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Abstract

This dissertation considers statistical inference methods for parametric modal regres-

sion models. In Chapter 1, we motivate the mode as the measure of central tendency

instead of the median or the mean with an example. Following the motivational

example, we include an overview of existing modal regression models. Later, in the

same chapter, we explain advantages of the parametric modal regression models over

existing nonparametric modal regression models. In Chapter 2, we address issues in

statistical inference brought in by data contaminated with measurement error. With

measurement error in covariates, statistical inference methods designed for modal

regression models with error-free covariates become inappropriate. We use an inno-

vative Monte-Carlo based method to revise the original log-likelihood function that

one uses in the absence of covariates measurement error. This revision leads to a new

objective function adequately accounting for measurement error that one maximizes

with respect to unknown parameters in the regression model. We also propose a model

diagnostic method based on parametric bootstrap for the parametric modal regression

with error in covariates. The proposed method for estimating regression parameters

is applicable for any parametric modal regression models. However, there are only a

handful of existing distributions that are suitable for the modal regression model for

heavy-tailed response data. To allow for flexible modal regression, we propose a new

unimodal distribution called flexible Gumbel distribution in Chapter 3. We present

both frequentist and Bayesian inference methods for the flexible Gumbel distribution

in the same chapter. Chapter 4 introduces the general unimodal distribution family

that encompasses a range of unimodal asymmetric distributions and incorporates the
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flexible Gumbel distribution as a specific instance. Based on the general unimodal

distribution family, we propose a unified framework for Bayesian modal regression

that is well-suited for analyzing asymmetric and fat-tailed data. We propose the

Gaussian process modal regression model in Chapter 5. Unlike the classic Gaussian

process regression model where one assumes a Gaussian process for the conditional

mean of the response, in our proposed Gaussian process regression model, we assume

a Gaussian process for the conditional mode.
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of the parameters from the frequentist method, and 95% credible
intervals from the Bayesian method are also provided (under
lower 95 and upper 95). . . . . . . . . . . . . . . . . . . . . . . . . 46

Table 3.4 Mean regression model based on the normal distribution fitted
to the crime data. Besides parameter estimates (under point.est)
and the estimated standard deviations of these parameter esti-
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Chapter 1

Introduction

1.1 Three Measures of Central Tendency

The mean, median, and mode are the three most commonly used measures of central

tendency of data. For data from heavy tailed and skewed distribution, the mode is a

more sensible measure of central tendency than the mean or median. Because of the

ubiquity of heavy-tailed and skewed data in biology, sociology, economics, and many

other fields, there are plenty examples where the mode is a more appropriate measure

of central location than the other two (Chacón, 2020). An example about the highly

right-skewed distribution of deposits from saving institutions in the United States is

provided in Section 1.2.

1.2 An Example: Deposits of Large Banks and Savings Institutions

To economists, it is no secret that wealth distributions are highly skewed to the right

(Benhabib and Bisin, 2018). The cumulative nature of wealth has impact on not

only wealth status of individuals, but also the deposits of bank holding companies.

The dataset with records of deposits of 50 banks and savings institutions is collected

from Siegel (2012, Table 3.4.1). Figure 1.1 presents a kernel density estimate for

the deposits (in billions of dollars) of large banks and savings institutions in the

United States on July 2, 2010. The sample mean, which equals 92.6 billion dollars, is

obviously not a good measure of central tendency for most large banks and savings

institutions in the United States. In fact, 40 of 50 banks and savings institutions in
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the dataset have deposit less than 92.6 billion dollars. In the meanwhile, the sample

median is 40.5 billion dollars. Since the sample median is resistant to outliers, the

large difference between sample median and sample mean should not be surprising.

However, the location of the sample median is not self explained. In other words, it is

difficult to “guess” the location of the sample median based solely on the estimated

density plot. The sample mode, which locates right under the peak of density curve by

its definition, can be easily interpreted as that banks are most likely to have deposits

of 28.4 billion dollars.

0.000

0.005

0.010

0.015

0.020

0 100 200 300
Bank deposits ($billions)

D
en

si
ty

Figure 1.1 Density estimation for the the deposits (in billions of dollars)
of large banks and savings institutions in the United States on July
2, 2010. From left to right, the orange dotted line, red dashed line,
and blue solid line represent the estimated mode, median, and mean,
respectively.

1.3 Overview of Existing Modal Regression Models

While there exists an extensive literature on regression models that relate the mean or

median of a response variable Y to covariates X, there are much less work on regression

models tailored for the conditional mode of Y given X (Sager and Thisted, 1982; Lee,

2



1989, 1993). Among the limited existing modal regression methods, the majority of

them are in the semi-/non-parametric framework (Yao and Li, 2013; Chen et al., 2016),

which typically suffer low statistical efficiency when comparing with their parametric

counterparts. One reality that discourages use of parametric models for inferring the

mode is that very few named distributions that allow asymmetry can be conveniently

formulated as distribution families indexed by the mode along with other parameters.

Among the few groups of authors who considered parametric modal regression models,

Aristodemou (2014, Chapter 3) assumed a gamma distribution for a non-negative

response with a covariate-dependent mode; Bourguignon et al. (2020) followed a similar

model construction while also allowing a covariate-dependent precision parameter for

the gamma distribution. Focusing on bounded response data, Zhou and Huang (2020)

proposed two modal regression models, one based on a beta distribution and the other

based on a generalized biparabolic distribution for the response given covariates. In

all three aforementioned works, frequentist likelihood-based methods are developed

to infer model parameters. Most recently, Zhou and Huang (2022) unified the mean

regression and modal regression in a Bayesian framework by reparameterizing a four-

parameter beta distribution with an unknown support so that the mean or the mode

of Y depends on X. Earlier works on Bayesian modal regression, including parametric

and nonparametric methods, can also be found in Aristodemou (2014, Chapter 2).
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Chapter 2

Parametric Modal Regression with Error in

Covariates

2.1 Introduction

All works on modal regression cited in chapter 1 assume that covariates are measured

precisely. Data analysts in many disciplines are well aware that, among all variables of

interest, some of them often cannot be measured precisely due to inaccurate measuring

devices or human error in data collection. Some variables are in principle inaccessible

and only some surrogates of them can be measured. For example, one’s long-term

blood pressure is an important biomarker associated with one’s heart health, yet it

cannot be directly measured. Instead, measurable surrogates of it are blood pressure

readings collected during a doctor’s visit, which can be viewed as error-contaminated

versions of one’s long-term blood pressure. It has also been well-understood that

ignoring covariates measurement error in mean regression or quantile regression usually

lead to misleading inference results. There exists a large collection of works on mean

regression methodology accounting for measurement error (Carroll et al., 2006; Fuller,

2009; Buonaccorsi, 2010; Yi, 2017), and also some works in quantile regression to

address this complication (He and Liang, 2000; Wei and Carroll, 2009; Wang et al.,

2012). Modal regression methodology that address this issue only emerged recently,

including those developed by Zhou and Huang (2016), Li and Huang (2019), and Shi

et al. (2021), all of which opted for a nonparametric model for the error term in the

primary regression model. There is a lack of methodology to account for error-prone

4



covariates in parametric modal regression, and our study presented in this chapter

fills the void.

In preparation for proposing a method to account for measurement error in

covariates that is applicable to any parametric modal regression models, we first

formulate the measurement error model and discuss complications unique to modal

regression models in Section 2.2. For concreteness, we then focus on the beta modal

regression model for a response supported on [0, 1] with an error-prone covariate,

and propose consistent estimation methods to infer model parameters that account

for measurement error in Section 2.3. A model diagnostic method is developed to

detect model misspecifications when adopting the beta modal regression model in a

given application in Section 2.4. Simulation studies are reported in Section 2.5 to

demonstrate the performance of the estimation and diagnostics methods. We apply

the proposed modal regression method accounting for covariate measurement error

to data sets arising from two real-life studies in Section 2.6, where we also discuss

revisions of the method to adapt to more general settings. Section 2.7 gives concluding

remarks and future research directions.

2.2 Data and Model

2.2.1 Observed data

Suppose that, given p covariates in X = (X1, . . . , Xp)T, Y follows a unimodal distri-

bution specified by the probability density function (pdf), fY |X(y|x). Denote by θ(x)

the mode of Y given X = x. In modal regression without measurement error, one

infers θ(x) based on a random sample of size n from the joint distribution of (Y,X),

{(Yj,Xj)}n
j=1, where Xj = (X1,j, . . . , Xp,j)T. Now suppose that a covariate in X, say,

X1, is prone to measurement error, and a surrogate W is observed instead of X1, with

nj replicate measures of X1,j in W̃j = {Wj,k}
nj

k=1, for j = 1, . . . , n. In this study, we
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assume that Wj,k relates to X1,j via an additive measurement error model,

Wj,k = X1,j + Uj,k, for j = 1, . . . , n and k = 1, . . . , nj, (2.2.1)

where {Uj,k, k = 1, . . . , nj}n
j=1 are independent and identically distributed (i.i.d.)

mean-zero measurement error, which are independent of {(Yj,Xj)}n
j=1 to guarantee

nondifferential measurement error as considered in the classical measurement error

models (Carroll et al., 2006, Section 2.5).

In a naive univariate modal regression analysis using the surrogate data, one

treats W as if it were X = X1, and equivalently, views the conditional pdf of Y

given W = w, fY |W (y|w), the same as fY |X(y|w). As a result, naive modal regression

analysis essentially infers the mode of fY |W (y|w) instead of θ(·). In the context of

univariate mean regression models not limited to linear regression, the attenuation

effect of measurement error on covariate effect estimation is often noted in the literature

(Carroll et al., 2006; Buonaccorsi, 2010), which causes the estimated covariate effect

of a truly influential covariate to be pulled towards zero. Naive modal regression

can suffer the same attenuation effect. For instance, if the mean and the mode of

fY |X(y|x) differ by a quantity that does not depend on covariates, such as for a

Gumbel distribution that depends on a covariate X only via the mode but not via

the scale parameter, then the impact of measurement error on naive inference for

the conditional mean mostly carries over to naive inference for θ(x). In other model

settings where the conditional mean and mode of Y differ by a quantity that does

depend on the error-prone covariate, the effect of measurement error on naive modal

regression demands investigation on a case-by-case basis. Even before conducting such

investigation, a more fundamental question needs to be addressed, that is whether

or not naive modal regression is meaningful, since unimodality of fY |X(y|x) does not

guarantee unimodality of fY |W (y|w). Indeed, there is an extra layer of complication in

modal regression with an error-prone covariate that does not exist in mean regression

since, if the mean of Y given X, µ(X), is well defined, then the mean of Y given
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W is E{µ(X)|W}, which is also well defined in most settings of practical interest.

Because of this additional complication, correcting naive inference to account for

measurement error in modal regression is more challenging than the counterpart task

in mean regression. For example, a strategy that can be easy to implement in mean

regression is to correct the bias in a naive estimator of a parameter to produce an

improved estimator accounting for measurement error (Carroll et al., 2006, Section

3.4). This idea of de-biasing naive estimation may not be a sensible approach now

with the existence of a naive mode function in question.

2.2.2 Regression model

We propose to account for measurement error when inferring parameters in a modal

regression model by exploiting the idea of corrected scores. In particular, we focus on

modeling a bounded response Y , which is commonly encountered in practice, such as

test scores, disease prevalence, and the fraction of household income spent on food.

Any bounded response with a known support can be scaled to be supported on the

unit interval [0, 1]. Beta distribution is a parametric family that encompasses various

shapes of distributions supported on [0, 1], and thus serves as a relatively flexible

basis for building a regression model for such responses. For a random variable V that

follows a beta distribution with shape parameters α1, α2 > 0, i.e., V ∼ beta(α1, α2),

its density function is,

f(v;α1, α2) = Γ(α1 + α2)
Γ(α1)Γ(α2)

vα1−1(1− v)α2−1, for 0 < v < 1,

where Γ(·) is the Gamma function. When α1, α2 > 1, this distribution has a unique

mode given by θ = (α1 − 1)/(α1 + α2 − 2). To prepare for modal regression, we

reparameterize the beta distribution by setting α1 = 1 +mθ and α2 = 1 +m(1− θ),

where m > 0 plays the role of a precision parameter, with a larger value of m leading to

a smaller variance of the distribution. By construction, as long as the mode θ ∈ (0, 1)
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exists, which we assume throughout the study, we have α1, α2 > 1 following this

parameterization.

With a beta distribution family indexed by (θ,m) formulated, a beta modal

regression model follows by introducing covariates-dependent mode of Y , θ(X) =

g(βTX̃), where X̃ = (1,XT)T, β = (β0, β1, . . . , βp)T with β0 being the intercept and

β1, . . . , βp representing covariate effects associated with the p covariates in X, and g(·)

is a user-specified link function, such as logit, probit, log-log, and complementary log-

log. Now a modal regression model for Y is fully specified by the following conditional

distribution of Y given X,

Y |X ∼ beta(1 +mθ(X), 1 +m{1− θ(X)}). (2.2.2)

Combining (2.2.2) with (2.2.1) completes the specification of a modal regression model

for a response Y supported on [0, 1] and covariates X = (X1, . . . , Xp)T, with X1

subject to additive nondifferential measurement error. The focal point of inference

lies in parameters involved in the primary regression model in (2.2.2), Ω = (βT,m)T.

Parameters appearing in (2.2.1) are of secondary interest but required to specify the

measurement error distribution.

2.3 Parameter estimation

2.3.1 Maximum likelihood estimation

In the absence of measurement error, one may carry out maximum likelihood estimation

of Ω straightforwardly by solving the normal score equations for Ω. More specifically,

the log-likelihood of error-free data, D = {(Yj,Xj)}n
j=1, is

ℓ(Ω;D) =
n∑

j=1
ℓ(Ω;Yj,Xj)

= n log Γ(2 +m)−
n∑

j=1
log (Γ(1 +mθ (Xj))Γ(1 +m {1− θ (Xj)}))

+m
n∑

j=1
[θ (Xj) log Yj + {1− θ (Xj)} log (1− Yj)] .

(2.3.1)
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Differentiating (2.3.1) with respect to Ω leads to the score equations, ∑n
j=1 Ψ0(Ω;Yj,Xj) =

0, where the score vector evaluated at the j-th data point, Ψ0(Ω;Yj,Xj), consists of

the following scores, for j = 1, . . . , n,

∂ℓ(Ω;Yj,Xj)
∂β

=
{
−mψ(1 +mθ(Xj)) +mψ(1 +m{1− θ(Xj)}) +m log

(
Yj

1− Yj

)}

× g′(βTX̃j)X̃j, (2.3.2)
∂ℓ(Ω;Yj,Xj)

∂m
= ψ(2 +m)− θ(Xj)ψ(1 +mθ(Xj))− {1− θ(Xj)}ψ(1 +m{1− θ(Xj)})

+ θ(Xj) log Yj + {1− θ(Xj)} log(1− Yj), (2.3.3)

where ψ(t) = (d/dt) log Γ(t) is the digamma function and g′(t) = (d/dt)g(t).

2.3.2 Monte-Carlo corrected scores

In the presence of measurement error, a naive estimator of Ω solves the naive score

equations resulting from replacing X1,j with W j = n−1
j

∑nj

k=1 Wj,k in (2.3.2) and

(2.3.3), for j = 1, . . . , n. As pointed out earlier and also evidenced in simulation study

to be presented later, this naive treatment typically results in misleading inference

for Ω. We propose to follow the idea of the corrected score method (Nakamura,

1990) and revise the naive scores to obtain estimating equations that adequately

account for measurement error. The thrust of the corrected score method is to

use the observed error-prone data, D∗ = {(Yj, W̃j, X−1,j)}n
j=1 with W̃j = {Wj,k}

nj

k=1

and X−1,j = (X2,j, . . . , Xp,j)T, to construct unbiased estimators of the above normal

scores. In this vein of thinking, one treats {X1,j}n
j=1 as unknown parameters instead

of realizations of a random variable, and thus one takes on the functional point of

view as opposed to the structural viewpoint of measurement error models where a

distribution for X1 is assumed (Carroll et al., 2006, Section 2.1).

We begin with applying the Monte-Carlo-amenable method proposed by Ste-

fanski et al. (2005), a method originating from the idea described in Stefanski

(1989). More specifically, we construct a score, Ψ(Ω;Yj, W̃j,X−1,j), that satisfies
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E{Ψ(Ω;Yj, W̃j,X−1,j)|Yj,Xj} = Ψ0(Ω;Yj,Xj), for j = 1, . . . , n. This particular

method is especially suitable for settings with a univariate error-prone covariate

subject to normal measurement error U . We will address violation of the normality

assumption on U in Section 2.3, and describe revisions of the method to adapt to

settings with multiple error-prone covariates in Section 2.6. As shown in Stefanski

et al. (2005, Theorem 1), the minimum variance unbiased estimator of Ψ0(Ω;Yj,Xj)

is given by

Ψ(Ω;Yj, W̃j,X−1,j) = E

Ψ0

Ω;Yj,W j + i

√√√√(nj − 1)S2
j

nj

T,X−1,j

∣∣∣∣∣∣Yj,W j, S
2
j ,X−1,j

 ,
(2.3.4)

where i is the imaginary unit, S2
j is the sample variance of W̃j = {Wj,k}

nj

k=1, and

T = Z1/(
∑nj−1

k=1 Z2
k)1/2 is independent of all observed data, in which Z1, . . . , Znj−1 are

independent standard normal random variables. The estimator of Ψ0(Ω;Yj,Xj) in

(2.3.4) originates from a jackknife exact-extrapolant estimator constructed for the

purpose of estimating a function of the mean of a normal distribution based on a

random sample from the distribution. In the context of (2.3.4), this random sample is

W̃j from N(X1,j, σ
2
u), where σ2

u is the measurement error variance, i.e., assuming U ∼

N(0, σ2
u) in (2.2.1), and the function of the normal mean X1,j is Ψ0(Ω;Yj, X1,j,X−1,j).

The expectation in (2.3.4) cannot be derived in closed form. But since the only

quantity viewed as random when deriving this conditional expectation is T that is

independent of observed data, one can estimate this expectation unbiasedly via an

empirical mean based on simulated random samples of T . Moreover, as shown in

Stefanski et al. (2005), even though (2.3.4) is complex-valued by construction, the

expectation of its imaginary part is zero as long as Ψ0(Ω;Yj, X1,j,X−1,j) is infinitely

differentiable with respect to X1,j, which is guaranteed in our case by choosing a link

function g(t) that is infinitely differentiable. Hence, using the real part of the empirical

version of (2.3.4) suffices for constructing an unbiased estimator of Ψ0(Ω;Yj,Xj).

This leads to the following corrected score based on a simulated random sample of T
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of size B, T̃j = {Tj,b}B
b=1, for j = 1, . . . , n,

Ψ(Ω;Yj, W̃j, T̃j,X−1,j) = 1
B

B∑
b=1

Re

Ψ0

Ω;Yj,W j + i

√√√√(nj − 1)S2
j

nj

Tj,b,X−1,j

 ,
(2.3.5)

where Re(t) denotes the real part of a complex-valued t.

One now can solve the following system of p+ 2 equations based on the corrected

score in (2.3.5),
n∑

j=1
Ψ(Ω;Yj, W̃j, T̃j,X−1,j) = 0, (2.3.6)

for Ω to obtain a consistent estimator Ω̂, where T̃1, . . . , T̃n are independent. Solving

(2.3.6) for Ω is equivalent to solving an optimization problem, that is,

Ω̂ = arg min
Ω∈Rp+1×R+


n∑

j=1
Ψ(Ω;Yj, W̃j, T̃j,X−1,j)


T 

n∑
j=1

Ψ(Ω;Yj, W̃j, T̃j,X−1,j)

 .
(2.3.7)

The equivalence between (2.3.7) and the solution to (2.3.6) is obvious when there exists

a unique solution to (2.3.6). An added benefit of dealing with an optimization problem

is more appreciated in the presence of model misspecification that can potentially

lead to non-existence of a solution to (2.3.6), yet (2.3.7) may still be well-defined with

meaningful statistical interpretations according to White (1982).

2.3.3 Monte-Carlo corrected log-likelihood

To this end, estimating Ω appears to be a straightforward optimization problem. But

the numerical procedure to obtain (2.3.7) requires evaluating p + 2 scores at each

iteration, which can be cumbersome and very demanding on the computer memory

and central processing unit, especially due to the Monte Carlo nature of the score in

(2.3.5) that involves computing a vector-valued score B times. Viewing the quadratic

form in (2.3.7) as an objective function that accounts for measurement error, we

propose to use a different objective function that also takes measurement error into

account and is computationally less cumbersome to optimize. This new objective
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function is obtained by correcting the naive log-likelihood function ℓ(Ω;Yj,W j,X−1,j)

that is the summand of (2.3.1) with X1,j evaluated at W j, for j = 1, . . . , n. Similar

to the construction of the corrected score in (2.3.5) based on the naive score, the new

objective function based on the naive log-likelihood evaluated at the j-th observed

data point is

ℓ̃(Ω;Yj, W̃j, T̃j,X−1,j) = 1
B

B∑
b=1

Re

ℓ
Ω;Yj,W j + i

√√√√(nj − 1)S2
j

nj

Tj,b,X−1,j

 ,
(2.3.8)

which satisfies E{ℓ̃(Ω;Yj, W̃j, T̃j,X−1,j)|Yj,Xj} = ℓ(Ω;Yj,Xj), for j = 1, . . . , n. We

then define an estimator of Ω as

Ω̂ = arg max
Ω∈Rp+1×R+

n∑
j=1

ℓ̃(Ω;Yj, W̃j, T̃j,X−1,j), (2.3.9)

which only requires repeated evaluation of a scalar function in (2.3.8) at each iteration

of an optimization algorithm. In simulation studies (not presented in this chapter)

where we estimate Ω using these two routes of optimization according to (2.3.7)

and (2.3.9), we obtain very similar estimates of Ω, with the former route more

computationally demanding than the latter. The numerical similarity of (2.3.7) and

(2.3.9) may be expected given the connection between the naive score and the naive

log-likelihood, in addition to the equivalence between the solution to the normal score

equation and the maximum likelihood estimator in the absence of measurement error.

We refer to the estimator defined in (2.3.9) the Monte Carlo corrected log-likelihood

estimator, or MCCL for short.

Whether one follows the idea of correcting the naive scores or the route of correcting

the naive log-likelihood to account for measurement error, our proposed estimation

method falls in the general framework of M -estimation (Boos and Stefanski, 2013,

Chapter 7). As an M -estimator, the MCCL estimator Ω̂ is a consistent estimator of

Ω that is asymptotically normal under regularity conditions stated in, for example,

Theorem 7.2 in Boos and Stefanski (2013). Moreover, motivated by its asymptotic
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variance of the sandwich form (Boos and Stefanski, 2013, Section 7.2.1), the variance

of Ω̂ can be estimated by

V(D∗; Ω̂) =
{
A(D∗; Ω̂)

}−1
B(D∗; Ω̂)

[{
A(D∗; Ω̂)

}−1
]T

, (2.3.10)

where

A(D∗; Ω̂) = 1
n

n∑
j=1

∂

∂ΩT Ψ(Ω;Yj, W̃j, T̃j,X−1,j)

∣∣∣∣∣∣Ω=Ω̂
,

B(D∗; Ω̂) = 1
n

n∑
j=1

Ψ(Ω̂;Yj, W̃j, T̃j,X−1,j)
{
Ψ(Ω̂;Yj, W̃j, T̃j,X−1,j)

}T
.

2.4 Model diagnostics

Even though we avoid specifying the true covariate distribution by adopting the

functional viewpoint of measurement error models, the primary regression model in

(2.2.2) is fully parametric. This raises the concern of model misspecification and calls

for model diagnostics tools. Model diagnostics based on error-prone data is more

challenging than settings without measurement error. In particular, conventional

residual-based diagnostics methods that require evaluating an estimated regression

function, whether it is the conditional mean µ(X) in mean regression or the conditional

mode θ(X) in modal regression, are no longer applicable now that a true covariate is

unobserved. Another contribution of our study is an effective score-based diagnostic

tool that circumvents this obstacle a traditional residual-based diagnostic method

faces in the presence of measurement error.

For the beta modal regression model without error in covariates, Zhou and Huang

(2020) propose a score-based test statistic defined below for the purpose of model

diagnostics,

Q(Ω̂0;D) = n− 2
2(n− 1)STΣ̂−1S, (2.4.1)

where Ω̂0 is the maximum likelihood estimator of Ω, S = n−1∑n
j=1 S(Ω̂0;Yj,Xj),

and Σ̂ = {n(n − 1)}−1∑n
j=1{S(Ω̂0;Yj,Xj) − S}{S(Ω̂0;Yj,Xj) − S}T, in which, for
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j = 1, . . . , n,

S(Ω;Yj,Xj) =

 log Yj − ψ(1 +mθ(Xj)) + ψ(2 +m)

Yj log Yj −
{1 +mθ(Xj)}{ψ(2 +mθ(Xj))− ψ(3 +m)}

2 +m

 (2.4.2)

is the score vector constructed by matching log V and V log V with their respective

expectations for V ∼ beta(α1, α2), and thus E{S(Ω;Yj,Xj)} = 0 in the absence of

model misspecification. By construction, a larger value of the nonnegative Q(Ω̂0;D)

provides stronger evidence indicating model misspecification. A parametric bootstrap

procedure is developed in Zhou and Huang (2020) to estimate the null distribution of

Q(Ω̂0;D), from which one onbtains an estimated p-value for the test.

Returning to our beta modal regression model with error-in-covariate, we apply

the idea of corrected score here to construct a counterpart of (2.4.2) to obtain a

score accounting for measurement error whose mean is zero in the absence of model

misspecification. This yields the corrected score evaluated at the j-th observed data

point for model diagnostics, for j = 1, . . . , n,

S̃(Ω;Yj, W̃j, T̃j,X−1,j) = 1
B

B∑
b=1

Re

S

Ω;Yj,W j + i

√√√√(nj − 1)S2
j

nj

Tj,b,X−1,j

 .
(2.4.3)

The test statistic of the quadratic form denoted by Q̃(Ω̂;D∗) that is parallel to (2.4.1)

follows by using the MCCL estimator Ω̂ instead of Ω̂0, replacing S appearing in

(2.4.1) with n−1∑n
j=1 S̃(Ω;Yj, W̃j, T̃j,X−1,j), and revising Σ̂ accordingly. But the

next hurdle emerges, that is the design of a parametric bootstrap procedure for

estimating the null distribution of Q̃(Ω̂;D∗). Traditional parametric bootstrap in the

regression setting, such as the procedure in Zhou and Huang (2020), involves generating

response data from the primary regression model that again requires evaluating an

estimated regression function at the true covariates that are partly unobserved in the

current context. We overcome this hurdle by “estimating” unobserved true covariate

data, as implemented in the method of regression calibration (Chapter 4, Carroll

et al., 2006) that takes on the structural viewpoint of measurement error models.
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Under the classical measurement error in (2.2.1), the best linear predictor of X1,j

is E(X1,j|W j) = µ1 + λj(W j − µ1), where µ1 = E(X1) and λj = njσ
2
1/σ

2
W is the

reliability ratio associated with W j (Carroll et al., 2006, Section 3.2.1), in which

σ2
1 and σ2

W denote the variance of X1 and that of W , respectively. Replacing each

unknown quantity in E(X1,j|W j) with its method-of-moments estimator yields an

“estimator" or prediction of X1,j given by

X̂∗
1,j = W + λ̂(W j −W ), for j = 1, . . . , n, (2.4.4)

where W = n−1∑n
j=1 W j and λ̂ = σ̂2

1/σ̂
2
W , in which σ̂2

W is the sample variance

of (W 1, . . . ,W n), σ̂2
1 = (σ̂2

W − σ̂2
u)+, and σ̂2

u = n−1∑n
j=1 S

2
j /nj, recalling that, for

j = 1, . . . , n, S2
j is the sample variance of (Wj,1, . . . ,Wj,nj

) computed earlier to

evaluate the corrected score and the corrected log-likelihood. The idea of regression

calibration is to regress Y on the estimated covariate X̂∗
1 defined by (2.4.4) and

X−1 = (X2, . . . , Xp)T instead of regressing on (W,XT
−1)T . Even though this idea often

yields estimators of parameters in the primary regression model improved over naive

estimators, Buonaccorsi et al. (2018) noted that (2.4.4) tends to underestimate the

variability of the true covariate and thus can be problematic if used in a bootstrap

procedure as we intend to. They then proposed to use

X̂1,j = W + λ̂1/2(W j −W ), for j = 1, . . . , n, (2.4.5)

as estimated covariate data instead so that these estimated covariate values have the

mean and variance coinciding with method-of-moments estimates for the mean and

variance of X1.

With this last hurdle resolved, we are in the position to present the detailed

algorithm of the parametric bootstrap for estimating the p-value associated with

Q̃(Ω̂;D∗) based on M bootstrap samples next.

Step 1: Fit the beta modal regression model with classical measurement error
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to D∗ by applying the MCCL method in Section 2.3.3. This gives the MCCL

estimate Ω̂ = (β̂T
, m̂)T.

Step 2: Compute the test statistic Q̃(Ω̂;D∗).

For d = 1, . . . ,M , repeat Steps 3–5,

Step 3: For j = 1, . . . , n, generate Y (d)
j from beta(1+m̂θ̂(X̂1,j,X−1,j), 1+m̂{1−

θ̂(X̂1,j,X−1,j)}), and generate W (d)
j,k = X̂1,j + U

(d)
j,k , for k = 1, . . . , nj , where X̂1,j

is given by (2.4.5), and {U (d)
j,k }

nj

k=1 are i.i.d. from N(0, S2
j ). Let W̃ (d)

j = {W (d)
j,k }

nj

k=1.

This yields the d-th set of bootstrap data, D(d) = {(Y (d)
j , W̃

(d)
j ,X−1,j)}n

j=1.

Step 4: Fit the beta modal regression model with classic measurement error to

D(d), and obtain the MCCL estimate of Ω, denoted by Ω̂(d).

Step 5: Compute the test statistic, Q̃(Ω̂(d);D(d)).

Step 6: Estimate the p-value by M−1∑M
d=1 I

{
Q̃
(

Ω̂(d);D(d)
)
> Q̃

(
Ω̂;D∗

)}
.

Empirical evidence from the simulation study presented in the next section suggest

that the proposed bootstrap procedure can estimate the null distribution of Q̃(Ω̂;D∗)

accurately enough to preserve the right size of the test for model misspecification over

a wide range of significance levels.

2.5 Simulation study

We carry out simulation study to inspect finite sample performance of the proposed

estimation method and the diagnostic method. The source code to reproduce results

in this section is publicly available on the journal’s web page.

2.5.1 Design of simulation experiments

We generate data from each of the following four data generation processes.
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(M1) Generate response data according to (2.2.2), with m = 3, θ(X) =

1/{1 + exp(−β0 − β1X1 − β2X2)}, β = (β0, β1, β2)T = (0.25, 0.25, 0.25)T,

X2 ∼ Bernoulli(0.5), and X1|X2 ∼ N(I(X2 = 1)− I(X2 = 0), 1), where I(·) is

the indicator function. Contaminate data of X1 according to (2.2.1) to generate

Wj,k, for j = 1, . . . , n and k = 1, 2, 3, with Uj,k ∼ N(0, σ2
u).

(M2) Same as (M1) except for that m = 40 and θ(X) = 1/{1 + exp(−β0 − β1X1 −

β2X2 − β3X
2
1 )}, with β = (β0, β1, β2, β3)T = (1, 1, 1, 1)T.

(M3) Same as (M1) except for that θ (X) = Φ (β0 + β1X1 + β2X2) with

β = (β0, β1, β2)T = (1, 1, 1)T, where Φ(·) is the cumulative distribution

function of N(0, 1).

(M4) Generate response data {Yj}n
j=1 according to Yj = (Y ∗

j − Y ∗
(1))/(Y ∗

(n) − Y ∗
(1)),

for j = 1, . . . , n, where Y ∗
(1) and Y ∗

(n) are the minimum and maximum order

statistics of data {Y ∗
j }n

j=1, respectively, Y ∗
j | Xj ∼ Gumbel(θ(Xj), γ−1{1 −

2θ(Xj)}/(2 +m)), in which θ(Xj) < 0.5 is the mode formulated as that in (M1)

with β = (β0, β1, β2) = (1, 1, 1)T, γ−1{1 − 2θ(Xj)}/(2 + m) is the scale of the

Gumbel distribution, and γ stands for the Euler–Mascheroni constant.

Despite the data generation process used to generate a particular data set, we

always assume a beta modal regression model with θ(X) specified as that in (M1) when

carrying out modal regression analysis of Y on X = (X1, X2)T. By so doing, the design

in (M1) allows us to monitor point estimation in the absence of model misspecification,

and the latter three designs can be used to study operating characteristics of the

proposed model diagnostic method in the presence of different sources of model

misspecification. In particular, fitting the assumed model to data generated according

to (M2) creates a scenario where one misspecifies the linear predictor in the regression

function. When data are generated from (M3), the assumed model has a wrong link

function. Finally, fitting the assumed model to data from (M4) gives rise to the most
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severe model misspecification in the sense that the true distribution of Y given X is

outside of the beta family.

2.5.2 Performance of point estimation

Besides assessing the quality of the MCCL estimator of Ω in comparison with the

naive maximum likelihood estimator, we aim at addressing the following three issues

of point estimation in the simulation study: (i) the impact of having an error-free

covariate along with an error-prone covariate on covariate effects estimation; (ii) the

quality of the variance estimation based on (2.3.10); (iii) the robustness of the MCCL

estimator to the normality assumption on U . We bring up the third issue because the

corrected score method is developed under the assumption of normal measurement

error. Due to our focus on covariate effects estimation in the presence of an error-prone

covariate in a modal regression model for a bounded response, none of the existing

modal regression methods accounting for measurement error referenced in Section 2.1

serves as a sensible competing method in the current simulation study (e.g., there is

no covariate effect parameters β in a nonparametric modal regression model) .

Based on data generated according to (M1) with σ2
u = 0.6, 1.2, we obtain the

MCCL estimate of Ω using B = 100 and the naive maximum likelihood estimate that

ignores measurement error in X1. Table 2.1 provides the median of MCCL estimates

Ω̂ and the median of naive estimates across 1000 Monte Carlo replicates at each of

the two sample sizes n = 100, 200. In contrast to the naive estimates that exhibit

bias that do not diminish as the sample size increases, the MCCL estimates are much

improved despite the severity of error contamination in X1. Not surprisingly, the

MCCL estimator corrects the bias of the naive estimator at the price of an inflation

in variation.

The attenuation effect of measurement error on the naive covariate effect estimation

for X1 is evident in Table 2.1. In contrast, the covariate effect estimation for the error-
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Table 2.1 Medians of MCCL estimates and medians of naive estimates across 1000
Monte Carlo replicates generated according to (M1). The number in parentheses
following each median is the interquartile range of the 1000 realizations of an estimator.

β0 β1 β2 m

σ2
u = 0.6

MCCL 0.23 (0.35) 0.24 (0.22) 0.26 (0.59) 3.24 (0.95)
n = 100 Naive 0.21 (0.31) 0.21 (0.19) 0.32 (0.50) 3.16 (0.92)

MCCL 0.24 (0.23) 0.25 (0.15) 0.26 (0.40) 3.11 (0.68)
n = 200 Naive 0.21 (0.24) 0.21 (0.13) 0.33 (0.36) 3.07 (0.59)

σ2
u = 1.2

MCCL 0.23 (0.35) 0.24 (0.24) 0.27 (0.65) 3.25 (0.96)
n = 100 Naive 0.19 (0.30) 0.18 (0.17) 0.37 (0.48) 3.15 (0.91)

MCCL 0.25 (0.25) 0.25 (0.18) 0.25 (0.43) 3.13 (0.67)
n = 200 Naive 0.18 (0.23) 0.18 (0.11) 0.39 (0.36) 3.05 (0.60)

free covariate X2 is noticeably overestimated by the naive method. One may wonder

if the observed opposite directions in the bias of naive estimation of two covariates

effects persists when the two covariates are independent. This relates to the first

issue brought up above. To address this issue, we revise the data generating process

in (M1) in that X1 ∼ N(0, 1). Figure 2.1 includes boxplots of two sets of regression

coefficients estimates, including the MCCL estimates and the naive estimates, under

(M1) where X1 and X2 are dependent (see the left panel in Figure 2.1) and under

the revised (M1) with X1 and X2 independent (see the right panel in Figure 2.1).

Here, we set n = 2000 for each of 1000 Monte Carlo replicates. Interestingly, when

X2 is independent of the error-prone covariate X1, naive estimation for the covariate

effect of X2 does not appear to be affected by measurement error. Regardless, the

attenuation in the estimated covariate effect for X1 remains.

Table 2.2 presents the average of standard deviation estimation of each parameter

in Ω based on (2.3.10) across 1000 Monte Carlo replicates from (M1) with n = 200.

The Monte Carlo standard deviation of each parameter estimate in Ω is used as a

reference/gold standard in this table. The proximity of the standard deviation estimate
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Figure 2.1 Boxplots of regression coefficients estimates under (M1) with X1 and X2
dependent (left panel) and those under a revised version of (M1) with X1 and X2
independent (right panel). The two boxes associated with each parameter correspond
to two estimators (from left to right): the MCCL estimator (red box) and the naive
estimator (cyan box).

with the reference shown in the table suggests that the sandwich variance estimator

in (2.3.10) provides reliable estimation for the variance of the MCCL estimator. This

settles the second issue.

Table 2.2 Averages of standard deviation estimates, ŝ.d., and empirical standard
deviation, s.d., across 1000 Monte Carlo replicates from (M1) with σ2

u = 1.2 and
n = 200. Numbers in parentheses are Monte Carlo standard errors associated with
the Monte Carlo means.

β0 β1 β2 m

ŝ.d. s.d. ŝ.d. s.d. ŝ.d. s.d. ŝ.d. s.d.
MCCL 0.19 (0.03) 0.19 0.13 (0.03) 0.13 0.32 (0.06) 0.32 0.48 (0.07) 0.51
Naive 0.16 (0.02) 0.17 0.09 (0.01) 0.09 0.26 (0.03) 0.26 0.47 (0.05) 0.48

The third issue concerns the normality assumption on measurement error in the

development of the Monte Carlo corrected score method. To assess the robustness
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of the MCCL estimator to this normality assumption, we revise (M1) by letting

Uj,k ∼ Laplace(0, 0.51/2) instead and set n = 200. Table 2.3 provides summary

statistics of parameter estimates as those shown in Table 2.1 under this revised setting.

As one can see from Table 2.3, despite the violation of the normality assumption on

U , the MCCL estimates remain close to the truth and significantly outperform the

naive estimates. This robustness feature of the Monte Carlo corrected score method

is also noted and explained in Novick and Stefanski (2002).

Table 2.3 Medians of MCCL estimates and medians of naive estimates across 1000
Monte Carlo replicates generated according to (M1) with Uj,k ∼ Laplace(0, 0.51/2)
and n = 200. The number in parentheses following each median is the interquartile
range of the 1000 realizations of an estimator.

β0 β1 β2 m

MCCL 0.24 (0.18) 0.24 (0.17) 0.25 (0.27) 3.08 (0.64)
Naive 0.12 (0.20) 0.13 (0.10) 0.48 (0.32) 3.05 (0.60)

2.5.3 Performance of the model diagnostic method

Using 5000 Monte Carlo replicates from (M1) with σ2
u = 1.2 at each sample size level in

n = 100, 200, 500, 1000, we implement the bootstrap algorithm related in Section 2.4

with M = 300 bootstrap samples to obtain estimated p-values associated with the test

statistic Q̃(Ω̂;D∗). We then record the proportion of replicates, across 5000 replicates,

that lead to rejection of the null hypothesis of no model misspecification at various

nominal levels. This rejection rate can be viewed as an empirical size of the test

at a pre-specified significance level. Figure 2.2 depicts this rejection rate versus the

significance level, from which one can see that the size of the test is well controlled by

the bootstrap procedure over a wide range of nominal levels.

Table 2.4 presents rejection rates of the model diagnostic method in the presence

of different forms of model misspecification that occur when fitting data generated

according to (M2)–(M4) while assuming a beta modal regression model specified in
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Figure 2.2 Rejection rates associated with the score-based diagnostic test across
5000 Monte Carlo replicates from (M1) versus the nominal level of the test. Black
dashed lines are the 45◦ reference lines.

(M1). As one can see in Table 2.4, the proposed score-based test has moderate power

to detect a misspecified form of the linear predictor, with the power steadily increasing

as n increases, and is especially powerful in detecting violation of the distributional

assumption on Y given covariates; but the test is less sensitive to link misspecification.

Low power of most goodness-of-fit tests to detect link misspecification have been

reported in the context of generalized linear models (e.g., Hosmer et al., 1997). Given

these reported findings in the literature, the low power observed under design (M3)

may not be surprising, especially with the high similarity of the logit link in the

assumed model with the probit link in the true model in (M3).
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Table 2.4 Rejection rates of the score-based diagnostic test resulting from 300 Monte
Carlo replicates in the presence of four types of model misspecification in (M2)–(M4)

Model n = 200 n = 300 n = 400 n = 500
(M2) 0.277 0.417 0.557 0.600
(M3) 0.100 0.107 0.143 0.123
(M4) 0.997 1.000 0.993 1.000

2.6 Real-life data application

In this section, we analyze data arising from two different applications where a covariate

of interest cannot be observed directly. Besides dealing with scientific questions in

relevant fields, these applications provide opportunities for us to address some practical

issues one faces when implementing the proposed estimation method and diagnostic

method not discussed in the simulation study.

2.6.1 Application to dietary data

Food Frequency Questionnaire (FFQ) is a convenient and inexpensive dietary as-

sessment instrument in epidemiologic studies. To study the association between an

individual’s FFQ intake and his/her long-term usual intake as the univariate covariate

X, we analyze a dietary data set from Women’s Interview Survey of Health (Carroll

et al., 1997). The data set contains 271 females’ FFQ intake records, measured as the

percentage calories from fat, and six 24-hour food recalls, Wj,k, for j = 1, . . . , 271 and

k = 1, · · · , 6. Because the j-th subject’s long-term usual intake Xj cannot be measured

directly, a generally accepted practice in epidemiology is to use W j = ∑6
k=1 Wj,k/6

as a surrogate of Xj, for j = 1, . . . , 271. According to the preliminary analysis in

existing literature, the distribution of the FFQ intake appears to be right-skewed

and potentially heavy-tailed, which motivates the consideration of a modal regression

model in place of a mean regression model. Here, we assume a beta modal regression

model given in (2.2.2) with θ(X) = 1/{1 + exp(−β0 − β1X)} for the response data
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{Yj}271
j=1, where Yj is the j-th subject’s FFQ intake in kilocalorie divided by 8000, a

biologically plausible upper bound of daily energy intakes for a general population.

We obtain the MCCL estimate of Ω = (β0, β1, logm)T according to (2.3.9), and

also carry out regression analysis that ignores measurement error to obtain a naive

maximum likelihood estimate of Ω. These two sets of estimates are given in Table 2.5.

The covariate effect associated with the long-term intake suggested by the naive

estimate is substantially weaker than that indicated by the MCCL estimate, implying

potentially significant attenuation on the covariate effect due to measurement error in

the former, whereas the latter corrects for this attenuation. Figure 2.3 depicts the

estimated regression functions θ̂(x) resulting from these two methods, imposed on

the scaled response data versus the surrogate covariate data. This pictorial contrast

between the two estimated regression functions shows that the proposed method is

able to capture the underlying positive non-linear covariate effect that is partially

concealed or weakened by the naive method. Finally, applying the proposed diagnostic

method to this data set with M = 300 bootstrap samples yields an estimated p-value

of 0.61. We thus conclude lack of sufficient data evidence to indicate the assumed

beta modal regression model inadequate for this application.

Table 2.5 Estimates of parameters in the beta modal regression model applied to the
dietary data, along with the corresponding estimated standard errors in parentheses

Method β0 β1 logm
MCCL −1.569 (0.049) 1.056 (0.420) 3.298 (0.345)
Naive −1.581 (0.041) 0.270 (0.058) 2.979 (0.094)

2.6.2 Application to Alzheimer’s disease data

Medical researchers have long recognized that cerebral atrophy is associated with

dementia, and extensive research have been conducted to understand the association

between volumetric changes of different brain regions with the severity of dementia.

Abundant data collected from this line of research are available in the Alzheimer’s
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Figure 2.3 Estimated conditional mode functions for the dietary data based on the
MCCL estimate (red solid line) and the naive estimate (cyan dashed line), respectively.
Observed covariate data {W j}271

j=1 are treated as surrogates of long-term usual intakes
in the scatter plot of the observed data (solid dots).

Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu/).

Zhou and Huang (2020) analyzed a data set relating to 245 individuals diagnosed

with mild cognitive impairment from this database. The goal is to study roles that an

individual’s volumetric measure of entorhinal cortex (ERC) and that of hippocampus

(HPC) play in predicting one’s risk of developing Alzheimer’s disease. An individual’s

test score from the Alzheimer’s disease assessment scale, known as ADAS-11, at

month 12 since entering the ADNI cohort is used to assess one’s severity of cognitive

impairment. Covariates of interest are the volumetric change in ERC (ERC.change)

and that in HPC (HPC.change) at month 12 compared to the baseline measures

collected at month 6. Assuming these volumetric measures are observed precisely,

Zhou and Huang (2020) fitted the data to the beta modal regression model for the

response Y defined as an individual’s ADAS-11 score divided by a perfect score

of 70, with the log-log link in the mode function, θ(X) = exp{− exp(−β0 − β1 ×

ERC.change−β2×HPC.change)}, and showed that it provides a better fit for the data

compared to the beta mean regression model proposed by Ferrari and Cribari-Neto
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(2004).

In reality, measuring ERC volume is challenging because of lateral border dis-

crimination from the perirhinal cortex (Price et al., 2010), and the accuracy of HPC

measurements is also in question (Maclaren et al., 2014). It is thus more sensible to

view the observed volumetric change of ERC or that of HPC as a noisy surrogate

of the actual amount of change. Despite of which covariate is viewed as error-prone,

the current data present some challenges due to the lack of replicate measures for

an individual’s true covariate value, and thus the estimation methods proposed in

Section 2.3 are not applicable. For example, in (2.3.8), the term multiplying the

imaginary unit i is equal to zero now with the number of replicates nj = 1, making

the “corrected" log-likelihood the same as the naive log-likelihood. A quick fix to

the problem is to invoke a similar strategy of correcting naive scores to account for

measurement error as discussed in Novick and Stefanski (2002). Following this strategy,

a corrected log-likelihood evaluated at the j-th data point to use in place of (2.3.8) is

ℓ̃(Ω;Yj,Wj, Z̃j) = 1
B

B∑
b=1

Re{ℓ(Ω;Yj,Wj + iΣ1/2
u Zj,b)}, (2.6.1)

where Z̃j = {Zj,b}B
b=1, for j = 1, . . . , n, and {Zj,b, b = 1, . . . , B}n

j=1 are independent

p-dimensional normal random vectors with mean zero and variance-covariance as an

identity matrix, which accommodates multiple error-prone covariates in X by letting

Wj be a p-dimensional multivariate surrogate of Xj, contaminated by a multivariate

normal measurement error Uj with variance-covariance matrix Σu. By setting all

entries in Σu at zero except for the first diagonal entry gives rise to the case considered

in the majority of this chapter with only X1 prone to error. Certainly, not having

replicate measures still creates an obstacle to implementing this strategy due to its

dependence on Σu that cannot be estimated without replicate measures of a true

multivariate covariate value or other external validation data. A well-accepted practice

among statisticians in similar situations is to carry out sensitivity analysis where one

analyzes the data under different assumptions for the parameter, such as Σu in our
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case, that one lacks data information to infer. If one obtains drastically different

inference results when assuming different values for Σu, including a matrix of zeros

corresponding to naive estimation that ignores measurement error, then one may

recommend to exercise caution when interpreting results from an inference procedure

that assumes error-free covariates.

For illustration purposes, we assume in the sensitivity analysis four values for Σu

listed in Table 2.6, where inference results for model parameters under each assumed

Σu are provided. According to Table 2.6, all four rounds of regression analyses lead

to the conclusion that the volumetric change of ERC is an influential predictor for

the severity of cognitive impairment, even though the magnitude of the estimated

covariate effect is sensitive to the assumed error variance associated this covariate.

In particular, when assuming imprecise measurements for ERC.change, the revised

MCCL method that employs the corrected log-likelihood in (2.6.1) with B = 1000

produces results indicating a much stronger association than the naive analysis. By

comparison, the magnitude of the estimate for the HPC.change effect is less sensitive to

the assumed Σu, but its statistical significance is noticeably affected by it. For example,

one would conclude a moderately significant covariate effect of HPC.change based

on the naive analysis assuming error-free covariates, but claim a highly significant,

or moderately significant, or nonsignificant HPC.change effect depending on which

covariate(s) one assumes to be error-prone and the severity of error contamination.

This phenomenon is a reminiscence of an observation made in Figure 2.1, and may

suggest that ERC.change and HPC.change are correlated. In fact, measurements of

ERC and HPC via magnetic resonance imaging are known to be highly correlated

with observed clinical alterations in patients suffering mild cognitive impairment or at

dementia phases of Alzheimer’s disease (Desikan et al., 2010; Jack et al., 2013; Varon

et al., 2014).

In conclusion, results from the sensitivity analysis suggest that volumetric measures
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Table 2.6 Sensitivity analysis using the ADNI data for the beta modal regression
with the log-log link. Numbers in parentheses are estimated standard errors. Numbers
in square brackets are p-values associated with covariate effects.

Σu β0 β1 (ERC.change) β2 (HPC.change) logm[
0 0
0 0

]
−0.69 (0.03) −0.12 (0.05) −0.22 (0.11) 2.78 (0.15)

[0.007] [0.054][
0.16 0

0 0

]
−0.83 (0.09) −2.47 (0.00) −0.30 (1.03) 2.40 (0.02)

[0.000] [0.773][
0 0
0 0.0225

]
−0.71 (0.03) −0.11 (0.05) −0.46 (0.27) 2.80 (0.16)

[0.013] [0.084][
0.16 0

0 0.0225

]
−0.81 (0.03) −2.45 (0.00) −0.87 (0.06) 3.94 (0.01)

[0.000] [0.000]

of different brain regions are likely to be subject to measurement error, and statistical

analyses under the assumption of precisely measured covariates should be interpreted

with caution. If replicate data are available for covariates of interest, the MCCL

method can provide more reliable inference. Lastly, even though one can mimic (2.6.1)

to construct a corrected score in place of S̃(Ω;Yj, W̃j, T̃j,X−1,j) in (2.4.3) and then

formulate the test statistic Q̃(Ω̂;D∗) for model diagnostics, the dependence of the

revised score on the unknown Σu remains an obstacle that hinders one from using

the bootstrap procedure outlined in Section 2.4 to assess statistical significance of the

revised test statistic. Alternative diagnostic methods that do not rely on parametric

bootstrap or corrected score (e.g. Huang et al., 2006) can be used to detect inadequate

assumptions imposed on the primary regression model.

2.7 Discussion

We propose an inference procedure based on the idea of corrected score that falls in the

framework of M -estimation for modal regression with an error-prone covariate. Even

though in this chapter we focus on the beta modal regression model as the primary

regression model, the proposed MCCL method is applicable in other parametric modal

regression models, such as the gamma modal regression models for non-negative
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responses proposed by Aristodemou (2014) and Bourguignon et al. (2020). A Python

package for implementing the proposed methods for beta modal regression with errors-

in-covariate is available at https://pypi.org/project/pybetareg/. All computer

programs used in this chapter is available at https://github.com/rh8liuqy/Moda

l_regression_with_measurement_error.

To accommodate situations without replicate measures of the true covariate or

settings with multiple error-prone covariates, the MCCL method can be easily revised

as demonstrated in Section 2.6.2, although one needs to specify the variance (or the

variance-covariance matrix) of the (vector-valued) measurement error if one lacks

replicate data or external validation data to estimate it.

Focusing on the current beta modal regression models, some extensions are worthy

of further investigation, such as a zero-inflated beta modal regression model to fit

disease prevalence data especially suitable for rare diseases. Another follow-up research

direction is variable selection based on a parametric modal regression model with or

without measurement error contamination in covariates.
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Chapter 3

The Flexible Gumbel Distribution

3.1 Introduction

When data contain outliers that cause heavy tails or are potentially skewed, the mode

is a more sensible representation of the central location of data than the mean or

median. The timely review on mode estimation and its application by Chacón (2020)

and references therein provide many examples in various fields of research where the

mode serves as a more informative representative value of data. Most existing methods

developed to draw inference for the mode are semi-/non-parametric in nature, starting

from early works on direct estimation in the 1960s (Chernoff, 1964; Dalenius, 1965;

Venter, 1967) to more recent works based on kernel density estimation (Chen, 2018)

and quantile-based methods (Ota et al., 2019; Zhang et al., 2021). There are two

main reasons contributing to the long-lasting trend of opting to semi-/non-parametric

methods for mode estimation, despite the fact that inference procedures proposed along

these veins are usually less straightforward to implement (e.g., involving bandwidth

selection), and less efficient than their parametric counterparts. First, a parametric

model typically imposes stringent constraints on the relationship between the mode

and other location parameters that may not be satisfied in a given application. Second,

very few existing named distribution families that allow inclusion of both symmetric

and asymmetric distributions in the same family can be parameterized so that it is

indexed by the mode as the location parameter along with other parameters, such as

shape or scale parameters. In this study, we alleviate concerns raised by both reasons
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that discourage use of parametric methods for mode estimation by formulating a

flexible distribution indexed by the (unique) mode and parameters controlling the

shape and scale.

When it comes to modeling heavy-tailed data, the Gumbel distribution (Gumbel,

1941) is arguably one of the most widely used models in many disciplines. Indeed, as

a case of the generalized extreme value distribution (Jenkinson, 1955), the Gumbel

distribution for the maximum (or minimum) is well-suited for modeling extremely

large (or small) events that produce heavy-tailed data. For example, it is often used in

hydrology to predict extreme rainfall and flood frequency (Loaiciga and Leipnik, 1999;

Koutsoyiannis, 2004; Dawley et al., 2019). In econometrics, the Gumbel distribution

plays an important role in modeling extreme movements of stock prices and large

changes in interest rates (Bali, 2003; Pratiwi et al., 2019). The Gumbel distribution

is indexed by the mode and a scale parameter, and thus is convenient for mode

estimation. However, the Gumbel distribution for the maximum (or minimum) is

right-skewed (or left-skewed) with the skewness fixed at around 1.44 (or −1.44), and

the kurtosis fixed at 5.4 across the entire distribution family. Thus it may be too rigid

for scenarios where the direction and extremeness of outliers presented in data are

initially unclear, or when the direction and level of skewness are unknown beforehand.

Constructions of more flexible distributions that overcome these limitations have

been proposed. In particular, Cooray (2010) applied a logarithmic transformation

on a random variable following the odd Weibull distribution to obtain the so-called

generalized Gumbel distribution that includes the Gumbel distribution as a subfamily.

But the mode of the generalized Gumbel distribution is not a location parameter this

distribution is indexed by, or an explicit function of other model parameters. Shin

et al. (2015b) considered mixture distributions with one of the components being the

Gumbel distribution and the other component(s) being Gumbel of the same skewness

direction or a different distribution, such as the gamma distribution. Besides the
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same drawback pointed out for the generalized Gumbel distribution, it is difficult to

formulate a unimodal distribution following their construction of mixtures, and thus

their proposed models are unsuitable when unimodality is a feature required to make

inferring the mode meaningful, such as in a regression setting, as in modal regression

(Yao et al., 2012; Yao and Li, 2013; Chen, 2018).

With heavy-tailed data in mind and the mode as the location parameter of interest,

we construct a new unimodal distribution that does not impose stringent constraints

on how the mode relates to other central tendency measures, while allowing a range

of kurtosis wide enough to capture heavy tails at either direction, as well as different

degrees and directions of skewness. This new distribution, called the flexible Gumbel

(FG) distribution, is presented in Section 3.2, where we study properties of the

distribution and discuss identifiability of the model. We present a frequentist method

and a Bayesian method for estimating parameters in the FG distribution in Section 3.3.

Finite sample performance of these methods are inspected in simulation study in

Section 3.4, followed by an application of the FG distribution in hydrology in Section

3.5. Section 3.6 demonstrates fitting a modal regression model based on the FG

distribution to data from a criminology study. Section 3.7 highlights contributions of

the study and outlines future research directions.

3.2 The flexible Gumbel distribution

The probability density function (pdf) of the Gumbel distribution for the maximum

is given by

f(x; θ, σ) = 1
σ

exp
{
−x− θ

σ
− exp

(
−x− θ

σ

)}
, (3.2.1)

where θ is the mode and σ > 0 is a scale parameter. The pdf of the Gumbel distribution

for the minimum with mode θ and a scale parameter σ is given by

f(x; θ, σ) = 1
σ

exp
{
x− θ
σ
− exp

(
x− θ
σ

)}
. (3.2.2)
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We define a unimodal distribution for a random variable Y via a mixture of the two

Gumbel distributions specified by (3.2.1) and (3.2.2) that share the same mode θ

while allowing different scale parameters, σ1 and σ2, in the two components. We call

the resultant distribution the flexible Gumbel distribution, FG for short, with the pdf

given by

f(y) = w × 1
σ1

exp
{
−x− θ

σ1
− exp

(
−x− θ

σ1

)}
+

(1− w)× 1
σ2

exp
{
x− θ
σ2
− exp

(
x− θ
σ2

)}
,

(3.2.3)

where w ∈ [0, 1] is the mixing proportion parameter. Henceforth, we state that

Y ∼ FG(θ, σ1, σ2, w) if Y follows the distribution specified by the pdf in (3.2.3).

For each component distribution of FG, the mean and median are both some

simple shift of the mode, with each shift solely determined by the scale parameter.

Because the two components in (3.2.3) share a common mode θ, the mode of Y is also

θ, and thus the FG distribution is convenient to use when one aims to infer the mode

as a central tendency measure, or to formulate parametric modal regression models

(Bourguignon et al., 2020; Zhou and Huang, 2020, 2022). One can easily show that

the mean of Y is E(Y ) = w(θ + σ1γ) + (1− w)(θ − σ2γ) = θ + {w(σ1 + σ2)− σ2}γ,

where γ ≈ 0.5772 is the Euler-Mascheroni constant. Thus the discrepancy between

the mode and the mean of FG depends on three other parameters that control the

scale and shape of the distribution. The median of Y , denoted by m, is the solution

to the following equation,

w exp
{
− exp

(
−m− θ

σ1

)}
+ (1− w)

[
1− exp

{
− exp

(
m− θ
σ2

)}]
= 0.5.

Even though this equation cannot be solved for m explicitly to reveal the median in

closed form, it is clear that m− θ also depends on all three other parameters of FG.

In conclusion, the relationships between the three central tendency measures of FG

are more versatile than those under a Gumbel distribution for the maximum or a

Gumbel distribution for the minimum.
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The variance of Y is V (Y ) = {wσ2
1 + (1 − w)σ2

2}π2/6 + w(1 − w)(σ1 + σ2)2γ2,

which does not depend on the mode parameter θ. Obviously, by setting w = 0

or 1, FG(θ, σ1, σ2, w) reduces to one of the Gumbel components. Unlike a Gumbel

distribution that only has one direction of skewness at a fixed level (of ±1.44), an FG

distribution can be left-skewed, or right-skewed, or symmetric. More specifically, with

the mode fixed at zero when studying the skewness and kurtosis of FG, one can show

that the third central moment of Y is given by

ww̄(σ1 +σ2)2γ
{
γ2(w̄ − w)(σ1 + σ2) + 0.5π2(σ1 − σ2)

}
+2ζ(3)

(
wσ3

1 − w̄σ3
2

)
, (3.2.4)

where w̄ = 1− w, and ζ(3) ≈ 1.202 is Apéry’s constant. Although the direction of

skewness is not immediately clear from (3.2.4), one may consider a special case with

w = 0.5 where (3.2.4) reduces to (σ1 − σ2){γπ2(σ1 + σ2)2/8 + ζ(3)(σ2
1 + σ1σ2 + σ2

2)}.

Now one can see that FG(θ, σ1, σ2, 0.5) is symmetric if and only if σ1 = σ2, and it is

left-skewed (or right-skewed) when σ1 is less (or greater) than σ2. The kurtosis of Y

can also be derived straightforwardly, with a more lengthy expression than (3.2.4)

that we omit here, which may not shed much light on its magnitude except for that it

varies as the scale parameters and the mixing proportion vary, instead of fixing at 5.4

as for a Gumbel distribution. An R Shiny app depicting the pdf of FG(θ, σ1, σ2, w)

with user-specified parameter values is available at https://qingyang.shinyapps

.io/gumbel_mixture/, created and maintained by the first author. Along with the

density function curve, the Shiny app provides skewness and kurtosis of the depicted

FG density. From there one can see that the skewness can be much lower than −1.44

or higher than 1.44, and the kurtosis can be much higher than 5.4, suggesting that

inference based on FG can be more robust to outliers than when a Gumbel distribution

is assumed for data at hand, without imposing stringent assumption on the skewness

of the underlying distribution.

The flexibility of a mixture distribution usually comes with concerns relating

to identifiability (Teicher, 1961, 1963; Yakowitz and Spragins, 1968). In particular,
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there is the notorious issue of label switching when fitting a finite mixture model

(Redner and Walker, 1984). Take the family of two-component normal mixture

(NM) distributions as an example, defined by {NM(µ1, σ1, µ2, σ2, w) : wN (µ1, σ
2
1) +

(1 − w)N (µ1, σ
2
2), for σ1, σ2 > 0 and w ∈ [0, 1]}. When fitting a data set assum-

ing a normal mixture distribution, one cannot distinguish between, for instance,

NM(1, 2, 3, 4, 0.2) and NM(3, 4, 1, 2, 0.8), since the likelihood of the data is identical

under these two mixture distributions. As another example, for data from a normal

distribution, a two-component normal mixture with two identical normal components

and an arbitrary mixing proportion w ∈ [0, 1] leads to the same likelihood, and

thus w cannot be identified. Teicher (1963) showed that imposing an lexicographical

order for the normal components resolves the issue of non-identifiability, which also

excludes mixtures with two identical components in the above normal mixture family.

Unlike normal mixtures of which all components are in the same family of normal

distributions, the FG distribution results from mixing two components from different

families, i.e., a Gumbel distribution for the maximum and a Gumbel distribution

for the minimum, with weight w on the former component. By construction, FG

does not have the label-switching issue. And, according to Teicher (1963, Theorem

1), the so-constructed mixture distribution is always identifiable even when the true

distribution is a (one-component) Gumbel distribution.

3.3 Statistical inference

3.3.1 Frequentist inference method

Based on a random sample of size n from the FG distirbution, y = {yi}n
i=1, maximum

likelihood estimators (MLE) of all model parameters in Ω = (θ, σ1, σ2, w) can be

obtained via the expectation-maximization (EM) algorithm (Dempster et al., 1977).

To apply the EM algorithm, we introduce a latent variable Z that follows Bernoulli(w)
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such that the joint likelihood of (Y, Z) is

fY,Z(y, z) = {wf1(y; θ, σ1)}z{(1− w)f2(y; θ, σ2)}1−z,

where f1(y; θ, σ1) is the pdf in (3.2.1) evaluated at y with the scale parameter σ = σ1,

and f2(y; θ, σ2) is the pdf in (3.2.2) evaluated at y with the scale parameter σ = σ2. A

random sample of size n from Bernoulli(w), z = {zi}n
i=1, is viewed as missing data, and

{(yi, zi)}n
i=1 are viewed as the complete data in the EM algorithm. The complete-data

log-likelihood is then

ℓ(Ω; y, z) =
n∑

i=1
{zi log(wf1(yi; θ, σ1)) + (1− zi) log((1− w)f2(yi; θ, σ2))}. (3.3.1)

Starting from an initial estimate of Ω (at the zero-th iteration), denoted by Ω(0),

one iterates two steps referred to as the E-step and the M-step until a convergence

criterion is met. In the E-step at the (t+ 1)-th iteration, one computes the conditional

expectation of (3.3.1) given y while assuming the true parameter value to be Ω(t) =

(θ(t), σ
(t)
1 , σ

(t)
2 , w(t)), that is, EΩ(t){ℓ(Ω; y, z)|y}. This conditional expectation can be

shown to be

Q
(
Ω
∣∣∣Ω(t)

)
=

n∑
i=1

{
T

(t)
i log(wf1 (yi; θ, σ1)) +

(
1− T (t)

i

)
log((1− w)f2 (yi; θ, σ2))

}
,

(3.3.2)

where

T
(t)
i = EΩ(t)(Z|Y = yi) = w(t)f1(yi; θ(t), σ

(t)
1 )

w(t)f1(yi; θ(t), σ
(t)
1 ) + (1− w(t))f2(yi; θ(t), σ

(t)
2 )

. (3.3.3)

In the M-step at the (t+ 1)-th iteration, one maximizes Q(Ω|Ω(t)) with respect to Ω

to obtain an updated estimate Ω(t+1).

Our experience with the above EM algorithm for fitting the FG distribution suggests

that maximizing Q(Ω|Ω(t)) in (3.3.2) can be numerically challenging. We thus exploit

the expectation-conditional maximization (ECM) algorithm (Meng and Rubin, 1993),

which replaces the M-step with a sequence of simpler conditional maximizations
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referred to as the CM-step. More specifically, in the CM-step, the updating formula

for w is simply w(t+1) = ∑n
i=1 T

(t)
i /n. There is no closed-form updating formula for the

other three parameters in Ω, but they can now be easily updated by most well-accepted

one-dimensional optimization algorithms, such as the Newton-Raphson method. To

ensure convergence at the global maximum, as recommended by Wu (1983), one

should implement the ECM algorithm several rounds with different starting values

Ω(0).

After obtaining the MLE of Ω, denoted by Ω̂, we propose to use the sandwich

variance estimator (Boos and Stefanski, 2013, Chapter 7) to estimate the variance-

covariance matrix of Ω̂. One may also estimate the variance-covariance of Ω̂ based

on the observed information matrix as described in Louis (1982) and Oakes (1999).

The benefit of using the sandwich variance estimator is its robustness to model

misspecification. Finally, the EM and ECM algorithms bear a strong resemblance to

data augmentation (Wei and Tanner, 1990) in the Bayesian framework, which we turn

to next for inferring Ω.

3.3.2 Bayesian inference method

In the Bayesian framework, we formulate hierarchical models starting with the FG

distribution,

Y |θ, σ1, σ2, w ∼ FG(θ, σ1, σ2, w),

followed by independent weakly informative or non-informative priors for elements in

Ω,

θ ∼ N (0, 104),

σj ∼ inv-Gamma(1, 1), for j = 1, 2,

w ∼ Beta(1, 1),
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where inv-Gamma refers to the inverse Gamma distribution. We choose the above

prior for the scale parameters by following the prior selection for variance parameters

suggested in Gelman (2006)

We employ the Metropolis-within-Gibbs sampler (Müller, 1991, 1993) to obtain

an estimate of Ω from the posterior distribution of Ω given observed data y. Similar

to the EM/ECM algorithm in Section 3.3.1, the latent variable Z is also introduced

as a device to carry out data augmentation. And the iterative algorithm presented

next is based on the following two conditional distributions that can be easily proved,

zi|θ, σ1, σ2, w, z−i,y ∼ Bernoulli
(

wf1(yi; θ, σ1)
wf1(yi; θ, σ1) + (1− w)f2(yi; θ, σ2)

)
,

w|θ, σ1, σ2, z,y ∼ Beta
(

1 +
n∑

i=1
zi, n+ 1−

n∑
i=1

zi

)
,

where z−i results from dropping zi from z, and the first result above is also from which

(3.3.3) is deduced.

The Metropolis-within-Gibbs sampler at the (t+ 1)-th iteration involves four steps

outlined below.

• Step 1: For i = 1, . . . , n, draw z
(t+1)
i from Bernoulli(T (t)

i ), where T (t)
i is given in

(3.3.3).

• Step 2: Draw w(t+1) from Beta
(
1 +∑n

i=1 z
(t+1)
i , n+ 1−∑n

i=1 z
(t+1)
i

)
.

• Step 3: Draw θ̃ from N (θ(t), τ0), and update θ(t) to θ(t+1) according to the

following decision rule,

θ(t+1) =


θ̃, with probability q = min

 p(θ̃|w(t+1), σ
(t)
1 , σ

(t)
2 ,y)

p(θ(t)|w(t+1), σ
(t)
1 , σ

(t)
2 ,y)

, 1

,
θ(t), with probability 1− q.

• Step 4: For j = 1, 2, draw σ̃j from N (σ(t)
j , τj), and update σ(t)

j to σ(t+1)
j according
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to the following decision rule, for k ̸= j,

σ
(t+1)
j =


σ̃j, with probability q = min

 p(σ̃j|θ(t+1), σ
(t)
k , w(t+1),y)

p(σ(t)
j |θ(t+1), σ

(t)
k , w(t+1),y)

, 1

,
σ

(t)
j , with probability 1− q.

In Steps 3 and 4, p(·|·) refers to a conditional pdf generically, τ0, τ1, and τ2 are three

positive tuning parameters whose values should be chosen so that the acceptance rate

at each step is around 23% (Gelman et al., 1997). To draw samples from the joint

posterior distribution, there are numerous ways to design the Markov chain Monte

Carlo (MCMC) sampler. Instead of the Metropolis-within-Gibbs sampler we adopt

here, one may use other existing MCMC software, such as Stan (Stan Development

Team, 2021), JAGS (Plummer et al., 2003), and BUGS (Spiegelhalter et al., 1996;

Lunn et al., 2009), two of which we demonstrate in the Appendix. After obtaining

enough high quality samples from the joint posterior distribution p(θ, σ1, σ2, w|y),

Bayesian inference is straightforward, including point estimation, interval estimation,

and uncertainty assessment.

3.4 Simulation study

Large-sample properties of MLEs and likelihood-based Bayesian inference under a

correct model for data have been well studied. To assess finite-sample performance of

the frequentist method and Bayesian method proposed in Section 3.3, we carried out

simulation study with two specific aims: first, to compare inference results from the

two methods; second, to compare goodness of fit for data from distributions outside

of the FG family when one assumes an FG distribution and when one assumes a

two-component normal mixture distribution for the data.

In the first experiment, referred to as (E1) in the sequel, we drew a random sample

of size n ∈ {100, 200} from an FG distribution with θ = 0, σ1 = 1, σ2 = 5, and w = 0.5.

Based on each simulated data set, we estimated Ω by applying the ECM algorithm

39



and the Metropolis-within-Gibbs algorithm. The former algorithm produced the MLE

of Ω, and we used the median of the posterior distribution of Ω at convergence of the

latter algorithm as another point estimate of Ω. Table 3.1 presents summary statistics

of these estimates of Ω and estimates of the corresponding standard deviation across

1000 Monte Carlo replicates.

Table 3.1 Frequentist and Bayesian inference results in experiment (E1) across 1000
Monte Carlo replicates. Here, point.est stands for the average of 1000 point estimates
for each parameter from each method, ŝ.d. stands for the average of the corresponding
1000 estimated standard deviations, and s.d. refers to the empirical standard deviation
of the 1000 point estimates from each method. Numbers in parentheses are 100×
Monte Carlo standard errors associated with the averages.

Frequentist Bayesian

sample size parameter point.est ŝ.d. s.d. point.est ŝ.d. s.d.

θ 0.002 0.198 (0.20) 0.201 0.013 0.205 (0.15) 0.203

σ1 0.979 0.204 (0.41) 0.216 1.014 0.224 (0.27) 0.214

σ2 4.932 0.590 (0.56) 0.613 4.813 0.666 (0.44) 0.615n = 100

w 0.495 0.091 (0.09) 0.090 0.484 0.090 (0.04) 0.088

θ 0.008 0.136 (0.08) 0.129 0.011 0.137 (0.07) 0.130

σ1 0.999 0.143 (0.21) 0.144 1.013 0.144 (0.10) 0.141

σ2 4.993 0.435 (0.32) 0.431 4.940 0.457 (0.20) 0.434n = 200

w 0.500 0.064 (0.04) 0.063 0.495 0.063 (0.02) 0.062

According to Table 3.1, all estimates for parameters in Ω are reasonably close to

the truth. A closer inspection on the reported empirical mean of these estimates along

with their empirical standard error suggests that, when n = 100, the Bayesian method

may slightly underestimate σ2, the larger of the two scale parameters of FG. We

believe that this is due to the inverse gamma prior imposed on the scale parameters

that is sharply peaked near zero, and thus the posterior median of the larger scale

parameter tends to be pulled downwards when the sample size is not large. As the

sample size increases to 200, this trend of underestimation appears to diminish. The

empirical means of the standard deviation estimates from both methods are close to
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the corresponding empirical standard deviations, which indicate that the variability

of a point estimator is accurately estimated, whether it is based on the sandwich

variance estimator in the frequentist framework, or based on the posterior sampling

in the Bayesian framework. In summary, the methods proposed in Section 3.3 under

both frameworks provide reliable inference for Ω along with accurate uncertainty

assessment of the point estimators when data arise from an FG distribution.

Among all existing mixture distributions, normal mixtures probably have the

longest history and are most referenced in the literature. In another experiment, we

compared the model fitting of normal mixture with that of FG when data arise from

three heavy-tailed distributions: (E2) Laplace with the location parameter equal to

zero and the scale parameter equal to 2; (E3) a mixture of two Gumbel distributions for

the maximum, with a common mode at zero, scale parameters in the two components

equal to 2 and 6, respectively, and the mixing proportion equal to 0.5; (E4) a t

distribution with degrees of freedom equal to 5. From each of the three distributions

in (E2)–(E4), we generated a random sample of size n = 200, following which we fit a

two-component normal mixture model via the EM algorithm implemented using the

R package mixtools, and also fit an FG model via the two algorithms described in

Section 3.3. This model fitting exercise was repeated for 1000 Monte Carlo replicates

under each of (E2)–(E4).

We used an empirical version of the Kullback-Leibler divergence as the metric

to assess the quality of modeling fitting. We denote the true density function as

p(·), and let p̂(·) be a generic estimated density resulting from one of the three

considered model fitting strategies. Under each setting in (E2)–(E4), a random

sample of size 50000, (x1, . . . , x50000), were generated from the true distribution, and

an empirical version of the Kullback-Leibler divergence from p̂(·) to p(·) is given

by DKL = (1/50000)∑50000
i=1 log(p(xi)/p̂(xi)). Figure 3.1 shows the boxplots of DKL

across 1000 Monte Carlo replicates corresponding to each model fitting scheme under
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(E2)–(E4).
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Figure 3.1 Boxplots of the empirical Kullback-Leibler divergence from an estimated
density to the true density under each of the true-model settings in (E2)–(E4). Under
each setting, the three considered model fitting strategies are, from left to right in the
figure, (i) using the ECM algorithm to fit an FG distribution (FG ECM), (ii) using
the Bayesian method to fit an FG distribution (FG Bayes), and (iii) using the EM
algorithm to fit a normal mixture distribution (Normal Mixture Distribution EM).

Judging from Figure 3.1, the FG distribution clearly outperform the normal mixture

when fitting data from any of the three heavy-tailed distributions in (E2)–(E4), and

results from the frequentist method are comparable with those from the Bayesian

method for fitting an FG model. When implementing the ECM algorithm for fitting

the FG model and the EM algorithm for fitting the normal mixture, we set a maximum

number of iterations at 1000. Our ECM algorithm always converged in the simulation,

i.e., converged to a stationary point within 1000 iterations. But the EM algorithm for

fitting a normal mixture often had trouble achieving that, with more difficulty when

data come from a heavier-tailed distribution. More specifically, under (E4), which has
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the highest kurtosis (equal to 9) among the three settings, the EM algorithm failed to

converge in 59.9% of all Monte Carlo replicates; under (E2), which has the second

highest kurtosis (equal to 6), it failed to converge in 6.7% of the replicates. Results

associated with the normal mixture from these failing replicates were not included

when producing the boxplots in Figure 3.1. In conclusion, the FG distribution is more

suitable for symmetric or asymmetric heavy-tailed data than the normal mixture

distribution.

3.5 An application in hydrology

Daily maximum water elevation changes of a waterbody, such as ocean, lake, and

wetland, are of interest in hydrologic research. These changes may be close to zero in

most days, but can be extremely large or small under extreme weather. From National

Water Information System (https://waterdata.usgs.gov/), we downloaded water

elevation data for Lake Murray near Columbia, South Carolina, United States, recorded

from September 18, 2020 to September 18, 2021. The water elevation change of a given

day was calculated by contrasting the maximum elevation and the minimum elevation

on that day, returning a positive (negative) value if the maximum record of the day

comes after (before) the minimum record on the same day. We fit the FG distribution

to the resultant data with n = 366 records using the frequentist method and the

Bayesian method, with results presented in Table 3.2. The two inference methods

produced very similar estimates for most parameters, although small differences

were observed. For example, one would estimate the mode of daily maximum water

elevation change to be −0.795 feet based on the frequentist method, but estimate it to

be −0.486 feet using the Bayesian method. The discrepancy between these two mode

estimates is minimal considering that the daily maximum water elevation changes

range from −38 feet to 49.4 feet within this one-year period. In fact, taking into

account the uncertainty in these point estimates, we do not interpret any of these
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differences as statistically significant because a parameter estimate from one method

always falls in the interval estimate for the same parameter from the other method

according to Table 3.2. Using parameter estimates in Table 3.2 in the aforementioned

R Shiny app, we obtained an estimated skewness of −0.102 and an estimated kurtosis

of 6.384 based on the frequentist inference results, whereas the Bayes inference yielded

an estimated skeweness of 0.058 and an estimated kurtosis of 6.074. Combining these

two sets of results, we concluded that the underlying distribution of daily maximum

water elevation change may be nearly symmetry, with outliers on both tails that cause

tails heavier than that of a Gumbel distribution.

Table 3.2 Frequentist and Bayesian inferences about daily maximum water elevation
changes of Lake Murray, South Carolina, United States. Besides parameter estimates
(under point.est) and the estimated standard deviations of these parameter estimates
(under ŝ.d.), 95% confidence intervals of the parameters from the frequentist method,
and 95% credible intervals from the Bayesian method are also provided (under lower
95 and upper 95).

Frequentist Bayesian

parameter point.est ŝ.d. lower 95 upper 95 point.est ŝ.d. lower 95 upper 95

θ -0.795 0.796 -2.355 0.764 -0.486 0.694 -1.679 0.973
σ1 5.186 0.541 4.124 6.247 5.399 0.651 4.534 6.916
σ2 6.237 1.735 2.836 9.638 5.734 1.031 4.390 8.029
w 0.698 0.169 0.367 1.029 0.630 0.141 0.329 0.847

Figure 3.2 presents the estimated density functions from these two methods, in

contrast with the estimated density curve resulting from fitting the data to a two-

component normal mixture, and a kernel density estimate using a Gaussian kernel

with the bandwidth selected according to the method proposed by Sheather and Jones

(1991). The last estimate is fully nonparametric and served as a benchmark against

which the other three density estimates were assessed graphically. The kernel density

estimate is more flexible at describing varying tail behaviors, but such flexibility comes

at the cost of statistical efficiency and interpretability. With the wiggly tails evident

in Figure 3.2 for this estimate, we suspected certain level of overfitting of the kernel
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density estimate. This often happens to kernel-based estimation of a function around

a region where data are scarce, with a bandwidth not large enough for the region.

Between the two FG density estimates, the difference is almost negligible. They both

track the kernel density estimate closely over a wide range of the support around the

mode. The mode of the estimated normal mixture density is close to the other three

mode estimates, but the tails are much lighter than those of the other three estimated

densities.
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Figure 3.2 Four density estimates based on daily maximum water elevation changes
in Lake Murray, including the kernel density estimate (solid line), the estimated FG
density from the ECM algorithm (dotted line), the estimated FG density from the
Bayesian method (dashed line), and the estimated normal mixture density (dash-dotted
line).

Besides comparing the three parametric density estimates pictorially, we also used

the Monte-Carlo based one-sample Kolmogorov–Smirnov test to assess the goodness
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of fit. The p-values from this test are 0.223, 0.312, and 0.106 for the frequentist

FG density estimate, the Bayesian FG density estimate, and the estimated normal

mixture density, respectively. Although none of the p-values are low enough to indicate

lack of fit (at significance level 0.05 for example), the p-value associated with the

normal mixture is much lower than those for FG. This provides quantitative evidence

that an FG distribution fits the current data better than a normal mixture. It is

also worth noting that the Kolmogorov–Smirnov test is known to have low power

to detect deviations from a posited distribution that occur in the tails (Mason and

Schuenemeyer, 1983). This may explain the above-0.05 p-value for the normal mixture

fit of the data even though the tail of this posited distribution may be too thin for

the current data.

We used Stan to implement the Bayesian inference for the Lake Murray data,

and the code and posterior output are given in the Appendix. The output provided

there indicates that our MCMC chain has converged (see the Rhat statistics). The

JAGS code for fitting the FG distribution is also given in the Appendix.

3.6 An application in criminology

Table 3.3 Frequentist and Bayesian modal regression models based on the FG
distribution fitted to the crime data. Besides parameter estimates (under point.est)
and the estimated standard deviations of these parameter estimates (under ŝ.d.), 95%
confidence intervals of the parameters from the frequentist method, and 95% credible
intervals from the Bayesian method are also provided (under lower 95 and upper 95).

Frequentist Bayesian

parameter point.est ŝ.d. lower 95 upper 95 point.est ŝ.d. lower 95 upper 95

β1 -0.166 0.071 -0.306 -0.026 -0.162 0.078 -0.315 -0.008
β2 0.217 0.110 0.001 0.433 0.231 0.123 -0.009 0.475
β3 0.067 0.013 0.042 0.093 0.067 0.014 0.039 0.095

With the location parameter θ signified in the FG distribution as the mode, it is

straightforward to formulate a modal regression model that explores the relationship
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Table 3.4 Mean regression model based on the normal distribution fitted to the
crime data. Besides parameter estimates (under point.est) and the estimated standard
deviations of these parameter estimates (under ŝ.d.), 95% confidence intervals of the
parameters

parameter point.est ŝ.d. lower 95 upper 95

β1 0.467 0.161 0.142 0.792
β2 1.140 0.224 0.689 1.591
β3 0.068 0.034 0.000 0.136

between the response variable and predictors. To demonstrate the formulation of a

modal regression model based on the FG distribution, we analyze a data set from

Agresti et al. (2021) in the area of criminology. This data set contains the percentage

of college education, poverty percentage, metropolitan rate, and murder rate for the

50 states in the United States and the District of Columbia from year 2003. The

poverty percentage is the percentage of the residents with income below the poverty

level; the metropolitan rate is defined as the percentage of population living in the

metropolitan area; and the murder rate is the annual number of murders per 100, 000

people in the population.

We fit the following modal regression model to investigate the association between

the murder rate (Y ) and the aforementioned demographic variables,

Y | β, σ1, σ2 ∼ FG(β0 +β1× college +β2× poverty +β3× metropolitan , σ1, σ2, w),

where β = [β0, β1, β2, β3]⊤ includes all regression coefficients. For the prior elicitation

in Bayesian inference, we assume that β0, . . . , β3
i.i.d∼ N (0, 104) and use the same priors

for σ1, σ2 and w as those in Section 3.3.2. As a more conventional regression analysis

to compare with our modal regression, we also fit the mean regression model assuming

mean-zero normal model error to the data.

Table 3.3 shows the inference results from the modal regression model, and Table

3.4 presents the inference results from the mean regression model. At 5% significance

level, both frequentist and Bayesian modal regression analyses confirm that there
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exists a negative association between the percentage of college education and the

murder rate, as well as a positive association between the metropolitan rate and the

murder rate. In contrast, according to the inferred mean regression model, there is

a positive association between the percentage of college education and the murder

rate. Such claimed positive association is intuitively difficult to justify and contradicts

with many published results in criminology (Hjalmarsson and Lochner, 2012; Lochner,

2020).

The scatter plot of the data in Figure 3.3 can shed some light on why one reaches

to such a drastically different conclusion on a covariate effect when mean regression

is considered in place of modal regression. As shown in Figure 3.3, the exists an

obvious outlier, District of Columbia (DC), in panels of the first row of the scatter plot

matrix for instance. Mean regression reacts to this one extreme outlier by inflating

the covariate effect associated with the percentage of college education in the inferred

mean regression function. Thanks to the heavy-tailed feature of the FG distribution,

modal regression based on this distribution is robust to outliers, which strives to

capture data features suggested by majority of the data and is not distracted by the

extreme outlier when inferring covariate effects in this application.

3.7 Discussion

The mode had been an overlooked location parameter in statistical inference until

recently when the statistics community witnessed a revived interest in modal regression

among statisticians (Chen, 2018; Chacón, 2020; Feng et al., 2020; Xu et al., 2020;

Ullah et al., 2021; Wang and Li, 2021; Xiang and Yao, 2022b). Historically, statistical

inference for the mode have been mostly developed under the nonparametric framework

for reasons we point out in Section 3.1. Existing semiparametric methods for modal

regression only introduce parametric ingredients in the regression function, i.e., the

conditional mode of the response, with the mode-zero error distribution left in a
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Figure 3.3 Scatter plot matrix of the crime data.

nonparametric form (Yao and Li, 2013; Liu et al., 2013; Zhang et al., 2013; Yang and

Yang, 2014; Zhao et al., 2014; Krief, 2017; Tian et al., 2017; Li and Huang, 2019).

The few recently proposed parametric modal regression models all impose stringent

parametric assumptions on the error distribution (Bourguignon et al., 2020; Zhou

and Huang, 2020, 2022). Our proposed flexible Gumbel distribution greatly alleviates

concerns contributing to data scientists’ reluctance to adopt a parametric framework

when drawing inference for the mode. This new distribution is a heterogeneous mixture

in the sense that the two components in the mixture belong to different Gumbel

distribution families, which is a feature that shields it from the non-identifiability

issue most traditional mixture distributions face, such as the normal mixtures. The

proposed distribution is indexed by the mode along with shape and scale parameters,

and thus is convenient to use to draw inference for the mode while remaining flexible.

It is also especially suitable for modeling heavy-tailed data, whether the heaviness in
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tails is due to extremely large or extremely small observations, or both. These are

virtues of FG that cannot be achieved by the popular normal mixture and many other

existing mixture distributions.

We develop the numerically efficient and stable ECM algorithm for frequentist

inference for the FG distribution, and a reliable Bayesian inference method that

can be easily implemented using free software, including Stan, JAGS, and BUGS.

Compared with the more widely adopted mean regression framework, the modal

regression model based on FG we entertained in Section 3.6 shows great potential in

revealing meaningful covariate effects potentially masked by extreme outliers. With

these advances made in this study, we open up new directions for parametric modal

regression and semiparametric modal regression with a fully parametric yet flexible

error distribution, and potentially nonparametric ingredients incorporated in the

regression function.

Disclosure statement

Computer programs for implementing the FG distribution, related models and data

used in this chapter are available at https://github.com/rh8liuqy/flexible_Gumbel.
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Chapter 4

Bayesian Modal Regression based on Mixture

Distributions

4.1 Introduction

Our study presented in earlier chapters and references therein suggest that modal

regression models are useful additions to the well-established mean and median

regression models. For unimodal and asymmetric distributions, intervals around

the conditional mode typically have higher coverage probability than intervals of

the same length around the conditional mean or median (Yao and Li, 2014; Xiang

and Yao, 2022a). Consequently, prediction intervals from modal regression tend

to be narrower than those for mean or median regression when data arise from a

unimodal and skewed distribution. By construction, modal regression explores the

relationship between the “most probable” value of Y given X, and thus offers a

highly interpretable representative value of the response. Thanks to the nature of the

mode, modal regression is extremely robust to outliers that can obscure some inherent

covariate effect suggested by the majority of observations, making it a worthy rival of

median regression as an alternative to mean regression in regard to feature discovery.

A major challenge in building parametric modal regression models is constructing

an appropriate distribution family that subsumes asymmetric, symmetric, light-tailed,

and fat-tailed distributions. The flexible Gumbel distribution introduced in Chapter 3

contributes in this direction. In this chapter, we further propose the general unimodal

distribution (GUD) family, which is a subfamily of the general two-component mixture
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distribution family described in Section 4.3. Members of the GUD family have a

location parameter as the mode, in addition to shape and scale parameters that

control the skewness and tail behaviors. Thus, our framework is appropriate for both

asymmetric and symmetric conditional distributions, as well as both light-tailed and

fat-tailed distributions. In the extreme case, our framework can also model data from

distributions without any finite moments, which we introduce in Section 4.3.3. We

propose to estimate the conditional mode and the shape/scale parameters using a

Bayesian approach. By placing appropriate prior distributions on model parameters,

our modal regression models can be implemented straightforwardly using Markov

chain Monte Carlo (MCMC) and provide natural uncertainty quantification through

the posterior distributions.

4.1.1 Existing work on modal regression

Frequentist nonparametric modal regression has been the mainstream in the limited

existing literature on modal regression (see Chen (2018) for a comprehensive review).

The higher statistical efficiency and greater interpretability of covariate effects under

a parametric framework motivate some recent development in frequentist parametric

modal regression. For example, Aristodemou (2014) and Bourguignon et al. (2020)

proposed a parametric modal regression model based on a gamma distribution for

a positive response; Zhou et al. (2020) proposed two parametric modal regression

models for a bounded response. Menezes et al. (2021) give a nice review on these

and other parametric modal regression models for a bounded response. In contrast

to these existing parametric modal regression models for bounded data, the modal

regression models in the present manuscript are based on a new GUD family whose

support is the entire real line. Furthermore, our work deals with Bayesian inference

for modal regression.

The literature on Bayesian modal regression is even more sparse. Yu and Aris-
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todemou (2012) proposed a nonparametric Bayesian modal regression model using

Dirichlet process mixtures of uniform distributions. Zhou and Huang (2022) proposed

a parametric Bayesian modal regression model based on a four-parameter beta dis-

tribution whose support is bounded yet unknown. Damien et al. (2017) introduced

a more flexible parametric form of Bayesian modal regression using mixtures of tri-

angular densities for a response with an unknown bounded support. Remaining in

the parametric framework, a major strength of our proposed GUD family is that it

naturally facilitates data-driven learning of the skewness and tails of the underlying

distribution supported on the entire real line, while signifying the mode as the central

tendency measure of the response.

4.1.2 Our contributions

The study presented in this chapter aims to widen the scope of Bayesian modal

regression models and highlight the advantages of these models through analyses

of datasets from real-life applications in several disciplines. We provide a unified

framework of Bayesian modal regression models based on the GUD family that

contains a large variety of unimodal distributions. We adopt the fully Bayesian

approach via MCMC, so that inference of the conditional mode does not rely on

asymptotic approximations. Our method is shown to provide reliable inference in

small sample sizes. The fully Bayesian approach also comes with a convenient way

of constructing prediction intervals from the posterior predictive distribution that

is approximated using a simple random number generation algorithm for the GUD

family. Indeed, the convenience in data generation via a data augmentation trick (to

be discussed on Section 4.3) is yet another advantage of the GUD family. Finally,

we exploit the model criterion known as the Bayesian leave-one-out expected log

predictive density for model selection to help practitioners choose an appropriate

distribution for their final analysis.
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The main contributions of our work presented in this chapter can be summarized

as follows:

1. We propose the GUD family that is suitable for Bayesian modal regression.

The GUD family contains distributions that are symmetric or asymmetric,

(non)normal, and/or fat-tailed.

2. We formulate rules of prior elicitation for the GUD family. In particular, we

place a flat prior on regression coefficients, weakly informative priors on all other

model parameters, and establish sufficient conditions under which the posterior

distribution is proper.

3. We provide strategies for constructing prediction intervals and for selecting an

appropriate likelihood for Bayesian modal regression analysis.

4. We illustrate the following benefits of our proposed Bayesian modal regression

framework through simulation studies and data applications in economics, crim-

inology, environmental science, and molecular biology: a) robustness to outliers,

b) more precise prediction, and c) high interpratability of covariate effects.

The structure of the remainder of the chapter is as follows. In Section 4.2, we mo-

tivate our proposed Bayesian modal regression framework with two data applications.

In Section 4.3, we formally define the GUD family and zoom in on several important

members in the family. Section 4.4 introduces Bayesian inference for these modal

regression models, including prior elicitation, posterior propriety, uncertainty quantifi-

cation, and model selection. Section 4.5 provides simulation studies that illustrate

the strengths of our methodology. In Section 4.6, we provide two additional data

applications from environmental science and molecular biology. Section 4.7 concludes

the chapter with some remarks about our Bayesian modal regression framework and

several directions for future research.
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4.2 Motivating applications

As a prelude to introducing our Bayesian modal regression framework, we first present

results from applying the proposed methodology (to be elaborated in Sections 4.3 and

4.4) to datasets from the economics and the criminology literature.

4.2.1 Modeling highly right-skewed bank deposits

It is common knowledge to economists that wealth distributions are highly skewed

to the right (Benhabib and Bisin, 2018). The cumulative nature of wealth not only

has impact on individuals’ net worth, but also has an influence on assets of large

companies, including bank holding companies. In this example, we analyzed the

deposits data of 50 banks and savings institutions in the United States on July 2,

2010 (Table 3.4.1 in Siegel (2012)).

Figure 4.1 presents the estimated density plot that results from fitting an intercept-

only regression model based on the Double Two-Piece-Student-t, or DTP-Student-t,

distribution (to be introduced in Section 4.3) to the dataset, along with the histogram

of the underlying data. From this figure, we can see that the estimated mode using

the DTP-Student-t distribution is close to the nonparametric mode estimate based on

the histogram. This similarity and the close resemblance of the fitted density to the

shape of the histogram indicate that the DTP-Student-t distribution is an adequate

choice for the bank deposits data.

The other two measures of central tendency, i.e. the sample mean and median,

are both shown to be larger than the estimated parametric mode in Figure 4.1. The

sample mean, which equals 92.6 billion dollars, is obviously not a good measure of

central tendency for most large banks and savings institutions in the United States.

In particular, 40 of the 50 banks and savings institutions in our dataset had deposits

less than 92.6 billion dollars on July 2, 2010. The sample median for this data is

40.5 billion dollars, indicating that 50% of banks in the dataset had deposits larger
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Figure 4.1 Deposits (in billions of dollars) of 50 banks and savings institutions in the
United States on July 2, 2010. The solid black curve is the estimated density of the DTP-
Student-t distribution. The three vertical lines mark locations of the sample mean (blue
solid line), the sample median (orange dot-dashed line), and the estimated mode (red dashed
line), respectively.

than 40.5 billion dollars while the other half had deposits smaller than 40.5 billion

dollars. In spite of its high interpretability, the (sample) median is usually difficult to

visualize either from a density plot or a histogram. In contrast, it is much easier for

data analysts to locate and interpret the mode than the mean or median in Figure

4.1. The estimated mode using the DTP-Student-t distribution is where the density

plot reaches its peak, and is close to where the histogram reaches to its peak. More

specifically, the posterior mean of the mode is around 20 billion dollars, suggesting

that banks in the United States are most likely to have deposits of around 20 billion

dollars during that time.

4.2.2 Modal versus mean and median regression for analyzing murder rates

As a second motivating example, we analyze a dataset from Agresti et al. (2021)

containing the murder rate, percentage of college education, poverty percentage, and

metropolitan rate for the 50 states in the United States and the District of Columbia

(D.C.) from 2003. The murder rate is defined as the annual number of murders
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per 100, 000 people in the population. The poverty percentage is the percentage of

residents with income below the poverty level, and the metropolitan rate is defined as

the percentage of population living in the metropolitan area.

At the stage of exploratory data analysis, we plotted the conditional scatter plot

matrix of the U.S. crime data in Figure 4.2. From the first row of the conditional

scatter plot matrix, a positive association between the poverty percentage and the

murder rate, and also a positive association between the metropolitan rate and the

murder rate are relatively evident; but an association between the college percentage

and the murder rate is harder to perceive in the figure. Figure 4.2 also brings up a

clear outlier, which is D.C. Without this outlier, there appears to exist a negative

association between the college percentage and the murder rate.
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Figure 4.2 The conditional scatter plot matrices of the U.S. crime data.

To formally investigate the association between the murder rate (Y ) and the
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aforementioned variables, we fit the following models to the U.S. crime dataset:

M(Y | β) = β0 + β1 × college +β2 × poverty +β3 ×metropolitan,

where M(·) generically refers to the conditional mean, median, or mode. Table 4.1

presents the inference results from mean/median/modal regression models. All three

models share some conclusions in common. Namely, all models determined that

there were positive associations between the poverty percentage and the murder rate,

and between the metropolitan rate and the murder rate. However, with a posterior

credible interval (CI) of (0.20, 0.74), the mean regression model (specified by (4.5.1))

implies that there exists a positive association between the college percentage and the

crime rate, conditionally on the other covariates in the model. We believe that this

inference result is difficult to justify, in light of existing results from the criminology

literature that conclude a negative association between higher education attainment

and crime (Lochner, 2020; Hjalmarsson and Lochner, 2012). On the other hand, with

a CI of (−0.27, 0.05), the Bayesian median regression model (formulated in (4.5.2))

concludes that the college percentage is not significantly associated with the murder

rate, conditionally on the other covariates. Our Bayesian modal regression model with

the Two-Piece scale-Student-t, or TPSC-Student-t, distribution (to be introduced in

Section 4.3) draws a different conclusion. With a CI of (−0.33,−0.06), our Bayesian

modal regression model concludes that there is a negative association between the

college percentage and the murder rate, which is more consistent with findings from

the criminology literature. Lastly, according to the model criterion referred to as

the expected log predictive density (ELPD, introduced in Section 4.4.3) in Table

4.1, the modal regression model based on the TPSC-Student-t likelihood yields the

highest value of ELPD, indicating a better fit for the data than the mean and median

regression models.

We repeated the above analyses after removing the D.C. outlier from the data.

Now the median and modal regression models do in fact suggest a negative association
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Table 4.1 Estimates of covariate effects for the mean/median/modal regression
models fit to the U.S. crime dataset. The mean, 5% quantile, and 95% quantile of
the posterior distribution of each covariate effect are listed under Mean, q5, and q95,
respectively. ELPD stands for expected log predictive density.

Regression model ELPD Parameter (covariate) Mean q5 q95
β1 (college) 0.47 0.20 0.74
β2 (poverty) 1.14 0.76 1.51Mean regression -162.59

β3 (metropolitan) 0.07 0.01 0.12
β1 (college) -0.12 -0.27 0.05
β2 (poverty) 0.44 0.22 0.67Median regression -133.12

β3 (metropolitan) 0.06 0.03 0.08
β1 (college) -0.20 -0.33 -0.06
β2 (poverty) 0.24 0.01 0.46Modal regression -123.27

β3 (metropolitan) 0.06 0.04 0.09

between the college percentage and the murder rate, whereas the mean regression model

insists on lack of significant association between them. This exercise demonstrates

that modal regression based on the proposed GUD family can be even more robust

to outliers than median regression, and has a stronger potential in drawing reliable

inferences and unveiling important features of data even in the presence of extreme

outliers.

4.3 The family of general unimodal distributions

Having motivated our Bayesian modal regression framework and demonstrated its

benefits on two real-life applications in Section 4.2, we now formally introduce the

GUD family for Bayesian modal regression.

The probability density function (pdf) of a member belonging to the GUD family

is a mixture of two pdfs, f1 and f2, given by

f(y | w, θ, ξ1, ξ2) = wf1(y | θ, ξ1) + (1− w)f2(y | θ, ξ2). (4.3.1)
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In the mixture pdf (4.3.1), w ∈ [0, 1] is the weight parameter, θ ∈ (−∞,+∞) is

the mode as the only location parameter in (4.3.1), ξ1 consists of parameters other

than the location parameter in the pdf f1(· | θ, ξ1), and ξ2 is defined similarly for

f2(· | θ, ξ2). Clearly, the GUD family belongs to the more general two-component

mixture distribution family. One feature of GUD that makes it stand out from the

bigger family of two-component mixture distributions is that the two component

distributions of GUD share the same location parameter θ as the mode, a feature that

makes GUD especially suitable for modal regression. In contrast, a two-component

normal mixture for instance, as a widely referenced member in the bigger family, can

be multimodal, and it is non-trivial to impose constraints on two normal components

to guarantee unimodality (Sitek, 2016). Even after formulating a unimodal normal

mixture, its mode may not have an analytical form (Behboodian, 1970). Many other

members in the more general two-component mixture distribution family have the

same pitfalls.

Besides unimodality, we reiterate and complement the following three restrictions

on (4.3.1) to make the GUD family suitable and convenient for modal regression:

(R1) The pdfs f1(· | θ, ξ1) and f2(· | θ, ξ2) are unimodal at θ.

(R2) The pdfs f1(· | θ, ξ1) and f2(· | θ, ξ2) are left-skewed and right-skewed respec-

tively.

(R3) The mixture pdf f(· | w, θ, ξ1, ξ2) in (4.3.1) is continuous in its domain.

Restriction (R1) is already implied earlier when we stress that the two components

in (4.3.1) share the same location parameter θ as the finite mode. In the context

of modal regression, (R1) ensures that one can easily link a linear predictor X⊤β

with the conditional mode of Y . Because modal regression adds more value to

mean/median regression when data are skewed and contain outliers, we impose (R2)

to make members in GUD exhibit a wide range of skewness and tail behaviors. This
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second restriction also solves the notorious label switching problem that many other

two-component mixture distributions suffer from, because f1(· | θ, ξ1) and f2(· | θ, ξ2)

satisfying (R2) must come from different distribution families in some strict sense,

as opposed to, say, both coming from the normal family. According to Theorem 1

of Teicher (1963), this guarantees identifiability of all parameters associated with

GUD. Lastly, (R3) eliminates ill-constructed pdfs whose mode may occur at a jump

discontinuity.

Henceforth, when a random variable Y follows a distribution in the GUD family, we

state that Y | w, θ, ξ1, ξ2 ∼ GUD (w, θ, ξ1, ξ2). Like for other two-component mixture

distributions, one may view Y = ZX1 + (1 − Z)X2, where X1 | θ, ξ1 ∼ f1(· | θ, ξ1),

X2 | θ, ξ2 ∼ f2(· | θ, ξ2), and Z | w ∼ Bernoulli (w), with Z, X1, and X2 independent.

This viewpoint gives rise to a data augmentation method outlined below for generating

data from a GUD effortlessly:

(i) Sample X1 | θ, ξ1 ∼ f1 (· | θ, ξ1).

(ii) Sample X2 | θ, ξ2 ∼ f2 (· | θ, ξ2).

(iii) Sample Z | w ∼ Bernoulli(w).

(iv) Y ← ZX1 + (1− Z)X2.

Having an efficient random number generation method is especially beneficial in

constructing Bayesian prediction intervals, since the most common way to approximate

the posterior predictive density is by drawing samples from the posterior predictive

distribution during the MCMC iterations. We will continue our discussion about the

Bayesian prediction intervals in Section 4.4.3.

Relating to existing literature, the GUD family subsumes several previously pro-

posed distributions, such as those introduced in Fernández and Steel (1998) and Rubio

and Steel (2015), as special cases. In what follows, we detail several examples of

distributions from the GUD family.
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4.3.1 The flexible Gumbel distribution

For predicting extreme events, the Gumbel distribution is a popular choice in many

fields such as hydrology, earthquake forecasting, and insurance (Smith, 2003; Vidal,

2014; Shin et al., 2015a). The pdf of a Gumbel distribution for the maximum is

fGumbel (y | θ, σ) = 1
σ

exp
{
−y − θ

σ
− exp

(
−y − θ

σ

)}
I (−∞ < y <∞) ,

where θ ∈ R is the mode as the location parameter, σ > 0 is the scale parameter,

and I(·) is the indicator function. To describe data that contains a mix of extremely

large and extremely small events, Liu et al. (2022) proposed the flexible Gumbel (FG)

distribution specified by the pdf

fFG (y | w, θ, σ1, σ2) = wfGumbel (−y | −θ, σ1) + (1− w)fGumbel (y | θ, σ2) . (4.3.2)

By mapping to (4.3.1), we have f1(y|θ, ξ1) = fGumbel (−y | −θ, σ1) as the pdf of the

left-skewed Gumbel distribution for the minimum. Similarly, we have f2(y|θ, ξ2) =

fGumbel (y | θ, σ2) as the pdf of the right-skewed Gumbel distribution for the maximum.

We illustrate Bayesian modal regression based on the FG likelihood in Section 4.6.2.

The FG distribution serves as a good choice of likelihood if the data is a mixture of

extreme events, such as monthly maximum/minimum water elevation changes, and

weekly heaviest/lightest traffic on a highway.

4.3.2 The double two-piece distribution

Rubio and Steel (2015) defined the Double Two-Piece (DTP) distribution by mixing

two truncated distributions. For a pdf belonging to some location-scale family of the

form (1/σ)f((y − θ) /σ | δ) that is unimodal at θ, with a scale parameter σ > 0 and a

shape parameter δ, the pdf of the corresponding left θ-truncated distribution is

fLT(y | θ, σ, δ) = 2
σ
f

(
y − θ
σ

∣∣∣∣∣ δ
)
I(y < θ), (4.3.3)
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and the corresponding right θ-truncated distribution is specified by the following pdf,

fRT(y | θ, σ, δ) = 2
σ
f

(
y − θ
σ

∣∣∣∣∣ δ
)
I(y ≥ θ). (4.3.4)

By mixing the pdfs in (4.3.3)-(4.3.4), we obtain the DTP pdf as

fDTP(y | θ, σ1, σ2, δ1, δ2) = wfLT(y | θ, σ1, δ1) + (1− w)fRT(y | θ, σ2, δ2), (4.3.5)

where

w = σ1f (0 | δ2)
σ1f (0 | δ2) + σ2f (0 | δ1)

(4.3.6)

as the weight chosen to produce a mixture distribution that satisfies (R3). Restrictions

(R1) and (R2) are trivially satisfied by the construction of the left/right θ-truncated

pdfs in (4.3.3)–(4.3.4). Thus, DTP distributions belong to the GUD family. Note,

however, that our general GUD family (4.3.1) does not require the two component

densities to be truncated, as we demonstrated earlier with the FG distribution (4.3.2).

As a concrete example, we consider the location-scale family as the three-parameter

Student’s t distributions, i.e., the non-standardized Student’s t distributions, with

location parameter θ, scale parameter σ > 0, and continuous degree of freedom

δ > 0 (Geweke, 1993). Following (4.3.3) and (4.3.4), one has the corresponding

left-skewed truncated three-parameter Student’s t distribution and the right-skewed

truncated three-parameter Student’s t distribution, respectively. This leads to the

distribution defined according to (4.3.5) and (4.3.6) that we call the DTP-Student-t

distribution. The DTP distribution family contains numerous distributions, all of

which are suitable for modal regression (see Rubio and Steel (2015) for more). In the

sequel, we concentrate on the DTP-Student-t distribution as a special member of the

DTP distribution.

4.3.3 The two-piece scale distribution

By setting δ1 = δ2 = δ in (4.3.5), one obtains the pdf of a subfamily of the DTP family

proposed in Fernández and Steel (1998), referred to as the two-piece scale (TPSC)
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distribution family,

fTPSC (y | w, θ, σ, δ) = wfLT

(
y | θ, σ

√
w

1− w, δ
)

+

(1− w)fRT

y | θ, σ
√

1− w
w

, δ

 . (4.3.7)

We point out that in Fernández and Steel (1998), a shape parameter γ = w0.5(1−w)−0.5

is used instead of the weight parameter w when formulating the mixture pdf. We

adopt the parameterization in (4.3.7) because we find it more straightforward to elicit

a noninformative prior for w than placing a noninformative prior on γ.

Similar to the construction of the DTP-Student-t distribution, we can construct

the TPSC-Student-t distribution by choosing the two component distributions to

be the left and right θ-truncated three-parameter Student’s t distributions. When

w = 0.5, the TPSC-Student-t distribution converges to a normal distribution with

mean θ and standard deviation σ as δ →∞; and it reduces to a Cauchy distribution

with mode θ and scale parameter σ when δ = 1. Hence, even as a special case of the

DTP-Student-t distribution, the TPSC-Student-t distribution is flexible enough to

describe normally distributed data and non-normal data with extreme outlier(s) from

distributions that do not have any finite moments. Since the TPSC-Student-t has

fewer parameters than the DTP-Student-t distribution, it is an adequate choice for

small datasets. On the other hand, the DTP-Student-t distribution may be preferred

when there is moderate sample size. Certainly, one can conduct several rounds of

modal regression analysis assuming different unimodal distributions for the response,

such as the FG, DTP-Student-t, and TPSC-Student-t distributions, and then select

the most appropriate model using the model selection criteria that we introduce in

Section 4.4.3. All of these models can be easily implemented using the code developed

for this work.
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4.3.4 Type I GUD and type II GUD subfamilies

As illustrated in the preceding three subsections, the GUD family is a generalization

of several previously proposed unimodal two-component mixture distributions. Figure

4.3 presents pdfs of FG, DTP-Student-t, and TPSC-Student-t distributions with

different parameter specifications, which encompass asymmetric, symmetric, fat-tailed,

and thin-tailed densities. In particular, the first panel in Figure 4.3 presents the

density plot of FG distribution with varying scale parameters of the right-skewed

component. As σ2 becomes larger, the tails of FG distribution (especially the right tail)

become fatter. In the second panel, we show that the FG distribution is symmetric

if w = 0.5 and σ1 = σ2. With the weight parameter w surpassing 0.5 further, the

pdf of FG distribution puts more weight on the left-skewed part, therefore, becomes

more left-skewed. In the third panel, as the the scale parameter of the left-skewed

component σ1 increases, the left tail of the DTP-Student-t distribution becomes fatter

while the right tail changes little, leading to distributions that are more left-skewed.

The fourth panel shows the drastic change in the shape of the TPSC-Student-t pdf as

one varies the scale parameter σ shared by both mixture components. The last panel

presents the subtle changes in the tail behavior of TPSC-Student-t distributions with

different values for the degree of freedom δ that is shared by both mixture components.

The GUD family can be further categorized into two subfamilies. Let D1 and D2

denote the domains of f1(· | θ, ξ1) and f2(· | θ, ξ2) in the GUD pdf (4.3.1) respectively.

If D1 ∩D2 ̸= ∅, we call the mixture distribution the type I GUD. The FG distribution

is an example of type I GUD. In Chapter A.2, we present the construction of the

lognormal mixture distribution (logNM), which is another example of type I GUD. On

the other hand, if D1∩D2 = ∅, then we have the type II GUD. The DTP distributions

and the asymmetric Laplace distribution (ALD) (Koenker and Machado, 1999) belong

to this subfamily of type II GUD. Figure 4.4 presents the partition of the GUD family
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Figure 4.4 Venn diagram of the unimodal two-component mixture distributions.

into type I and type II GUD subfamilies.

4.4 Bayesian modal regression

Having defined the GUD family in Section 4.3, we are now in a position to introduce our

Bayesian modal regression framework. In the remainder of the manuscript, we assume

that we observe n independent pairs of observations (X1, Y1), (X2, Y2), . . . , (Xn, Yn).

Here, X i := (Xi1, . . . , Xip)⊤ denotes a vector of p covariates for the ith observation. We

let X := [X1, . . . ,Xn]⊤ denote an n×p design matrix with rows X⊤
i , i = 1, . . . , n. We

assume exchangeability in the sense that, given X and all parameters, n observations

in Y := (Y1, . . . , Yn) are independent. Our goal is to conduct inference about the

conditional mode of the response variable Y given the covariates X.

4.4.1 Prior elicitation

For all modal linear regression models in this chapter, we assume that

Yi |X i, w,β, ξ1, ξ2
ind∼ GUD

(
w, X⊤

i β, ξ1, ξ2

)
, for i = 1, . . . , n, (4.4.1)

where GUD generically refers to a member of the GUD family, and “ind” is the

acronym for “independent.” Recall that any member of the GUD family contains the
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location parameter as its mode, which is X⊤
i β as the conditional mode for Yi given

X i in (4.4.1).

To conduct inference for our model in (4.4.1), we adopt a Bayesian approach

where appropriate priors are placed on the model parameters (w,β, ξ1, ξ2).We endow

the weight parameter w with a noninformative Uniform(0, 1) prior, and use weakly

informative InverseGamma(1, 1) or InverseGamma(5, 5) priors for all positive param-

eters in ξ1 and ξ2. As pointed out by Diebolt and Robert (1994), improper priors

usually lead to improper posterior distributions for mixture distributions because of

identifiability problems. Therefore, if ξ1 ∩ ξ2 = ∅, then improper priors should not

be used for ξ1 or ξ2.

On the other hand, a flat prior p(β) ∝ 1 on the regression coefficients β usually

leads to a proper posterior distribution because both right and left skewed components

share the same location parameter. In Section 4.4.2, we provide sufficient conditions

under which a flat prior can be used for β such that the posterior distribution is

proper. These sufficient conditions can be shown to hold for a variety of Bayesian

modal regression models. All models going forward thus use a noninformative flat

prior, p(β) ∝ 1, for β.

Revisiting the three members of the GUD family discussed in Section 4.3, we

have the Bayesian modal linear regression model based on the FG likelihood (4.3.2)

formulated as follows,

Yi |X i, w,β, σ1, σ2
ind∼ FG

(
w, X⊤

i β, σ1, σ2
)
, for i = 1, . . . , n,

w ∼ Uniform(0, 1),

σ1, σ2
i.i.d∼ InverseGamma(1, 1),

p(β) ∝ 1,

(4.4.2)

where “i.i.d” refers to “independent and identically distributed.” Meanwhile, the

Bayesian modal linear regression associated with the DTP-Student-t likelihood (4.3.5)
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is specified by

Yi |X i,β, σ1, σ2, δ1, δ2
ind∼ DTP-Student- t

(
X⊤

i β, σ1, σ2, δ1, δ2
)
, for i = 1, . . . , n,

σ1, σ2, δ1, δ2
i.i.d∼ InverseGamma(1, 1),

p(β) ∝ 1.
(4.4.3)

Recall that the weight parameter w of a DTP distribution is fully defined by its scale

and shape parameters, so in this case, there is no need to choose a prior for w. Finally,

the Bayesian modal linear regression associated with the TPSC-Student-t likelihood

(4.3.7) is defined as

Yi |X i, w,β, σ, δ
ind∼ TPSC-Student- t

(
w, X⊤

i β, σ, δ
)
, for i = 1, . . . , n,

w ∼ Uniform(0, 1),

σ, δ
i.i.d∼ InverseGamma(1, 1),

p(β) ∝ 1.

(4.4.4)

According to Proposition 4.4.2 in next subsection, all of the proposed Bayesian

modal regression models (4.4.2)–(4.4.4) above have proper posterior distributions.

Practitioners can construct various other Bayesian modal regression models using the

same strategy shown above. In this chapter, we concentrate on the modal regression

models based on the FG, DTP-Student-t, and TPSC-Student-t likelihoods for the

sake of concreteness.

4.4.2 Sufficient conditions for posterior propriety

Since we use an improper prior, p(β) ∝ 1, for the regression coefficients β in our

Bayesian modal regression models, it is important to check that the posterior distri-

bution is proper. Theorem 4.4.1 gives sufficient conditions under which the GUD

likelihood (4.3.1) with a flat prior on the mode/location parameter and suitably chosen

priors on other model parameters lead to a proper posterior. Theorem 4.4.2 extends
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this result to the regression setting. All the proofs for the theorems and propositions in

this section can be found in Chapter A.1. We stress that our results are nonasymptotic;

that is, our results apply for any fixed sample size n.

To ease the notation, let fZ (y | w, ξ1, ξ2) := f (y | w, θ = 0, ξ1, ξ2) be the pdf of

GUD family with the mode at 0. We can rewrite the pdf (4.3.1) as

fZ (y − θ | w, ξ1, ξ2) = f (y | w, θ, ξ1, ξ2) . (4.4.5)

Theorem 4.4.1. Let Θw,ξ1,ξ2 denote the parameter space of w, ξ1 and ξ2, with respective

independent priors p(w), p(ξ1), and p(ξ2). For any n ≥ 1, if∫∫∫
Θw,ξ1,ξ2

fn−1
Z (0 | w, ξ1, ξ2) p(w)p (ξ1) p (ξ2) dwdξ1dξ2 <∞,

then the posterior distribution p (w, θ, ξ1, ξ2 | Y1, . . . , Yn) is proper under a flat prior

p(θ) ∝ 1.

Theorem 4.4.1 applies to the case where there is a single location parameter θ

(as in the bank deposits application in Section 4.2.1). Next, we extend this result to

the regression setting. Theorem 4.4.2 enables us to use the noninformative flat prior

p(β) ∝ 1 for the regression coefficients β in Bayesian modal regression based on the

GUD likelihood (4.3.1).

Theorem 4.4.2. Let X be a full rank design matrix with p ≤ n and finite entries. If∫∫∫
Θw,ξ1,ξ2

fn−p
Z (0 | w, ξ1, ξ2) p(w)p (ξ1) p (ξ2) dwdξ1dξ2 <∞,

then the posterior distribution p (w,β, ξ1, ξ2 |X,Y ) is proper under a flat prior

p(β) ∝ 1.

The sufficient conditions in Theorem 4.4.1 and 4.4.2 may seem abstract, and

checking such conditions amounts to testing convergence of multiple integrals. The

intuition behind these theorems is that, if the GUD likelihood with a mode of zero

has a proper posterior distribution under suitably chosen priors on the scale/shape

parameters, then the use of a flat prior p(β) ∝ 1 is acceptable.
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Proposition 4.4.1. Suppose that X is full rank with p ≤ n and finite entries. Then

the Bayesian modal regression models (4.4.2), (4.4.3), and (4.4.4) based on the FG,

DTP-Student-t, and TPSC-Student-t likelihoods, respectively, have proper posterior

distributions.

Proposition 4.4.1 confirms that under suitable regularity conditions on the design

matrix X, all of the regression models proposed in this chapter have proper posterior

distributions. The proof of Proposition 4.4.1 relies on verifying the sufficient condition

given in Theorem 4.4.2. Our proof provides a template for verifying posterior propriety

for other Bayesian modal regression models (4.4.1) under the general GUD family.

Diebolt and Robert (1994) have argued that improper priors should in general

not be used for Bayesian modeling of mixture distributions. We note, however, that

the reasoning of Diebolt and Robert (1994) does not necessarily apply to the location

parameter θ (or the mode). This is because the mode θ is shared by both left- and

right-skewed components in our proposed GUD family of distributions. Therefore, we

are able to derive sufficient conditions under which a totally noninformative flat prior

p(θ) ∝ 1 or p(β) ∝ 1 can still be used to infer the conditional mode.

On the other hand, we recommend against using improper priors for any of

the non-location parameters (i.e. the shape/scale parameters) in Bayesian modal

regression based on the GUD family. We formalize this in Proposition 4.4.2 below.

This proposition states that, for the GUD family, using an improper prior for any

shape/scale parameter that is not shared by both components leads to an improper

posterior distribution.

Proposition 4.4.2. If τ ∈ (ξ1 ∪ ξ2) \ (ξ1 ∩ ξ2), then using an improper prior for τ will

lead to an improper posterior distribution.

In Chapter A.2, we provide a specific example of Proposition 4.4.2 for the logNM

distribution (also introduced in the same section).
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4.4.3 Uncertainty quantification and model selection

Letting Ω = [w,β, ξ1, ξ2]
⊤, the posterior predictive distribution under our Bayesian

modal regression model is defined as

p (Ynew | Y ,X) =
∫

Θ
p (Ynew | Ω,Y ,X) p (Ω | Y ,X) dΩ

=
∫

Θ
p (Ynew | Ω,X) p (Ω | Y ,X) dΩ,

(4.4.6)

where Θ denotes the parameter space, and the last line holds because of the conditional

independence of Ynew and Y . Obtaining an approximation of the posterior predictive

(4.4.6) is computationally inexpensive. With the random number generation algorithm

outlined in Section 4.3 for the GUD family, one can easily draw samples from p(Ynew |

Ω,X) during each iteration in our MCMC algorithm, and then obtain samples from

the posterior predictive distribution p (Ynew | Y ,X). In this chapter, we use the hdi

function in the R package HDInterval (R Core Team, 2022; Meredith et al., 2018),

whose inputs are random samples generated from the posterior predictive distributions,

to calculate the highest density intervals (HDI) with a pre-specified nominal level of

coverage probability. We use 90% HDI intervals as the posterior prediction intervals

for all mean/median/modal regression models that we consider in Sections 4.5 and

4.6.

Due to the inherent nature of the conditional mode, the HDI prediction intervals

from modal regression models will usually be narrower than those constructed under

mean or median regression models, while having the same amount of coverage (Yao

and Li, 2014). From a statistical inference point of view, this is a very attractive

property of our Bayesian modal regression models – we can obtain high coverage with

tighter intervals. Prediction intervals from mean or median regression can sometimes

be very conservative and contain many implausible values. We illustrate the benefits

of more efficient inference from modal regression in Sections 4.5 and 4.6.

As mentioned in Section 4.4, there are many different GUD likelihoods that

a practitioner can choose from in order to conduct Bayesian inference for modal
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regression. We propose to use the Bayesian leave-one-out expected log posterior

density as a model selection criterion for selecting the “best” GUD likelihood to use.

The Bayesian leave-one-out expected log predictive density is defined as

ELPD =
n∑

i=1
log p (Yi | Y−i) , (4.4.7)

where Y−i represents all observations except the i-th observation. In (4.4.7), “ELPD”

stands for the theoretical expected log predictive density. Intuitively, if a model fits

the data well, its predicted value of Yi given Y−i should be close to the observed Yi

and p (Yi | Y−i) should be large, for all i = 1, . . . , n. Therefore, an adequate model

tends to yield a high ELPD.

We apply the Pareto-smoothed importance sampling method (PSIS) of Vehtari

et al. (2017) to obtain an estimate of ELPD. The PSIS estimation of ELPD has been

implemented in an R package loo, which is compatible with the Stan programming

language (Carpenter et al., 2017). We used the Stan programming language interfaced

with R to implement all regression analysis in this chapter. When fitting multiple

competing models to the same dataset, the model with the highest estimated ELPD

is preferred. By a slight abuse of notation, we use ELPD to refer to the estimated

ELPD in all empirical study presented in this chapter.

4.5 Simulation studies

We now present a few simulation studies which show that our Bayesian modal regression

model is an excellent choice for modeling data that is heavily skewed. Under our

simulation settings, simulated data was either left-skewed or right-skewed; and, in

addition to the pronounced global conditional mode, there was also a small local mode.

We compared our Bayesian modal regression models to Bayesian mean and median
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regression models. The Bayesian mean regression used a normal likelihood, i.e.,

Yi | β, σ,X i
ind∼ N (X⊤

i β, σ2), for i = 1, . . . , n,

σ ∼ InverseGamma(1, 1),

p(β) ∝ 1.

(4.5.1)

In line with the literature on parametric Bayesian quantile regression (Yu and Moyeed,

2001; Yu and Zhang, 2005), we also implemented Bayesian median regresson using

the asymmetric Laplace distribution (ALD), with quantile parameter p = 0.5. That

is, our Bayesian modal median regression model was

Yi | β, σ,X i
ind∼ ALD(X⊤

i β, σ, p = 0.5), for i = 1, . . . , n,

σ ∼ InverseGamma(5, 5),

p(β) ∝ 1.

(4.5.2)

We stress that in our simulation studies, none of the likelihoods used for mean,

median, or modal regression was exactly the same as the data generating mechanism.

Therefore, all considered regression models are “wrong,” creating particularly realistic

yet challenging scenarios under which we could more fairly compare the performance

across these competing methods.

4.5.1 Left-skewed data

We generated n = 30 observations from the model,

Yi = β0 + β1Xi + ϵi,

where β0 = β1 = 1 and, for i = 1, . . . , 30, ϵi
i.i.d∼ 0.05N (−50, 12) + 0.95N (0, 12) and

Xi
i.i.d∼ Uniform(0, 1). We then fit the mean/median/modal regression models to the

simulated data. For modal regression, we fit the FG model (4.4.2), the DTP-Student-t

model (4.4.3), and the TPSC-Student-t model (4.4.4). Among the modal regression

models, we found that the TPSC-Student-t model had the highest ELPD. For the
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sake of brevity, we present only the results from the models fit with the normal, ALD,

and TPSC-Student-t likelihoods.

In Figure 4.5, we provide the empirical coverage rate and the average width

of the posterior prediction intervals across n = 30 observations under each of

mean/median/modal regression model. With the narrowest prediction interval for

the same amount of coverage, results from the modal regression model clearly stand

out in Figure 4.5. In addition, the modal regression model with the TPSC-Student-t

likelihood had the largest ELPD. Therefore, it was the most appropriate model for

the simulated data among the three candidate models in this replication.

We repeated this experiment 300 times. Table 4.2 shows the mean coverage rate,

prediction interval width, and ELPD across the 300 replications. The mean regression

model with the normal likelihood had the lowest average coverage rate and the widest

posterior prediction intervals. Both the median and modal regression models had

almost identical average coverage rate. However, the modal regression model had, on

average, the narrowest prediction intervals. Since the modal regression model with

the TPSC-Student-t likelihood had the largest average ELPD, we conclude that the

modal regression model based on the TPSC-Student-t provided the best model fit.

4.5.2 Right-skewed data

In Section 4.5.1, we demonstrated the advantages of Bayesian modal regression

models when the data was left-skewed. In this section, we investigate our model’s

ability to detect right-skewness. We followed the same simulation settings as those in

Section 4.5.1, except the residual error was ϵi
i.i.d∼ 0.025N (−25, 12) + 0.95N (0, 12) +

0.025N (50, 12) so that the simulated data was right-skewed, potentially with extremely

large outliers and some outliers on the lower tail. We fit the mean/median/modal

regression models to this simulated data.

Figure 4.6 shows that all three models achieved a coverage rate of 93% in one
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Figure 4.5 The gray shaded areas show the 90% posterior prediction intervals for the
simulated left-skewed data. The solid red line is the estimated median from the posterior
predictive distribution. The prediction intervals are narrower for Bayesian modal regression.

Table 4.2 Comparison of Bayesian mean, median, and modal regression models
fitted to left-skewed data. Results were averaged across 300 Monte-Carlo replicates of
left-skewed datasets. The empirical standard error associated with each Monte-Carlo
average is provided in parenthesis following the average.

Likelihood (regression model) Coverage Rate (%) Width ELPD
Normal (mean regression) 93.50 (0.19) 32.25 (1.08) -104.76 (2.00)
ALD (median regression) 94.69 (0.22) 14.70 (0.49) -84.81 (1.39)
TPSC-Student-t (modal regression) 94.70 (0.22) 8.36 (0.21) -59.93 (0.64)
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experiment. However, the modal regression model with the TPSC-Student-t likelihood

(4.3.7) had the narrowest posterior prediction interval and the largest ELPD. Table

4.3 shows our results averaged across 300 repeated experiments. The modal regression

model with the TPSC-Student-t likelihood had the highest average coverage rate, the

narrowest posterior prediction intervals on average, and the largest average ELPD.

Therefore, we conclude that the Bayesian modal regression model had the best

performance in this right-skewed simulation study.
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Figure 4.6 The gray shaded areas show the 90% posterior prediction intervals for the
simulated right-skewed data. The solid red line is the estimated median from the posterior
predictive distribution. The prediction intervals are narrower for Bayesian modal regression.
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Table 4.3 Comparison of Bayesian mean, median, and modal regression models fitted
to right-skewed data. Results were averaged across 300 Monte-Carlo replicates of
right-skewed datasets. The empirical standard error associated with each Monte-Carlo
average is provided in parenthesis following the average.

Likelihood (regression model) Coverage Rate (%) Width ELPD
Normal (mean regression) 93.67 (0.18) 26.14 (0.95) -99.41 (1.90)
ALD (median regression) 94.71 (0.22) 12.42 (0.40) -79.25 (1.29)
TPSC-Student-t (modal regression) 94.73 (0.22) 8.20 (0.20) -60.04 (0.65)

4.6 More data applications of Bayesian modal regression

4.6.1 Uncertainty quantification of air pollution

Inhalable particulate matter referred to as PM10 is any inhalable particle with a

diameter of 10 micrometers and smaller. PM10 includes smoke, dust, and metals.

In the environmental science literature, it has been found that low (resp. high)

wind speeds are associated with high (resp. low) PM10 values (Cichowicz et al.,

2020). In addition, many studies have found that PM10 is associated with heart

disease, respiratory disease, and premature death (Schwartz, 1999; Zhao et al., 2017).

We analyzed the PM10 dataset from http://lib.stat.cmu.edu/datasets/. This

dataset consists of air pollution information collected by the Norwegian Public Roads

Administration at Alnabru in Oslo, Norway from October 2001 and August 2003. The

response variable is the hourly measurements of the concentration of PM10, while

the predictor is the hourly wind speed in meters per second. We fit the following

mean/median/modal regression models to this dataset:

M(Y | β) = β0 + β1 × windspeed .

Table 4.4 presents the parameter estimation results of three models. The mean

regression model implies that the association between the PM10 concentration and

the wind speed is not significant (CI of (−2.64, 0.12)). On the other hand, both the

median and modal regression models capture the negative association between the

78

http://lib.stat.cmu.edu/datasets/


PM10 concentration and the wind speed (CIs of (−2.77,−1.03) and (−1.53,−0.54),

respectively).

Although both median and modal regression detected the negative association

between wind speed and PM10 concentration, we see from Figure 4.7 that the 90%

prediction intervals for median regression (and mean regression) contain many negative

values. As the minimum possible measure of PM10 concentration is zero, it is difficult

to justify posterior prediction intervals for PM10 that contain many negative values.

On the other hand, the 90% prediction intervals from the modal regression model

only contain a tiny portion of negative values at very high wind speeds. This suggests

that uncertainty quantification under Bayesian modal regression is more reliable and

yields more practically meaningful results in this particular example.

Table 4.4 Parameter estimates obtained from the mean/median/modal regression
models fitted to the air pollution data. The mean, 5% quantile, and 95% quantile of
the posterior distribution of each regression coefficient are listed under Mean, q5, and
q95, respectively.

Likelihood (regression model) Parameter Mean q5 q95
β0 (intercept) 41.94 36.80 47.10

Normal (mean regression)
β1 (windspeed) -1.27 -2.64 0.12
β0 (intercept) 32.75 29.50 36.23

ALD (median regression)
β1 (windspeed) -1.87 -2.77 -1.03
β0 (intercept) 9.67 7.47 11.75

TPSC-Student-t (modal regression)
β1 (windspeed) -1.01 -1.53 -0.54
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Figure 4.7 The shaded regions show the 90% posterior prediction intervals for the air
pollution data. The blue dashed line is the reference line as the minimum possible value
of PM10 (zero). The red solid line represents the estimated median from the posterior
predictive distribution.

4.6.2 Detecting a quadratic relationship in serum data

Isaacs et al. (1983) analyzed the relationship between serum concentration (grams

per litre) of immunoglobulin-G (IgG) in 298 children aged from 6 months to 6 years.

IgG is an antibody that plays an important role in humoral and protective immunity

(Van de Bovenkamp et al., 2016). There are ethical difficulties in taking repeated

blood samples from healthy subjects. Therefore, researchers often use age as a proxy

for determining the reference ranges for IgG in childhood. Previously, Yu and Moyeed

(2001) analyzed serum data and modeled IgG concentration with a quadratic model in

age. In the spirit of Yu and Moyeed (2001), we fit the following mean/median/modal
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Table 4.5 Parameter estimates from the mean/median/modal regression models
fitted to the serum data. The mean, 5% quantile, and 95% quantile of the poste-
rior distribution of each regression coefficient are listed under Mean, q5, and q95,
respectively.

Likelihood (regression model) ELPD Parameter Mean q5 q95
β0 (intercept) 3.08 2.45 3.72
β1 (Age) 0.97 0.45 1.49Normal (mean regression) -627.13
β2
(
Age2

)
-0.05 -0.13 0.04

β0 (intercept) 2.82 2.12 3.57
β1 (Age) 1.12 0.53 1.68ALD (median regression) -638.16
β2
(
Age2

)
-0.07 -0.16 0.03

β0 (intercept) 2.37 1.84 2.89
β1 (Age) 1.16 0.72 1.59FG (modal regression) -623.15
β2
(
Age2

)
-0.11 -0.18 -0.03

regression models to this dataset:

M(Y | β) = β0 + β1 × Age +β2 × Age2 .

Table 4.5 shows the parameter estimates from the models that we fit to this data.

Based on the CIs for β2, we see that only the modal regression model is able to

detect the quadratic term (CI of (−0.18,−0.03) for modal regression). This finding is

somewhat consistent with Royston and Altman (1994) who concluded that a simple

linear regression model was inadequate for this same dataset. Isaacs et al. (1983) also

suggested that there was a quadratic relationship between the square root of IgG

concentration and children’s age.

Table 4.5 shows that the ELPD of the modal regression model based on the FG

likelihood (4.4.2) is larger than the ELPD for both the mean or median regression

models. In this example, the modal regression model not only provides a different

viewpoint (i.e. that there exists a significant quadratic relationship between IgG and

age), but it also fits the dataset better according to our model selection criterion.
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4.7 Discussion

In this chapter, we have introduced a unifying Bayesian modal regression framework.

Namely, we proposed a simple and flexible unimodal distribution family called the

GUD family that is suitable for Bayesian modal regression. All members of the GUD

family have a location parameter that is also the mode. Members of this family can be

either symmetric or asymmetric, either thin-tailed or fat-tailed, depending on values

of the shape and scale parameters.

Compared to mean and quantile regression, work on Bayesian modal regression

analysis is quite scarce. Our work in this chapter aims to promote Bayesian modal

regression as a complement to these other analyses. We demonstrated that our model-

ing framework based on the GUD family is very versatile and has wide applications in

many fields such as economics (the bank deposit data in Section 4.2.1), criminology

(the murder rate data in Section 4.2.2), environmental science (the air pollution data in

Section 4.6.1), and molecular biology (the serum data in Section 4.6.2). In particular,

we showed that Bayesian modal regression can reveal structures and detect potentially

significant covariate effects that are missed by other Bayesian regression models.

To conduct Bayesian inference of the conditional mode, we provided prior elicitation

procedures, along with the sufficient conditions under which a flat prior p(β) on the

regression coefficients β can be used. We proposed a method for constructing posterior

prediction intervals and a model selection criterion based on the posterior predictive

distribution. We demonstrated that our modal regression models provide very tight

prediction intervals with high coverage, are robust to outliers, and have excellent

interpretability. Our modal regression model framework is an especially appealing

choice when the data is skewed and(or) contains (extreme) outliers.

The modal regression models considered here contain parametric assumptions,

both about the data likelihood and the linear relationship between the covariates

and the conditional mode. Instead of using the fully parametric models presented in
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this chapter, one may prefer to use Bayesian semiparametric modal regression models

instead. A Bayesian semiparametric modal regression model can be constructed

either by modeling the conditional mode with a Gaussian process (i.e. we can relax

the linearity assumption) and/or by replacing the GUD likelihood with a carefully

constructed infinite mixture model that is indexed by the mode (i.e. we can relax

the assumption of a known residual error distribution). These exciting extensions to

Bayesian modal regression are the topics of ongoing work.
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Chapter 5

The Gaussian Process Modal Regression

5.1 Introduction

A time continous stochastic process {ft; t ∈ T} is a Gaussian process if and only if

the random vector [f(t1), . . . , f(tn)]⊤ follows a multivariate normal distribution for

all t1, . . . , tn ∈ T (Ross, 2014, Chapter 10). As pointed out in an excellent review

paper by Li and Chen (2016), to apply Gaussian process in regression, we model a

finite set of random function variables f = [f (X1) , . . . , f (Xn)]⊤ via a multivariate

Gaussian distribution with mean µ and positive definitive variance-covariance KX,X .

The variance-covariance KX,X is generated by the kernel function k(·, ·) such that

the entry in the i-th row and j-th column of KX,X is defined as

KX,X(i, j) = k (X i,Xj) .

Common choices of kernel functions include the linear kernel function, the squared

exponential kernel function, and the Ornstein-Uhlenbeck kernel function (for detailed

definitions and other choices of kernel functions, see Duvenaud, 2014). In a Gaussian

process regression (GPR) model, one often assumes that the response variable y

given f follows a multivariate normal distribution with a diagonal variance-covariance

matrix, in particular,

y | f ∼ Nn

(
f , σ2In

)
, (5.1.1)

where In stands for the identity matrix and σ2 is the variance of noise. In the

sequel, we refer the GPR model in (5.1.1) in conjunction with the assumption that

f ∼ Nn(µ,KX,X) as the mean GPR model. Wang and Shi (2014) extended the above
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classic mean GPR model to allow yi | f(X i) follow a non-Gaussian distribution from an

exponential family. Boukouvalas et al. (2012) proposed the quantile GPR model with

an asymmetric Laplace distribution assumed for yi | f(X i) to signify the conditional

quantile of the response. To the best of our knowledge, no existing GPR model has

been developed based on the conditional mode of a response variable, i.e., letting

f(Xi) involve in formulating the mode of yi given X i and f follow a Gaussian process.

Since the mean is well-known to be greatly influenced by outliers, as to be shown in

Section 5.4, the performance of a mean GPR model can be unsatisfactory when the

data contain extreme outliers and are highly skewed. As repeatedly demonstrated

in previous chapters, the mode is resistant to outliers. This motivates our proposed

modal GPR model for highly skewed data formulated in the next section.

5.2 Gaussian Process in Modal Regression

We define the modal Gaussian process regression model as, for i = 1, . . . , n,

yi | f (X i) , β0,ω ∼ GUD (θi = β0 + f (X i) ,ω) ,

f | τ ∼ Nn(0n,KX,X),
(5.2.1)

where “GUD” refers to the general unimodal distribution family defined in Chapter 4

with the density function in (4.3.1), θi is the mode of yi given f (X i), β0 is the

intercept, ω = [w, ξ⊤
1 , ξ

⊤
2 ]⊤ represents weight parameter and scale/shape parameters

in (4.3.1), and τ are the parameters of the kernel function k(·, ·). For example, for the

squared exponential kernel function, k(X i,Xj) = σ2
f exp{−0.5 (X i −Xj)2 /ℓ2}, we

have τ = [σ2
f , ℓ]⊤. Certainly, any unimodal distribution family indexed by the mode

(along with other parameters) as a location parameter can serve as the primary model

in (5.2.1) when formulating a modal GPR model. For instance, the reparameterized

Beta distribution introduced in Chapter 2 and the generalized biparabolic distribution

proposed by García et al. (2009) are both viable options.
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5.3 Statistical Inference

There are many widely applicable and well-accepted sampling methods incorporated

in the Markov chain Monte Carlo (MCMC) algorithms for Bayesian learning based

on GPR models. These include but not limited to the scaled Hamiltonian Monte

Carlo and elliptical slice sampling (Bernardo et al., 1998; Murray et al., 2010). In

recent years, the No-U-Turn Sampler (NUTS), proposed by Hoffman et al. (2014),

has gained popularity in the machine learning community due to its self-tuning

feature. Despite the excellent performance of NUTS, one major hurdle remains when

applied to inferring a GPR model, which is the computational cost of the Cholesky

decomposition of the variance-covariance matrix KX,X . The Cholesky decomposition

needs to be performed repeatedly for every MCMC iteration whenever the values of

hyperparameters τ change. We thus recommend using the exact Bayesian inference

method via a probabilistic programming language, such as Stan, only when n < 1000.

For larger data, we recommend that one employs scalable methods to infer a GPR

model, some of which we introduce next.

To improve scalability without compromising predictive performance of a GPR

model, numerous approximation methods have been proposed. Liu et al. (2020)

provided a comprehensive review on scalable GPR models. Most recently, Riutort-

Mayol et al. (2023) introduced a novel scalable GPR model based on a basis function

approximation via Laplace eigenfunctions. This approach is specifically designed for

stationary covariance functions and has shown promising results in terms of accuracy

and efficiency. Moreover, it is easy to implement in probabilistic programming

languages like Stan and is not limited to the Gaussian likelihood. We will apply

this approach to implement scalable modal GPR modeling based on large data in our

follow-up study. For now, we focus on demonstrating the potential of our proposed

modal GPR models when the sample size is small or moderate so that an exact

Bayesian inference method suffices to draw inference.
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5.4 Simulation Study

We carry out a simulation study to demonstrate that, for data contain extreme outliers,

the modal GPR model is more suitable than the mean GPR model.

For i = 1, ..., n, we generate data following three steps outlined below:

1. Simulate Xi ∼ uniform(−10, 10).

2. Simulate ϵi ∼ FG(mode = 0, σ1 = 100, σ2 = 1, w = 0.8).

3. yi ← 0.2Xi sin(Xi) + ϵi.

Given one simulated data set of size n = 100, we carried out exact Bayesian

inference, first assuming a mean GPR model, then assuming our proposed modal

GPR model. We then obtain the posterior mean of the mean regression function from

the former inference procedure, and the posterior median of the modal regression

function from the latter. These two posterior results are depicted in Figure 5.1. We

use the posterior median to summarize posterior inference on the modal regression

function because the resultant posterior distribution associated with the modal GPR

model is highly skewed, making the posterior mean an inadequate summary of the

posterior distribution of the mode function. This is unlike when one assumes a mean

GPR model, where the resultant posterior distribution of the mean regression function

remains a multivariate normal.

As evidenced in the zoom-in view of the posterior estimate of the modal function

and that of the mean function in Figure 5.1 (see bottom panels), inference resulting

from assuming a modal GPR model for this highly left-skewed data are able to provide

a reliable estimate of the true mode function. Moreover, one achieves much tighter

credible intervals for the target regression function when assuming a modal GPR

model than when assuming a mean GPR model. Despite the existence of extreme

outliers, the modal GPR model even captures the curvature of the true mode very
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well. In contrast, the mean GPR model consistently underestimates the true mean

regression function.
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Figure 5.1 Comparison between the modal GPR model and the mean GPR model
based on the same data set. The red solid lines in left/right column represents the
true mode/mean of the simulated data respectively. The cyan dashed line in the
left/right column represents the posterior median/mean from the modal GPR model
and the mean GPR model respectively. The red bands in both columns represent 90%
credible intervals.

5.5 Data Application

The Summer Olympic Games, often referred to as the Summer Olympics, is a major

international multi-sport event that was typically held once every four years. The
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first modern Olympic Games were held in 1896, and since then, the marathon, a

long-distance foot race, has been one of the most prominent events of the Summer

Olympics. Intrigued by the exceptional human performance in long-distance foot races,

we acquired a dataset comprising the pace of Olympic male marathon champions from

Athens 1896 to London 2012, measured in minutes per kilometer. Notably, an outlier

is apparent in the year 1904. This outlier can be attributed to the poorly organized

marathon held in St. Louis that year, which resulted in a pace equivalent to 5.222

minutes per kilometer.

Figure 5.2 displays the estimated central tendency (mode/mean), along with the

corresponding 90% credible intervals, from the modal GPR model with the TPSC-

Student-t distribution (4.3.7) assumed for the likelihood formulation, and the mean

GPR model with a normal model error in the primary model. Again, in this application,

the modal GPR model yields a narrower credible interval than the mean GPR model

for the same coverage rate. Furthermore, the ELPD model selection criteria (4.4.7)

indicates that the modal GPR model is superior to the mean GPR model for the

given data.

5.6 Discussion

This study is ongoing, and we are currently conducting additional simulation studies

to compare the performance of mean, median, and modal GPR models. We also plan

to include real data application examples and evaluate the performance of scalable

modal GPR models. An interesting avenue for future research would be to apply the

modal GPR model to spatiotemporal analysis. While GPR models are capable of

analyzing spatiotemporal data, most existing models are limited to mean GPR models,

and we have not found any modal GPR models for spatiotemporal data. Previous

work in spatiotemporal analysis using the mean GPR models includes studies by He

et al. (2014), Hyun et al. (2016), and Sarkar et al. (2019).
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Appendix A

Bayesian modal regression based on mixture

distributions

A.1 Proofs of main results

A.1.1 Preliminary lemmas

Before proving the main theorems and propositions, we first prove the following two

lemmas.

Lemma A.1.1. Let p (x) be the pdf of an inverse gamma distribution with shape and

scale parameters a ∈ (0,∞) and b ∈ (0,∞) respectively. Then for p ≤ n,

∫ ∞

0

{
Γ (0.5x+ 0.5)

Γ (0.5x)

}n−p

x0.5p−0.5np (x) dx <∞.

Proof. First, let us split the integral into two parts,
∫ ∞

0

{
Γ (0.5x+ 0.5)

Γ (0.5x)

}n−p

x0.5p−0.5np (x) dx

=
∫ 1

0

{
Γ (0.5x+ 0.5)

Γ (0.5x)

}n−p

x0.5p−0.5np (x) dx

+
∫ ∞

1

{
Γ (0.5x+ 0.5)

Γ (0.5x)

}n−p

x0.5p−0.5np (x) dx

:= I1 + I2.

(A.1.1)

We next consider the integrals I1 and I2 separately.

Because Γ(x) is strictly decreasing for x ∈ (0, 1), we have

Γ (0.5x+ 0.5) < Γ(0.5x), ∀x ∈ (0, 1).
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Therefore,

I1 =
∫ 1

0

{
Γ (0.5x+ 0.5)

Γ (0.5x)

}n−p

x0.5p−0.5np (x) dx

<
∫ 1

0
x0.5p−0.5np (x) dx

∝
∫ 1

0
x−(a+0.5n−0.5p)−1 exp (−b/x) dx

< ∞,

(A.1.2)

where the last line of the display is because x−(a+0.5n−0.5p)−1 exp (−b/x) is the kernel

of an inverse gamma distribution with a+ 0.5n− 0.5p and b as the shape and scale

parameter respectively.

Finally, we consider I2. By Gautschi’s inequality,

Γ(x+ 1)
Γ(x+ s) < (x+ 1)1−s, ∀x > 0, 0 < s < 1,

thus
Γ(0.5x+ 0.5)

Γ(0.5x) < 0.50.5(x+ 1)0.5, ∀x > 1.

Hence,

I2 =
∫ ∞

1

{
Γ (0.5x+ 0.5)

Γ (0.5x)

}n−p

x0.5p−0.5np (x) dx

<
∫ ∞

1
0.50.5n−0.5p (x+ 1)0.5n−0.5p x0.5p−0.5np (x) dx

∝
∫ ∞

1
(1 + 1/x)0.5n−0.5p p (x) dx

<
∫ ∞

1
20.5n−0.5pp (x) dx

< 20.5n−0.5p

< ∞.

(A.1.3)

Combining (A.1.1)-(A.1.3), one proves the assertion.

Lemma A.1.2. Let U p×p = [U 1, . . . ,U p]⊤ be a nonsingular design matrix with finite

entries. If fZ(y − θ) is the pdf of a distribution from the location family with θ ∈ R

as the location parameter, then∫
Rp

p∏
i=1

fZ

(
yi −U⊤

i β
)
dβ = 1/| det(U)|.
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Proof. For θ = [θ1, . . . , θp]⊤, let

θ = Uβ.

Since U is a nonsingular design matrix with finite entries,

U−1θ = β.

Hence, the corresponding Jacobian matrix of the one-to-one transformation is

∂β

∂θ
= U−1.

Using a change of variables with θi = U⊤
i β, we have that

∫
Rp

p∏
i=1

fZ

(
yi −U⊤

i β
)
dβ =

∫
Rp

p∏
i=1

fZ (yi − θi)
∣∣∣det

(
U−1

)∣∣∣ dθ
=
∣∣∣det

(
U−1

)∣∣∣ ∫
Rp

p∏
i=1

fZ (yi − θi) dθ

=
∣∣∣det

(
U−1

)∣∣∣
= 1/| det(U)|.

This completes the proof.

A.1.2 Proofs of Theorems 4.1 and 4.2 and Propositions 4.1 and 4.2

Proof of Theorem 4.4.1

Proof. Recall that fZ (y | w, ξ1, ξ2) has y = 0 as the global mode such that

fZ (0 | w, ξ1, ξ2) ≥ fZ (y | w, ξ1, ξ2) , ∀y, w, ξ1, ξ2.

Therefore,
n∏

i=1
f (yi | w, θ, ξ1, ξ2) =

n∏
i=1

fZ (yi − θ | w, ξ1, ξ2)

≤ fZ (y1 − θ | w, ξ1, ξ2) fn−1
Z (0 | w, ξ1, ξ2) .
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Using this upper bound for the likelihood, we have, for the posterior distribution,

p(w, θ, ξ1, ξ2|X,Y )

∝
{

n∏
i=1

f (yi | w, θ, ξ1, ξ2)
}
p(w)p(θ)p(ξ1)p(ξ2)

≤ fZ (y1 − θ | w, ξ1, ξ2) fn−1
Z (0 | w, ξ1, ξ2) p(w)p(θ)p(ξ1)p(ξ2).

We next integrate the preceding expression with respect to θ, then with respect to

(w, ξ1, ξ2) to check the propriety of p(w, θ, ξ1, ξ2|X,Y ).

Taking integration with respect to θ and using the change of variables method, we

have that

∫ +∞

−∞
fZ (y1 − θ | w, ξ1, ξ2) fn−1

Z (0 | w, ξ1, ξ2) dθ = fn−1
Z (0 | w, ξ1, ξ2) .

Finally, by the sufficient condition given in Theorem 4.4.1, we have

∫∫∫
Θw,ξ1,ξ2

fn−1
Z (0 | w, ξ1, ξ2) p(w)p (ξ1) p (ξ2) dw dξ1 dξ2 <∞.

It follows that

∫∫∫
Θw,ξ1,ξ2

∫ +∞

−∞
p(w, θ, ξ1, ξ2|X,Y ) dθ dw dξ1 dξ2 <∞.

This shows that the posterior distribution is proper.

Proof of Theorem 4.4.2

Proof. By assumption, the n × p design matrix X := [X1, . . . ,Xn]⊤ is full rank.

Without loss of generality, we assume that the first p rows of X are linearly independent.

Define the submatrix U p×p consisting of the first p rows of X.

Using the fact that the GUD family is a unimodal location family, we have that
n∏

i=1
f (yi | w,β, ξ1, ξ2) =

n∏
i=1

fZ

(
yi −X⊤

i β | w, ξ1, ξ2

)

≤
p∏

i=1
fZ

(
yi −X⊤

i β | w, ξ1, ξ2

)
fn−p

Z (0 | w, ξ1, ξ2) .
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Using this upper bound for the likelihood, we have, for the posterior distribution,

p(w,β, ξ1, ξ2|X,Y )

∝
{

n∏
i=1

f (yi | w,β, ξ1, ξ2)
}
p(w)p(β)p(ξ1)p(ξ2)

≤
p∏

i=1
fZ

(
yi −X⊤

i β | w, ξ1, ξ2

)
fn−p

Z (0 | w, ξ1, ξ2) p(w)p(β)p(ξ1)p(ξ2).

We next integrate the preceding expression with respect to β, then with respect to

(w, ξ1, ξ2) to check the propriety of p(w,β, ξ1, ξ2|X,Y ).

By Lemma A.1.2,
∫
Rp

p∏
i=1

fZ

(
yi −X⊤

i β | w, ξ1, ξ2

)
fn−p

Z (0 | w, ξ1, ξ2) dβ

=fn−p
Z (0 | w, ξ1, ξ2) /| det(U)|.

Finally, by the sufficient condition given in Theorem 4.4.2, we have

1/| det(U)|
∫∫∫

Θw,ξ1,ξ2

fn−p
Z (0 | w, ξ1, ξ2) p(w)p (ξ1) p (ξ2) dwdξ1dξ2 <∞.

Since X has finite entries (and thus, so does U ), it must be that det(U ) is a constant.

Further, U is nonsingular, so det(U) ̸= 0. It follows that

∫∫∫
Θw,ξ1,ξ2

∫
Rp
p(w,β, ξ1, ξ2 |X,Y ) dβ dw dξ1 dξ2 <∞.

This shows that the posterior distribution is proper.

Proof of Proposition 4.4.1

Proof. The proof consists of verifying the sufficient condition in Theorem 4.4.2 for

the three considered Bayesian modal regression models.

First, we show that the modal regression model based on the FG distribution in

(4.4.2) has a proper posterior distribution. By Theorem 4.4.2, we need to show that

∫ ∞

0

∫ ∞

0

∫ 1

0
fn−p

FG (y = 0 | w, θ = 0, σ1, σ2) p(w)p(σ1)p(σ2)dwdσ1dσ2 <∞.

109



Note that

fFG (y = 0 | w, θ = 0, σ1, σ2) = exp(−1) (w/σ1 + (1− w)/σ2)

≤ exp(−1) (1/σ1 + 1/σ2) .

Therefore, it is sufficient to show∫ ∞

0

∫ ∞

0

∫ 1

0
(1/σ1 + 1/σ2)n−p p(w)p (σ1) p (σ2) dwdσ1dσ2

=
∫ ∞

0

∫ ∞

0
(1/σ1 + 1/σ2)n−p p (σ1) p (σ2) dσ1dσ2

=
∫ ∞

0

∫ ∞

0

n−p∑
k=0

(
n− p
k

)
(1/σ1)n−p−k (1/σ2)k p (σ1) p (σ2) dσ1dσ2

<∞.

The last inequality is true because we use the inverse gamma distribution as the prior

for σ1 and σ2 and because for any inverse gamma random variable X, E[1/Xk] <∞

for all k ∈ N.

Second, we want to show that the linear modal regression model based on the

DTP-Student-t distribution (4.4.3) has a proper posterior distribution. We have

fDTP-Student- t (y = 0 | θ = 0, σ1, σ2, δ1, δ2) = 2 (1− w) Γ (0.5δ2 + 0.5)
Γ(0.5δ2)

1√
δ2πσ2

≤ 2Γ (0.5δ2 + 0.5)
Γ(0.5δ2)

1√
δ2πσ2

< 2Γ (0.5δ2 + 0.5)
Γ(0.5δ2)

1√
δ2σ2

,

where w ∈ [0, 1] is defined in (4.3.6). Applying Lemma A.1.1 and the fact that for

any inverse gamma random variable X, E[1/Xk] <∞ for all k ∈ N, we have
∫ ∞

0

∫ ∞

0

{
Γ (0.5δ2 + 0.5)

Γ (0.5δ2)
1√
δ2σ2

}n−p

p(σ2)p(δ2)dσ2dδ2

=
∫ ∞

0

∫ ∞

0

{
Γ (0.5δ2 + 0.5)

Γ (0.5δ2)

}n−p

δ0.5p−0.5n
2 p(δ2)dδ2

( 1
σ2

)n−p

p(σ2)dσ2

< ∞.

Therefore, by Theorem 4.4.2, the posterior distribution for regression model in (4.4.3)

is proper.
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Lastly, one can show that the linear modal regression model based on the TPSC-

Student-t distribution (4.4.4) also has a proper posterior distribution. The proof is

almost identical to the proof of posterior propriety for the DTP-Student-t distribution

and is therefore omitted.

Proof of Proposition 4.4.2

Proof. Recall that the pdf of the GUD family is

f (y | w, θ, ξ1, ξ2) = wf1 (y | θ, ξ1) + (1− w)f2 (y | θ, ξ2) .

Without loss of generality, we assume that τ ∈ ξ1 and τ /∈ ξ2. Suppose that there is

only one observation, we have that

∫
τ∈Θτ

p (w, θ, ξ1, ξ2 | y) dτ ≥
∫

τ∈Θτ

(1− w)f2 (y | θ, ξ2) p (τ) dτ =∞,

since p(τ) is improper.

When there is more than one observation, binomial expansion of the GUD likelihood

gives ∏n
i=1 f (yi | w, θ, ξ1, ξ2) ≥ C[f2 (y | θ, ξ2)]n, where C > 0 is free of ξ1. Hence, for

C[f2 (y | θ, ξ2)]np (τ), the integration with respect to τ is still divergent when p(τ) is

improper.

A.2 The lognormal mixture distribution

To demonstrate how researchers can add new members to the GUD family, we present

the construction of the lognormal mixture distribution (logNM) below. Here, we

pick the lognormal distribution because the lognormal distribution is right-skewed

and unimodal. We construct a location-shift lognormal distribution such that the

transformed lognormal distribution is still right-skewed but has a mode at 0. Next,

we flip the location-shift lognormal distribution at 0 to get a left-skewed unimodal

lognormal distribution. Finally, we mix the left- and right-skewed lognormal distribu-
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tion together to construct the logNM distribution. More details of the construction of

logNM can be found in (A.2.1)-(A.2.2).

The pdf of the lognormal distribution is

flogN(y | µ, ν) = 1
yν
√

2π
exp

(
−(ln(y)− µ)2

2ν2

)
I(y > 0), (A.2.1)

where µ ∈ (−∞,+∞) and ν > 0 are two parametrers, and the mode is given

by exp (µ− ν2). We define the pdf of logNM as a mixture of two lognormal pdfs

formulated as follows,

flogNM(y | w, θ, ξ1, ξ2) = wf1(y|θ, ξ1) + (1− w) f2(y|θ, ξ2),

f1(y|θ, ξ1) = flogN
(
exp

(
µ1 − ν2

1

)
− (y − θ) | µ1, ν1

)
,

f2(y|θ, ξ2) = flogN
(
exp

(
µ2 − ν2

2

)
+ (y − θ) | µ2, ν2

)
,

(A.2.2)

where ξ1 = [µ1, ν1]⊤ and ξ2 = [µ2, ν2]⊤. It can be shown that both component

distributions in (A.2.2) are unimodal at θ, with continuous densities over the real

line, one left-skewed and the other right-skewed. Moreover, the pdfs of the individual

lognormal mixture components in (A.2.2) have 0 at the right and left boundaries of

their supports. Hence, the pdf of the logNM distribution is continuous in all of R.

Having verified that all three restrictions (R1)-(R3) for the GUD family (introduced

in Section 3 of the main manuscript), we can proceed to use the logNM likelihood

(A.2.3) for Bayesian modal regression.

Figure A.1 demonstrates that the logNM distributions can be asymmetric or

symmetric given different combinations of parameter values. The top panel shows

that, with an increase of µ2, the right tail of the logNM distribution becomes heavier

while its left tail remains almost the same. The bottom panel shows how ν1 influences

the amount of skewness of the logNM distribution when all three logNM distributions

are left-skewed.

Practitioners can build a Bayesian modal linear regression model based on the
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Figure A.1 Density plots of the logNM distribution given different combinations of
parameter values.

logNM likelihood (A.2.3) as follows:

Yi |X i, w,β, ξ1, ξ2
ind∼ logNM

(
w,X⊤

i β, µ1, ν1, µ2, ν2
)
,

w ∼ Uniform(0, 1),

ν1, ν2
i.i.d∼ InverseGamma(1, 1),

µ1, µ2
i.i.d∼ N (0, 1002),

p(β) ∝ Np

(
0, 102 × Ip×p

)
,

(A.2.3)

where Ip×p stands for the p by p identity matrix and β is a p-dimension random

vector. If one wishes to use a flat prior p(β) ∝ 1, then one must verify the sufficient

condition in Theorem 4.4.2 of chapter 4.

If researchers have another right-skewed or a left-skewed distribution to work with,

then they can mimic the construction of the logNM above to propose a member of

the GUD family that works for their applications. For example, one can use the

reparameterized unimodal right-skewed Gamma distribution from Bourguignon et al.
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(2020) to construct a new type I GUD and a corresponding modal regression model.

In the following lemma, we show why flat priors cannot be used for µ1 and(or)

µ2 in the Bayesian modal regression model based on the logNM distribution. This

simple example demonstrates why we should avoid placing improper priors on the

non-location parameters in Bayesian modal regression models based on the GUD

family.

Proposition A.2.1. Endowing µ1 and(or) µ2 with flat priors p(µ1) ∝ 1 and(or) p(µ2) ∝ 1

leads to an improper posterior distribution under the logNM model (A.2.3).

Proof. We want to show that
∫ +∞

−∞

n∏
i=1

flogNM (yi | w, θ, σ1, σ2, µ1, µ2) dµ1 = +∞,

and(or), ∫ +∞

−∞

n∏
i=1

flogNM (yi | w, θ, σ1, σ2, µ1, µ2) dµ2 = +∞.

Since

flogNM (y | w, θ, σ1, σ2, µ1, µ2) = wflogN
(
exp

(
µ1 − ν2

1

)
− (y − θ) | θ, µ1, ν1

)
+

(1− w) flogN
(
exp

(
µ2 − ν2

2

)
+ (y − θ) | θ, µ2, ν2

)
,

and any pdf must be nonnegative, it suffices to show that
∫ +∞

−∞
flogN

(
exp

(
µ1 − ν2

1

)
− (y − θ) | θ, µ1, ν1

)
dµ2 =∞,

and(or) ∫ +∞

−∞
flogN

(
exp

(
µ2 − ν2

2

)
+ (y − θ) | θ, µ2, ν2

)
dµ1 =∞.

Both the integrals above are non-finite. This completes the proof.

Following the same arguments as those in Proposition A.2.1, one can show that

improper priors such as p(ν1) ∝ 1/ν1 and(or) p(ν2) ∝ 1/ν2 will also lead to an

improper posterior distribution. As stated in Proposition 4.2 in chapter 4, a general

rule is that, for the Bayesian modal regression models based on the GUD family,
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using improper prior(s) for any parameter in (ξ1 ∪ ξ2) \ (ξ1 ∩ ξ2) leads to an improper

posterior distribution. Here, A\B = A ∩Bc denotes a collection of elements in A but

not in B.

A.3 A short note about Markov Chain Monte Carlo (MCMC)

Readers who are familiar with Bayesian modeling of mixture distributions may wonder

why we do not use the data augmentation “trick” to design a specific MCMC algorithm

for modal regression models based on the GUD family. The problem lies in the type II

distributions of the GUD family. If D1 ∩ D2 = ∅, then the latent variable conditional

on other parameters and observed data becomes a degenerate random variable. This

degenerate random variable will not behave randomly.

To demonstrate that we have a degenerate random variable, let us consider a

simple case with a single observation. Recall that the type II GUD has the pdf

f (y | w, θ, ξ1, ξ2) = wf1 (y | θ, ξ1) I (y < θ) + (1− w)f2 (y | θ, ξ2) I (y ≥ θ) .

Introducing the latent variable z, we have the joint pdf as

f (y, z | w, θ, ξ1, ξ2) =[wf1 (y | θ, ξ1) I(y < θ)]z

[(1− w)f2 (y | θ, ξ2) I(y ≥ θ)]1−z .

The conditional distribution of z is then

p (z | w, θ, ξ1, ξ2, y) ∝ f (y, z | w, θ, ξ1, ξ2)

∼ Bernoulli (r) ,

where

r = wf1 (y | θ, ξ1) I (y < θ)
wf1 (y | θ, ξ1) I (y < θ) + (1− w)f2 (y | θ, ξ2) I (y ≥ θ) .

Similarly, the conditional distribution of θ is

p (θ | w, ξ1, ξ2, y, z) ∝ f (y, z | w, θ, ξ1, ξ2) p (θ) .
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The conditional mean of the latent variable z can only be 0 or 1 since y < θ and y ≥ θ

cannot happen at the same time. Hence, the latent variable becomes a degenerate

random variable during the MCMC iterations. Without loss of generality, let us

assume z = 1 in the first iteration of the MCMC. It is not hard to see that, during

the MCMC iterations, the updated values of θ can only be larger than y. This leads

to z being equal to 1 for the rest of the iterations in the MCMC algorithm. However,

if the true value of θ is smaller than y, then the MCMC chain will never reach the

true value. Similarly, if z = 0 in the first iteration of the MCMC, then all updated

values of θ can only be smaller than y.

In conclusion, for Bayesian modal regression models based on the type II GUD

subfamily, the latent variable data augmentation algorithm will not explore the whole

parameter space. Hence, it is non-ergodic. As a consequence of this, we do not use

the data augmentation “trick” for mixture models in our MCMC algorithm. Instead,

we use the No-U-Turn Sampler implemented in the Stan software (Hoffman et al.,

2014; Carpenter et al., 2017).

Convergence Diagnostics for the Real Data Applications and Simulation

Studies

In this section, we include more details about posterior inference, convergence diagnos-

tics, and traceplots for the four data application examples and two simulation studies

from the main manuscript. The rhat, which has the theoretical minimum value as

1, is a statistic measuring the convergence of the MCMC chains. To obtain reliable

posterior inference, it is recommended that rhat should be near 1 or at least less than

1.1 (page 287 of Gelman et al. (2013)). The ess_bulk and ess_tail are the bulk

and tail effective sample size respectively. The ess_tail is defined as the minimum

of the effective sample sizes for the 5% and 95% quantiles. The recommended lower

threshold for ess_bulk and ess_tail is 400 (Vehtari et al., 2021). All of the rhat,
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Figure A.2 Traceplots for the modal regression model based on the DTP-Student-t
likelihood fit to the bank deposits data.

ess_bulk and ess_tail summary statistics from our analyses in the main manuscript

satisfy these recommended thresholds.

All of the traceplots presented in this section also indicate that the MCMC chains

mixed well, with no convergence issues. We ran four MCMC chains for each model

that was fit and used the combined MCMC samples to approximate the posterior

distributions. For the intercept-only regression model fit to the bank deposits data

(Section 2.1 of the main manuscript), we set the number of warmup iterations as

10,000 and the number of post-warmup iterations as 20,000 for each chain. For all

other models in chapter 4, we set the number of warmup iterations as 10,000 and the

number of post-warmup iterations as 10,000 for each of the four MCMC chains.

Bank Deposits Application from Section 4.2.1

# A tibble: 6 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 lp__ -288. -288. 1.63 1.43 -291. -286. 1.00 36112. 47263.
2 sigma1 1.20 1.08 0.559 0.437 0.567 2.25 1.00 51221. 45698.
3 sigma2 20.5 20.0 5.37 5.20 12.6 30.1 1.00 46745. 49890.
4 delta1 1.34 1.16 0.745 0.503 0.597 2.67 1.00 70792. 47613.
5 delta2 0.915 0.888 0.211 0.198 0.621 1.30 1.00 51342. 54038.
6 theta 18.7 18.7 1.80 1.67 15.9 21.6 1.00 42904. 40976.
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Crime Rate Application from Section 4.2.2

## mean regression - Normal likelihood

# A tibble: 4 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 alpha -24.2 -24.2 5.33 5.28 -33.0 -15.4 1.00 15362. 20037.
2 beta[1] 0.467 0.466 0.163 0.161 0.200 0.738 1.00 17845. 20507.
3 beta[2] 1.14 1.14 0.227 0.225 0.765 1.51 1.00 18553. 22035.
4 beta[3] 0.0677 0.0677 0.0341 0.0340 0.0121 0.124 1.00 23524. 24312.

## median regression - ALD likelihood

# A tibble: 4 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 alpha -1.34 -1.18 3.39 3.28 -7.16 3.89 1.00 9895. 11638.
2 beta[1] -0.118 -0.123 0.0964 0.0933 -0.268 0.0471 1.00 10933. 13580.
3 beta[2] 0.437 0.432 0.138 0.128 0.216 0.673 1.00 11652. 13166.
4 beta[3] 0.0555 0.0554 0.0161 0.0158 0.0294 0.0818 1.00 17520. 18274.

## modal regression - TPSC-Student-t

# A tibble: 4 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 alpha 1.12 1.25 2.68 2.62 -3.56 5.29 1.00 13814. 16690.
2 beta[1] -0.199 -0.204 0.0825 0.0805 -0.327 -0.0552 1.00 14342. 17771.
3 beta[2] 0.243 0.250 0.138 0.144 0.00688 0.459 1.00 10233. 15650.
4 beta[3] 0.0636 0.0624 0.0153 0.0149 0.0403 0.0906 1.00 10145. 9351.

Air Pollution Application from Section 4.6

## mean regression - Normal likelihood

# A tibble: 2 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 alpha 41.9 41.9 3.12 3.14 36.8 47.1 1.00 15822. 19673.
2 beta[1] -1.27 -1.26 0.841 0.849 -2.64 0.116 1.00 15614. 18993.

## median regression - ALD likelihood

# A tibble: 2 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 alpha 32.8 32.7 2.05 2.03 29.5 36.2 1.00 13984. 16088.
2 beta[1] -1.87 -1.85 0.530 0.524 -2.77 -1.03 1.00 14043. 15873.

## modal regression - TPSC-Student-t
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# A tibble: 2 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 alpha 9.67 9.76 1.44 1.18 7.46 11.7 1.00 4268. 1787.
2 beta[1] -1.01 -0.997 0.309 0.302 -1.53 -0.538 1.00 4581. 1832.

Serum Data Application from Section 4.6.2

## mean regression - Normal likelihood

# A tibble: 3 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 alpha 3.08 3.08 0.384 0.380 2.45 3.72 1.00 10706. 15240.
2 beta[1] 0.969 0.969 0.313 0.311 0.451 1.48 1.00 9820. 13370.
3 beta[2] -0.0458 -0.0460 0.0510 0.0508 -0.130 0.0385 1.00 10328. 14088.

## median regression - ALD likelihood

# A tibble: 3 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 alpha 2.82 2.81 0.441 0.449 2.12 3.57 1.00 8105. 12034.
2 beta[1] 1.12 1.13 0.348 0.352 0.527 1.68 1.00 7692. 10288.
3 beta[2] -0.0656 -0.0668 0.0574 0.0576 -0.157 0.0314 1.00 8134. 10823.

## modal regression - TPSC-Student-t

# A tibble: 3 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 alpha 2.37 2.37 0.320 0.316 1.84 2.89 1.00 12565. 17546.
2 beta[1] 1.15 1.16 0.264 0.264 0.720 1.59 1.00 11055. 16023.
3 beta[2] -0.107 -0.107 0.0441 0.0438 -0.179 -0.0338 1.00 11692. 17288.

Left-Skewed Simulation Study from Section 4.5.1

## mean regression - Normal likelihood

# A tibble: 2 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 alpha -2.32 -2.32 2.37 2.33 -6.21 1.59 1.00 36206. 27772.
2 beta[1] 2.64 2.66 3.67 3.59 -3.36 8.66 1.00 34513. 27175.

## median regression - ALD likelihood

# A tibble: 2 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
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1 alpha 0.653 0.648 0.468 0.445 -0.0964 1.43 1.00 31916. 25876.
2 beta[1] 0.751 0.746 0.755 0.693 -0.483 2.00 1.00 34392. 25226.

## modal regression - TPSC-Student-t

# A tibble: 2 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 alpha 0.847 0.819 0.386 0.364 0.265 1.52 1.00 20058. 19143.
2 beta[1] 0.639 0.644 0.334 0.321 0.0800 1.18 1.00 29384. 25974.

Right-Skewed Simulation Study from Section 4.5.2

## mean regression - Normal likelihood

# A tibble: 2 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 alpha 1.83 1.82 2.01 1.97 -1.46 5.12 1.00 37079. 27813.
2 beta[1] 3.12 3.11 3.43 3.35 -2.51 8.76 1.00 34832. 26126.

## median regression - ALD likelihood

# A tibble: 2 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 alpha 0.976 0.986 0.470 0.464 0.192 1.73 1.00 30065. 23935.
2 beta[1] 0.473 0.487 0.944 0.925 -1.12 1.98 1.00 28958. 26648.

## modal regression - TPSC-Student-t

# A tibble: 2 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 alpha 1.33 1.41 0.532 0.517 0.328 2.05 1.00 14412. 15244.
2 beta[1] 0.257 0.211 0.589 0.612 -0.633 1.28 1.00 20263. 24407.
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(a) Traceplots for the mean regression model

(b) Traceplots for the median regression model

(c) Traceplots for the modal regression model based on the TPSC-Student-t likelihood

Figure A.3 Traceplots for the mean/median/modal regression models fit to the
crime data.
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(a) Traceplots for the mean regression model

(b) Traceplots for the median regression model

(c) Traceplots for the modal regression model based on the TPSC-Student-t likelihood

Figure A.4 Traceplots for the mean/median/modal regression models fit to the air
pollution data.

122



(a) Traceplots for the mean regression model

(b) Traceplots for the median regression model

(c) Traceplots for the modal regression model based on the TPSC-Student-t likelihood

Figure A.5 Traceplots for the mean/median/modal regression models fit to the
serum data.
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(a) Traceplots for the mean regression model

(b) Traceplots for the median regression model

(c) Traceplots for the modal regression model based on the TPSC-Student-t likelihood

Figure A.6 Traceplots for the mean/median/modal regression models from the
left-skewed simulation study.
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(a) Trraceplots for the mean regression model

(b) Traceplots for the median regression model

(c) Traceplots for the modal regression model based on the TPSC-Student-t likelihood

Figure A.7 Traceplots for the mean/median/modal regression models from the
right-skewed simulation study.
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