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Abstract

 Generalized linear models which include spatially varying coefficient terms allow 

researchers to determine if the association between predictor and outcome variables vary 

across geographic space. Such models are particularly applicable to research with public 

health data where interventions and limited health care resources must be allocated 

carefully. The integrated nested Laplace approximation (INLA) methodology available in 

the R INLA package is a popular tool to estimate spatially varying coefficients. To assess 

the performance of the estimation procedure, patient emergency department (ED) visits 

were simulated from data sourced from a pilot study at Prisma Health. The INLA 

technique was used to assess whether the association between the patient response to a 

social determinant of health (SDoH) screening question and the number of ED visits 

varied across census block groups. The power of the estimation procedure for increasing 

numbers of positive screening rates of the SDoH question and for varying values of the 

variance parameter governing the distribution of the spatially varying coefficients was of 

interest. Furthermore, the type I error rate of the INLA estimation was also investigated. 

It was found that the power in detecting spatial variation increases as both the number of 

positive screens and variance parameter increases. The type I error rate remained below 

0.1% for all simulations. The INLA estimation procedure was subsequently applied to the 

Prisma Health pilot study data, and no spatial variation for the association between 

screening positive for violence/abuse SDoH and ED visits was found.
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Chapter 1: Introduction 

 Modelling heath care data with spatial techniques allows researchers and 

practitioners to determine how populations across geographical areas may differ. 

Populations at different locations may possess different health needs, increased or 

decreased susceptibility to diseases, varied ability to access health resources, or differ in 

other important demographic features (McLafferty, 2003).  Furthermore, there are often 

geographical differences in environmental factors and agents (e.g., pollution) as well as 

spatial differences in the quality, cost, and availability of health care systems (Bauer et 

al., 2020; Jerrett, Gale, & Kontgis, 2010). Statistics such as the Getis-Ord Gi* and local 

Moran’s I statistics can identify geographic locations that have significantly high or low 

values for a given variable of interest. However, these measures are relatively descriptive 

in nature. A variety of regression approaches for spatial modeling have also been 

developed. For example, in spatial random effects models, each geographic location has 

its own intercept called a spatial random effect (Krainski et. al, 2018). In spatially 

varying coefficient models, the effects of one or more covariates are allowed to change 

with geographic location. Multiple models exist specifying the structure of the random 

effect or spatially varying coefficients and each has its own unique assumptions. In this 

paper, we consider the intrinsic conditional autoregressive (CAR) model for Bayesian 

spatially varying coefficient models. Once the spatially varying coefficients are assumed 

to follow a CAR prior distribution, they can be integrated into generalized linear models 

and Bayesian statistical methods can be used to estimate model parameters. 
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1.1 Conditional Autoregressive (CAR) models 

 Consider some geographic region, 𝐺, which can be divided into 𝑛 sub-regions, 

𝑠𝑖, 𝑖 = 1, … , 𝑛. There are many ways that 𝐺 can be divided; some examples would be 

overlaying a simple lattice structure of evenly sized squares over 𝐺 or using a predefined 

partition for 𝐺, such as states, counties, or census block groups. Furthermore, consider the 

neighborhood structure of the sub-regions within a given 𝐺. Define two sub-regions 𝑠𝑖 

and 𝑠𝑗 as neighbors if, for 𝑖 = 1, … 𝑛; 𝑗 = 1, … , 𝑛;  𝑖 ≠ 𝑗, the 𝑠𝑖 and 𝑠𝑗 share a common 

boundary. Then, a binary adjacency matrix, 𝑾, can be constructed where 𝑤𝑖𝑗 = 1 if 𝑖 and 

𝑗 are neighbors, and 0 otherwise. It is apparent that 𝑾 is symmetric since 𝑠𝑗 and 𝑠𝑖 must 

be neighbors if 𝑠𝑖 and 𝑠𝑗 are neighbors. Furthermore, the sum over a single row 𝑖 equals 

the total number of neighbors for a given sub-region, 𝑠𝑖. Let all the row sums be denoted 

by 𝑑𝑖, 𝑖 = 1, … 𝑛; then, we can define the diagonal matrix 𝑫 where 𝑫𝑖𝑖 = 𝑑𝑖. 

 Now, let us assume that each sub-region, 𝑠1, … , 𝑠𝑛, possesses its own spatially 

varying coefficient, 𝜑𝑠1
, … , 𝜑𝑠𝑛

. Under the CAR model, we assume that the joint 

distribution of the vector of spatially varying coefficients, 𝝋, follows a multivariate 

normal distribution 

𝝋 = (𝜑𝑠1
, … , 𝜑𝑠𝑛

)
𝑇

~𝑀𝑉𝑁(𝟎, 𝜏2(𝑫 − 𝜌𝑾)−1) 

as shown in Banerjee, Carlin, and Gelfand (2014) and originally proposed by Besag 

(1974). Here, 𝑫 and 𝑾 are the diagonal and binary adjacency matrices, respectively, 

defined above. The parameter 𝜌 can be thought of as a spatial correlation parameter, 

typically defined on the range [0 1], and with values very near one suggesting a strong 

association between sub-regions that are neighbors (Banerjee et al., 2014). The parameter 

which controls the variance, 𝜏2, is typically unknown and assumed to possess some value 
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from a prior distribution (Gómez-Rubio, 2020). It can then be shown that the conditional 

distribution for a sub-region 𝜑𝑠𝑖
 is 

𝜑𝑠𝑖
|𝝋−𝒔𝒊

 ~ 𝑁(
𝜌 ∑ 𝑤𝑖𝑗

𝑛
𝑗=1 𝜑𝑗

𝑫𝑖𝑖
,

𝜏2

𝑫𝑖𝑖
) 

where 𝝋−𝒔𝒊
 indicates all spatial coefficients except 𝜑𝑠𝑖

; ∑ 𝑤𝑖𝑗
𝑛
𝑗=1 𝜑𝑗 is the sum of all 

spatial coefficients for neighbors of 𝑠𝑖; 𝑫𝑖𝑖 the number of neighbors of 𝑠𝑖; 𝜌 is the spatial 

correlation parameter; and 𝜏2 controls the magnitude of the variance (Banerjee et al., 

2014). 

 Assuming a CAR model on 𝝋 is common practice as it allows the conditional 

distribution of  𝜑𝑠𝑖
 to have desired and interpretable properties. The mean of the 

conditional distribution is simply the average value of all neighbors of a sub-region 

scaled by 𝜌, which is sensible if we think sub-regions near each other should be similar 

(Banerjee et al., 2014). Furthermore, it is apparent that the more neighbors a sub-region 

has, the smaller the estimate of the variance will be. Again, this appears reasonable as 

more neighbors would provide more information on the estimate of the mean, and we 

might then have less uncertainty (i.e., less variance) about the sub-region. Lastly, the 

precision matrix under CAR models is sparse making them computationally efficient, 

especially when a large number of regions is under consideration (Rue, Martino, & 

Chopin, 2009).  

 Certain values of 𝜌 give rise to distinct interpretations of the CAR model. If 𝜌 is 

zero, then it would follow that we are assuming no spatial correlation between sub-

regions and the 𝜑𝑠𝑖
’s are independent each with mean zero. If 𝜌 is 1, then we do not scale 
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the mean and it is exactly the average of its neighbors. This model is called the intrinsic 

CAR model and its conditional distribution can be shown to be 

𝜑𝑠𝑖
|𝜑−𝑠𝑖

 ~ 𝑁(
∑ 𝑤𝑖𝑗

𝑛
𝑗=1 𝜑𝑗

𝑫𝑖𝑖
,

𝜏2

𝑫𝑖𝑖
) 

(Banerjee et al., 2014). The intrinsic CAR model may be preferred for its interpretation of 

the mean being directly the average of its neighbors and it may be able to handle irregular 

spatial behavior better than 𝜌 for values not equal to one (Banerjee et al., 2014; Gelfand 

& Vounatsou, 2003). However, the intrinsic CAR model is called an improper model 

because the variance matrix of the joint distribution is not invertible and, thus, the 

functional form of the joint distribution of the intrinsic CAR model cannot be determined 

(Gelfand & Vounatsou, 2003). This is an undesirable property, but it not a huge 

hindrance in practical applications where it is common practice to add the constraint that 

∑ 𝜑𝑠𝑖

𝑛
𝑖=1 = 0, allowing all conditional distributions to be proper (Banerjee et al., 2014). 

Even without such a constraint, an improper CAR prior on random effects or spatially 

varying coefficients in a regression setting generally results in a proper posterior 

distribution. 

 For 0 < 𝜌 < 1, the joint distribution of 𝝋 can be shown to be proper (i.e., for 

such values of 𝜌, the covariance matrix is invertible) and such models are referred to as 

proper CAR models (Banerjee et al., 2014).  Proper CAR models have the theoretical 

advantage of a proper joint distribution and can accommodate spatial correlation that is 

not extremely strong – 𝜌 is not near or equal to one – and this might be regarded as 

bolstering the CAR model. However, proper CAR models are criticized for viewing the 

mean of the conditional distribution as some proportion of the average of the neighbors 

rather than a true average, 𝜌 misrepresenting the true strength of spatial correlation, and, 
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if the prior value of 𝜌 is inaccurate, the range of 𝝋 may be overestimated (Banerjee et al., 

2014; Gelfand & Vounatsou, 2003). Finally, Banerjee (2014) argues that if one is to 

assume a large degree of spatial correlation (i.e., a 𝜌 relatively close to one), the use of an 

intrinsic CAR model is preferred to avoid adding an additional parameter 𝜌. 

 The proper CAR model and intrinsic CAR model are two commonly cited choices 

for spatial modelling. However, there are numerous alternatives to choose from 

depending on what assumptions are appropriate for the data and hypotheses of interest, 

such as the Besag York Mollié (BYM) model or Leroux mixture models (Duncan, 

Cramb, Baade, Mengersen, Saunders, & Aitken, 2020). For the simulations in this thesis, 

we will utilize the intrinsic CAR model for its relative simplicity, interpretability, and fit 

with our hypotheses of interest. 

1.2 Estimating the Distribution of the Spatial Varying Coefficients 

1.2.1 Bayesian Inference 

 Given some observed data, 𝑦, it may be of interest to make statements about the 

distribution of some parameter, 𝜃. First, consider the joint probability distribution of 𝑦 

and 𝜃, 

𝑝(𝜃, 𝑦) = 𝑝(𝑦 | 𝜃)𝑝(𝜃) 

then, applying Baye’s rule, it can be shown that 

𝑝(𝜃 | 𝑦) =  
𝑝(𝑦 | 𝜃)𝑝(𝜃)

𝑝(𝑦)
 

(Gelman, Carlin, Stern, & Rubin, 2014). The framework above is the general basis for 

Bayesian inference, and it is employed when distributions of 𝜃 are of interest (Gelman et 

al., 2014). Generally, 𝑝(𝜃) is referred to as the prior distribution of the parameter; 

𝑝(𝑦 | 𝜃) as the likelihood of observing the data given the parameter; 𝑝(𝑦) as the marginal 
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likelihood, which is commonly viewed as a normalizing constant; and 𝑝(𝜃 | 𝑦) is the 

posterior distribution of 𝜃 given 𝑦, which is generally the distribution of interest (Gelman 

et al., 2014; Gómez-Rubio, 2020). Since the marginal likelihood can be viewed as a 

normalizing constant and is often difficult to evaluate numerically, the posterior 

distribution is sometimes presented in an unnormalized (kernel) form 

𝑝(𝜃 |𝑦) ∝ 𝑝(𝑦 | 𝜃)𝑝(𝜃) 

(Gelman et al., 2014; Gómez-Rubio, 2020).  

 A key component of Bayesian inference is specifying the prior distribution of the 

parameter. The prior distribution might reflect some pre-existing knowledge about the 

parameter, be a distribution that captures some intrinsic nature of the parameter (e.g., 

must be in the interval [0, 1]), or, if there is very little assumed knowledge about the 

parameter, be a non-informative prior distribution such as a uniform distribution (Gelman 

et al., 2014). In addition to the prior distribution, it is also important to carefully consider 

the structure of the data and how the likelihood should be calculated. After all, the 

unnormalized posterior distribution is simply the prior times the likelihood (Gelman et 

al., 2014). 

 It is important to note that this framework is not restrained to identifying 

probabilities or distributions of a single parameter, 𝜃, and that Bayesian inference can be 

applied to find the posterior distribution of any number of parameters, 𝜽, in the parameter 

space (Gómez-Rubio, 2020). Furthermore, the marginal distribution of a given parameter, 

𝜃𝑗 , 𝑗 = 1, … , dim(𝜽), can be found by integrating out all other parameters, 𝜃−𝑗, 

𝑝(𝜃𝑗  | 𝑦) =  ∫ 𝑝(𝜽 | 𝑦)𝑑𝜽−𝑗 

(Gómez-Rubio, 2020). 
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1.2.2 Integrated Nested Laplace Approximation (INLA) 

 The Bayesian framework provides an excellent methodology to make inference 

about parameters and their distributions. However, complications can arise when 

computing components such as the marginal likelihood or the posterior distribution, 

especially if it is multivariate in nature or has no closed form (Gómez-Rubio, 2020). 

Estimation methods and sampling techniques, including popular Markov chain Monte 

Carlo methods, can be applied to assist with estimating the posterior distribution. 

However, many of these methods are computationally slow for high dimensional 

parameter spaces, which was the impetus for the development of INLA (Gómez-Rubio, 

2020). 

 To model with INLA, three assumptions are needed: the total number of 

hyperparameters is relatively small, usually in the range of 2 to 5; the distribution of the 

latent field 𝐱|𝛉 is, at least approximately, a Gaussian Markov random field (GMRF); and 

the data, 𝒚, are mutually conditionally independent given 𝒙 and 𝜽 (Rue et al., 2017). 

Here, 𝒙 generally denotes the latent effects about the observed data, 𝜽 represents 

hyperparameters governing the model, and 𝒚 is the outcome being modelled. Giving such 

a model framework under these assumptions allows for the fast computational speed that 

INLA possesses over other techniques and for accurate estimation (Rue et al., 2017). 

 If the assumptions above hold, then the likelihood of 𝒚 =  {𝑦1, … , 𝑦𝑛} given 𝒙 and 

𝜽 can be shown to be 

𝑝(𝒚 | 𝒙, 𝜽) =  ∏ 𝑝(𝑦𝑖

𝑛

𝑖=1

 | 𝑥𝑖, 𝜽) for 𝑖 = 1, … , 𝑛 

and the desired posterior distributions are 
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𝑝(𝑥𝑖  | 𝒚) = ∫ 𝑝(𝑥𝑖 | 𝜽, 𝒚)𝑝(𝜽, 𝒚)𝑑𝜽 

and 

𝑝(𝜃𝑗  | 𝒚) = ∫ 𝑝(𝜽 | 𝒚)𝑑𝜽−𝑗 

(Banerjee, 2014; Gómez-Rubio, 2020). The INLA methodology as implemented by Rue 

et al. (2017) first computes an approximated 𝑝(𝜽 | 𝒚) and then uses this approximation to 

find a subsequent nested Laplace approximation of 𝑝(𝑥𝑖 | 𝒚) (Banerjee, 2014).   

1.2.3 Deviance Information Criterion (DIC) 

 We have seen that spatial effects can be modeled with different prior 

distributions, for example, the intrinsic CAR model, the proper CAR model, the BYM 

model, or the Leroux model. Furthermore, a spatial effects parameter, 𝝋, can be 

integrated into a generalized linear model with any number of covariates, 𝜷. Therefore, 

there is a need for some measure to aid in model selection for prior distributions and 

covariate pruning. 

 In the Bayesian framework, the DIC is defined as  

𝐷𝐼𝐶 = −2 log∗ 𝑝(𝒚 | 𝜽̂) + 2𝑝𝐷𝐼𝐶 

where 𝜽̂ is the estimated posterior mean of 𝜽 and 𝑝𝐷𝐼𝐶 represents the number of effective 

parameters in the model (Gelman et al., 2014). The “better” the model fits the data, the 

larger the likelihood of observing 𝒚 given 𝜽̂ should be. However, over-fitted models with 

many parameters can exhibit “good fit,” and so 2𝑝𝐷𝐼𝐶 acts as a penalization for 

unnecessary model complexity (e.g., unnecessary parameters). The DIC can then be used 

for model selection, with smaller DICs pointing towards the preferred model (Gómez-

Rubio, 2020).  
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1.3 General Motivation 

 As discussed in the Introduction, modeling health care data with spatial 

techniques can provide insight into how patient health outcomes and health systems vary 

across geographic regions. For example, assessing the geographic distribution of social 

determinants of health (SDoH) and their effects across space might be of interest. SDoH 

are commonly cited as a major contributor to patient health outcomes (“Social 

determinants of health”, n.d.). SDoH refer to a wide scope of forces shaping an 

individual’s daily life conditions and include the contexts in which people are born, work, 

and live (“Social determinants of health”, n.d.). An example of an SDoH would be lack 

of access to a sufficient amount of quality food (i.e., food insecurity) and individuals with 

such an SDoH need have been associated with higher health care expenditures, greater 

emergency department (ED) use, and longer hospitalizations (Berkowitz, Seligman, 

Meigs, & Basu, 2018).  

 Identifying patient SDoH needs and creating interventions may produce better 

patient outcomes and positively impact health systems (Garg, Homer, & Dworkin, 2019). 

An accurate and seamless method to identify patient needs and an effective intervention 

system to address them is needed (Thornton et al., 2016). One interesting example of a 

novel technique to identify SDoH was using natural language processing methods to 

automatically discern patient SDoH from digitized medical record notes (Hatef et al., 

2021). The following section includes a description of an alternative SDoH identification 

and intervention method which was part of a pilot study at Prisma Health. The study 

aimed to assess the impact of SDoH on health care resource use and how these impacts 

vary geospatially. Data from the pilot work is the motivation for this thesis. 
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Chapter 2: Methods 

 In this chapter the Prisma Health pilot study and the processing of its data is 

discussed, and a general model setup is given. Additionally, the preparation of the data 

for analysis via INLA and implementation of INLA for inference is discussed. All data 

work was performed in R version 4.2.1 using the interface of RStudio version 2022.07.2 

(R Core Team, 2022; R Studio Team, 2022). For parameter estimation, the inla(…) 

function from the INLA package version 22.05.07 was used (Rue, Martino, & Chopin, 

2009; Martins, Simpson, Lindgren, & Rue, 2013). 

2.1 Prisma Health Pilot Study and Data Processing 

2.1.1 Prisma Health Pilot Study 

 A pilot study was conducted by Prisma Health from June 1, 2019-December 31, 

2020. Over this study period, Prisma Health trialed a SDoH screening and referral 

software program, NowPow, which linked patients with community-based organizations 

(CBOs) depending on their SDoH needs and geographic location. Here, the intervention 

is the referral of patients to CBOs, with the idea that such organizations could aid in 

SDoH need reduction. The sample for the pilot study included Prisma Health patients 18 

years or older in South Carolina’s (SC) central and northwestern regions who engaged in 

inpatient case management, ambulatory care and condition management, or community 

health programs. 

 In addition to the data available from the NowPow system, electronic medical 

record (EMR) sources were leveraged and patient information was linked between the 
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two sources via medical record numbers. The primary data from NowPow included 

patient responses to a 13-item questionnaire designed to screen for SDoH needs 

commonly associated with health outcomes. The SDoH categories contained in the 

screener included food insecurity, housing instability and quality, financial instability, 

transportation needs, interpersonal violence/abuse, language and health literacy, and 

social connectedness. The EMR sources included general demographic information (e.g., 

race/ethnicity, gender), heath system use (e.g., the number of ED visits), and, 

importantly, the address for a given patient. Given the available data, the pilot study 

considered the question of how a patient’s SDoH needs were associated with ED use and 

how this association varied across geographic regions. More specifically, it was asked: 

after adjusting for all other variables, does the association between ED visits after the 

screen and a positive screening for an SDoH need vary geospatially?   

2.1.2 Address Geocoding 

 The study sample included 3,016 patient observations. Patients may have been 

administered the NowPow screening questionnaire multiple times over the study period, 

and only the earliest screening information available for a given patient, called an index 

screen (2,687, 89.1%), was used in analysis. 

 The geocode function from the tidygeocoder package in R was used to link 

patient addresses to a latitude-longitude coordinate pair (Cambon, Hernangómez, 

Belanger, & Possenriede, 2021). The geocode function can take addresses as a single line 

of information or by splitting the address information into the components of street 

number and name, city, state, and ZIP code.  
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 For this study, if the single address input failed to geocode, the split option was 

subsequently attempted. There are multiple geocoding services compatible with the 

function via the ‘method’ input. The ‘census’ method was used for the data, which draws 

upon the United States census geocoding information. Patient addresses which 

successfully geocoded were selected (2,490, 92.7%) and further processed by removing 

obvious address miscodings, addresses outside of SC, and observations which resided in 

a SC county having less than 50% of its block groups containing observations (295, 

11.8% removed; 2195, 88.2% used in analysis). The final set of observations used for 

analysis were contained in 10 neighboring counties and included 1,110 census block 

groups within those 10 counties. 

2.1.3 Variables of Interest and Additional Data Processing 

 The response variable was chosen to be the number of ED visits after the index 

screen date, which was a zero-inflated count variable. Patients may have had different 

index screening dates and, thus, a different number of days after the index screen and 

before the end of the study period over which ED visits could have occurred. To account 

for this, an offset term was created and set to be the natural log of the number of days 

between the index screen and the end of the study period. 

 The primary independent variable of interest was the patient response to the 

SDoH need screening question. Some screening questions had only a ‘Yes’ or ‘No’ 

response choice while others included multiple response categories, such as ‘Never,’ 

‘Rarely,’ ‘Sometimes,’ ‘Often,’ and Always.’ Questions with multiple choices were re-

categorized to only have two levels equivalent to a ‘Yes’ or ‘No’ response set, with the 

‘Rarely’ and ‘Sometimes’ corresponding to the ‘No’ category. 
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 Adjustment for nine additional covariates was included in the model. The other 

variables considered were race (White/Black/Other/Patient Refused), pregnant (Yes/No), 

Hispanic (Yes/No), primary payer (Medicaid/Medicare/Other), smoking status (Yes/No), 

weight category according to BMI (Underweight/Healthy/Overweight/Obese), female 

(Yes/No), total number of comorbidities (0-9), and age at the time of the screen.  

 As the response variable was a zero-inflated count variable, regression models 

that were deemed as sensible fits for the data were zero-inflated Poisson, Poisson hurdle, 

zero-inflated negative binomial, and negative binomial hurdle regression model, all using 

a natural log link function. For each of these models, we assumed the expected number of 

ED visits after the screen for an individual 𝑖 was given by exp(𝜂𝑖), 

𝜂𝑖 = 𝑡𝑖 + 𝒙𝒊𝜷 + 𝑟𝑖𝜑𝑠𝑖
 

where 𝑡𝑖 is the offset term defined above; 𝒙𝒊 is a vector of the nine additional covariates 

considered; 𝜷 is the corresponding vector of covariate coefficients; 𝑟𝑖 is the response to 

the SDoH screening question; and 𝜑𝑠𝑖
 is the spatial coefficient for the block group to 

which the given patient address was associated. Furthermore, 𝑟𝑖 = 1 if the patient 

response was ‘Yes’ to the SDoH screening question and 𝑟𝑖 = 0 otherwise. In this way, 

the model allows patients in different block groups who responded ‘Yes’ to the SDoH 

screening question to have different predicted mean numbers of ED visits after the 

screen, after adjusting for all other variables. However, holding all other variables 

constant, individuals from different block groups who both responded ‘No’ to the SDoH 

screening question did not have the flexibility to possess different spatially varying 

coefficients.   
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2.2 Using INLA to Model the Prisma Health Data 

 It was decided an intrinsic CAR model would be used as the prior model for the 

spatially varying parameter. To conceptualize the intrinsic CAR model, the geographic 

region 𝐺 was defined as the 1,110 block groups contained within the 10 counties for 

which there was patient data. Thus, the spatial parameter 𝝋 = {𝜑𝑠1
, … , 𝜑𝑠1110

}. Next, the 

binary adjacency matrix 𝑾 was needed. First, a polygon representation of the 1,110 

block groups for the data was obtained via the block_groups(…) function from the R 

tigris package, which utilizes data from the U.S. Census Bureau, and the desired 𝑾 

matrix was created by subsequently using the poly2nb(…) and nb2mat(…) functions 

from the R spdep package (Bivand, 2022; Walker, 2022).  

 Next, each patient was linked to a block group. Recall that each patient 

observation contained a latitude and longitude coordinate pair. The patient data was 

linked to the block group spatial data frame by utilizing the st_join(…) function from the 

R sf package (Pebesma, 2018). 

 After obtaining the adjacency matrix and linking patient data to block group 

information, a model was created for parameter estimation using INLA. The number of 

ED visits after the index screen was the response variable and the model was fit with the 

nine covariates (from Section 2.1.3) as fixed effects and the response to the screening 

question as having spatially varying coefficients. As noted above, the spatially varying 

coefficients were assumed to follow an intrinsic CAR model. The sum to zero constraint 

was not imposed on the spatial coefficients.  
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2.3 Model Selection 

 Again, four different regression types, zero-inflated Poisson, Poisson hurdle, zero-

inflated negative binomial, and negative binomial hurdle, were considered appropriate for 

the data and each could be applied to the model setup given in the previous section. It 

was decided that one model type should be chosen. To do this, a crude model formula 

was created for each screening question, 𝑖 = 1, … 13, which modeled the number of ED 

visits after the index screen solely by the response to the screening question, which had a 

spatially varying coefficient. The four different regression types were run for each of the 

crude screening question models and the DIC was calculated. It was found for all 

screening questions that the zero-inflated negative binomial produced the lowest DIC. 

Based on the DIC, the zero-inflated negative binomial was indicated to have the best fit 

for the data and was chosen as the regression type for the simulations. 

 Further model selection occurred by considering covariates for removal. 

Backwards stepwise selection was performed upon the model for each screening question 

using zero-inflated negative binomial regression. To start, the DIC was calculated for the 

full model which included all nine covariates and the response to screening question 

spatially varying coefficient term. Then, the DIC was calculated under the consideration 

that a single covariate was removed; this was done for all nine covariates. A covariate 

was officially removed if it lowered the model DIC by at least 2. If multiple covariates 

lowered the DIC past this threshold of two, then the variable that lowered the DIC to the 

greatest magnitude was removed. After the removal of a variable, the process was 

performed again for all remaining covariates and continued until no variable met the 
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removal criterion. Note, neither the spatially varying coefficient term nor the intercept 

was considered for removal. 

 Additionally, it was decided that a variable to capture the percentage of follow-up 

time that fell within the COVID-19 lockdown period in SC was needed in the model. The 

lockdown period was defined from March 15, 2020 to June 11, 2020. March 15th 

represented the date that public schools were initially closed in SC and June 11th was the 

date Governor McMaster signed executive order 2020-40, which lifted many of the 

gathering restriction in public spaces and stores in SC. The variable was calculated as the 

number of days of patient follow-up time that occurred between the two dates divided by 

the total number of days of patient follow-up time multiplied by 100%.  

 The idea to include such a variable in the model occurred after backwards 

stepwise selection was performed on the nine original covariates. Because the impact of 

the beginning of the COVID-19 pandemic and lockdown was such a pervasive and novel 

factor in SC, it was determined that this variable should be included in the model 

regardless of whether it was statistically important. Because the variable was primarily 

viewed as a needed adjustment within the model, it was simply appended to the model 

found by backwards stepwise selection on the nine original covariates.     

2.4 Inference using the INLA Model Output 

 In Section 2.1.1, it was stated that a primary question of interest from the Prisma 

Health pilot data was: adjusting for all other variables, does the association between ED 

visits after the screen and a positive screening for an SDoH need vary geospatially? To 

answer this question, consider that the INLA output provides the 0.025 and 0.975 

quantiles of the estimated spatially varying coefficients. From a Bayesian perspective, we 
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can construct a 95% credible interval from these two values as (estimated 0.025 quantile, 

estimated 0.975 quantile) for each estimated spatially varying coefficient.  

 Credible intervals considered in Bayesian inference are distinct from confidence 

intervals often used in frequentist statistics. From a conceptual statement, a 95% 

confidence interval can be interpreted as “if we collected every possible sample in this 

given manner and constructed 95% confidence intervals for each sample, then the true 

parameter would be contained in 95% of those confidence intervals.” After observing the 

data, confidence intervals do not address any probabilities about whether the true 

parameter is contained in any single one of the confidence intervals. On the other hand, 

the Bayesian 95% credible interval allows for an interpretation of “given the observed 

data, there is 95% probability that the true parameter is contained within this credible 

interval.”  

 Despite this distinction, Bayesian 95% credible intervals are used for inference 

very similarly to frequentist 95% confidence intervals. Again, consider constructing 95% 

credible intervals for all 1,110 spatially varying coefficients associated with the entire set 

of block groups. We can select any two of these credible intervals and assess whether 

their credible intervals overlap. If they do not overlap, then we can conclude that we find 

a statistically important difference between the two true spatially varying parameters 

associated with these two block groups. Moreover, if we wanted to assess that 

statistically important spatial variation is present across the entire geographic region of 

interest, we could compare all the 95% credible intervals for the 1,110 estimated spatially 

varying coefficients and determine if there are at least two intervals which do not overlap. 

To accomplish this parsimoniously, we can compare if the maximum 0.025 quantile 
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credible bound is greater than the minimum 0.975 quantile credible bound. If it is greater, 

then we can conclude that at least one pair of credible bounds do not overlap and that true 

spatial variation exists over the geographic region. 

2.5 Motivation for Simulations 

 This chapter detailed how the INLA estimation method could be implemented in 

R specifically for the Prisma Health pilot data. Furthermore, a procedure to answer the 

question, “Does the association between ED visits after the screen and a positive 

screening for an SDoH need vary geospatially?”, was provided. It is useful that the INLA 

methodology and relevant R packages allow for spatial analysis of large and sometimes 

complex datasets. However, creation of models that utilize an estimation technique such 

as INLA begs the question of: How well does the technique work for such a scenario as 

the Prisma Health pilot data? 

 Consider again the general model for the Prisma Health pilot data  

𝜂𝑖 = 𝑡𝑖 + 𝒙𝒊𝜷 + 𝑟𝑖𝜑𝑠𝑖
. 

For this model setup, we can consider 13 specific models: one for each of the 13 SDoH 

screening questions. A brief descriptive analysis of the Prisma Health pilot data reveals 

that, after dichotomizing the screening questions into “Yes” or “No” levels as discussed 

in Section 2.1.2., the percentage of positive (i.e., “Yes”) screens varied across SDoH 

needs. For example, one question that targeted food insecurity had 252 (11.5% of total 

patients contained in the 1,110 block groups) positive screens and a different question for 

housing insecurity possessed 89 (4.1%) positive screens. At the very end of the spectrum, 

the question for domestic violence/abuse had only 14 (0.6%) positive screens.   
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 One question that could be answered in a simulation study would be: assuming 

the association between a positive screen and ED visits after the screen does truly vary 

across geographic sub-regions, what is the power in picking up that difference using the 

INLA methodology outlined above? Furthermore, does this power change for different 

numbers of positive screens as seen in the pilot data? Another question is, conversely: 

assuming the association between a positive SDoH screen and ED visits after the screen 

does not vary across geographic sub-regions, what is the error in concluding that there is 

spatial variation? The following chapter on simulations considers these questions, among 

others, and describes the process in which they were answered. 
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Chapter 3: Simulation Study

 In this chapter, a single model from the Prisma Health pilot data is selected. Next, 

a general setup for simulation work is provided and the details of three different 

simulations of interest are explained.  

3.1 Screening Question Model of Interest 

 It was determined that restricting the context of simulations to a single model 

would aid in the simplicity and interpretability of the simulation studies. The previous 

chapter detailed that the zero-inflated negative binomial model was found to have the 

best fit, as evidenced by DIC, and that variable selection was performed for each of the 

screening question models. The model for the domestic violence screening question was 

selected for evaluation in the simulation study and this question had the lowest positive 

response rate out of all the study questions. The covariates included in the final model for 

this screening question were smoker (Yes/No), female (Yes/No), and primary payer 

(Medicare/Medicaid/Other), age at the time of the index screen, and the time of follow-up 

that fell in the defined COVID-19 lockdown period.  

3.2 General Simulation Setup 

 The end goal of the general simulation setup was to simulate a vector of values 

representing ED visits after the screen and for this vector to closely represent the true 

distribution of ED visits after the screen from the Prisma Health pilot data. Again, 

consider the model  

𝜂𝑖 = 𝑡𝑖 + 𝒙𝒊𝜷 + 𝑟𝑖𝜑𝑠𝑖
. 
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After the model selection procedure outlined in Section 3.1, the above model is now 

defined with 𝑡𝑖 representing the natural log of the number of days after the index screen 

for a given patient; 𝒙𝒊 representing the patient data for smoking status, age at the time of 

the index screen, female/not female, primary form of payment, and the COVID variable; 

𝜷 is the vector of coefficients associated with each of these variables; 𝑟𝑖 indicates 

whether or not the patient screened positive for violence/abuse; and 𝜑𝑠𝑖
 is the associated 

spatially varying coefficient of the block group in which the patient resides.  

 For the simulation study, the values of 𝑡𝑖 and 𝒙𝒊 were taken directly from the 

Prisma Health pilot data. To set values for 𝜷, the inla(…) function was run for the 

observed patient ED visits after the screen data and the estimated 𝜷̂ was recorded. Then, 

these 𝜷̂ values were rounded for simplicity, giving the simulation 𝜷′ =

[−6.0, 0.4, 0.003, −0.4, 0.3, 0.3, 0.2, −0.1]. The 𝑟𝑖 vector of screening responses was not 

taken from the patient data but was instead simulated. This was done as some simulation 

questions required different rates of positive screens not found in the data. The desired 

number of positive screens were selected from among the entire set of individuals using 

simple random sampling without replacement. 

 Next, the vector of spatially varying coefficients was simulated. The intrinsic 

CAR model was assumed as the prior distribution and, thus, the vector of spatially 

varying coefficients was assumed to follow a multivariate normal (MVN) distribution, 

from Section 1.1, 

𝝋 = (𝜑𝑠1
, … , 𝜑𝑠𝑛

)
𝑇

~𝑀𝑉𝑁(𝟎, 𝜏2(𝑫 − 𝜌𝑾)−1) 

where 𝜌 = 1.  However, it was noted that centering the MVN distribution on zero limited 

the strength of the signal of the spatially varying coefficients, and that this might limit the 
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practical ability of the INLA methodology to estimate any differences in the coefficients. 

Because of this, the MVN for the simulations was centered at three, giving 

𝝋 = (𝜑𝑠1
, … , 𝜑𝑠𝑛

)
𝑇

~𝑀𝑉𝑁(𝟑, 𝜏2(𝑫 − 𝜌𝑾)−1). 

 The required covariance matrix, 𝜏2(𝑫 − 𝜌𝑾)−1 , was calculated in the following 

manner. First, 𝜏2 was assumed to equal 1. Then, the 𝑾 matrix was created as described in 

Section 2.2.1. The 𝑫 matrix was then created from the 𝑾 matrix. Next, 𝜌 was set to equal 

0.9999. In an “ideal” intrinsic CAR model, 𝜌 should equal one; however, doing so would 

result in the invertible matrix complication described in Section 1.1. Therefore, the value 

of 0.9999 was chosen as it was extremely close to one and, for practical purposes, 

emulated the intrinsic CAR model. With all the necessary matrices and values set, the 

spatially varying coefficients were simulated with a MVN distribution. 

 Now, all the required components to simulate ED visits after the screen, exp(𝜂𝑖) , 

were at hand considering our model, 

𝜂𝑖 = 𝑡𝑖 + 𝒙𝒊𝜷 + 𝑟𝑖𝜑𝑠𝑖
. 

The regression model type chosen was a zero-inflated negative binomial model with a log 

link. Data generation from this model required two steps. First, a proportion, 𝑝, of the 

patients were assumed to not be able to experience an ED visit after their index screens 

and were assigned a zero for the variable. For each patient, a Bernoulli(0.1) random 

variable was generated.  Patients for which this random variable was equal to one were 

assigned zero ED visits. 

 ED visits for the remaining patients were generated from a negative binomial 

distribution, with mean 𝜇𝑖 =  exp(𝜂𝑖) for patient 𝑖 and dispersion parameter 𝜙 = 0.1. 



23 

 

The dispersion parameter value was found empirically by generating data using many 

different dispersion values and selecting one which produced data very similar to the 

observed ED visits after the screen data from the Prisma Health pilot study. Note that the 

randomly generated values here could also be equal to zero; that is, patients who were not 

automatically assigned a zero from the Bernoulli assignment step could be assigned a 

zero in this second step. 

 In conclusion, the general simulation procedure described above created a 

pathway to simulate the zero-inflated ED visits after the index screen variable in a 

manner such that it closely resembled the observed data from the Prisma Health pilot 

study. Furthermore, small changes can be made to the simulation methodology described 

above to pose and answer different questions regarding the performance of INLA in 

estimating the spatially varying coefficients. The following sections describe different 

simulation studies of interest and note any changes required in the procedure outlined in 

this section. 

3.3 Simulations 

3.3.1 No Spatial Variation: Type I Error 

 The general simulation procedure assumed that the vector of spatially varying 

coefficients followed an intrinsic CAR model and, because of this, that there was true 

spatial variation. However, consider if there was no true spatial variation. In the model,  

𝜂𝑖 = 𝑡𝑖 + 𝒙𝒊𝜷 + 𝑟𝑖𝜑𝑠𝑖
, 

this would be equivalent to each 𝜑𝑠𝑖
 being equal to some number, say zero. However, 

assigning a zero to each 𝜑𝑠𝑖
 not only assumes no spatial variation, but also assumes no 

association between the response to the screening question and number of ED visits. 
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Although the latter assumption is more directly related to the strength of association 

between variables and not spatial variation between block groups, it may affect the INLA 

estimation of spatial variation. Therefore, it was pertinent to assess type I error for 

another value other than zero. 

 To simulate type I error rate, the general simulation procedure was followed 

except that instead of assigning values to 𝜑𝑠𝑖
 based off of a MVN distribution, each was 

assigned a zero for one set of simulations and a three for another set of simulations. The 

value three was chosen as it matched the centering of the MVN distribution when spatial 

variation was assumed to be present in subsequent power simulations. 

 These simulations were performed for the minimum and maximum number of 

positive screens found in the pilot data, 14 and 256, respectively. Additionally, 

simulations were performed for 550 and 1,100 positive screens, representing 

approximately a 25% and 50% positive screening rate in the entire sample, respectively. 

3.3.2 Differing Number of Positive Screens: Power 

 Another question of interest was whether the power of our model to detect spatial 

variation across block groups differs depending on the number of positive screens in the 

data. To assess this, the number of positive screens was set to 14, 256, 550, and 1,100, as 

was done in the type I error simulation. Data was simulated for each of these different 

number of positive screens and the vector of spatially varying coefficients was assumed 

to follow a MVN distribution with mean equal to three and variance parameter of one.  

3.3.3 Differing Magnitude of Spatially Varying Coefficients: Power 

 In the general simulation procedure, the values of each 𝜑𝑠𝑖
 was simulated under 

the assumption that 𝜏2 was equal to one. Changing the value of 𝜏2 would be directly 
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changing the variance of the MVN distribution from which the 𝜑𝑠𝑖
’s are simulated. In 

this simulation study, the values of 𝜏2 were increased or decreased and included values of 

0.25, 1, 2 and 3. Note that data for 𝜏2 equal to one is available from previous simulations. 

This simulation was performed for the number of positive screens being set to 14, 256, 

550, and 1,100. 

3.3.4 Assessing the Simulations 

 For each scenario described above, 250 datasets were generated for each sample 

size. During each of the 250 dataset generations, the assignment of positive screens and 

number of ED visits after the screen to each patient as well as the values of the random 

spatial effects were re-simulated.  

 The number of times comparisons of the 95% credible intervals for the spatially 

varying coefficients indicated statistically important spatial variation was divided by the 

total number of datasets. For the simulation on type I error where data was simulated 

such that there was no spatial variation, this value estimated the type I error. For all other 

simulations, this value provided an estimate of model power.
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Chapter 4: Simulation Results and Discussion 

4.1 Simulation Results 

 The results of the type I error simulations are shown in Table 4.1. The type I error 

remained very low when the entire vector of spatial coefficients was set to both zero and 

three and it was similar for the different numbers of positive screens. In fact, only one 

type I error occurred when the coefficients were set to zero and the number of positive 

screens was 256. The type 1 error for all other simulation sets was zero. 

Table 4.1 Type I Error for setting the spatial coefficients to zero and three 

 Proportion of simulations with type I error 

Number of positive screens Coefficients set to zero Coefficients set to three 

14 0.00 0.00 

256 0.004 0.00 

550 0.00 0.00 

1,100 0.00 0.00 

 

 The results of the power simulations for different numbers of positive screens and 

for differing values of the variance parameter, 𝜏2, are summarized in Table 4.2. Unlike 

the type I error, the power did change for different numbers of positive screens with 

larger numbers of positive screens exhibiting higher power. For the number of positive 

screens at 256, 550, and 1,100, greater statistical power in detecting spatial variation was 

found for larger values of 𝜏2. However, this was not the case for the number of positive 

screens being set to 14. Even for 𝜏2 set equal to three, the largest variance parameter 

value used for simulation, spatial variation was not detected for any simulation for which 

the number of positive screens was 14. The mean of the MVN distribution from which 
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the spatially varying coefficients were simulated was set to be three for all power 

simulations. 

Table 4.2 Power across different number of positive screens and different values of 𝜏2 

 Power: proportion of simulations exhibiting spatial variation 

Number of 

positive screens 
𝜏2 = 0.25 𝜏2 = 1.00 𝜏2 = 2.00 𝜏2 = 3.00 

14 0.00 0.00 0.00 0.00 

256 0.004 0.06 0.2 0.296 

550 0.032 0.312 0.44 0.744 

1,100 0.14 0.724 0.964 0.984 

 

4.2 Discussion of Simulation Results 

 The results of the type I error simulations are encouraging for the use of INLA to 

estimate spatially varying coefficients. All but one of the proportions of type I error for 

the different simulation sets was zero. Moreover, the simulation set that did produce a 

non-zero type I error proportion was extremely low at 0.004, with only one type I error 

produced over 250 simulations. From these simulation results, we can be confident that 

we have a very small probability of erroneously concluding there is spatial variation 

when there is actually no spatial variation present. It is especially encouraging that this is 

true for all the different numbers of positive screenings that were used for simulations.  

 Generally, maintaining a very low type I error rate might come at the expense of 

lower power. In our case, that would imply we would be less likely to detect spatial 

variation when there actually is spatial variation present. From the power simulations, it 

is apparent that power is lacking when the number of positive screens is both 14 and 256. 

For the number of positive screens set to 14, the INLA methodology did not detect spatial 

variation for any of the simulations for any value of 𝜏2. This finding is discouraging, 

although it is not entirely surprising as 14 positive screens represents a 0.64% positive 
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screening rate. It would also be surprising to consistently detect an association between a 

positive screen and number ED visits and, furthermore, to conclude the associations vary 

across block groups when only provided with 14 positive screens. However, such a low 

positive screening rate did occur as the lowest rate in the real Prisma Health data and, 

thus, we would like a methodology that can work with such situations. 

 The maximum number of positive screens for an SDoH need in the Prisma Health 

data was 256. The INLA methodology did have higher power for this number of 

simulated positive screens as compared to 14 positive screens, specifically for larger 

values of 𝜏2. However, even at the largest 𝜏2 value of 3, the simulation study only 

produced a power of 28% at 256 positive screens. Although this is a drastic improvement 

from a power of 0% found for 14 positive screens at 𝜏2 = 3, it is low considering that 

256 was the highest number of positive screens found in the Prisma Health data. We 

would have wanted to observe a much larger power for the highest positive SDoH 

screening rate we might realistically see in a study population. 

 The power from the simulations for both 550 and 1,100 simulated positive screens 

increased as the variance parameter increased in magnitude. In general, the power was 

noticeably greater than that of 14 and 256 positive screens. For 550 positive screens, the 

variance parameter needed to be relatively high at three to observe a desirable power of 

76.5%. In contrast, the simulations for 1,100 positive screens achieved 70% power when 

the variance parameter was set to one. At both 𝜏2 equal to two and three with 1,100 

simulated positive screens, a very large power of over 95% was achieved. In this way, the 

1,100 positive screen scenario does not appear to benefit greatly from increases in the 

variance parameter past a value of two. In contrast, both 256 and 550 did show marked 
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improvement when 𝜏2 was increased from two to three. Combined with the fact that the 

type I error for 1,100 positive screens was found to be zero percent, it is apparent the 

INLA methodology works very well for a categorical variable with responses split 

relatively evenly for a total sample size of around 2,200.  

 Desirable levels of power were only found for 550 and 1,100 positive screens, 

neither of which were actually observed in the Prisma Health SDoH screening and both 

of which were well above the maximum 256 positive screens that was observed. 

Assuming that the rates for SDoH needs do not typically extend up to levels such as 25% 

and 50%, the findings of the power analysis indicate that detecting spatial variation for 

SDoH screenings variables may be difficult, or even practically impossible for very rare 

SDoHs, noting 0% power for 14 positive screens at all values of 𝜏2. While not explored 

in this simulation study, it is possible that a large sample size could produce enough 

positive screens to give sufficient power to detect spatially varying coefficients, even 

under relatively low positive screening rates typically observed in practice.  

 Although 550 and 1,100 positives screens were not observed in the Prisma Health 

data, the values and their respective power analysis should not be ignored. Conceptually, 

a “positive screen” is simply a binary indicator and the results of these numbers of 

“positive screens” can be viewed in the light of variables that might actually follow such 

a distribution of yes’s and no’s or 0’s and 1’s. For example, 1,043 patients were 

categorized as obese based on their BMI in the Prisma Health data. A spatial analysis of 

the impact of being categorized as “obese” or “not obese” would be based on an 

approximately 50% categorical variable split. In this way, the results of the 1,100 positive 

screens simulations would be encouraging that the INLA model would perform very well 
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in detecting spatial variation of the association between weight category and some highly 

zero-inflated outcome of interest. Similarly, the results of the 550 positive screens 

simulations would be encouraging for a binary variable that follows an approximately 

25/75 split. 

 In summary, power was noted to increase for a given sample size as the 

magnitude of 𝜏2 increase. This seems reasonable because as 𝜏2 increases, the magnitude 

of the differences between the simulated spatially varying coefficients increases. To 

illustrate this, the vector of spatially varying coefficients was simulated 250 times setting 

𝜏2 to each of 0.25, 1, 2, and 3. The incident rate ratio (IRR) of the maximum and 

minimum 𝜑𝑠𝑖
 coefficient across all samples was calculated and the median of the 

distribution of IRR’s for a given 𝜏2 value are shown in Table 4.3. The median was 

chosen instead of the mean as the distributions of the IRR’s were positively skewed. 

Table 4.3 Median minimum and maximum IRR for increasing 𝜏2 values 

𝜏2 
Median 

minimum IRR 

Median 

maximum IRR 

0.25 5.081 69.905 

1 1.376 239.265 

2 0.636 860.067 

3 0.275 2318.813 

 

From the table, the median minimum IRR tends to zero and the median maximum IRR 

increases as the value of 𝜏2 increases. In this way, the spread of the spatially varying 

coefficients, and thus the respective IRR’s, becomes greater in magnitude as 𝜏2 increases. 

The median maximum IRR is extremely large, even at its smallest when 𝜏2 = 0.25. 

Considering that for each simulation the vector of spatially varying coefficients consists 

of 1,110 𝜑𝑠𝑖
’s and we exponentiate the largest one to get the IRR, it is sensible that we 

would find enough large coefficients that the distribution of the outputted exponentiation 
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would consist of very large numbers. Furthermore, the MVN distribution was centered on 

three; in this sense, the assumed mean would suggest an IRR of eight. However, this does 

not imply that these IRR values are realistic.   

 Additionally, the power increased for a given value of the variance parameter as 

the number of simulated positive screens increased. This also is sensible because as more 

positive screens are observed, more block groups are associated with a spatially varying 

coefficient. In turn, the INLA model has more block group data from which to detect 

spatial variation. 

4.3 Limitations of Simulations 

 The power simulations are limited by setting the mean of the simulated MVN 

vector of spatially coefficients to three. Conceptually, setting the mean to a positive 

number was sensible under the hypothesis that answering ‘yes’ to the violence/abuse 

SDoH screener would be associated with more ED visits. However, the level of power 

observed from the simulations, especially for higher values of 𝜏2, may have benefited 

from setting the mean to three; setting the mean to something smaller in magnitude such 

as one might have resulted in less simulated power. 

 The values of 𝜏2 were chosen such that changes in power could be observed 

across the simulations. However, the information from Table 4.3 indicates that the IRR’s 

that would be implied by the larger values of 𝜏2 would not be realistically observed in 

real data applications for this given geographic setup. It may be possible that a different 

geographic region setup, and thus different 𝑫 and 𝑾 matrices, would produce more 

realistic simulated IRR’s for the 𝜏2 values used in this simulation study.   
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 A general limitation of the simulation is that the spatial distribution of the patients 

and the neighborhood system of the 1,100 block groups were taken directly from the 

Prisma Health data. Notably, the spatial distribution of the patients were centered around 

urban cities. Although using the pilot data setup allowed the simulation to be practical for 

what may be observed in real life, it also impacted the simulation as the neighborhood 

system directly influences the 𝑾 and 𝑫 matrices used to simulated the MVN vector of 

spatially varying coefficients.  

 Furthermore, since patients were clustered around cities, there were some block 

groups without patient observations. The INLA estimation procedure can handle empty 

regions, but we should be cautious about how accurate we view such estimates. 

Relatedly, it should be noted that the simulation study focused on the INLA 

methodology’s ability to detect variation across the block groups. The simulation study 

did not assess how biased the estimates of the spatially varying coefficients were. For 

example, it is possible to correctly conclude that spatial variation exists while also having 

biased estimates for the spatially varying coefficients. 
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Chapter 5: Prisma Health Data Application

 The INLA methodology was applied to the Prisma Health pilot data and the 

model of interest was the same as outlined in Chapter 3 and which served as the 

foundation of the simulation study. Specifically, the response to the violence and abuse 

SDoH screening question was assumed to have spatially varying coefficients and the 

reference level was ‘No’, which indicated a negative screen. From the total Prisma Health 

sample, 14 individuals screened positive for this SDoH need. The outcome variable of 

interest was the total number of ED visits after the index screen and the other covariates 

included in the model were smoker (Yes/No), female (Yes/No), primary payer 

(Medicare/Medicaid/Other), age at the time of the index screen, and the percent of 

follow-up time that fell between March 15th, 2020 and June 11th, 2020 to capture the 

effect of COVID-19 lockdown in SC. An offset term set to be the natural log of the 

number of days after a patient’s index screen was included and a zero-inflated negative 

binomial regression with a log-link was used. The vector of spatially varying coefficients 

was estimated with INLA. As with the simulations, all calculations and analysis were 

performed in R. 

 5.1 Results 

 There were two major model estimates of interest: the fixed effects estimates and 

the estimated vector of spatially varying coefficients. The estimates of the five non-

spatial covariates included in the model are summarized in Table 5.1 which includes the 

estimated mean and upper and lower bound of the 95% credible interval. 
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Table 5.1 Fixed effects 

Effect Mean 0.025 quantile 0.975 quantile 

Constant (intercept) -4.981 -6.920 -3.161 

Tobacco use (yes)* 0.434 0.098 0.748 

Age 0.003 -0.008 0.014 

Female* -0.361 -0.652 -0.069 

Primary payer: Medicare 0.296 -0.527 1.117 

Primary payer: Other 0.152 -0.723 1.000 

Primary payer: Missing 0.305 -0.563 1.169 

COVID-19 time % -0.107 -0.248 0.043 

*indicates a statistically important covariate 

 

Covariates which had their entire 95% credible interval entirely above or below zero 

were categorized as statistically important in predicting the mean number of ED visits per 

day after the index screen. From the model, the variables ‘tobacco use’ and ‘female’ were 

statistically important and their estimated means can be interpreted in the context of an 

IRR of mean ED visits per day after the index screen. Specifically, we estimate that 

individuals who use tobacco experience 1.543 times the incidence of ED visits per day 

after the index screen as compared to individuals who do not use tobacco. We also 

estimate that individuals who are female experience 0.697 times the incidence of ED 

visits per day after the index screen as compared to non-female individuals. 

 The estimated vector of spatially varying coefficients was used to conclude 

whether the association between answering ‘yes’ to the violence/abuse SDoH and the 

mean number of ED visits per day after the index screen varied across block groups. The 

maximum 0.025 quantile estimated for all spatially varying coefficients was 0.558, and 

the minimum 0.975 quantile estimated for all spatially varying coefficients was 1.285. 

Since the maximum 0.025 quantile estimate was not above the 0.975 quantile estimate, 

we do not have enough evidence to conclude the association of interest varied across 

block groups. 
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 Although the model did not suggest spatial variation, the estimates of the spatially 

varying coefficients for each block group may be important. If there is a specific block 

group or set of block groups of interest, then these estimates can be specifically drawn 

from the model output and viewed. It may also not be practical to view each individual 

block group coefficient alone, but the associations between answering ‘yes’ to the SDoH 

violence/abuse question and mean number of ED visits after the index screen for all block 

groups can be visualized with a map. As was done with the fixed effects coefficients, the 

IRR for each of the block groups was calculated and are shown in Figure 5.1. 

 
Figure 5.1 IRR for ED visits and positive violence/abuse screen across block groups 

From the map, we can see that the larger IRR values tended to cluster in block groups in 

the more northern and west block groups. 

5.2 Limitations 

 As noted in section 4.3, the patient observations were spatially distributed around 

larger towns and cities. In fact, there were 267 block groups with no patient data. 
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Although the INLA estimation procedure can handle empty sub-regions, we should not 

be as confident for estimates for block groups that do not have patient observations. 

Furthermore, only 14 patients screened positive for the violence/abuse SDoH variable for 

which spatially varying coefficients were estimated. Each of these patients resided in a 

different block group which allowed the model to utilize as much spatial information as 

possible. Nonetheless, we should be cautious in estimating spatial coefficients for 1,110 

block groups when only 14 block groups contain observations from the covariate of 

interest. Relatedly, this would negatively impact whether these estimates capture the true 

spatial variation of the association between the SDoH question and mean number of ED 

visits per day after the index screen across block groups. 

 Finally, there is the limitation of generalizability to other populations outside of 

the study’s geographic region of interest and individuals outside the types of health 

system care management on which the data was collected. Furthermore, since there was 

only data for 14 individuals with the violence/abuse SDoH need, there is a lack of 

generalizability of these results to other individuals who experience violence/abuse SDoH 

needs. Given the small number in the sample, we are not confident that the characteristics 

and demographics of these 14 individuals are representative of all individuals with such 

an SDoH need.
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Chapter 6: Conclusions

 Generalized linear models with spatially varying coefficients are flexible tools for 

analyzing health care data. Furthermore, such models allow one to determine if the 

association between a predictor and outcome variable of interest varies across geographic 

space. As health care systems become increasingly incentivized to study and intervene on 

SDoH, spatial models will provide an avenue to answer practical questions of interest 

regarding associations between specific SDoH needs. However, running such spatial 

models can be computationally expensive. The INLA estimation procedure offers a 

relatively efficient methodology to analyze spatial models. Given its potential for 

widespread use, an analysis of the INLA procedure under a variety of situations is 

warranted. 

 The simulation study in Chapter 4 was built upon data collected from a pilot study 

by Prisma Health which focused on SDoH needs. The goal of the simulation study was to 

assess the power of the INLA procedure in detecting true spatial variation in the 

association between responding ‘yes’ to an SDoH screener question and the mean 

number of ED visits per day after a screen, which was a highly zero-inflated variable. 

Furthermore, the type I error was also assessed. The simulation study found that the rate 

of type I error when using the INLA procedure was extremely low, practically zero, for 

both very small and large numbers of simulated positive SDoH screens.  

 Regarding power, it was found that as the variance parameter that governs the 

vector of spatially varying coefficients increases, the power of the INLA procedure also 
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increases. This was particularly true for larger values of simulated positive screens. 

However, for very low numbers of positive screens, such as the 14 positive screens 

observed in the pilot data, the INLA model was not able to detect spatial variation for any 

simulation. Furthermore, for a given value of the variance parameter, the power in 

detecting spatial variation increased as the number of simulated positive screens 

increased. 

 In the practical application of INLA in analyzing the Prisma Health pilot data, it 

was found that both tobacco use and being categorized as female were statistically 

important in predicting the mean number of ED visits per day after the index screen. By 

comparing the 95% credible intervals for the estimated spatially varying coefficients, it 

was found that the association between responding ‘yes’ to the violence/abuse SDoH and 

the mean number of ED visits per day after the index screen did not vary across block 

groups. 

 Both the simulation study and practical application were limited by the spatial 

distribution of the patients tending towards larger towns and cities. Furthermore, there are 

issues of generalizability of the study due to the specific geographic region of interest, 

forms of care management from which data was collected, and extremely low number of 

positive screens to the SDoH question of interest. Additionally, in the simulation study it 

should be noted that the multivariate normal vector of spatially varying coefficients was 

assumed to have a mean of three and that the IRR’s implied by the values of 𝜏2 used for 

simulation were unrealistic. Centering the distribution on a value lower in magnitude and 

using smaller values of 𝜏2 would likely decrease power.  
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 Future simulation studies should focus on regions with a more equal distribution 

of subjects across space and under the assumption of a weaker spatial signal for the 

vector of spatially varying coefficients. Despite these limitations, the current simulation 

study showcases the low type I error and high power, especially for larger numbers of 

positive screens, of the INLA procedure. And the practical application demonstrates the 

ease in which the INLA procedure can be applied to real life data.
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