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Abstract

Low dimensional hybrid perovskites have demonstrated remarkable performance in

photovoltaic applications, primarily due to their exceptional optical and electronic

properties. As the search for potential candidates for novel materials continues, un-

derstanding the structure of these materials is crucial for investigating their stability.

In this study, we implement a framework to find novel material based on a machine-

learning model. The machine learning model was trained to predict the dimensional-

ity of the polyhedral network based on the connectivity of the polyhedral network in

different directions. The polyhedral connectivity of low-dimensional structures can

be classified into three dimensions: 0D, 1D, and 2D. This ML model was trained

on 588 unique experimentally reported structures and these structures include halide

perovskites as well as related, non-perovskite halometallate structures. These struc-

tures contain 65 unique B-X combinations and 315 different organic cations. The ML

model achieves a precision of 96%, 87%, and 95% for 0D, 1D, and 2D, respectively for

a stratified 20% test set using a graph representation from self-supervised message

passing transformer (GROVER) to represent the organic cations and a set of 7 fea-

tures to represent the inorganic/halide elements. This ML model is then used to fill

in the gap of the missing compounds. In total, the ML model is used to predict the

dimensionality of 40556 new HOIPs based on the combination of organics, inorganic

/halide combinations across different element compositions and B/X ratios. Finally,

to identify interesting organic cations that have not yet been examined for HOIPs,

we used the GROVER representation and performed a similarity search to select po-

tentially interesting organic cations and predict their corresponding dimensionality.
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We screened a set of 6 molecules to find the similarity from two different molecular

cases to find novel materials. This organic cation identification is demonstrated on:

chiral molecules and large conjugated systems derived from pyrene, thiophenes and

cyclopentadiene molecules.
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Chapter 1

Introduction

1.1 Motivations for materials science

Due to the high structural tunability, hybrid organic-inorganic perovskite materials

(HOIPs) have gained significant attention over the past decade as suitable candidates

for optoelectronic and photovoltaic applications. In general, these halide perovskites

have different compositions such as ABX3 A’2An−1BnX3n+1 or A’An−1BnX3n+1. In

compositions where A and A’ is a cation, B is a inorganic cation and X is a halide for

example A= methylammonium(MA), B-site is an inorganic cation such as Pb2+ and X

is a halide(X=F−, Cl−, Br−, I−). These different compositions have different phases,

these generalized compositions vary with the change of phases such as Ruddlesden-

Popper and Dion-Jacobson.

Figure 1.1 Different dimensionalities in HOIPS structures (a) 0D structure com-
posed of face sharing octahedrons clusters (b) 1D structure network through edge-
sharing and corner-sharing octahedra (c) 2D network of corner-sharing octahedra.
(d) 3D network of corner-sharing octahedra

In general, these structures possess special arrangements in B and X sites. The

B-site of the perovskite structure is surrounded by halides in a six-fold coordina-
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tion environment to make an octahedron. These octahedral structures have different

connectivity types such as corner-sharing, edge-sharing, and face-sharing. In these

connectivities, halide atoms are shared between octahedron units and these octahe-

dra share different connectivity to create an octahedral network. These octahedral

networks in the structure govern the dimensionality based on the model of sharing.

Basically, there are four types of dimensionality, namely 0D,1D,2D, and 3D, Figure

1.1 shows different dimensionalities observed in perovskite structures. The 0D,1D,

and 2D materials are referred to as low-dimensional structures. These structures have

extraordinary electronic and optical properties which make them suitable for opto-

electronic and photovoltaic applications, by changing the structural dimensionality

these materials can be tuned to be used in various applications. The unique prop-

erties of 2D halide perovskites have enabled a variety of applications, such as LEDs,

lasers, and PVs [1],[2],[3]. The high dielectric constant between organic and inorganic

moieties in the structure leads to higher electron-hole binding energy (Eb) in 2D per-

ovskites and these excitons can be stabilized by the multiple quantum well structure

in ambient temperatures [4]. This 2D quantum well effect drives possibilities to use

these materials as optoelectronic applications. The reduction of structural dimen-

sionality results in an increase in the bandgaps of low-dimensional structures. This

increase in bandgap in 0D and 1D material makes them less favorable for photovoltaic

applications [5], [6]. The 1D and 0D structures show large stokes shift in the range of

100-200(nm) for 1D and 100-350(nm) [6] for 0D and also show broadband emission

spectrum, which makes them advantageous in down conversion white LED applica-

tions as phosphors [7]. The strong quantum confinement effect in 0D structures leads

to higher photoluminescence quantum yield(PLQY), Sun et al. reported the highest

efficient blue-violet (392 nm) light emission of 0D [BAPrEDA]PbCl6 · (H2O)2 with

a PLQY of 21.3% [8]. Also, these materials are candidates for optical transistors,

switching devices, coherent light sources and lasing [9],[10], [11], [12]
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Another significant factor regarding low-dimensional structures is that they pos-

sess tunable bandgaps which is an electronic property of this material. In determining

the electronic properties in a perovskite structure, the arrangement of the BX6 octahe-

dral unit plays a crucial role. Strong interaction between the metal cation and halide

anion leads to the formation of electronic bands. The bandgap of these perovskites

is mainly determined by the atomic orbitals on B and X. When the dimensional-

ity decreases from 3D to 0D, the bandgap increases, and bandwidth is reduced [13].

This is due to the fact that the lattice constant increases leading to the localization

of electrons. The increase in lattice constant is a result of a reduced dimensionality

which increases the distance between octahedral units, leading to a weaker inter-

molecular overlap between octahedral units. This weaker overlap contributes to the

reduced bandwidth[14]. Another factor that determines the bandgap is the octahe-

dral connectivity as we talked about earlier in this thesis which leads to different

dimensionalities. Kamminga et al. in their study demonstrates the correlation be-

tween the connectivity of the octahedral unit and the change in the bandgap. In the

study, DFT calculations were used with and without spin-orbit coupling(SOC). The

results show that the bandgap increases with decreasing dimensionality. Moreover,

as the connectivity between octahedra varies from corner-sharing - to edge-sharing-

to face-sharing, the bandgap increases. These trends were held for calculations with

and without SOC [15]. In one of their works, Li-Ming Wu et al. generalizes the

structure-property relationship of iodoplumbate and iodobismuthate compounds, fo-

cusing on how the connectivity of the inorganic units influences the inorganic unit

composition and correlates inorganic unit compositions to dimensionality [16]. Ler-

mer et al. as an extension to one of their research on lead halide perovskites, the

influence of dimensionality on the band gap was explored. They compared the band

gaps of 1D and 2D structures. The 1D structure exhibited a band gap of 2.44 eV,

while the 2D structure showed a lower band gap of 1.99 eV. This demonstrates that
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the dimensionality of the perovskite structure plays a significant role in determining

the band gap values. Therefore it can be stated that dimensionality is an important

parameter in designing novel materials[17].

The bandgap depends on several other factors such as the choice of B and X site

and BX composition[15][18][19] [20] [21][22]. The X-site contributes to the valence

band in the band structure[23] and the B-site contributes to the conduction band

in band structure [24]. The observed bandgaps for materials change with the halide

substitution; from Cl to Br to I the valence band composition changes from 3p to 4p

to 5p this reduces the band gap due to the monotonic decrease in binding energy(low

ionization potential). When considering the ionic radii of halide atoms, large halide

ions(iodide) result in a weaker bonding between the halide ion and the B-site ion

giving rise to a smaller band gap compared to larger bandgaps caused by smaller

halide ion [25]. For example, the substitution of Br by I in FAPbX3 reduces the band

gap from 2.23 eV to 1.48 eV [26]. Lermer et al. conducted experimental research on

benzimidazolium lead halide perovskites, investigating the impact of halide substi-

tution and dimensionality on the band gap [17]. Their findings reveal a systematic

decrease in the band gap as the halide substitution changes from chloride to bromide

to iodide. Specifically, the band gap values were found to be 3.08 eV for chloride,

2.60 eV for bromide, and 1.99 eV for iodide.

Oligothiophenes and chiral molecules are two distinct organic molecules, each of-

fering unique characteristics. Oligothiophenes are intriguing due to their structural

tunability, allowing for various modifications and adaptations. On the other hand,

chiral molecules possess optical activity. These organic molecules are investigated to

be used in perovskite structures due to their optoelectronic properties. A study by

Denis et al. shows the ability to modify the optoelectronic properties of oligothio-

phenes by functionalizing and varying the conjugation length of the oligomer, it also

shows substitution of a small amount of iodide with bromide reduced the presence
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of lower-dimensional hybrids in thin films made out of (Bit-C3)2PbX4 (with X = Cl,

Br, and I) material[27]. The low-dimensional chiral hybrid perovskite which incor-

porates a chiral ligand in the A-site, exhibited both spin-polarized absorption and

spin-polarized photoluminescence, even in the absence of an external magnetic field.

These properties make these structures more suitable for applications in circularly

polarized electronics, photonics, and spintronics [28]. Fu et al shows in their study

how to use chiral 1D hybrid perovskite [(R/S)-3-aminopiperidine]PbI4 to distinguish

circularly polarized light(CPL) which directly contributes to the optical activity of

the material [29]. Using theoretical calculation on CHFCINH3PbI3 Long et al shows

the thermal stability of (R) and (S) enantiomers are similar and also exhibit similar

bandgap values. When compared to (RS)-CHFCINH3PbI3 the thermal stability is

similar. However, the achiral molecule shows a slightly lower bandgap 1.24 eV, and

the chiral molecules process 1.51 eV. This shows that the bandgap of a material can

be tuned by substituting a chiral molecule. This gives the ability to tune the bandgap

without changing the material structure and properties [30].

The development of computational techniques has increased the use of these tech-

niques to investigate the underlying chemistry in different chemical systems. This

opens up new ventures in in-silico material discovery. High-throughput calculations,

machine learning, and structure prediction-based calculations provide leads for the

synthesis of new materials. The computer-aided material discovery is useful in finding

potential materials for a particular task by rationalizing the experimental processes.

The use of computer-aided frameworks has eased the burden of expensive material

costs and has saved time in the synthesis and optimization of properties. As a result,

the successful synthesis of new materials over the past decades has increased and can

be seen in the compilation of material databases. Machine learning and deep learning

have been used in discovering novel materials and finding relations between differ-

ent properties of materials. Development in machine learning and the availability of
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data sets improve the accuracy of computer-aided material discovery. The work of

Lu et al. builds a framework for identifying stable lead-free hybrid organic-inorganic

perovskites using machine learning [31]. In this study, a supervised machine learning

method was utilized to generate a list of potential hybrid perovskite candidates, and

these new structures were screened based on their thermal stability to find potential

materials. In the study, they used DFT calculation on 346 HOIPs in training the

machine learning algorithm. They successfully identified six lead-free HOIPs with

proper bandgaps for solar cells and thermal stability out of 5158 unexplored HOIPs

structures. Ai et al. designed a framework to predict the dimensionality in templated

oxides to understand the formation principles of templated oxides [32]. They tried

to articulate the formation of templated oxides by predicting the dimensionality by

training a neural network model on 3725 structures. They predicted the dimension-

ality with an accuracy of 71% using the reactant identities.

While hybrid perovskites have demonstrated impressive performance, they have

few drawbacks for their use in large-scale commercial devices. The most common are

toxicity(in Pb-based perovskites) and poor stability under environmental conditions.

Exploration of new materials is required in finding solutions to these issues while

maintaining the device’s performance. In this regard, HOIPs have emerged as a class

of materials that offer a variety of possibilities for modification. In modification and

fine-tuning the properties of perovskites. The structural confinement of 3D struc-

tures limits the property tunability, while the tunability is increased with an extra

degree of freedom gained by low-dimensional structures [33] [34]. Therefore low di-

mensional HOIPs have huge diversity, which allows the incorporation of a wide range

of organic materials into their structures. This versatility enables the exploration

of different compositions and structures for designing and tailoring HOIPs to meet

specific application requirements[35][36] [37] [38].

This thesis describes the building of a framework to discover novel HOIP materials
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to be used in different applications based on their composition in A-site, B-Site, and

X-site. As a first step, a dimensionality-predicting machine learning model to screen

novel materials was built to limit the search space before conducting high throughput

Density Functional Theory(DFT) calculations. Since the band gap of materials are

significantly impacted by the dimensionality, understanding the dimensionality of a

novel material provides a preliminary understanding of the potential range of band

structure and bandgap values. This saves and prioritizes the computational work on

some potential materials over other materials.
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1.2 Motivations for machine learning

Machine Learning(ML) methods can generally be categorized into two types: su-

pervised and unsupervised learning. In supervised learning, the ML algorithm is

provided with labeled input data for training the model and testing. The algorithm’s

task is to learn the underlying function that best represents the relationship between

inputs and outputs in a generalized way. These algorithms are commonly used for

classification and regression tasks, resulting in trained models capable of making pre-

dictions on new inputs. In unsupervised learning, the algorithm learns patterns and

structures without any guidance from labeled data to discover hidden patterns and

relationships within the data. The advantage of using machine learning is to be able

to use a large amount of data to infer relationships without detailed knowledge about

the problem.

An essential part in the process of training a precise machine learning model is the

formulation of a set of input features or representations, which are used in the regres-

sion step. Although several known representations, including SOAP [39], MBTR [40],

and others, are available for use, these methods compile a set of numerical values re-

lated to specific properties using an experimental structure. Finding a structure for a

novel material requires a significant amount of experimental and computational work.

In order to simplify this work, representation learning can be used to learn about and

represent chemical systems. Representation learning is the use of computational mod-

els to extract the properties of different systems and use these properties to generate a

representation of the corresponding system. In supervised learning, the training data

needs to be labeled. In general, the outcome of the representation learning model

is biased towards the input dataset. In order to resolve the biases toward the input

dataset, representation learning can be unsupervised or self-supervised which requires

unlabeled data [41]. This study was conducted with the aim of designing novel ma-

terials, by unbiased feature representation of organic cations. In order to achieve this
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objective, GROVER (Graph Representation frOm self-superVised mEssage passing

tRansformer), a self-supervised graph neural network was utilized.

GROVER uses Mask Language Modelling for training on unlabeled 10 Million

molecules and thus the generated embedding of this model is more generalized [41].

Because, this model is trained on a big corpus of molecules and the representations

become very useful for different downstream classification and regression problems.

GROVER takes the SMILES string as input and returns 200 numerical values to

represent the SMILES string. These values were used in representing the A-site

cations. GROVER generates its features from two methods. 1) Node/edge feature

extraction, which uses rdkit to extract features from atoms and bonds Table 1.1,1.2.

2) Molecular-level feature extraction. The molecular level feature extraction follows

the works by Kevin Yang et al. and Zhenqin Wu et al. and produces 200 molecular-

level features using Rdkit for each molecule [42] [43]. These extracted features were

concatenated with the output of the self-attentive readout to go through a multi-layer

perception (MLP) for the final prediction of 200 GROVER features(embeddings of

the GNN).

Table 1.1 Atomic features used in GROVER model training [41]

Features size Description
Atom type 100 Types of atoms (e.g., C, N, O) by atomic number

Formal charge 5 Integer electronic charge assigned to atom
Number of bonds 6 Number of bonds the atom is involved in

Chirality 5 Number of bonded hydrogen atoms
Number of H 5 Number of bonded hydrogen atoms
Atomic mass 1 Mass of the atom, divided by 100
Aromaticity 1 Whether this atom is part of an aromatic system

Hybridization 5 sp, sp2,sp3,sp3d or sp3d2

Table 1.2 Bond Features used in GROVER model training.[41]

Features size Description
Bond type 4 Single, double, triple, or aromatic

Stereo 6 None, any, E/Z or cis/trans
In ring 1 Whether the bond is a part of a ring

conjugated 1 Whether the bond is conjugated
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Chapter 2

Methods

2.1 Dataset generation

As the first step, we compiled a total of 944 hybrid perovskites from three sources: the

2D perovskites database of the laboratory of new materials for solar energy (NMSE)

[44] (725 samples, queried on 12/2021); Cambridge Structural Database (203 sam-

ples, queried on 03/2022); and research article by Tremblay et al. [45] (16 samples)

were compiled. Since the 2D perovskites dominate the NMSE database, the CSD

database was mostly queried for searching lower dimensional perovskites (1D and

0D) and includes 86 samples reported in Ref [46] and 5 reported in Ref [47]. From

the above collection of structures, 35 structures were excluded as the organic cation

was unrecognizable due to high disorder in the structure. The remaining 909 samples,

we labeled based on the dimensionality of the octahedra as 0D, 1D, 2D, or 3D. From

this collection, 23 samples were removed due to the following reasons: (a) had only

inorganic cations (12 samples), (b) had 3D connectivity of the octahedra (8 samples),

(c) had no octahedra (2 samples) and (d) without halogen atom at the X-site (1 sam-

ple). Further 298 structures out of the remaining 886 samples were removed as the

organic and inorganic units and dimensionality were duplicated in the dataset. This

contracted the dataset size to 588 unique samples. For validation purposes and to in-

vestigate how the ML model generalizes, an additional 37 samples from the HybriD3

materials database [48] were also extracted but never used during the initial model

training/testing.
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2.2 Feature generation

The utilization of ML models in screening new materials can be limited if they depend

on having a specific structure as input data to make a prediction. To address this,

distinct features have been incorporated from both organic and inorganic constituents.

This approach essentially allows an independent assessment of materials using the

properties of these units, which can then be combined in an arbitrary manner. The

organic cations were represented by the GROVER package not adhering to a specific

structure. [41].

To compare with the predictions from GROVER, we also represented the organic

molecule using basic molecular descriptors from Rdkit, an open-source cheminformat-

ics package in Python. We chose thirteen molecular features from Rdkit, along with

an additional feature representing cation hull volume. The fourteen features derived

from this second feature set are listed in Table 2.1. Out of the 588 unique structures

in this dataset, the number of different organic cations species incorporated on the

A-site (NA) varies from NA = 1-3. For structures with NA>1 on the A-site, cation

features were averaged.

Table 2.1 organic molecule features calculated from rdkit package and features cal-
culated using other packages

Type Label Definition Unit Reference

organic molecule features

TPSA Topological Polar Surface Area – [49]
ASA Accessible Surface Area – [50]

MolWt Molecular weight – –
MollogP Molecular log P – [51]

ecc Eccentricity – [52]
rgy Radius of gyration Å [52]
isf Inertial shape factor – [53]
asp Asphericity – [54]

SphIndex Spherocity Index – [53]
aring Number of aromatic ring – –
ring Number of ring structures – –

hacceptor Number of H-bond acceptors for a molecule – –
sp3 The fraction of C atoms that are SP3 hybridized – –

hull_vol Hull volume of the organic cation – –

The descriptors of the organic component were combined with the features derived

from the combination of the inorganic metal (B-site)/halide (X-site), seven features
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were used, which are listed in Table 2.2, such as the octahedral factor [55], the

average volume of the inorganic unit, and 5 of the highest ranked features out of 47

from Matminer [56]. The octahedral factor measures the ability of the B-site cation

to form stable octahedra with the X-site anion and it is given by the equation:

µ = ( rb

rx

) (2.1)

where rb denotes the radius of the B-site, and rx denotes for the radius of the X-site.

The Shannon radii values were used to calculate µ.[57]

The averaged volume for the inorganic layer of each compound in the dataset is

given by this expression:

V = (
∑

Ci × Vi∑
Ci

) (2.2)

The atomic volume used in this calculation was extracted from Mendeleev (version

v0.12.1). In the equation 2.2 C is the number of atoms and Vi is the atomic volume of

atom i. To augment these two features, which were generated using domain knowl-

edge, features extracted from the Magpie library in Matminer were used. Initially,

132 features were selected from Matminer [56], which were down-selected to 47 based

on 0D and 1D precision. After evaluating the features based on mean precision of

0D and 1D for each model, 47 features were initially selected to be used as inorganic

features, then the top 5 features were selected using SHapley Additive exPlanations

(SHAP) [58] to use as inorganic features (see Table 2.2).

Table 2.2 Features generated based on the inorganic (B) and halide (X) units
Type Label Definition Range across 588 unique structures Reference

inorganic unit features µ Octahedral factor 0.345-0.657 2.1
V mean atomic volume for B and X site elements 16.3-25.2 2.2

avg_dev Column 0.39-3.2 [56]
mean NpUnfilled 0.7-2.0 [56]
mean NpValence 3.5-4.8 [56]
mean NValence 7-21 [56]

mean AtomicWeight 39- 154 [56]
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Table 2.3 Distribution of data in dimensionality. The numeric values in this Table
represent the number of samples in different dimensionalities and how they were used
in testing and training.

Dimensionality After filtration Baseline Upsampling
Test Train Test Train

0D 86 17 69 17 350
1D 64 13 51 13 350
2D 438 88 350 88 350

Total 588 118 470 118 1050

2.3 Model Training

Compounds in the dataset were then labeled as 2D (438/588 samples), 1D (64/588)

or 0D (86/588) (see Table 2.3). Because the dataset is significantly imbalanced where

2D entries have nearly a factor of 3 more frequent than either 1D or 0D samples, the

dataset was stratified such that each dimensionality class is represented by at least

20% of the compounds. As a result, out of 86-0D samples in the total dataset of 588

samples, stratifying ensures that a randomly selected 17-0D samples are included in

the test set. The training set therefore has 350-2Ds, 51-1Ds, and 69-0Ds (the ML

model trained to this set is referred to as the baseline model). Stratification of the

dataset, however, does not solve the issue of under-representation of 1D and 0D in

the training set. To assess the potential effect of this bias in the training set on

model accuracy, an additional analysis where the training data set was up sampled

was conducted. This was done to ensure equal representation of each class. In this

up-sampling process, instances from the 0D and 1D classes were randomly replicated

until the count for each class reached 350, achieving a balanced training set.

In this work, a random forest classifier from the scikit-learn library was used [59].

In training, 100 models were trained with 100 different splits of data with hyper-

parameters tuning. The number of estimators and the maximum depth of the tree

were used as hyper-parameters and both were tuned from a range of 10 and 100

with an interval of 20. The average of 100 runs was used in evaluating the model’s
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performance. In order to carry out further analysis and downstream tasks, the median

model was selected based on averaged precision of 0D and 1D for each run.

2.4 Evaluation of Machine Learning models

The evaluation of machine learning algorithms plays a crucial role in assessing their

performance. However, it can be challenging, especially in scenarios where limited or

no access to real-world data exists. In such cases, additional human effort is required

to assess the model performance. In classification tasks, the evaluation is typically

carried out by splitting the dataset into a training set and a test set. The machine

learning algorithm is trained on the training set, while the test set is used to calcu-

late performance indicators that assess the performance of the model. One common

challenge faced by machine learning algorithms is the availability of limited training

and test data. This can impact the algorithm’s generalization capabilities and lead

to overfitting or underfitting. It’s crucial to have enough data for training and testing

to have a good machine-learning model. Evaluating the performance of a machine

learning model involves considering multiple factors. While there is no perfect indi-

cator applicable to every scenario, several important factors are considered. These

factors include:

• Accuracy: Measures the proportion of correctly classified instances, providing

an overall assessment of the algorithm’s performance.

• Precision: Evaluates the algorithm’s ability to correctly identify positive in-

stances within a given class, indicating its effectiveness in minimizing false pos-

itives.

• Recall: Assesses the algorithm’s ability to identify all positive instances within

a given class, indicating its effectiveness in minimizing false negatives.
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• F1 score: Combines precision and recall into a single metric, providing a bal-

anced measure of a classifier’s performance.

It is important to select appropriate evaluation metrics based on the specific prob-

lem domain and objectives of the machine learning algorithm. The choice of evalua-

tion metrics should align with the desired outcomes and provide meaningful insights

into the algorithm’s performance. The performance of the machine learning model,

could be compromised due to the issues such as class imbalance, for example, if the

data set is dominated by the class-2D over the classes 0D and 1D. In this case, it

is more advantageous to have a model that is able to predict the positive instances

for each of those classes with high accuracy rather than using a metric that assesses

overall predictions. Accuracy measures the overall correctness of the predictions,

which is not a suitable performance metric when class distribution is imbalanced. In

recall the score is calculated on the true positives and false negatives values. False

negatives describe the ability of the model to identify the positive instances correctly.

Recall is not crucial for this type of classification but may be important for certain

scenarios such as medical diagnosis, where false negative class is more important.

In this classification model, the focus is on achieving accurate predictions for each

class that best match the definitions of precision where incorrectly predicted positive

instance gives a significant reduction in the model performance. Therefore, precision

over recall and accuracy were selected as performance metrics.
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Chapter 3

Results

3.1 Dimensionality predictions

Dimensionality prediction of perovskite structures with varying organic cations was

investigated using Redkit generated features and GROVER generated features. The

Rdkit features have a precision of 0.60, 0.63, 0.84 for 0D, 1D, and 2D, respectively,

compared to GROVER features 0.67,0.60,0.86 for 0D, 1D, and 2D (see Table A.1).

The performance values are similar and this makes it much harder to choose one

feature set over the other. However, the Linear Discriminant Analysis (LDA) plots

show significant differences in the two feature sets for the class distribution Figure

3.1. Figure 3.1 demonstrates how the dimensionalities of structures are distributed

in a reduced feature space. In the purpose of reducing features, each feature set

was reconstructed to two features, so that it could be visualized in 2D space. This

gives an intuition about the higher dimensional data distribution. In Figure 3.1 class

separation is clearly visible with the GROVER features with lesser overlaps between

classes. This shows that GROVER has sufficient discriminatory power in classifying

the dimensionality. In the Rdkit feature set, the classes are not well separated and

there is a significant amount of overlap between classes. Therefore, GROVER was

used to analyze organic cation features.

In the analysis of individual features from the inorganic unit feature set, it was

found that the octahedral factor alone could not be relied upon for the prediction

of dimensionality of 1D structures. In fact, the model’s performance in predicting
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(a) ((b)

Figure 3.1 Data distribution of LDA applied to (a) 200 GROVER features (b) 14
RDkit features

1D structures consistently yielded a score of 0 across 100 runs Table A.1. This

suggests that the octahedral factor does not possess sufficient discriminatory power

to differentiate 1D structures from other dimensionalities accurately. Figure 3.2 shows

the structural distribution for BX combinations from the dataset. 2D structures are

more frequent than other dimensions in all the BX combinations except for SnBr

which gave a majority class from 0D structures in one of the cases. 1D class is a

major class that does not have a significant number of structures compared to 2D

class. This leads the model to always predict 1D structures as another class which

yields a score of 0 across all runs when using the octahedral factor.

Table 3.1 The precision of the different classification models based on specific feature
combinations for the 20% stratified test set according to Table 2.3, in order to ensure
the same distribution in the training and test set for every class. The results here are
the average of 100 runs.

Data with different features No of Features 0D 1D 2D
Organic cations 200 0.67(0.12) 0.60(0.17) 0.86(0.02)

Inorganic features 7 0.96(0.05) 0.94(0.08) 0.94(0.02)
organic cation + Inorganic features 207 0.96(0.04) 0.87(0.09) 0.95(0.02)

When using 7 inorganic unit features, (See Table 2.2) precision > 0.94 was achieved

across 0D, 1D, and 2D represented in Table 3.1. The relatively high precision of

the ML model trained on inorganic features alone is potentially due to our dataset

having a strong dependence of stoichiometry combinations of B-site cations and X-
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Figure 3.2 Count of BX combination in different dimensionalities

site halides with dimensionality class. For example, PbI6 and PbBr6 are always

founded to be in 0Ds and PbI3 is always associated with 1Ds. Indeed, a pronounced

separation of the dimensionality is founded with the stoichiometry ratio (SR); defined

as the ratio of the number of B-site metals to the X-site halogen atoms represented

in inorganic units (Fig 3.3). For SR=6, 100% of the perovskites in our data set are

0Ds while no perovskites with SR<4 have a 0D connectivity. Similarly, 1D are more

common for SR=3 while 2Ds are more common for SR=4. However, there are some

compositions such as PbI4 (SR=4) which included several different dimensionalities.

Similarly, Pb3I10 (SR=3.33) is common in both 1D and 2D perovskites (Fig 3.3).

In contrast, when training a machine learning model solely using organic cation

features and excluding the inorganic unit, the resulting model demonstrates poor per-

formance. The precision for this model related to 0D, 1D, and 2D structures are 0.67,

0.60, and 0.86 respectively in training with organic unit features (Table 3.1). These
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Figure 3.3 The relation of dimensionality 0D, 1D, and 2D as a function of stoichiom-
etry ratio (SR) is defined as the ratio of the number of X site elements per B site in
the given structure.

precisions indicate that relying solely on organic cation features is insufficient for the

prediction of the dimensionality of HOIPs accurately. When visualizing the organic

features using LDA, it was observed that the well-separated dimensionality classes

Figure 3.1, indicates that organic features carry useful information for differentiating

the dimensionalities. This suggests that use of all the organic cation features intro-

duces some redundancy to the model. Also it can be concluded that all the features

do not contribute equally to the prediction task. Figure A.5 shows the importance

of the organic and inorganic features for the median model of the inorganic+organic.

The inorganic features have significant importance compared to organic features. The

top 20 features have the highest effect on the 2D class and the least effect on the 1D

class.

When the model was trained by combining organic and inorganic unit features,

the model performance increases especially for 0D and 2D classes. Then the resultant

precision of 0D, 1D, and 2D, were 0.96, 0.87, and 0.95 respectively. These results show

that the inclusion of organic features increases the model performance. As observed

from the LDA plots, GROVER features have important information which increases

the model performance even though it cannot absolutely predict the dimensionality.

Although upsampling was used to address the class imbalance, performances were
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0.53, 0.40, and 0.88 for 0D, 1D and 2D respectively. When organic cation features were

used, this was increased to 0.73, 0.61, and 0.93 and when inorganic cation features

were incorporated the performance was improved to 0.87,0.77,0.94 for the dimension-

alities 0D,1D and 2D respectively.(see Table A.2). The precision was decreased in all

the upsampled datasets compared to its baseline dataset.

The confusion matrix in figure 3.4a reveals that the organic features struggle

in predicting 0D and 1D structures. Specifically, it misclassifies 8 0D structures

as 2D and 7 1D structures as 2D. The model does not have significant issues in

differentiating between 0D and 1D but with 2D. This misclassification decreases when

the feature set changes to inorganic unit features. Misclassification of 0D as 2D drops

to 2 and 1D and 2D to 3. There is a significant improvement in 0D predictions,

from 8 correct predictions to 15 correct predictions. combining both feature sets

results in an improvement in the number of correct predictions and a reduction in

incorrect predictions across each class. For 0D, 1D, and 2D the number of correct

predictions increases to 15/17, 10/13, 86/88 samples (3.4c (c)). The combination of

features increases the accuracy and reliability of the trained models. When comparing

the inorganic model and combined model no significant improvement was observed

between the two models. The misclassification between 1D and 2D occurs specifically

in materials with a particular inorganic unit composition which usually has a single

connectivity type or exhibits multiple connectivity types, such as edge-sharing and

corner-sharing. This complexity in connectivity can lead to misclassifications between

1D and 2D structures.

To further investigate dimensionality prediction the organic-inorganic model was

employed to predict the dimensionality for the dataset. The individual inorganic

units within the dataset were examined, specifically focusing on those that exhibit

different dimensionalities 3.2. The 0D inorganic units CuCl4, CuBr4 and FeCl4 were

observed to have tetrahedral inorganic units rather than octahedra inorganic units.
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Figure 3.4 Confusion matrix of the median model of the different feature set in Table
3.1 (a)organic cation (b)inorganic unit features (c) organic cation and inorganic unit
features

Certain structures from these inorganic units exhibit elongated bonds, which can be

attributed to the Jahn-Teller effect. This causes distortions in the coordination geom-

etry. However when a bond is extended beyond the cutoff radius( CuCl=2.75295Å,

FeCl= 2.86293Åand CuBr= 2.89295Å), it is defined that the octahedra always re-

sulted in a polyhedron with a lower coordination number than an octahedra.

Table 3.2 Organic inorganic model performance on different inorganic units with
multidimensional classes(precision)

Inorganic unit 0D 1D 2D
CuCl4 0.0 1.0 0.95
CuBr4 0.0 1.0 0.89
PbBr4 - 0.5 0.99
Pb2I7 - 0.0 0.96
PbI4 - 1.0 1.0
FeCl4 1.0 - 1.0

Pb3I10 - 1.0 0.96

To study the B:X effect on the dimensionality, the probability map was created

and is shown in Figure 3.6. In the probability map, the BX combinations in the

data set are plotted against the B/X percentage, each cell color and color intensity

shows the most probable dimensionality of a given composition. As the octahedral

factor increases and the BX percentage decreases, the likelihood of obtaining lower-

dimensional structures would be increased. The probability map was calculated from

experimental data where probabilities were not available for some compositions. This
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Figure 3.5 Ratio between A-site cation and inorganic unit

makes it challenging to generalize the relationship between dimensionality and com-

position of the inorganic unit. In order to complete the missing gaps in the probability

map it is necessary to gather additional data. Therefore, a new approach was utilized

to map the probability of dimensionality for different compositions by using a trained

model. The dataset containing 310 charged cations, 16 BX Element combinations,

and 42 different B/X compositions were screened and filtered to get 40556 structures.

In this process, new materials were filtered based on several factors. These factors

included the structure being a single perovskite and considering the most abundant

A-site to inorganic unit ratios, which were determined as 1:1, 2:1, 4:1 (see Figure 3.5.

3.2 Similarity Search

The aim of the similarity search is to find potential cations that can be used in

replacing an existing cation in a perovskite structure.The rationale behind selecting

a similar cation is based on the expectation that both cations will exhibit similar

properties, this can be identified as A-site engineering. In finding potential cations,

similarity between cations was evaluated based on the structural similarity, in order

to assess the similarity as a first step GROVER features(cation features ) were used to
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Figure 3.6 Probability of each composition to get predicted as a 0D,1D,2D. proba-
bility calculated from existing structural data

represent the structural features of the molecules. GROVER features were generated

for the dataset of 17.5 million molecules [60]. The SMILES strings for the dataset

were extracted from zinc12, ChembL and unique cations in HOIPs dataset. All

the smiles were combined together and invalid molecules were filtered by converting

the smiles to canonical smiles. Since the GROVER features were generated using a

GNN, these features were already normalized. Therefore another normalization was

not essential. Figure A.1,A.2,A.3 and A.4 shows the comparison of similarity search

results with and without normalization and how it differs from one normalization to

another normalization.

The similarity between the two molecules’ feature sets was calculated using dif-

ferent distance matrices such as L1, L2, and cosine. Finding a suitable matrice that

calculates the best similarity was based on the performance of the following chemical
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Figure 3.7 Variation of the probability of a specific dimensionality in a given BX
composition. Three colors red green and blue indicate the dimensionality as 0D,
1D and 2D. The probabilities were scaled and coded with the RGB decimal code to
indicate the probability of each dimensionality in a given composition (a)Distribution
of 0D probabilities in the predicted dataset. (b) Distribution of 1D probabilities in
the predicted dataset. (C) Distribution of 2D probabilities in the predicted dataset.

systems.

• Aliphatic structures

• Cyclic structures

• Benzene structures

• Sulphur Substitute structures

• Oxygen substituted structures

The L2 and cosine matrices give the most reasonable results and it was harder to

draw a line between L2 and cosine results since both results were equally good. For

further analysis, cosine distance matrice was used in finding the similarity between

molecules. During the study, two chemical systems were taken into consideration for

finding new A-site cations to synthesize novel materials.

The L2 and cosine matrices yielded the most reasonable results, and it was chal-

lenging to distinguish between the L2 and cosine results as both were equally good.
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Additionally, there was a lack of a quantitative parameter to measure the performance

of distance matrices. This made the selection of a distance matrix more challenging.

For further analysis, the cosine distance matrix was utilized to determine the

similarity between molecules. During the study, two chemical systems were considered

in the search for new A-site cations to synthesize novel materials.

• perovskite structures with chiral cations

• perovskite structures with oligothiophenes

These two types of chemical systems’ organic cations exhibited distinct properties.

Chiral cations display optical activity, while oligothiophene cations exhibit fluores-

cence and demonstrate the ability to tune the electronic properties by functionalizing

and extending the length of the oligomer. Six structures were selected from both

chemical systems, and their cations were subjected to a similarity search to find

the most similar cations. Table 3.3 was constructed after performing a similarity

search on the six organic cations and predicting the dimensionality of the structures

when these cations were combined with a desired inorganic unit (PbI6,PbCl6, PbBr6,

PbCl4, PbBr4, and PbI4). In Table 3.3, the term ’freq’ represents the frequency of

occurrence of the organic molecule in the HOIPs dataset, while ’rank’ indicates the

molecule’s similarity ranking among 17 million molecules. Combining these organic

and inorganic units in various compositions can yield structures with predicted di-

mensionality.
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Table 3.3 Predicted dimensionalities of similar cations in reference to selected
cations and inorganic units. Rank presents how similar is given cation to the ref-
erence. Occurrence shows the number of counts the cation appears in the model
training/testing dataset. *Experimental structure contains the predicted dimension-
ality

Cations from similarity search freq Rank PbCl6 PbBr6 PbI6 PbCl4 PbBr4 PbI4

2 ref 0D 0D 0D 2D 2D 2D

0 4 0D 0D 0D 2D 2D 2D

0 6 0D 0D 0D 2D 2D 2D

6 ref 0D 0D 0D 2D 2D 2D

0 4 0D 0D 0D 2D 2D 2D

0 6 0D 0D 0D 2D 2D 2D

2 ref 2D 2D 2D 2D 2D 2D

0 2 0D 0D 2D 2D 2D 2D

1 15 0D 0D 0D 2D 2D 2D

2 ref 2D 2D 2D 2D 2D 2D

1 6 2D 2D 2D 2D 2D 2D

0 12 0D 0D 0D 2D 2D 2D

1 ref 0D 0D 0D 2D 2D 2D

0 2 0D 0D 0D 2D 2D 2D

0 4 0D 0D 0D 2D 2D 2D

1 ref 2D 2D 2D 2D 2D 2D

1 2 2D 2D 2D 2D 2D 2D

1 3 0D 0D 0D 2D 2D 2D
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3.3 Conclusions and outlook

In training the machine learning model it is observed that the inorganic unit features

are robust features in representing perovskite structures and they have the ability

to act as standalone features. Since inorganic features were significant to determin-

ing dimensionality the effect of organic features do not have the same impact as

inorganics, but organic features increase the model performance in predicting dimen-

sionality and is also a good representation model to represent organic molecules. In

the probability distributions, it shows when the BX percentage reduces simultane-

ously to the increase of octahedral factors the probability of getting a 0D structure

increases. In the similarity search, the organic cations with zero frequency are the

most probable to make novel materials. It is worth noting that some of these specific

organic molecules have not been identified in the CCDC database as perovskites or

non-perovskite halometallates, which indicates that novel structures containing them

should be synthetically accessible in low-dimensional structures.

Future work will entail expanding the dataset by incorporating additional struc-

tures to enhance the performance of the dimensionality-predicting model, DFT calcu-

lations will utilize to evaluate candidate structures from similarity search and incor-

porate more screening steps in generating probability maps and similarity searches.

The DFT calculations will determine band gaps and other relevant properties. In-

corporating additional screening steps, such as having an advanced charge matching

procedure will increase the possibility of the inclusion of double perovskites and also

contribute to more precise results for the probability map.
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Appendix A

Supplementary Information

A.0.1 similarity search

Rdkit features No normalization

Figure A.1 Similarity search result with rdkit features without normalizing the fea-
tures

Standardization

Figure A.2 Similarity search result with rdkit features with standardized features

In considering the datasets of rdkit features we can qualitatively see the min-

36



max normalization and standardization increases the accuracy of similarity search.

Standardization is much more reliable than min-max normalization chemically when

we compare the rank 3 and rank 7 molecules. The chemical environment in ranks 3

and 7 in min-max normalization is very different from the reference molecule. When

we compare rdkit and Grover in similarity search, qualitatively we can say the Grover

dataset performs better.

Minmax normalization

Figure A.3 Similarity search result with rdkit features with min-max normalized
features

Grover features

Figure A.4 Similarity search result with grover features

47 features to represent the inorganic unit, in selecting 47 features from 132 a

selection criterion was used. Each feature from Matminer is added to the feature list

individually and 10 models were trained. The selection was based on the averaged
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Table A.1 The precisions of the different classification models with different feature
combinations for rdkit feature set(rdkit includes the hull volume of the cations)

Data with different features No of Features 0D 1D 2D
rdkit only 14 0.63 0.60 0.84

rdkit+inorganic 17 0.85 0.78 0.91
rdkit+inorganic+magpie 64 0.88 0.89 0.93

charge only 1 0.58 0.85 0.91
oct_factor only 1 0.87 0.00 0.77

atomic volume only 1 0.81 0.80 0.92

Table A.2 The precisions of the different classification models with different feature
combinations for the 20% stratified test set for the upsample dataset

Data with different features No of Features 0D 1D 2D
Organic cations 200 0.53 0.40 0.88

Inorganic features 7 0.73 0.61 0.93
organic cation + Inorganic features 207 0.87 0.77 0.94

(a) (b)

Figure A.5 Feature importance calculated using SHAP values for two models inor-
ganic only model and inorganic+organic model

0D and 1D precision of the test set for the trained model. When the average 0D

and 1D precision for 10 runs are above a certain threshold value (the threshold is

selected from the baseline model performance before adding the matminer features)

the feature is selected to represent the inorganic unit. The selected features are in SI

Table A.3.
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Table A.3 Magpie features used in model training [56]
Magpie features MagpieData minimum Row MagpieData mean NValence
MagpieData range Number MagpieData mean Row MagpieData range NsUnfilled
MagpieData mean Number MagpieData minimum CovalentRadius MagpieData mean NpUnfilled
MagpieData avg_dev Number MagpieData mean CovalentRadius MagpieData avg_dev NdUnfilled
MagpieData minimum MendeleevNumber MagpieData mean Electronegativity MagpieData mode NfUnfilled
MagpieData mean MendeleevNumber MagpieData mode Electronegativity MagpieData minimum NUnfilled
MagpieData avg_dev MendeleevNumber MagpieData avg_dev NsValence MagpieData maximum GSvolume_pa
MagpieData mean AtomicWeight MagpieData maximum NpValence MagpieData avg_dev GSvolume_pa
MagpieData avg_dev AtomicWeight MagpieData range NpValence MagpieData minimum GSbandgap
MagpieData mode AtomicWeight MagpieData mean NpValence MagpieData range GSbandgap
MagpieData minimum MeltingT MagpieData mode NpValence MagpieData mean GSbandgap
MagpieData mean MeltingT MagpieData mean NdValence MagpieData avg_dev GSbandgap
MagpieData avg_dev MeltingT MagpieData maximum NfValence MagpieData avg_dev GSmagmom
MagpieData range Column MagpieData avg_dev NfValence MagpieData mean SpaceGroupNumber
MagpieData avg_dev Column MagpieData minimum NValence MagpieData avg_dev SpaceGroupNumber
MagpieData mode Column MagpieData range NValence MagpieData mode SpaceGroupNumber
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