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Abstract

At present, aerial drones, also known as Uncrewed Aircraft Systems (UAS) or Un-

manned Aerial Vehicles (UAV), are increasingly used in time and effort-heavy scien-

tific exploration applications. One such application is inspecting the physical, chem-

ical, and biological state of water bodies. This thesis presents a novel autonomous

system capable of sensing water properties and collecting up to three 250 mL water

samples from multiple sampling locations. The system features a customized aerial

drone with an in-house built fluorescence sensor and pumping mechanism. It can

also map the gradient of fluorescent content across the body of water to determine

the best sampling spot and perform targeted sampling based on in situ fluorescence

measurements. Multiple sensor fusion with an Extended Kalman Filter has been im-

plemented for better altitude estimation within 1.5 m from the water surface, and a

failsafe routine has been designed to ensure safe near-water operation. The system’s

performance has been experimentally validated in three different water environments,

namely the A.C. Moore Garden Pond, Columbia, SC; Congaree River, SC and Lake

Wateree, SC.
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Chapter 1

Introduction

A single specimen of water from a river, lake, reservoir, or estuary can reveal a lot of

information about a waterbody and its surroundings. However, the time, effort, and

resources spent in traditional water sampling methods are quite exorbitant [1]. Un-

crewed Aircraft Systems (UAS) or Unmanned Aerial Vehicles (UAV), widely known

as aerial drones, can significantly increase the ease, temporal resolution, and spa-

tial scale of water sampling. Moreover, a UAS assisted water sampling system can

eliminate the risks of collecting water samples from hazardous locations like mine

pit lakes, volcanic lakes, etc. by autonomously collecting adequate samples without

human intervention.

This work introduces an aerial drone equipped with a Water Sensing and Sampling

Apparatus (WSSA) that can perform a wide-range of in situ measurements and collect

three 250 mL sensor-triggered samples using a novel method to preserve intact living

cells. A custom-made fluorometer [2, 3] (developed by the Myrick group at the

Department of Chemistry and Biochemistry, University of South Carolina) is mounted

on the drone that can directly measure the amount of chlorophyll-a present in the

water. The collection and sampling processes are automatically triggered by the in

situ measurements. Finally, all measurements and samples are stamped with time

and location using the drone’s Global Navigation Satellite System (GNSS) sensor and

thus help to build a geographic information system (GIS) database.

Initially, the drone was manually piloted, and the system was successfully deployed

at the A.C. Moore garden pond, Columbia, South Carolina and then the Congaree
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River, South Carolina. However, despite this early development serving as a proof of

concept [4], there were limitations to the system that required further improvements.

One of the limitations was the open-loop control of the WSSA. Another was the lack

of accurate sensor information about the proximity to the water surface. During field

experimentation, it was observed that the drone’s altitude drifts quite a lot while

hovering. Since the water sampling application requires the drone to fly very close to

the water surface (< 1.8 m), information about the proximity to the water surface is

vital. During manual deployment, the safety of the UAS depended on the operator’s

visual approximation and judgement. However, the visibility of the drone decreased

as the distance between the operator and the UAS increased. Therefore, the chance

of crashing into the water became high [5]. Since our main objective is to minimize

human intervention to save time and effort, an accurate altitude estimation from the

water surface was required for a higher level of autonomy.

Therefore, in the final iteration, a set of improvements were made to address

these shortcomings. The WSSA was equipped with feedback control by adding water

detection sensors at the flushing lines for feedback. A mission state machine was

developed so that the UAS could autonomously navigate to user-specified coordinates

for sample collection or fluorescence mapping. Additionally, an Extended Kalman

Filter was designed and implemented for fusing multiple sensors for better estimating

the proximity from the water surface. Paired with that, a failsafe was designed to

ensure the safety of the UAS during near-water autonomous operation. The improved

system capabilities were also tested in a field deployment at Lake Wateree, SC (Figure

1.1).

The rest of the thesis is organized as follows: Chapter 2 presents related work in

the area of UAS-based water sensing and sampling. Chapter 3 discusses the system

improvements and the proposed altitude estimation technique. Chapter 4 discusses

the autonomous operation of the UAS and the state machine of the WSSA. Chapter
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Figure 1.1 The developed UAS water sensing and sampling system during
autonomous deployment in Lake Wateree, SC.

5 presents the experimental results from the three deployments and discusses the sys-

tem’s performance. Finally, in Chapter 6, conclusions are drawn, and future research

direction is discussed.

1.1 Contributions

The main contributions of this work are as follows:

• The development of an aerial drone system capable of fluorescence-triggered

water sample collection from three sampling locations and generate a map of

fluorescence gradient along the trajectory.

• The development of a vacuum-assisted Water Sensing and Sampling Apparatus

capable of collecting water samples without destroying the living cells.
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• The design and implementation of an Extended Kalman Filter for sensor fusion

of GNSS and Ultrasound sensor for accurate altitude estimation within 1.5 m

of the water surface.

• The implementation of a failsafe routine utilizing the filtered altitude estimate

to ensure the safe hovering of the drone over water.

• The development of two state machines for an autonomous mission. One is

for the water sample collection process, and the other is for the autonomous

navigation to the given locations.

• The field deployment of the platform in three different water environments:

A.C. Moore Garden pond, Congaree river, and Lake Wateree situated in South

Carolina, USA.

1.2 Publications

In addition to the research presented in this thesis, a list of publications produced

related to this research are as follows:

1. Kazi Ragib Ishraq Sanim, Caitlyn M. English, Zechariah B. Kitzhaber,

Michail Kalaitzakis, Nikolaos Vitzilaios, Michael L. Myrick, Michael E. Hodg-

son, and Tammi L. Richardson. “Autonomous UAS-based Water Fluorescence

Mapping and Targeted Sampling”. In: Journal of Intelligent and Robotic Sys-

tems (Under Review).

2. Kazi Ragib Ishraq Sanim, Michail Kalaitzakis, Bhanuprakash Kosaraju,

Zechariah B. Kitzhaber, Caitlyn M. English, Nikolaos Vitzilaios, Michael L.

Myrick, Michael E. Hodgson, and Tammi L. Richardson. “Development of an

Aerial Drone System for Water Analysis and Sampling”. In: 2022 Interna-
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tional Conference on Unmanned Aircraft Systems (ICUAS). Dubrovnik, Croa-

tia: IEEE, (2022).

3. Caitlyn M. English, Zechariah B. Kitzhaber, Kazi Ragib Ishraq Sanim,

Michail Kalaitzakis, Bhanuprakash Kosaraju, James L. Pinckney, Michael E.

Hodgson, Nikolaos Vitzilaios, Tammi L. Richardson, and Michael L. Myrick.

“Chlorophyll fluorometer for Intelligent Water Sampling Using a Small Un-

crewed Aircraft System (sUAS)”. In: Applied Spectroscopy (2022).

4. Zechariah B. Kitzhaber, Caitlyn M. English, Kazi Ragib Ishraq Sanim,

Michail Kalaitzakis, Bhanuprakash Kosaraju, Michael E. Hodgson, Nikolaos

Vitzilaios, Tammi L. Richardson, and Michael L. Myrick. “Fluorometer Con-

trol and Readout Using an Arduino Nano 33 BLE Sense Board”. In: Applied

Spectroscopy (2022).

5. Michael E. Hodgson, Nikolaos Vitzilaios, Michael L. Myrick, Tammi L. Richard-

son, Matt Duggan, Kazi Ragib Ishraq Sanim, Michail Kalaitzakis, Bhanuprakash

Kosaraju, Caitlyn M. English, and Zechariah B. Kitzhaber. “Mission Planning

for Low Altitude Aerial Drones during Water Sampling”. In: Drones 6.8 (2022).
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Chapter 2

Related Work

Lately, the applications of UAS are not only limited to visual inspections. With the

rapid improvement of UAS payload and flight time, UAS are now deployed for highly

complex applications like sensor deployment and retrieval [6], multi-robot collabora-

tion [7], aerial manipulation [8], hydrology research [9] etc. For these applications,

mathematical modeling of the nonlinear dynamics of real systems is necessary for

optimal state estimation and robust control. The nonlinear model of a system can

be approximated by a linear model with time-variant parameters. However, the in-

fluence of disturbances, modeling errors, and various uncertainties can differ from

system to system. Therefore, the design and modeling of the system rely heavily on

the intended application.

One such application is UAS-based water sampling. There have been several

studies on UAS-based water sampling applications in the recent years. The literature

can be grouped in two main categories, based on (a) the type of water sensing and

sampling capabilities, and (b) the level of autonomy for the drone operation.

2.1 Water Sensing and Sampling Aspect

For the water sensing and/or sampling aspect, past works can be grouped into three

main categories: i) aerial drones deployed only for sampling, ii) aerial drones deployed

only to sense different water characteristics, and iii) systems that can do both sensing

and sampling in the same mission.

One of the attempts that fall in the first category is the study by Schwarzbach et
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al. [10, 11], where a helicopter UAS was deployed to collect a water sample of up to

500ml. In a similar study by Cornell et al. [12], a small commercial UAS is used to

collect 50ml of water for remote sensing of bacterial flora. Doi et al [13], deployed a

UAS with a suspended bottle to collect 1L of water for e-DNA survey. Terada et al.

[14], collected 250ml sample of water from a volcanic crater lake with a sampling bottle

with ball valves suspended from a UAS. Banerjee et al. [15] developed an Integrated

Electromechanical Pneumatic System (IEPS) water sampler with six syringes of 25ml

each. It could collect 150ml of water sample, saving much deployment time. The first

category also includes the works of Graham et al. [16], Neto et al. [17], Horricks et

al. [18], and Farinha et al. [19]. Some commercially available solutions that fall into

this category are the Nixie water sampler by Reign maker [20] and the remote water

sampling platform by UgCS Integrated Systems [21].

The second category, which focuses only on sensing, includes the works of Koparan

et al. [22], Chung et al. [23], and Demario et al. [24]. Koparan et al. [22], performed

in situ measurements of Dissolved Oxygen (DO), Electrical Conductivity (EC), pH,

and temperature with the help of an open-source multi-probe meter suspended from

a custom-built UAS. Chung et al. [23] measured the temperature and the correspond-

ing depth of a water body to make a thermal profile. Whereas Demario et al. [24]

performed thermal imaging and measured the temperature and pressure of a water

plume with a quadcopter UAS.

The third category is the most complex category. Because these drones were not

only sent to collect water samples but also to perform some in situ measurements. The

UAS developed by Ore et al. [25] was equipped with a temperature and a conductivity

sensor to take real-time measurements of water. It also contained three 20ml vials to

collect samples from three different locations. Moreover, the apparatus was designed

to protect against cross-contamination of the samples by flushing the pump and

system before gathering each sample. In another study, a DJI Matrice 600 was used

7



to collect up to 2L of water while measuring the EC, temperature, and depth at the

sampling point on a mine pit lake [26, 27, 28]. In [29], Koparan et al. improved their

system to collect three 130ml samples while taking in situ measurements of EC, DO,

pH, and temperature. Esakki et al. [30], measured the pH, DO, EC, temperature,

and turbidity of the sampling point with their custom-built hovercraft and collected

1L of water sample using a robotic manipulator having a pump as an end-effector.

Song et al. [31] and Benson et al. [32] also proposed systems with both sensing and

sampling capabilities. Some commercial solutions such as Nero [33] and SplashDrone

4 WQMS by SwellPro [34] offer some integrated or add-on sensors for in situ water

quality measurements in addition to the water sampling capabilities. This thesis also

fits in this category, as the system can perform both sensing and sampling.

However, within the third category, some platforms are capable of targeted sam-

pling using the sensors onboard. Because, the collection of water samples from ran-

dom locations and depths might not always contain the analyte of interest. Sensor-

triggered sampling ensures a sample is collected only when the measured physical

and chemical properties of the water body match some predefined conditions. In

[35], Koparan et al. developed a water sampling device that would trigger only if the

pH, EC, and temperature were outside the allowable limits specified by the Environ-

mental Protection Agency (EPA). Washburn et al. [36] fabricated a depth-activated

Niskin bottle that would only trigger at a set depth when deployed from a UAS. The

platform developed in this thesis also has a targeted sampling feature. The system

may only collect a water sample with a target fluorescence level based on user in-

structions. If the measured fluorescence is outside the desired range, the system may

skip sampling from the location and move on to the following location of interest.

8



2.2 Autonomy Aspect

From the autonomous navigation aspect, the previous works can be categorized based

on either manual or autonomous operation. In the works of Song et al. [31], Cornell

et al. [12], Doi et al. [13], Castendyk et al. [26, 27, 28], Banerjee et al. [15], Pinton et

al. [37], and Reign Maker [20], the UAS was flown manually to the point of interest.

However, in this chapter, our main focus is the studies done with autonomous flights.

One of the first autonomous attempts at sampling was made by Schwarzbach et

al. [10]. In this work, an onboard computer functioned as a flight controller, and

the sensors and actuators were connected over a serial interface with the computer.

The autopilot system was programmed using MATLAB/Simulink, while the position

information was fetched from a differential GPS system. The UAS was led to the

sampling position using standard guidance algorithms. All systems were connected to

the PLANET framework, which stored data and sent control commands via a central

system including a special user interface for the end users [11]. The UAS was capable

of autonomous takeoff and landing, however, it didn’t land on water, rather collected

a sample while hovering.

In Koparan et al. [22, 29], autonomous control of the UAS navigation and sampling

was accomplished with a Pixhawk flight controller. The Mission Planner1 software

was used to specify flight boundaries, waypoints, and autonomous navigation details.

The water sensing node was activated when the UAS reached a sampling location.

Since the UAS had the capability to takeoff and land on water. Therefore, precise

altitude estimation near water was not required and only the position information

from GPS was adequate for the proper operation of the UAS.

For making non-contact water plume temperature measurements, Demario et al.

[24] used a Pixhawk flight controller and pre-programmed the waypoints using the

1https://ardupilot.org/planner/
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Mission Planner software. In this case, the UAS did not come in close proximity with

the water surface. In a different study by Terada et al. [14], optimal waypoints for

the sampling locations were programmed into the flight control unit for autonomous

navigation to the sampling points. The sampling bottle was suspended with a 30

m long rope from the UAS. Therefore, the operating altitude was at around 30 m

from the ground level and the position information from GNSS was sufficient to keep

the UAS safe. The UAS used by Washburn et al. [36] used the Ardupilot flight

control software for autonomous navigation. Similarly, Singh et al. used the smart-

RTL feature of Ardupilot to navigate back and forth from the starting point to the

sampling waypoints [38]. In the work of Benson et al. , the Waypoint Intelligent Flight

mode in the DJI GO 4 app was used to establish a grid of defined GPS waypoints

[32]. Neto et al. also used the DJI GO 4 app to set the waypoints [17]. Horricks et al.

used the open-source software QGround Control2 for semi-autonomous navigation to

the waypoints [18].

The systems discussed till now mostly utilized an off-the-shelf flight planning

software (Mission Planner, QGround Control, etc.) to achieve autonomous navigation

capabilities. However, there are two problems with this approach when it comes to

specialized missions like water quality sensing and targeted sampling.

• First, the limited flexibility of missions in such software.

• Second, the mission programmed by the flight planning software operates us-

ing the positioning from GNSS, which does not provide precise enough altitude

information during near-water operation. Adding new sensors for precise posi-

tioning is possible but difficult to integrate with such software.

One way to solve the first issue is by designing a dedicated state machine for a

specialized water sensing and sampling mission. Solving the second issue becomes

2http://qgroundcontrol.com/

10



crucial when the UAS must hover close to the water surface during sampling. Most

of the works discussed till now have bypassed this problem either by hovering at a

high and safe altitude utilizing a long tether for the sampling device or by landing on

water with the help of a floatation attachment. However, in our case, hovering close

to the water surface is essential to generate a fluorescence map and collect targeted

samples. The systems with the most similar goals to ours are the water sampling

UAS developed by UgCS Integrated systems [21] and Ore et al. [25].

The commercially available remote sampling platform by UgCS Integrated Sys-

tems uses an onboard computer UgCS SkyHub and an in-house flight planning soft-

ware UgCS PRO for autonomous navigation to pre-programmed sampling locations

[21]. It has a precise radar altimeter for real-time altitude measurement during the

flight and control of descent for sampling. In the system proposed by Ore et al. [25],

a ground station with Robot Operating System (ROS) handled the low-level com-

munication with the UAS for relaying information like mission control, navigation,

and altitude estimation. There was a second embedded controller on the UAS, which

received the instructions from the ground station and controlled the water sampling

subsystem and sent feedback. Since the UAS came in close proximity to the water

to collect a sample, positioning from GNSS was not adequate to ensure the safety of

the drone. Therefore, the researchers designed a low-altitude Kalman filter utilizing

two ultrasonic sensors and a pressure altimeter to estimate the altitude below 1.85

m from the water surface. They also implemented a scoring heuristic as a prefilter

to reject false measurements caused by sensor occlusions by the suspended pipe. At

high altitudes, the mission control guided the UAS towards the sampling point us-

ing GNSS position feedback, but during near water operation, the low-altitude flight

controller took over to ensure safe hovering of the UAS. In the next iteration of their

work [39], Ore et al. estimated the altitude using a depth sensor at the end of the

suspended pipe for near-water hovering. However, the depth of the pipe end was not a
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direct measurement of the altitude, therefore, prone to errors. Most importantly, for

this technique to work, the suspended pipe had to be either rigid or always pointing

straight down, which was not always the case during flight.

In this thesis, two state machines were developed for autonomous navigation and

water sampling respectively. To solve the near water altitude estimation problem,

a low-altitude Kalman filter was developed for safe operation near water. However,

instead of fusing two ultrasonic sensors, the altitude data from GNSS, pressure al-

timeter, and a single ultrasonic sensor were fused for a better altitude estimate near

water. A measurement gating was in place for outlier rejection instead of a scoring

heuristic-based prefilter. The mission control, navigation, and altitude estimation

happens on the onboard computer of the UAS in a ROS framework, while the Pix-

hawk flight controller handles the low-level controls. Therefore, the UAS can make

decisions faster. Another novel aspect of this work is the autonomous fluorescence

mapping mission, where the UAS safely traverses close to the water to make a fluo-

rescence map along a trajectory.

A comprehensive comparison has been made among different UAS-based water

sampling platforms developed by different research groups, including the proposed

system in this thesis in Table 2.1 and similar commercially available products in Table

2.2. The comparison has been made concerning the base UAS platform used, sampler

size, in situ measurement capabilities, water collection mechanism, and near water

altitude awareness. Some special features of the platforms have also been mentioned

in the Remarks column, including whether the UAS floats on water or hovers in the

air during sample collection.
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Table 2.1 Comparison of different UAV-assisted water sampling systems developed by different research groups.

(Abbreviations: D = Depth, Tmp = Temperature, EC = Electrical Conductivity, DO = Dissolved Oxygen, Trb = Turbidity,

WSD = Water Sampling Device, IEPS = Integrated Electromechanical Pneumatic System, µUV = Micro underwater vehicle,

FWS = Floats while sampling, HWS = Hovers while sampling.)

Author
Name

Base
Platform

Sampler
Size (mL)

In-situ
Measurements

Collection
mechanism

Near Water
Altitude

Awareness
Remarks

Schwarzbach
et al. [10,
11]

Helicopter,
payload: 4

kg

500x1 None Submersible
pump

None HWS

Ore et al.
[25, 39]

Hexacopter
(Asctec
Firefly),
payload:

600 g

20x3 D, Tmp Submersible
pump

Sensor
fusion using

pressure
altimeter &
ultrasonic

sensor

HWS, detects
sensor occlusion

Song et al.
[31]

Hexacopter
(Asctec
Firefly)

20x3 D,
Tmp,
EC

Peristaltic
pump

None HWS

Cornell et
al. [12]

Quadcopter
(DJI

Phantom 3)

50x1 None Falcon tube None FWS

Doi et al.
[13]

Hexacopter
(Luce

Search)

1000x1 None Bottle with
weighted

ring

None HWS, bottle
suspended with

10m tether
Continued on next page
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Table 2.1 – continued from previous page

Author
Name

Base
Platform

Sampler
Size (mL)

In-situ
Measurements

Collection
mechanism

Near Water
Altitude

Awareness
Remarks

Koparan et
al. [29, 35]

Hexacopter
(Custom),

payload: 2.1
kg

130x3 DO,
EC, pH,

Tmp,
D, Trb

Custom
WSD

None FWS,
sensor-triggered

sampling

Terada et al.
[14]

Hexacopter
(EnRoute

lab
LAB645)

250x1 None Sampling
bottle with

valves

None HWS, bottle
suspended with

30m tether

Esakki et al.
[30]

Quadcopter
(Custom),
payload: 7

kg

1000x1 pH,
DO,
EC,

Tmp,
Trb

Submersible
Pump

None FWS,
Amphibious,
robotic arm

Washburn
et al. [36]

Not
Specified

500x1 D Depth-
activated

Niskin
bottle

None HWS

Castendyk
et al. [27,
28]

Hexacopter
(DJI Matrix

600),
payload: 6

kg

2000x1 EC,
Tmp, D

Hydrasleeve None HWS, sleeve
suspended with

100m tether

Banerjee et
al. [15]

Octocopter
(Walkera
QR-X900)

25x6 None Custom
IEPS

None HWS, 2.5m
suspended tube

Continued on next page
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Table 2.1 – continued from previous page

Author
Name

Base
Platform

Sampler
Size (mL)

In-situ
Measurements

Collection
mechanism

Near Water
Altitude

Awareness
Remarks

Singh et al.
[38]

Quadcopter
(Hudson

EDU 450),
payload:
1.33 kg

95x1 Tmp,
pH, EC

Diaphragm
pump

Ultrasonic
sensor

HWS,
retractable

tube,
plug-and-play

Benson et
al. [32]

Quadcopter
(DJI

Phantom 4)

50x1 Tmp, D Sampling
tube

None HWS, creates
bathymetric

map
Neto et al.
[17]

Quadcopter
(DJI Mavic

Pro)

50x2 None Peristaltic
pump and
solenoid

valve

None HWS

Horricks et
al. [18]

Quadcopter
(Spiri Mu),
payload: 1

kg

250x1 None Sampling
bottle

None HWS

Farinha et
al. [19]

Hexacopter
(Tarot X6

Frame)

200x1 None Peristaltic
pump and

filters

None FWS, deploys a
depth-controlled

µUV

Proposed
system

Hexacopter
(Aurelia X6
Standard),
payload: 5

kg

250x3 T, D,
EC,

Fluores-
cence

Vacuum-
assisted
sample

collection
by

diaphragm
pump

Sensor
fusion using

GNSS,
pressure

altimeter &
ultrasonic

Sensor

HWS, targeted
sampling,

creates
fluorescence

map
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Table 2.2 Comparison of different commercially available UAV-assisted water sampling systems. (Abbreviations: D = Depth,

Tmp = Temperature, EC = Electrical Conductivity, DO = Dissolved Oxygen, Trb = Turbidity, H6N2 = Ammonia Nitrogen,

FWS = Floats while sampling, HWS = Hovers while sampling.)

Developer
Name

Base
Platform

Sampler
Size (mL)

In-situ
Measurements

Collection
mechanism

Near Water
Altitude

Awareness
Remarks

Reign
Maker [20]

Quadcopter
(DJI M300

RTK) /
Hexacopter
(DJI M600)

250x1 None Nixie None HWS

Nero [33] Quadcopter
(DJI M300

RTK)

250x4 (Nero
Poli),

2000x1
(Nero Mia)

Tmp Peristaltic
pump

None HWS

UgCS Inte-
grated Sys-
tems [21]

Quadcopter
(DJI M300

RTK) /Hex-
acopter

(DJI M600
Pro)

1000x1 or
5000x1

None Ruttner
Water

Sampler

Radar
Altimeter

HWS

SwellPro
[34]

Quadcopter
(Splashd-
Drone 4
WQMS)

350x1 DO,
EC,
Trb,
pH,

H6N2

Sampling
bottle

None FWS,
waterproof
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Chapter 3

System Design & Development

In this chapter, the UAS platform and the design and development of the water sens-

ing and sampling apparatus are first discussed. Then the design and implementation

of the Extended Kalman Filter for sensor fusion is explained.

3.1 UAS Platform

The developed system is based on the Aurelia X6 Standard LE aerial drone platform,

a U.S. made, development focused platform with the open-source flight controller

Pixhawk Cube Blue. It has in-built triple-redundant accelerometers, and gyroscopes.

The Aurelia platform offers a high payload capacity (5 kg) and flight time (up to 45

min). The platform was modified to allow for the placement of a custom-built fluo-

rescence sensor [2, 3], a water sampling mechanism, a Raspberry Pi 4 model B (RPi

4B), an off-the-shelf ultrasonic distance sensor, a depth sensor, and a conductivity

sensor. Several parts were designed, and 3D printed to mount the peripherals. Figure

3.1 shows the retrofitted drone with its different components.

A Raspberry Pi 4 model B acts as the on-board computer and can communi-

cate with the Pixhawk flight controller and the added sensors. It utilizes the Robot

Operating System (ROS)3 framework for overall system control. It facilitates com-

munication between different peripherals and runs the water sampling state machine,

the mission state machine, and the Extended Kalman filter.

3https://www.ros.org/
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Figure 3.1 The developed aerial drone sensing and sampling system with
highlighted main components.

3.2 The Water Sensing & Sampling Apparatus (WSSA)

The main objective of the WSSA, is to collect water samples without damaging the

living cells in the water. It comprises three sampling bottles, each with a capacity

of 250 mL, and four self-priming, diaphragm, micro water pumps each capable of

creating up to −35 KPa of vacuum. Black silicon tubing is used for the input lines.

Three 3D-printed bottle caps with two barbed connectors on each are designed and

mounted on the UAS. The bottles can be screwed or unscrewed to the cap for rapid

replacement and redeployment. In the bottle cap design, several ridges or knurls

are added to the side of the caps for reinforcement. Also, the base of the barbed

connectors is rounded to reduce the shear force. The design of the 3D-printed bottle

caps is shown in Figure 3.2.

Among the four identical pumps, one acts as the master pump and pulls water

through the main channel, while the remaining three act as sampling pumps tasked

to fill each sampling bottle. As shown in Figure 3.3, the main channel of the tubing
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Figure 3.2 3D-printed bottle cap with knurls and barbed connectors.

Fluorometer

Water Line

Self Priming Pumps

A B C

Depth Sensor

Conductivity Sensor

One-way Valves

M

A

B

C

Flushing

Lines

Water Detector

Figure 3.3 Schematic of the Water Sensing and Sampling Apparatus (WSSA). M
is the master pump, and A,B, and C are the sampling pumps connected to the
bottle A,B, and C respectively. The main channel is shown in blue, the sampling
channels are shown is cyan, and the flushing lines are shown in red.

circuit comprises the fluorometer and a 1.8 m long tube suspended from the landing

gear of the drone. A mesh grid at the tube inlet prevents anything bigger than 200

µm in diameter from entering the system. The depth sensor and the conductivity

sensor probes are fastened to the tube inlet as shown in Figure 3.4. Following the

fluorometer, the main channel splits into three separate sampling channels going to

the three sampling bottles and one exit channel for continuous flushing. One of the

two connectors on each bottle cap is connected to a sampling channel, and the other

is connected to a sampling pump. Finally, there are three individual flushing lines,
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one from each sampling pump for flushing of excess water when the bottles are full.

In the initial design [4], the continuous flushing line and the flushing lines from the

bottles were all connected to a common line. In the current design, the four lines are

kept separate.

Figure 3.4 Depth sensor and Conductivity sensor attached with tube inlet.

A custom water detection sensor (using BC547 npn transistor) is installed in each

flushing line. Separation of the flushing lines ensures that the water detection sensors

at each line are not triggered by water from another line. Each sensor has two probes

that are pierced into each flushing line for feedback when water is flowing. When

water flows through the lines, the probes become electrically connected, and the

sensor sends a feedback signal to the Raspberry Pi. These feedback signals indicate

when the main channel is primed and bottles A,B,C are full, respectively.

Another modification in the improved setup is the section of the main channel

with connections going to each bottle has been moved below the level of the bottles

to prevent any cross-contamination of the samples due to gravitational pull. The

diameter of the tubing has been changed. Previously 3/8 inch inner diameter (ID)

black tubing was used for the WSSA. In the current setup, it was replaced with 1/4

inch ID black tubing for the whole apparatus. Switching to 1/4 inch tubing saved a

total payload of 0.25 kg and also improved the flow rate of the master pump. New

one-way valves (rated for vacuum up to −300 KPa) are placed in the sampling lines to

restrict the flow of air from the bottles to the main pump, therefore allowing adequate
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Table 3.1 On-board sensing\sampling system components
Item Weight(g) Units Total Weight(g)
Pump 68 4 272
Bottle (Full) 320 3 960
Pipe & Valves 1241 1 1241
Fluorescence Sensor 1300 1 1300
Raspberry Pi 48 1 48
Conductivity Sensor 56 1 56
Depth\Pressure\Temp Sensor 40 1 40
Custom electronics 121 1 121
3D Printed Parts 458 458

Total 4496

vacuum to be created. A simplified schematic of the improved WSSA is shown in

Figure 3.3, and the weight of different components of the improved WSSA is shown

in Table 3.1.

The water sampling apparatus working process is the following:

• First, the master pump creates a vacuum in the main channel when the sus-

pended end of the tube is inside the water. Because of the vacuum, water starts

to enter into the tube and rise up to the fluorometer.

• When none of the sampling pumps are running, the water exits from the fluo-

rometer and goes directly to the flushing line after passing through the master

pump.

• When one of the sampling pumps is started, it creates a vacuum in the corre-

sponding bottle, therefore, water starts flowing from the main channel towards

the bottle.

• When the bottle is full, water flows out of it, passes through the sampling pump,

and exits through the flushing line.

Since the water does not contact any moving parts before the fluorescence sensor and

the containers, the organic matter in the water sample is not introduced to sudden

change in pressure. Therefore, the organic matter present in the water samples is

collected unharmed.
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3.3 Altitude Estimation using Sensor Fusion

For the water sampling and mapping experiment, a precise sense of altitude is re-

quired to ensure the safety of the UAS. The UAS avionics sensors report the altitude

using the GNSS, barometric sensor, and the Inertial Measurement Unit (IMU) data.

The GNSS receiver on the Aurelia drone in this study used a single-frequency re-

ceiver. Although capable of augmentation, such as Satellite based augmentation sys-

tem (SBAS), the receiver was only operated in single-frequency Civilian Acquisition

(C/A) code. Recent estimates for vertical accuracy for a single constellation, such as

GPS, using only C/A code is ∼ 5 m (at the 95% confidence level) [40]. Additionally,

the barometric data drifts over time [41]. The IMU data originally measures the ac-

celeration, and then integrates twice to get the altitude, therefore, it contains a high

integration error. Thus, relying completely on the altitude reading from the UAS

avionics sensors is not safe. Furthermore, the reported altitude from the Pixhawk

flight controller used in this study is relative to the takeoff level. However, the water

level at the point of interest may not be at the same level as the launch site.

The use of a proximity sensor can provide the correct distance from the surface

beneath. The Aurelia X6 standard drone comes with a LiDAR sensor4 with a range

of 12 m. But optical proximity sensors have poor performance on water because

of the low return. To overcome this issue, an Ultrasonic Distance Sensor (Sonar)

from Parallax Inc.5 was added to the drone in this work. This sensor was mounted

on the drone’s landing gear facing downwards for water proximity detection while

hovering above water. The newly mounted sonar sensor was specified to have a range

of 3 m but had an excellent return from the water surface. However, when it was

mounted on the drone, it was affected by the vibration of the drone. As a result, the

useful range reduced to 1.5 m and the outliers in the sensor readings also increased

4https://aurelia-aerospace.com/product/aurelia-x6-standard/

5https://www.parallax.com/product/ping-ultrasonic-distance-sensor/
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drastically. Additionally, there was a suspended tubing that occasionally occluded

the sensor which also contributed to outliers. Therefore a robust outlier rejection

technique was required.

In this section, an Extended Kalman Filter (EKF) is proposed which can estimate

altitude over water by fusing the GNSS altitude and the sonar sensor reading. The

proposed EKF can also estimate the GNSS drift as an extra state modeled to have

a random walk noise. Subtracting the estimated GNSS drift from the GNSS altitude

and fusing it with the sonar measurements improved the accuracy of altitude estimate

drastically within a 1.5 m range. There was also a measurement gating in place

which removed the outliers caused by the noisy sensor reading or pipe occlusions.

The performance of this filter is discussed in Section 5.1.

3.3.1 Process Model

The proposed Extended Kalman Filter has five states. The altitude z, the vertical

velocity ż, the roll angle ϕ, the pitch angle θ, and finally, the GNSS offset γ.

x =
[
z ż ϕ θ γ

]T

(3.1)

The altitude, the roll angle and the pitch angles are assumed to have a constant

velocity model. The vertical acceleration, the roll rate, and the pitch rate readings

from the IMU are used to propagate the states. The GNSS offset models the drift

in the altitude reported from the GNSS module. It is assumed to have a random

walk error. Estimating this offset enables us to subtract it from the GNSS altitude

measurement in each iteration to estimate the true altitude. The state representation

in the continuous time domain is as follows:
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ż = ż

z̈ = RW
B aB

input − g

ϕ̇ = ϕ̇W
input

θ̇ = θ̇W
input

γ̇ = 0

(3.2)

Here, aB
input is the 3-axis acceleration vector from the accelerometer of the IMU

in all three axes of the body frame, ϕ̇W
input is the roll rate, and θ̇W

input is the pitch rate

reported from the gyroscope of the IMU. g is the gravitational acceleration. RW
B is

the third row vector of the three-dimensional rotation matrix. Therefore, RW
B aB

input

is the acceleration along the z-axis of the world frame. The discrete time equations

for a time step dt are as follows:

zk+1 = zk + żkdt + wz

żk+1 = żk + (RW
B aB

input − g)dt + wż

ϕk+1 = ϕk + ϕ̇W
inputdt + wϕ̇

θk+1 = θk + θ̇W
inputdt + wθ̇

γk+1 = γk + wγ

(3.3)

Here, k and k + 1 are two subsequent time steps. wz, wż, wϕ̇, wθ̇, and wγ are the

process noise modeled as white Gaussian zero-mean noise for each state variable re-

spectively. To get a close approximation of the process noise covariance, the sensor

data was recorded from the drone’s onboard avionics for two minutes while the drone

was stationary. The recorded altitude data were observed to contain a random walk

bias. However, the first difference of the recorded altitude data followed a zero mean

Gaussian distribution. The variance of this distribution was taken as an initial esti-

mate for wγ. Later it was further tuned depending on the filter results. The recorded

vertical acceleration, roll rate, and pitch rate also followed zero mean Gaussian dis-

tributions. Therefore, the variance of these distributions were taken as the initial
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estimates for wż, wϕ̇, wθ̇ respectively and then further tuned. Finally, wz was tuned

by trial and error.

3.3.2 Measurement Model

GNSS altitude measurements (fused with barometric data) and the roll and pitch

angle measurements could be obtained from the Flight Control Unit (FCU). The

sonar sensor mounted underneath the drone reported the proximity from the surface

beneath the drone along the sensor frame. The sensor frame and the drone’s body

frame had an offset along the transverse axis since the sensor was mounted a few

centimeters off-center along the pitch/transverse axis. When the drone was hovering

steadily, the body and world frames aligned, therefore, the sensor measurement was

equal to z. However, when the drone rolled and/or pitched at an angle, appropri-

ate transformation from the drone’s body frame was required to obtain the altitude

measurement in the world frame.

r
r

Sonar

φ
hh zz

Figure 3.5 Transformation of proximity measurement for different orientation of
the UAS.

Figure 3.5 shows the placement of the sonar sensor and the relation between z

and the sonar measurement, h is shown in Eq. 3.4.

z = hcos(ϕ)cos(θ)− rsin(ϕ)cos(θ) (3.4)
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The measurement equations are as follows:

h1 = z + γ + vGNSS

h2 = z + rsin(ϕ)cos(θ)
cos(ϕ)cos(θ) + vsonar

h3 = ϕ + vϕ

h4 = θ + vθ

(3.5)

Here, h1 is the GNSS altitude measurement from the drone avionics sensors. This

GNSS altitude contains the true altitude (z), the random offset (γ) and sensor noise

(vGNSS); h2 is the sonar sensor measurement. r is the mounting offset of the sonar

sensor along the transverse axis of the drone. Finally, h3 and h4 are the roll and

pitch angle measurements reported from the FCU. vGNSS, vsonar, vϕ, and vθ are the

variance of the white Gaussian zero-mean noise of the respective sensors. The values

for each of them can be found from the sensor measurements except for vGNSS since

the GNSS measurement also contained a random offset. The process noise for the

offset, γ contained the GNSS sensor noise as well. However, It was assumed vGNSS

to be much smaller than wγ. It was observed that assuming vGNSS to be 20 times

smaller than the wγ gives decent filter performance. For finding appropriate values for

vsonar, vϕ, and vθ, the stationary drone’s sonar sensor data, and gyroscope data were

recorded for two minutes. The variance of the recorded data were taken as vsonar, vϕ,

and vθ for the respective sensors.

3.3.3 Measurement Gating for Outlier Rejection

Even though the sonar sensor was specified to have a range of 3 m, the vibration of

the drone in-flight deteriorated the sensor’s performance. The number of outliers in

the sensor measurement increased with the increase in thrust, thus, during ascend.

Beyond 1.5 m, the sensor data lost significance. Additionally, the sensor could be

occluded by the suspended 1.8 m long tube under the drone, which might swing
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Figure 3.6 Altitude measurement from the sonar sensor when the UAS is in flight.
The raw sonar reading is shown in blue dots, the max filtered datapoints are shown
in orange crosses, and the OptiTrack altitude is shown in black as the ground truth.

and intercept the sonar sensor’s cone of measurement. To reject tube intercepts and

outliers, two layers of outlier rejection were employed:

• The first layer was a max filter with a moving window size of five data points.

While the UAS was in-flight, the sensor was observed to be more susceptible

to low outliers, as shown in Figure 3.6, specially close to 1.5 m. The max filter

only accepts the maximum of every five sensor measurements. Therefore, it

eliminated all the low outliers as can be seen in Figure 3.6. The remaining high

outliers were further eliminated by the next layer.

• The second layer was a χ2 test to reject any remaining outlying sensor mea-

surement. The χ2 test used the sensor measurement covariance as follows:

χ2 = (zi − ẑi)S−1
i (zi − ẑi) (3.6)

Here, zi is the sensor measurement, ẑi is the predicted measurement, Si = HPHT +

R is the innovation covariance matrix for a sensor with observation matrix H, mea-

surement noise covariance matrix R, and a piori covariance matrix P of the EKF. If

the value of χ2 was larger than a predefined confidence level (99.5% for this study),

then the measurement was rejected and the filter update was skipped.
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Chapter 4

System Control

In this chapter, the control scheme of the WSSA and the UAS platform are discussed.

The control framework of the UAS had three levels. The FCU handled the lower level

controls (mainly attitude dynamics) of the drone. An intermediate level controller

was developed in this work for controlling the position of the drone. Additionally, a

higher level controller was also developed that generated position setpoints according

to the feedback from the WSSA to achieve the mission objective. This chapter will

first discuss the state machine for different mission objectives. Then the state machine

for the WSSA will be presented.

4.1 Mission State Machine

The developed system has two different mission objectives (mission mode). Therefore,

two different mission state machines are designed: One for Sampling and the other

for Mapping. The state machine varies depending on the mission objective. The mis-

sion mode is specified during startup. The main function of a mission state machine

is to check the sampling flags, channel flags, depth flag, and pump flags (discussed

in Section 4.2) and update the position setpoints for the intermediate controller ac-

cordingly. The takeoff and landing of the UAS is done manually. After takeoff, the

autonomous mission is initiated by flicking the master switch on the RC. A plan file

stored in JSON file format is provided by the user before the start of the mission.

The state machine parses the Longitude, Latitude, and Altitude (LLA) coordinates

of the waypoints from the items field of the mission object from the file. After that,
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the workflow of the state machine for two different missions modes are as follows:

1. Sampling: The objective of the sampling mission is to collect three 250 mL

water samples from different sampling locations. For this mission mode, the

waypoints provided by the user are the sampling locations. After the start of

the mission, the UAS ascends to the specified altitude and heads towards the

first sampling point. If the UAS reaches within 0.5 m radius of the desired

position, the first waypoint is achieved. Then the UAS starts to descend at

a rate of 20 cm/sec until either the depth sensor hits the target depth or it

descends below a "safe" altitude. The "safe" altitude is discussed in detail in

Section 4.1.3. When the depth sensor is at the target depth, the WSSA initiates

the sampling routine showed in Algorithm 1. During the sample collection, the

setpoint of the intermediate controller does not change, therefore it hovers at a

set altitude. After the first sample is collected, the UAS ascends to the initial

altitude again and heads towards the next sampling point. Finally, after the

collection of all three samples, the UAS ascends back up to the initial altitude

and switches back to manual mode. The workflow of the mission state machine

is depicted in detail in Figure 4.1.

2. Mapping: The objective of this mode is to create a fluorescence map along a

transect of the waterbody while continuously pumping water through the fluo-

rometer. For this mission mode, the user-specified waypoints form a traversing

path for the UAS for fluorescence mapping. When the mission is launched,

the UAS ascends to the specified altitude and heads to the first waypoint. As

soon as the waypoint is achieved, the UAS gradually descends until the tube

inlet is at the target depth. When the inlet is at the target depth, the WSSA

continuously pumps water through the fluorometer and the fluorescence data

is collected. Simultaneously, the UAS follows the mapping path and traverses
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to the consecutive waypoints. During this time, the altitude setpoint remains

the same as long as the tube inlet stays at the target depth. In any case, ei-

ther for GNSS altitude error or drag of water, if the tube inlet exits the water

surface, the altitude setpoint is decremented by 20 cm until the target depth is

regained. Additionally, during the whole mission, an altitude failsafe condition

is checked on a parallel thread which is described in Section 4.1.3. When the

final waypoint is achieved, the UAS ascends back up to the initial altitude and

switches back to manual mode.
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Figure 4.1 The communication between Mission State Machine and WSSA State
Machine during a sampling mission. SF=Sampling Flag, DF=Depth Flag. The
yellow boxes indicate the pump flags, the blue boxes indicate the channel flags, and
the green boxes indicate the sampling flags. The red dashed rectangle is the
workflow of the Mission State Machine, and the green dashed rectangle is the
workflow of the WSSA State Machine.
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4.1.1 Path Generation

For a water sampling or mapping experiment, the longitude and the latitude of the

points of interest were provided by the user. However, navigation using LLA coor-

dinates was inconvenient for this application. Therefore, a local cartesian reference

frame was used to navigate to those user-defined points. The East, North, Up (ENU)

coordinate frame was chosen as the reference frame. The LLA coordinates of the

given points were therefore transformed into Cartesian coordinates in the ENU frame

[42]. An origin for the ENU frame was defined at the start of every mission. The

python class [43] for the conversion from LLA to ENU is attached in Appendix A.

From this point, the user-defined coordinates will be referred to as waypoints.

To plan a path from the current position to a waypoint, the mission state machine

generated a set of intermediate position setpoints for the intermediate level controller.

To generate these points, first, the 2D(x, y) distance from the current position to the

target position was divided by a set interval, d. This gave the total number of

intermediate points, n. Then, n-evenly-spaced intermediate points connecting the

current position and the target position with a straight line were calculated. During

our experiment at Lake Wateree, the interval, d was set to 1.5 m for the sampling

mission, and 0.5 m for the mapping mission. Decreasing the interval decreased the

speed of follow. A slower speed during the mapping mission was desirable for better

spatial resolution of fluorescence data.

4.1.2 PD Controller

An intermediate level controller controled the position of the UAS during both mis-

sion modes. A Proportional-Derivative (PD) controller was implemented as the in-

termediate level controller. The objective of the PD controller was to minimize the

error between the current UAS position and the setpoint position. The position and

orientation of the UAS as well as other avionics data from the Pixhawk FCU were
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accessed utilizing the MavROS6 package. Then the position and yaw angle error were

calculated and fed to the controller.

In general, the Pixhawk FCU accepts either position, velocity, or attitude com-

mands. In this work, the velocity commands were used as control inputs to ensure a

safe velocity during the missions. The accepted command parameters are the follow-

ing:

• Linear velocity along the three axes of the UAS body frame

• Yaw rate

The PD controller calculated the required velocities along the three axes and the

yaw rate to minimize the position and orientation error. However, the calculated

velocities were in the world frame (local ENU frame), whereas the FCU accepted

control inputs in the UAS’s body frame. Therefore, the velocity vector was rotated

from the world frame to the body frame. These rotated inputs were the executable

velocity commands to achieve the corresponding position setpoint. The Proportional

and Derivative gains were carefully tuned using MATLAB’s system identification

and PID tuner toolbox. MAVROS integration with the PX4 autopilot software7 was

utilized to send the velocity commands to the FCU at a rate of 30 Hz. However,

since a large error could result in a large velocity command, a function was in place

to limit the velocity to maximum 1 m/s in all directions. An important note here is

that, the PD controller achieving a zero error did not guarantee that the UAS would

hover without drift. It would still move around because of the random noise in the

position information from the GNSS.

6http://wiki.ros.org/mavros

7https://px4.io/
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4.1.3 Altitude Failsafe

During a sampling or mapping mission, the UAS had to maintain a fixed altitude

while pumping water through the WSSA. Though the PD controller did a fine job

taking the drone to a position setpoint, it did not consider the error in the position

data from the UAS avionics sensors. The error in altitude from a GNSS module could

be as high as 5 m [40]. Therefore, completely relying on the GNSS might cause the

drone to crash into the water. The fused altitude estimation from Section 3.3 came

into play here. A failsafe condition was programmed to run in parallel to the mission

state machine which checked the drone’s proximity to the water surface. The EKF

estimated the proximity to the water surface with very high accuracy within a range

of 1.5 m from the water surface. The failsafe condition defined a "safe" altitude and

checked whether the proximity to water was less than the "safe" altitude. If it was,

then the UAS immediately ascended 2 m from the current altitude. This failsafe

condition was checked five times every second. In this study, the "safe" altitude was

set to 0.5 m. The performance of the failsafe is discussed in Chapter 5.

4.2 WSSA State Machine

During the early stage of development [4], a master switch from the RC remotely

activated the WSSA and the UAS was manually flown to the point of interest. In

this study, the master switch starts the autonomous sampling/mapping mission and

enables the WSSA. The UAS autonomously flies to the first waypoint and after

reaching those coordinates, the WSSA initiates the sampling/mapping. A sampling

flag (SF) is assigned to distinguish among different stages of the mission. The flag

values and the corresponding stages are as follows:

• Sampling Flag 0: The fluorescence reading is less than the preset trigger

value and the tube inlet is out of the water
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• Sampling Flag 1: The fluorescence reading is greater than the preset trigger

value and the the tube inlet is at target depth.

• Sampling Flag 2: The first sampling bottle is full and the tube inlet is out of

the water.

• Sampling Flag 3: The second sampling bottle is full and the tube inlet is out

of the water.

• Sampling Flag 4: The third sampling bottle is full and the tube inlet is out

of the water. End of sample collection and start of flushing routine.

Algorithm 1 WSSA State Machine
1: SF ← 0
2: DF ← 0
3: if depth ≥ target_depth then
4: master_pump.start()
5: if main_channel.is_primed then
6: fluorometer.start()
7: end if
8: if SF = 0 ∧ fluorescence > trigger then
9: SF ← 1

10: end if
11: for i← 1 to 3 do
12: if SF = i ∧ ¬bottle[i].is_full then
13: pump[i].start()
14: else if SF = i ∧ bottle[i].is_full then
15: pump[i].stop()
16: if DF = 1 then
17: SF ← i + 1
18: DF ← 0
19: end if
20: end if
21: end for
22: else
23: DF ← 1
24: all_pump.stop()
25: end if
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The sampling flags change only in the event of depth sensor losing target depth

after a bottle is full. The value of a depth flag (DF) is 0 when the tube inlet is at the

target depth, and its 1 when the tube inlet exits the water. Two other sets of flags

are also assigned to indicate the state of each pump and each flushing line, addressed

as pump flags and channel flags, respectively. Four pump flags indicate the status of

each pump, with values 1 being "on" and 0 being "off". On the other hand, each of the

four channel flags changes according to the feedback from the water detection sensor

at each flushing line. Therefore they indicate when the main channel is primed and

individual sampling bottles are full and overflowing.

Algorithm 1 shows the logical flow of the WSSA state machine during a sampling

mission. For a mapping mission, the "for" loop from line 11 to line 21 is omitted,

therefore, the water continuously flows through the main channel and then out of the

flushing line. None of the sampling pumps are enabled during a mapping mission.

Before and after every mission, a flushing routine is run to flush out any entrapped

water inside the tubing circuit to prevent cross-contamination. Figure 4.1 gives an

overall depiction of how the WSSA and the mission state machines work together for

a sampling mission.
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Chapter 5

Experiments and Results

The system was evaluated in three different outdoor locations during different stages

of development: the A.C. Moore Garden Pond, Columbia, SC; Congaree River, SC

and Lake Wateree, SC. The two main experiments performed at each location were:

the sampling and mapping experiments. In the sampling experiment, the drone

collected single or multiple samples. In the mapping experiment, the drone traversed

a transect to generate a fluorescence map. The drone was deployed manually at

the A.C. Moore Garden and the Congaree river. However, the experiment at Lake

Wateree was fully autonomous. In addition to those, the range and accuracy of the

EKF altitude estimate was tested utilizing an indoor motion capture system before

deploying the system in the real world. The experimental setup and results for all

the experiments are presented herewith.

5.1 EKF Validation Experiment

For validating the EKF altitude estimate against ground truth, a comparison experi-

ment was performed with the help of an OptiTrack8 Motion Capture system (MoCap).

For this experiment, a test drone built with a DJI F550 Hexrotor frame was used. It

was equipped with the same RPi 4B and sonar sensor as the main platform. This

drone was used because of its smaller form factor which makes it safer for indoor

testing. The same EKF algorithm was implemented on the test drone which fused

the altitude measurements from the GNSS and the sonar sensor to get an optimal

8https://www.optitrack.com/applications/movement-sciences//#accuracy
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Figure 5.1 (a) shows a comparison of altitude measurement from GNSS,
OptiTrack, and EKF. The GNSS altitude is shown in blue, the OptiTrack altitude is
shown in black, and the EKF altitude estimate is shown in red. The horizontal
green dotted line marks the 1.5 m altitude. (b) shows the error in the EKF altitude
estimate with respect to the ground truth (OptiTrack). Error when OptiTrack
altitude > 1.5 m is plotted in red, and the error when OptiTrack altitude < 1.5 m is
plotted in blue. A ±15 cm error bound is shown is cyan dotted lines.

altitude estimate. The test drone was flown manually for four minutes inside the

MoCap. The comparison among the GNSS altitude, estimated EKF altitude, and

the MoCap reported altitude are shown in Figure 5.1. Since the OptiTrack system

has an accuracy of 0.2 mm, the MoCap altitude can be considered as the true alti-

tude (ground truth). From Figure 5.1 it can be observed that within 1.5 m from the

ground, the EKF altitude estimate closely follows the MoCap altitude. But when the

UAS flies higher than 1.5 m, the EKF altitude estimate is not reliable anymore. It

can also be seen that the error of the EKF altitude estimate is within ±15 cm bounds

when the UAS is hovering within a 1.5 m range from the surface beneath. Within
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this range, the mean error is 0.17 cm and the standard deviation is 5 cm.

5.2 Water Sampling Experiment

The A.C. Moore Garden, located on the University of South Carolina campus, was

selected as the initial test location as it features a water pond surrounded by various

trees\plants. At this site, the drone was piloted manually to the sampling location

and the WSSA was activated\deactivated with an RC.

For the sampling experiment at Moore garden, the UAS took off from an open

shoreline of the pond, reached a high enough altitude, and traversed to the sampling

point while the WSSA was activated. Once it reached the sampling location, the

UAS started descending. When the tube-end reached the desired collection depth,

the main pump was activated and started siphoning water through the main channel.

When the fluorescence measurements were within the preset range the sampler was

activated and a sample was collected. Finally, the WSSA was deactivated and the

UAS returned to the starting point.

Figure 5.2, shows the plots of the depth, fluorescence, water temperature, and

the total dissolved solids (TDS) readings during the first experiment. The whole

procedure can be split into five distinct stages as follows:

I Takeoff : The UAS takes off and reaches a high enough altitude to keep the

whole pipe suspended in the air.

II Approach: The user activates the WSSA as the UAS approaches the sampling

point and starts descending.

III Sensing: The master pump activates at a set depth and starts pumping water

through the main channel. The fluorescence reading starts increasing.
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Figure 5.2 Change in depth, fluorescence level, temperature, and total dissolved
solids (TDS) in the five different stages (I. Takeoff, II. Approach, III. Sensing, IV.
Sampling, and V. Return) of the water sampling mission for a single sample (Moore
Garden pond, Columbia, SC, USA). The fluorescence level is interpreted to µg/L on
the right vertical axis. The red portion of the graphs marks the readings of the
sensors, while the sample was being collected.

IV Sampling: The UAS maintains altitude and a sampler pump activates when

the measured fluorescence reaches a prespecified level. Water starts filling the

corresponding sampling bottle.

V Return: When sampling is complete, the WSSA is deactivated and the UAS

returns to the base.

In Figure 5.2, on the depth sensor plot, the horizontal dashed line marks the

trigger depth for the master pump which is 7cm. When the inlet of the pipe reaches

the triggering depth, the master pump starts pulling water through the fluorescence

sensor. Until the sampling is enabled, the water continuously exits through the
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flushing line. Both the temperature and TDS graphs show a change in their readings

as soon as the sensors touch the water. While the TDS is rapidly increased, the

temperature reading takes some time to settle to the actual temperature of the water.

The change in fluorescence level can be observed as soon as the water passes through

the sensor. The fluorescence level measured by the sensor does not have a unit, rather

it’s a value relative to a reference. It can be interpreted to µg/L for a known reference.

Once the fluorescence trigger level is reached, the sampling is enabled, allowing the

water to fill the 250ml container. When the bottle is full, the flow on the flushing

line increases, which acted as a visual queue that the sampling was complete. The

system is then deactivated, and the UAS starts ascending, pulling the inlet out of the

water.

Since the water from a reservoir like a pond is already well-mixed within 1m depth

at a certain time of the year [44], the airflow produced by the drone propellers does

not affect the water sample when sampling close to the surface. The duration of

the flight was 168 seconds, and around 10% of the battery capacity was used. The

sampling time for a single bottle was measured to be 53 seconds.

The next deployment site for the system was the bank of Congaree river near Bates

Landing, SC. For this experiment, an improved WSSA with water detection sensor at

the flushing lines was used. However, similar sequential stages (Takeoff, Approach,

Sensing, Sampling, and Return) were followed as the experiment at Moore garden

pond. The drone was piloted manually to the sampling locations, and the WSSA was

activated via an RC. During this experiment, the drone collected three samples from

three different locations of the river.

The third deployment site was a cove at Lake Wateree at Deer Run Road, SC. At

this trial, the UAS flew autonomously to the sampling locations and collected three

samples. The steps of the autonomous deployment for a sampling mission are the

following:
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• First, the user uses the QGround Control to select three waypoints on the

waterbody corresponding to three sampling locations and generates a plan file

in JSON format. Table 5.1 shows the waypoints inputs for the sampling and

mapping missions during the Lake Wateree trial.

• Then, the plan file was uploaded to the onboard computer and the sampling

mission was launched in the ROS framework.

• After that, the pilot armed the UAS and took off manually from the launch

site. It was flown to an open space, away from any obstruction.

• Finally, the UAS operator switched to mission mode using the RC, and the

UAS autonomously collected three samples from the given waypoints.

In Figure 5.3(a), the depth, fluorescence, conductivity, and the temperature plots

for the Congaree trial can be seen, and in Figure 5.3(b) the plots for the same pa-

rameters from the Lake Wateree trial are depicted. The fluorescence trigger levels

for both experiments were intentionally set to a low arbitrary value. This guaranteed

that a sample was collected from each site, which was the goal for this test, but

the trigger could be set higher so that samples were only collected from sites with

high chlorophyll content. The collection time for three samples from the Congaree

trial were 74, 87, and 140 seconds, respectively. On the other hand, the collection

times for three samples from the Lake Wateree trial were 46, 53, and 77 seconds,

respectively. During sample collection, algae particles accumulate on the mesh grid

Table 5.1 Waypoints for Sampling and Mapping missions at Lake Wateree
Waypoints Longitude Latitude Altitude(m)
Sampling

1 34.416153 -80.862854 4.0
2 34.415792 -80.863297 4.0
3 34.416076 -80.863171 4.0

Mapping
1 34.415425 -80.863481 4.0
2 34.415825 -80.863110 4.0
3 34.416012 -80.862935 4.0
4 34.416358 -80.862743 4.0

41



0 200 400 600

-0.4

-0.2

0

C
o
lle

ct
o
r 

d
e
p
th

 (
m

)

0 200 400 600

0

10

20

F
lu

o
re

se
n
ce

 l
e
ve

l
(

g
/L

)

0 200 400 600

25

30

T
e
m

p
e
ra

tu
re

 (
C

)

0 200 400 600

Time (sec)

0

50

T
D

S
 (

p
p
m

)

a b c de

(a) Sampling at Congaree river
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(b) Sampling at Lake Wateree

Figure 5.3 Depth, Fluorescence, temperature, and TDS (Total Dissolved Solids)
plots from the sampling experiments at (a) Congaree river and (b) Lake Wateree.
Red is when the sampling pump was on, Blue is when the sampling pump was off.
The horizontal black dashed line shows the target depth and the fluorescence trigger
level in their respective plots. The vertical black dashed lines annotated by a,b,c,d,e
shows the time instances for mission start, master pump on, fluorescence
measurement start, master pump off, and fluorescence measurement end,
respectively.

at the tube end and constrict the water flow. Therefore, the collection time for the

subsequent bottles in a single flight increases. From the depth plots in Figure 5.3(a)

it can be seen that, during sample collection with a manual flight at the Congaree,

the tube end exited the water multiple times during the sample collection. Hence

it took longer to collect each sample than the Lake Wateree trial. At Lake Wateree

trial, the UAS autonomously traversed a distance of 47.5 m from the mission start

point to the first waypoint, then 60 m from there to the second waypoint, and finally,

35 m from the second to the final waypoint. The total flight time was 10.5 min. In

Figure 5.4(a) shows the trajectory of the UAS during the autonomous sampling at

42



Lake Wateree taken from Google Earth.

(a) Sampling Experiment (b) Mapping Experiment

Figure 5.4 Google Earth image of (a) Sampling and (b) Mapping experiments at
Lake Wateree. The manual flight path is shown in green, and the autonomous flight
path is shown in red. (T = Takeoff, L = Land)

5.3 Fluorescence Mapping Experiment

In the mapping experiment at the Moore garden pond, the UAS took off, traversed to

the farthest point on the left of the pond, descended to a fixed altitude, maintained

that altitude and traversed slowly from left to right while the master pump kept

pumping water through the main channel. The GPS coordinates and the sensor

measurements along the trajectory were recorded during the traverse. Upon reaching

the farthest point on right (a distance of about 6m), it traversed back to the middle,

and then returned. This experiment aimed to collect in situ measurements along

the water body of interest that can be later used in a GIS framework. The whole

procedure can be split into three distinct stages as follows:

I Takeoff and Approach: The UAS takes off and reaches a high enough altitude

to keep the whole pipe suspended in the air. The user activates the WSSA as

the UAS approaches the start point of the trajectory.

II Sensing and Traverse: The UAS descends until the inlet hits the target depth.

The master pump activates at the target depth, pumps water through the main
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channel and out the flushing line. The fluorescence reading starts updating. The

UAS maintains altitude and traverses along the trajectory.

III Return: When the trajectory is complete, the WSSA is deactivated, and the

UAS returns to the base.

0 20 40 60 80 100 120 140 160 180
0

0.5

1

C
o
lle

ct
o

r 
d

e
p

th
 [

m
]

0 20 40 60 80 100 120 140 160 180

0

1000

2000

3000

F
lu

o
re

se
n

ce
 le

ve
l

0

10

20

g
/L

0 20 40 60 80 100 120 140 160 180

18

20

T
e

m
p

e
ra

tu
re

 [
C

]

0 20 40 60 80 100 120 140 160 180

Time [sec]

0

50

T
D

S
 [

p
p

m
]

I                   II                  III

Figure 5.5 Change in depth, fluorescence level, temperature, and total dissolved
solids (TDS) in the three different stages (I. Takeoff and Approach, II. Sensing and
Traverse, and III. Return) of the fluorescence mapping mission (Moore Garden
pond, Columbia, SC, USA). The fluorescence level is interpreted to µg/L on the
right vertical axis.

In Figure 5.5, the change in depth, fluorescence level, temperature, and TDS

are shown while the drone traversed along the trajectory. The target depth was 7

cm for this experiment as well which is marked with a horizontal dashed line. The

fluorescence data seems to be quite consistent across the trajectory. The temperature

and TDS can be observed to have reached a steady value while traversing.
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(a) Mapping at Congaree river
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(b) Mapping at Lake Wateree

Figure 5.6 Depth, Fluorescence, temperature, and TDS (Total Dissolved Solids)
plot from the mapping experiments at (a) Congaree river and (b) Lake Wateree.
The horizontal black dashed line shows the target depth and the fluorescence trigger
level in their respective plots. The vertical black dashed lines annotated by a,b,c,d,e
shows the time instances for mission start, master pump on, fluorescence
measurement start, master pump off, and fluorescence measurement end,
respectively.

The mapping experiment at the Congaree river followed the same steps as the

Moore Garden pond experiment, where the operator manually flew the UAS, ensur-

ing the tube end stayed at the target depth and traversed along a transect of the

waterbody. On the other hand, the mapping experiment performed at Lake Wateree

was also fully autonomous. The steps of the autonomous trial closely followed the

autonomous sampling experiment. The only difference was: the waypoints provided

by the user could be more than three. A linear path from one waypoint to the next

formed the trajectory to be traversed. After takeoff, as soon as the UAS switched to

the mission mode, it started tracking that trajectory while submerging the tube end

at the target depth. Figure 5.6(a) and Figure 5.6(b) shows the depth, fluorescence,
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conductivity, and temperature for the mapping experiment in Congaree River and

Lake Wateree, respectively. The mean EKF altitude estimate during the transect

mapping (time = 200 s to 600 s) was 1.1 m and the standard deviation was 0.2 m.

The UAS traversed and mapped a 127 m long path on the lake in 10.5 min. In Fig-

ure 5.4(b) shows the trajectory of the UAS during the autonomous mapping at Lake

Wateree taken from Google Earth.
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Figure 5.7 Failsafe performance during autonomous (a) Sampling and (b) Mapping
operations. The EKF altitude estimate is shown in magenta, the GNSS altitude is
shown in green, and the altitude setpoints are shown in blue. The ’safe’ altitude is
shown by horizontal black dashed line.

5.4 Failsafe Performance during autonomous Operation

During the autonomous operation, a risky situation arises when the UAS descends

and hovers close to the water during both experiments. Since the UAS is programmed

to keep descending until the depth sensor reaches the target depth, in some instances

this could take the UAS dangerously close to the water surface if the tube is not

hanging straight down from the UAS. There is also the random GNSS drift for which

the UAS may gradually drift closer to the water surface while hovering for a longer

period of time. The failsafe condition prevents the UAS from drifting too close to the

water and resets its altitude if the proximity from the water surface is less than 0.5
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m. From the altitude plots from Figure 5.7(a), it can be seen that the EKF altitude

estimate did not cross the failsafe altitude during sampling. But during mapping, as

seen in Figure 5.7(b), it went below the failsafe altitude twice at 280 s and 521.5 s.

Both times, the altitude setpoint was increased by 2 m to avoid danger. At the first

instance, it took about 0.6 s for the drone to respond and ascend above the failsafe

altitude, and for the second instance, it took about 0.3 s. Point to be noted that,

the PD controller tries to minimize the error in the GNSS altitude compared to the

setpoint altitude. For the GNSS altitude and setpoint altitude, the zero line does

not necessarily correspond to the water surface level. Therefore, the setpoint altitude

and the GNSS altitude may appear to be below the "safe" altitude even though the

UAS is actually well above it.
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Chapter 6

Conclusion and Future Work

This thesis discusses the development of a novel UAS-based, sensor-triggered, non-

destructive sample collection system with autonomous navigation capabilities. The

proposed system was proved to be effective in collection of three samples under 10

minutes in a fully autonomous flight. It could also autonomously traverse and map the

fluorescence of a 127 m path on water. One of the biggest challenges of this work was

keeping the drone safe from water as the UAS must hover close to the water surface

for sampling or mapping. This work approached this problem by implementing sensor

fusion with an Extended Kalman Filter for reliable altitude estimation near the water

surface. The accuracy of the estimated altitude with this technique was 15 cm within

1.5 m from the water surface. Using this altitude estimate, the designed altitude

failsafe was successfully triggered each time the UAS descended below the "safe"

altitude.

One of the limitations of the proposed system is that the position of the UAS was

prone to drift. This is because the PD controller takes the GNSS positioning as input

for position control, rather than the EKF altitude estimate. Therefore, the random

drift in GNSS consequently affects the position of the UAS. Due to this position

drift, the tube inlet’s depth was inconsistent during sample collection or mapping.

In some water bodies, chlorophyll contents may have high correlation with depth.

Therefore, development of a drift-free altitude controller is one of the major scope of

improvement for this work.

Another limitation of the system is that the best working range of the EKF alti-
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tude estimate being only 1.5 m from the water surface. A robust and accurate altitude

estimation technique with a wider working range is required to develop a drift-free

controller to maintain a consistent hovering altitude. Designing an adaptive covari-

ance Extended Kalman Filter and fusing proximity sensors with different working

ranges could solve this problem. Using vibration tolerant sonar sensors could also

improve the accuracy and range of the altitude estimate. Another possible solution

would be using real-time kinematic (RTK) positioning supported GNSS onboard the

UAS. Typical accuracy in the vertical domain using RTK is about 0.02 m to 0.03 m

(i.e. using the South Carolina Real Time Network). This solution would enable us

to control the absolute position of the drone and, thus, the tube in the water.

Another noticeable problem was that when submerged in water, the tube tended

to exit the water due to drag when the UAS traversed at high speed. Therefore, the

max velocity of the UAS was restricted to 1 m/s and the interval for the intermediate

setpoints was also set to 0.5 m for a slow-paced follow for the mapping mission

at Lake Wateree. The average horizontal velocity of the UAS was 0.3 m/s during

the mapping, while the UAS can fly at up to 15 m/s. The slow pace of the UAS

cost a lot of unnecessary battery life, which was a downside. The future work will

include determining the optimal velocity for the autonomous mission while ensuring

the submersion of the tube end.
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Appendix A

conversion from LLA to ENU coordinates

1 import numpy as np

2

3 class GPS_utils :

4 ’’’

5 Contains the algorithms to convert a gps signal (longitude ,

latitude , height )

6 to a local cartesian ENU system and vice versa

7

8 Use setENUorigin (lat , lon , height ) to set the local ENU

coordinate system origin

9 Use geo2enu (lat , lon , height ) to get the position in the local

ENU system

10 Use enu2geo (x_enu , y_enu , z_enu) to get the latitude , longitude

and height

11 ’’’

12

13 def __init__ (self):

14 # Geodetic System WGS 84 axes

15 self.a = 6378137.0

16 self.b = 6356752.314245

17 self.a2 = self.a * self.a

18 self.b2 = self.b * self.b

19 self.e2 = 1.0 - (self.b2 / self.a2) # This is e_squared = (

a2 -b2)/a2

20 self.e = self.e2 / (1.0 - self.e2) # This is
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e_prime_squared = (a2 -b2)/b2

21

22 # Local ENU Origin

23 self. latZero = None

24 self. lonZero = None

25 self. hgtZero = None

26 self.xZero = None

27 self.yZero = None

28 self.zZero = None

29 self.R = np. asmatrix (np.eye (3))

30

31 def setENUorigin (self , lat , lon , height ):

32 # Save origin lat , lon , height

33 self. latZero = lat

34 self. lonZero = lon

35 self. hgtZero = height

36

37 # Get origin ECEF X,Y,Z

38 origin = self. geo2ecef (self.latZero , self.lonZero , self. hgtZero )

39 self.xZero = origin .item (0)

40 self.yZero = origin .item (1)

41 self.zZero = origin .item (2)

42 self.oZero = np.array ([[ self.xZero], [self.yZero], [self.zZero

]])

43

44 # Build rotation matrix

45 phi = np. deg2rad (self. latZero )

46 lmd = np. deg2rad (self. lonZero )

47

48 cPhi = np.cos(phi)

49 cLmd = np.cos(lmd)

50 sPhi = np.sin(phi)
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51 sLmd = np.sin(lmd)

52

53 self.R[0, 0] = -sLmd

54 self.R[0, 1] = cLmd

55 self.R[0, 2] = 0.0

56 self.R[1, 0] = -sPhi * cLmd

57 self.R[1, 1] = -sPhi * sLmd

58 self.R[1, 2] = cPhi

59 self.R[2, 0] = cPhi * cLmd

60 self.R[2, 1] = cPhi * sLmd

61 self.R[2, 2] = sPhi

62

63 def geo2ecef (self , lat , lon , height ):

64 phi = np. deg2rad (lat)

65 lmd = np. deg2rad (lon)

66

67 cPhi = np.cos(phi)

68 cLmd = np.cos(lmd)

69 sPhi = np.sin(phi)

70 sLmd = np.sin(lmd)

71

72 N = self.a / np.sqrt (1.0 - self.e2 * sPhi * sPhi)

73

74 x = (N + height ) * cPhi * cLmd

75 y = (N + height ) * cPhi * sLmd

76 z = (( self.b2 / self.a2) * N + height ) * sPhi

77

78 return np.array ([[x], [y], [z]])

79

80 def ecef2enu (self , x, y, z):

81 ecef = np.array ([[x], [y], [z]])

82

83 return self.R * (ecef - self.oZero)
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84

85 def geo2enu (self , lat , lon , height ):

86 ecef = self. geo2ecef (lat , lon , height )

87

88 return self. ecef2enu (ecef.item (0) , ecef.item (1) , ecef.item (2))

89

90 # By using the closed formula set of ECEF to LLA conversion .

91 # https :// www. scribd .com/doc /85548161/ Datum - Transformations -of -GPS

- Positions

92 # https :// en. wikipedia .org/wiki/ Geographic_coordinate_conversion

93 def ecef2geo (self , x, y, z):

94 p = np.sqrt(x*x + y*y)

95 q = np. arctan2 (self.a * z, self.b * p)

96

97 sq = np.sin(q)

98 cq = np.cos(q)

99

100 sq3 = sq * sq * sq

101 cq3 = cq * cq * cq

102

103 phi = np. arctan2 (z + self.e * self.b * sq3 , p - self.e2 * self.a

* cq3)

104 lmd = np. arctan2 (y, x)

105 v = self.a / np.sqrt (1.0 - self.e2 * np.sin(phi) * np.sin(phi))

106

107 lat = np. rad2deg (phi)

108 lon = np. rad2deg (lmd)

109 h = (p / np.cos(phi)) - v

110

111 return np.array ([[ lat], [lon], [h]])

112

113 def enu2ecef (self , x, y, z):

114 lmd = np. deg2rad (self. latZero )
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115 phi = np. deg2rad (self. lonZero )

116

117 cPhi = np.cos(phi)

118 cLmd = np.cos(lmd)

119 sPhi = np.sin(phi)

120 sLmd = np.sin(lmd)

121

122 N = self.a / np.sqrt (1.0 - self.e2 * sLmd * sLmd)

123

124 x0 = (self. hgtZero + N) * cLmd * cPhi

125 y0 = (self. hgtZero + N) * cLmd * sPhi

126 z0 = (self. hgtZero + (1.0 - self.e2) * N) * sLmd

127

128 xd = -sPhi * x - cPhi * sLmd * y + cLmd * cPhi * z

129 yd = cPhi * x - sPhi * sLmd * y + cLmd * sPhi * z

130 zd = cLmd * y + sLmd * z

131

132 return np.array ([[ x0+xd], [y0+yd], [z0+zd ]])

133

134 def enu2geo (self , x, y, z):

135 ecef = self. enu2ecef (x, y, z)

136

137 return self. ecef2geo (ecef.item (0) , ecef.item (1) , ecef.item (2))

59


	An Autonomous Aerial Drone System for Water Fluorescence Mapping and Targeted Sampling
	Recommended Citation

	tmp.1691530589.pdf.HKnok

