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Abstract

This dissertation explores different methods to study the dependence structure

among many ordinal variables under the Bayesian framework.

Chapter 1 introduces ordinal data analysis methods, and the related literature

works are briefly reviewed. An outline of the dissertation is put forward.

In Chapter 2, Gaussian copula graphical models with different priors of graphical

Lasso, adaptive graphical Lasso, and spike-and-slab Lasso on the precision matrix

are assessed and compared. The proposed models are well illustrated via simulations

and a real ordinal survey data analysis.

In Chapter 3, adaptive spike-and-slab Lasso prior is proposed as an extension of

Chapter 2. The developed adaptive spike-and-slab prior yields good results based

on the simulation study. An improved simulation setting is utilized in this chapter

compared to that in Chapter 2. Thus better guidance is achieved for the dependence

structure learning in real data analysis.

Chapter 4 applies a Bayesian factor analysis model with Gaussian copula to the

TSCC (Trauma Symptom Checklist for Children) ordinal data. The variable struc-

ture is investigated with a global-factor-local shrinkage before the factor loading

matrix. The results with different numbers of factors are compared, and the cor-

responding estimates of the covariance matrix are obtained and compared with those

obtained using the Gaussian copula graphical models in Chapters 2 and 3.

In Chapter 5, a summary of the studies in the previous chapters is presented, and

at the same time, we put forward some ideas for future work.
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Chapter 1

Introduction

1.1 Ordinal Data

Ordinal data is frequently encountered across numerous domains such as psychology,

education, medicine, economics, consumer choice, and various other fields (Jamieson

2004; Carifio and Perla 2007; Vickers 1999; Spranca, Minsk, and Baron 1991; Clason

and Dormody 1994; Hui and Bateson 1991; Feldman and Audretsch 1999). An ordinal

variable assumes ordered categories as its possible values, where the categories have

an ordering, but the distance between categories is hard to determine or measure. The

ubiquity of ordinal data is mainly due to the widespread use of Likert-style response

items (Likert 1932). A Likert item typically refers to a single question for which the

response is indicated on a discrete ordered scale ranging from one qualitative endpoint

to another qualitative endpoint, such as from “strongly disagree”, “disagree”, “no

opinion”, “agree”, to “strongly agree”. Response options for Likert items are typically

discrete and range from 5 to 11.

In many social science disciplines, it is a common practice to “convert” ordinal

Likert or Likert style scale data into interval data by assigning numbers, such as “1”

for “very good”, “2” for “good”, and so on. Although the response options might

look numerically labeled, the numerals only indicate the order and do not indicate

equal intervals between levels. For example, if the response items include “2” =

“sometimes”, “3” = “very often”, and “4” = “always”, we cannot assume that the
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increment in the frequency of occurrence from “2” to “3” is the same as the increment

in the frequency of occurrence from “3” to “4”.

There is a large amount of literature analyzing ordinal data. A popular model to

analyze such Likert items is the polychotomous Rasch model (Davier and Carstensen

2007) that obtains interval-level estimates on a continuum—an idea we borrow in this

dissertation. Ordinal response variables in regression analysis result in variations of

the classic linear model, such as the proportional odds model (Walker and Duncan

1967; Peter McCullagh 1980), the partial proportional odds model (Peterson and

Harrell Jr 1990), the probit model (Bliss 1935; Albert and Chib 1993; Chib and

Greenberg 1998), Etc. McCullagh and Nelder (1989) and O’Connell (2006) provided

a comprehensive overview of ordinal regression.

Ordinal data are an integral part of survey data, where respondents rate items

or express a level of agreement/disagreement on topics under consideration. For

example, each survey respondent could be asked to respond to a question using cat-

egories such as “strongly disagree”, “disagree”, “undecided”, “agree”, and “strongly

agree”. In this dissertation, we analyze survey data about the present state of the

physiological and psychological health of current undergraduate students in China.

The survey includes six parts: Social Demographic Information, STD/AIDS-Related

Knowledge, Sexual Health Behavior, Other Behaviors, Drug Related Knowledge and

Life Satisfaction Survey. Most questions are ordinal.

1.2 Gaussian Copula

Consider ordinal variables YV with joint distribution F , where there exists an ordering

for the possible values of each variable Yv, v ∈ V . We can adopt the Gaussian copula

(Nelsen 2007) to model the multivariate dependence among variables Yv, v ∈ V .

Assume a latent vector ZV ∼ Np(0, Γ) with correlation matrix Γ, such that the two

2



random vectors are connected as follows:

Yv = F −1
v (Φ(Zv)), v ∈ V , (1.1)

where Φ(·) is the CDF of the standard normal distribution and Fv is the pseudo

marginal CDF for each Yv. In this way, the joint distribution F of YV is a function

of the correlation matrix Γ and the univariate distributions Fv of Yv, v ∈ V :

Pr(Y1 ≤ y1, ..., Yp ≤ yp) = F (y1, ..., yp|Γ, F1, ..., Fp) (1.2)

= Φp

(
Φ−1

(
F1(y1)

)
, ..., Φ−1

(
Fp(yp)

)
|Γ

)
, (1.3)

≜ C(F1(y1), ..., Fp(yp)|Γ) (1.4)

where Φp(·|Γ) is the distribution function of Np(0, Γ). The Gaussian copula is applied

later to the ordinal data using the Gaussian graphical models in Chapters 2 and 3

and the factor analysis model in Chapter 4.

1.3 Bayesian Gaussian Graphical Models

Gaussian graphical models (GGMs) have been widely studied to study the depen-

dence structure of continuous variables. Here we only review some of the Bayesian

methods. Marlin and Murphy (2009) suggested a Bayesian model and a variational

Bayes algorithm for Gaussian graphical models (GGMs) with a block structure. They

used the stochastic block model as a prior, which does not require the blocks or groups

to be specified a priori. The resulting problem is no longer convex, but they devised

an efficient variational Bayes algorithm to solve it. Different priors were studied

for the precision matrix by different researchers. Among these priors, G-Wishart

priors were most commonly used (Carvalho and Scott 2009; Dobra, Lenkoski, and

Rodriguez 2011; Wang and Li 2012; Mohammadi and Wit 2015). Wang (2012) pre-

sented a Bayesian approach to graphical Lasso models and their associated posterior

computation algorithms, providing a fully Bayesian treatment. Using data augmenta-

tion, he developed a block Gibbs sampler for efficiently sampling covariance matrices.

3



He also generalized the Bayesian graphical Lasso to the Bayesian adaptive graphical

Lasso, which showed the top overall performance among a range of frequentist and

Bayesian methods in terms of both covariance matrix estimation and graphical struc-

ture learning. A Bayesian approach with mixture prior distributions that incorporate

a point-mass and a Laplace distribution was examined by Banerjee and Ghosal (2015).

They derived posterior consistency results and presented a computational approach

using Laplace approximation. Except for the work of Banerjee and Ghosal (2015), the

theoretical properties of Bayesian approaches for sparse precision matrix estimation

have not been investigated. The results of Banerjee and Ghosal (2015) are on the

estimation error rate in Frobenius norm similar to those of Rothman et al. (2008),

but assume the underlying distribution to be Gaussian. Gan, Naveen N Narisetty,

and Liang (2019) presented a novel Bayesian technique for estimating and recovering

the structure of GGMs. They utilized a continuous spike-and-slab prior as a mixture

of two Laplace distributions. Their theoretical results hold beyond GGMs despite

the Gaussian likelihood being used in their Bayesian formulation. They proposed

a fast EM algorithm that produces a maximum a posteriori (MAP) estimate of the

precision matrix. Their algorithm was guaranteed to generate an estimator that is

both symmetric and positive definite, in contrast to numerous existing estimators. In

Chapters 2 and 3 of this dissertation, we will couple the Gaussian copula with the

Bayesian Gaussian graphical models to analyze the dependence structure of ordinal

variables. We investigate the performance of the Bayesian Gaussian copula graphical

model with different priors on the estimation of the precision matrix and the graphical

structure learning of ordinal variables.

1.4 Bayesian Factor Analysis Models

Factor analysis models have attracted much attention since they can perform ex-

ploratory analyses of the latent linear structure in high-dimensional data and con-
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duct dimension reduction (Bernardo et al. 2003; Carvalho et al. 2008; Engelhardt and

Stephens 2010).

The loading matrix Λ is of significant importance in a factor model. In high-

dimensional data applications where the sample size n is much smaller than the

variable dimension p (Bernardo et al. 2003), regularization on the loading matrix is

crucial because the optimization problem is under-constrained with n ≪ p and has

many equivalent solutions that optimize the data likelihood. The statistics literature

employs priors or penalties to regularize the elements of the loading matrix and

induce sparsity. Elementwise sparsity corresponds to dimension reduction, where

a latent factor contributes to variation in only a subset of the observed variables,

generating interpretable results (Bernardo et al. 2003; Carvalho et al. 2008; Knowles

and Ghahramani 2011).

Elementwise sparsity has been imposed in latent factor models through regular-

ization via l1 type penalties (Zou, Hastie, and Tibshirani 2006; Witten, Tibshirani,

and Hastie 2009; Salzmann et al. 2010). In the last ten years, Bayesian shrinkage

methods with sparsity-inducing priors have been introduced for latent factor models

(Carvalho et al. 2008; Archambeau and Bach 2008; Virtanen et al. 2011; Bhattacharya

and D. B. Dunson 2011; Klami, Virtanen, and Kaski 2013). The spike-and-slab prior

(Mitchell and Beauchamp 1988) and the classic two-groups Bayesian sparsity-inducing

prior have been used for sparse Bayesian latent factor models (Carvalho et al. 2008).

More sophisticated structured regularization approaches have been studied in classi-

cal statistics (Zou and Hastie 2005; Kowalski and Torrésani 2009; Huang, Zhang, and

Metaxas 2009; Jenatton, Audibert, and Bach 2011).

1.5 Computing Techniques

Performing Bayesian inferences requires using the joint posterior distribution over

a set of parameters. Practically speaking, closed-form solutions for the posterior
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distribution do not exist, and the intractable integrals are challenging to calculate

in most scenarios. Rather than resolving analytical equations, Markov Chain Monte

Carlo (MCMC) employs sampling to provide a solution for statistical inferences.

The most commonly used sampling techniques are the Metropolis-Hastings (MH)

sampling and the Gibbs sampling, where the latter is a special case of the former

(Gelman 1993). Metropolis et al. (1953) were the first to develop the MH algo-

rithm, which was later expanded upon by Hastings (1970). Because of its importance

and usefulness, its application (Müller 1991; Chib and Greenberg 1996) is steadily

increasing in the literature.

The Gibbs sampler is a special form of MH (Gelman 1993), mainly used to gen-

erate random variables from a (marginal) distribution to avoid the direct calculation

of density. S. Geman and D. Geman (1984) used this method to study image pro-

cessing. Gelfand and Smith (1990) reviewed and compared several sampling-based

density calculation methods. Casella and George (1992) exploited simple cases to

demystify the working mechanism behind the Gibbs Sampler. Since then, the Gibbs

sampler approach has been widely used for posterior sampling. The basic idea is to

sequentially draw samples for each random variable from the conditional distribu-

tion, with the remaining variables fixed to the current values. For a random vector

X ∈ RK×1, the algorithm proceeds as follows:

1. Initialize x(0) ∼ q(x), where q() is usually a prior distribution;

2. for iteration i = 1, 2, ...

x
(i)
1 ∼ p(X1 = x1|X2 = x

(i−1)
2 , X3 = x

(i−1)
3 , ..., XK = x

(i−1)
K )

x
(i)
2 ∼ p(X2 = x2|X1 = x

(i)
1 , X3 = x

(i−1)
3 , ..., XK = x

(i−1)
K )

...

x
(i)
K ∼ p(XK = xK |X1 = x

(i)
1 , X2 = x

(i)
2 , ..., XK−1 = x

(i)
K−1)

3. end.
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Chapters 2, 3, and 4 of this dissertation use the Gibbs sampler approach for

posterior inferences and the corresponding sampling details are described in each

chapter.

7



Chapter 2

Bayesian Gaussian Copula Graphical Models

with Graphical Lasso Priors and Spike-and-Slab

Lasso Prior

2.1 Introduction

Over the past several decades, modeling ordinal data has become essential in various

fields, especially in social and economic sciences, where natural ordering data com-

monly appears. For example, survey subjects are often asked to respond to a question

using categories such as strongly disagree, disagree, undecided, agree, and strongly

agree. Users of an online service could be asked to rate their experience from one star

to five stars. These examples clearly show that ordinal data are pervasive in many

real-world applications. Graphical models are widely used to analyze the conditional

and marginal dependence for continuous variables, but there has been limited work

for analyzing ordinal data. Our work will use the Gaussian copula graphical model

from a Bayesian perspective to analyze ordinal data. We compare the performance of

three different priors on estimating covariance and precision matrices using simula-

tion studies. These priors are utilized to analyze survey data about the physiological

and psychological health of current undergraduate students in China.
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2.2 Models

2.2.1 Gaussian Graphical Models (GGMs)

Suppose YV with V = {1, 2, ..., p} is a random vector of continuous random variables

Yv with a joint distribution p(YV ). The conditional dependence relationships among

{Yv : v ∈ V } under p(YV ) can be summarized in a graph G = (V , E), where each

vertex v ∈ V corresponds to a random variable Yv and E ⊂ V ×V are the undirected

edges. In the undirected graphical model G = (V , E) (which is also called Markov

Random Fields (MRFs) or Markov networks), the absence of an edge between Yg and

Yh corresponds to the conditional independence of these two random variables given

the remaining variables under p(YV ) and is denoted by

Yg ⊥⊥ Yh|YV \{g,h},

where g, h ∈ V .

Assume that YV follows a p-dimensional multivariate normal distribution Np(0, Ω−1)

with precision matrix Ω = (ωgh)1≤g,h≤p. Let y = (y1, ..., yn)T be the observed data

of n independent samples of YV . Then the likelihood function of y is

p(y|Ω) ∝ (det(Ω))n/2exp
{

− 1
2tr(SΩ)

}
, (2.1)

where S = ∑n
i=1 yiy

T
i . Without loss of generality, data {yi}i=1,...,n are centered and

scaled so that each Yv has a sample mean zero and sample variance of one. A graphical

model G = (V , E) with YV ∼ Np(0, Ω−1) is called a Gaussian Graphical Model

(GGM). In this paper, we denote GV as the set of all 2p(p−1)/2 undirected graphs with

vertices V . In the Gaussian graphical model, two variables Yg and Yh are conditionally

independent given the remaining variables if and only if ωgh = 0.

To learn a sparse graphical structure, regularization methods have been utilized by

imposing an l1 penalty on the Ω matrix and maximizing the penalized log-likelihood
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function

log((det(Ω)) − tr(S
n

Ω) − ρ||Ω||1, (2.2)

over the space of positive definite matrices M+ where ρ ≥ 0 is a regularization

parameter and ||Ω||1 = ∑
1≤i,j≤p |ωij| is the l1 norm of Ω.

In conducting model selection for Gaussian graphical models, the standard ap-

proach is greedy stepwise forward-selection or backward-deletion, and then parame-

ter estimation is based on the selected model. At each step, the decision of selecting

or deleting edges is usually made based on hypothesis testing with a significance

level of α. As was mentioned by Edwards (2000), it has long been recognized that

this procedure does not correctly take account of the multiple comparisons involved.

Another drawback of this standard stepwise procedure is its computational complex-

ity. To remedy these problems, Drton and Perlman (2004) proposed a method that

produces conservative simultaneous confidence intervals for the entire set of partial

correlations, leading to a simple method for model selection that controls the overall

error rate for incorrect edge inclusion. Meinshausen and Bühlmann (2006) proposed

a computationally attractive method for covariance selection that can be used for

huge Gaussian graphs. They performed neighborhood selection with the Lasso for

each node in the graph and combined the results to learn the structure of a Gaussian

concentration graph model. They demonstrated that their approach is consistent for

sparse high-dimensional graphs. However, all the methods mentioned above perform

model selection and parameter estimation separately. The estimator’s instability of-

ten arises due to the discrete nature of such procedures, where even minor changes

in the data can result in significantly different estimates (Breiman 1996). Yuan and

Lin (2007) proposed a penalized-likelihood method that simultaneously does model

selection and parameter estimation in the Gaussian concentration graph model. The

efficiency of their method is demonstrated by utilizing the efficient maxdet algorithm
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developed in convex optimization. They also proposed a BIC-type criterion for se-

lecting the tuning parameter in the penalized likelihood methods.

Compared with the frequentist methods, precision matrix estimation in Gaussian

graphical models has been less studied under the Bayesian framework, possibly due to

the high computational cost associated with MCMC when the dimension of variables

is large. Marlin and Murphy (2009) suggested a Bayesian model and a variational

Bayes algorithm for Gaussian graphical models (GGMs) with a block structure. They

used the stochastic block model as a prior, which does not require the blocks or groups

to be specified a priori. The resulting problem is no longer convex, but they devised

an efficient variational Bayes algorithm to solve it. Different priors were studied for

the precision matrix by different researchers. Among these priors, G-Wishart priors

are most commonly used (Carvalho and Scott 2009; Dobra, Lenkoski, and Rodriguez

2011; Wang and Li 2012; Mohammadi and Wit 2015). Wang (2012) presented a

Bayesian approach to graphical Lasso models and their associated posterior compu-

tation algorithms, providing a fully Bayesian treatment. Using data augmentation, he

developed a block Gibbs sampler for efficiently sampling covariance matrices. He also

generalized the Bayesian graphical Lasso to the Bayesian adaptive graphical Lasso,

which showed the top overall performance among a range of frequentist and Bayesian

methods regarding both covariance matrix estimation and graphical structure learn-

ing. A Bayesian approach with mixture prior distributions that incorporate a point-

mass and a Laplace distribution was examined by Banerjee and Ghosal (2015). They

derived posterior consistency results and presented a computational approach using

Laplace approximation. Except for the work of Banerjee and Ghosal (2015), the the-

oretical properties of Bayesian approaches for sparse precision matrix estimation have

not been investigated. The findings of Banerjee and Ghosal (2015) regarding the esti-

mation error rate in Frobenius norm are comparable to those of Rothman et al. (2008)

but assume the underlying distribution to be Gaussian. Gan, Naveen N Narisetty,
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and Liang (2019) presented a novel Bayesian technique for estimating and recovering

the structure of GGMs. They utilized a continuous spike-and-slab prior as a mixture

of two Laplace distributions. Their theoretical results hold beyond GGMs despite

the Gaussian likelihood being used in their Bayesian formulation. They proposed

a fast EM algorithm that produces a maximum a posteriori (MAP) estimate of the

precision matrix. Unlike many existing estimators, their algorithm was guaranteed

to produce a symmetric and positive definite estimator.

All the literature reviewed deals with continuous variables. In this project, we

focus on ordinal variables. We will compare the performance of three different priors of

graphical Lasso, adaptive graphical Lasso, and spike-and-slab Lasso on the estimation

of the latent precision matrix and the graphical structure learning among the ordinal

variables.

2.2.2 Gaussian Copula Graphical Models (GCGMs) with Regularization

Now consider variables YV = (Y1, . . . , Yp) are discrete with joint distribution F ,

where there exists an ordering for the possible values of each variable Yv, v ∈ V .

We adopt the Gaussian copula (Nelsen 2007) to model the multivariate dependence

among variables Yv, v ∈ V . Assume a latent vector ZV ∼ Np(0, Γ) with correlation

matrix Γ, such that the two random vectors are:

Yv = F −1
v (Φ(Zv)), v ∈ V , (2.3)

where Φ(·) is the CDF of the standard normal distribution and Fv is the pseudo

marginal CDF for each of Yv. In this way, the joint distribution F of YV is a function

of the correlation matrix Γ and the univariate distributions Fv of Yv, v ∈ V :

Pr(Y1 ≤ y1, ..., Yp ≤ yp) = F (y1, ..., yp|Γ, F1, ..., Fp) (2.4)

= Φp

(
Φ−1

(
F1(y1)

)
, ..., Φ−1

(
Fp(yp)

)
|Γ

)
, (2.5)

≜ C(F1(y1), ..., Fp(yp)|Γ) (2.6)
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where Φp(·|Γ) is the distribution function of Np(0, Γ). This is a Gaussian copula

graphical model (GCGM) with correlation matrix Γ of dimension p × p for YV .

Similar to that in the Gaussian graphical models, in the Gaussian copula graphical

model (2.5), the precision matrix Ω (= Γ−1) contains information on the conditional

dependence between variables Y V , where two ordinal variables Yg and Yh are condi-

tionally independent given the remaining variables if and only if ωgh = 0.

To make the Gaussian copula model generalizable to the ordinal variables, the

Gaussian copula model was coupled with the extended rank likelihood method (Hoff

2007) so that inference on the association parameters is purely based on the rank of

data without explicitly modeling the marginal distribution functions. This makes use

of the fact that for each underlying latent variable Zv, the order is consistent with

the corresponding observed ordinal variable Yv, and a straightforward parametric

expression allows for the inference of association parameters based on the latent

variables that are “rank-based”. Therefore, there is no need to specify the marginal

distributions Fv directly when making inferences on the precision matrix Ω. For each

observed data yv = {y1v, ..., ynv}, the corresponding latent data zv = {z1v, ..., znv}

must lie in the set:
{
zv : maxk

{
zkv : ykv < yiv

}
< ziv < mink

{
zkv : ykv > yiv

}}
,

where the index k = 1, ..., n runs through all the observations. This same idea is

adopted in our Bayesian sampling for the latent variables Zv.

2.2.3 Bayesian Regularization of GCGM with Adaptive Graphical Lasso

Prior

The graphical Lasso has a Bayesian interpretation. The graphical Lasso estimator is

equivalent to the maximum a posteriori estimator under the graphical Lasso prior.

Knowing Ω determines the graphical structure, Ω is the parameter of interest to

estimate for Y V in model (2.1).
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Assuming a common shrinkage parameter λ, Wang (2012) introduced the graph-

ical Lasso prior for Ω as follows:

p(Ω|λ) = C−1 ∏
i<j

{
DE(ωij|λ)

} p∏
i=1

{
EXP(ωii|

λ

2 )
}

1Ω∈M+ , (2.7)

where C is a normalizing constant not involving λ, DE(·|λ) and EXP(·|λ
2 ) repre-

sent double exponential and exponential distributions with rate parameters λ and λ
2 ,

respectively. The model with this prior is denoted as the Bgla model (Bgla).

By comparison, instead of assuming a common shrinkage parameter λ, Wang

(2012) proposed the adaptive graphical Lasso prior on the precision matrix Ω as

follows:

p(Ω|λ) = C−1 ∏
i<j

{
DE(ωij|λij)

} p∏
i=1

{
EXP(ωii|

λii

2 )
}

1Ω∈M+ , (2.8)

p(λ) = C
∏
i<j

GA(s, t), (2.9)

where λ = {λij, i, j = 1, ..., p} is a vector with each element λij associated with the

corresponding element ωij in the Ω matrix, and GA stands for a Gamma distribution,

which is the prior distribution for each λij (i ̸= j) with hyperparameters s and

t. For each λii (i = 1, ..., p), the value is fixed and set to 1. This prior (2.7) is

called adaptive graphical Lasso prior since it allows for different shrinkage effects on

each unique element ωij in Ω so that it addresses the shortcomings of the double

exponential prior, which has a tendency to excessively shrink larger parameters while

inadequately shrinking smaller ones.

For computational advantage, the double exponential distribution can be ex-

pressed as a scale mixture of normals (Andrews and Mallows 1974; West 1987).

For the adaptive Lasso prior, this is achieved by introducing latent scale parameters

τ = {τij}i<j as follows:

ωij|τij ∼ N(0, variance = τij), (2.10)

τij|λij ∼ EXP(
λ2

ij

2 ), 1 ≤ i < j ≤ p. (2.11)
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So the resulting adaptive graphical Lasso prior can be re-expressed as follows:

p(ω|τ , λ) = C−1
τ

∏
i<j

{
N

(
ωij|0, τij

)} p∏
i=1

{
EXP(ωii|

λii

2 )
}

1Ω∈M+ , (2.12)

p(τ |λ) ∝ Cτ

∏
i<j

{
EXP(τij|

λ2
ij

2 )
}

, (2.13)

p(λ) =
∏
i<j

GA(s, t), (2.14)

where ω = {ωij}i≤j is the vector of the upper off-diagonal and diagonal entries of

Ω, Cτ is a normalizing term depending on τ and is analytically intractable, and

N(·|0, τij) represents Normal distribution with mean 0 and variance τij. The model

with the adaptive graphical Lasso prior is denoted as the Bada model (Bada).

2.2.4 Bayesian Regularization of GCGM with Spike-and-Slab Lasso Prior

The spike-and-slab Lasso prior was developed in a series of work by Ročková (2018);

Ročková and George (2016); Ročková and George (2018), which is specified as follows:

p(ωij|rij) = rijDE(ωij|
1
ν1

) + (1 − rij)DE(ωij|
1
ν0

) (2.15)

Where ν0 and ν1 are the scale parameters in double exponential distributions with

ν1 being large compared with ν0, and rij is an indicator variable which takes the

value 1 if ωij is allocated to the slab component, and value 0 if ωij is allocated to

the spike component. In the spike-and-slab Lasso prior, the spike component, which

concentrates its mass at values close to zero, allows shrinkage of small ωij to zero. In

contrast, the slab component distributes its mass across a broad spectrum of potential

values.

The conventional spike-and-slab prior features “spike” element that is positioned

as a zero point mass, which aligns with our ν0 = 0 setting. George and McCulloch

(1993) introduced continuous spike-and-slab priors utilizing normal components in

the context of linear regression, and their efficacy in high-dimensional shrinkage was

subsequently examined by Ishwaran and Rao (2005); Naveen Naidu Narisetty and
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He (2014). Ročková and George (2018) considered the spike-and-slab Lasso prior

given by (2.14) for linear regression and studied the adaptive shrinkage property of

such priors as well as various asymptotic properties concerning the posterior mode.

Continuous spike-and-slab priors offer the benefit of continuous prior distributions on

ωij, facilitating the use of efficient algorithms that eliminate the need to switch the

active parameter dimension.

We utilize the spike-and-slab Lasso prior given by (2.14) for each off-diagonal

element in the precision matrix Ω. After using the normal mixture presentation of

the double exponential distribution, it can be re-expressed as follows:

p(Ω|τ , λ) ∝
∏
i<j

{
N

(
ωij|0, τij

)} p∏
i=1

{
EXP(ωii|

λ

2 )
}

1Ω∈M+ , (2.16)

p(τ |r) =
∏
i<j

{
EXP(τij|

1
2ν2

0
)1{rij=0} + EXP(τij|

1
2ν2

1
)1{rij=1}

}
, (2.17)

p(r|η) =
∏
i<j

BERN(η), (2.18)

p(η) = BETA(a, b), (2.19)

p(λ) = GA(s, t). (2.20)

where r = {rij}i<j and each indicator variable rij has a prior inclusion probability η

which follows a Beta distribution with parameters a and b. The model with spike-

and-slab Lasso prior is denoted as Bss model (Bss).

2.3 Block Gibbs Sampling Algorithm

From the Bayesian perspective, the posterior distribution of the precision matrix Ω

and the latent variables ZV is as follows:

p(Ω, ZV |Y V ) ∝ p(Y V |ZV ) × p(ZV |Ω) × p(Ω), (2.21)

where p(Ω) is the prior distribution of Ω. Given the prior, we adopt the block Gibbs

sampler idea from Wang (2012) for posterior sampling. The block Gibbs sampler
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with the three different priors is summarized as follows:

Block Gibbs Sampler. Given the current value Z, Y , Γ, Ω (= Γ−1) ∈ M+, τ

and r,

1. Sample the latent variables Ziv, i = 1, ..., n; v = 1, ..., p.

Ziv ∼ TN
(

Γv,−v(Γ−v,−v)−1(Zi,−v)′
, Γv,v − Γv,−v(Γ−v,−v)−1Γ−v,v

)
, which is a

truncated normal distribution with lower bound as liv = maxk

{
zkv : ykv < yiv

}
, and

upper bound as uiv = mink

{
zkv : ykv > yiv

}
, for k = 1, ..., n. Here Γv,−v is the vth

row of Γ with the vth column removed, Γ−v,−v is the sub-matrix of Γ with the vth

row and the vth column removed, Zi,−v is the ith row of Z with the the vth column

removed, Γv,v is the element of Γ on the vth row and the vth column, and Γ−v,v is

the vth column of Γ with the vth row removed.

2-1 Bgla Model

2-1(a). Sample λ ∼ GA (shape= p(p + 1)/2 + s, rate = ||Ω||/2 + t).

2-1(b). For 1 ≤ i < j ≤ p, sample uij ∼ INV-GAU (µ′
, λ′) where µ

′ =
√

(λ2/ω2
ij) and

λ
′ = λ2, and then update τij = 1/uij.

2-2 Bada Model

2-2(a). For 1 ≤ i < j ≤ p, sample λij ∼ GA (shape= 1 + s, rate = |ωij| + t).

2-2(b). For 1 ≤ i < j ≤ p, sample uij ∼ INV-GAU (µ′
, λ′) where µ

′ =
√

(λ2
ij/ω2

ij)

and λ
′ = λ2

ij, and then update τij = 1/uij.

2-3 Bss Model

2-3(a). Sample λ ∼ GA (shape = p + s, rate =t + ∑p
i=1

ωii

2 ).

2-3(b). Sample η ∼ Beta (∑
i<j rij + a, p(p−1)

2 − ∑
i<j rij + b).

2-3(c). For 1 ≤ i < j ≤ p, sample rij ∼ Bernoulli (p = A
A+B

), where A =
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η
2ν1

exp
{

− |ωij |
ν1

}
, and B = 1−η

2ν0
exp

{
− |ωij |

ν0

}
.

2-3(d). For 1 ≤ i < j ≤ p, sample uij ∼ INV-GAU (µ′
, λ′) where µ

′ = 1
ν0|ωij | and

λ
′ = 1

ν2
0
, if rij = 0, and µ

′ = 1
ν1|ωij | and λ

′ = 1
ν2

1
, if rij = 1. Then update τij = 1/uij.

3. For i = 1, ..., p,

(a) Partition Ω, S and τ into blocks as follows,

Ω =

Ω11, ω12

ω
′
12, ω22

 , S =

S11, s12

s
′
12, s22

 , Υ =

Υ11, τ12

τ
′
12, 0

 ,

where S = Z
′
Z, Ω11, S11, and Υ11 are the (p−1)× (p−1) sub-matrices of Ω, S and

Υ with the last row and last column removed, ω12, s12 and τ12 are the (p−1)×1 col-

umn vectors, ω22 and s22 are the elements of Ω and S on the last row and last column.

(b) Sample γ ∼ GA (shape = n/2 + 1, rate = (s22 + λ22)/2) and β ∼ N(−Cs12,C)

where C = {(s22 + λ22)(Ω11)−1 + D−1
τ }−1 with Dτ = diag(τ12) and λ22 = 1.

(c) Update ω12 = β, ω21 = β
′
, ω22 = γ + β

′(Ω11)−1β.

4. Rescale Ω into the inverse matrix of the correlation matrix Γ.

Γ̃ = Ω−1;

Γg,h = Γ̃g,h/
√

Γ̃g,gΓ̃h,h = (Ω−1)g,h/
√

(Ω−1)g,g(Ω−1)h,h, g, h = 1, ..., p.

Ω = Γ−1.
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2.4 Simulation Studies

2.4.1 Simulation settings

This simulation experiment is designed to evaluate the performance of the Gaussian

copula graphical model in terms of parameter estimation and structure learning using

the three different priors on the precision matrix Ω. We consider a block model in

our simulation with the following two scenarios:

• Scenario 1: A block model of dimension p = 10 with correlation matrix Σp×p =

(σij) where

σij = 0.5 for 1 ≤ i ̸= j ≤ 4, σij = 0.6 for 5 ≤ i ̸= j ≤ 7, σij = 0.1 for

{1 ≤ i ≤ 4, 5 ≤ j ≤ 7} ∪ {5 ≤ i ≤ 7, 1 ≤ j ≤ 4} and σij = 0 otherwise.

• Scenario 2: A block model with dimension p = 50 with correlation matrix

Σp×p = (σij) where

σij = 0.8 for 1 ≤ i ̸= j ≤ 18, σij = 0.5 for 19 ≤ i ̸= j ≤ 34, σij = 0.1 for

{1 ≤ i ≤ 18, 19 ≤ j ≤ 34} ∪ {19 ≤ i ≤ 34, 1 ≤ j ≤ 18} and σij = 0 otherwise.

We generated 200 samples of size n = 200 for Scenario 1 and size n = 1000 for

Scenario 2. For each generated sample, we fit the Gaussian copula graphical model

with the three different priors. For the shrinkage parameter λ in the Bgla and Bss

models and each individual λij in the Bada model, the hyper parameters are set as

s = 10−2 and t = 10−6. Within the Bss model with the spike-and-slab Lasso prior, to

investigate the effects of hyper-parameter ν0 on the performance of the model, three

different values of ν0 of 10−1, 10−3, 10−5 are chosen, and they are labeled as Bss1,

Bss2 and Bss3, respectively. The hyperparameter ν1 in the spike-and-slab Lasso prior

is fixed at 10 for all the Bss models. In all three Bss models, the hyperparameters

for the prior inclusion probability η are set as a = b = 1 since we set the prior
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distribution of η as the standard uniform distribution. The Bayesian estimates were

based on 4000 iterations of the MCMC samples after 1000 burn-in iterations.

2.4.2 Simulation results

Matrix Estimation

The posterior means of covariance matrix Γ, precision matrix Ω, and partial corre-

lation matrix are estimated based on their MCMC samples, and their corresponding

averages over the 200 replicates are used as the final estimate for each matrix. Fig-

ure 2.1 and 2.2 show the estimation results of the covariance matrix as well as the

partial correlation matrix using all five models of Bgla, Bada, Bss1, Bss2 and Bss3

for Scenario 1 (p = 10). In Figure 2.1, compared with the true covariance matrix,

all five models show good results in covariance matrix estimation, which implies that

all these models perform well in identifying the marginal relationship between the

ten ordinal variables. It is a similar case in partial correlation matrix estimation in

Figure 2.2. All five models perform well when the five model estimates are compared

with the true partial correlation matrix.

Figure 2.3 and 2.4 show the estimation results of the covariance matrix as well as

the partial correlation matrix using all five models for Scenario 2 (p = 50). Similar to

the results for Scenario 1, all five models also give good estimates of the covariance

and partial correlation matrix when the number of ordinal variables is increased to 50.

It is worth mentioning that in Scenario 2 (p = 50), the true partial correlation is much

smaller than that in Scenario 1 (p = 10), making the estimation more challenging for

all five models.

The performance of the precision matrix estimation can also be evaluated using

the Frobenius Loss (FL) and Stein’s Entropy Loss (EL). The Frobenius Loss and
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Figure 2.1 Covariance matrix estimation for Scenario 1 (p=10).

Stein’s Entropy Loss for the precision matrix Ω are defined as follows:

FL(Ω̂, Ω) = ||Ω − Ω̂||2F
||Ω||2F

; (2.22)

EL(Ω̂, Ω) = tr(Ω̂Ω−1) − log{det(Ω̂Ω−1)} − p, (2.23)

where Ω is the true precision matrix and Ω̂ is the estimator of Ω, which is the

posterior mean estimator in all models.

Table 2.1 compares the calculated mean, median, and standard deviation of Frobe-

nius Loss and Stein’s Entropy Loss for the precision matrix Ω for Scenario 1 and 2.

Based on the results, the Bada model yields the best Stein’s Entropy Loss perfor-
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Figure 2.2 Partial correlation matrix estimation for Scenario 1 (p=10).

mance for both Scenario 1 (p = 10) and 2 (p = 50). Regarding the performance

in Frobenius Loss, the Bss1 model gives the best performance for both scenarios.

Overall, the results are similar among all five models, although the Bss2 and Bss3

models generally have relatively larger Frobenius Loss and Stein’s Entropy Loss.

Graphical Structure Determination

To assess the performance of the graphical structure learning of all models, we com-

pute specificity, sensitivity, and Matthews Correlation Coefficient(MCC), which were
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Figure 2.3 Covariance matrix estimation for Scenario 2 (p=50).

used in Fan, Feng, and Wu (2009), and are defined as follows:

Specificity = TN
TN+FP , (2.24)

Sensitivity = TP
TP+FN , (2.25)

MCC = TP × TN − FP × FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

, (2.26)

where TP, TN, FP, and FN are the number of true positives, true negatives, false

positives, and false negatives, respectively. MCC is generally regarded as a balanced

classification measure because it considers TP, TN, FP, and FN. For all three metrics,

the larger the values are, the better the classification is.
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Figure 2.4 Partial correlation matrix estimation for Scenario 2 (p=50).

Table 2.2 is an overall summary of the average specificity, sensitivity, and Matthews

Correlation Coefficient (MCC) of the partial correlation matrix for Scenarios 1 and

2 using different cutoff values based on 200 replicates for all five models. Five cutoff

values of 0.005, 0.008, 0.01, 0.02, and 0.05, and the mean and standard deviation of

the corresponding average specificity, sensitivity, and MCC are reported. The left

side panel shows results for Scenario 1 (p = 10). For Bgla, Bada, Bss1, and Bss3

models, the average MCC increases drastically as the cutoff value increases. That

can be explained by the relatively stable high average sensitivity when the average

specificity increases dramatically with the cutoff value. For the Bss2 model, the av-
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Table 2.1 Mean, median and standard deviation of Frobenius Loss (FL) and
Stein’s Entropy Loss (EL) for the precision matrix Ω for Scenario 1 (p=10) and
Scenario 2 (p=50).

p = 10
Models FL_Mean FL_Median FL_sd EL_Mean EL_Median EL_sd
Bgla 0.04768 0.04356 0.01796 0.26303 0.25831 0.06146
Bada 0.05547 0.04906 0.02869 0.18518 0.18064 0.06877
Bss1 0.04497 0.03732 0.02619 0.20702 0.20061 0.06223
Bss2 0.10233 0.09088 0.05216 0.30682 0.28276 0.12164
Bss3 0.06937 0.05974 0.03610 0.26610 0.24492 0.09556

p = 50
Models FL_Mean FL_Median FL_sd EL_Mean EL_Median EL_sd
Bgla 0.05973 0.05678 0.01601 1.54730 1.54739 0.15047
Bada 0.07002 0.06728 0.01540 0.97745 0.95988 0.09971
Bss1 0.05890 0.05371 0.02392 1.25489 1.23132 0.17076
Bss2 0.17740 0.17381 0.03164 2.04801 2.02992 0.16966
Bss3 0.12554 0.12151 0.02947 1.91220 1.89546 0.23758

erage MCC is overall very high compared with the other four models, although the

amount of increase is barely unnoticeable as the cutoff value increases.

The right side panel shows results for Scenario 2 (p = 50). With the same set

of cutoff values, Bgla, Bss1, and Bss3 show a similar trend in the average MCC

values with that of Scenario 1. Whereas for the Bada model, the highest average

MCC value is obtained when the cutoff values are at 0.01 and 0.02, and the overall

performance of the Bada model is the best among the five models in terms of average

MCC. Interestingly, the average MCC is decreased slightly for the Bss2 model as the

cutoff value increases. For Scenario 2 with p = 50, we consider a cutoff value of 0.05

as a reasonable threshold to get an overall good performance in average MCC. In the

next section, we will also use this cutoff value in graphical structure determination

in real data analysis.

To illustrate the results in more detail, boxplots of sensitivity and specificity over

200 replicates of simulation for Scenarios 1 and 2 are shown in Figure 2.5 and 2.6,
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Table 2.2 Average specificity (SP%), sensitivity (SE%) and MCC (MCC%) of the
partial correlation matrix for Scenario 1 (p=10) and Scenario 2 (p=50).

p = 10 p = 50
Bgla Bgla

Cutoff SP% SE% MCC% Cutoff SP% SE% MCC%
Mean(sd) Mean(sd) Mean(sd) Mean(sd) Mean(sd) Mean(sd)

0.005 7.3(3.9) 100(0) 12.5(3.3) 0.005 15.8(1.2) 98.3(0.8) 17.7(1.4)
0.008 11.9(5.3) 100(0) 15.9(4.0) 0.008 25.1(1.4) 97.0(1.0) 22.9(1.4)
0.01 15.0(6.1) 100(0) 18.3(4.3) 0.01 31.1(1.5) 96.1(1.2) 26.1(1.6)
0.02 28.5(8.2) 100(0) 27.1(5.3) 0.02 56.3(1.8) 90.1(1.6) 38.7(2.0)
0.05 62.0(8.0) 99.8(1.4) 49.9(6.6) 0.05 92.1(1.0) 57.6(1.9) 52.8(2.4)

Bada Bada
Cutoff SP% SE% MCC% Cutoff SP% SE% MCC%

Mean(sd) Mean(sd) Mean(sd) Mean(sd) Mean(sd) Mean(sd)
0.005 56.4(10.3) 99.8(1.6) 45.7(8.0) ) 0.005 81.6(1.6) 91.0(1.7) 63.6(2.2)
0.008 71.4 (8.8) 99.4 (2.8) 58.0 (8.7) 0.008 90.3(1.1) 85.3(2.1) 71.3(2.3)
0.01 76.7 (8.4) 99.4 (2.8) 63.4 (9.2) 0.01 93.0(0.9) 82.0(2.2) 73.5(2.2)
0.02 90.1(5.2) 97.8 (4.6) 79.6 (9.2) 0.02 97.8(0.5) 68.8(2.3) 73.6(2.1)
0.05 97.5 (2.5) 93.5 (7.9) 90.2 (7.3) 0.05 100(0.2) 45.7(1.7) 61.7(1.5)

Bss1 Bss1
Cutoff SP% SE% MCC% Cutoff SP% SE% MCC%

Mean(sd) Mean(sd) Mean(sd) Mean(sd) Mean(sd) Mean(sd)
0.005 12.4(5.8) 100(0) 16.3(4.4) 0.005 21.4(1.2) 99.2(0.6) 22.9(1.1)
0.008 20.5(7.1) 100(0) 22.0(4.8) 0.008 33.1(1.6) 98.5(0.7) 30.0(1.2)
0.01 25.3(7.8) 100(0) 25.1(7.0) 0.01 40.3(1.7) 97.9(0.9) 34.1(1.4)
0.02 47.4(9.1) 100(0) 39.4(6.2) 0.02 68.1(1.8) 91.7(1.8) 50.0(2.0)
0.05 84.4(5.8) 99.9(1.1) 72.7(7.8) 0.05 96.0(0.6) 54.4(2.5) 58.5(2.3)

Bss2 Bss2
Cutoff SP% SE% MCC% Cutoff SP% SE% MCC%

Mean(sd) Mean(sd) Mean(sd) Mean(sd) Mean(sd) Mean(sd)
0.005 96.3(3.5) 80.4(9.3) 78.8(9.2) 0.005 99.5(0.2) 42.5(1.8) 58.6(1.6)
0.008 97.4(2.9) 79.2(8.7) 80.3(8.2) 0.008 99.7(0.2) 41.0(1.7) 58.0(1.5)
0.01 97.8(2.7) 78.7(8.5) 81.0(8.0) 0.01 99.7(0.1) 40.3(1.6) 57.8(1.5)
0.02 98.7(2.1) 76.8(8.6) 81.8(7.2) 0.02 99.9(0.1) 38.2(1.4) 56.5(1.2)
0.05 99.3(1.4) 74.3(8.5) 81.8(6.8) 0.05 100.0(0.0) 34.8(1.0) 54.1(0.9)

Bss3 Bss3
Cutoff SP% SE% MCC% Cutoff SP% SE% MCC%

Mean(sd) Mean(sd) Mean(sd) Mean(sd) Mean(sd) Mean(sd)
0.005 53.2(9.6) 96.7(5.7) 40.6(8.2) 0.005 67.9(2.0) 72.1(1.9) 33.8(2.2)
0.008 59.3(9.6) 96.4(5.7) 45.1(8.7) 0.008 73.5(1.9) 68.8(2.0) 36.8(2.3)
0.01 62.4(9.4) 96.2(5.8) 47.5(8.9) 0.01 76.2(1.9) 67.1(2.0) 38.2(2.4)
0.02 71.9(8.3) 95.1(6.6) 55.0(9.4) 0.02 84.2(1.7) 60.7(1.8) 42.8(2.6)
0.05 83.8(6.6) 92.8(7.6) 66.8(10.3) 0.05 92.8(1.2) 50.8(1.5) 48.5(2.7)
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Figure 2.5 Boxplots of specificity (left panel) and sensitivity (right panel) for
Scenario 1 (p=10).

respectively. In each figure, the left panel represents the specificity, and the right

panel represents the sensitivity. Figure 2.5 shows the boxplots of Scenario 1 (p=10).

Among the five models, Bgla and Bss1 show great average sensitivity with small

variability under all five cutoff values. The average specificity increases significantly

when these two models’ cutoff value increases to 0.05. Bada model also shows great

overall average sensitivity under all cutoffs but with much better specificity levels

than Bgla and Bss1. Like the Bada model, Bss3 gives relatively good specificity

levels but more significant sensitivity variability under all cutoffs. Bss2 model shows

the highest level of average specificity with small variability under all cutoff values,

whereas its sensitivity has relatively large variability.
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Figure 2.6 Boxplots of specificity (left panel) and sensitivity (right panel) for
Scenario 2 (p=50).

Figure 2.6 shows the boxplots of Scenario 2 (p=50). For average specificity on the

left panel, the trend of each model is the same as that in Scenario 1, but with a smaller

magnitude of variability under each cutoff value. For the average sensitivity on the

right panel, Bgla, Bada, Bss1, and Bss3 models show a relatively significant decrease

when the cutoff value increases to 0.05. In comparison, both average sensitivity and

specificity levels are relatively stable under different cutoff values for Bss2, although

the overall average sensitivity is relatively low (roughly 40% under all cutoff values).

To investigate the effect of the hyper-parameter ν0 on the performance of the Bss

models in terms of graphical structure learning, the average specificity, sensitivity,

and MCC of the precision matrix Ω are compared for the three different values of ν0
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for both scenarios. In Scenarios 1 and 2, the true precision matrix Ω has the following

format:

• Scenario 1 (p = 10) : ωij = ω1 = −0.3978 for 1 ≤ i ̸= j ≤ 4, ωij = ω2 = −0.6784

for 5 ≤ i ̸= j ≤ 7, ωij = ω3 = −0.0186 for {1 ≤ i ≤ 4, 5 ≤ j ≤ 7} ∪ {5 ≤ i ≤

7, 1 ≤ j ≤ 4} and ωij = 0 otherwise.

• Scenario 2 (p = 50): ωij = ω1 = −0.2739 for 1 ≤ i ̸= j ≤ 18, ωij = ω2 =

−0.1175 for 19 ≤ i ̸= j ≤ 34, ωij = ω3 = −0.0008 for {1 ≤ i ≤ 18, 19 ≤ j ≤

34} ∪ {19 ≤ i ≤ 34, 1 ≤ j ≤ 18} and ωij = 0 otherwise.

Since the magnitude of ω3 is very small for both scenarios, we treat ω3 as 0 in

the true precision matrix for both Scenario 1 and 2. To calculate the specificity and

sensitivity for each data set, each off-diagonal entry I(ωij = 0) can be estimated

according to p(rij = 1|Y ), which can be estimated by the mean of rij among 4000

iterations, as follows:

• If p(rij = 1|Y ) > 0.5, then ωij ̸= 0;

• If p(rij = 1|Y ) ≤ 0.5, then ωij = 0.

The simulation results of average specificity, sensitivity, and MCC for the 200

data replicates are shown in Table 2.3. For Scenario 1 with p = 10, Bss2 model with

ν0 = 10−3 yields the highest average MCC. It is a similar situation for Scenario 2 with

p = 50, although the overall average MCC under these three Bss models is relatively

low compared with that for Scenario 1. The performance of these three Bss models

in graphical structure determination using precision matrix in Table 2.3 is consistent

with that using partial correlation matrix in Table 2.2. In the real data analysis,

we analyze the graphical structure of all models directly via both partial correlation

matrix and rij.
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Table 2.3 Average specificity (SP%), sensitivity (SE%) and MCC (MCC%) of the
precision matrix for Scenario 1 (p=10) and Scenario 2 (p=50) based on the
proportion of rij = 1 given observed data Y .

p = 10 p = 50
ν0 SP% SE% MCC% ν0 SP% SE% MCC%

Mean(sd) Mean(sd) Mean(sd) Mean(sd) Mean(sd) Mean(sd)
10−1 100(0) 9.22(9.65) 35.69(7.86) 10−1 100(0) 0.90(0.99) 9.22(3.51)
10−3 99.64(0.98) 70.44(8.44) 79.90(6.37) 10−3 99.94(0.07) 33.66(0.83) 52.91(0.77)
10−5 78.15(7.81) 91.56(7.97) 59.04(0.45) 10−5 83.26(1.82) 60.60(1.92) 41.41(2.41)

2.5 Real Data Analysis

2.5.1 Dataset Description

A survey was conducted to study the present state of the physiological and psy-

chological health of current undergraduate students in China, and the results from

2369 respondents were collected. This survey is constructed in Chinese and includes

six parts: Social-Demographic Information, STD/AIDS-Related Knowledge, Sexual

Health Behavior, Other Behaviors, Drug-Related Knowledge, and Life Satisfaction

Survey. There is a total of 84 questions, and some questions have multiple sub-

questions, which makes a total of 401 sub-questions. Almost all the questions are

categorical, among which most are ordinal.

In this work, we focus on Part VI - Life Satisfaction Survey (LSS) and call this

dataset the LSS dataset in short. Within the LSS dataset are 15 questions, with 54

and 10 sub-questions within questions 14 and 15, respectively. The 54 sub-questions

for Question No. 14 are the Trauma Symptom Checklist for Children (TSCC), ini-

tially designed as a self-report measure of posttraumatic distress and related psy-

chological symptomatology among children 8-16 years of age (Briere 1996). In this

survey, these questions were translated into Chinese and asked to check whether the

respondents had any of these behaviors within the past six months. The 10 sub-
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questions within No. 15 were asked to identify the current self-assessment status of

the respondents. In this work, we only work on questions 14 and 15, which makes

Survey Data No. 1 with 2369 observations and 64 questions.

2.5.2 Analysis Methodology

We apply the Gaussian copula graphical model with all three priors of graphical Lasso

(Bgla), adaptive graphical Lasso (Bada), and spike-and-slab Lasso (Bss) priors to

the dataset to analyze the association between these 64 questions. We treat each

question in the dataset as a node in the graph and responses of individuals to these

questions as a sample drawn from the graph. There are p = 64 questions entered into

the model, and all of them are ordinal variables with four ordinal levels of 1, 2, 3, and

4. Among these 64 questions, the first 54 come from Question No. 14, and levels 1, 2,

3, and 4 represent “Never”, “Sometimes”, “Very Often”, and “Always”, respectively.

Questions 55 to 64 are the ten sub-questions from Question No. 15, and levels 1, 2,

3, and 4 represent “Strongly Disagree”, “Disagree”, “Agree”, and “Strongly Agree”,

respectively.

For each of the five models, we run the block Gibbs sampling algorithm for a

total of 10,000 iterations, with the first 2,000 iterations as the burn-in period. For

the common shrinkage parameter λ in Bgla and shrinkage parameters λij in Bada

models, The hyper-parameters were chosen to be s = 10−2 and t = 10−6. For the

spike-and-slab Lasso prior (Bss), the hyper-parameter ν0 was 10−1, 10−3 and 10−5 for

Bss1, Bss2 and Bss3, respectively. For Bss3 model with hyper-parameter ν0 = 10−5,

the block Gibbs sampling algorithm stopped after the first 169 iterations due to the

small magnitude of ν0, so we collect results from the four models of Bgla, Bada, Bss1

and Bss2. The posterior distribution of the covariance matrix Γ, precision matrix Ω,

and partial correlation matrix are obtained. To perform matrix estimation, we use
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the posterior mean as the estimator for all three matrices. We utilize the R packages

qgragh and igraph to visualize the graphical structure of these 64 ordinal variables.

2.5.3 Results

Matrix Estimation

Figure 2.7 and 2.8 show the plots of the estimated posterior mean of the covariance

matrix and partial correlation matrix, respectively, using the four models of Bgla,

Bada, Bss1 and Bss2. Figure 2.7 shows the marginal relationship of these 64 ques-

tions via covariance matrix estimation. Marginally, within Question No. 14 (the first

54 questions), the questions are highly positively correlated (dark blue color) and

thus form a large block with dimension 54 × 54 (Block 1). Within Question No. 15

(questions 55-64), we can observe two additional blocks of questions 55-62 (Block 2)

and questions 63-64 (Block 3). Between blocks 1 and 2, the questions are marginally

highly negatively correlated, whereas, between Blocks 1 and 3, the questions are

marginally positively correlated. Among these 64 questions, question 59 in Block 2

has a weak covariance with the other questions expect that of questions 63 and 64

(Block 3).

Figure 2.8 shows the conditional relationship of these 64 questions via partial

correlation matrix estimation. All four models show a relatively low overall correlation

between these 64 questions, except for some specific question pairs. The magnitude

of the overall positive partial correlation (blue color) is much greater than that of the

negative partial correlation (orange color). Unlike the results in marginal correlation,

conditionally, these 64 questions do not show obvious large block structures. Instead,

relatively high conditional correlations (greater than 0.3) exist only between some

particular question pairs, especially between the 10 questions within Question No.

15.
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Figure 2.7 The posterior mean estimate of the covariance matrix for Survey Data
No. 1.

Graphical Structure Determination

The estimated graphical structure of these 64 ordinal variables for all models of Bgla,

Bada, Bss1 and Bss2 are plotted using the R packages qgragh and igraph and are

shown in Figure 2.9 and 2.10. To easier identify Questions No. 14 and 15, these two

large groups are labeled as group “A” and “B”, respectively. “A1” to “A54” represent

the first 54 questions and “B1” to “B10” represent questions 55-64. In the graphs,

each circle represents one question, with blue and yellow colors representing Questions

No. 14 and 15, respectively. The edges between circle pairs represent a partial

correlation between the corresponding question pairs, which contain information on

the conditional relationship. Figure 2.9 shows the graphs based on partial correlation
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Figure 2.8 The posterior mean estimate of the partial correlation matrix for
Survey Data No. 1.

matrix estimation. In Figure 2.9, the edge colors of green and red represent positive

and negative partial correlations, respectively, and edge thickness is proportional to

the magnitude of the partial correlation.

In the simulation section, for both Scenario 1 (p = 10) and 2 (p = 50), the perfor-

mance of specificity, sensitivity, and MCC of each scenario using different thresholds

are compared. The results for Scenario 2 (p = 50) show that the threshold of 0.05

gives the best performance overall. Since the dimension of our Survey Data No. 1

with p=64 is closer to that of p = 50, we use the same threshold value of 0.05 in

constructing the estimated graphical structure for Survey Data No. 1.
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Comparing the graphical structures of Bgla and Bada models, the Bada model

shows apparent block structures within Question No. 14 (Group A) and 15 (Group

B), but the Bgla model fails to separate these two groups. It is similar when we

compare the graphical structures of Bss1 and Bss2 models. Compared with ν0 = 10−3

in Bss2, the relatively large value of ν0 = 10−1 in Bss1 is not able to specify the block

structures of Questions No. 14 and 15, and thus fail to distinguish between these two

groups. Comparing all four models, the Bada and Bss2 models give similar block

structures in graphical structure determination, although the details may differ after

careful examination.

We examined pairs of questions exhibiting the strongest positive and negative

partial correlations for all four models, and the results are shown in Table 2.4 with

the corresponding question description listed in Table 2.5 and 2.6. The left side panel

of Table 2.4 shows the strongest positive partial correlations. For all four models,

most question pairs come from Question No. 15. The question pair B9−B10 has the

strongest positive partial correlation for all four models, and the value is much greater

than the other pairs within each model, with the largest of 0.71 in Bada. These two

questions are both in Question No. 15 and are very close in meaning, suggesting that

we may reduce one of these questions in the survey to make it more concise. The

other question pairs with relatively high partial correlation include B1−B2, B3−B5,

and B6 − B7 pairs, and we can also consider removing one question from each pair

to reduce the size of the survey. From Question No. 14 (TSCC), The question pair

A1 − A2 show a relatively high positive partial correlation for three models of Bgla,

Bss1 and Bss2, whereas for Bada model, question pair A24 − A25 shows a large

partial correlation of 0.54. A24 and A25 discuss whether the respondent is scared of

men or women. A further study can be conducted to check whether this conditional

dependence is related to the gender of the respondents or not by analyzing the partial

correlation of this question pair for male and female respondents separately.
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Figure 2.9 The estimated graph structure for Survey Data No. 1 based on the
partial correlation matrix.

Analogously, the right side panel of Table 2.4 lists the question pairs exhibiting

the strongest negative partial correlations. For all four models, all the top five pairs

belong to Question No. 14 (TSCC) and are much smaller in magnitude than that of

the positive partial correlation pairs in Table 2.4. With such small values of negative

partial correlations in Question No. 14, it is confirmed that the 54-item Trauma

Symptom Checklist for Children (TSCC) is a good design even for undergraduate

students who are generally 17-24 years old.

36



A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13A14

A15 A16

A17

A18

A19

A20A21

A22
A23

A24
A25

A26

A27
A28

A29

A30

A31

A32
A33

A34

A35

A36

A37

A38

A39

A40

A41

A42

A43

A44

A45
A46

A47

A48 A49

A50

A51

A52

A53

A54

B1

B2

B3

B4

B5

B6

B7

B8
B9

B10

Bss1

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13A14

A15 A16

A17

A18

A19

A20A21

A22
A23

A24
A25

A26

A27
A28

A29

A30

A31

A32
A33

A34

A35

A36

A37

A38

A39

A40

A41

A42

A43

A44

A45
A46

A47

A48 A49

A50

A51

A52

A53

A54

B1

B2

B3

B4

B5

B6

B7

B8
B9

B10

Bss2

Figure 2.10 The estimated graph structure for Survey Data No. 1 based on the
proportion with a threshold value of 0.5.

2.6 Discussion

In the simulation study, for both scenarios, we compared the performance of the

three different priors of graphical Lasso (Bgla), adaptive graphical Lasso (Bada), and

spike-and-slab Lasso (Bss). All three priors give good results in matrix estimation

of correlation, partial correlation, and precision matrix. Performance in graphical

structure determination was also compared among the three priors. In the Bss model,

the effect of hyper-parameter ν0 was also investigated. Based on the simulation

study, the adaptive graphical Lasso prior (Bada) and spike-and-slab Lasso prior with

ν0 = 10−3 (Bss2) show much better performance than the graphical Lasso (Bgla),

which specifies the adaptive performance of Bada and Bss. Within the Bss model,

the hyper-parameter ν0 = 10−3 shows the best performance among the selected three

values, which confirms that the performance is sensitive to the selection of ν0.
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Table 2.4 List of pairs of questions with strongest positive (left panel) and
negative (right panel) partial correlations for Survey Data No. 1.

Positive Negative
Pairs Bgla Bada Bss1 Bss2 Pairs Bgla Bada Bss1 Bss2

B9-B10 0.569 0.712 0.588 0.595 A21-A30 -0.076 -0.105 -0.078 -0.157
B1-B2 0.354 0.520 0.373 0.393 A21-A41 -0.062 -0.089 -0.055 -0.135
A1-A2 0.307 0.389 0.312 0.337 A17-A39 -0.089 -0.134 -0.076 -0.134
B3-B5 0.305 0.352 0.307 0.319 A10-A50 -0.07 -0.115 -0.056 -0.112
B6-B7 0.300 0.408 0.314 0.330 A26-A43 -0.071 -0.102 -0.057 -0.112
A27-A28 0.268 0.444 0.291 0.308 B6-B10 -0.046 -0.045 -0.041 -0.099
A2-A3 0.246 0.328 0.264 0.27 A26-A53 -0.057 -0.095 -0.039 -0.094
B6-B8 0.239 0.276 0.246 0.248 A14-A44 -0.044 -0.023 -0.041 -0.09
A17-A44 0.224 0.312 0.235 0.247 A2-A52 -0.045 -0.059 -0.033 -0.088
A32-A33 0.222 0.388 0.248 0.251 A21-B5 -0.043 -0.026 -0.031 -0.084
B3-B9 0.222 0.253 0.221 0.226 A13-A30 -0.073 -0.044 -0.059 0
A9-A10 0.216 0.288 0.225 0.254 A12-A30 -0.07 -0.069 -0.059 -0.025
B1-B4 0.209 0.271 0.215 0.252 A8-A39 -0.062 -0.049 -0.055 0
B4-B6 0.208 0.314 0.219 0.249 A19-A41 -0.061 -0.03 -0.049 0
A31-A32 0.208 0.316 0.234 0.235 A7-A54 -0.061 -0.077 -0.047 -0.025
A24-A25 0.183 0.543 0.216 0.107 A25-A40 0.015 -0.137 0.013 0
A22-A23 0.165 0.399 0.197 0.227 A21-A38 -0.001 -0.097 0 0.002
A20-A21 0.112 0.363 0.145 0.157 A22-A48 -0.01 -0.092 -0.003 0
A44-A47 0.165 0.33 0.192 0.225 A20-A44 -0.008 -0.087 -0.003 -0.002
A7-A9 0.189 0.261 0.2 0.264 A39-A44 -0.055 -0.006 -0.051 -0.003

Ordinal survey data were analyzed using the Gaussian copula graphical model

from a Bayesian perspective with the three priors on the precision matrix Ω. Based

on the results, the three priors of graphical Lasso, adaptive graphical Lasso, and

spike-and-slab Lasso give similar results in the matrix estimation of both covariance

and partial correlation matrices. In graphical structure determination via partial cor-

relation matrix, adaptive graphical Lasso prior (Bada) and spike-and-slab Lasso prior

with hyper-parameter ν0 = 10−3 (Bss2) give similar results, and both of them show

the block structure of Question No. 14 and 15. In comparison, the graphical Lasso
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Table 2.5 List of questions description for Survey Data No. 1 (Part 1).

A1 Nightmares.
A2 I feared that bad things would happen.
A3 Scary thoughts or images come to mind suddenly.
A7 Loneliness.
A9 Sadness.
A10 I remembered things that happened that I did not like.
A12 I remembered things I was afraid of.
A13 I Wanted to yell loudly and break things.
A14 Crying.
A17 I wanted to have sex.
A19 I wanted to yell at people.
A20 Desire to physically hurt myself.
A21 Desire to physically hurt others.
A22 I thought of touching someone’s private parts.
A23 Sexual feelings when I do not want to have them.
A24 Feared of men.
A25 Feared of women.
A26 I kept cleaning myself because I felt dirty.
A27 I felt myself stupid or bad.
A28 I felt like I have done something wrong.
A30 I forgot things.
A31 I felt lost.
A32 I felt nervous or jittery.
A33 I felt scared.
A38 I imagined that I am in somewhere else.
A39 I was afraid of the dark.
A40 I felt scared or upset when I thought about sex.
A41 I worried about things.
A43 I thought of things I do not want to remember.
A44 Feeling sexual arousal.
A47 I cannot stop thinking about sex.
A48 I tried not to feel anything.
A50 I was afraid someone would kill me.
A52 I had suicidal ideation.
A53 I was often in a daze.
A54 I got upset when other people talked about sex.
B1 I think I am as useful as everyone else.
B2 I think I have many good qualities.
B3 Generally speaking, I tend to feel like a loser.
B4 I can get things done as most people do.
B5 I do not feel much proud of myself.
B6 I have a positive attitude towards myself.
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Table 2.6 List of questions description for Survey Data No. 1 (Part 2).

B7 Generally speaking, I am satisfied with myself.
B8 I wish I could earn more respect.
B9 I often feel that I am useless.
B10 I often think that I am useless.

prior (Bgla) and spike-and-slab Lasso prior with hyper-parameter ν0 = 10−1 (Bss1)

do not show the pattern that obviously. All three priors yield low partial correlation

within Question No. 14, which confirms that this 54-item Trauma Symptom Check-

list for Children (TSCC), originally designed for children 8-16 years old, is a good

design for undergraduate students with age 17-24 as well. As to Question No. 15,

all three priors show a relatively high partial correlation between the sub-questions,

which could give us instructions on reducing some sub-questions and thus make the

survey more concise.

40



Chapter 3

Bayesian Gaussian Copula Graphical Models

with Adaptive Spike-and-Slab Lasso Prior

3.1 Introduction

In Chapter 2, we compared the performance of Gaussian copula graphical models with

the three different priors of graphical Lasso, adaptive graphical Lasso, and spike-and-

slab Lasso. For the spike-and-slab Lasso prior, we chose three values of ν0 and found

that Bss2 model with ν0 = 10−3 had the best performance, which is comparable to

that of the Bada model with adaptive graphical Lasso prior. The best performance

was achieved by deliberately and carefully choosing the ν0 value. For this, we must

redo the whole procedure each time we choose a different ν0 value, which is very time-

consuming. In this chapter, we want to allow the data to help choose the ν0 value.

Instead of treating ν0 as a fixed hyper-parameter, we adaptively update its value

and thus automatically yield the best performance without repeating the procedure

multiple times. This improved model is labeled as Bss4. Section 3.2 presents the Bss4

model and the corresponding block Gibbs sampling algorithm. Section 3.3 covers a

specifically designed simulation study to evaluate the performance of the Bss4 model.

Section 3.4 analyzes a real dataset with the Bss4 model and all other models used in

the previous chapter. The results of the simulation study and the real data analysis

are briefly summarized in the discussion section of 3.5.
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3.2 Model

In the Bss models of Chapter 2, the hyper-parameter ν0 was set as a fixed value.

The performance of the overall Bss model can be improved if we allow ν0 to be up-

dated dynamically. Ročková (2018) induced a prior distribution on the prior inclusion

probability η and set ν0 deterministically to η/ 1 − η. By tying ν0 with η, putting a

prior only on η would be enough to obtain the desired adaptivity. Based on Ročková

(2018), the beta prior π(η) ∼ Beta(a, b) was considered, where a ≪ b, so that η is

small with high probability. Following the settings of Ročková (2018), we set a = 1

and b = 4n.

The block Gibbs sampling algorithm in Section 2.3 is also applied to the Bss4

model. The only modification is done in step 2 of the algorithm; the other steps are

the same. Here below is step 2 for the Bss4 model:

2-4 Bss4 Model with adaptive ν0

2-4(a). Sample λ ∼ GA (shape = p + s, rate = t + ∑p
i=1

ωii

2 ).

2-4(b). Sample η ∼ Beta (∑
i<j rij + a, p(p+1)

2 − ∑
i<j rij + b), where a = 1 and b = 4n.

2-4(c). For 1 ≤ i < j ≤ p, sample rij ∼ Bernoulli (p = A
A+B

), where A = η
2ν1

exp
{

−
|ωij |
ν1

}
, and B = 1−η

2ν0
exp

{
− |ωij |

ν0

}
, where ν0 = η

1−η
.

2-4(d). For 1 ≤ i < j ≤ p, sample uij ∼ INV-GAU (µ′
, λ′) where µ

′ = 1
ν0|ωij | and

λ
′ = 1

ν2
0
, if rij = 0, and µ

′ = 1
ν1|ωij | and λ

′ = 1
ν2

1
, if rij = 1. Then update τij = 1/uij.

3.3 Simulation Study

3.3.1 Simulation Setting

This simulation experiment is designed to compare the performance of the Bss4

model with that of the five models in Chapter 2 regarding parameter estimation and
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structure learning. The simulation setting for this chapter is motivated by the results

of Chapter 2. Section 2.4 considered the two-block covariance structure of simulation

Scenario 1 and 2. For both scenarios, we investigated a series of cutoff values of the

partial correlation, and the value 0.01 gave the best performance in terms of graphical

structure determination. This cutoff value of 0.01 was then applied to the real data

analysis in Section 2.5. Since the dependence structures of both scenarios in the

simulation study were very different from that of the real data, applying this optimal

cutoff value to the real data analysis is not convincing. Based on this, we made

improvements in designing the simulation settings of this chapter. In this chapter,

the simulation setting is closely related to the real data structure in Section 3.4.

In Section 3.4, we obtained the estimated posterior mean of the covariance matrix

of Survey Data No. 2 using the Bss4 model. This estimate was then used in this

simulation study as the true covariance matrix and is labeled as Scenario 3. The true

covariance and the corresponding partial correlation matrix are shown later in the

simulation results.

We generated 200 samples of size n = 1000 for Scenario 3. For each generated

sample, we fit each model of Bgla, Bada, Bss1, Bss2, Bss3, and Bss4. The settings

of the hyper-parameters for the five models of Bgla, Bada, Bss1, Bss2, and Bss3

are the same as those in Chapter 2. As to the Bss4 model, the hyper-parameters of

the prior inclusion probability η are set as a = 1 and b = 4n, respectively.

3.3.2 Simulation results

Matrix Estimation

For each of the 200 samples, the posterior distribution of the covariance matrix Γ,

precision matrix Ω, and partial correlation matrix are sampled using each of the six

models. We ran 5000 iterations using the block Gibbs sampler, and the first 1000

were burn-in iterations. The posterior mean was then calculated based on the 4000
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Figure 3.1 Covariance matrix estimation for Scenario 3 (p=53).

iterations, and the mean over these 200 samples was then used as the estimate for

each matrix.

Figure 3.1 and 3.2 show the estimation results of the covariance matrix as well as

the partial correlation matrix using all six models of Bgla, Bada, Bss1, Bss2, Bss3

and Bss4 for Scenario 3 (p = 53). In Figure 3.1, the Bss4 model shows good results

in covariance matrix estimation compared with the true covariance matrix, which is

similar to that of the previous five models. This means that the Bss4 also performs

well in identifying the marginal relationship between the 53 ordinal variables. It is

a similar case in partial correlation matrix estimation in Figure 3.2, where the Bss4

model performs well compared to the true partial correlation matrix.
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Figure 3.2 Partial correlation matrix estimation for Scenario 3 (p=53).

The performance of the precision matrix estimation is also evaluated for the Bss4

model. Table 3.1 compares the calculated mean, median, and standard deviation

of Frobenius Loss and Stein’s Entropy Loss for the precision matrix Ω for Scenario

3. Regarding the Frobenius Loss, the adaptive Bss4 model did not yield the best

performance among the six models. However, this adaptive model performed best

within the four Bss models regarding Stein’s Entropy Loss. Overall, the results are

similar among all six models, with the Bada model performing best regarding both

the Frobenius Loss and Stein’s Entropy Loss.
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Table 3.1 Mean, median and standard deviation of Frobenius Loss (FL) and
Stein’s Entropy Loss (EL) for the precision matrix Ω for Scenario 3 (p=53).

Models FL_Mean FL_Median FL_sd EL_Mean EL_Median EL_sd
Bgla 0.0422 0.0415 0.0047 2.0552 2.0428 0.1679
Bada 0.0356 0.0333 0.0107 0.99 0.978 0.1187
Bss1 0.0516 0.0493 0.0141 1.4623 1.4502 0.1364
Bss2 0.0593 0.0563 0.0169 1.3937 1.3714 0.1507
Bss3 0.104 0.1000 0.0244 2.5133 2.5002 0.2787
Bss4 0.0672 0.063 0.0224 1.2415 1.2336 0.1357

Graphical Structure Determination

To assess the performance of the graphical structure learning of the Bss4 model, we

computed the specificity, sensitivity, and Matthews Correlation Coefficient (MCC).

Table 3.2 summarizes the average specificity, sensitivity, and Matthews Correlation

Coefficient (MCC) of the partial correlation matrix for Scenario 3 using different

cutoff values based on the 200 samples for all six models. Six cutoff values of 0.01,

0.02, 0.05, 0.1, 0.2, and 0.3 are selected, and the mean and standard deviation of

the corresponding average specificity, sensitivity, and MCC are reported. The cutoff

value of 0.2 gives the best MCC performance for each model. In comparison, the

optimal cutoff value of 0.05 in Section 2.4 also performs relatively well for Scenario 3

for each model. Similar to that of the Bada and Bss2 models, the Bss4 model has a

very high average MCC among different cutoff values, which is illustrated in Figure

3.3.

Except for the partial correlation matrix, we also calculated the average specificity,

sensitivity, and MCC for the precision matrix Ω for the four Bss models. The

calculation includes two parts. In the first part, we did the calculation based on

the posterior probability of rij = 1 given the observed data Y . For each of the 200

samples, the simulation estimate of each off-diagonal entry ωij is assigned as 1 or 0
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Table 3.2 Average specificity (SP%), sensitivity (SE%) and MCC (MCC%) of the
partial correlation matrix for Scenario 3 (p=53).

Bgla Bada

Cutoff SP% SE% MCC% Cutoff SP% SE% MCC%
Mean(sd) Mean(sd) Mean(sd) Mean(sd) Mean(sd) Mean(sd)

0.01 33.7(1.5) 85.8(1.9) 17(2.1) 0.01 91.6(0.9) 56.5(1.8) 50.1(2.2)
0.02 59.5(1.6) 89.9(1.9) 32.4(1.6) 0.02 96.4(0.5) 76.4(2.2) 72.2(2.3)
0.05 93.1(0.7) 87.9(2.1) 67.6(2.6) 0.05 99.1(0.3) 81.1(2.4) 84.6(2.2)
0.1 99.4(0.2) 79(2.8) 84(2.3) 0.1 99.5(0.2) 81.1(2.8) 85.9(2.2)
0.2 99.7(0.1) 83.6(3.8) 86(3.2) 0.2 99.4(0.2) 93.5(3.2) 88(2.9)
0.3 99.9(0.1) 70.1(7.2) 79.5(5.4) 0.3 99.7(0.1) 85.1(6.9) 84.1(5.6)

Bss1 Bss2

Cutoff SP% SE% MCC% Cutoff SP% SE% MCC%
Mean(sd) Mean(sd) Mean(sd) Mean(sd) Mean(sd) Mean(sd)

0.01 58.5(1.6) 78.3(2.2) 29.5(2.1) 0.01 97.9(0.4) 43(1.5) 53.8(2)
0.02 83.3(1.1) 83.8(2.3) 50.9(2.2) 0.02 98.2(0.3) 66.2(2.3) 71.5(2.5)
0.05 98.5(0.3) 76.3(2.5) 78.3(2.4) 0.05 98.9(0.3) 77.7(2.7) 80.9(2.7)
0.1 99.8(0.1) 70.7(2.9) 81.5(2.1) 0.1 99(0.2) 83.3(2.8) 83.8(2.5)
0.2 99.5(0.1) 87.2(4.2) 86.2(3.4) 0.2 99(0.2) 95.5(2.7) 84.5(2.7)
0.3 99.7(0.1) 86.2(6.6) 83.8(5.2) 0.3 99.6(0.1) 87.5(6.5) 81.8(5.2)

Bss3 Bss4

Cutoff SP% SE% MCC% Cutoff SP% SE% MCC%
Mean(sd) Mean(sd) Mean(sd) Mean(sd) Mean(sd) Mean(sd)

0.01 60.7(2) 63(2.3) 19.2(2.4) 0.01 97.3(0.5) 46(2) 54.6(2)
0.02 72.8(1.7) 77.6(2.6) 35.1(2.4) 0.02 99.2(0.3) 62.2(2.4) 72.7(2.3)
0.05 87.8(1.3) 85.5(2.7) 55.1(3) 0.05 99.7(0.2) 68.4(2.7) 79.5(2.2)
0.1 97.8(0.4) 86.1(2.8) 79.2(2.8) 0.1 99.5(0.2) 73.7(2.6) 81.4(2.2)
0.2 99.4(0.2) 92.4(3.1) 87.9(3.1) 0.2 98.9(0.2) 96.1(2.7) 83.5(2.7)
0.3 99.7(0.1) 83.9(6.5) 83.4(4.9) 0.3 99.5(0.2) 90.2(5.7) 81.4(4.8)

47



20
40

60
80

Cutoff

M
ea

n 
M

C
C

 (
%

)

0.
01

0.
02

0.
05 0.

1

0.
2

0.
3

Bgla

Bada

Bss1

Bss2

Bss3

Bss4

Figure 3.3 Average MCC (%) of the partial correlation matrix with different cutoff
values for Scenario 3 (p=53).

according to p(rij = 1|Y ), which is the estimated posterior mean of rij among 4000

iterations as follows:

• If p(rij = 1|Y ) > 0.5, then ωij=1;

• If p(rij = 1|Y ) ≤ 0.5, then ωij=0.

The result of this part is shown in Table 3.3. In the second part of the calculation

for the precision matrix, the procedure is the same as that of the partial correlation

matrix, where we set a list of cutoff values for each entry in the precision matrix and

calculate the corresponding average sensitivity, specificity, and MCC. The results are

shown in Table 3.4. Based on the results in Table 3.3, the Bss4 model with adaptive
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Table 3.3 Average specificity (SP%), sensitivity (SE%) and MCC(MCC%) of the
precision matrix Ω for Scenario 3 (p=53) based on the proportion of rij = 1 given
observed data Y .

Model ν0 SP% SE% MCC%
Mean(sd) Mean(sd) Mean(sd)

Bss1 10−1 100(0) 33.2(2.1) 55.8(1.9)
Bss2 10−3 98(0.3) 80.9(2.6) 78(2.5)
Bss3 10−5 64.8(2) 92(2.5) 32.7(1.9)
Bss4 Adaptive 99.7(0.1) 70.8(2.7) 80.7(2.3)

ν0 yields the best performance in terms of structure determination within the four

Bss4 models, and it is slightly better than that of the Bss2 model. This result is

consistent with that of Table 3.4, which shows that Bss4 and Bss2 give comparably

high performance in terms of graphical structure determination based on the precision

matrix.

The latent graphical structure of Scenario 3 based on the partial correlation matrix

with a threshold value of 0.05 is shown in Figure 3.4. The difference between the

six models is not that obvious in this figure. However, the superiority of the Bss4

model is shown in Figure 3.5, where the graphical structure is determined based

on the proportion of rij = 1 given the observed data Y . Based on the results, the

Bss4 model yields the best graphical structure, most close to the true graphical

structure. In comparison, the Bss1 model is too sparse that it misses the dependence

between some variable pairs. In contrast, the Bss3 model is too dense to show the

independence between many variable pairs. The Bss2 model is much better than the

Bss1 and Bss3 model but with a slightly denser structure than that of the Bss4 model

and the true model. However, we have to keep in mind that for the Bss2 model, the

fixed hyper-parameter value ν0 was set carefully so that it would not be too big or

too small, and this primarily rely on the experience of the researcher conducting the
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Table 3.4 Average specificity (SP%), sensitivity (SE%) and MCC (MCC%) of the
precision matrix Ω for Scenario 3 (p=53) based on different cutoff values.

Bss1 Bss2

Cutoff SP% SE% MCC% Cutoff SP% SE% MCC%
Mean(sd) Mean(sd) Mean(sd) Mean(sd) Mean(sd) Mean(sd)

0.01 100(0) 14.4(0.9) 34.3(1.2) 0.01 98.9(0.3) 39.8(1.4) 54.4(1.9)
0.02 100(0) 23.7(1.5) 46.2(1.6) 0.02 98.7(0.3) 63.6(2.2) 71.6(2.4)
0.05 100(0) 29.7(1.9) 52.5(1.8) 0.05 98.5(0.3) 77.5(2.7) 79.1(2.7)
0.1 99.9(0.1) 37.7(2.5) 59.1(2.2) 0.1 97.4(0.3) 85.9(2.7) 77.2(2.4)
0.2 99.3(0.1) 70.8(4) 72.6(3.3) 0.2 94(0.3) 99.5(1.1) 57.1(1)
0.3 98.5(0.2) 91.7(4.1) 67.4(3) 0.3 92.6(0.3) 99.9(0.6) 40.7(0.7)

Bss3 Bss4

Cutoff SP% SE% MCC% Cutoff SP% SE% MCC%
Mean(sd) Mean(sd) Mean(sd) Mean(sd) Mean(sd) Mean(sd)

0.01 64.5(2.1) 58.7(2.3) 19(2.4) 0.01 99.8(0.1) 31.4(1.2) 50.8(1.4)
0.02 65(2) 77.5(2.7) 28.4(2.3) 0.02 99.8(0.1) 51.6(2) 68.4(1.9)
0.05 65.1(2) 89.1(2.7) 32.8(2.1) 0.05 99.8(0.1) 64.4(2.5) 77.3(2.1)
0.1 64.3(2) 95.1(2.1) 32(1.7) 0.1 99.2(0.2) 76(2.6) 80.7(2.2)
0.2 61.8(1.9) 99.9(0.4) 21.9(0.8) 0.2 96.5(0.2) 98.7(1.7) 67.3(1.6)
0.3 60.8(1.8) 100(0) 15.6(0.6) 0.3 95(0.2) 99.6(1.5) 48.2(1.1)

simulation. Instead, the Bss4 model with adaptive ν0 is more convenient since we do

not need deliberately choose a ν0 value to guarantee a good performance.

3.4 Real Data Analysis

3.4.1 Dataset Description

In this section, we analyze ordinal survey data labeled Survey Data No. 2. This

dataset is part of the Life Satisfaction Survey (LSS) dataset described in Section 2.5.

It consists of questions 1, 2, 3, 4, 6, 7, and 9 from the LSS dataset. There are 7, 16,

and 26 sub-questions within questions 6, 7, and 9, respectively. In this dataset, ques-

tions 1, 2, 3, and 4 are four single questions describing the overall satisfactory status
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Figure 3.4 The estimated graphical structure of Scenario 3 (p=53) based on
partial correlation matrix with cutoff value 0.05.

of the respondents. Question No. 6 is a group of sub-questions about respondents’

confidence in their future lives. The 16 sub-questions in Question No. 7 ask whether

they received any help when the respondents were in a hard time in life. Question

No. 9 asks about general situations that the respondents face in life. Survey Data

No. 2 has 2369 observations and 53 variables (questions). Questions 1, 2, and 3 have

five ordinal levels of 1-5 representing “Very Poor”, “Poor”, “Acceptable”, “Good” and

“Very Good”, respectively. For question No. 4, these 5 levels represent “Very Good”,

“Good”, “Acceptable”, “Poor”, and “Very Poor”, respectively. Question No. 6 has

four ordinal levels, with 1-4 representing “Strongly Disagree”, “Disagree”, “Agree”,

and “Strongly Agree”, respectively. Question No. 7 has five ordinal levels, with 1-5
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Figure 3.5 The estimated graphical structure of Scenario 3 (p=53) for the Bss
models based on proportion with threshold value 0.5.

representing “Strongly Disagree”, “Disagree”, “Undecided”, “Agree”, and “Strongly

Agree”, respectively. In question No. 9, there are five ordinal levels with 1-5 repre-

senting “Never Happened”, “Happened, with no influence on me”, “Happened, with

slight influence on me”, “Happened, with moderate influence on me”, and “Happened,

with severe influence on me”, respectively.

3.4.2 Analysis Methodology

We apply the six Gaussian graphical copula models to Survey Data No. 2 and analyze

the association between the questions. For each model, we run the block Gibbs

sampling algorithm for a total of 10,000 iterations, with the first 2,000 iterations
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as the burn-in period. Similar to that in Section 3.3 for the simulation study, in

analyzing Survey Data No. 2, the settings of the hyper-parameters for the five models

of Bgla, Bada, Bss1, Bss2, and Bss3 are the same as that in Chapter 2. As to the

Bss4 model, the hyper-parameters of the prior inclusion probability η are set as a = 1

and b = 4n, respectively. For the Bgla and Bada models, the block Gibbs sampling

algorithm stopped after the first 200 iterations due to the computational instability

of these two models. We collect results from the four Bss models and compare the

performance of these four models later in the results analysis part.

3.4.3 Results

Matrix Estimation

Figure 3.6 and 3.7 show the plots of the estimated posterior mean of the covariance

matrix and partial correlation matrix, respectively, using all four models of Bss1,

Bss2, Bss3 and Bss4. Figure 3.6 shows the marginal relationship of these 53 questions

via covariance matrix estimation, and the Bss4 model gives similar results as that

of the previous three Bss models. Marginally, we can see the block structure within

questions 7 and 9. Moreover, within Question No. 6, we can observe two blocks of

questions f601 − f604 (Block 1) and questions f605 − f607 (Block 2) with a strong

positive correlation within each block and a moderate negative correlation between

these two blocks.

Figure 3.7 shows the conditional relationship of these 53 questions via partial cor-

relation matrix estimation. The Bss4 model result is similar to the previous three

models. All four models show a relatively low overall correlation between these 53

questions, except for some specific question pairs. The magnitude of the overall

positive partial correlation (blue color) is much greater than that of the negative

partial correlation (orange color). Unlike the results in marginal correlation, condi-

tionally, these 53 questions do not show apparent large block structures. Instead,
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Figure 3.6 The posterior mean estimate of the covariance matrix for Survey Data
No. 2.

relatively high conditional correlations (greater than 0.3) exist only between some

particular question pairs, especially between the neighboring questions like f1 − f2

and f601 − f604.

Graphical Structure Determination

The estimated latent graphical structure of Survey Data No. 2 for all four Bss

models are plotted using the R packages qgragh and igraph and are shown in Figure

3.8 and 3.9. Figure 3.8 shows the estimated graphical structure based on the partial

correlation matrix, where we utilized the cutoff value of 0.05 for this dataset. Similar

to Section 2.5, each circle in the graph represents one question, with different colors
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Figure 3.7 The posterior mean estimate of the partial correlation matrix for
Survey Data No. 2.

representing different questions. The edges between circle pairs represent a partial

correlation between the corresponding question pairs, which contain information on

the conditional relationship. Edge colors of green and red represent positive and

negative partial correlations, respectively, and edge thickness is proportional to the

magnitude of the partial correlation. Based on Figure 3.8, it is not easy to tell the

difference between the estimated graphical structures of the four models. However,

we can indeed identify the blocking structure of Questions No. 6, 7, and 9 for the

Bss4 model.

To check the results more thoroughly, we examined pairs of questions exhibiting

the strongest positive and negative partial correlations for all four models. The results
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are shown in Table 3.5 with the corresponding question description listed in Table 3.6

and 3.7. The left side panel of Table 3.5 shows the strongest twenty positive partial

correlations. The top seven pairs with the highest positive partial correlation are

the same for all four models. The question pair with the strongest positive partial

correlation is f1 − f2 asking the respondents their feelings about their current living

conditions and whether they are satisfied with their current life. All question pairs

come from the same block (for example, the two questions in the f715 − f716 pair

are both from the Question No. 7 block).

The right side panel of Table 3.5 lists the question pairs exhibiting the strongest

negative partial correlations. Most pairs come from between-block questions, except

that of f910−f913, f903−f911, f903−f921, f903−f920, and f909−f921, where

the questions come from the same block of Question No. 9, and that of f603 − f606

and f707−f716, where the questions come from the same block of Question No.6 and

7, respectively. Overall, the negative partial correlations are small compared with the

strongest positive partial correlations.

We also analyzed the graphical structure based on the proportion with the thresh-

old value of 0.5, and the results are shown in Figure 3.9. Based on the results, the

Bss1 model shows the simplest structure, and the block structure of Question No.

9 can hardly be identified, with only a few pairs detected within this question. For

Bss2 and Bss3 models, the block structure of Questions No. 7 and 9 are not that

obvious, and we could barely separate these two blocks using the Bss3 model. The

Bss4 model shows the best block identification performance.

3.5 Discussion

This chapter is an extension of Chapter 2. In Chapter 2, we mainly analyzed the

ordinal data with Bayesian Gaussian copula graphical models with different priors of

graphical Lasso (Bgla), adaptive graphical Lasso (Bada), and spike-and-slab Lasso
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Figure 3.8 The estimated graph structure for Survey data No. 2 based on the
partial correlation matrix.

(Bss) priors. Within the Bss models, we chose three values for the hyper-parameter

ν0 and found that the Bss2 model with ν0 = 10−3 gave the best performance. The

Bss2 model with this carefully selected ν0 yielded comparable performance to that of

the Bada model. This motivated us to continue working on the Bss model to explore

the best ν0 value. Instead of setting ν0 as a fixed value in this chapter, we tied ν0

with the prior inclusion probability η. We set ν0 = η/ 1 − η and set a Beta prior

distribution to η. By doing so, we adaptively updated ν0 and thus saved the time

of running the whole procedure for each chosen ν0 value, which makes this adaptive

Bss4 model convenient and efficient.
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Figure 3.9 The estimated latent graph structure for Survey data No. 2 based on
proportion with threshold value 0.5.

To assess the performance of this adaptive Bss4 model in terms of both matrix

estimation and graphical structure determination, we conducted a simulation study

with the simulation setting resembling the structure of Survey Data No. 2. Compared

with the simulation settings of Scenarios 1 and 2 in Chapter 2, this improved version of

simulation Scenario 3 gives better guidance in constructing the graphical structure for

the real ordinal data of Survey Data No. 2. Comparing the results of the Bss4 model

and the other five models investigated in Chapter 2, Bss4 yields similar results as that

of the other five models in terms of matrix estimation for both the partial correlation

matrix and the covariance matrix. In terms of graphical structure determination,

Bss4 has comparable performance to that of the Bada and Bss2 models. Within the
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Table 3.5 List of pairs of questions with strongest positive (left panel) and
negative (right panel) partial correlations for Survey Data No. 2.

Positive Negative
Pairs Bss1 Bss2 Bss3 Bss4 Pairs Bss1 Bss2 Bss3 Bss4

f1-f2 0.690 0.709 0.700 0.707 f1-f916 -0.101 -0.108 -0.106 -0.109
f715-f716 0.598 0.597 0.595 0.597 f3-f906 -0.093 -0.131 -0.117 -0.105
f606-f607 0.493 0.499 0.486 0.500 f910-f913 -0.070 -0.009 -0.091 -0.008
f605-f606 0.463 0.461 0.467 0.464 f903-f911 -0.07 -0.107 -0.073 -0.108
f912-f913 0.451 0.453 0.455 0.453 f4-f918 -0.060 -0.001 -0.065 -0.012
f703-f704 0.432 0.447 0.433 0.443 f903-f921 -0.059 -0.129 -0.082 -0.074
f920-f921 0.378 0.397 0.375 0.392 f604-f906 -0.058 -0.041 -0.061 -0.024
f901-f902 0.365 0.375 0.353 0.370 f607-f713 -0.058 0.000 -0.055 -0.004
f602-f603 0.353 0.358 0.355 0.351 f903-f920 -0.057 0.000 -0.094 -0.036
f924-f925 0.350 0.355 0.354 0.359 f2-f906 -0.054 0.000 -0.063 -0.007
f601-f603 0.346 0.351 0.351 0.350 f3-f704 -0.049 -0.089 -0.099 -0.041
f914-f915 0.328 0.354 0.354 0.359 f707-f716 -0.047 -0.077 -0.073 -0.052
f714-f715 0.323 0.327 0.325 0.330 f603-f606 -0.045 -0.072 -0.057 -0.012
f601-f602 0.314 0.315 0.313 0.311 f703-f911 -0.026 -0.072 -0.055 -0.074
f908-f909 0.312 0.344 0.332 0.345 f2-f4 -0.047 -0.066 -0.018 -0.041
f709-f712 0.304 0.302 0.294 0.307 f704-f921 -0.032 -0.062 -0.067 -0.085
f705-f710 0.302 0.335 0.284 0.321 f1-f4 -0.054 -0.041 -0.096 -0.053
f911-f912 0.301 0.318 0.296 0.311 f706-f918 -0.039 0.000 -0.079 -0.004
f701-f702 0.288 0.295 0.299 0.294 f909-f921 -0.032 -0.004 -0.074 -0.030
f706-f707 0.297 0.310 0.281 0.312 f711-f917 -0.046 0.000 -0.074 -0.008

four Bss models using the spike-and-slab Lasso prior, Bss4 has the best performance

in terms of graphical structure determination based on rij.

The Bss4 model was then applied to the real ordinal data of Survey Data No. 2,

and the result was compared with the other models investigated in Chapter 2. Since

there is a high similarity between the structure of simulation Scenario 3 and the real

ordinal Survey Data No. 2, and Bss4 has good performance in the simulation study,

the real data analysis results of Survey Data No. 2 using Bss4 is highly reliable. We

thus obtained a convincing graphical structure for Survey Data No. 2.
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Table 3.6 List of questions description for Survey Data No. 2 (Part 1).

f1 How do you think of your current living condition?
f2 Are you satisfied with your current life?
f3 How is your current school life compare with what you imagined?
f4 How was your academic performance in the past semester?
f601 My future is largely in my own hands.
f602 I can do what I decide to do.
f603 My future is created by myself.
f604 I am confident about the future.
f605 Sometimes I feel like I have nothing to look forward to in my future.
f606 I muddle alone.
f607 It is useless to worry about the future because it is what it is.
f701 Someone will offer to help me when I am in trouble.
f702 I can share my joys and sorrows with others.
f703 My family is trying to help me.
f704 I can get the care and support I need from my family.
f705 There is someone who can comfort me.
f706 My friends are trying to help me.
f707 When things go bad, I can count on my friends.
f709 I have friends with whom I can share my joys and sorrows.
f710 There is someone who cares about my feelings.
f711 My relatives are willing to help me make decisions.
f712 I can discuss my problems with my friends.
f713 My teachers are trying to help me.
f714 When things go bad, I can count on my teachers.
f715 I can share my joys and sorrows with my teachers.
f716 I can discuss the problems I have with my teachers.
f901 I was being misunderstood.
f902 I was being discriminated against.
f903 My exams failed or were not as good as expected.
f906 I did not like my major.
f908 I was away from my family for a long time and unable to reunite with them.
f909 I had a heavy study load.
f910 I had a tense relationship with my teachers.
f911 I was seriously ill.
f912 My family members or friends are seriously ill.
f913 My family members or friends pass away.
f914 I had something stolen or lost.
f915 I lost face in public.
f916 My family was financially struggling.
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Table 3.7 List of questions description for Survey Data No. 2 (Part 2).

f917 There was a conflict within my family.
f918 I did not obtain scholarships as expected.
f920 I transferred schools or took a leave of absence.
f921 I got fined.
f924 I was scolded by my parents.
f925 My family put pressure on me to study.
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Chapter 4

Bayesian Factor Analysis for Ordinal Data

4.1 Introduction

In this chapter, we analyze the ordinal data from a different perspective. In Chapters

2 and 3, we focus on exploring the dependence structure of the ordinal variables.

We have found some question pairs with relatively large partial correlations in the

ordinal survey data sets. This motivates us to investigate whether we can remove

some ordinal questions to make the survey more concise. Dimension reduction can

be achieved by factor analysis. In this chapter, we apply the Bayesian factor analysis

model to the Trauma Symptom Checklist for Children (TSCC) data and explore its

dimension reduction performance.

Factor analysis was first introduced by Spearman (1904) on general intelligence

and the one-factor model based on p variables and n objects can be written as

yij = µj + βjgi + εij (4.1)

for i = 1, ..., n, j = 1, ..., p, where yij is the observed data, µj is the mean of variable

j, gi is the factor for object i, βj is the loading of variable j onto the factor g, and εij

is the random error term for object i and variable j.

Three decades later, multiple-factor analysis models were introduced. Thurstone

(1935, 1947) and Lawley (1940, 1942) proposed estimation methods via the centroid

method and maximum likelihood, respectively.

Factor analysis models have attracted much attention since they performed ex-

ploratory analyses of the latent linear structure in high-dimensional data (Bernardo
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et al. 2003; Carvalho et al. 2008; Engelhardt and Stephens 2010). With a latent

factor model, high-dimensional data yi ∈ Rp×1 with p variables can be represented

by a low-dimensional latent factor xi ∈ Rk×1 for i = 1, ..., n. A sample in the low-

dimensional space is linearly projected to the original high-dimensional space via a

loading matrix Λ ∈ Rp×k with Gaussian noise εi ∈ Rp×1:

yi = Λxi + εi (4.2)

for i = 1, ..., n. It is generally assumed that xi follows a Nk(0; Ik) distribution, where

Ik is the identity matrix of dimension k, and εi ∼ Np(0; Σ), where Σ is a p × p

diagonal covariance matrix with σ2
j for j = 1, ..., p on the diagonal. The number of

latent factors k is generally much smaller than the number of variables p and the

sample size n. The covariance matrix of yi, Γ ∈ Rp×p, is estimated via low-rank

estimation and has the following format:

Γ = ΛΛT + Σ =
k∑

h=1
λ·hλT

·h + Σ (4.3)

where λ·h is the hth column of Λ. This factorization suggests that each of the k

factors contributes to the covariance of the sample through its corresponding loading

λ·h.

The loading matrix Λ is of significant importance in a factor model. In high-

dimensional data applications where the sample size n is much smaller than the

variable dimension p (Bernardo et al. 2003), regularization on the loading matrix is

crucial because the optimization problem is under-constrained with n ≪ p and has

many equivalent solutions that optimize the data likelihood. The statistics literature

employs priors or penalties to regularize the elements of the loading matrix and

induce sparsity. Elementwise sparsity corresponds to dimension reduction, where

a latent factor contributes to variation in only a subset of the observed variables,

generating interpretable results (Bernardo et al. 2003; Carvalho et al. 2008; Knowles

and Ghahramani 2011).
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Elementwise sparsity has been imposed in latent factor models through regular-

ization via l1 type penalties (Zou, Hastie, and Tibshirani 2006; Witten, Tibshirani,

and Hastie 2009; Salzmann et al. 2010). In the last ten years, Bayesian shrinkage

methods with sparsity-inducing priors have been introduced for latent factor models

(Carvalho et al. 2008; Archambeau and Bach 2008; Virtanen et al. 2011; Bhattacharya

and D. B. Dunson 2011; Klami, Virtanen, and Kaski 2013). The spike-and-slab prior

(Mitchell and Beauchamp 1988) and the classic two-groups Bayesian sparsity-inducing

prior have been used for sparse Bayesian latent factor models (Carvalho et al. 2008).

More sophisticated structured regularization approaches have been studied in classi-

cal statistics (Zou and Hastie 2005; Kowalski and Torrésani 2009; Huang, Zhang, and

Metaxas 2009; Jenatton, Audibert, and Bach 2011).

Zhao et al. (2016) developed a group factor analysis (GFA) model using Bayesian

shrinkage with a hierarchical structure that encourages both element-wise and column-

wise sparsity. The structured sparsity in their model is achieved with the multi-scale

application of the three-parameter beta prior (T PB), a hierarchical sparsity-inducing

prior that has a computationally tractable representation (Armagan, Clyde, and

D. Dunson 2011; Gao, Brown, and Engelhardt 2013). With the global-factor-local

shrinkage, the model of Zhao et al. (2016) has the following features: i) The model

globally shrinks the loading matrix by eliminating factors that lack sufficient support

in the data; ii) the model shrinks the loading columns, effectively separating latent

spaces from arbitrary subsets of observations; iii) permitting factor loadings to have

either a sparse or non-sparse prior at the element-wise level, the model combines

dimension reduction with interpretability.

In this chapter, we follow the idea of Zhao et al. (2016) and apply the global-

factor-local shrinkage to our ordinal data analysis. Section 4.2 details the model and

its associated Gibbs sampling algorithm. Section 4.3 applies this Bayesian factor
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analysis model to our real ordinal survey data and discusses the results in Section

4.4.

4.2 Bayesian Factor Analysis Model

4.2.1 Latent factor models on ordinal data

Similar to that in Chapters 2 and 3, for ordinal variables YV with joint distribution

F , we adopt the Gaussian copula so that the Bayesian factor model can be used on

the latent normal variables. The full model is presented below:

Fj(yji) = Φ( zji); j = 1, ...p; i = 1, ..., n; (4.4)

zi = Λxi + εi; Λ = {λjh}, j = 1, ..., p; h = 1, ..., k; (4.5)

xi ∼ Nk(0, Ik); (4.6)

εi ∼ Np(0, Σ). (4.7)

where yji is the ordinal variable j on object i and zji is the corresponding continuous

variable which is used in the Bayesian factor analysis model in vector format of zi.

In the Bayesian factor analysis model, Λ is the p × k loading matrix with entries

λjh, xi is the latent factor assumed to follow a Nk(0; Ik) distribution with Ik as the

identity matrix of dimension k, and εi ∼ Np(0, Σ) is the Gaussian noise, where Σ is

the covariance matrix with σ2
j , for j = 1, ..., p on the diagonal.

4.2.2 Bayesian sparsity-inducing priors and three-parameter beta prior

Due to their flexible and interpretable solutions, Bayesian shrinkage priors are ex-

tensively utilized in latent factor models (Bernardo et al. 2003; Carvalho et al. 2008;

Polson and Scott 2010; Knowles and Ghahramani 2011; Bhattacharya and D. B. Dun-

son 2011). Chapters 2 and 3 use graphical Lasso prior and spike-and-slab Lasso prior

on the precision matrix to induce sparsity. This chapter utilizes the three-parameter

beta before loading matrix entries λjh. The three-parameter beta (T PB) distribution
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for a random variable φ ∈ (0, 1) has the following density (Armagan, Clyde, and D.

Dunson 2011):

f(φ; a, b, ν) = Γ(a + b)
Γ(a)Γ(b)νbφb−1(1 − φ)a−1{1 + (ν − 1)φ}−(a+b), (4.8)

where a, b, ν > 0. When 0 < a < 1 and 0 < b < 1, the distribution is bimodal, with

modes at 0 and 1. The variance parameter ν provides the distribution with freedom:

with fixed a and b, smaller values of ν enable greater probability on φ = 1, while

larger values of ν move the probability mass towards φ = 0 (Armagan, Clyde, and

D. Dunson 2011). In a special case, where ν = 1, this distribution is simplified to the

beta distribution Beta(b, a).

Suppose λ is the parameter to which we apply sparsity-inducing regularization.

The following T PB normal scale mixture distribution, T PBN , is assigned to λ:

λ ∼ N(0,
1
φ

− 1), with φ ∼ T PB(a, b, ν), (4.9)

where the shrinkage parameter φ adheres to a T PB distribution. When a = b = 1/2

and ν = 1, this prior becomes the horseshoe prior (Carvalho, Polson, and Scott 2010;

Armagan, Clyde, and D. Dunson 2011; Gao, Brown, and Engelhardt 2013). The

bimodal nature of φ creates two distinct shrinkage behaviors: the mode near one

drives 1
φ

− 1 towards zero and results in strong shrinkage on λ; the mode near zero

makes 1
φ

− 1 large and generates a diffuse prior on λ. Further decreasing the variance

parameter ν yields stronger shrinkage (Armagan, Clyde, and D. Dunson 2011; Gao,

Brown, and Engelhardt 2013). If we define θ = 1
φ

− 1, then this mixture has the

following hierarchical representation:

λ ∼ N(0, θ), with θ ∼ GA(a, δ), δ ∼ GA(b, ν), (4.10)

where θ is the variance of the Normal distribution which follows a Gamma distribu-

tion with shape parameter a and rate parameter δ, and δ further follows a Gamma

distribution with shape parameter b and rate parameter ν.
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4.2.3 Global-factor-local shrinkage

The T PB prior has been used in the Bayesian factor analysis models due to their

flexible representation. Zhao et al. (2016) extended the T PB prior to three levels of

regularization on the loading matrix (Gao, Brown, and Engelhardt 2013):

λjh ∼ N(0,
1

φjh

− 1), (4.11)

φjh ∼ T PB(a, b,
1
ζh

− 1), (Local) (4.12)

ζh ∼ T PB(c, d,
1
ϱ

− 1), (Factor-specific) (4.13)

ϱ ∼ T PB(e, f, ν), (Global). (4.14)

A T PB distribution is employed at all three levels to induce sparsity through its

estimated variance parameter. The global shrinkage parameter, ϱ, imposes signifi-

cant shrinkage across the k columns of the loading matrix and adjusts the support

of column-specific parameter, ζh, h ∈ {1, ..., k}, towards either zero or one. This

induces sufficient shrinkage across the loading columns to retrieve the number of

factors supported by the observed data. When ζh approaches one, all elements of

column h are near zero, effectively eliminating the hth component. Alternatively, as

ζh approaches zero, the factor-specific regularization parameter adjusts the shrinkage

applied to each element of the hth loading column by borrowing strength across all

the elements in the column, resulting in column-wise shrinkage estimation. Mean-

while, the local shrinkage parameter, φjh, enables element-wise sparsity in the loading

matrix through a T PBN . The three levels of global-factor-local shrinkage allow for

simultaneous modeling of column-wise and element-wise shrinkage and provide the

model with nonparametric behavior in the number of factors through model selection.

Let θjh = 1
φjh

− 1, ϕh = 1
ζh

− 1, and η = 1
ϱ

− 1 for j = 1, ..., p and h = 1, ..., k, this

global-factor-local shrinkage prior can be equivalently written as (Armagan, Clyde,
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and D. Dunson 2011; Gao, Brown, and Engelhardt 2013):

λjh ∼ N (0, θjh), (4.15)

Local


θjh ∼ GA (a, δjh)

δjh ∼ GA (b, ϕh)
(4.16)

Factor-specific


ϕh ∼ GA (c, τh)

τh ∼ GA (d, η)
(4.17)

Global


η ∼ GA (e, γ)

γ ∼ GA (f, ν)
. (4.18)

Zhao et al. (2016) extended this prior to jointly modeling sparse and dense com-

ponents by assigning a two-component mixture distribution to the local shrinkage

parameter (Gao, Brown, and Engelhardt 2013):

θjh ∼ πGA (a, δjh) + (1 − π)δϕh
(·) (4.19)

where δϕh
(·) is the Dirac delta function centered at ϕh. According to Zhao et al.

(2016), a two-component mixture allows the prior on the loading to select between

element-wise sparsity or column-wise sparsity. Element-wise sparsity is encouraged

via the T PBN prior. Column-wise sparsity applies a joint regularization on each

element of the column using a shared variance term, denoted by ζh. Modeling each

λjh using a shared regularized variance term ζh has two possible behaviors: i) When ζh

is close to 1, the entire column is strongly shrunk towards zero, effectively eliminating

this factor. ii) When ζh is close to zero, all elements of the column have a shared

Gaussian distribution, inducing only non-zero elements in that loading. Such factors

with only non-zero elements are referred to as dense factors.

Indicator variables ωh, h = 1, ..., k, are introduced to indicate which mixture

component each θh is generated from, where ωh = 1 means θh ∼ GA (a, δjh) and
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ωh = 0 means θh ∼ δjh(·) (Zhao et al. 2016). Therefore, when ωh = 1, a component

represents a sparse factor, and when ωh = 0, it either represents a dense factor or is

eliminated. We let ω = [ω1, ..., ωk] and put a Bernoulli distribution with parameter π

on ωh. We further let π have a flat beta distribution Beta(1, 1). Using this setting, we

can determine the posterior probability of each factor h generated from each mixture

component type through the parameter ωh.

In this chapter, the hyper-parameters of the global-factor-local T PB prior were

set to a = b = c = d = e = f = 0.5, which results in a horseshoe prior at all

three levels of the hierarchy. The hyper-parameters for the error variances, aσ and

bσ, are set to 1 and 0.3, respectively, to allow relatively wide support of variances

(Bhattacharya and D. B. Dunson 2011).
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4.2.4 Full Model

Based on the discussion above, we summarize the full model as follows:

Fj(yji) = Φ( zji); j = 1, ...p; i = 1, ..., n;

zi = Λxi + εi; Λ = {λjh}, j = 1, ..., p; h = 1, ..., k;

xi ∼ Nk(0, Ik);

εi ∼ Np(0, Σ);

λjh ∼ N(0, θjh);

Local


θjh ∼ πGA (a, δjh) + (1 − π)δϕh

(·)

δjh ∼ GA (b, ϕh)

Factor-specific


ϕh ∼ GA (c, τh)

τh ∼ GA (d, η)

Global


η ∼ GA (e, γ)

γ ∼ GA (f, ν)
, a = b = c = d = e = f = 0.5

π ∼ Beta (1, 1),

σ−2
j ∼ GA (aσ, bσ), aσ = 0.1, bσ = 0.3

4.3 Gibbs Sampling Algorithm

The Gibbs sampler is summarized as follows:

Given the current value Z, X, Σ, Λ, Θ, Δ, ω, ϕ, τ , η, γ, and π,

1. Sample the latent variables Zji, j = 1, ..., p; i = 1, ...n.

Zji ∼ TN
(

Γj,−j(Γ−j,−j)−1Z−j,i, Γj,j − Γj,−j(Γ−j,−j)−1Γ−j,j

)
, which is a truncated

normal distribution with lower bound as Zji(lb) = max
{
zjh : yjh < yji

}
, and upper

bound as Zji(ub) = min
{
zjh : yjh > yji

}
, for i, h = 1, ..., n within each row j =

1, ..., p, where Γ = ΛΛT + Σ.
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2. For i = 1, ..., n, sample latent factors Xi.

Xi ∼ N
(

(ΛT Σ−1Λ + I)−1ΛT Σ−1Zi, (ΛT Σ−1Λ + I)−1
)

.

3. Sample loading matrix Λ.

For j = 1, ..., p, λT
j· ∼ N

(
(σ−2

j XXT + D−1
j )−1σ−2

j XZT
j·, (σ−2

j XXT + D−1
j )−1

)
,

where D−1
j = diag

(
θ

I(ω1=1)
j1 · ϕ

I(ω1=0
1 ), ..., θ

I(ωk=1)
jk · ϕ

I(ωk=0)
k

)
.

4. Sample Θ, Δ, and ϕ.

For h = 1, ..., k,

• If ωh = 1,

4.1 For j = 1, ..., p, θjh ∼ GIG (lambda = a − 1
2 , psi = 2δjh, chi = λ2

jh);

4.2 For j = 1, ..., p, δjh ∼ GA (a + b, θjh + ϕh);

4.3 ϕh ∼ GA (bp + c,
∑p

j=1 δjh + τh).

• If ωh = 0,

4.1 For j = 1, ..., p, θiter
jh = θiter−1

jh ;

4.2 For j = 1, ..., p, δiter
jh = δiter−1

jh ;

4.3 ϕh ∼ GIG (lambda = c − p
2 , psi = 2τh, chi = ∑p

j=1 λ2
jh).

5. For h = 1, ..., k, τh ∼ GA (c + d, ϕh + η).

6. η ∼ GA (dk + e,
∑k

h=1 τh + γ)

7. γ ∼ GA (e + f, η + ν).
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8. π ∼ Beta (1 + ∑k
h=1 ωh, 1 + k − ∑k

h=1 ωh).

9. For h = 1, ..., k, ωh ∼ Bernoulli (p = A
A+B

), with A = π
∏p

j=1{N(λjh; 0, θjh) ·
Γ(a+b)

Γ(a)Γ(b) · θa−1
jh

·ϕb
h

(θjh+ϕh)a+b }, and B = (1 − π) ∏p
j=1{N(λjh; 0, ϕh)}.

10. Sample Σ.

For j = 1, ..., p, σ−2
j ∼ GA (n

2 + aσ, 1
2(Zj· − λj·X)(Zj· − λj·X)T + bσ), with aσ = 0.1,

and bσ = 0.3.

4.4 Real Data Analysis

4.4.1 Dataset Description

Question No. 14 of the LSS dataset in Chapter 2 is analyzed in this section. As was

described in Section 2.4.1, there are 54 sub-questions within Question No. 14, and

these sub-questions are the Trauma Symptom Checklist for Children (TSCC), which

was initially designed as a self-report measure of posttraumatic distress and related

psychological symptomatology among children 8-16 years of age (Briere 1996). In

this survey, these questions are translated into Chinese and asked to check whether

the respondents have had any of these behaviors within the past six months. In later

analysis, this dataset with 2369 observations and 54 variables (sub-questions) is called

the TSCC dataset.

4.4.2 Analysis Methodology

The Bayesian factor analysis model is applied to the TSCC dataset to explore the

dimension reduction performance among these 54 variables. The 54 sub-questions

are entered into the model, and all are ordinal variables with four ordinal levels of 1,

2, 3, and 4.
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The Gibbs sampling algorithm is utilized for a total of 10,000 iterations, with the

first 2,000 iterations as the burn-in period. The hyper-parameters of a, b, c, d, e,

and f for the T PB distribution are set as 0.5. The hyperparameters of the prior

distribution of σ−2
j are set as aσ = 0.1, and bσ = 0.3. Regarding k, the number of

factors and different values, such as 4, 6, 8, and 10, are tried. For each of them, the

posterior mean of the loading matrix Λ, the error term covariance matrix Σ, and

thus the latent covariance matrix Γ (ΛΛT + Σ) are estimated.

4.4.3 Results

The posterior mean of the loading matrix Λ is estimated using the 8,000 iterations

after 2,000 burn-in iterations. Figure 4.1 shows the plot of the estimated posterior

mean of Λ for k = 4, 6, 8, and 10. For all k values, the magnitudes of most of the

loading matrix entries are within [-2.5, 2.5]. For k = 6, the loading matrix entries for

sub-questions No. 10, 19, 36, and 43 are all zero. Similarly, for k = 10, the loading

matrix entries for sub-questions No. 24 and 31 are all zero. This implies that these

sub-questions are not related to any of the factors.

The estimated posterior mean of the latent covariance matrix, which is labeled as

Γ, is also calculated for all k values via the equation Γ = ΛΛT + Σ. Figure 4.2 shows

the plot of the estimated posterior mean of Γ for k = 4, 6, 8, and 10, respectively.

These estimates are compared with that of the Bayesian Gaussian copula graphical

models (GCGMs) in Figure 4.3 and the Spearman estimation in Figure 4.4. Based

on the results, the Bayesian factor analysis result of k = 8 is similar to that of

the GCGMs, but with a slightly smaller magnitude (the color is lighter when the

magnitude is smaller). In addition, the Bayesian factor analysis result of k = 8 is

also similar to that of the Spearman estimate but with a slightly larger magnitude.
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Figure 4.1 The posterior mean estimate of the loading matrix Λ for the TSCC
data using the Bayesian factor analysis model with k = 4, 6, 8, and 10 (from left to
the right)

4.5 Discussion

This chapter applies the Bayesian factor analysis model to the Trauma Symptom

Checklist for Children (TSCC) data. To represent this observed 54 × 2369 ordinal

data with the relatively low-dimensional latent factors, we select the factor number

of k = 4, 6, 8, and 10 in the model. We cannot obtain a sparse loading matrix based

on the results, which may be related to the choice of k. Optimizing the value of k

may help gain a desirable sparse loading matrix. In estimating the covariance matrix

Γ, we compare the results with that in Chapter 2, where we used Bayesian Gaussian

copula graphical models to do the estimation. We have found that the Bayesian factor
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Figure 4.2 The posterior mean estimate of the covariance matrix Γ for the TSCC
data using the Bayesian factor analysis model with k = 4, 6, 8, and 10.

analysis model with k = 8 yielded similar results to Chapter 2 but with a slightly

smaller magnitude on the estimation. For future studies, one direction is to conduct

a simulation study to investigate the optimization of k. To analyze the same dataset

using different models of graphical models and factor analysis models, we also need

to investigate model comparison via the simulation study.
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Figure 4.3 The posterior mean estimate of the covariance matrix Γ for the TSCC
data using the Bayesian Gaussian copula graphical models.
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Figure 4.4 The Spearman estimate of the covariance matrix Γ for the TSCC data.
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Chapter 5

Conclusion

In this dissertation, ordinal data are analyzed utilizing two different methods of Gaus-

sian copula graphical models and factor analysis models under the Bayesian frame-

work. Chapter 2 and Chapter 3 investigate the Gaussian copula graphical models

with different prior distributions on the precision matrix of the ordinal data. Chap-

ter 4 utilizes the factor analysis model to investigate the variable structure based on

latent factors. All three chapters share a common approach in their implementation

by utilizing MCMC sampling methods, and each algorithm is straightforward to im-

plement and demonstrates effectiveness in the respective situations. In addition, they

all apply a Gaussian copula on the ordinal data so that the Gaussian graphical and

factor analysis models, commonly used on continuous variables, can be utilized for

the ordinal data analysis.

In Chapter 2, the dependence structure of the ordinal variables is analyzed using

the Gaussian copula graphical models with three different priors of graphical Lasso

(Bgla), adaptive graphical Lasso (Bada) and spike-and-slab Lasso (Bss) on the pre-

cision matrix of these ordinal data. The performance of these different priors in terms

of both matrix estimation of the covariance matrix, partial correlation matrix, and

precision matrix and graphical structure determination are compared via simulation

studies. Based on the results of simulation studies, the Bss2 model with hyper-

parameter ν0 = 10−3 works comparably well as the Bada model. All the models are

applied to the real ordinal Survey Data No. 1 and obtain the dependence structure

of these ordinal survey questions. From the results of this real ordinal data analysis,
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we have found that some question pairs have a relatively large partial correlation.

For the future direction, we can explore some methods to do dimension reduction to

make the survey more concise with fewer questions included.

The Bss model in Chapter 2 manually chooses the value of the hyper-parameter

ν0 for the spike-and-slab Lasso prior. The performance of the Bss model, especially

on the structure learning, heavily relies on the choice of the value of ν0. To overcome

this problem, Chapter 3 proposes the adaptive spike-and-slab Lasso prior. The hyper-

parameter ν0 is tied with the prior inclusion probability η, and a prior is assigned on η.

This enables automatically updating ν0 when η is updated and essentially allows the

data to decide the value of ν0 instead of fixing its value. It is also worth mentioning

that in this chapter, the simulation setting is carefully designed by making it resemble

the scenario of the real ordinal Survey Data No. 2. In this way, we better assess the

performance of the models using the simulation study and thus give better guidance

in selecting the cutoff values for the structure learning for the real data analysis.

Chapter 4 analyzes the TSCC ordinal survey data using the Bayesian factor analy-

sis model in an attempt to do dimension reduction. A novel sparsity-inducing global-

factor-local shrinkage is applied to the loading matrix to achieve a sparse variable

structure. Different values of k, the number of latent factors, are explored. The co-

variance matrix Γ is also estimated with each k value, and the results are compared

to that using Bayesian Gaussian copula graphical models. For future research, one

direction is to conduct a simulation study to investigate the optimization of k. To an-

alyze the same dataset using different models of graphical models and factor analysis

models, we also need to investigate model comparison via the simulation study.
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