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ABSTRACT

 In this thesis a novel vision-based AI driven autonomous ‘StakeBot’ is proposed 

to serve the agricultural 4.0 industries of the future. In recent years supply, demand and 

production of vegetables that are harvested from plants with weak stems like bell pepper, 

tomato, eggplant has been significantly up by several fold. With growing demand and 

new green-house establishments across the country production of vegetables will require 

a tremendous number of labors which will be hard to supply soon. To overcome the 

issues in addition to the labor shortages, automation through robotics will be the only 

viable solution. Plants like bell peppers require support to avoid contamination of the 

pepper from touching the ground. Thus, a workforce is needed to place these stakes on 

several acres of land. Alternatively, as adopted in greenhouses across the world, the 

stakes are placed at a longer distance and rope or wires are tied between them to create 

continuous support, which makes the plants grow even taller. This is indeed labor-

intensive work. To overcome the labor challenges in this thesis, an AI driven robotic 

solution is proposed that is capable of placing and removing stakes in the ground. With 

over 210,000 jobs, agribusiness is South Carolina’s No. 1 industry and will be 

immediately benefited by the proposed solution. The proposed robot is called the 

StakeBot. The StakeBot is an autonomous self-driving robot which meets the 

requirements provided by the local farmers from South Carolina. The uniqueness of the 

StakeBot is its self-driving capabilities which are made possible with a newly developed 
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vision system capable of successfully driving the StakeBot. This vision system utilizes 

Stereo depth technology paired with the capability of modern Linux based single board 

computers. This grants the StakeBot the ability to “see” making it capable of avoiding 

obstacles and making decisions on how to proceed based on the environment. The 

StakeBot’s vision system is not unique to the StakeBot alone. The developed algorithms 

can be intergraded for any robotic system that is designed for navigating through its 

environment. The vision system has shown great success with an average of about 15 

FPS, capable of fast response times for vehicles moving at speeds less than 7 MPH.
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CHAPTER 1: 

INTRODUCTION TO THE STAKEBOT

1.1 Motivation behind the StakeBot: 

With the constant improvements and newly refined developments in robotics 

steadily rising, many different companies have been able to provide better and more 

improved sensors and computers being more portable and more capable than ever before. 

As the use of robotics becomes more susceptible for a larger variety of tasks within 

various industries, the desire to turn towards automation has become a great alternative to 

traditional means of labor. For the agricultural industry, automation has been intergraded 

for various means with an attempt to keep production value high and for better quality 

control on their products. Typically, the use of an autonomous vehicle, however, is not as 

prominent mostly due to the technology being relatively new and that for some farmers, it 

goes against some traditions by eliminating the human touch element. As true with larger 

agricultural companies, the issue with the evolving world is the lack of sustaining a work 

force not because of financial endeavors but simply due to the lack of interest within 

many Americans today. Farming involves very labor-intensive work, and most 

companies are struggling to keep a large enough work force capable of keeping up with 

their high demands for produce and other crops. For a company to stay successful, they 

must adapt and overcome these struggles and the turn to robotics is the motivation behind 
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the development of an early-stage robot capable of reducing the need for a large labor 

force while not compromising on the demand of the product being supplied. 

In order to understand the market, research was conducted by reaching out to 

some of the local farmers here in the state of South Carolina. With the help of the South 

Carolina Department of Agricultural, (SCDA) some of the larger agricultural companies 

were able to express their current struggles relating to the lack of a work force. South 

Carolina is home to many farmers, large and small, and the majority of these companies 

expressed a need for automation within their planting process. For many farmers, the 

purpose of a work force is to ensure the success of the planting process.  

 

 

Shown in Figure 1.1, the planting process is a simplified way to describe the daily 

tasks involving the methods of maintaining and harvesting healthy crops. This process 

includes many different steps that require a lot of attention from the workers. For the 

early stages of introducing automation into their planting process, the task that was 

Build Plant Beds 
or Plough the 

Field

Plant Seeds or 
Small Crop

Drive Support 
Stakes into Bed 

Plot

Tie Support 
String Around 
Stakes 

• At different 
elevations along the 
stake in weekly 
periods until plant 
has reached maturity

Harvest Crop
Tear Down Plant 
Beds or Replough 

the Field 

Figure 1.1: Typical planting process for majority of crops in the agricultural industry.  
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chosen was simplified into one part of the planting process. The specific process that 

became the main focus was the automation of driving support stakes into the plant beds. 

For most plants, within their early stages of life, as they begin to grow and mature, they 

require extra support as the stems of the plant are not yet strong enough to support 

themself during these few weeks. This can cause the plant to either grow outward, and 

towards the aisle, where it will be in a location not suitable for healthy plant growth, or 

the stem could break causing the plant to die. This problem is common enough that the 

proper way to ensure healthy plant growth requires the use of support stakes to be driven 

manually by a worker in the plot next to the plant where the plant can safely grow 

upward and with proper support until the plant matures. For many of the farmers in South 

Carolina, the most common design of the bed plots is raised off the ground and 

constructed by other forms of machinery. For the focus of this project, the raised bed 

configuration was assumed and will factor into the design of the StakeBot.   

After many visits with the local farmers and with the desire to automate the stake 

driving process, the need for preliminary research was done. Research into the market of 

autonomous vehicles for the agricultural industry was to ensure that a stake driving robot 

doesn’t already exist and to gain a better understanding of robotics in the agricultural 

industry. 
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CHAPTER 2: 

PRELIMINARY RESEARCH

2.1 Early StakeBot Design Research:

Robots in agriculture are not a new concept. Robots have been aiding the process 

of planting, monitoring, or even harvesting for many years now. What has shown to be 

the upcoming innovation are the uses of neural networks (AI) and machine learning. For 

example, at the University of Cambridge, engineering students have developed the 

“Vegebot” that is capable of harvesting lettuce by using AI technologies such as deep 

neural networks to train a robotic arm to detect and pick lettuce. (Birrell, S, et al., 2020)  

 

 

Another example would be the company Harvest Croo who are a small startup 

company in Tampa Florida who have invented an autonomous robot capable of 

Figure 2.1: Vegebot robot created by the engineering students at 

the University of Cambridge for the purpose of harvesting lettuce. 

(Birrell, S, et al. ,2020) 
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harvesting strawberries using a vision system that uses AI and machine learning to detect 

strawberries ready to be picked. (Harvest Croo Robotics)  

 

 

What is interesting about this product is that it also can self-navigate through the fields 

while detecting obstacles such as debris or workers who might be working around it. It 

does this by using 3D LiDAR technologies to scan the area around the robot where it can 

constantly monitor the activity happening around it. This product also takes advantage of 

deep neural networking and supervised learning to make decisions about the harvest 

status of each strawberry. Finally, a robotic arm picker will pick the strawberries and 

collect them in the bins on the sides of the robot.  

One more company called Nexus who are out of Halifax, Nova Scotia, Canada 

have invented an autonomous robot capable for weeding the fields. (Nexus Robotics, 

2020)  

Figure 2.2: Harvest Croo’s robot capable of detecting and 

picking strawberries ready for harvest.  (Harvest Croo Robotics) 
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The Nexus robot is designed to detect the difference between actual crops and 

unnecessary weeds that grow around the drop. Weeds are invasive to crop growth where 

they can take nutrients away from the plants and must be eradicated. The Nexus robot 

uses supervised learning and neural networking to learn the difference between weeds 

and the crop at all stages of growth and can remove the weeds from the fields. (Nexus 

Robotics, 2020) The robot also uses cameras to self-navigate through the fields without 

any human intervention.  

After looking around the market, what is clear is that most of all the autonomous 

robots utilize a vision system and AI to either navigate or detect different crops, objects, 

etc. These technologies are not limited to any specific type of object. It is possible to train 

a neural network to detect any object assuming there is a large enough database for the 

system to learn from. For example, a highly popular detection network used in many 

different industries is the single stage detection neural network called YOLO.  

Figure 2.3: Nexus robot capable of picking weeds from the fields. 

Developed by Nexus Robotic 
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This network is a complex convolution neural network that extracts features from 

images of various objects as it attempts to learn the makeup and color of the object. (Li, 

Chuyi, et al., 2022) This network has been optimized by many different people in the 

computer science field. One of the popular networks currently is the YOLOv6 network 

which is an enhanced version of this network. The authors claim that it is about 1.4% 

more accurate with a 5% increase in time cost and runs about 21% faster than the 

previous adaptation of the network. (Li, Chuyi, et al., 2022)   

For the StakeBot’s autonomous navigation, as shown already in the current 

market, an AI driven robot has become the standard way of navigating through the 

agricultural fields. This concept was adapted, and a vision system was created to allow 

the StakeBot the ability for navigating by using stereo depth technology and an on-board 

Figure 2.4 YOLO detection image. This image shows how the 

YOLO algorithm detects objects, in this case, different lettuce 

plants are detected with blue boxes marking their location in the 

image. 
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AI to drive the StakeBot. Later in Chapter 5, more details about the vision system will be 

discussed. 

With a market full of autonomous, self-navigating robots already in the 

agricultural industry, the next bit of research was to find a robot that could satisfy the 

staking operations within the planning process shown in Figure 1.1. The closest product 

on the market is the ALMACO Stake Driver-Alley Marking System.  

 

This product can plow the fields and plant a stake all while being driven by a 

single tractor. (ALMACO) It is not autonomous, and it works in conjunction with 

plowing the fields. While this product does plant a stake into the ground, it overall does 

not meet the main focus for being autonomous. Another issue shows that this machine 

cannot work with raised bed plots which was an assumption and design constraint that 

Figure 2.5 Stake Driver-Alley Marking System. 

Developed by ALMACO 
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was made due to the farmers already adapting this type of configuration for their planting 

process. Most farmers are not willing to completely change their way of operation so, 

having a robot that specializes in just driving stakes for their current setup is required.  

The current market shows that there is not a type of robot that is capable of 

meeting many of the farmers’ specifications for what they want the StakeBot to achieve. 

What the market has shown is that autonomous capabilities for an agricultural setting 

have been possible for some time. Next, research in the development of vision systems 

was done to understand the various concepts and algorithms used for robotic self-

navigation.    

2.2 Early Vision System Research: 

 For vision systems, the current technology mostly uses RGB or depth imagery to 

capture visual information about the environment. As there are two different ways to 

analysis images, each provide their own unique capabilities and have been cleverly used 

in different ways for providing sight to a machine/robot. Some publications focus on the 

capture of depth as a means for a machine/robotic vision system. Many engineers have 

developed new ways to process depth information that can be captured by different 

camera sensors. There are different techniques for measuring depth using different types 

of sensors. Shown in Figure 2.6 are three major types of depth capturing methods are 

structured light and coded light method, stereo depth method and LiDAR method. 

Structured light and coded light depth camera are similar technologies that use a 

projection of light onto a surface and compares the pattern of light to a known referenced 

light pattern. As the object moves closer or further away from the sensor, the deformed 

pattern of light compared with the projected pattern will change and a depth value can be 
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calculated for each pixel. (RealSense, 2020) Certain drawbacks, however included light 

interference. If the environment is too bright or has too much light, this can interfere with 

the depth measurements. Typically, this type of depth sensing method is used indoors.  

 

The stereo depth method uses two separate stereo depth cameras that compare two 

captures images and due to the known distance apart from the two cameras, a depth 

values can be calculated for each pixel. (RealSense, 2020) These cameras, unlike the 

structured light/coded light cameras, benefit from extra light noise. Most stereo depth 

cameras will include an infrared light projector that increases the accuracy of the depth 

measurements for low light conditions. This depth method is most suitable for outdoor 

and indoor environments.  

Finally, LiDAR cameras are a time-of-flight method that bounces light off of 

objects where it can measure the time it took to travel to and from the object calculating a 

depth value. (RealSense, 2020) These sensors are typically used to measure specific 

distances and do not perform well in outdoor environments. For the purposes of the 

Figure 2.6: Different depth detection methods (RealSense, 2020) plants are detected 

with blue boxes marking their location in the image. 
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StakeBot, the stereo depth method is the most ideal method of depth capturing and has 

been chosen as the primary sensor configuration for navigation. 

There have been different processing algorithms pertaining to navigation 

including one being from an institution in Mexico called trajectory planning where the 

goal is to try and calculate new travel points in space to avoid obstacles while considering 

the robots size. (Básaca-Preciado et al. 2013) Figure 2.7 illustrates how the trajectory is 

planned and how the algorithm takes the size of the robot into consideration. 

 

 

Other approaches have been to try and estimate the velocities of objects as they 

approach the robot. (A. Cherubini, 2014) This allows for a better estimation of when to 

maneuver around certain objects, allowing for a dynamic change in response to the 

objects position. There are also certain algorithms that are well-known and are integrated 

within self-navigation including RANSAC and PEARL. RANSAC (Random Sample 

Figure 2.7: Mobile robot trajectory using trajectory planning algorithm 

(Básaca-Preciado et al. 2013) (a) isometric view (b) top view the blue 

circles are obstacles and the blue asterisks (*) show the boundary of the 

robot and the new navigation points. The red line shows the robot’s 

new path. 
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Consensus) was an algorithm proposed by Fischler and Bolles that estimates general 

parameters in a dataset with large amounts of outliers. (Derpanis, 2010) This algorithm 

allows for a more accurate assumption when analyzing the imagery data. PERAL is an 

iteration of RANSAC that enhances the capabilities of the algorithm and has been used 

for crop detection during navigation. (Malavazi, 2018)  

 

 Figure 2.8 shows how navigating between bed plots can be reduced to a line 

fitting problem that the author proposed to solve using the PERAL algorithm. This 

allowed for the robot to recognize certain crops with the LiDAR image while staying 

equidistance between the bed plots. Certain takeaways are present with this technology, 

Figure 2.8: The considered line fitting problem in between bed plots (Malavazi, 

2018) 
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being the majority of depth-based vision systems provide dynamic decision making, 

obstacle avoidance and, in the case of agricultural environments, crop detection. 

 For the RGB imagery, many different possibilities for autonomous navigation 

have also been explored. The majority of the research showed that many of the RGB style 

navigation is done by exploring different ways to extract “features” from the image. 

Subjecting machine learning algorithms to various datasets that describe the target 

environment is a fundamental way to train a robot to recognize and navigate through that 

environment.  

 

For an agricultural setting, in the paper by Diego Aghi, et al. shows a 

demonstration of machine learning where a robot was to navigate through the vineyard 

using machine learning algorithms and an RGB camera. (Aghi, 2020) The type of 

machine learning was supervised learning and the dataset was a collection of images that 

were split into three classes of perspectives and is shown in Figure 2.9. This dataset of 

images was captured across different weather conditions and different times throughout 

Figure 2.9: Example of three different samples of a dataset used to train a neural 

network for navigation presented in the paper by Diego Aghi, et. al. (a) shows an 

example of the left class of images which show a perspective towards the left of the 

vineyard. (b) shows the center class of images with the center view perspective. (c) 

shows the right class of images with the right view perspective. (Aghi, 2020) 
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the day which creates a more dynamic understanding of the environment for the robot to 

learn. (Aghi, 2020)  

For more machine learning techniques, the extracted features that exist within the 

image are done with certain algorithms, one for these being color-index-based 

segmentation where the image is converted to a gray scale with high contrast that allows 

for certain objects in the image to appear more vibrant. (Yuhao, et al. 2023) Another 

feature extraction algorithm is threshold-based segmentation which compares and assigns 

each pixel into categories depending on a specified threshold. (Yuhao, et al. 2023) 

Certain methods are used widely for RGB based systems and have been shown to provide 

successful means of navigating through an agricultural environment. Most of these 

algorithms pertain to machine learning methods or other image processing algorithms 

that help to identify the features or objects within the image. Certain fallbacks, however 

include too much sunlight being an issue with RGB vision systems. The research shows 

that majority of RGB based vision systems use neural networks to extract features within 

the image and are compared to various known datasets where the system can make 

decision based on the discrepancies between the know images and its perceived view of 

the current environment.  

In the next chapter, the StakeBot’s design process began with a list of 

requirements that took note of the various advancements in the field of robotic vision 

systems. This list of requirements also took influence from the current products that exist 

in the market today.  
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CHAPTER 3: 

STAKEBOT’S DESIGN

3.1 Introduction: 

 The next step involves the creation of design requirements that make the StakeBot 

appeal to the agricultural industry. This list of design requirements was created from the 

feedback collected from the local farmers and was organized into a table with target and 

fallback specifications. The table of design requirements, given in the next section, shows 

the current expectations for a robot performing the stake driving process. Many of these 

requirements were developed by farmers with relatively large fields and although some of 

the requirements are not met for the current StakeBot, the progress of developing an 

autonomous robot capable of stake driving is the major focus of this thesis. The current 

size of the StakeBot will have to be greatly increased to meet certain time constraints 

thus, the targeted market for the current StakeBot design is for smaller farmers with 

smaller fields (less than 10 acres of fields in operation).  

3.2 StakeBot Design Requirements: 

Table 3.1 shows a list of design requirements that became the motivation behind 

the development of the StakeBot. This table specifies the next challenges that the 

StakeBot must overcome to comply with many of the farmer’s standards. The design of 

the StakeBot meets the majority of these specifications except for requirement 2, 4 and 5. 

For these requirements, a larger scaled StakeBot was proposed and is under development 
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for phase 2, however, many of the assets of the current StakeBot’s design will carry over 

to this larger design in the future as many of the operations are still the same.  

Design Matrix 

No. Design Requirement Target Specifications 
Fallback 

Specifications 

1 
Robot must be able to drive both circular and 

square shaped stakes into bed plots 

Both circular and 

square 

Only circular 

stakes 

*2 

Robot must be able to carry enough stakes to 

complete a section of the field at a time before 

needing to be reloaded 

3 rows (1,116 Stakes) 1 row (372 Stakes) 

*3 

Robot must be able to navigate through the rows 

without inflicting self-damage or damage to the 

fields/crops 

Fully autonomous (no 

user control necessary) 

Partially 

autonomous (Some 

user controlling 

necessary) 

4 

Robot must be "smart" enough to differentiate the 

difference between a bell pepper plant and the bed 

plot 

Can detect the 

difference between 

any plant and its bed 

plot 

Can tell the 

difference between 

only a bell pepper 

plant and its bed 

plot 

5 
Robot must complete a field within a timely 

manner 

40 acers within 4 days 

(27,000 Stakes/day) 

40 acers within 7 

days (15,430 

Stakes/day) 

6 
Robot's primary operations include both driving 

and removing the stakes from the bed plots 

Capable of planting 

and removing 
N/A 

7 

Robot must drive Stakes in a pattern like 

configuration where every 100 ft is dedicated to 

being open where employees can navigate 

between the rows 

Every 100 feet needs 

to be a break between 

stakes of about 1 foot 

or one - two plants 

long 

N/A 

8 Robot must fit between bed plots 
Current design is 18" 

wide 
N/A 

9 Robot must tall enough to clear the bed plots 
Clearance will be 20” 

tall  
N/A 

10 

Robot must communicate to the end-user 

necessary information about its operations, 

battery life and other important details regarding 

its use and environment. 

User will have an 

application that will 

connect to the robot's 

internal WIFI to allow 

the end-user to control 

and receive 

information from the 

robot during operation. 

N/A 

 

There is, however, one major design component that was not known by the farmers that 

must be considered for development. This constraint is the force requirement of driving a 

Table 3.1: StakeBot design requirements (Entries with a * are further explained in 

Appendix A) 
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stake into the bed plots. In the next section, an analysis was performed to gain a better 

understanding of the force requirement needed for driving a stake into a raised bed plot. 

3.3 Stake Driving Experiment: 

 For the development of the StakeBot, one special design requirement that was not 

listed in Table 3.1 was the amount of force required to drive a stake into the bed plot. 

Many of the farmers claimed that their workers made little to no effort driving the stake 

however, for the design of the StakeBot, this force value is very important as it will 

define the strength of the materials required. With permission from a local farmer, a force 

experiment was done in late August of 2022 that provided a benchmark for the force 

required to drive both a circular and square support stake into the bed plots. Both types of 

stakes were used as different farmers prefer either circular or square stake. Circular stakes 

seemed to be the most popular amongst the different farmers, however some prefer 

square shaped. This preference serves no deviation from the planting process, however 

the targeted design requirement for the StakeBot must be compatible with both styles. 

The experimental setup is shown below in Figure 3.1 where a NI-9219 DAQ was used to 

collect force sensor data that was connected to a stake driving apparatus that was used to 

drive a stake into the bed plot.  

With the experimental setup shown in Figure 3.1, the experiment was repeated for 

both square and circular stakes at the fields of one of the local farmers. The performed 

experimental procedures were to load a stake into the driving apparatus push downward 

until the stake was 8 inch in the bed plot while recording force measurements using the 

DAQ. This was repeated 5 times for both square and circular type stakes. A laptop 

running SignalExpress 2015 was used to capture the DAQ data, and the apparatus used 
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wooden stakes to support itself upright with a level being used to ensure that the driving 

direction was normal to the earth’s ground. 

 

 The results for the Stake Driving experiment were analyzed and are shown in 

Table 3.2 below. The results include an averaged max force with a 15% factor of safety. 

The max force over all the trials was also recorded with an applied 15% factory of safety. 

For the design requirement, the force selected was the max force out of both stake types 

with the 15% factor of safety applied. 6.20 lbs. of force (Highlighted in green) were 

considered the required force needed to drive the stakes into the bed plots. This 

experimental result was partially justified by the local farmers who claim the force 

number seemed to be accurate to their experience, however this experiment does have a 

few errors that need to be addressed. First, there were some issues with the DAQ and for 

the square type stakes, only one force reading was captured. Second, the force experiment 

was only performed in one small location in the fields. This doesn’t take into 

Figure 3.1: Stake driving force experimental setup. This shows the setup being 

testing within the lab. 
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consideration any other potential debris that could make its way into the bed plots during 

its construction. 

  

 

 

For example, harder objects such as rocks could be hidden within the soil, and this could 

cause the force requirement to be dramatically larger. To compensate for the extreme 

scenarios, the minimum force requirement was increased to 25 lbs.  

Circular Stake Type Analysis Square Stake Type Analysis 

Average Max Force 3.34 lbs. Average Max Force 3.72 lbs. 

Factor Of Safety 15%   Factor Of Safety 15%  

Average With FOS 3.84 lbs. Average With FOS 4.28 lbs. 

  

Max Force 5.39 lbs. Max Force 3.72 lbs. 

Factor Of Safety 15%   Factor Of Safety 15%  

Max Force With FOS 6.20 lbs. Max Force With FOS 4.28 lbs. 

Figure 3.2: Stake driving force experimental setup in practice. 

 

Table 3.2: Stake driving experimental results. 
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 With a final design requirement of 25 lbs. of force, and the design requirements 

shown in Table 3.1, the development of the StakeBot was able to proceed.  

3.4 Proposed StakeBot Design:   

 

 The StakeBot is a fully autonomous robotic vehicle that is capable of driving 

support stakes into the bed plots of any agricultural field. This robot was designed with 

the majority of the local farmers’ planting operations being the standard. This means that 

Figure 3.3: StakeBot’s final design (Front ISO)  
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this robot can navigate through the fields and is designed to work around the lifted bed 

plots and various types of terrain. This StakeBot includes 3 various components that are 

listed in detail across the next three chapters. These components are the StakeBot’s Base, 

the main arms and the stake driving arms. There is one other component that is shown in 

the design and is seen on the back side of the StakeBot. Its responsibility is to hold and 

transport the stakes to the stake driving arms. The reason it is not listed in the next 

proceeding chapters is that it will not be discussed in this thesis due to its undesirable 

design.  

 

Figure 3.4: StakeBot’s primary functionality. The stakes are pushed to a pickup 

location (green arrow), The main arms move to the pickup location then over top of 

the bed plot (orange arrow). The stakes are driven into the ground by the attachment 

(red arrow). The StakeBot moves in the direction of the white arrow. 
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A new design will need to be implemented for the final product, however since it is not 

the main focus of this thesis, and for the sake of understanding, it is important to mention 

its responsibility. Even though there is currently not a fleshed-out design for the stake 

holster, the StakeBot is designed to accompany one both physically and 

programmatically. Shown in Figure 3.4 is the functionality of how the StakeBot’s 

components operate together.  

The StakeBot works by first retrieving the stakes from the holster which sits on 

the back of the StakeBot. Then, the arms move to retrieve the stakes, the grippers will 

grab the stake from the holster and then the stake driving arm will lower overtop of the 

stake. Once the stake is grabbed, the main arm will position the stake overtop of the bed 

plot and then the stake driving arm will drive the stake into the ground. After the stake is 

properly inserted into the ground, the StakeBot will drive to the next location and the 

process repeats. 

For ensuring that the structural integrity is met, a structural analysis and 

optimization needed to be performed. This optimization is important as to prevent over 

engineering the design. This means that the design should be built in a way that does not 

exceed the various structural constraints. For these arms, these constraints are as follows: 

beam stress, dimensional, beam buckling, lead screw stress and lead screw buckling. 

There are a total of 6 constraints with the dimensional being a combination of two 

separate dimension constraints. The two dimension constraints are set in place to ensure 

that the optimization algorithm keeps the C-Channel dimensions a minimal of 15% larger 

than the lead screw. This keeps the design physically possible as the lead screw must be 

able to fit inside the C-Channel. These constraints are important for the arm’s design as 
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they govern what the design is capable of. If any of these constraints are not met, then the 

arms could break upon operation. When performing the optimization, the objective 

function was to minimize the total volume of material used while still being structurally 

stable. The design variables are shown in Figure 3.5. They are the radius of the lead 

screw, and the dimension of the C-Channel leaving a total of 4 design variables.   

 

 

 For this design, the optimization constraints were calculated with the attachment 

under the assumption of 25 lbs. being moved across the bounds of the C-Channel. This 

means that for each constraint to pass, the 6 constraints were calculated with the 

attachment starting from the highest point to the lowest point. For the stake driving arms, 

the highest point is seen in Figure 3.5 at the far-left side which starts 1 inch away from 

the edge of the C-Channel. It then moves downward and stops 3 inches away from the 

Figure 3.5: Free body diagram of the StakeBot’s stake driving arms 

with the design variables shown underneath. l1 is the length of the C-

channel, l3 is the distance from the right side to the first attachment 

point, l2 is the length of the support arm, and M is the distance the 

attachment is from the far-right side. 
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far-right side (bottom) of the arm. In Figure 3.6, the constraints are shown at each point 

across the arm as the attachment moves from the left to the right (top to bottom). The 

constraint variable was considered passed if the max value didn’t violate the constraints. 

It shows that with a lead screw diameter of 3/8 inch, a width of 1.75 inches, a height of 2 

inches and a thickness of 1/8 inch, these design variables are suitable for handling the 

force of 25 lbs.

 

 

 For the stake driving arms, the maximum values of each of the 6 constraints are 

shown the Table 3.3. These values are the normalized values that indicate a percentage of 

Figure 3.6: Stake driving arm constraint values across the length of the arm. 

These values have been normalized with positive numbers being considered 

a violated constraint. The horizontal axis is the length of the beam, and the 

vertical axis is the normalized value of the respected constraint variable. 
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how much more capable the design is under these conditions. This algorithm and results 

were calculated using MATLAB and it shows that the most concerning constraint is the 

lead screw stress constraint. At this constraint’s max, there is only about 11% more stress 

the screw can handle before fracture however, this still means that the design will not fail 

even at this condition. Also, this condition only happens as the attachment moves closer 

to the bottom (shown in Figure 3.6) and this condition would be rare due to the average 

heigh of the stakes compared to the desired depth being driven. To add perspective, the 

stakes average about 3 feet tall and for majority case, they only need to be driven 8 inches 

in the bed plot. This would leave the attachment only moving 34 inches from the top 

leaving 8 inches away from the bottom bounds of the arm. This proves that the design at 

these dimensions is suitable.   

Table 3.3: Stake driving arm normalized design constraints. 

Beam 

Stress 

Dimension 1 Dimension 2 Beam 

Buckling 

Lead Screw 

Stress 

Lead Screw 

Buckling 

-0.9976 -0.7826 -0.8370 -0.9999 -0.1052 -0.9541 

99% 78% 83% 99% 11% 95% 

 

 Given that the design is suitable for supporting the force of driving the stakes, the 

StakeBot’s main arms also underwent the same calculations to ensure that the arms could 

carry the stake driving arms and support the forces during the stake driving operations. 

For this set of calculations, the design is the same as the stake driving arms except for 

both orientation and length. These arms are shorter and extend horizontally instead of 

vertically. This helps limit the buckling forces on the screw and the C-Channel, but the 

arms now require extra support. A brace was designed to compensate for this support, not 
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just for the main arms but also the inertial forces that act on the arms from the StakeBot’s 

movements. 

 

  

The plots shown in Figure 3.7 are the calculated max shear, stress, and moment 

diagrams during the scenario where force (F) value is applied across the total length of 

the arm. The max stress happens when L is at the far-right side of the main arm bounds. It 

is shown in the plots in Figure 3.7 that the max stress utilization for the C-Channel is 

54% showing a little over half of the arms’ structural capabilities.  

It is with these analyses demonstrating that the StakeBot is structurally capable of 

handling 25 lbs. of driving force. The design shows promise and is unlike anything in the 

current market. With this design the StakeBot is capable of maneuvering safely while 

Figure 3.7: Main arm structural analysis with the free body diagram shown. With L 

being the distance of the arm mover, RL being the distance from the supports, Ry1, 

Ry2, Rx1 and RMx are reaction forces and F is the force of the stake driving arm. 
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having the capability of driving the support stakes into the bed plots. In the next chapters, 

each of the StakeBot’s components are described in greater detail on their design and 

functionality. 
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CHAPTER 4: 

STAKEBOT’S BASE 

4.1 Introduction: 

 The first component of the StakeBot is its base. The base provides the StakeBot 

with the capability of movement and support for all other components. It also houses all 

major electrical components within and provides protection for the outside elements. The 

StakeBot’s base will be shown in greater detail with discussion about the decisions made 

to its structural and electrical components. 

4.2 Base Design: 

  

Figure 4.1: StakeBot base (Front ISO - Left), StakeBot base (Back ISO – Right) 

 

 The highlights of the StakeBot’s base, as shown in Figure 4.1, are the 6 

independently driven 13-inch tires, a tough aluminum build with a waterproof housing 

for the control system, a max speed of 7 MPH and a total weight capacity of 200 lbs. The 
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base was specifically designed to follow the requirements shown in Chapter 3, Table 3.1 

with the major design requirements being the dimensions and number of stakes to carry. 

The StakeBot must fit within the rows of the various plant beds whose minimum 

distances are 22 inches apart while also being able to transport a relatively large number 

of stakes. The design direction was to create a robot that fits between the rows while still 

being large enough to carry as many stakes as possible. During the initial visits with the 

local farmers, the majority of the farms with raised plant beds had a dimension of 8 

inches tall which influenced the height of the StakeBot.   

The final dimensions for the StakeBot’s base were designed to be 3 feet long, 18 

inches wide and 16 inches tall. The 18-inch width includes the tires and was designed to 

be as thin as possible. The 3 feet length was decided because of the desire to have a robot 

that can easily maneuver around the fields without being too long with respect to its 

width. The width to length ratio is 1:2 making the length only twice as long as the width 

and allowing for sensible maneuverability. The height being 16 inches was heavily 

dictated by the control system and other electronics that are housed in the center portion 

of the base’s body.    

The decision for the materials used to construct the base was chosen to be 6063 

aluminum parts due to it being easy to fabricate and its lower weight compared to steel. 

The decision of materials was chosen between either steel or aluminum as these are the 

most used materials for fabrication. The design required a base that was robust and able 

to withstand various weather conditions including hot or cold weather and tough terrain. 

Due to the nature of the environment, the StakeBot will be operating over uneven ground, 

mostly dirt or rock, sometimes mud depending on the weather conditions. To address 
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this, a 6-wheeled, independently driven 13-inch tire design was implemented. The tires 

are rubber, rated for 300 lbs. at 30 psi. with heavy treads that allow them to handle well 

over rough terrain and independently driven to allow for better handling over uneven 

ground. With 6 heavy duty tires, the weight capacity would rate somewhere around 1,800 

lbs., however the limiting factor is the DC motors which will be further discussed in 

Section 4.4. The 6063-aluminum used for the body of the base has a yield strength of 

23,000 psi. with a density of 0.0975 lbs./in3. Aluminum compared to steel, which has a 

density of about 0.283 lbs./in3, shows that aluminum is about 3 times lighter, this allows 

for significantly less stress on the tires and allows for more stakes to be carried by the 

base.   

The StakeBot’s base was designed to be the heaviest component keeping the 

center of gravity low. To achieve this, the heaviest components include the two batteries, 

and the 6 DC motors, are housed near the lowest point of the base’s body. This provides 

better stability for the StakeBot and keeps a balance around the center of the base’s 

body.  

4.3 Base Functionality: 

The StakeBot base’s functionality is to provide mobility to the StakeBot. The 

function of the drive wheels moves in a differential configuration meaning that the left 

three tires and right three tires can turn at different speeds. This allows the StakeBot the 

ability to turn at any radius including a zero-turn radius. The StakeBot’s base is 

controlled by either the on-board AI or the user through the StakeBot’s control system. 

The control system is housed within the center of the StakeBot’s base which provides 
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protection from the outside elements. In the next section, the base electrical system, 

which is the makeup of the control system, is discussed in further detail.   

 

 

4.4 Base Electrical System: 

As mentioned, the StakeBot’s base houses all the components of the controls 

system. Each of the components are shown in the wiring diagram above in Figure 4.3. 

These components are responsible for determining how the StakeBot functions and 

performs its duties. These components are attached to acrylic panels that are mounted 

inside the StakeBot base’s body. There are two panels with the top panel being 

removeable for ease of access and an electrical box that houses the RoboClaw motor 

driver which is responsible for controlling the base’s DC motors. The electronics are 

surrounded by aluminum rails and panels that keep the components protected from the 

elements. The panels are sealed but are not completely waterproof.  

Figure 4.2: StakeBot base’s functionality with arrows 

showing the possible directions that the StakeBot can 

move. 
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Figure 4.3 Electrical diagram of the control system inside the StakeBot’s base. 
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 The entire controls system is made up of various components that are responsible 

for specific operations. The Jetson Nano and PYNQ-Z2 boards are the heart of the 

controls system. The Jetson Nano is responsible for operations including vision control, 

user to machine and machine to machine communication, and motor controls. The 

communication protocol is handled by the Jetson Nano due to its WIFI capabilities and 

uses the MQTT protocol which is a lightweight open messaging protocol developed for 

IoT devices. (Steve, et al., 2021) The MQTT communication protocol allows for the user 

to communicate instructions to the StakeBot and for the StakeBot to convey any 

information deemed necessary for the user such as battery life, any problems with the 

operations, etc. The MQTT protocol is also how the Jetson Nano communicates to the 

PYNQ-Z2 board where it receives instruction on how to proceed. The Jetson Nano also 

controls the RoboClaw motor drivers by translating commands sent to the driver into the 

correct power output for the DC motors. Lastly, the vision system is a complex series of 

algorithms that use the RealSense D435 sensor to determine objects within its path and 

other capabilities pertaining to the movement of the StakeBot. More on the vision system 

will be discussed in Chapter 7.    

The PYNQ-Z2 board is responsible for controlling the various components that operate 

the various StakeBot subsystems who are responsible for tasks such as the stake driving 

operations and StakeBot navigation. The PYNQ-Z2 board is a micro-computer hosting an 

FPGA chip running a Linux operating system like the Jetson Nano. This board is unique 

in its design for machine learning and other robotic applications. The purpose of this 

board is to host the AI that is responsible for completing the job at hand. All the 

StakeBot’s operations are given instructions from this board. For example, the AI will tell 
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the Jetson Nano to move to the next location following the GPS subsystem which 

provides latitude and longitude data. Once the StakeBot has reached the location it will 

inform the PYNQ-Z2 board who will then command a stake to be driven. The stake 

driving subsystem will then perform a stake driving operation and once that stake has 

been planted, the process repeats. To better visualize the PYNQ-Z2’s operations the 

diagram shown in Figure 4.4 illustrates the flow of logic for the StakeBot’s control 

system. It's best to think of the PYNQ-Z2 board as a manager, all the other components 

follow the instructions given to them by the manager being either instructions on what to 

do or asking for information handled by the respected device. The other devices will 

respond depending on the situation it finds itself in. For example, the Jetson Nano may be 

instructed to move to the next staking location, however, there appears to be a giant rock 

in the way which was picked up by the Jetson Nano’s vision system. The Jetson Nano 

will respond to the PYNQ-Z2 board with the issue. The PYNQ-Z2 board will either 

respond with an alternative instruction or will tell the Jetson Nano to inform the user 

about the giant rock. For a more descriptive understanding of the controls system 

between the PYNQ-Z2 board and Jetson Nano will be discussed in greater detail later in 

Chapter 8.  

The control system is what makes the StakeBot function, and it is crucial that it 

remains protected and unaffected from any outside forces or elements. The StakeBot’s 

base provides adequate protection and is designed to be robust and strong enough to work 

in an agricultural setting. The next component is the StakeBot’s main body and will be 

the subject for the next chapter. 
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Figure 4.4 Diagram of the flow of logic between the PYNQ-Z2 board and other parts of 

the controls system. 
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CHAPTER 5: 

STAKEBOT’S MAIN BODY

5.1 Introduction: 

 The next component to the StakeBot is the main body. The main body serves as a 

means of positioning the stake driving arms (discussed in the next chapter) either over the 

bed plots for driving or in the home position for retrieving a new stake. The details and 

decision for the design as well as the controls and functionality are discussed in the later 

sections.  

5.2 Main Body Design: 

  

Figure 5.1: StakeBot's main body (Front ISO - Left), StakeBot's main body (Back ISO - 

Right) 

 

 The StakeBot’s main body includes two side arms that move outward and inward 

to allow the StakeBot driving arms to maneuver overtop of the plant beds allowing the 
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stakes to be placed accordingly as shown in Chapter 3, Figure 3.4. The arms are 

supported by a brace that allows for support against inertial forces for when the StakeBot 

is in motion and are attached to the main body’s cylinder. The main body’s cylinder 

houses stepper motors that are used to control the arms and are supported by a custom 

plate that holds the motors in place by attaching to the inside of the cylinder. Details are 

shown in Figure 5.2. The main body’s cylinder is made from PVC plastic and the brace is 

made from thin steel tubing. 

  

Figure 5.2: StakeBot's main body motor mount attached and assembled (Left), StakeBot's 

main body motor mount (Right) 

 

The motor mount attaches with machine screws from the side wall through the 

cylinder, and the motors are fastened to the face plates that extrude from the base of the 

motor mount. Slots are cut out to allow for wires to extend down into the StakeBot’s base 

which houses the electronics. The motor mount is made from a 3D printed nylon glass 

filled material.  
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The StakeBot’s main arm includes components that make up a typical electrical 

linear actuator with an aluminum C-Channel housing the components and is shown in 

Figure 5.3. The arm allows the StakeBot’s stake driving arms to move inward and 

outward from the main base. The arms are responsible for retrieving a stake from the 

retrieval point and to position the stake driving arms over top of the bed plots.  

  

Figure 5.3: StakeBot's main arm (Front ISO - Left), StakeBot's main arm (Back ISO - 

Right) 

 

The arms attach to the main body by the arm covers which are designed to wrap 

around the cylindrical shape of the main body. The end caps are designed to fit over the 

opposite end of the arms for added protection. These components were 3D printed with 

nylon glass-filled material.  

The inner workings of the StakeBot’s main arms are shown in Figure 5.4. Here 

the linear actuator-style arms include a lead screw, two lead screw holders housing ball 

bearings and the arm mover which pairs with the slider that holds the stake driving arms. 

These arms have a slider track and slider attached to the top of the aluminum C-Channel 

that moves with the arm mover. Attached to the slider will be the support arms for the 

stake driving arms (shown in Chapter 6) which will help to counter the moment forces 
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that are generated by these arms during operations. The arm movers are restricted 

between the limit switches and the lead screw directly connects to the stepper motors by 

the motor coupling that are housed inside the StakeBot’s main body.  The arm movers 

have flat bellows on either side that extend and retract with the mover and keep all the 

inside components protected. The arm mover and the lead screw holders are made from a 

3D printed nylon glass-filled material. The lead screw is stainless steel, the slider track is 

a harden steel and the rest of the components are 6063-aluminum. 

 

Figure 5.4: StakeBot's main arm inside view, showing the main components of the linear 

actuator. The main components are the arm mover (red), limit switches (purple), lead 

screw (yellow), lead screw holders (orange) slider track (green), slider (dark grey), and 

the motor coupling (black) 

 

5.3 Main Body Functionality:  

The StakeBot supports two main arms that hold the stake driving arms and is 

shown in Figure5.5. These arms move left to right together simultaneously which helps 

keep the StakeBot balanced. The StakeBot must be positioned directly between the bed 

plots when driving the stakes. This ensures that the stakes are driven in approximately the 

same location relative to their respected bed plots. The StakeBot’s AI is responsible for 

keeping this equal distance position as it moves down the bed plots rows. The AI does 
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this by using the Intel RealSense sensor mounted to the front of the StakeBot’s base. 

(Details on how this works are discussed in Chapter 7) The purpose of the main arms is 

to allow the stake driving arms to retrieve a stake from the StakeBot, then to positions 

these arms over the bed plots where the stake driving arms can then proceed to plant the 

stakes.  

 

Figure 5.5: StakeBot's main arm functionality. The black arrow shows the direction in 

which the arm movers are allowed to traverse. 

 

 The main arms are controlled by stepper motors which allow for a precise 

calculated movement by the stepper motor driver. These motors ensure that the arms are 

always at a precise location. In addition to the stepper motor’s capability of keeping a 

precise location relative to the main arms, limit switches were installed that serve two 

major purposes. First, they allow the stepper motor driver the ability to calibrate the 

positioning of the movers. Second, the limit switches serve as a safety feature. In the 
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unlikely event of a miscalculation by the stepper motor driver, if the mover attempts to 

move to a location outside the arms bounds, dictate by the location of the limit switch, the 

stepper motor driver will stop in the event the limit switch is triggered. 

5.4 Main Body Electrical System: 

  Each of the main arms are controlled by a stepper motor that is 

bounded between two limit switches. The motors and switches for both arms are 

connected to the main arm stepper motor driver. The driver is responsible for controlling 

the movements of both motors independently for each arm. These movements are 

measured by a local coordinate system whose origin is at the limit switch closest to the 

StakeBot’s main body cylinder. A coordinate frame of reference and the distance from 

that reference is stored on the driver. This is made possible due to the unique electrical 

capabilities of the stepper motor. Stepper motors are special DC motors that are 

controlled by electrical pulses provided by a host device, in this case, a microcontroller. 

Inside these stepper motors are two magnets whose power state alternates with each 

pulse. When a magnet is active the motor will rotate a set degree, this is called a step. It is 

possible to calculate the number of steps per distance by knowing the pitch of the lead 

screw. For the StakeBot’s arms the lead screw’s pitch is 1 inch meaning that one rotation 

will move the arm mover 1 inch. The number of pulses is also controlled by the driver, 

this is how the resolution of the distance traveled is set. For the case of the StakeBot, the 

number of pulses per rotation is set to 51,200. To achieve the desired resolution of 0.01 

inches, the number of pulses per step is set to 512. The stepper motor driver 

communicates to the PYNQ-Z2 board the information on the location of the arm movers.  
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Figure 5.6: Main arm electrical diagram
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They also receive instructions on which position to move to, with respect to their local 

coordinate system.  

Shown in the wiring diagram above in Figure 5.6, the stepper motors and limit 

switches are wired into a three separate wire harness. These harnesses allow for the 

components to be easily removed in the event maintenance is required. There are only 

three unique plugs that are required for the stepper motor driver. The limit switches are 

all connected into one plug preventing the technician from installing the switches 

incorrectly on the driver. The motors are also labeled motor A and motor B at both the 

switch connections and on the motor driver to prevent any confusion when replacing the 

components if needed.  

The StakeBot’s main arms are designed to move the stake driving arms to a 

desired location whose controls are handled by the stepper motor driver. The main arms 

are designed to handle the inertial forces and to support the stake driving arms. They 

attach to the StakeBot’s main body and are easily removeable if repairs are needed. 

Overall, the StakeBot’s main arms satisfy the requirements needed for transporting the 

stake driving arms to and from the StakeBot’s base allowing the stake to be driven in the 

correct location of the bed plots. The next component is the stake driving arm and will be 

the subject for the next chapter. 
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CHAPTER 6: 

STAKEBOT’S STAKE DRIVING ARMS

6.1 Introduction: 

 The next component is the stake driving arms. These arms are responsible for 

driving the stakes into the bed plots. This is possible with the design of these arms and in 

the later sections, a detailed discussion on the design and control is given that shows the 

stake driving arm’s capabilities and functionalities. 

6.2 Stake Driving Arm Design: 

   

 

As mentioned, the StakeBot’s stake driving arms are responsible for planting the 

stake into the bed plots. The arm is similar in design to the main arms as both are 

Figure 6.1: StakeBot's stake driving arm 

(Front ISO - Left), StakeBot’s stake 

driving arm (Back ISO - Right) 
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electrical linear actuators controlled by a stepper motor. The stake driving arm attaches to 

the main arm movers and is supported by a steel arm attached to the back of the C-

Channel. The arm has a removeable attachment on the front that the user can change 

depending on the type of operation needed. The arm also had an electric gripper used for 

grabbing and holding the stakes.  

 

Figure 6.2: StakeBot’s stake driving arm inside view, showing the main components. The 

main components are the lead screw (yellow), the arm mover (red), the stepper motor 

(black) and the limit switches (purple) 

 The main components are similar in design to the main arm. There is a lead screw 

connected to a stepper motor with the arm mover free to move between the bounds of the 

limit switches. The motor mount and the end cap (where the gripper attaches to) both 

house ball bearings that support the lead screw. The motor mount and end cap are made 

from a 3D nylon GF material, the lead screw is stainless steel, the arm support in the back 

is made from steel, and the rest of the components are aluminum.  

The stake driving attachment is used for adding additional force during the stake 

driving operation. The attachment is an electric linear actuator design for around 25 lbs. 

of additional force and can hold both circular and square shaped stakes. In the event the 

stepper motors stall while trying to drive the stake, the linear actuator can provide 

additional force to drive the stake while not exceeding the arms force rating (discussed in 
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Chapter 3). The linear actuator is housed inside the linear actuator case that is designed to 

attach onto the stake driving arms and is made from a 3D nylon GF material. 

  

 

 These arms allow for the driving attachment to be easily replaced with different 

attachments that serve a different purpose. This allows for future expansion of other types 

of stakes manipulating operations such as a stake pulling attach for example. Currently 

the only attachment available is the stake driving attachment. 

6.3 Stake Driving Arm Functionality: 

For the StakeBot’s stake driving arms, a stake is grabbed by the gripper and the 

attachment lowers over top until it is firmly pressed against the stake. The attachment has 

a grove connected to the bottom that helps align the stake into the center of the 

attachment, directly underneath the linear actuator. With the gripper and the attachment 

over top of the stake, the main arms will then move the stake driving arms over the 

Figure 6.3: StakeBot's stake driver 

attachment (Front ISO - Left), StakeBot's 

stake driver attachment (Back ISO - Right) 
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desired location for driving the stake. The gripper will slightly loosen its grip allowing 

the stake to slip through as the actuator pushes towards the ground. Then the actuator will  

Figure 6.4: StakeBot's 

stake driving arm 

functionality. The red 

arrow shows the direction 

in which the attachment is 

allowed to move. 
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begin to drive the stake into the bed plot until it is at the desired depth specified by the 

user. If the stepper motor driving the arm begins to pull too much current, meaning that 

the force needed to plant the stake is too much for the arm’s stepper motor, the actuator 

will activate and will provide the extra force required to drive the stake. This current 

draw is monitored by the stepper motor drivers and is indicated to stop moving if the 

current is too high. This process keeps the stepper motors from experiencing stalls which 

can extend the lifetime of the arm’s stepper motors by preventing damage.   

 The stake driving arms functionalities are similar in design to the main arms 

where both use a stepper motor to move a mover back and forth. The difference here is 

the added functionality of the gripper and the attachment. All the moving components 

must work together to perform this operation. This operation is called a stake driving 

operation which is the action of driving the stake into the bed plot.  

6.4 Stake Driving Arm Electronical System: 

The StakeBot’s stake driving arms include four electrical components that need 

controls. Similar to the main arms the stepper motor and limit switches are controlled by 

a stepper motor driver. This stepper motor driver is the same type of driver as the one for 

the main arms, however, both are controlled by the PYNQ-Z2 board. The linear actuators 

are connected to an actuator driver which provides the corrected power output needed to 

extend and retract the actuator. The linear actuator attachment works similar to the main 

arms and stake driving arms where the DC motor controls the movement of a piston that 

is housed inside the casing and is bounded between two limit switches. 
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Figure 6.5: Stake driving arm electrical diagram
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  For the stake driving operations, the PYNQ-Z2 board runs an algorithm that will 

perform the driving operation. This algorithm is called stake driving operation and 

appropriately controls the necessary movement needed to drive the stake. This algorithm 

starts after retrieving a stake from the StakeBot, then it preforms the stake driving 

operation. The algorithm monitors the information coming for the stepper motor drivers 

where they will communicate the status of the movement of the stepper motors as the 

operation proceeds. As mentioned before, the current drawn from the stepper motors are 

monitored by the drivers, if a stall occurs, which happens if the current exceeds the 

steady state recommendation of the stepper motor, the motors will stop, the algorithm 

will then command the linear actuator attachment to continue driving the stake into the 

bed plot. After the stake has been driven into the bed plot, the algorithm ends and the 

PYNQ-Z2 board moves on to the next operation.  

 The StakeBot’s stake driving arms are what make the StakeBot capable of 

completing its purpose. The controls systems utilize the components from the stake 

driving arm in a way that allows for the stakes to be driven into the bed plots. The force 

required to drive a stake into the bed plots were analyzed during a force experiment 

discussed in Chapter 3. The results showed that on average, the amount of downward 

force needed to drive a stake into the plant beds was about 6.20 lbs. of force. The 

decision to add the linear actuator attachment was to take account of all the unforeseen 

scenarios that could arise when driving a stake. Having a liner actuator capable of 

pressing with 25 lbs. of force is greatly suitable for most scenarios or possible outliners 

that may happen to require a significantly larger amount of force.  
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CHAPTER 7: 

STAKEBOT’S VISION SYSTEM AND AUTONOMOUS DRIVING

7.1: Introduction to Autonomous Driving 

 The StakeBot is designed to be a fully autonomous vehicle capable of 

automatically driving support stakes into the bed plots. The term autonomous, as defined 

for the purposes of the StakeBot’s functionality, is the capability of operating without any 

intervention from its user. By this definition, for the StakeBot to be autonomous, it must 

be able to self-navigate through its environment and self-operate as a machine capable of 

driving support stakes.  

 The desire to create a self-contained system that can operate autonomously stems 

from most of the local farmers lacking a labor force. Having the ability to pass the task of 

driving stakes to a machine is only beneficial if that machine can reduce the need for the 

number of workers dedicated to this task. If the StakeBot had to be manually controlled 

by a user, then there is no reduction in labor, just a different approach to achieve the same 

task. For the intended operations of the StakeBot, the idea is to assign one worker in 

charge of the StakeBot where they can monitor the behavior of the machine as it 

preforms the task of driving stakes and only intervene when a situation occurs that the 

StakeBot cannot overcome. These issues may be running out of stakes, bed plot row 

being blocked by too large of an object or running low on battery. With the StakeBot, a 

worker’s responsibility can be greatly reduced as they would only have to monitor the 
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StakeBot’s performance during operation. They also could decide to split the work, 

having the StakeBot work one side of the field while they work another. Either way, the 

workload for the worker is now reduced, allowing the stake driving process to be 

completed faster and with less workers than traditional means. 

 With the advancement in technology over the past 20 years, computers have 

become faster and smaller, and sensors have become smaller and more reliable. For self-

navigation capabilities, the StakeBot has been equipped with a vision system. This vision 

system allows the StakeBot to “see” and “perceive” the environment around it. Here, the 

concept stems from how a human uses sight as a way of navigating and perceiving 

different objects. This biological approach is possible by using an ordinary RGB camera 

for color detection and depth cameras for depth detection. For the StakeBot’s vision 

system, the Intel RealSense D435 camera was used as it is capable of streaming both 

RGB camera and depth camera images together at around 30 FPS.  

 

 

Figure 7.1: Intel RealSense D435 camera (Depth 

Camera D435, 2022) 

 

 



 

53 

5
3
 

 The D435 camera uses stereo depth technology which is ideal for outdoor 

environments. As discussed in Chapter 2, the stereo depth method benefits from 

excessive lighting conditions and with the IR projector, this camera can reliably output 

depth images to the Jetson Nano in both high and low levels of light. This sensor is paired 

with the Jetson Nano and the images captured by the D435 sensor are further processed 

to aid in the understanding of the environment around the StakeBot. Finally, for complete 

navigation, the StakeBot also uses a GPS sensor that monitors it position offering its 

information to the onboard AI where it then commands the StakeBot when a specific 

distance has been reached. 

7.2: StakeBot’s Vision System 

 The StakeBot’s vision system sets out to achieve the capabilities of “sight” that 

allow for self-navigation. The vision system was developed with a specific framework 

that would allow this system to not only work for the StakeBot, but also for any robot 

moving forward. This means is that the software used to analysis the incoming depth and 

color data from the sensor is modular and as long as the developer has the same 

hardware, they can use this system to develop autonomous software for their robot.  

 In Figure 7.2, the framework shows how a series of image processing algorithms 

are organized across the software that was developed for robotic vision. Here the 

algorithms are split into two main categories, depth data and color data. These categories 

help organize the type of image processing algorithms that exist within the framework. 

This framework allows for additional methods to be implemented that are used to define 

certain attributes. These attributes are the results of the type of method used for 

processing an image and are accessible across all parts of the computer. For example, the 
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closest object depth method will store information about the depth of the object that is 

closest to the sensor within the attribute called closest object depth. 

 

 

 This framework allows the developer to stack these various image processing 

algorithms to help shape the type of image that would allow their robot to gain a better 

understanding of its environment.  

  The order of processing algorithms for the StakeBot are shown in Figure 7.3. As 

depicted in Figure 7.2, these algorithms are organized in a framework and can be used in 

any order for both depth and color data. The StakeBot’s series of image processing starts 

with ground detection where the ground is detected within the depth image, then that 

image is passed to the find boundary algorithm and so on. 

Figure 7.2: Vision system’s framework at its current state. 
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In the next few sections, these algorithms are discussed in greater detail where the 

end goal is to shape the depth image and extract the necessary information needed for 

self-navigation.  

7.2.1: Ground Detection Method 

 If thinking about what makes a person capable of navigating through a path, the 

first assessment is to look at the ground. The ground is our first clue as to whether 

Figure 7.3: The current stack of 

algorithms that the StakeBot currently 

uses for processing the depth images. 
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navigation is possible. If the ground is clear of obstruction, then it is safe to proceed 

otherwise a different alternative path may be a better approach. It is with this ideology 

that will become the center of the vision system where the StakeBot will always have the 

ground in its view. Now, before any decision about the objects obstructing the path is 

made, first the distinction between the ground and the rest of the environment must be 

assumed before there can be any other assumptions about the path. This is the purpose of 

the ground detection method. 

 The ground detection method works by eliminating the ground from the view of 

the depth sensor to prevent the other methods from considering the ground as a potential 

object within the StakeBot’s path. It does this by first creating a frame of reference which 

will help to better locate the position of each pixel of depth information by assigning an 

X, Y, Z value. This concept of ground detection and the method of distinction was 

inspired by authors Junji Eguchi and Koichi Ozaki, and their paper titled Extraction of 

drivable area using 3D range sensor. (J. Eguchi and K. Ozaki, 2016) In their paper, the 

authors demonstrate how they created a method called step-extraction which allows a 

robot to determine different elevations with respect to the ground. These different 

elevations are then used to determine if there is an up-step or a down-step along the path 

of the robot. This information allows the robot to determine if the drivable area has a 

cliff-like obstacle or a wall-like obstacle.  

 In the paper by Junji Eguchi and Koichi Ozaki, they explain their approach to 

develop their step-extraction method by first defining a frame of reference and then 

converting the depth data into a cartesian coordinate system. (J. Eguchi and K. Ozaki, 

2016) Given the nature of the depth information, the X, Y and Z conversion follows the 
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conversion formulas from a spherical coordinate system to a cartesian system. Shown 

below in Figure 7.4 is an illustration of the depth sensor data shown in a spherical 

coordinate system. 

 

  

For the conversion from spherical coordinates to cartesian coordinate, all the 

information needed comes directly from the depth camera. The value of 𝑙 is the depth 

value at any pixel, the value of 𝜙 is the horizontal angel and 𝜃 is the vertical angle. The 

RealSense D435 camera has a field of view of 74 degrees in the horizontal direction and 

62 degrees in the vertical direction. The orientation of the camera sensor is -5 degrees 

from horizontal. Given the resolution of the camera being 640 x 480, the 𝜙 and 𝜃 can be 

calculated depending on location of the depth value. With each spherical coordinate value 

known, the conversion to cartesian coordinates is shown in the equations below. 

 

Figure 7.4: Representation of one depth value 

point on a spherical coordinate system. Given 

that the depth data is in millimeters, the units 

for the X, Y and Z axis are also in millimeters. 

(J. Eguchi and K. Ozaki, 2016) The cube 

represents the camera sensor. 
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𝑋 = 𝑙 𝑐𝑜𝑠(𝜃)cos (𝜙)     Eq. 1 

𝑌 = 𝑙 cos(𝜃) sin (𝜙)     Eq. 2 

𝑍 = 𝑙 sin (𝜃)      Eq. 3 

 These coordinates are stored in a matrix that can be accessed by any part of the 

software. These coordinates are calculated for each frame of the incoming depth data for 

the ground detection method, the Z values are analyzed to determine the ground. This 

analysis is done by identifying the minimal Z values within each of the depth data plus a 

small tolerance that can be adjusted by the developer. The values that fall below this 

threshold are then marked and are ignored. For demonstration purposes and for later 

debugging, the vision system has the ability for the developer to preview the depth data in 

a format that clearly conveys the depth information. This format is called color-mapping 

where the different depth magnitudes are given different colors that make previewing the 

images easy to understand. Shown below is a comparison between the same depth image 

that shows one image with ground detection and the other without. 

 The images shown in Figure 7.5 clearly represent the capabilities of the ground 

detection method. Notice that the ground is hard to identify in the left image as the walls 

blend into the ground surface. This can even make the distinction of where the objects 

start in relation to the ground harder to recognize. With the ground detection method, this 

distinction of the ground and everything else is very clear. The vision system can now 

better identify objects by making this distinction. 
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Figure 7.5: Vision system showing the color mapping of the depth values without ground 

detection, (Left) and with ground detection. (Right) 

  

 For self-navigation, understanding the ground defines the possible driving area for 

the StakeBot. Given this information, the next identification that needs to be 

distinguished would be the difference between the objects within the direct path of the 

StakeBot and the rest of the environment. For this method, the feature to extract would be 

the boundaries of the physical robot compared to the view of the camera. 

 7.2.2: Boundary Detection Method 

 The boundary detection method is used to better focus the other detection method 

on only parts of the view that are within the direct path of the StakeBot. Similar to how a 

human would assume whether they could physically make the journey pass certain 

objects. If the path is too narrow, then the path is no longer suitable to travel along. This 

is what the boundary detection method aims to achieve.  

 This method is simple as it allows the developer to define an area of focus 

depending on the physical constraints of the robot. This method is adjustable and 
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depending on the robot’s size, only a certain view from the depth camera is necessary for 

monitoring. This method will eliminate the view outside of the focused area by defining a 

vertical and horizontal threshold. The vertical threshold will preserve the depth data by 

moving a plane on the X-axis from the center of the image out towards a distance on both 

sides from the center of the image and the horizontal threshold defines the distance from 

the top of the image down to a distance on the Z-axis. Figure 7.6 shows an illustration of 

how the boundary detection method defines the focused area. 

 

Figure 7.6: Boundary detection illustration. The V values represent a Y-plane’s distance 

from the center of the image to a distance on the X-axis. The H value is a Z-plane’s 

distance from the top of the image to a distance along the Z-axis. 
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 For the StakeBot, the dimension of its width and height defines the area of focus 

for this method. With the camera being centered to the front of the StakeBot and the 

width being 18 inches, for the boundary detection method the V value is 228 millimeters 

(about 9 inches). This number was rounded up to 254 millimeters (about 10 inches), 

leaving about an extra half an inch beyond the physical bounds of the StakeBot on both 

sides. The H value was not set because the StakeBot is around 5 and a half feet tall which 

would put the horizontal plane beyond the measurable distance that the depth camera can 

measure. (Being over 18 meters) Shown below in Figure 7.7 is a depth image of the 

boundary detection method used for the StakeBot’s vision system. 

 

 

 Figure 7.7 shows how the focus of the vision system has been limited to only the 

area that would directly interfere with the StakeBot. Any objects within these bounds are 

potential obstacles that would impair the StakeBot from progressing on its path. As 

shown in Figure 7.7 there are two objects that are in the path of the StakeBot but only 

Figure 7.7: Vision system showing the color 

mapping of the boundary detection method. 
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partially. This method makes finding objects within the path of the StakeBot more 

practical during its navigation. The final step is to now detect the closest objects within 

the direct path of the StakeBot. 

 7.2.3: Closest Object Detection Method 

 The final method used for self-navigation and the final step for processing the 

depth image is the closest object detection method. This method is the most intuitive to 

understand. When moving along a path, if an object is directly in the path one is 

traveling, then certain decisions need to be made in order to avoid the object. What is 

often important is understanding the distance away the object is in relation to the path 

being traveled. Having depth allows for decisions such as when to slow down or which 

direction to begin turning. All of the previous methods are designed to help increase the 

accuracy of object detection within the immediate path of the robot. This detection is 

important as it will directly influence the movement behavior of the StakeBot.  

 The closest object detection method simply returns the minimal depth pixel for 

each frame and the location of the pixel within the view. With higher resolutions these 

pixels usually are of a large quantity but only show a small portion of the object. Due to 

having many pixels sharing the same depth value, the method will return values in an 

array of every pixel location sharing the same minimal value. This is done for 

convenience to the developer where potentially a better location could be extracted from 

each pool of pixels. However, if the resolution is high enough, these pixels will be close 

enough together that only the first index is necessary to achieve a high enough accuracy 

to the location of the closest object. Shown in Figure 7.6 is an example of the closest 
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object detection method being used to detect the object that is both the closest to and 

within the path of the StakeBot. 

 

 

 At the vision system’s current state, these methods are the only ones used for self-

navigation. In the next section, a discussion on how the utilization of these different 

captured features can be used in conjunction with the motor controls to achieve self-

navigation autonomously.  

7.3: StakeBot’s Autonomous Capabilities  

 The ability to achieve autonomous driving comes from the ability to mimic the 

human thought process. While the vision system was developed with this fundamental 

ideology, the driving controls further take this ideology in the form of basic artificial 

intelligence. If a human is driving down a street and sees a stop sign, intuitively they 

Figure 7.8: Vision system showing the color mapping 

view with a black circle around the object that is the 

closest to the depth camera. This is made possible by the 

closest object detection method. 
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would begin to decelerate the car at a specific distance based on their knowledge of 

driving and their perception of depth. The vision system brings the perception of depth to 

the StakeBot but now there needs to be a level of decision making that is done based on 

the speed and the StakeBot’s distance away from the approaching obstacle. The driving 

controls (later descried in Chapter 8) were developed around the ability to constantly 

monitor the objects’ distance and speed. This allows the StakeBot to automatically adjust 

the speed of its motors when approaching an object. If the user was to intentionally drive 

the StakeBot into a wall at full speed, the StakeBot will automatically detect the wall as 

an obstacle and will begin to slow down as the StakeBot gets closer. If the StakeBot gets 

too close it will stop before it ever collides with the wall to prevent a collision. This 

feature is hard programmed into the driving controls allowing as a safety measure for the 

user or an AI while driving the StakeBot.   

 The driving controls pair with the vision system to create a safe driving 

experience but for self-navigation, an AI must be in control if the StakeBot is to drive 

autonomously. To achieve this, the StakeBot uses its on-board systems to make decisions 

on how to proceed down a path. For the StakeBot it’s important to understand how the 

path looks and to try finding specific barriers or obstacles that could help make driving 

down the path easier. Fortunately for the StakeBot’s case, the path is very straight and is 

confined by bed plots on either side. These bed plots are 8 inch in height which gives a 

good barrier for the StakeBot to see. The idea here is for the StakeBot to travel through 

these rows while staying directly centered between them. For this, an AI uses the vision 

system’s closest object detection method to monitor the left and right bed plots to ensure 

they stay equal distance from each other while driving through the bed plot rows.   



 

65 

6
5
 

 

Figure 7.9: Illustration of the three different cases experienced by the StakeBot when 

navigating through the bed plots. 

 Shown in Figure 7.9 are the three different visual cases that the StakeBot sees 

while navigating illustrating how self-navigation through the bed plots work. By using 

the vision system, similar to how the closes object detection works, as the bed plots enter 

the focused area defined by the vision system, if an object is present on one side of the 

StakeBot’s view of the focused area and not the other, then it will turn away from that 

side. If there are two objects on both sides within the focused area, then the StakeBot 

cannot proceed and finally if there are no objects on either side of its focused view then 

the StakeBot will continue to move forward. This algorithm also monitors the distance at 

which the object enters the focused view and the object’s depth from the StakeBot. This 

distance will determine how fast to turn away from the object. Objects that are further 

away do not require a sudden adjustment to the StakeBot trajectory while objects that are 

closer will cause the turning speed to increase. Shown in Figure 7.10 demonstrates the 

vision systems capability of detecting objects from the left and right side of the center of 
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the view. This image clearly shows the objects that are detected are objects closest to the 

StakeBot.  

 

 

This algorithm allows the StakeBot to make decisions based on different objects’ 

position with relation to the StakeBot. The StakeBot is designed to travel down the bed 

plot rows where it will stop at every specified distance to plant a stake. This distance is 

set by the user depending on the job that was created while using GPS to know how far it 

has traveled. The decisions are made by the PYNQ-Z2 board which gives commands to 

the Jetson Nano telling whether it should continue moving or stop. The algorithm that 

keeps the StakeBot centered between the bed plots is programmed on the Jetson Nano. In 

Chapter 8, further details on the control actions will be discussed. The PYNQ-Z2 must 

communicate when the StakeBot needs to stop and plant a stake and when it needs to 

Figure 7.10: Vision system’s closest object detection 

method used to detect objects on both sides from the 

center.   
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continue moving forward. Certain safety algorithms are hard coded into the Nano’s 

driving controls and if the PYNQ-Z2 board was to give a command to move forward 

while there are objects in the StakeBot’s path then the Jetson Nano will communicate an 

error message that the PYNQ-Z2 board will understand and then will proceed to inform 

the user of the error.  

The StakeBot is capable of self-navigation and can drive stakes into the ground 

which completes its primary purpose. With the design of the framework for the vision 

system more methods can be added for further feature extractions depending on the needs 

of the robot. This allows for expansion of the capabilities of the vision system where 

there is a possibility of creating a library of methods that take advantage of both color and 

depth cameras that allow for easy implementation across any style of robot.  

7.4 StakeBot’s Digital-Twin: 

 The development of the control system for the StakeBot was a challenge that 

required the use of simulation techniques. A digital-twin simulation provided a virtual 

world to test the algorithms to ensure a safe and successful development process. The 

purpose is to construct a virtual replica of the StakeBot with the real-world algorithms 

applied. This allows a safe and sufficient way of testing the StakeBot where potential 

coding bugs and other issues can be fixed before its final upload to its real-world 

counterpart.  

 With this method, the simulation tool that was used was a software by Nvidia 

called Issac Sim. Issac Sim is a robotic simulation tool used for developing and training 

robots in a virtual world with software that mimics real world physics and allows the user 

to program their virtual robot using the python coding language. (NVIDIA Developer) 
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For the case of the StakeBot, a simulation suite was created that allows for testing the 

different algorithms that the real-world StakeBot uses.  

The first set of algorithms tested was the driving controls. Driving controls are 

fundamentally a major component in the control system. Within Issac Sim, the simulation 

suite has driving controls simulated that will load the StakeBot’s base model into the 

virtual world where the developer can test the different driving modes. This can seen in 

Figure 7.11. In this simulation, the StakeBot takes in user controls through a joystick and 

simulates the StakeBot’s movement behavior. It was with this developmental process that 

allowed for faster development times and for a safer means of testing. As coding bugs 

were found, the driving controls may have behaved in an unexpected manner which 

sometimes caused the StakeBot to drive out of control. Having a simulated environment 

ensures that no real damage was done. The efficiency of developing software in the 

virtual world also decreases downtime where typically the robot would have to be reset to 

a starting point or would have to undergo frequent updating which takes time and slows 

down the development process.  

Issac Sim has many features that allow for further simulation and even for 

machine learning. For the vision system, within Issac Sim the Intel RealSense camera can 

be emulated where the vision system algorithms can be directly tested. Issac Sim also has 

the capabilities of training through machine learning algorithms where the user can run 

an AI while subjecting the robot through many different scenarios where it can eventually 

learn how to behave within its intended environment. This ideology is how the StakeBot 

moving forward will learn self-navigate through even more complex scenarios making 

the AI even more advanced.    
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Figure 7.11: Digital-Twin of the StakeBot’s base shown in Isaac Sim  

 

The digital twin made the development of the StakeBot faster and smoother by 

allowing immediate code adjustments to be made. The StakeBot’s driving controls and 

vision system were simulated using Issac Sim and will continue to be improved as the 

robot moves further into machine learning. Eventually, the StakeBot will be able to 

master the agricultural environment by making use of the vision system’s algorithms 

paired with its driving controls where it will utilize machine learning to better navigate 

through its environment.  

In Figure 7.12, this model shows how the entire StakeBot would look within Isaac 

Sim. This model, similar to the model shown in Figure 7.11, is a digital twin model 
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programmed to act within Isaac Sim’s virtual world. As future work progresses this 

model can be used to further test the other operations of the StakeBot and can be used for 

training the AI. 

 

Figure 7.12: Digital-Twin of the StakeBot within Isaac Sim. 

 

 Overall, the StakeBot’s digital twin acts as a tool used for further developing the 

StakeBot. Finally, the current StakeBot’s development process will be discussed in the 

next chapter. 
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CHAPTER 8 

STAKEBOT’S SYSTEMS

8.1 Introduction: 

 The StakeBot’s development utilizes all of the details discussed in the previous 

chapters to perform its intended operations. The StakeBot currently can perform self-

navigation through bed plots using the StakeBot’s autonomous capabilities. It can also be 

controlled by a user or by the onboard AI through the commands of the user through a 

mobile application. In the later sections of this chapter, the current controls flow and 

behaviors of the StakeBot will be discussed showing its current capabilities and 

functionalities. 

8.2 Controlling the StakeBot: 

 A mobile application was created to provide the user with a means of controlling 

and communicating with the StakeBot via WIFI connection. The Jetson Nano hosts a 

network access point called StakeBot where the user can connect to with their mobile 

device. Shown below is the application that provides the user control over the StakeBot. 

The application starts with displaying a home page where the user can connect to the 

StakeBot and view messages regarding the status of the StakeBot. This messages block 

provides a way for the StakeBot to communicate to the user any issues with connection 

or status on the proceeding job. For example, if an obstacle was blocking the StakeBot 

from proceeding, this alert will appear here. 
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 The home page also allows the user access to the on-board camera through the 

camera view block. Here the user has the ability to see both the RBG camera view and 

depth camera view that the StakeBot sees. Finally, the last block is the send job block. 

This block is how the user can begin the StakeBot’s operations where after the user 

selects a job preset that they create in the create job page, after the user presses the start 

job button, the StakeBot will begin to operate autonomously and will proceed to navigate 

Figure 8.1: StakeBot’s mobile application. Showing the home page 

and the create job page. 
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through the bed plots driving stakes. The next page is the create job page where the user 

has the ability to create different jobs for the StakeBot. These jobs allow the user to 

create presets for different fields that have different staking parameters such as stake 

spacing, aisle length and number of stakes per row. As described in the design 

requirements in Chapter 3, the ability to create different patterns is done through the app. 

The stake spacing is the distance between each stake, the number of stakes per row and 

aisle length describe this pattern of how many stakes are places before a break is set. A 

break or aisle is created for the farmers to have a space to cross over the bed plots. This 

spacing and number of stakes between each spacing can be set through the app.  

 

Figure 8.2: Manual page of the StakeBot’s mobile app 

 

 The last page of the StakeBot’s mobile app is the manual controls page. Here, the 

user has the ability to manually drive the StakeBot where they can move the StakeBot to 
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any location on the field. The app provides two different driving modes, joystick control, 

and status window and buttons for controlling the grippers and arms.  

8.3 StakeBot’s Control Flow: 

 The StakeBot’s controls are split between the Jetson Nano and the PYNQ-Z2 

boards. For the Jetson Nano, the software is illustrated through a flow diagram shown in 

Figure 8.3 and the PYNQ-Z2 flow diagram is shown in Figure 8.4. 

The Jetson Nano is split into 5 threads that run simultaneously, providing separate 

sections of controls but all communicate information to each other. The first thread to 

discuss is the communications thread which is responsible for keeping communications 

between other devices open and then storing these messages into corresponding python 

dictionaries for other threads to view. The next thread is the thread manager which is 

responsible for providing the switch from manual to autonomous modes depending on 

instruction sent from the application or the on-board AI. This thread also is responsible 

for monitoring the battery levels of the StakeBot by measuring the batteries voltage 

output. Another thread is responsible for the differential driving. Here this thread works 

together with the vision system, as mentioned in chapter 7, where it heavily influences 

the driving decision made by the differential drive thread. The logic inside this thread 

states that if an object is within 600 and 400 millimeters, then the StakeBot’s movement 

will decrease until the object is less than 400 millimeters away, then it will stop otherwise 

it will follow the instructions given by the other threads. These instructions on how to 

move come from either the autonomous thread or the communications thread as messages 

from the app. The autonomous thread runs the logic behind the StakeBot’s self-

navigation algorithm. Once the StakeBot is in autonomous mode, which can be set by the 
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user of the on-board AI, the StakeBot will follow the procedures mentioned in Chapter 7 

for self-navigation. Finally, the last thread is the vision systems thread where the camera 

sensor images are processed and stored in attributes for other thread the view as described 

in Chapter 7. These threads begin when the Jetson Nano first boots up and will continue 

to run indefinitely until the system shuts down. 

 

Figure 8.3: Jetson Nano processing flow diagram 

 The PYNQ-Z2 board continuously runs three separate threads that, like the Jetson 

Nano, are responsible for sperate sections of controls but all communicating information 

to each other. The first thread to discuss is the communications thread, similar to the 

Jetson Nano, which is responsible for handling communications between the different 

devices where the messages are stored in python dictionaries for other threads to access. 
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Another thread is the operations control where its responsibilities are to collect 

information from the various on-board subsystems, including the GPS sensor, and will 

give instructions to the Jetson Nano on how to proceed.  

 

 

Depending on the parameters sent by the user, coming from the start job block in the app, 

the PYNQ-Z2 will begin to command the Jetson Nano to move the StakeBot to the next 

staking location, it will then command the StakeBot to stop if the StakeBot has reached 

the next staking location. The final thread is the stake driving operations which are 

responsible for controlling the subsystems that handle driving the stakes. This includes 

Figure 8.4: PYNQ-Z2 processing flow diagram 
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arm movements and gripper movements and, depending on the parameters set by the 

user, the StakeBot will position and drive the stake into the bed plot, then retract back for 

another stake. The PYNQ-Z2 board is the on-board AI and currently behaves as a low-

level AI system capable of instructing the StakeBot to move and drive stakes and to 

communicate any issue that the StakeBot might experience to the user through the mobile 

application. 

8.4 StakeBot’s Future: 

 The StakeBot currently has the ability for a low-level AI that can control the 

navigation of the StakeBot through a row of bed plots. This is made possible with the 

vision system that is capable of monitoring obstacles in real time, preventing the 

StakeBot from collision while attempting to move forward through bed plots. The 

success of the StakeBot’s operations can come from the current on-board systems but 

only in a very controlled case. The next level of progress will come from machine 

learning and advanced AI development where the StakeBot’s on-board AI can make 

moving through the bed plots more possible as the more particle scenarios are taught. 

Currently the development of the StakeBot is shown below in Figure 8.5 where 

everything but the stake holster has been developed and implemented.  

Shown in Figure 8.6 is the pseudo-bed plots that were created for testing the 

StakeBot’s self-navigation capabilities. These bed plots were built in the lab that fit the 

size and dimensions of a typical bed plot. So far, the StakeBot has been able to self-

navigate through the set of pseudo-bed plots only after being positioned directly in front 

of them. 
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Even though the StakeBot was able to self-navigate through this in housed mockup of a 

bed plot row, the next set of testing is to try and attempt a real scenario down a set of 

actual bed plots in an agricultural setting. However, before this can be attempted, 

advancements on the on-board AI must be developed. This can be made possible by 

using Nvidia Isaac Sim software to subject the virtual StakeBot down various simulated 

bed plots for the AI to learn in the virtual environment first. The success of the StakeBot 

will only come from advanced AI however, the current algorithms provide a decent 

starting point for further development. Many of the subsystems have been developed for 

control taken from an AI and much of the framework has been developed. Overall, the 

Figure 8.5: Current StakeBot development 
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StakeBot has shown to be capable of autonomous navigation but further development and 

machine learning implementation will improve the AI’s overall success rate and will 

improve the StakeBot’s capabilities. 

 

 

      

Figure 8.6 Current StakeBot navigating through 

pseudo-bed plots. 



 

80 

REFERENCES 

A. Cherubini, F. Spindler and F. Chaumette, "Autonomous Visual Navigation and Laser- 

Based Moving Obstacle Avoidance," in IEEE Transactions on Intelligent  

Transportation Systems, vol. 15, no. 5, pp. 2101-2110, Oct. 2014, doi:  

10.1109/TITS.2014.2308977. 

 

Aghi, Diego, et al. ‘Local Motion Planner for Autonomous Navigation in Vineyards with  

a RGB-D Camera-Based Algorithm and Deep Learning Synergy’. Machines, vol.  

8, no. 2, 2020, https://doi.org10.3390/machines8020027. 

 

Básaca-Preciado, L. C., Sergiyenko, O. Y., Rodríguez-Quinonez, J. C., García, X., Tyrsa,  

V. V., Rivas-Lopez, M., … Starostenko, O. (2014). Optical 3D laser measurement  

system for navigation of autonomous mobile robot. Optics and Lasers in  

Engineering, 54, 159169. doi:10.1016/j.optlaseng.2013.08.005 

 

Birrell, S, Hughes, J, Cai, JY, Iida, F.  A field-tested robotic harvesting system for  

iceberg lettuce. J. Field Robotics. 2020; 37: 225– 245.  

https://doi.org/10.1002/rob.21888  

 

“Depth Camera D435.” Intel® RealSense™ Depth and Tracking Cameras, 5 Dec. 2022,  

Accessed Jan. 2022, https://www.intelrealsense.com/depth-camera-d435/.  

 

Derpanis, Konstantinos G. Overview of the RANSAC Algorithm - Electrical Engineering  

and Computer ... 13 May 2010, Accessed Aug. 2022, 

http://www.cse.yorku.ca/~kosta/CompVis_Notes/ransac.pdf.  

 

“Harvest Croo Robotics.” Harvest CROO Robotics, Accessed Aug. 2022,  

https://www.harvestcroorobotics.com/.  

 

“Isaac Sim.” NVIDIA Developer, 23 Feb. 2023, Accessed March 2023,  

https://developer.nvidia.com/isaac-sim.  

 

J. Eguchi and K. Ozaki: Extraction method of travelable area by using 3D-laser scanner – 

Development of autonomous mobile robot for urban area--, Transactions of the  

Society of Instrumental and Control Engineer, Vol. 52, No. 3, pp. 152-159, 2016. 

 

 

Li, Chuyi, et al. YOLOv6: A Single-Stage Object Detection Framework for Industrial  

Applications. arXiv, 2022, https://doi.org10.48550/ARXIV.2209.02976. 

https://doi.org10.3390/machines8020027
https://doi.org/10.1002/rob.21888
https://www.intelrealsense.com/depth-camera-d435/
https://www.harvestcroorobotics.com/
https://developer.nvidia.com/isaac-sim


 

81 

Malavazi, Flavio B. P., et al. ‘LiDAR-Only Based Navigation Algorithm for an  

Autonomous Agricultural Robot’. Computers and Electronics in Agriculture, vol. 

154, 2018, pp. 71–79, https://doi.org10.1016/j.compag.2018.08.034. 
 

“Nexus Robotics at Expo Champs.” Nexus Robotics, 2020, Accessed Aug. 2022,  

https://nexusrobotics.ca/.  

RealSense, Intel. “Beginner's Guide to Depth (Updated).” Intel® RealSense™ Depth and 

Tracking Cameras, 8 May 2020, Accessed Dec. 2022, 

https://www.intelrealsense.com/beginners-guide-to-depth/.  

“Stake Driver System.” ALMACO, Accessed Aug. 2022,  

https://www.almaco.com/store/c152/optional-advantages/p1532/stake-driver- 

system/. 

Steve, et al. “How Mqtt Works -Beginners Guide.” |, 12 Feb. 2021, Accessed July 2022, 

http://www.stevesinternet-guide.com/mqtt-works/.  

Yamashita, Satoshi, et al. ‘Autonomous Traveling Control of Agricultural Mobile Robot  

Using Depth Camera in Greenhouse’. Journal of Signal Processing, vol. 23, no. 4, 

2019, pp. 201–204, https://doi.org10.2299/jsp.23.201. 

 

Yuhao Bai, et al. "Vision-based navigation and guidance for agricultural autonomous  

vehicles and robots: A review". Computers and Electronics in Agriculture 205. 

(2023): 107584. 

 

 

 

https://doi.org10.1016/j.compag.2018.08.034
https://nexusrobotics.ca/
https://www.almaco.com/store/c152/optional-advantages/p1532/stake-driver-%20system/
https://www.almaco.com/store/c152/optional-advantages/p1532/stake-driver-%20system/
https://doi.org10.2299/jsp.23.201


 

82 

APPENDIX A: 

DESIGN REQUIREMENTS FURTHER EXPLAINED 

Entry 2 : This calculation was done by assuming 1200 (foot row length) / 8712 (foot per 

acers) * 2700 (stakes per acer) formulation was given by Jason on August 22, 2022   

Entry 3: For target specification, the robot will be able to drive between and around the 

bed plots, provided there are no obstacles or uneven ground to traverse. For fallback 

specifications, the robot will be able to self-navigate only between the bed plots and 

would require operator assistance to turn the robot around to lineup with the next set of 

rows.
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