The trained

model successfully distinguishes chemical components based on the topology of their

crystallographic environment. They use the model to analyze templates derived

from the known crystal structures in order to predict the likelihood of forming new

compounds. Cheng et al. [22] lately proposed a framework that uses a graph network

model to connect crystal structures and their formation enthalpies and then merged

this model with an optimization algorithm for CSP. Although they predicted 29

crystal structures, the main weakness of the study is the failure to predict structures

of complicated chemical formulas.

Crystal structure prediction in material and protein structure prediction (PSP)

in bio-informatics have some similarities [4]. (1) PSP aims to construct the three-

dimensional (3D) protein structure from a protein only given its amino acid sequence

[155], while CSP seeks to identify a crystal structure with the lowest free energy for

certain chemical composition. (2) Features and functions of given protein and material

can be explored more effectively if we uncover their structures. (3) These tasks both

are time-consuming and expensive for lab experiments, calculation, and verification.

Accordingly, we investigated years of painstaking efforts on protein structure

prediction [33, 85, 65] and were motivated by the recent breakthrough of deep learning
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in PSP with contact map [3] and DeepMind’s AlphaFold [7, 167, 137, 73]. For a

protein 3D structure, a contact map is a binary form of the distance matrix with a

distance threshold, while the distance is calculated between every pair of residues [33].

Adhikari et al.[3] proposed DNCON2, an ab initio protein contact maps predictor

based on two-level deep convolutional neural networks: at the first level, they used

five convolution neural networks (CNNs) with multiple-distance thresholds to predict

preliminary contact probabilities as the additional features in next step; then, the

other CNN was used to predict the final contact probability map. As a distance map

can reveal more structural information than a contact map, in [137], they presented

the AlphaFold, a deep learning model which achieved high accuracy even though there

are fewer homologous sequences in a sequence.

Inspired by Alphafold’s success in protein structure prediction while crystal struc-

ture prediction and protein structure prediction have many previously mentioned

similarities, we aim to explore the relationship between each pair of atoms. Because

currently in CSP work, there is no such concept as co-evolution or correlated mutation

relationships among atoms and there is no existing method for crystal distance matrix

prediction. Furthermore, there indeed is a large number of physical or chemical rules

that determine whether or not two atoms can be bonded together, which leads to the

predictability of the distance-matrix of crystal structures. Based on this foundation,

in this study, we propose a novel distance matrix-based method for crystal structure

prediction. The block diagram of which is illustrated in Fig 3.1. We show that it is

possible to make accurate predictions about the structure for a given compound by

training a deep neural network.

Our contributions can be summarized as follows:

• We design DeltaCrystal, which is a distance matrix-based method for predicting

crystal structures from abundant atomic pair knowledge.
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• We conduct extensive experiments to demonstrate DeltaCrystal’s competitive

effectiveness and reliability: it can achieve good performance not only for

materials with simple compositions, but also those materials with complex

compositions.

3.2 Methods

For crystal structure prediction tasks, mastering the relationships between atoms is

an important factor. Therefore, we focus on exploring the pairwise atomic distance

matrices and then reconstructing the crystal structures. We describe at a high-level

our proposed method (as shown in Fig 3.1). First, with regard to each compound

collected from Materials Project, we construct the feature matrix based on its formula

and 11 chemical characteristics (Table 3.1, and then, we train the deep residual

neural network. In the second stage, a new formula’s distance matrix is predicted by

the trained model, and its crystal structure is generated by the atomic coordinate

reconstruction algorithm DMCCrystal [64]. Furthermore, we use M3GNET [18] to

relax those predicted crystal structures and predicted their formation energies, so that

we can pick the stable structures.

3.2.1 Feature matrix encoding

Representing material structure information in an appropriate format to learn atomic

interaction is an essential and crucial preparation step, because atomic interactions

are related to structural space. A few research demonstrated that many atomic

characteristics are related to ionic bond. Therefore, we use 11 atomic features to

encode the structural information of each element in each material as input for the

deep neural network model.

Specifically, each element is represented by 11 chemical descriptors (see Table 3.1

for detailed) including Mendeleev Number, unpaired electrons, ionization energies,

19



Deep residual neural network

Distance matrix

Crystal structure 
Reconstruction

by DMCrystal model
Relaxed Structure

Formulas from
MP datasets

16 0 176 178 161 6.1 1.2 2 1 4 20

51 2 160 473 100 6.8 0.8 4 1.5 4 22

101 2 66 249 5.3 13 1.3 16 3.4 2 8

101 2 66 249 5.3 13 1.3 16 3.4 2 8

101 2 66 249 5.3 13 1.3 16 3.4 2 8

Step1:Encoding and Training

Step2: Generation and Validation

Prediction

Predicted formation 
energy by M3GNET

Predicted stable structuresFeature matrix

Ca

Ti

O

O

O

Feature matrix

Candidate structures

Mendeleev number
Unpaired electrons 
Ionization energies
Covalent radius
Heat of formation
Dipole polarizability
Average ionic radius
Group number in periodic table
Row number in periodic table
Pauling electronegativity
Atomic number

11 atomic features

CaTi03
Formula encoding Training

…

…

… … … … … … … …

…

Formula encoding

Figure 3.1 The DeltaCrystal framework for distance matrix-based crystal structure
prediction. In the first step, we encode the material feature matrix according to atom
features and then train the deep neural network for predicting the distance matrix. In
the second step, the crystal structure will be derived by DMCrystal and then relaxed
by the M3GNET model, the stable structure will be picked according to predicted
formation energies.

covalent radius, heat of formation, dipole polarizability, average ionic radius, group

number and row number in the periodic table, pauling electronegativity, and atomic

number. These 11 atomic features are represented in each row of the feature matrix.

Each column of the feature matrix represents an element symbol in its unit cell,

where L is the number of atoms. We set the maximum number of atoms to be 12,

and if the number of atoms is less than 12, the other empty position padding by 0.

Hence, the dimension of each feature matrix is 12 ∗ 11. Since the atomic number of

the formula most is less than 12, in order to maintain dimensional consistency, if the

atomic number is set too large, it will cause too many 0 in the feature matrix and

distance matrix.
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Table 3.1 11 atomic features for encoding

Feature Description
Mendeleev number (MN) [145] Listing of chemical elements by column through

the periodic system, which is effectively used to
classify chemical systems.

Unpaired electrons Electrons that occupies an orbital of an atom
singly.

Ionization energies The amount of energy required to remove an elec-
tron from an isolated atom or molecule.

Covalent radius Half of the distance between two atoms bonded
covalently.

Heat of formation When one mole of a compound is produced from
its basic elements, each substance is in its normal
physical state, the quantity of heat received or
released.

Dipole polarizability [135] Describes the linear response of an electronic
charge distribution with respect to an externally
applied electric field.

Average ionic radius Average of a monatomic ion’s radius in an ionic
crystal structure.

Group number in periodic table The number of valence electrons of the elements
in a certain group, a group is a vertical column of
the periodic table.

Row number in periodic table The number of rows of the element in the periodic
table.

Pauling electronegativity The power of an atom in a molecule to attract
electrons to itself.

Atomic number The charge number of an atomic nucleus.

3.2.2 Deep residual model for distance matrix prediction

For distance prediction, we train the deep residual neural network to grasp the intricate

bonding interactions between atoms, this method takes advantage of the enormous

atom interaction distributions that exist in the massive number of known crystal

structures, therefore, it has the ability to predict pairwise distance with high accuracy.

Figure 3.2 depicts our deep neural network model, which is composed of three main

parts. In the first part, a sequence of stacked 1-dimensional (1D) residual network

layers to learn convoluted atom site features. In the second part, a 2-dimensional (2D)
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pairwise feature matrix is derived from the output of the 1D convolutional network by

the outer product, and then we merge the convoluted sequential feature and pairwise

feature as the input to the next module. The third part consists of a series of 2D

residual network layers, which predicts the distances between two atoms, and finally

gets the predicted distance matrix.

In our studies, the maximum number of atoms in a formula is set to L to accom-

modate the variable sizes of different crystal structure sites. In experiments, the L

is set to 12 (the same as the feature matrix), when a formula has fewer atoms, the

tensors are created by padding with zeros.

Residual Neural Network (ResNet) [60] is a kind of neural network that stacks

residual blocks on top of each other to form a network by skip connections, this design

had a profound influence on how to build deep neural networks. The skip connections

between layers add the outputs from previous layers to the outputs of stacked layers

which results in the ability to train much deeper networks than what was previously

possible.

In the DeltaCrystal model, we design two residual network modules: one module

aims to extract sequence features and the other module intends to derive pairwise

features. For each residual network block, there are two convolutional layers, a batch

normalization and two nonlinear transformations. We use 9 building blocks for each

module in our main architecture. The number of filters is doubled per 3 blocks. The

initial number of filters for the first and second modules are 32 and 256, respectively.

Since a distance map is a binary matrix, we use the cross-entropy loss as the loss

function for neural network training. It is defined as:

LosscrossEntropy = 1
N

N∑︂
i=0

yi · log(ŷi) + (1 − yi) · log(1 − ŷi) (3.1)

Where N is the maximum length of the formula which is set to 12*5 and 12*10

in our experiments; yi is the true distance matrix label at position i, and ŷi is the
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Figure 3.2 Deep neural network model for distance map prediction.

predicted label at position i.

3.2.3 3D crystal structure reconstruction algorithm

Our earlier proposed genetic algorithm DMCCrystal aimed to reconstruct atomic

position based on the distance matrix. It has demonstrated that given the pairwise

atomic distance matrix with space group, lattice parameters, and stoichiometry, this

genetic algorithm can reconstruct the crystal structure which is close to the target
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crystal structures. For further improvement, these predicted structures can be used

to seed the costly free-energy minimization-based ab initio CSP algorithms, as well

as to acquire the correct crystal structure of certain components by DFT-based

structural relaxation. Therefore, with all the predicted information, we then employ

the DMCCrystal to predict the crystal structure.

3.2.4 Evaluation metrics

We use three metrics (MSE, RMSE, Overlap) to evaluate the performance of distance

map based structure reconstruction. MSE and RMSE indicate the final structure

similarity between the predicted structure and the true target structure. Overlap

measures the accuracy of the predicted distance matrix with the true distance map.

They are shown in the following equations:

MSE = 1
n

n∑︂
i=1

(yi − ŷi)2 (3.2)

RMSE =
⌜⃓⃓⎷ 1

n

n∑︂
i=1

(yi − ŷi)2 (3.3)

where n is the number of independent atoms in the target crystal structure, yi

and ŷi are the corresponding atoms in the predicted crystal and the target crystal

structure.

Overlap = |Targetatom exist ∩ Predictedatom exist|
|Target atom|

(3.4)

where Target is the true distance map and Prediction is the predicted distance ma-

trix of a given composition, both only contain 1/0 entries. Target atom means the total

number of atoms in the target distance map. Target atomexist ∩ Predicted atomexist

denotes the common exist atoms of Target and Prediction. This function essentially

measures the overlap of two matrix samples, with values ranging from 0 to 1 with 1
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indicating perfect overlap. We also call this performance measure as distance map

accuracy.

3.3 Experiments and Discussion

3.3.1 Dataset

We collect material ids, formulas and crystal structures (cif files) from Materialspro-

ject.org by Pymatgen API. Since we set the maximum number of atoms in the formula

to 12, after filtering, we get 18,800 compounds from the Materials Project and named

this dataset as Mp_12. Furthermore, to compare our prediction results with the

GNOA method [22], we removed 29 formulas that predicted structures with high

performance from the training set, therefore, there are 18,776 compounds in Mp_12

datasets. Additionally, we extract materials whose crystal system is cubic to create

Mp_12_cubic dataset; we also extract formulas with binary and ternary elements

to form Mp_12_binary and Mp_12_ternary datasets, respectively. We train four

distance matrix prediction models with each of these four datasets and evaluate their

performance.

Table 3.2 Dataset

Dataset Number of data Describe
Mp_12 18,776 the original data collected from Materials

Project is 18,800, we removed the 29 typical
compounds in GNOA for prediction

Mp_12_cubic 3,298 extract the formula whose crystal system is cu-
bic from Mp_12

Mp_12_binary 5,848 extract binary materials from Mp_12
Mp_12_ternary 11,615 extract ternary materials from Mp_12

Distance discretization We counted the atomic distances of 18,776 samples in

Mp_12 dataset, the overall distribution is shown in Figure 3.3 where the smallest

distance is 0.9488, the largest distance is 23.3361, and the majority of distances
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between 0 to 7 groups. In this work, we divide the continuous distance values with

equal-width and store them in several groups by equation 3.5.

Interval width = (Maximum_value − Minimum_value)/N (3.5)

where N represents the number of groups, we set it to 5, 10 or 20 in experiments.

Furthermore, we use one-hot encoding to get the expression of each value. This method

turns the regression problem into a classification problem by turning continuous

distances into discrete values. Therefore, the cross-entropy loss can be used as the

loss function for training neural networks, which makes the prediction more accurate.

Specifically, for each material, we encode 11 atomic features to 12*11 matrix (the

maximum atomic number in unit cell is 12). After one-hot encoding, the dimension of

distance matrix is 12*(12*N). In experiment, training samples are randomly selected

with different sample sizes according to dataset size, such as 1000 or 10000 samples;

after training, 100 or 1000 samples are selected for prediction and performance analysis.

0.00 2.33 4.67 7.00 9.33 11.67 14.00 16.34 18.67 21.00 23.34
0.00

0.05

0.10

0.15

0.20

0.25

Figure 3.3 Overall atomic distance distribution of Mp_12 dataset. The x-axis
represents the atomic distance and the y-axis represents the corresponding ratios. The
most atomic distances are in the range of 2.33-4.67, accounting for more than 25%
and there are just a few distances more than 14.
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3.3.2 Prediction performance of distance matrix

To evaluate whether our DeltaCrystal models can learn the relationships between

atom-pairs and whether they can predict the distance matrix with good performance,

we did many experiments with different parameters, including the type of samples, the

number of discrete groups, and the size of training and test datasets. We summarized

the prediction performance in Table 3.3. In the training of these models, the number

of epochs is set to 125, Adam optimizer is used to update model parameters and the

learning rate to be 0.001.

Table 3.3 Training performances of DeltaCrystal

Model # Groups # Training
dataset

# Test
dataset

MSE RMSE Overlap

DeltaCrystal 5 1000 100 4.9538 1.8841 0.9045
DeltaCrystal 5 10000 1000 2.3764 1.2269 0.9979
DeltaCrystal 10 1000 100 2.8586 1.3399 0.9981
DeltaCrystal 10 10000 1000 1.8932 1.0984 0.9989
DeltaCrystal 20 10000 1000 1.5591 0.9239 0.9992

DeltaCrystal_cubic 10 2638 200 1.0125 0.7394 0.9746
DeltaCrystal_binary 10 4678 400 2.7835 1.3109 0.9980
DeltaCrystal_ternary 10 9292 1000 2.0832 1.2779 0.9985

Table 3.3 summarizes the results of multiple comparison trials. Firstly, comparing

different sizes of training datasets, there is a clear trend of decreasing MSE and RMSE

with more training samples. For example, for the same DeltaCrystal model with a

discretization group of 5, when the training samples are increased from 1000 to 10000,

the RMSE is reduced by 53.57%. Secondly, we set different numbers of discrete groups

for the basic DeltaCrystal model. Comparing discretization group 5, 10 and 20 with

10000 training samples, their RMSE are reduced by 11.69% and 18.88%, respectively.

In order to explore whether only focusing on the same type of materials has a better

effect, we specially trained three models: DeltaCrystal_cubic, DeltaCrystal_binary

and DeltaCrystal_ternary. DeltaCrystal_cubic model is trained by materials whose
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crystal system is cubic. DeltaCrystal_binary and DeltaCrystal_ternary are trained

by binary and ternary materials.

Figure 3.4 shows two examples of the true distance matrix and the predicted

distance matrix for ThGaNi and CaInPd, and their discretization group number is 10.

Figure 3.5 illustrates the results for EuSi2 and ScTlAg2, their discretization group

number is 20. These figures firstly demonstrate our methods can master the pair-wise

relationship between atoms, secondly, as the number of discretized distance groups

increases, the predicted distance labels are more accurate.

(a) ThGaNi (mp-1079601)

(b) CaInPd (mp-620571)

Figure 3.4 Compare the predicted and real distance matrix with distance group 10

3.3.3 Prediction of crystal structures

After predicting distance matrices, now we use the DMCrystal algorithm to predict

their crystal structures and use M3GNET to relax these structures, as well as predict
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(a) EuSi2 (mpid-1072248)

(b) ScTlAg2 (mp-1093619)

Figure 3.5 Compare the predicted and real distance matrix with distance group 20

their formation energies. Two samples of predicted crystal structures and their original

(target) structures are shown in Figure 3.7.

3.3.4 Compare DeltaCrystal model with GNOA model

GNOA method [22] is based on a graph network and an optimization algorithm to

predict crystal structure. Firstly, it used a graph network to construct a correlation

model between the crystal structure and formation enthalpies, and then it utilized an

optimization algorithm (OA) to search for the crystal structure that has the lowest

formation enthalpy. Their experiments show 29 typical compounds with good predicted

performance. To compare the predicted performance of GNOA and DeltaCrystal, we

use these two models to predict 30 material structures separately, and the experimental

results are summarized in Table 3.4 and Figure 3.6.
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Table 3.4 shows RMSE performances of predicted distance matrices and predicted

crystal structures by our DeltaCrystal model and RMSE of predicted crystal structures

by the GNOA model. Although GNOA could achieve good performance for binary

formulas, such as BePd and Ce3Pm, it is cannot handle complex formulas, especially

for materials with the number of elements greater than or equal to 4, for example,

GNOA cannot predict the structures of Rb2LiRhCl6, Y3Al3NiGe2 and LiFe2(ClO)2.

While our method is able to predict the structure of complex materials and we can

achieve lower RMSEs in many cases.

In addition to the aforementioned factors, formation energy is also an important

criterion for assessing the stability of crystal structures. Hence, we have conducted a

comparison of the lowest formation energies among the existing crystal structures, our

predicted structures and GNOA predicted structures by M3GNET in Figure 3.6. In

the figure, the red line represents the ground truth, the green line corresponds to our

method, the yellow line indicates our relaxed results, and the blue line represents the

GN-OA method. Notably, our method demonstrates a significantly closer alignment

with the ground truth in terms of formation energies, outperforming the GN-OA

predictions. This observation reinforces the efficacy and reliability of our approach in

predicting crystal structures.

In figure 3.7, we present three examples showcasing the comparison between ground

truth structures, GNOA predicted structures, and our predicted crystal structures.

This illustration highlights the capability of our method to accurately predict crystal

structures, particularly for complex chemical formulas. Our method demonstrates a

remarkable ability to capture the intricate arrangements of atoms in these structures,

yielding predictions that closely resemble the ground truth. This finding underscores

the effectiveness of our approach in handling challenging crystal structure predictions.
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Table 3.4 Compare the predicted performance (RMSE)of DeltaCrystal with GNOA

Type Formula Mp_id Distance
Matrix
RMSE

GNOA
RMSE

DeltaCrystal
Top-10
RMSE

DeltaCrystal
Top-20
RMSE

Binary

Tiln mp-1216825 0.0011 0.3993 0.5000 0.4564
ScAl mp-331 0.0088 0.4194 0 0

Tm3P mp-971958 0.0525 0.4274 0.5590 0.5590
BePd mp-11274 0.0645 0 0.5000 0
PaIn3 mp-861987 0.0928 0.500 0.5000 0.5000

Ce3Pm mp-1183767 0.1463 0 0 0
GdCo5 mp-1077071 0.3185 0.3093 0.4044 0.3720
LiC6 mp-1001581 0.3738 0.3762 0.2795 0.2795

BaAu5 mp-30364 0.4725 0.3333 0.2954 0.2954
Zr4Al3 mp-12752 0.4818 0.2473 0.4340 0.3293

Ternary

TmIn2Sn mp-1216827 0.0831 0.3536 0.3372 0.2041
CeAlO2 mp-1226604 0.1132 0.4508 0.4077 0.3819
ThBeO3 mp-1187421 0.1743 0.3651 0.5627 0.5627

Zn(CuN)2 mvc-15351 0.1830 0.4485 0.2452 0.2452
LiVS2 mp-7543 0.2096 0.2734 0.1922 0.1922

LiTiTe2 mp-10189 0.2454 0.2839 0.3612 0.3612
Sr(AlGe)2 mp-1070483 0.2596 0.5112 0.2435 0.2435
NdTiGe mp-22331 0.2675 0.4748 0.4540 0.4182

Mn4AsP3 mp-1221760 0.2916 0.4084 0.2755 0.2755
Mn3FeP4 mp-1221749 0.3492 0.4543 0.3943 0.3066

≥ 4 elements

DyThCN mp-1225528 0.1721 0.3933 0.4564 0.2887
EuNbNO2 mp-1225127 0.2613 0.3535 0.2887 0.2887
LaNiPO mp-1079685 0.3550 0.3448 0.4086 0.4086

SrFeMoO5 mp-690817 0.3802 0.4081 0.3682 0.3154
FeCu2SnS4 mp-628568 0.3993 0.4364 0.3446 0.3045
LiTb(CuP)2 mp-8220 0.4115 0.4270 0.1782 0.1716
Rb2LiRhCl6 mp-1206187 0.5137 None 0.2979 0.2979
Y3Al3NiGe2 mp-10209 0.5269 None 0.4126 0.4126
LiFe2(ClO)2 mp-755254 0.5649 None 0.3740 0.3740
Mg2VWO6 mp-1303315 0.5872 0.4347 0.2951 0.2871
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Figure 3.6 Comparison of formation energies

3.4 Conclusion

We propose DeltaCrystal, a deep residual neural network approach for crystal structure

prediction by first predicting the distance matrix of atom pairs for given material

composition, and then using it to predict its crystal structure using a genetic algorithm.

Compared to the minimization of free energy during atomic configuration search in

conventional ab initio CSP methods, our method takes advantage of the existing

physical or geometric constraints (such as the symmetry of atom positions) of the

existing crystal structures in the materials repositories. Our experiments show our

DeltaCrystal algorithm is able to reconstruct the crystal structures for a large number

of materials. Our predicted structures are so close to the ground truth crystal

structures so that they can be used to seed the costly free energy minimization-based

CSP algorithms for further structure refining. Our DeltaCrystal can be a strong new

kind of machine learning or deep knowledge-guided CSP for large-scale prediction of

crystal structures.
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(a) Ground truth of Zr4Al3 (b) GNOA predicted (c) Our predicted

(d) Ground truth of ScAl (e) GNOA predicted (f) Our predicted

(g) Ground truth of
EuNbNO2 (h) GNOA predicted (i) Our predicted

Figure 3.7 Examples of predicted crystal structures by DeltaCrystal
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Chapter 4

Motif-driven crystal structure analysis and

prediction

34



4.1 Introduction

Crystal structure prediction [97, 157, 95], generative design of crystal materials [165,

138], material structure searching [120, 71] are critical and challenging problems

in exploring material crystal structure and they have been active areas of research

for many decades. The main objective of these studies is to investigate the spatial

arrangement of atoms and their interatomic relationships. Additionally, they can be

used to design new structures or predict the functional properties of a material based

on its structure. As crystal structure of a material has a significant impact on its

properties and behavior, such as its mechanical strength, electrical conductivity, and

optical properties. By exploring the crystal structure of a material, researchers can

gain a deeper understanding of its properties and potential applications, as well as

develop new materials with specific properties by designing their crystal structures.

This exploration may involve theoretical calculations, experimental techniques, and

computational methods. Overall, exploring material crystal structure is an important

aspect of materials science that can lead to the discovery of new materials and

technologies.

(a) Representation by atoms and bonds (b) Representation by polyhedral

Figure 4.1 Crystal structure of LiTiTe2.
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Exploring material crystal structure involves studying the arrangement of atoms

in a solid material at the atomic level. For example, in the CSP problem, most

of these studies focus on predicting the positional information of each atom in the

crystal structure, this type of prediction is commonly referred to as atomic-level

crystal structure prediction. However, there are several drawbacks and limitations

to these atomic-level studies. One major limitation is that predicting the crystal

structure of a material is a complex problem that is computationally expensive and

time-consuming, even with modern computing resources. It may require the use of

advanced algorithms and techniques, and may still involve a significant degree of

uncertainty and trial-and-error. Additionally, even if the crystal structure of a material

can be accurately predicted or experimentally determined, understanding the behavior

of the material under different conditions (such as high pressure or temperature) can

be challenging, as these conditions can lead to changes in the crystal structure and

properties. Another limitation is that atomic-level exploration of crystal structures

may not fully capture the behavior of materials at larger scales. For example, defects

or impurities in a crystal structure can have a significant impact on its properties,

but may not be accurately captured by atomic-level simulations alone. Overall, while

exploring material crystal structures at the atomic level can provide valuable insights

and enable the discovery of new materials and properties, it is important to be aware

of these limitations and to consider a range of approaches and scales in materials

research.

In addition to directly predicting the position of each atom, there are some studies

focusing on higher-level atomic relationships: motifs. A motif consists of a set of

atoms arranged in a particular way within a unit cell, it also refers to a repeating

unit or pattern of atoms or molecules in a crystal structure [69, 10]. These motifs

can be considered the building blocks of a crystal structure, as they are repeated

throughout the material to create a more giant crystal lattice. As shown in Figure
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4.2, the left figure (a) shows the crystal structure of LiTiTe2 from the atoms and

bonds relationships, it totally contains 44 atoms and 72 bonds, it is very difficult to

predict the exact coordinates of each atom. Inspired by the polyhedral representation

of crystal structure, as shown in Figure 4.2 (b), LiTiTe2 has 12 polyhedrals, we aim

to study and extract the recurring patterns within a crystal structure, and contribute

to the crystal structure prediction task from a higher level: we only need to predict

positions of several motifs rather than a lot of atoms.

Motifs, these repeating patterns, have a significant impact on the crystal structure

and the material properties [10]. For instance, the arrangement of atoms within a motif

can affect the strength, electrical conductivity, and other properties of the material.

By understanding the motifs present in a material, scholars can gain valuable insights

into its structure and properties, and use this knowledge to develop new materials

with desired properties. With this objective in mind, our work focuses on extracting

motifs from existing crystal structures, analyzing their patterns, and utilizing these

motifs to predict crystal structures.

By studying the motifs within crystal structures, we uncover recurring patterns

that hold crucial information about the material’s behavior. These motifs serve as

building blocks that contribute to the overall structure and properties of the material.

By comprehensively analyzing and understanding these motifs, we can make informed

predictions about the crystal structures of new materials. Through this research, we

advance our understanding of the relationship between motifs and crystal structures,

ultimately paving the way for the design and synthesis of novel materials with tailored

properties. By harnessing the power of motifs, we can accelerate the discovery and

development of innovative materials for various applications.

Overall, our contributions can be summarized as follows:

• We highlight the significance of motifs in predicting crystal structures and

underscores their potential for advancing materials informatics.
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• We extract motifs from a diverse range of crystal structures and conduct in-

depth analyses to uncover common patterns and motifs that span across different

materials.

• We introduce a preliminary framework for the exploration of material structures

based on motif knowledge.

4.2 Methods and Experiments

4.2.1 Motif detection method: the QG-CD model

Our method utilizes advanced algorithms and techniques to effectively identify recur-

ring atomic patterns and motifs within the crystal structures. Through a systematic

analysis of atom arrangements and their interatomic distances, we are able to extract

meaningful and significant motifs within the material crystal structure and contribute

to the understanding and exploration of material structures.

(a) Community with groups of node (b) Material strictures with motifs

Figure 4.2 Community detection vs motif extraction

In order to detect and extract structural motifs in crystal structures, we design the

Quotient Graph-Community Detection (QG-CD) model. Quotient graphs [146, 55] are
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Figure 4.3 An example of a quotient graph

employed to transform a graph consisting of numerous clusters of nodes into a graph

with several distinct "blocks" of nodes. By using community detection algorithms

[42], such as the Girvan-Newman algorithm [30], it has been applied in social network

analysis and biological network analysis. In our work, we aim to identify communities

within complex systems by determining the edges that connect local clusters of nodes.

Combining these two algorithms together, we can detect structural motifs with a

smaller degree of errors.

The Girvan-Newman algorithm for the detection and analysis of community

structure relies on the iterative elimination of edges that have the highest number of

shortest paths between nodes passing through them. By removing edges from the

graph one-by-one, the network breaks down into smaller pieces, so-called communities.

The idea was to find which edges in a network occur most frequently between other

pairs of nodes by finding edges betweenness centrality. The edges joining communities

are then expected to have a high edge betweenness. The underlying community

structure of the network will be much more fine-grained once the edges with the

highest betweenness are eliminated which means that communities will be much easier

to spot. In material structures, we can use this method to find motifs.

The Girvan-Newman algorithm can be divided into four main steps: (1)For every

edge in a graph, calculate the edge betweenness centrality. (2) Remove the edge with

the highest betweenness centrality. (3)Calculate the betweenness centrality for every
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remaining edge. (4) Repeat steps 2-4 until there are no more edges left.

As shown in Figure 4.4, in this example, it show how a typical graph looks like

when edges are assigned weights based on the number of shortest paths passing

through them. To keep things simple, we only calculated the number of undirected

shortest paths that pass through an edge. The edge between nodes A and B has a

strength of 1 because we don’t count A− > B and B− > A as two different paths. It

would remove the edge between nodes C and D because it is the one with the highest

strength. This means that the edge is located between communities. After removing

an edge, the betweenness centrality has to be recalculated for every remaining edge. In

this example, we have come to the point where every edge has the same betweenness

centrality. While the betweenness centrality measures the extent to which a vertex or

edge lies on paths between vertices. Vertices and edges with high betweenness may

have considerable influence within a network by virtue of their control over information

passing between others.

The motif detection algorithm has been developed using libraries such as Net-

workx [54] and Pymatgen [116], these libraries provide essential functionalities for

graph analysis, including the Girvan-Newman library, quotient graph library, and

crystal structure library. Networkx is a Python library specifically designed for the

creation, manipulation, and analysis of complex networks or graphs. It provides a

comprehensive set of tools and functions for working with network data, including

creating, modifying, and visualizing networks, as well as performing various network

analysis tasks. Pymatgen (Python Materials Genomics) is a Python library specifically

developed for the analysis and modeling of materials and molecules. It provides a wide

range of tools and functionalities to work with various aspects of materials science,

including crystal structures, electronic structures, and thermodynamics.
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Figure 4.4 An example of Girvan-Newman algorithm

4.2.2 Motif extraction results

By extracting motifs from such a vast collection of material structures, we uncover

common patterns and motifs that span across different materials. For instance, we

show three material polyhedron structures and their motif structures in Figure 4.5,

Figure 4.6 and Figure 4.7.

As illustrated in Figure 4.5, the left panel showcases the polyhedron structure of the

LiTiTe2 material. On the right panel, we present two extracted motif structures: LiTe6

(represented by green-colored building blocks) and TiTe6 (represented by blue-colored

building blocks).

In the Zn(CuN)2 material (in Figure 4.6), we have identified and extracted two

distinct motifs: the tetrahedron motif ZnN4 and the linear motif CuN2. The ZnN4

motif represents the arrangement of four nitrogen (N) atoms surrounding a central
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(a) Polyhedron of LiTiTe2

(b) Motif Ti-Te6

(c) Motif Li-Te6

Figure 4.5 Extracted motifs of LiTiTe2

(a) Polyhedron of Zn(CuN)2

(b) Motif Zn-N4

(c) Motif Cu-N2

Figure 4.6 Motif of Zn(CuN)2

zinc (Zn) atom, forming a tetrahedral structure. On the other hand, the CuN2 motif

consists of two nitrogen (N) atoms bonded to a central copper (Cu) atom in a linear

configuration.

In the case of the KGdH2C2SO9 material (in Figure 4.7), we have identified and
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(a) Polyhedron of KGdH2C2SO9

(b) Motif K-O9

(c) Motif Gd-O8

(c) Motif S-O4

(d) Motif C-O2

(e) Motif H-O

Figure 4.7 Motif of KGdH2C2SO9

extracted three polyhedral motifs: KO9 (depicted in purple), GdO8 (represented

by orange), and SO4 (highlighted in yellow). Additionally, we have discovered two

linear motifs: CO2 and HO. These motifs provide valuable insights into the atomic

arrangements and bonding patterns within the KGdH2C2SO9 material, enabling a

better understanding of its structural characteristics.

4.2.3 Motif analysis

We have assembled a comprehensive dataset comprising 122,500 material structural

cif files sourced from the Material Project database. Utilizing this extensive collection,

we employ our method to extract motifs for each individual structure. As a result, we

obtain a total of 18,534 motifs across 86 different types of elements. According to the

periodic table, those elements and their corresponding motif numbers are summarized

in Figure 4.8, the numbers with red color indicate their occurrence of more than 600,

while the blue color indicates a range of 400 to 599, the green color represents a range

of 300 to 399, the yellow color signifies 200 to 299 and the gray color indicates an
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occurrence of less than 200.

 

1                 2 

H                 He 
453                  

3 4           5 6 7 8 9 10 

Li Be           B C N O F Ne 
526 230           540 537 781 1015 544  

11 12           13 14 15 16 17 18 

Na Mg           Al Si P S Cl Ar 
395 702           658 729 612 675 548  

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 
409 458 357 399 294 290 481 524 605 702 576 525 658 662 603 627 477 1 

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 
331 437 479 437 329 273 196 406 521 608 429 390 558 654 644 575 436 21 

55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 

Cs Ba *La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 
271 457 479 338 279 232 240 268 447 556 573 357 369 402 466    

87 88 89 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 

Fr Ra ✝Ac Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og 
  110                
                  

   58 59 60 61 62 63 64 65 66 67 68 69 70 71  

   Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu  
   442 426 429 125 395 314 289 402 382 383 385 338 381 318  

   90 91 92 93 94 95 96 97 98 99 100 101 102 103  

   Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr  
   298 92 287 138 171           

 

*Lanthanide 
Series 

✝Ac0nide 
Series 

Figure 4.8 Extracted motifs statistics. In this periodic table, the number below each
element indicates how many motifs the element appears in.

From Figure 4.8, it is evident that the most frequently occurring element is oxygen,

which appears in 998 motif structures. Additionally, in Figure 4.9, we provide 11

motifs for reference. Among these 86 elements, the top 10 elements that appear most

frequently in motif structures are O (998), N (772), Si (727), Mg (702), Ni (702), S

(673), Ge (662), Al (657) and Ga (658); while the 10 elements with the least number

of occurrences are W (232), Be (230), Tc (196), Pu (171), Np (138), Pm (125), Ac

(110), Pa (92), Xe (20), Kr (1).
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(a) CO (b) CO2 (c) LiO3 (d) Si04 (e) GeO5 (f) MgO6

(g) NaO7 (h) ZrO8 (i) BaO9 (j) NdO10 (k) BaO12

Figure 4.9 Oxygen motifs

It is important to explore Lithium-ion materials as they play important roles

[94]. For example, Lithium-ion batteries are widely used for energy storage in various

applications, including electric vehicles, portable electronics, and renewable energy

systems. Lithium-ion materials offer potential advancements in energy storage tech-

nologies, allowing for increased energy capacity, faster charging, and improved stability.

Therefore, we focus on analyzing motifs with lithium as the central atom.

We conduct an analysis of motifs containing lithium elements, resulting in the

extraction of 526 motifs. From this set, we filtered out structures where lithium atoms

serve as the central atom. Based on the polyhedron type, we identified and categorized

representative motifs, which are summarized in Figure 4.10.

Our analysis reveals six distinct types of motifs: linear motifs, flat motifs, tetrahe-

dron motifs, pentahedron motifs, octahedron motifs, and polyhedron motifs. Linear

motifs typically involve a lithium atom and 1 or 2 other atoms. For instance, the

motif "Li-O" is formed by a lithium atom and an oxygen atom, while the motif

"Li-N-O" consists of a lithium atom, a nitrogen atom, and an oxygen atom. Flat

motifs encompass a central lithium atom surrounded by three other atoms that lie

on the same plane. An example of such a motif is the "Li-N2-O", which comprises

45



a lithium atom, two nitrogen atoms, and an oxygen atom. These motifs exhibit a

distinct planar arrangement of atoms around the central lithium atom.

Tetrahedron motifs exhibit a central lithium atom surrounded by four other atoms,

forming a tetrahedral arrangement. Examples of such motifs include "Li-F4," "Li-

O3-F," and "Li-O2-F," where the central lithium atom is connected to four fluorine

atoms or a combination of oxygen and fluorine atoms. Similarly, pentahedron motifs

involve a central lithium atom surrounded by five other atoms, forming a pentahedral

structure. Examples of pentahedron motifs include "Li-Cl5," "Li-O4-F" and "Li-O2-F3",

where the central lithium atom is bonded to five chlorine atoms or a combination

of oxygen and fluorine atoms. In addition, octahedron motifs encompass a central

lithium atom surrounded by six other atoms, forming an octahedral structure, such

as "Li-O6", "Li-O5-F" and "Li-O3-F3". These motifs provide insights into the spatial

arrangement and coordination of lithium atoms in complex crystal structures.

Motifs that have more than seven surrounding atoms are classified as polyhedral

structures. These motifs highlight the coordination of the central lithium atom

with multiple atoms, forming intricate polyhedral arrangements. For instance, the

motif "Li-O7" comprises a central lithium atom coordinated with seven oxygen atoms,

while "Li-S8" indicates the coordination of the lithium atom with eight sulfur atoms.

Similarly, "Li-O9" represents the coordination of the central lithium atom with nine

oxygen atoms.

4.3 Motif-based crystal structure prediction: the framework

Traditional methods for crystal structure prediction primarily focus on predicting

the positions of each atom individually, leading to computational intensity and

time consumption issues. To address this challenge and enhance the efficiency of

crystal structure prediction while facilitating the discovery of new materials, drawing

inspiration from a motif-based structure searching method XMsearch [171], we aim to
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(f) Polyhedron

(e) Octahedron

(d) Pentahedron

(c) Tetrahedron
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Figure 4.10 Motifs with lithium as the central atom
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reduce the total degrees of freedom (DOF) by employing motifs to describe crystal

structures. Therefore, we devise a preliminary framework based on structural motifs

for the crystal structure prediction of materials.

The workflow of our preliminary motif-based crystal structure prediction is il-

lustrated in Figure 4.11. This comprehensive approach consists of three primary

steps, each contributing crucially to the successful prediction of crystal structures for

materials.

In the first step, we extract motifs from existing material structures. In this initial

phase, we gather a diverse set of existing material structures, which serve as the

foundation for our prediction framework. And then employing our proposed QG-CD

model, we meticulously extract key motifs present in these structures. This extraction

process is fundamental to our motif-based framework, as it captures the recurring

patterns and building blocks that underlie the crystal structures.

In the second step, we aim to generate and filtrate motif-based structures. Building

on the knowledge gleaned from the extracted motifs, we now embark on the exciting

task of generating novel material structures. By combining and assembling these motifs

in various configurations, we can envision an extensive library of potential crystal

structures. To ensure the feasibility and relevance of these candidates, a rigorous

filtration process is employed. Only the most promising and physically plausible

structures proceed to the next stage.

In the third step, we aim to relax generated structures and find stable structures.

Having obtained a selection of potential crystal structures, our focus shifts to refining

and validating their stability. Through a relaxation process carried out by the

sophisticated M3GNet algorithm, the predicted structures undergo optimization

to attain their most energetically favorable configurations. This step is critical in

identifying the stable structures among the candidates. Subsequently, we employ

Density Functional Theory (DFT) calculations to compute the formation energies
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Figure 4.11 Framework of the motif-based structure prediction method

of these relaxed structures. The formation energy is a key indicator of a material’s

stability, helping us discern the most viable candidates for experimental synthesis and

characterization.

By seamlessly integrating these three key steps, our motif-based framework offers

a significant advancement in crystal structure prediction. Its capacity to efficiently

explore the vast landscape of crystal structures holds immense promise in accelerating

the discovery of novel materials, unlocking a treasure trove of materials with remarkable

properties.

4.4 Conclusion

We explore and analyze material structures from a higher-level perspective: polyhedral

motif structures. This approach identifies structural motifs based on exploring atom

patterns that appear frequently across different crystal materials with high geometric

conservation. Through our comprehensive extraction experiments, we extract 18,534

motifs and uncover common patterns and motifs that span across different materials.
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For the crystal structure prediction task, unlike traditional methods that require

the calculation of coordinates for each individual atom, the utilization of motifs offers

a notable advantage by significantly reducing computational costs. In this work, we

present a preliminary framework for the exploration of material structures from the

motif point of view. By leveraging motif-based knowledge, we anticipate that it will

serve as a guiding principle in the design and synthesis of novel materials in the near

future, opening new avenues for advancements in material informatics.
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Chapter 5

Computational Discovery of New 2D Materials

Using Deep Learning Generative Models
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5.1 Introduction

Two-dimensional materials such as graphene and hexagonal boron nitride have the

potential to create new electronics and technologies such as spintronics, catalysis,

and membranes owing to their exotic vibrational, electronic, optical[148], magnetic,

and topological behaviors[40, 6, 5, 163]. Using density functional theory (DFT)

based screening, Mounet et al. [105] have found 1,825 compounds with requisite

geometric and bonding criteria that should make them relatively easy to exfoliate and

so produce novel 2D materials with potentially interesting physical and electromagnetic

properties. They discovered 56 ferromagnetic and antiferromagnetic systems, including

half-metals and half-semiconductors. This greatly expands the list of predicted 2D

materials and could fill the gaps in the characteristics and properties of the likes of

graphene, phosphorene, and silicene. Zhou et al. [164] proposed a high-throughput

computational materials design framework, which screened 5,000 compounds from the

Materials Project Database (MP), and found 205 layered materials for water splitting

photocatalysts and validated 36 kinds of 2D monolayers stability. One can also expand

the list of 2D materials by chemical substitutions, alternative site decorations, crystal

structure prediction and so on[117]. Several screening approaches have been proposed

to find 2D materials from known layered bulk materials [24]. A simple criterion of

comparing experimental lattice constants and lattice constants mainly obtained from

Materials-Project DFT calculation repository is used to find potential 2D materials

[24]: a relative difference between the two lattice constants for a specific material

is greater than or equal to 5% is used to identify good candidates for 2D materials.

Haastrup et al. [53] developed the Computational 2D Materials Database (C2DB),

which contains a variety of structural, thermodynamic, elastic, electronic, magnetic,

and optical properties of around 1500 2D materials distributed over more than 30

different crystal structures. More recently, Zhou et al. [169] developed 2DMatPedia,
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an open computational database of 6351 two-dimensional materials by screening

all bulk materials in the database of Materials Project for layered structures by a

topology-based algorithm and theoretically exfoliating them into monolayers. New

2D materials have also been generated by chemical substitution of elements in known

2D materials by others from the same group in the periodic table. These databases of

experimental or hypothetical 2D materials have made it possible for discovering novel

function materials [34, 161, 93, 74, 115].

Despite these efforts, the scale of experimental and hypothetical 2D materials is

still limited because of long experimental period and high cost [20]. For example,

computational generation of novel new materials have been proposed in the name of

inverse materials design [173], in which new materials are to be searched to achieve

a given specific function, most of these methods involve a global optimization or

search/sampling procedure to explore the search space[21]. However, most of such

inverse design research is based on screening known materials. Suleyman Er et al.

[140] proposed an elemental substitution based approach and applied it to known

2D materials structural prototypes to generate a large number of hypothetical 2D

materials, and then filtered those materials based on several criteria. They deposited

their predicted 2D materials in their V2DB database.

To expand the scope of 2D materials, we propose to design a generative deep

learning method to discover novel 2D materials in uncharted composition space. Our

approach is based on a high-accuracy composition based 2D materials classifier, which

is used to screen millions of hypothetical materials compositions generated using our

MatGAN, a generative adversarial network (GAN) based model [27] that learns to

generate chemically valid hypothetical materials. Based on 2.65 million generated

samples, we have identified 267,489 hypothetical 2D materials. Furthermore, we use

element substitute method to predicted the crystal structures, and then confirm their

structure stability using DFT calculations.
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Our contributions can be summarized as follows:

• We propose a composition-based 2D materials classifier model which achieves

high prediction accuracy when trained with known 2D materials.

• We combine the 2D materials classifier and the composition-based generative

machine learning to discover new 2D materials, which greatly expand the space

of 2D materials.

• We apply a template-based element substitution-based structure prediction

approach to get the structures of hypothetical 2D materials and verify them

using DFT formation energy calculations, exfoliation energy calculation and

phonon thermostability verification.

5.2 Methods

5.2.1 2D materials discovery framework

The schematic diagram of our 2D materials discovery framework includes the fol-

lowing four modules (Figure5.1): a GAN based hypothetical materials generator, a

composition based 2D materials classifier, a template based structure predictor, and a

DFT confirmation procedure. The hypothetical materials generator is trained with

known inorganic materials in the Materials Project database to learn the composition

rules of forming stable chemically valid materials compositions. Then, we use the

generative module to breed a large number of hypothetical formulas (two million in

our study). These formulas are then subjected to chemical validity tests including

charge neutrality check and electronegativity check. After that, the remaining samples

will be screened by the 2D materials classifier using composition alone. To verify the

predicted 2D materials compositions, we apply template based element substitution

to generate their hypothetical structures for a subset of 624 predicted 2D materials
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compositions. Using DFT calculations, the stability of these structures is calculated

to verify the existence of these candidate 2D materials from which we identified twelve

potentially stable materials.

GAN generate 
new material 

formula 
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materials
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materials

Training random 
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2D material 
candidates

Template based 
structure 
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formula Predict

Space 
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Figure 5.1 Framework for generation and prediction of 2D materials. It comprises
four components. The green part: a GAN-based composition generation module for
breeding chemically valid materials. The blue part: a composition-based random
forest 2D materials classifier. The orange part: a template-based element substitution
structure predictor, as well as the yellow part: DFT validation.

5.2.2 Generative deep learning for hypothetical inorganic materials

In the material design research area, one core task is to explore chemical space for

searching new materials. In our previous work, a generative machine learning model

(MatGAN) [27] is designed to efficiently generate new hypothetical inorganic materials

composition based on generative adversarial network (GAN) [46]. There are two main

tasks of MatGAN: one is how to suitably represent material composition; the other

one is how to design the generative adversarial network for generating new materials.

When exploring the representation of inorganic materials, we found that there

totally are 85 elements in ICSD dataset; and there are no more than 8 atoms per

element in any specific compound. Therefore, each material could be represented as a
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Figure 5.2 One hot representation of material composition PuP2H6CO8. Brown color
indicates the atom number of corresponding element in the specific material.

sparse matrix M of dimension 8 × 85 with 0/1 cell values, where Mi,j = 1 means the

number of atoms of the element at column j is i + 1. Figure 5.2 shows the encoding

matrix for PuP2H6CO8.

The architecture of MatGAN is shown in Figure 5.3. In this generative adversarial

network training, a generator is trained from existing real material representations

to generate new samples. Meanwhile, the discriminator tries to differentiate real

samples from generated samples; as the feedback, the discrimination loss is then used

to guide the training of the generator and the discriminator’s parameters to reduce

this difference. These two training processes are repeated until good performances of

both the generator and the discriminator are achieved. In order to avoid the gradient

vanishing issue of standard GAN, we adopt the Wasserstein GAN [8], which replaces

the JS divergence distance with the Wasserstein distance. The generator loss and

discriminator loss are defined in the following equations:

LossG = −Ex:Pg [fw(x)] (5.1)

LossD = Ex:Pg [fw(x)] − Ex:Pr [fw(x)] (5.2)

where, Pg and Pr are the distributions of generated materials and real materials; fw(x)

is the discriminant network. Equation (5.1) and (5.2) are used to guide the training
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Figure 5.3 Architecture of MatGAN. Generator (G) learns from known material
compositions to generate realistic samples while discriminator (D) learns to determine
whether a sample is a real one or generated one. Alternative training of D and G will
improve the performance of both G and D.

process. The smaller the LossD, the smaller the Wasserstein distance between the

generated samples and the real samples and the better the GAN is trained.

We have generated 2,650,623 hypothetical materials compositions, and 1,940,209

of them satisfy both charge neutrality and electronegativity balance criteria via

Semiconducting Materials from Analogy and Chemical Theory (SMACT) [29] tool.

The charge neutrality check means that the total charge in a compound should be 0,

namely ∑︁
i Qini = 0, where i are the elements in the compound and Q are the charges.

Electronegativity is often used in high-throughput screening, Ginley [17] presented

how the simple geometric mean of the electronegativities of a compound, SMACT

tool has a built in function to calculate this property for a given composition.

5.2.3 Composition based classifiers for predicting 2D materials

Predicting whether a material is 2D structure can be regarded as a binary classification

problem. Our goal is to screen unknown 2D materials from MatGAN-generated

materials by training a random forest classifier with verified 2D and non-2D materials,

and then predicting the probability of being a 2D material of each new material.

Specifically, we employ the Random Forest (RF) [90] as the surrogate model for

predicting the 2D probability given a material’ Magpie composition features. Magpie
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feature set[153]is a well-known descriptor set for composition based machine learning

models, those features are calculated by the matminer library [154] which is a Python-

based platform that facilitates data-driven methods for analyzing and predicting

material properties by calculating a variety of descriptors from material compositions

or crystal structures. Basically, magpie feature set calculate the mean, mean absolute

deviation, range, minimum, maximum and mode for 22 different elemental properties

for all the elements contained in a formula (132 features in total). This elemental

property category includes attributes such as the maximum row on periodic table,

average atomic number and the range of atomic radii between all elements present in

the material. Those 132 features of each material will be calculated and used in our

random forest model training.

RF is a supervised bagging ensemble learning algorithm. The idea behind random

forests is to exploit the wisdom of the group. RF builds many decision trees in a

random way with low correlation among them. After building the forest, when a new

sample needs to be classified, each decision tree makes a judgment separately to vote

which category the sample belongs to. Random forest improves the prediction accuracy

without significantly increasing the amount of computation, and it is relatively robust

to unbalanced data.

In the data preparation stage, we first collect known 2D and non-2D materials, as

well as MatGAN generated new materials. Then, we calculate the Magpie features for

all of them. In training the random forest model, known 2D materials and non-2D

materials are treated as positive and negative samples to train the RF classifier

with 10-fold cross-validation. The RF hyper-parameters are tuned to achieve good

prediction performance with detailed settings explained in Section 3.2.2. Afterward,

the trained RF model is utilized to predict the labels and probability scores of 2D for

generated hypothetical new materials.
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5.2.4 Template-based structure prediction

Although we have predicted the 2D probability scores of the hypothetical new materials

generated by our MATGAN algorithm and the candidates with their probability scores

greater than 95% are likely to be 2D materials, it is not enough to verify their existence

by DFT calculation of their formation energy or phonon calculation based stability

check. However, crystal structure prediction of complex compositions using current

ab initio crystal structure prediction algorithms are not feasible [112]. To address this

issue, we propose to use the template based or element substitution based structure

prediction method, which is shown in Figure 5.4.

Firstly, for each predicted 2D formula, we use the Crystal Structure Prediction

Network (CRYSPNet) [89] tool to predict its space group that the formula most

likely belongs to. This method consists of many neural network models to predict

the material’s space group, Bravais lattice, and lattice constants. As CRYSPNet only

needs chemical composition information as input, we use it to estimate the top 3

potential space groups for each new hypothetical 2D material.

Next, we try to find similar template materials from known 2D materials in the

2dMatpedia database. Specifically, For each new 2D formula with three potential

space groups, we search the target 2D material that has the same number of elements

and the same space group. However, one formula may lead to many potential target

2D material template. To identify the most similar template material, we use Element

Movers Distance (ElMD) [57] machine learning model to calculate and sort similarities

between the candidate materials and potential template materials. ElMD is a similarity

measure for chemical compositions, which is measured Earth Mover’s Distance (EMD)

[130] between two compositions from the ratio of each of the elements and the absolute

distance between the elements on the modified Pettifor scale.

Finally, we select the top 10 most similar known 2D materials as the structure

templates according to the ElMD values. New 2D material’s structures could be then
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predicted by one to one element substitution from those pairs. For example, as shown

in Figure 5.4, the structure of XY is predicted from the structure of AB by using X

to replace A (gray atom) and Y to replace B (yellow atom).
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Figure 5.4 The framework of template based structure prediction. The main parts are:
predicting new formula’s space group; finding candidate template formulas according
to the same element number and the same space group; calculating and sorting ElMD
between the new formula and template formulas; selecting top n templates to do
element substitution to get the new formula’s structure.

5.2.5 DFT calculation for verification

The density functional theory (DFT) calculations were performed based on the Vienna

ab initio simulation package (VASP) [82, 83, 36, 81]. The electron-ion interactions

were considered by using the projected augmented wave (PAW) method [14, 84]. The

energy cutoff value was set as 500 eV. The generalized gradient approximation (GGA)

based on the Perdew-Burke-Ernzerhof (PBE) pseudopotentials [118, 119] represented

the exchange-correlation potentials. The energy convergence criterion was set as

10−7 eV, while the force convergence criterion of the ionic steps was considered as

10−2 eV/Å. The Γ-centered Monkhorst-Pack k-meshes were considered to perform
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the Brillouin zone integration for the unit cells. The van der Waals interactions were

considered using DFT+D3 with Becke-Jonson damping[50, 49]. Formation energy

per atom (Eform) of a material were calculated based on Eq.5.3. Here, E[Layered] is

the total energy per unit formula of the corresponding material, E[Ai] is the energy

of ith element of the material, xi represents the number of atoms of ith element in

a unit formula, and N indicates the total number of atoms in a unit formula of the

material (e.i., N=∑︁
i xi). Exfoliation energies were determined using Eq. 5.4. In

this eqaution, E[Monolayer] is the total energy per unit formula of the monolayer

exfoliated from a 2D layered material. S is the area of the layered material’s surface,

which is perpendicular to out-of-plane direction of the monolayer.

Eform = 1
N

(E[Layered] − xi

∑︂
i

E[Ai]) (5.3)

Eexf = −1
2S

(E[Layered] − E[Monolayer]) (5.4)

5.3 Experiments and Discussion

5.3.1 2D materials Dataset

All the 2D materials are collected from 2DMatPedia[169], an open computational

database of two-dimensional materials, which is constructed by a topology based

screening algorithm and element substitutions. There are 6,351 2D materials in

total, they are regarded as positive training samples in our work. We also collect all

existing materials from the materials project database with 126,356 materials in total.

After removing known 2D materials, there are 115,498 negative samples. We use the

MatGAN model to generate 2,650,264 new materials as candidates for 2D materials

prediction.
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Table 5.1 Datasets

Dataset Amount Role
2dMaterials 6,351 positive training sample

MaterialProject 126,356 negative training sample (exclude 2D materials)
ICSD_2M 2,650,624 potential new material

V2DB 294,077 comparative dataset

5.3.2 Results

Generation of candidate inorganic materials

Trained with 291,840 inorganic materials compositions in Material Project database,

a generative deep learning model (MATGAN) is used to generate 2,650,624 new

compositions, and then charge neutrality and balanced electronegativity are used to

screen out 1,947,792 formulas, among which 1,940,209 are not in the training set.

The number of generated 2-element materials, 3-element, 4-element, ≥5-element are

1217, 18946, 36827, 78639, respectively. There are two reasons to explain why binary

materials account for the least proportion: one is the diversity of the combination

of two elements is much less than that of five elements. The other is many binary

materials have already been discovered. The generated 2-element materials play an

important role in subsequent research because most known 2D materials are binary

materials.

In order to better display the generated materials distribution information, we

draw a line chart (as shown in Figure 5.5) to show the frequencies of 112 elements

ordered by atomic number in three datasets: generated ICSD-2M candidate materials

by MatGAN, the published 2D material dataset and the predicted 2D materials. From

these three curves, we can see that the top 5 crests positions basically overlap, the

number ranges are 7-9, 15-17, 32-35, 50-53, and 80-83. It proves that the space of

candidate materials generated by MatGAN is consistent with the real 2D materials.

Furthermore, it provides a solid candidate range for the following 2D new material
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prediction.

Figure 5.5 Element frequency distribution. The abscissa represents 112 chemical
elements arranged according to the atomic number from hydrogen (H) to Copernicium
(Cn), vertical axis indicates the frequency of each element. The red curve denotes the
distribution information of 2dMaterials dataset. The green curve shows our generated
candidate materials. The blue line represents our predicted 2D materials.

Performance of the 2D materials classifier

The hyper-parameter configuration for training 2D random forest classifier is set as

follows: we set the maximum tree depth (max_depth) to be 20 and the number of

decision trees (n_estimators) as 250. There are 6351 2D material samples and 15,959

non-2D samples. In order to mitigate the imbalanced positive and negative samples,

we randomly select 1.5 times the number of positive samples as negative samples.

Besides, the class weight parameter is set to be balanced. With these settings tuned

per feature iteration, we train the RF 2D materials prediction models and evaluate

their performance. Our algorithm is implemented using the Scikit-Learn library in

Python 3.6.

To evaluate the prediction performance of our model, precision, recall, accuracy,

F1 score, and receiver operating characteristic area under the curve ROC are used
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as performance metrics. ROC is plotted with TPR and FPR as the vertical and

horizontal axes under different threshold settings.

TPR = TP

TP + FN
(5.5)

FPR = FP

FP + TN
(5.6)

The accuracy, precision, recall, and F1-measure of the RF classifier with 10 fold

cross-validation is 88.97%, 88.98%, 88.96%, and 88.96%. Figure 5.6(a) shows the ROC

curve of the classifier with an AUC score reaching 96%.

We also use a series of thresholds to differentiate 2D and non-2D materials to

evaluate the performance of the RF classifier, as shown in Figure 5.6(b). The abscissa

represents the predicted probability threshold to declare a 2D materials when its

probability is higher than this threshold value; the y coordinate indicates the corre-

sponding false-positive rate. As the threshold increases, the higher the probability

score is required to be judged as a 2D material leading to lower false-positive rate.

(a) (b)

Figure 5.6 Performance of our RF random forest classifier. (a) ROC curve and AUC
score; (b) false-positive rates with different thresholds.
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Finding new 2D materials using our framework

To identify interesting hypothetical new 2D materials, we applied our RF-based 2D

materials classifiation model to screen the 2.6 million hypothetical materials generated

by our Generative Adversarial Network (GAN) based on new materials composition

generator [27]. After predicting the probability of each candidate belonging to 2D

materials, we sort them by the probability scores. The statistics of the predicted

2D materials with different probability thresholds are shown in Table5.2. With a

stringent probability threshold of 0.95, our algorithm has identified 1,485 hypothetical

2D material formulas with 266 binary, 361 ternary, 327 quartenary candidates. When

the threshold is lowered to 0.9, the number of candidate 2D formulas increases to

5,034 or to 18,451 with threshold of 0.8.

To demonstrate how the newly predicted 2D materials are distributed in the

composition space, we apply t-sne dimension reduction tool [96] to map the normalized

Magpie features of the 6351 2D materials in the 2Dmatpedia database and the predicted

2D materials, and then plot their distribution in Figure 5.7. In Figure 5.7(a), We

apply the same dimension reduction transformation to both the training set and

the newly predicted 2D materials and visualize their distribution where red points

are training samples, and blue points are the 1485 predicted 2D materials with the

highest probability scores. Similarly, top 20,0000 predicted 2D materials are drawn

as blue points in Figure 5.7(b) together with known 2D materials used for training.

We found that in Figure 5.7(a) the majority of blue points are located in the dense

red point areas in the bottom left corner (which can be seen also from Figure 5.7(c)),

indicating that our predicted 2D materials have similar composition distribution

with regard to known 2D materials. Figure 5.7(b) further confirms this composition

distribution match, in which we find that the blue points in general only appear in

areas with red points. The areas with sparse red points also contain few blue points.

Figure 5.7(c) shows the distribution of 20,000 predicted 2D materials in the V2DB
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dataset against the known 2D materials. It is found these candidate 2D materials

have different composition distribution as regard to the known 2D materials: many

yellow points appear in areas without red points. Quite many yellow points reach out

of the boundary defined by the red points. For better comparison, top 6000 predicted

2D materials by our method and 6000 predicted 2D materials of V2DB are drawn

in Figure 5.7(d). It can be seen that the majority of the overlapped blue and yellow

points (117 as shown in Table 5.3) are located in the lower-left corner, which means

there are new 2D materials that are jointly predicted by both methods.

To screen out top candidate materials, we use the Roost algorithm [45] for formation

energy prediction, which is a graph network based machine learning model for materials

property prediction using only composition information. After predicting the formation

energies of all candidates, we draw a histogram of formation energy distribution, as

shown in Figure 5.5. Furthermore, we filter out those with probability scores greater

than 0.95 and then sort them by the formation energy in ascending order and pick the

top 40 candidates with 2, 3, and 4 elements respectively. The results are in Table 5.2.

Furthermore, we analyze the 2DMatPedia dataset, 2-element materials occupy

65%, 3-element materials, and 4-element materials account for 25% and 9%, therefore,

from the perspective of the probability distribution, our prediction is meaningful. We

also find that the predicted 2D probabilities of 2-element materials are in general

higher than those of 3-element materials and 4-element materials, corresponding to

the fact that the majority of known 2D materials (65%) are binary materials. We

also count the number of our predicted new 2D materials with 2D probability greater

than 0.5 that overlap with those in V2DB and 117 hypothetical 2D materials are

found to be predicted by both methods. Table 5.3 shows the overlapped candidate

2D materials in five parts according to their 2D probability scores. It is found the

overlapped materials with 2D probability greater than 0.8 account for nearly 50% of

all overlapped candidates.
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Table 5.2 Statistics of predicted 2D materials

2D Prob # of Predicted 2D formula # 2 element # 3 element # 4 element # ≥ 5 element
0.95 1,485 266 861 327 31
0.9 5,034 439 2,617 1,695 283
0.8 18,451 729 8,123 7,316 2,283
0.7 48,592 942 16,827 21,430 9,393
0.6 119,489 1,146 28,172 51,998 38,173
0.5 267,489 1,340 40,382 99,943 125,824

(a) (b)

(c) (d)

Figure 5.7 Distribution of the new and existing 2D materials in 2D space generated
by t-SNE embedding from magpie features. Red ones are known 2D materials, blue
ones are our predicted 2D materials while yellow ones are predicted 2D materials
from V2DB. (a) Distribution of 1485 predicted 2D materials with probability score
>0.95. (b) Distribution of 20,000 predicted 2D materials randomly selected from
260,000 candidates with probability score >0.5. (c) Distribution of 20,000 predicted
2D materials randomly selected from 290,000 candidates of the V2DB database. (d)
Distribution of 6000 predicted 2D materials by our model and 6000 from V2DB
randomly selected from 260,000 and 290,000 candidates respectively.
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Table 5.3 Predicted hypothetical 2D materials that overlap with V2DB
Formula Prob Formula Prob Formula Prob Formula Prob Formula Prob

>0.9 >0.8 >0.7 >0.6 >0.5
AgS 0.9999 ZrClS 0.8997 TiSeCl 0.7913 VISe 0.6879 NiF 0.5998
AlS 0.9982 AlIS 0.8926 ZrSeF 0.7900 NiSeCl 0.6830 ZrTeN 0.5993
ScI 0.9840 VClF 0.8917 SbSeO 0.7856 CoBrF 0.6797 MnSeS 0.5872

InTeS 0.9753 FeClS 0.8909 ZrTeSe 0.7802 NiSF 0.6794 SrSF 0.5840
SnTeSe 0.9748 PbTeS 0.8884 MnBr 0.7793 RhSeS 0.6759 YSeS 0.5709
SnTeS 0.9737 GeSF 0.8852 MnIS 0.7782 CoTeS 0.6740 NbSeO 0.5669
PbTeSe 0.9465 BiSF 0.8830 CuTeO 0.7647 CrSeO 0.6732 CoF 0.5638
SbSeF 0.9421 TiClF 0.8800 CoCl 0.7602 CoSF 0.6714 NbTeO 0.5636
SbClS 0.9418 ZnBrS 0.8777 GeSO 0.7588 RhTeS 0.6710 TaSO 0.5604
GeClS 0.9409 MnClS 0.8757 ZnSF 0.7579 MnBrN 0.6697 TaTeS 0.5506
AsClS 0.9374 SnSeO 0.8727 ZnSO 0.7579 AlSeO 0.6609 NiSO 0.5474
SbSF 0.9224 ZnClS 0.8725 AgSO 0.7557 PbTeO 0.6540 NiSeO 0.5419
NbSe 0.9221 AgIS 0.8670 CuSeF 0.7546 MnSeO 0.6473 YTeS 0.5249
AlSeS 0.9197 PbSeO 0.8535 MnSF 0.7518 VSeS 0.6451 TiSeN 0.5186
SnSO 0.9181 AsSF 0.8532 MnSeF 0.7466 NbSeF 0.6367 SrClS 0.5120
BiTeS 0.9102 AgTeS 0.8524 AsSO 0.7422 RuTeS 0.6310
AlTeS 0.9060 PbSO 0.8494 AgSeO 0.7406 TaSeO 0.6217

YClS 0.8471 ZrSeS 0.7392 FeSeF 0.6190
BiTeF 0.8462 CoClF 0.7362 TaTeSe 0.6077
NiClS 0.8457 PdFO 0.7319 CrTeO 0.6066
YTeF 0.8457 ZrTeO 0.7317 ZrSeN 0.6014
CoClS 0.8433 MnI 0.7312
VClS 0.8397 CuSF 0.7245
VSF 0.8395 AlSO 0.7239

AlTeCl 0.8285 TiTeS 0.7230
NiBr 0.8254 NiClO 0.7077
SbSeS 0.8220 NiTeCl 0.7056
AgSeS 0.8217 NbSO 0.7005
BiSO 0.8201
ZnClF 0.8176
TiSeF 0.8155
MnCl 0.8077
FeI 0.8074

AlSeF 0.8017
AlTeF 0.8015

CoI 0.8002
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Figure 5.8 Formation energy distribution of predicted 2D materials.

Structure prediction and verification

To verify the predicted 2D materials, we pick 1485 predicted material formulas with

the highest probability scores (≥ 0.95) and use the template based structure prediction

method to find their structures. With the result that we find 101 materials’ templates

of known layered materials or 2D materials in the 2DMatPedia database. We then

predict the space group of our predicted 2D materials and choose the templates with

the same or similar space groups. Next, element substitution method has been used to

get their crystal structures. Some of the predicted 2D materials structures are shown

in Figure 5.11. In total, 101 predicted materials with structures have been obtained.

To further verify whether these hypothetical materials are thermodynamically

stable, we applied DFT first principle calculation to compute the formation energies

per atom for the 101 2D-layered materials which have template structures. In total we

found 92 hypothetical materials with negative formation energies (see Supplementary

Table S1), there are 79 binary 2D materials, 10 ternary 2D materials and 3 quaternary

2D materials. The materials with high formation energies like TaF4 (-2.9431 eV/atom)

and SiF3(-2.1204 eV/atom) imply that the proposed method in this research is able
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Table 5.4 Hypothetical 2D materials sorted by predicted formation energy(only top
120 are listed here)

2 Elements 3 Elements 4 Elements

Formula Prob Eform[Layered-ML]
(eV/atom) Formula Prob Eform[Layered-ML]

(eV/atom) Formula Prob Eform[Layered-ML]
(eV/atom)

ZrF3 0.9876 -3.8661 ScYF3 0.9760 -3.3429 NbMoCl5S2 0.9757 -1.5188
YF2 0.9880 -3.7549 NbMoF6 0.9720 -3.0069 CrNbMoCl8 0.9638 -1.4547
TaF4 0.9990 -3.4457 ZnTaF5 0.9755 -2.9848 CrNbRuCl8 0.9598 -1.3912
SiF3 0.9607 -3.3363 NbRuF7 0.9665 -2.7521 NbRuCl5S2 0.9753 -1.3857
ZrF2 0.9997 -3.1413 InSnF5 0.9519 -2.7437 NbRuCl4S2 0.9712 -1.3826
ScF 0.9760 -2.7647 TaIrF7 0.9794 -2.7379 NbRuCl6S 0.9673 -1.3719
YF 0.9640 -2.747 NbRuF6 0.9708 -2.7165 NbRuCl6S2 0.9633 -1.3688

GeF3 0.9705 -2.6997 TaWO5 0.9732 -2.6845 CrMoCl5S 0.9517 -1.3163
NbF2 0.9671 -2.5717 ScYCl6 0.9677 -2.6222 NbMoRuCl6 0.9676 -1.2988
YCl2 0.9919 -2.4657 NbMoO5 0.9816 -2.6101 Ga3AsCl6S2 0.9514 -1.2548
ZrF 0.9720 -2.4356 TaWF5 0.9760 -2.5844 InSn3SeCl6 0.9513 -1.2127
WF3 0.9999 -2.4182 TaIrF5 0.9511 -2.5832 SnSbAsCl8 0.9593 -1.205
TaF2 0.9880 -2.4126 ScYCl4 0.9679 -2.527 MoRuCl5S2 0.9633 -1.171
AlF 0.9999 -2.4107 YZrCl6 0.9598 -2.4481 Sn2AsCl6S 0.9550 -1.1705

ScCl2 0.9799 -2.338 ScZrCl6 0.9518 -2.3783 InSn3Cl4S2 0.9907 -1.1704
GaF 0.9995 -2.0765 MoRuF6 0.9708 -2.352 MoRuCl6S2 0.9633 -1.1499
FB 0.9880 -2.0746 TaOsF5 0.9640 -2.3308 Sb2BrAsCl8 0.9671 -1.1406
F3C 0.9800 -2.0634 ScTiCl4 0.9600 -2.2386 InSnCl2S2 0.9745 -1.1381
InF 0.9880 -1.9397 VTc2F7 0.9661 -2.2366 InSnCl4S2 0.9709 -1.1229

Tc2O5 0.9650 -1.9029 VZrCl6 0.9560 -1.9388 SnSbAsCl4 0.9514 -1.1043
ErBr3 0.9674 -1.8561 YLaBr6 0.9547 -1.9262 Sn2AsCl4S 0.9628 -1.0983
OsF3 0.9837 -1.7279 TbDyBr6 0.9729 -1.8741 Sn2AsCl8S2 0.9627 -1.0955
NbCl3 0.9959 -1.7273 TiVCl6 0.9519 -1.8074 Sn3SeCl6S2 0.9509 -1.0928
S2O5 0.9859 -1.7237 Nb3Cl8S 0.9919 -1.7429 Sn2AsCl7S2 0.9587 -1.0901
NbCl2 0.9799 -1.7137 NbCl2S 0.9599 -1.6969 SnPb2Br2Cl2 0.9573 -1.0892

OB 0.9600 -1.7046 AlClS 0.9596 -1.6887 Sn2AsCl6S2 0.959 -1.0838
TaCl2 0.9950 -1.6658 TaRe2F6 0.9640 -1.6724 InSn2Cl2S2 0.9755 -1.0789
RuF2 0.9864 -1.5312 CrNbCl7 0.9677 -1.6054 Sn2As2Cl6S 0.9511 -1.0705

SF 0.9798 -1.4954 CrNbCl6 0.9758 -1.602 InSnClS2 0.9820 -1.0414
MnCl3 0.9997 -1.4641 CrNbCl8 0.9637 -1.5821 Sn2AsCl4S2 0.9628 -1.0387
CrCl4 0.9838 -1.4529 TiYBr6 0.9538 -1.5738 CuRuAgCl6 0.9629 -1.0133
SeF 0.9795 -1.436 SnPbCl6 0.9577 -1.5723 Sn2AsCl6S3 0.9587 -1.011

O3C2 0.992 -1.3673 VMnCl4 0.96 -1.5719 Sn2SeCl6S2 0.9509 -1.0109
GeCl3 0.9988 -1.3663 CrNbCl5 0.9598 -1.5622 Sn2SeCl5S2 0.9549 -1.0048
YS3 0.9618 -1.3661 Te2SO5 0.9508 -1.5303 AsGeCl6S 0.9590 -1.0045
V2S3 0.9661 -1.3311 InSnCl6 0.9795 -1.5166 AsGe2Cl6S2 0.9636 -0.9982
TiCl 0.9599 -1.3269 SnTlCl5 0.9507 -1.5121 Sn2As2Cl6S3 0.9547 -0.9832
HoS3 0.9755 -1.3082 TaWCl6 0.9794 -1.5067 Sn2SeCl4S2 0.9549 -0.9821
SmS3 0.9555 -1.3041 NbMoCl6 0.9839 -1.5054 Sn2AsCl6S4 0.9590 -0.977
YI2 0.9999 -1.2846 Cl6SSi2 0.9877 -1.5012 SnPb2Se2Cl2 0.9538 -0.9457

to discover 2D layered materials which are highly thermodynamically stable against

the parent compounds of their elements.

Furthermore, we studied the exfoliation possibility of 2D-layered materials using

exfoliation energy based on Eq. 5.4. Modeling monolayers from around 100 2D-layered

materials is computationally expensive. Thus, here we modeled only 31 monolayers to

show that the proposed computational technique can find 2D materials with very low

exfoliation energies (see Supporting Information Table S2). The 12 materials with
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lowest exfoliation energies are mentioned in Table 5.5. The formation energies of those

monolayers are also negative indicating they are stable relative to the compounds of

respective elements.

In order to demonstrate that our predicted compositions and structures can be

used to discover stable layered materials, we computed the elastic constants using

density functional perturbation theory (DFPT) [11] and phonon bands using Phonopy

code [143] for V2S3. Our DFT calculations show that V2S3 is a stable 2D-layered

material. The structure of this material is shown in Figure 5.9. V2S3 has Triclinic

crystal symmetry with P-1 (2) space group symmetry. The lattice parameters were

found as a = 3.072 Å, b = 7.130 Å, c = 9.216 Å, α = 87.06, β = 80.40, and γ = 77.59.

The formation energy calculated based on Eq. 5.3 is around −0.618 eV/atom. The

enthalpy difference between competitive phases determined based on the expression

∆H = E[Material] − E[competitive phases] using the total energy E of the material

and its competitive phases. The competitive phases were found from the Material

Project database. The computed maximum enthalpy difference for V2S3 is 0.046

eV/atom against the stable phases V5S8 and V3S4.

Based on the Hill approach, we found the Bulk modulus, Shear modulus, and

Young’s modulus as 26.29, 18.88, 45.69 GPa, respectively [61]. The total energy of a

material can be denoted by E = E0 + 1
2V0

∑︁6
i,j=1 Ci,jϵiϵj + O(ϵ3), when an infinitesimal

strain (ϵ) is applied. Here, C is the matrix of second-order elastic constants. The Born

elastic stability criteria require that the matrix be definite positive, and all eigenvalues

of C and all the principal components should be positive. The relationships between

the elastic constants of Born criteria of P-1 (2) crystal symmetry are very complicated

since the triclinic systems have 21 independent elastic constants [103]. Therefore,

VASPKIT [147] code was employed to calculate the elastic properties. It confirms that

V2S3 is mechanically stable. The all phonon frequencies in Figure 5.10 are positive,

implying the material is dynamically stable at 0 K temperature.
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Moreover, we performed phonon calculations for V2S3 monolayer as shown in the

Supporting Information Figure S1. It is clear that this nanosheet also dynamically

stable at 0 K temperature. The exfoliation energy and formation energy of the

monolayer are negative suggesting that V2S3 nanosheet can be exfoliated from the

parent layered-material (see Table 5.5).
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Figure 5.9 Structure of V2S3 2D-layered material
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Figure 5.10 Phonon bands of V2S3 2D-layered material

5.4 Conclusion

We propose a generative inverse design approach for finding hypothetical new 2D

materials. It includes a GAN based composition generation model for generating

chemically valid materials formulas, a composition based random forest 2D materi-

als classifier, a template based element substitution structure predictor, and DFT
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Table 5.5 The 12 compositions with lowest exfoliation energies found using DFT
are mentioned in the table. The formation energies of layered materials using DFT
(Eform[Layered-DFT]) and using the machine learning model (Eform[Layered-ML]), and
the formation energies of monolayers using DFT (Eform[Monolayer]) are also stated.

Formula Eform[Layered-DFT] Eform[Layered-ML] Eexf Eform[Monolayer]
(eV/atom) (eV/atom) (meV) (eV/atom)

S2O5 -0.6417 -1.7237 -87.8131 -1.4659
V2S3 -0.6830 -1.3311 -11.7012 -0.8130
CoCl3 -0.2434 -1.0299 -2.4151 -1.8472
YI2 -1.1979 -1.2846 -1.1606 -1.2315
OB -2.0188 -1.7046 -0.6184 -2.0268

TaF4 -2.9431 -3.4457 -0.1287 -2.8880
YCl2 -1.9251 -2.4657 0.5745 -3.3604
ScS3 -0.9223 -1.1463 1.6923 -0.8984
WS3 -0.2765 -0.4336 2.3043 -0.1630
SiF3 -2.1204 -3.336 2.5126 -2.0726
GaCl -0.6627 -1.0418 2.5508 -1.6550
PBr4 -0.2054 -0.3209 2.6124 -0.0463

verification. Using this pipeline, we have generated 1485 hypothetical 2D material

compositions with probability scores greater 95%. We computationally verified that 92

materials have negative formation energies using DFT. We also modeled 31 monolayers

from the proposed structures and found that the all 31 materials provide exfoliation

energies less than 200 meV showing high possibility of exfoliating nanosheets from

their layered materials. These new hypothetical materials can be used to guide the

screening of 2D materials for special functions using materials property prediction

models. The experiments demonstrate the effectiveness of the proposed approach

for discovering new 2D materials and can be used as a complement of the prototype

based element substitution based generation approach. Currently, our method is

constrained by the limited capability of the crystal structure prediction step, which is

an unsolved problem. More powerful crystal structure prediction methods are needed

to identify 2D materials of novel structural prototypes, which cannot be identified

using template-based structure modeling approach as we use here.
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(a) YI2 with formation energy -1.1979 ev
(b) MnClYI3 with formation energy -1.45
eV

(c) V2S3 with formation energy -0.680 eV (d) WF3 with formation energy -2.092 eV

(e) TaWO5 with formation energy -2.747
eV

(f) SnAsClS2 with formation energy -
0.360eV

Figure 5.11 Selected structures of the discovered new 2D materials with DFT valida-
tion. (a) structure of predicted YI2 with DFT calculated formation energy -1.1979 eV.
The predicted crystal structures and DFT calculated formation energies for MnClYI3
V2S3, WF3, TaWO5, SnAsClS2 are shown in (b),(c),(d),(e),(f), respectively.
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Chapter 6

Machine learning based Prediction of

piezoelectric and noncentrosymmetric materials
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6.1 Introduction

Piezoelectric materials can generate charge from applied stress (Figure 6.1). They

are also able to exhibit the inverse piezoelectric effect (as shown in Figure 6.2), which

is the generation of mechanical strain reacting to an applied electrical field [107,

31]. These two unique properties have enabled a variety of applications such as

ultrasonic detectors, microphones, sonar devices, and ignition systems, which are

all based on the piezoelectric effect [156]. The piezoelectric materials themselves

are used in many daily appliances such as electric cigarette lighters, gas grills and

burners, and cold cathode fluorescent lamps, electric guitars, electronic drum pads, and

medical acceleromyography. Piezoelectric materials also can be used as actuators for

accurately positioning objects, which is helpful in loudspeakers, piezoelectric motors,

laser electronics, inkjet printers, diesel engines, and x-ray shutters.

Piezoelectric 
material

Compressing produces 
electricity

Metal 
plate

Voltage

Figure 6.1 Piezoelectric effect.

In general, there are three types of piezoelectric materials: naturally occurring,

man-made, and ceramic materials. Naturally occurring crystals include quartz, sucrose,

Rochelle salt, topaz, tourmaline, and berlinite (AlPO4). Man-made piezoelectric crys-

tals include gallium orthophosphate (GaPO4) and langasite (LA3Ga5SiO14). Ceramic

piezoelectric materials include BaTiO3, PbTiO3, PZT, KNbO3, LiNBO3, LiTaO3,

Na2WO4. PZT is currently the most commonly used piezoelectric ceramic; as it is not

environmentally friendly, several alternative materials were discovered include sodium
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Piezoelectric 
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Figure 6.2 Inverse piezoelectric effect.

potassium niobate (NaKNb), bismuth ferrite (BiFeO3), sodium niobate (NaNbO3).

New applications such as energy harvesting call for developing new types of lead-free

piezoelectric materials. Despite the importance of piezoelectric materials, there is no

solid understanding of how the crystal structure determines the piezoelectric modulus

and how to design materials with higher piezoelectric coefficients.

In this work, we aim to develop a machine learning model for the accurate

prediction of piezoelectric modulus to be used for screening novel environmentally

friendly piezoelectric materials. The piezoelectric coefficient or piezoelectric modulus,

usually written d33, measures the volume change when a piezoelectric material is

subject to an electric field or the polarization on the application of a stress. There have

been a variety of machine learning models developed for materials property predictions

such as formation energy, band gaps [106, 43], fermi energy [159], hardness [99],

Poisson’s ratios, elastic (shear/bulk moduli) [159, 166, 127], superconductor transition

temperature [100, 141, 88, 26, 126], ion conductivity [32, 52, 136, 58], flexoelectricity

[38, 39, 31] and etc. These ML models can be categorized into three main categories

in terms of the input information: composition descriptors based models, structure

information based models, and hybrids. See [32] for a comprehensive set of descriptors

and related ML models. With a sufficient amount of dataset, it has been shown

that composition based ML models alone can achieve highly accurate models for
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formation energy [153, 68] and band gap predictions [172]. Actually, some of those

high-performance reports of composition based ML models are very likely due to the

high redundancy of the test sets as regards to the training set when random splitting

or cross-validation evaluations are used for large datasets such as Materials Project.

Due to the tinkering discovery and study process of materials over history, these

datasets tend to have many highly similar samples. Three recent solid benchmark

evaluations have clearly shown that the structure based prediction models most often

outperform those composition models [32, 12, 35]. For example, Bartel et al. [12]

showed that composition models failed to distinguish inorganic materials’ relative

stability. Instead, they found that including structure in the representation can lead

to non-incremental improvement in stability predictions (with CGCNN graph neural

network), which serves as a strong endorsement for structural models. Even with this

range of ML models for diverse materials properties, there is currently no study on

ML prediction of piezoelectric coefficients in the literature.

Appropriately representing materials’ characteristics is an important and necessary

task in machine learning. In general, material features [133] can be divided into compo-

sition features, structure features, and other more complex representations calculated

by specific models. Composition features mainly include chemical element stoichio-

metric information such as atomic element types, the number of elements, atomic

weight; Magpie [153] is a commonly used composition feature set. Structural features

focus on crystal system information and present the chemical species and atomic

coordinates instance. Typical structural features include Coulomb matrix, Ewald

sum matrix, sine matrix, Many-body Tensor Representation (MBTR), Atom-centered

Symmetry Function (ACSF), and Smooth Overlap of Atomic Positions (SOAP) as

implemented in the Dscribe library [62]. There are more complex representations from

molecule-oriented features to descriptors for extended materials systems and tensorial

properties, such as symmetrized gradient-domain machine learning (sGDML) [23].
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However, a recent benchmark study shows that representation learning enabled by

graph neural networks such as crystal graph convolutional neural networks (CGCNN)

[159] tends to greatly outperform traditional heuristic features such as SOAP features.

Other deep representation learning models have also been applied to the grid or

voxel-like representations for materials property prediction and generations [75, 132,

166].

Currently, there are 1,705 materials in the Materials Project database with mea-

sured piezoelectric modulus. Based on those known piezoelectric materials, this paper

aims to train a machine learning model that can predict piezoelectric coefficients with

good performance. Here, we explore 6 types of features to train random forest models

and support vector machine models. Besides, 5 graph neural networks combined with

composition and structural features are also trained. Their performances are evaluated

by k-fold cross-validation in experiments. Finally, we apply the trained SVM model

to predict 12,680 materials’ piezoelectric coefficients and report the top 20 potential

piezoelectric materials.

Nonlinear optical materials (NLO), in which light waves interact with each other,

are one of the key enablers for next generation of new lasers, fast telecommunication,

quantum computing, quantum encryption, dynamic or optical storage data, and

many other applications [114, 56, 80, 2]. NLO materials are most broadly defined

as those compounds capable of altering the frequency of light. Depending on the

chemical and physical construct of the materials they can combine multiple photons

to generate shorter wavelength photons or split one photon into several new photons

of longer wavelengths. These new photons can be employed to perform all of the

above applications as well as many others. The classes of NLO materials range

broadly from inorganic oxides such as KTiOPO4 and LiNbO3 to semiconductors like

to periodically poled GaAs, to organic polymers to metal organic framework (MOFs),

and to simple small organic molecules like stilbene. This broad range of materials
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has many different properties and characteristics but all are united by one common

factor, i.e. their lattice structure must not contain a center of symmetry and must be

acentric [114, 56]. This is a rigorous requirement that can only be met in well-ordered

lattice structures, meaning ordered crystals. It is generally difficult to design and

grow acentric single crystals and less than 15% of all known structures are acentric.

This demands exceptional determination on the part of the synthetic and crystal

growth experimentalists. The process is made even more difficult by the fact that the

NLO processes that enable frequency modification are inherently inefficient. Moreover,

the ability to prepare new NLO materials and study their properties is not trivial

and requires patient and detailed investigations. The payoff is enormous however,

as the materials enable the development of devices used in next generation laser

surgery, imaging, optical communication, advanced spectroscopy, optical data storage

and a vast array of applications dependent on the interaction of light with matter.

In Figure 6.3, We show the crystal structures of a centrosymmetric material and a

noncentrosymmetric material, namely ScBO3 and SrB12O7.
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(a) Centrosymmetric: ScBO3 (R3c) (b) Noncentrosymmetric: SrB12O7 (R3)

Figure 6.3 Crystal Structures of centrosymmetric and noncentrosymmetric materials.
(a) The crystal structures of ScBO3 of space group R3c, where the purple nodes
represent Sc atoms, the green nodes represent B atoms and red nodes are O atoms. (b)
The crystal structure of SrB12O7 of space group R3, where the blue node represents
Sr atom, the green nodes represent B atoms, and the red nodes are O atoms.

we also propose and evaluate two machine learning models including RF and multi-

layer perceptron (MLP) neural network models for noncentrosymmetric classification

given only material composition. The Magpie composition descriptors are used in

our study. Cross-validation and hold-out experiments show that RF with Magpie

features achieved the best results. A further application of our RF noncentrosymmetric

prediction model to screening two million hypothetical materials generated by our

generative ML model [28] allows us to identify and predict dozens of potential novel

noncentrosymmetric materials with high confidence scores.

6.2 Methods

We downloaded the piezoelectric coefficient dataset from the Materials Project

(MP) database, containing 1,705 inorganic materials, 65 samples’ piezoelectric coef-

ficient (PC) is 0, and there are only 8 materials with a coefficient greater than 20
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C/m2 including: AgBiO3(24.84), Sm2CdSe4(32.504), Li4CO4(33.35), MnCO3(39.83),

Na4CO4(50.45), Ba(Si3N4)2(67.67), CdGeO3(75.01), Pr3NF6(86.09).

Figure 6.4 Piezelectric coefficient distribution of the MP dataset. For better visual-
ization, we have excluded the 8 samples with piezoelectric coefficent >20 C/m2.

Based on the graph shown in Figure 6.4, the piezoelectric coefficient values are

highly unbalanced with very few samples with high piezoelectric coefficients, which

makes their prediction very challenging.

6.2.1 Features

Selecting a set of appropriate material features is critical to train a successful machine

learning model for predicting piezoelectric properties, which are unique and challenging

to predict, as we found during our research process. To solve this problem, we try a

wide range of different features, including the following:

• Composition based magpie features [153]: these are elemental based property

features which are composed of 6 statistics (mean, mean absolute deviation,

range, minimum, maximum, and mode) of a set of 22 elemental properties,

including atom number, Mendeleev number, atomic weight, melting temperature,

periodic table column, periodic table row, covalent radius, electronegativity, Ns
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valence(number of s orbital valence), Np valence, Nd valence, Nf valence, N

valence, Ns unfilled, Np unfilled, Nd unfilled, Nf unfilled, N unfilled, GS volume

pa, GS band gap, GS magnetism moments, space group number.

• Oxidation states features: these are statistics (maximum, range, standard

deviation) about the oxidation states for each species.

• Structural features: we found that the symmetry degree of the crystal structure

has substantial effects on the piezoelectric effects, so we defined a set of crystal

structural features based on the crystal systems of the materials. These features

include (1) number of perpendicular face pairs of the unit cell, (2) the number

of equal edges of the unit cell, (3) one hot encoding of crystal systems (cubic,

hexagonal, monoclinic, orthorhombic, tetragonal, triclinic, trigonal). We also

included the following features: (1) maximum atom radius, (2) minimum atom

radius, (3) average atom radius, (4) geometric mean of atom radius, (5) standard

deviation of atom radius, (6) maximum Poisson’s ratio, (7) minimum Poisson

ratio, (8) average Poisson’s ratio, (9) geometric mean of Poisson’s ratio, (10)

standard deviation of Poisson’s ratio.

• Energy and magnetism features: (1) e_above_hull, (2) band gap, (3) total

magnetization of magnetism, and (4) total magnetization. We downloaded these

features from the Materials Project database.

• Elastic modulus features: (1) shear modulus, which indicates an object’s tendency

to shear when acted upon by opposing forces, (2) bulk modulus, which describes

volumetric elasticity.

• Raw crystal structures: graph neural network based feature learning.
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6.2.2 Machine learning algorithms

Random Forest Random forest (also known as random decision forest) is a machine

learning method specifically made for classification and regression that runs on the

construction of decision trees during the training process. Advantages of random forest

include its ability to reduce over fitting in decision trees which improves accuracy and

compatibility with different values. Another useful feature of the random forest model

is that it can effectively rank the importance of variables in regression tasks. In the

training part, we set the hyper-parameter number of the tree as 200 and the number

of estimators as 50.

Support Vector Machines The support vector machine algorithm is another

machine learning algorithm for classification, regression, and other tasks that works

by creating a hyper plane(s) in a high- or infinite-dimensional space. Support vector

machines are very effective in high dimensional spaces, especially when the number of

dimensions is greater than the number of samples. This method has been widely used

in material science research [142, 1, 91]. In our model, we select rbf kernel, and we set

the regularization parameter c = 1.0 and epsilon = 0.2.

Graph Neural Networks Graph neural network [168] is a machine learning model

that directly takes graphs (composed of vertexes and edges) as an input. Graph neural

networks have wide applications in various domains such as social networks, knowledge

graphs, recommender systems, and life science. One of the significant advantages of

graph neural networks is their capability to learn or model dependencies (interactions)

between nodes in a graph which is highly suitable for modeling interactions between

atoms in materials [159].

In this paper, we use five graph neural networks including: SchNet [134], CGCNN

[159], MPNN [41], MEGNET [19], and graph attention neural network(GATGNN) [92]
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for piezoelectric coefficient predictions. These models have recently been evaluated in

a benchmark study with comparable performances [35]. In our experiments, we use

those models’ default parameters.

SchNet SchNet is a deep neural network used to predict molecular energies and

atomic properties. This network observes physical laws and achieves rotation and

translation invariance. Three interaction blocks describe interactions between atoms.

This model adopts continuous-filter convolutional layers as the main building block

for neural network architecture, which allows it to model local correlations without

requiring the data to lie on the grid.

CGCNN CGCNN (Crystal Graph Convolutional Neural Network) is a type of deep

graph neural network used to learn material properties from the relationships of atoms

within a crystal which gives in depth representations of crystalline materials. CGCNN

is flexible in predicting properties and accurately extracting information of different

materials. It has been successfully applied to predict a variety of materials properties

such as formation energy, absolute energy, Fermi energy, band gaps, bulk/shear moduli,

and Poisson’s ratio. Among them, the bulk/shear moduli and Posisson ratio prediction

models are trained with only 2041 samples, which is close to the dataset size in our

study.

MPNN MPNN (Message Passing Neural Networks) is a neural network that accu-

rately predicts important molecular properties of materials. MPNN is favorable in

predicting molecular properties with relatively high accuracy. This model is invariant

to graph isomorphism, composed of message functions, vertex update functions, and

readout functions, all of which are all differential functions. MPNN generally works

on directed graphs with separate channels for incoming and outgoing edges.
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MEGNET MEGNET (MatErials Graph Network) is a new kind of graph neural

network algorithm for material property prediction that uses two new strategies to

address the data scarcity problem. One strategy is to build a single free energy model

by incorporating the temperature, press, and entropy as global state inputs. MEGNet

models are found to outperform previous ML models in predicting properties and

achieve higher accuracy dealing with larger datasets. MEGNET is high-performing

in targeting various properties for both molecules and crystals. MEGNet models

use learned element embedding that encodes periodic chemical trends, which can be

learned from other property models with larger datasets.

GATGNN This graph neural network model comprises multiple graph-attention

layers (GAT) and global attention layers. These GAT layers enable this model to

efficiently learn complex bonds shared among atoms in each atom’s local environ-

ments. We aim to train machine learning models to learn the structural features for

piezoelectric coefficient predictions using this model.

The graph neural network models used here are adapted from the benchmark study

in [35] except that we have added the differentiable group normalization operator

[170] into the above five neural network models and skip-connection which is first

proposed in ResNet and recently in graph neural networks. Such modifications have

allowed us to train graph neural network models to perform better. We use the default

parameters for training these models with 250 epochs.

6.2.3 Performance evaluation criteria

We use Mean Absolute Error (MAE) and R-squared (R2) metrics to evaluate those

models’ performance. MAE is defined as the average of the absolute difference between

the target values and the values predicted by the model.
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MAE = 1
n

n∑︂
i=1

|ŷi − yi| (6.1)

R2 is defined as the part of the variance of the dependent variable based on the

independent variables of our model.

R2 = 1 −
∑︁n

i (yi − ŷi)
2∑︁n

i (yi − ȳ)2 (6.2)

In our work, k-Fold Cross-Validation is used to evaluate the performance of trained

machine learning models on the limited dataset. Compared to random training test

splitting, k-Fold Cross-Validation allows us to obtain less biased, less optimistic, and

more stable estimates of model performance. The basic procedure is that the dataset

is shuffled randomly and split into k number of groups, take each group in turn as the

test dataset, and take the remaining groups as the training dataset. Fit the model

on the training set and evaluate it on the test set. The performance of each of the

trained models is averaged and reported as the overall cross validation performance.

In our evaluations, we used 10-Fold Cross-Validation to ensure fair and stable results.

6.3 Experiments and Discussion about piezoelectric materials

6.3.1 Global distribution of piezoelectric materials

To explore how the piezoelectric materials and their piezoelectric modulus are dis-

tributed, we visualize our piezoelectric dataset with 1,705 samples, all using the t-sne

algorithm [144]. This algorithm can map high dimension data points into 2D space

by preserving the neighborhood relationships. Each sample is first featurized by

calculating its magpie features, which are then fed to the t-sne algorithm that maps it

into 2D space. Two distribution maps are generated using this procedure. We only

include the 1,705 materials samples with piezoelectric modulus values. The map is
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shown in Figure 6.5a with blue colors and their size indicates a high-piezoelectic effect.

We find that only a small number of materials have higher piezoelectric properties.

(a) T-sne map of piezoelectric moduli.
(b) Distribution of 1,705 known piezoelectric
materials vs other ternary materials.

Figure 6.5 Distribution of piezoelectric moduli and materials in composition space.
(a) the sizes of the points are proportionate to their piezoelectric moduli. There are a
few exceptionally high values located in 4 clusters. (b) Ternary materials (red points)
are distributed in composition clusters. Known piezoelectric materials (yellow points)
are similarly grouped in clusters with two groups with a significant number of known
materials.

To further show how the know piezoelectric materials are distributed among all

ternary crystal materials, we include all ternary materials samples (with the 1,705

piezoelectric materials included). The distribution map is shown in Figure 6.5b. Red

dots are the 59,211 ternary materials samples and blue dots are the 1,705 piezoelectric

materials. It can be observed that the overlap area between red and blue dots is tiny

indicating that piezoelectric materials are different from general materials distribution.

6.3.2 Performance of machine learning models

The performances of our Random forest models and SVM models with different types

of features (magpie features, oxidation states features, structural features, feature

transformations, energy and magnetism features, and elastic modulus) are reported in

Table 6.1.
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Table 6.1 Machine learning performances on piezoelectric constant prediction (10-fold
cross-validation).

RF (R2) RF (MAE) SVM (R2) SVM (MAE)
Magpie Features -0.509 1.17 0.043 0.841
Magpie Features + Oxida-
tion States Features

-0.480 1.18 0.047 0.840

Magpie + Oxidation States
+ Structural Features

-0.314 1.026 0.094 0.764

Magpie + Oxidation States
+ Structural Features+ Fea-
ture Transformations

-0.334 1.017 0.110 0.750

Magpie + Oxidation States
+ Structural Features + En-
ergy and Magnetism Fea-
tures

-0.385 1.061 0.114 0.748

Magpie + Oxidation States
+ Structural Features + En-
ergy and Magnetism Fea-
tures+ Elastic Modulus
Features

-0.343 0.953 0.127 0.646

Initially, the random forest model is only based on the magpie features, with its

MAE and R2 scores being 1.17 C/m2 and -0.509. After adding the oxidation state

features, structural features, energy and magnetism features, and elastic features, the

MAE decreases 18.5% to 0.953, and the R2 increases 32.6% to -0.343.

The SVM’s R2 performance score starts at 0.043 with magpie features and then

increases 117% (more than doubled) with oxidation states and structural features. It

shows the importance of structural information for piezoelectric modulus prediction.

Unlike the random forest model, the SVM model performs better with energy and

magnetism features (increased 22%) showing that SVM is more stable than the random

forest models. The MAEs for both random forest and SVM show moderate change

with the addition of the diverse features showing that MAE has more potential to

improve (e.g. undiscovered features). As elastic moduli are important quantities that

measure the resistance to being deformed elastically, we also add the bulk and shear

moduli to train the random forest and the SVM models. The MAE and R2 of the
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random forest model improve 10.17% and 10.9%, respectively; while the SVM model’s

MAE and R2 improve 13.63% and 11.4% accordingly.

For better comparison, we draw two bar charts in Figure 6.6 to show the per-

formance changes with different combinations of features. Figure 6.6a shows the

R2 performance where the blue bars represent the R2 scores of the random forest

models and the red bars represent those of the SVM models with different feature sets.

From the figure, we find that the SVM’s R2 scores remain positive throughout the

six different feature sets. In contrast, the random forest’s R2 scores remain negative,

indicating that SVM models perform better than random forests in terms of the

R2 performance measure. As more features are added throughout the feature sets,

SVM consistently increases its accuracy. Random forest, instead, shows different

patterns. Starting with the magpie features, adding oxidation states and structural

features increases the accuracy whereas adding feature transformations and energy

and magnetism features lowers the accuracy score. In Figure 6.6b, the blue bars

represent the MAEs of the random forest model and the red bars represent the MAEs

of the SVM models for piezoelectric prediction. The figure shows that the MAE

for the random forest model (blue bars) is significantly greater than the MAE for

SVM models (red bars) indicating random forest performs worse than SVM. Another

pattern we find is that the error for both random forest and SVM decreases as more

features are added.

To compare the predicted piezoelectric coefficients with the actual piezoelectric

coefficients, we draw two scatter plots in Figure 6.7, the x-axis indicates the true

value, and the y-axis shows the predicted value. In addition, the red color line is the

regression line. The results of the random forest model with five types of features are

shown in Figure 6.7a and results of the SVM model are shown in Figure 6.7b. The

more blue dots close to the red line, the better performance the model achieves. For

the RF model, more blue dots are far away from the red regression line than SVM,
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Figure 6.6 Performance comparison of random forest and SVM in terms of R2 scores
and MAE errors.

which indicates that the performance of SVM is better. Besides, several dots have

higher predicted piezoelectric coefficients (around 14) while their true values are small

(around 1). For the SVM model, the overall fitting within 2 C/m2 is good, consistent

with the fact that the range of most piezoelectric coefficients is between 0 to 2 C/m2

(refer to Figure 6.6).
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(a) RF prediction with five types of features (b) SVM prediction with five types of features

Figure 6.7 Scatter plots of predicted piezoelectric coefficients by random forest model
and SVM model

6.3.3 Performance of graph neural networks

Table 6.2 shows the five-fold cross validation results of piezoelectric modulus prediction

by graph neural networks. The best graph neural network model is CGCNN with

a MAE of 0.97439 C/m2 and the worst model is SchNet with a MAE of 1.34294

C/m2. Compared to random forest and SVM in Table 6.1, every graph neural

network underperformed the SVM model. SchNet, CGCNN, MPNN, and MEGNET

all performed slightly better than random forest while GATGNN performed somewhat

worse.

Table 6.2 Performance of graph neural network for piezoelectric coefficient prediction.
The MAE errors are much larger than those of SVM models.

Model SchNet CGCNN MPNN MEGNET GATGNN
MAE (C/m2) 1.34294 0.97439 1.04362 0.98129 1.09634

6.3.4 Feature analysis

To obtain physical insights from our machine learning models and the dataset, we

analyze the distribution of the piezoelectric materials in terms of the crystal systems

and conducted the feature importance analysis to identify physical factors that affect

materials’ piezoelectric moduli.
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Figure 6.8 Distribution of the number of materials in different crystal systems with
high (>50% percentile) and low( <50% percentile) piezoelectric modulus. It is found
that materials with high piezoelectric modulus tend to belong to crystal systems with
intermediate symmetry (tetragonal, orthorhombic, monoclinic).

From Figure 6.8, we can see that the distribution of known piezoelectric materials

is highly unbalanced among the seven different crystal systems. The orthorhombic

crystal system has the highest number of known piezoelectric materials, followed by

tetragonal and cubic systems. It seems that the structure property has a profound

influence on the piezoelectric effect. We suspect that the reason that there are a

smaller number of monoclinic and triclinic piezoelectric materials exist is the low

symmetry of the crystal structure. We also observed that the high symmetry crystal

systems also have a smaller number of known piezoelectric materials. We find that

the cubic crystal system has 231 piezoelectric materials despite its high symmetry,

which may be since cubic materials are from the most well-studied material family.

Based on this analysis, we believe structure features are essential and significant in

building high-performance models for piezoelectric modulus.

To further understand how different features contribute to the final prediction

performance, we trained the random forest model which provides a built-in ranking of

the feature importance. The top 30 features are shown in Figure 6.9.
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Figure 6.9 Ranking of top 30 features in the RF model for piezoelectric modulus
prediction. It brings physical insights by showing the key physical factors that affect
the piezoelectric effect.

The most important feature is the mean SpaceGroupNumber followed by energy

above hull, average MendeleevNumber, shear and minimum Electronegativity. Since

element space group number represents the symmetry trends of crystal materials, it

can explain why this feature is important. In terms of shear and bulk, both of them

are elastic modulus, shear indicates an object’s tendency to shear when acted upon

by opposing forces and bulk describes volumetric elasticity. This is reasonable that

they are important to the piezoelectric coefficient.

We also found that Poissons’ ratio is ranked 15th, reflecting the degree of volume

expansion perpendicular to the applied force closely related to the piezoelectric effect.

It’s interesting that our random forest model can identify Poisson’s ratio as one of the

top features of the piezoelectric modulus prediction model, which is also confirmed in

an experimental study [113].

Next, the space group number of the crystal material ranked 16th, consistent with

our analysis in Figure 6.8 that crystal structure plays a crucial role in the distribution

of piezoelectric modulus. Another critical feature is Nvalence, which relates to how

easily the atoms lose electrons. It can explain why valence related features are ranked

high in this prediction model.

Lastly, we found that Nd unfilled features show several times. Those features

represent the capability of the atom to acquire electrons so that they may affect the
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piezoelectric effect.

6.3.5 Predicted potential piezoelectric materials

To discover new potential piezoelectric materials, we applied our trained SVM model

with six features to predict the piezoelectric properties of 12,680 materials from the

Materials Project database with elastic modulus values (bulk and shear). We sort

the predicted piezoelectric coefficients and find 12,650 materials’ predicted values

are positive, with 1,498 of them are larger than 1 C/m2 and 12 materials with

predicted piezoelectric coefficients greater than 2 C/m2. We listed the top 20 predicted

piezoelectric materials in Table 6.3. We also summarize a total of 150 materials with

high predicted piezoelectric coefficients in supplementary file Table S1, Table S2 and

Table S3, which are classified according to the number of elements in the materials.

Table 6.3 Top 20 predicted potential piezoelectric materials (unit: C/m2)

Material ID Formula Predicted
Value

Material ID Formula Predicted
Value

mp-578601 NaNbO2 2.448 mp-756683 HfBiO4 2.015
mp-10426 Nb2O5 2.341 mp-7017 NaNbN2 2.007
mp-760401 Nb3O7F 2.184 mp-549490 KNb4O5F 1.978
mp-754698 NbO2 2.153 mp-552588 LiNbO3 1.966
mp-753459 Nb3O7F 2.140 mp-7240 NaRuO2 1.958
mp-1595 Nb2O5 2.114 mp-754375 NaTi2O3 1.949

mp-557680 NbAgO3 2.085 mp-505517 BaNb4O6 1.938
mp-755690 NbO2 2.059 mp-644497 BaTiO3 1.935
mp-753380 La(BiO2)2 2.058 mp-28254 LiRuO2 1.932
mp-2533 NbO2 2.024 mp-1029267 CaZrN2 1.928

6.4 Experiments and Discussion about noncentrosymmetric materials

Herein, we describe the datasets, the evaluation criteria, and the experimental re-

sults. We analyze and compare the prediction performance of RF and DNN models.

Besides, we discuss the application of our model to screening new hypothetical non-

centrosymmetric materials. Our experiments on classifying noncentrosymmetry from
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composition include three parts: cross-validation experiments, holdout experiments

on Borates, and screening a two million hypothetical materials.

6.4.1 Datasets

Crystal structures with different space groups have different centrosymmetric ten-

dencies. It is known that there are 138 noncentrosymmetric space groups and 92

centrosymmetric space groups, the detailed space group IDs and names and their

centrosymmetric property are summarized in Table 6.4.

(a) Centrosymmetric space groups (b) Non-centrosymmetric space groups

Figure 6.10 Sample distribution of noncentrosymmetric and centrosymmetric space
groups in MPF dataset

We first downloaded the composition formulas of 97,217 crystal materials from the

Materials Project database. We then remove those compositions belonging to multiple

space groups with conflicting centrosymmetric tendencies. In total, we collecte 82,506

material compositions and assign the noncentrosymmetric property labels according

to their corresponding space group. The dataset is called MPF, which have 60,587

positive (noncentrosymmetric) samples and 21,919 negative (centrosymmetric) samples,

as shown in Table 6.5. The distribution of noncentrosymmetric and centrosymmetric

space groups in MPF dataset are shown in Figure 6.10. We find that the distribution

of samples over different space groups are not well balanced.

In order to evaluate the extrapolation prediction performance of our machine learn-

ing prediction model of noncentrosymmetry, we select all the 315 borate compounds
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Table 6.4 Space groups with noncentrosymmetric and centrosymmetric structures

group
IDs

group names

centrosymmetric 2, 10-
15,
47-74,
83-88,
123-
142,
147-
148,
162-
167,
175-
176,
191-
194,
200-
206,
221-230

P1, P2/m, P21/m, C2/m, P2/c, P21/c, C2/c, Pmmm,
Pnnn, Pccm, Pban, Pmma, Pnna, Pmna, Pcca, Pbam,
Pccn, Pbcm, Pnnm, Pmmn, Pbcn, Pbca, Pnma, Cmcm,
Cmca, Cmmm, Cccm, Cmma, Ccca, Fmmm, Fddd, Immm,
Ibam, Ibca, Imma, P4/m, P42/m, P4/n, P42/n, I4/m,
I41/a, P4/mmm, P4/mcc, P4/nbm, P4/nnc, P4/mbm,
P4/mnc, P4/nmm, P4/ncc, P42/mmc, P42/mcm, P42/nbc,
P42/nnm, P42/mbc, P42/mnm, P42/nmc, P42/ncm,
I4/mmm, I4/mcm, I41/amd, I41/acd, P3, R3, P31m, P31c,
P3m1, P3c1, R3m, R3c, P6/m, P63/m, P6/mmm, P6/mcc,
P63/mcm, P63/mmc, Pm3, Pn3, Fm3, Fd3, Im3, Pa3, Ia3,
Pm3m, Pn3n, Pm3n, Pn3m, Fm3m, Fm3c, Fd3m, Fd3c,
Im3m, Ia3d

noncentrosymmetric1, 3-9,
16-46,
75-82,
89-122,
143-
146,
149-
161,
168-
174,
177-
190,
195-
199,
207-220

P1, P2, P21, C2, Pm, Pc, Cm, Cc, P222, P2221, P21212,
P212121, C2221, C222, F222, I222, I212121, Pmm2, Pmc21,
Pcc2, Pma2, Pca21, Pnc2, Pmn21, Pba2, Pna21, Pnn2,
Cmm2, Cmc21, Ccc2, Amm2, Aem2, Ama2, Aea2, Fmm2,
Fdd2, Imm2, Iba2, Ima2, P4, P41, P42, P43, I4, I41, P4, I4,
P422, P4212, P4122, P41212, P4222, P42212, P4322, P43212,
I422, I4122, P4mm, P4bm, P42cm, P42nm, P4cc, P4nc,
P42mc, P42bc, I4mm, I4cm, I41md, I41cd, P42m, P42c,
P421m, P421c, P4m2, P4c2, P4b2, P4n2, I4m2, I4c2, I42m,
I42d, P3, P31, P32, R3, P312, P321, P3112, P3121, P3212,
P3221, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P6, P61,
P65, P62, P64, P63, P6, P622, P6122, P6522, P6222, P6422,
P6322, P6mm, P6cc, P63cm, P63mc, P6m2, P6c2, P62m,
P62c, P23, F23, I23, P213, I213, P432, P4232, F432, F4132,
I432, P4332, P4132, I4132, P43m, F43m, I43m, P43n, F43c,
I43d
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from MPF dataset and assign them as the hold-out test dataset Borates315. Borates

contain boron (B) element and oxygen (O) element, which are a ubiquitous family of

flame retardants found as boric acid and as a variety of salts. Previous research found

that compared to other material family, borates tend to have a higher percentage of

nonlinear proprieties, which makes it a good hold-out test set [16].

We further find that most borate materials include 3 elements. It is interesting to

see if ML models trained with 3-element training samples can achieve better prediction

performance. We select all 3-element materials from the MPF dataset and assigned

them to the MP3 dataset, which includes 30,762 centrosymmetric materials and 8,964

noncentrosymmetric materials as shown in Table 6.5. The motivation is to check if

our classification models trained with MP3 dataset can achieve better performance

when testing on the hold-out borates dataset.

Table 6.5 Dataset

#symmetry #non symmetry #total
MPF 63,376 19,130 82,506
MP3 30,762 8,964 39,726

Borates315 250 65 315

6.4.2 Prediction performance

To evaluate how our machine learning models can predict whether a crystal material’s

structure is noncentrosymmetry or not, we used two evaluation approaches: one is

cross-validation over the MPF dataset and the other is the hold-out evaluation trained

with non-borates datasets MPF and MP3 and tested on the Borates315 dataset. This

hold-out test is especially important as the cross-validation performance can usually be

over-estimated due to the redundancy of the training samples in most of the large-scale

datasets such as the Materials Projects and the OQMD [160].
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10-fold cross-validation performance

We set the maximum tree depth to be 20 and the number of decision trees as 200.

This was later expanded to include the minimum number of samples per leaf node,

the minimum number of samples required to split a node, and the maximum number

of leaf nodes. With these 5 settings tuned per featurizer iteration, we then train the

final prediciton RF models and make prediction, and caculate the performance scores.

To further verify the performance of our RF-based models, we compare it with those

of the DNN-based models. Table 6.6 shows the performances we achieved on two

datasets using four evaluation criteria.

Table 6.6 Ten-fold cross-validation performance of ML models for noncentrosymmetry
prediction

Model Dataset Precision Recall Accuracy F1 score
RF-based MPF 0.834 0.754 0.848 0.781
RF-based MP3 0.845 0.755 0.869 0.786
DNN-based MPF 0.773 0.769 0.785 0.771
DNN-based MP3 0.784 0.780 0.792 0.782

Firstly, we found that the precision and accuracy of the RF model are significantly

better in comparison with DNN models: the 10 fold cross-validation accuracy of

RF model on the MPF dataset is 0.848 compared to 0.785, which indicates 7.89%

improvement. The F1 score of RF model is 0.781 compared to 0.771 of DNN.

Although DNN achieves better Recall score, the F1-score of RF is higher than

DNN’s. This validates the effectiveness of our RF-based model for predicting the

noncentrosymmetric property for a given material. This is consistent with a recent

evaluation of different ML methods for materials property prediction [129].

Secondly, comparing the results of the same RF and DNN model on the MPF

dataset and the MP3 dataset, we found that each model achieved better prediction

performance for the MP3 dataset. Particularly, the precision, accuracy and F1 score
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of the RF classifier increase to 0.845, 0.869 and 0.786, respectively.

Hold out experiment results

To explore the effectiveness of our model for extrapolative prediction of noncentrosym-

metry where the test samples may not have the same distribution with the training

set, we conducted a hold-out test over the Borates315 dataset.The training dataset is

generated by filtering out all the samples of the Borates315 dataset from the MPF

dataset and keeping the remaining ones, which includes 82,191 samples. Similarly,

we also conduct a hold-out test for the MP3 dataset for which the training set is

generated by removing all borates in the MP3 dataset. The number of samples of the

no-borates 3-element training set is 39411. Their ROC curves and AUC scores are

shown in Figure 6.11.

(a) Cross Validation performance over
MPF dataset

(b) Holdout performance over MPF
dataset

(c) Cross Validation performance over
MP3 dataset

(d) Holdout performance over MP3
dataset

Figure 6.11 ROC curves for cross-validation and hold-out experiments for the RF
prediction models trained with the whole dataset and the 3-element dataset.
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In Figure 6.11, each dotted yellow line corresponds to the ROC curve of a random

predictor with AUC value of 0.5. Each blue curve represents the ROC curve of the

classifier. As is well known the higher value of AUC, the better performance of the

classifier. Among the four sub-figures, figure (c) shows the best result, with AUC

reaching 0.91. Furthermore, comparing (a) (c) with (b) (d), we can find AUC scores

of cross-validation experiments are higher than those of hold-out experiments over

the same two datasets, which suggests the over-estimation of model performance

due to dataset sample redundancy. Meanwhile, although the performance of hold

out experiments is not as good as cross validation experiments, it only uses the

non-borate materials as the training data for predicting the 315 borate materials,

which interprets the 0.71 and 0.68 AUC are acceptable since this is extrapolation

prediction performance.

6.4.3 Predicting new noncentrosymmetric materials

To identify interesting hypothetical new NLO noncentrosymmetric materials, we

applied our RF-based noncentrosymmetric materials prediction model to screen the

two million hypothetical materials generated by our Generative Adversarial Network

(GAN) based new materials composition generator [28]. After predicting the probability

of each candidate belonging to noncentrosymmetric materials, we sort them by the

probability scores and report top 20 hypothetical noncentrosymmetric materials with

2, 3 and 4 elements here in Table 6.7. Furthermore, as we mentioned above that most

borate materials are NLO materials. So we also reported top 20 borate materials with

highest proability here. Please note that materials containing lanthanide and actinide

elements have been filtered in these results because they are very rare.
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Table 6.7 Predicted hypothetical noncentrosymmetric materials with 2, 3, and 4
elements and predicted noncentrosymmetric borates (only top 20 are listed here)

2 element score 3 element score 4 element score Borate Score
Li4Ge 0.935 AlCuSe3 0.960 LaCeNdS4 0.975 CB2O6 0.840
Cu2S3 0.875 Cu2AsS3 0.955 LaCeNdSe4 0.965 N2B4O7 0.715
NO5 0.835 Cu3As2S4 0.945 CeNdEuS4 0.960 CB4O6 0.700
Li4Pb 0.830 Y2CeO5 0.945 CuZnInS3 0.955 S3B2O8 0.670
Li4Sn 0.800 CeTb2S4 0.935 AlCuZnTe4 0.925 CB2O4 0.665
Cl3S 0.745 DyErC3 0.930 MnNiAgSn 0.925 NCB4O6 0.665
SbC 0.740 MnDy2S4 0.925 AlCuInSe2 0.915 CoIB4O6 0.660
Pd2S 0.735 LaSm2S4 0.920 MnCoRuSn 0.915 EuB4O6 0.655
AsC 0.720 ZnGaSe2 0.920 LaNdUTe4 0.915 ZnSnO6B4 0.650
SeO6 0.715 AlCu2Te3 0.915 Cu2ZnInS6 0.900 As2B2O7 0.635
Ni3Ge2 0.715 AlCu2S4 0.910 NiCuSnSe3 0.895 PB2O6 0.630
Cl5S 0.710 CoCd2S3 0.905 MnCoAgSn 0.895 ZnB2O4 0.625
Zr2S3 0.695 NbSnIr 0.900 TiCoRhSn 0.880 SB2O6 0.620
S2O5 0.690 NbWTe4 0.900 MnFeSbO6 0.875 MnZnLaEuO6B2 0.610
LiOs 0.690 VSnAu 0.900 MnCu2AgS4 0.875 Zn3SB2O6 0.600
NH2 0.690 CrCu2S3 0.895 FeLaPbO6 0.875 Sr2TaB2O6 0.600
CrI 0.685 SnTaOs 0.890 V2Ni2RuSn2 0.875 PbB4O6 0.595
F3N 0.680 NdDySi3 0.885 MnFeBi2O6 0.875 AlB2O4 0.585
Cl6S 0.675 Dy2GeS4 0.885 TiCoBi2O6 0.870 NbRuCl2B4O6 0.585
S2O3 0.660 Mg6MnSn 0.885 SrLaNdS4 0.865 C3B4O6 0.580

As shown in Table 6.7, the probability score range of the top 20 2-element materials,

3-element materials, 4-element materials and borate materials are 0.935 to 0.660, 0.960

to 0.885, 0.975 to 0.865 and 0.885 to 0.670, respectively. It is clear that the predicted

noncentrosymmetic probabilities of 3 element materials are higher than those of

2-element materials and 4-element materials. As those material are generated and

hypothetical, we can only give the predicted noncentrosymmetry scores, which may

guide experimental work to verify them in future research, which may further validate

the effectiveness and the predictive capability of our models.
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6.5 Conclusion

In this study, we developed and applied two machine learning algorithms (Random

forest and support vector machines) and five graph neural network models for predicting

the piezoelectric modulus using various composition and structural features. Extensive

evaluations have been done over the dataset composed of 1,705 samples downloaded

from the Materials Project data repository. Our experiment results show that the

composition only descriptors/features alone do not help build a good piezoelectric

modulus prediction model, which proves that the piezoelectric effect is strongly affected

by their crystal lattice structures as well as other electronic and magnetic properties,

and elastic moduli. By adding the structural features, magnetic features and elastic

features, we have been able to increase the regression R2 score of the SVM model from

0.043 to 0.127. Our study also shows that the Random forest models in general perform

much worse than the SVM models. We also explored five popular graph neural network

models for the piezoelectric modulus prediction. Our results show that it is much more

challenging and all these models have much lower performance compared to those

of other property prediction [35], which may be due to the limited dataset size and

the sophisticated relationships between crystal structures and the piezoelectric effect.

However, our study does show that the graph neural network models can achieve

performance compared to RF and SVM in terms of the MAE errors. Compared

to other properties such as formation energy, shear/bulk moduli, and band gaps,

we find that piezoelectric modulus is notoriously much more challenging to predict

accurately. Much more detailed feature engineering or deep neural network based

representation learning are needed to further improve the prediction performance of

piezoelectric modulus to enable large-scale screening and design of novel piezoelectric

materials and uncover the complex relationships of the crystal structure and the

piezoelectric effect. More importantly, we utilize the trained SVM model to predict
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the piezoelectric coefficients for 12,680 materials from the materials project database,

and find 1,498 materials whose predicted piezoelectric coefficients are larger than 1

C/m2. We report the top 20 materials with all related information (material ids in the

material project dataset, formulas and the predicted piezoelectric coefficient values),

inspiring experimental material scientists to verify some of these new piezoelectric

material candidates.

Computational prediction of noncentrosymmetry of a given composition can be

used for fast screening new nonlinear optical materials. Here we developed and

evaluated two machine learning models including a Random Forest Classifier and a

neural network model for computational prediction of materials noncentrosymmetry

given only their composition information. By using the Magpie composition features,

our best prediction model based on Random forest can achieve an accuracy of 84.8%

when evaluated using 10-fold cross-validation over the Material Projects database.

Further experiments showed that when the prediction model is trained only on 3-

element samples, it can achieve even higher performance for the test set, which is

made of mostly 3-element materials. A feature importance calculation shows the

top six contribution factors for predicting noncentrosymmetry, many of which are

related to the distribution of valence electrons. which is consistent with current

physicochemical principles. Our developed model can be applied to discovering novel

nonlinear materials as we conduct large-scale screening over two million hypothetical

materials.

104



Chapter 7

Conclusion

In this dissertation, we present our research in the prediction of crystal structures, and

encompasses the design of a motif extraction method and the analysis of these motifs.

Additionally, we explore the discovery of new 2D materials, as well as investigate the

prediction of piezoelectric coefficients and noncentrosymmetric properties. Through

this work, we explore several main tasks in material informatics and pave the way for

crystal structure prediction and material property prediction.

In the first topic, we propose the DeltaCrystal model for crystal structure prediction

which only relies on material composition. In the first step, we predict the distance

matrix of atom pairs for the given material composition based on the feature matrix

and trained deep residual neural network. In the second step, we generate crystal

structure by the atomic coordinate reconstruction algorithm DMCrystal, and then

use M3GNET to relax those structures. Our experiments show DeltaCrystal can

reconstruct the crystal structures for a large number of materials, even for complex

compounds. DeltaCrystal can be a strong new kind of deep knowledge-guided CSP

for large-scale prediction of crystal structures.

In the second work, we present a motif extraction method, we use this method to

extract a total of 18,534 motifs from 122,500 material structures. The detection and

extraction of motifs within any crystal structure could have a major impact on the

materials discovery field. Currently, CSP models either base their prediction on a few

small molecules or on individual atoms due to the computing power needed for deep

learning. If CSP models based their prediction on pre-determined motifs instead, it
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would take less computing power to create larger crystal structures, leading to even

more materials being predicted.

In the third topic, we design a model for finding hypothetical new 2D materials,

which mainly includes four parts: (1) generate chemically valid materials formulas

based on the deep learning generative model, (2) train a composition-based random

forest 2D materials classifier to predict potential 2D materials, (3) develop a template

based element substitution method to predict those predicted materials’ structures

and (4) finally, we use DFT verification to confirm their structural stability. Currently,

we generate 1485 hypothetical 2D material compositions with probability scores

greater 95% and verify that 92 materials have stable formation energies by DFT

calculation. These novel hypothetical materials can be utilized to guide the screening

of 2D materials for material scientists.

In the last topic, we explore several different algorithms to predict piezoelectric

coefficients, including Random forest support vector machines and five graph neural

network models using various composition and structural features. Due to the limited

data, machine learning methods, especially the random forest model, achieve better

predictive results than deep learning methods, which demonstrates the advantages of

machine learning in dealing with small datasets. Similarly, we also use the random

forest model to predict materials’ noncentrosymmetric and achieve good performance.
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