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Abstract

The next phase of manufacturing is centered on making the switch from traditional
automated to autonomous systems. Future Factories are required to be agile, allowing for
more customized production, and resistant to disturbances. Such production lines would
have the capability to reallocate resources as needed and eliminate downtime while keeping
up with market demands. These systems must be capable of complex decision making
based on different parameters such as machine status, sensory data, and inspection results.
Current manufacturing lines lack this complex capability and instead focus on low level
decision making on the machine level without utilizing the generated data to its full extent.
This thesis presents progress towards autonomy by developing a data exchange architecture
and introducing Semantic Web capabilities applied to managing the production line. The
architecture consists of three layers. The Equipment Layer includes the industrial assets of
the factory, the Shop Floor Layer supports edge analytic capabilities converting raw
sensory data to actionable information, and the Enterprise Layer acts as the hub of all
information. Finally, a full autonomous manufacturing use case is also developed to
showcase the value of Semantic Web in a manufacturing context. This use case utilizes
different data sources to complete a manufacturing process despite malfunctioning
equipment. This provides an approach to autonomous manufacturing not yet fully realized
at the intersection of three paradigms: Smart Manufacturing, Autonomous Manufacturing,

and Semantic Web.
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Chapter 1

Introduction

Smart Manufacturing has taken a front seat in the advancement of manufacturing
production lines. This vision of Smart Manufacturing (SM) will be powered by Industrial
Internet of Things (110T), Big Data Analytics, and Artificial Intelligence. These capabilities
can have a substantial effect on the profitability of industry as a whole since manufacturers
must respond to fast-changing requirements through productivity advancements and agility
while maintaining high standards.

One aspect of manufacturing that SM seeks to tackle is the ability to minimize
machine downtime. Downtime refers to the period of time that production is halted for a
variety of reasons, one of which could be to perform maintenance on equipment. According
to Forbes, unplanned downtime can cost up to $50 billion a year to industrial
manufacturers. This presents a challenge to manufacturers in finding solutions to such
problems. Correspondingly, industries are embracing Digital Transformation and SM to
construct manufacturing systems capable of overcoming faults within and maintaining a
continuous production line hence increasing efficiency and throughput. These solutions
utilize 10T, Data Analytics, and Artificial Intelligence as the driving force.

This thesis aims at creating a system capable of utilizing the generated data within
the production line to tolerate faults or failures and hence minimize the downtime required
for maintenance. More specifically, this thesis addresses how Semantic Web can be utilized

to create a fault tolerant autonomous manufacturing system to minimize downtime.



We propose a novel approach to fault tolerant autonomous manufacturing that is
capable of eliminating downtime of a production line through data and domain knowledge
utilization. The proposed method uses Semantic Web technologies within manufacturing
to bridge the physical and digital worlds. This technology takes advantage of Knowledge
Graphs to incorporate sensor data with domain knowledge to react to machine failures
appropriately while maintaining production.

This work can lead to a substantial broader impact on the manufacturing industry
as it is a step towards adopting innovative technologies and standards for SM that can tackle
one of the costliest issues manufacturers face. This work has applicability in any
manufacturing site as issues with equipment failure can be present in any manufacturing
facility whether pharmaceutical, automotive, or aerospace.

The thesis is organized as follows: Chapter two provides a review of research topics
relevant to this thesis. This review covers topics such as Edge Computing, Digital Twins,
Semantic Web, and Autonomous Manufacturing, before narrowing down the focus of this
thesis. Chapter three describes the use case developed in this thesis and outlines some main
capabilities that the assembled Future Factories testbed has. This also provides the
theoretical framework for the developed use case. Chapter four dives into the details of the
infrastructure of the testbed and the application development process. The results from the
application are highlighted with a brief discussion of the effect this work has on

manufacturing and its limitations.



Chapter 2

Literature Review

2.1 Introduction

We provide an introduction and literature review of three research areas relevant to
this thesis. First, the field of Smart Manufacturing is introduced alongside the key topics
of Edge Computing and Digital Twins. Secondly, Semantic Web concepts are introduced
with an emphasis on different Semantic Web technologies and the integration methodology
within manufacturing. Finally, the Autonomous Manufacturing research field is introduced
highlighting its relevant capabilities. The final section introduces research at the
intersection of these three topics that this thesis will cover in the remaining chapters.

2.2 Smart Manufacturing

2.2.1 Background

Smart Manufacturing or Industry 4.0 refers to the fourth industrial revolution in the
manufacturing industry. Previously, the first to third Industrial Revolutions correlated to
steam power, mass production, and finally IT automated production, respectively (Thoben
et al., 2017). However, Smart Manufacturing aims towards building upon these iterations
and integrating innovative technologies into manufacturing settings such as Internet of
Things (IoT). With this, Industry 4.0 is replacing traditional automated systems with
autonomous systems capable of information exchange, decision-making, and independent

control. Research in Smart Manufacturing aims at the eight key areas of standardization,



infrastructure, safety, work organization, continuous professional development, managing
complex systems, regulatory framework, and resource efficiency (Dagerman, Wahlster, et

al., 2013).

2.2.2 Edge Computing

Edge Computing introduces processing capabilities closer to the data source. It
utilizes devices that are on the periphery of data generation rather than relying solely on
cloud-based technologies. This is due to the efficiency of processing the data closer to the
point of generation (W. Shi et al., 2016). Its main characteristics include fast processing
and swift response time (Khan et al., 2019).

Edge Computing does not refer to one specific device, but rather processing
location. It can encompass a plethora of resource-constraint devices such as Raspberry Pi’s
(Wan et al., 2018), Gateways (Wang et al., 2020), and regular computers (Zhang & Ji,
2020). Edge Computing complements Cloud Computing in latency-sensitive applications
(G. Carvalho et al., 2021). Most of these applications require quick processing times to
determine actionable decisions. Table 2.1 showcases different implementations of three
distinct use cases for Edge Computing: Real Time Analytics, Job Scheduling, and Anomaly
Detection.

Table 2.1: Use Cases for Edge Computing

Use Cases Paper Role of Edge Device Used
Real Time (Caoetal.,, 2017) | Descriptive analytics are Cisco IR829
Analytics used to uncover Industrial Integrated
meaningful patterns Services
from real-time data Router
streams.




(Sirojan et al.,
2019)

Event detection and
analysis.

NI single-board
controller (NI sbRIO-

9637)
Job (Wan et al., 2018) Energy consumption Raspberry pie board,
Scheduling model related to the UDOO board,
workload. ESP8266
(Wang et al., 2020) Algorithm execution Smart Gateways
Anomaly (Zhang & Ji, 2020) Abnormal situations Computer equipped
Detection detected using the with a 3.2 GHz Intel

trained LSTM.

Core i7 processor and

8GB RAM.
MSP430 or ARM

(Liuetal., 2021) Anomaly detection

algorithm.

This figure represents only a small subset of the work being done within Edge
Computing but intends to showcase the variety of applications that can benefit from it,
whether it was through deployment of machine learning models straight on edge (Schneible
& Lu, 2017; Zhang & Ji, 2020) or data analysis algorithms with quick processing times
(Caoetal., 2017; Liu et al., 2021; Wang et al., 2020).

2.2.3 Digital Twin

The first notion of a Digital Twin (DT) was introduced in 1964 with the
development of Ivan Sutherland’s Sketchpad (lvan Sutherland, 1963). Since then, DTs
have been adopted in different fields including manufacturing, construction, aerospace,
automobile, and electricity (Qi et al., 2021). Even with this rich history, the term “Digital
Twin” was not explicitly coined until 2011 by Michael Grieves (Michael Grieves, 2015).
With the advancement of technology, DTs began to gain capabilities more complex than
mere digital representations, but systems capable of analysis and affecting the physical
system as well. Table 2.2 details a few applications of DTs in manufacturing.

5



Table 2.2: Digital Twin Implementations

Title

(Citation)

Description

A Cyber-Physical Machine Tools
Platform using OPC UA and
MTConnect

(Liu etal., 2019)

OPCUA based approach to integration of
machine tools into a cyber physical data
collection system

A Reconfigurable Modeling
Approach for Digital Twin-based
Manufacturing System

(Zhang et al., 2019)

Presents modeling approach for
reconfigurable manufacturing systems.
Allows use of digital twin to explore possible
options and issue corrective actions.

Analyzing bearing faults in wind
turbines: A data-mining approach

(Kusiak & Verma, 2012)

Machine learning approach to fault prediction
in wind turbines. Predicted over-temp faults
up to 1.5 hrs before fault. Models based on

real data from wind turbines, using input
parameters such as voltage phase, current
phase, torque, and temperatures.

Motion planning and scheduling
for human and industrial-robot
collaboration

(Pellegrinelli et al., 2017)

Dynamic path planning for human robot
interaction. Optimization based on cycle
times and equipment availability.

Petri-net-based dynamic
scheduling of flexible
manufacturing system via deep
reinforcement learning with graph
convolutional network

(Hu et al., 2020)

Deep reinforcement learning approach to
manufacturing operation scheduling. Multiple
learning network approaches used against
digital model.

A digital twin to train deep
reinforcement learning agent for
smart manufacturing plants:
Environment, interfaces, and
intelligence

(Xia, Sacco, et al., 2021a)

Initial results towards using deep
reinforcement learning
applied to manufacturing systems — dynamic
scheduling, vision, etc.

Machine Learning Based AFP
Inspection: A Tool for
Characterization and Integration

(Sacco et al., 2019)

Presents methodology for
automatic recognition of AFP defects using
ML techniques.




2.3 Semantic Web

In the early years of the Web, information was designed strictly for human
consumption. However, this meant that it was not interpretable by machines as well.
Consequently, the Semantic Web was introduced as an extension to define information
allowing interoperability between different systems and machines (Cardoso & Sheth,
2006). Semantic Web provides a framework to deal with massive scale, heterogenous,
and dynamic data (Sheth & Ramakrishnan, 2003). Applications for Semantic Web can
range from e-Learning (Markellou et al., 2005) to the EventWeb (Jain, 2008) (Sheth &
Perry, 2008). This section will provide a brief background on Semantic Web concepts

before exploring it in the context of manufacturing.
2.3.1 Background

2.3.1.1 Knowledge Graphs

The building blocks of the Semantic Web include entities linked together through
relationships. This creates a Knowledge Graph (KG) that represents information in a
structured form (Sheth et al., 2019). KGs can be used for enhanced search, browsing,
integration and analysis of data.

A KG is made up of two main components, nodes, and edges. A node can
represent an asset, person, place, or object. Edges on the other hand connect different
nodes together and create the relationship between them. A KG has two parts, the
Schema/Ontology and the Instantiations. A schema or ontology defines the classes to be
used in the KG (Parsons, 2009). In essence, ontology defines the domain of discourse,

and it consists of a finite list of terms and relationships. As for applications, KGs can be



used in various fields from Deep Learning (Gaur et al., 2021), to Robot Knowledge

Representation (Kho et al., 2014), to the medical domain (Xu et al., 2020).

2.3.1.2 Resource Description Framework

Resource Description Framework (RDF) is an international standard for Semantic
Web data or represent Web resources. RDF provides a common framework for
representing information to allow interoperability between applications. RDF resources
are documented through Uniform Resource Identifiers (URI). It is made up of three types

of resources: subject, object, and predicate as shown in Figure 2.1.

~°Main | Predicate | RenS—
Class

Subject Object
—_Class 5 Class

RDFS

.....................................................................................................

\Z o/ RDF
\ % § /

Predicate

Figure 2.1: RDF Model

In the context of Semantic Web, RDF is used to define ontologies and create the

instances needed to generate the overall KG.

2.3.2 Semantic Web in Manufacturing

Semantic Web technologies deliver explainable results to decision making and
offer an approach to autonomous systems that provide the accountability and transparency
required for manufacturing environments. Similarly, technological advancements of
different types of sensors, equipment, and robots have led to the generation of large

amounts of data during the manufacturing process that can provide insights on the status
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of the production line. Much work has been done to merge these two paradigms to support
insights and decisions for manufacturing applications.

Ontologies were developed that can be adopted within a manufacturing context.
The ManuService ontology was developed (Lu et al., 2019), based on service-oriented
business interactions. An ontology was developed focusing more specifically on additive
manufacturing (Dinar & Rosen, 2017). An engineering ontology model was developed on
an enterprise level (Lin & Harding, 2007). The Bosch Industry 4.0 KG was created to aid
with interoperability between different systems such as products, machines, equipment,
and processes (Grangel-Gonzalez et al., 2020). All these works focus on creating the
schema to be adopted as a standard when creating KGs for manufacturing purposes.

Some works oriented these frameworks towards business planning and production
order. A Semantic Web based architecture was developed to create an integrated business
process model using OWL (Yang et al., 2005) and integration between a design house and
manufacturer was established through a Semantic Web service for business interactions
(Kulvatunyou et al., 2005). Different works also adopted Semantic Web to enable
collaboration and resource allocation within a manufacturing facility (Cai et al.,
2009)(Alsafi & Vyatkin, 2010)(Yang et al., 2005)(Balakirsky, 2015) .

Within these KGs, information is stored from different sources. One main
advantage of KGs is the ability to integrate domain knowledge which provides data from
external sources rather than from the shop floor. This information can be found publicly

and integrated within a KG.



2.3.2.1 Manufacturing Use Cases

Based on the above studies, manufacturing use cases for Semantic Web can be
identified to showcase the potential of the intersection of these two domains. These
capabilities can be split into three distinct categories: Vertical Integration, Domain
Integration, and Autonomous Systems. Each category will adopt traditional manufacturing
use cases to show the enhanced capabilities that can be achieved. These use cases are
Monitoring, Predictive Maintenance, and Quality Control and will be expanded upon
within each category listed previously. Monitoring traditionally encompasses the act of
supervising the manufacturing process and ensuring all assets are operating as they should.
Predictive Maintenance is a field of research on its own that deals with the analysis of
equipment data to predict whether and when in the future the maintenance will be required
so as to minimize downtime and extend the assets’ lifetime. Quality Control measures the
quality of the product being manufactured and studies how best to maintain that specified
or targeted standard of quality.
Vertical Integration
Vertical integration deals with the abstraction of heterogenous data sources in the
manufacturing facility into one unified data model. It is the abstraction of all components
of the factory from the raw data level to a data model that can be integrated with other
components in the factory to create one homogenous and standardized data model,
represented as a KG, that can be queried to obtain any information that the user requires.
Unlike traditional IT systems that require significant manual effort to integrate data

systematically.
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Monitoring
With the introduction of the standardized data model that can be queried,

monitoring becomes simple to achieve. One example is to create a centralized dashboard
with signals obtained from the equipment and sensors alongside process signals and
deduced knowledge. A concrete example could be the inclusion of sensor data, process
signals (indicators such as job number and operating equipment), and deduced knowledge
such as product state.
Predictive Maintenance

Since all data has been unified into a standard model, predictive maintenance
algorithms can now have a more holistic view of the signals being produced by the
equipment. For example, a certain asset equipped with a vibration sensor and temperature
sensor and monitored by a thermal camera can all be easily utilized to derive a well-

developed predictive maintenance model for that asset.

Quality Control

Traditional quality control relies on multiple variables obtained from the completed
product to test the validity and quality before shipping. The unification of all sensor data
aids in obtaining further indicators from the product testing. For example, a traditional
quality control method might test for smooth surfaces using one sensor. However, an
enhanced quality control method can utilize data from the sensors used in the quality check
and during the manufacturing procedure to produce more holistic quality indicators.
Domain Integration

Domain knowledge denotes information from different fields obtained from

external sources and not generated from the factory. This category outlines examples where

11



the fusion of these two information sources can be of advantage for the traditional
manufacturing use cases adopted in this section.
Monitoring

Dashboards would not only include signals that originate from the factory but can
work towards adding further context. For a cross domain example, a dashboard can include
current electricity rates, so technicians decide how best to run equipment to lower the cost
of electricity usage. This can also include market trends and demands to help optimize
manufacturing accordingly.
Predictive Maintenance

Manufacturer specifications provide ideal conditions and output ranges that can be
used in training predictive maintenance models. The inclusion of these specifications
alongside other domains knowledge such as temperature and humidity can allow models
to predict maintenance schedules more accurately. An example of this can be the
maintenance of a sensor placed in a rugged environment. The knowledge obtained about
temperature, manufacturer specifications, and the generated data can all be combined in

the training set.

Quality Control

A factory can focus more of its resources depending on market demands. More
specifically, a factory that produces face masks and gloves can produce both in equal
amounts. However, when market demand for masks increases while that of glove
decreases, instead of increasing production of masks only and produce lower quality masks

from over working the equipment, the factory will use the knowledge acquired from the

12



market to reallocate resources and produce more masks and less gloves while maintaining

the same standard of quality.

Autonomous System

This category is the culmination of all the abilities mentioned above. It combines
the unification of local data sources with domain knowledge acquired from external
sources. The following examples outline how these two paradigms can interact to create a

full autonomous system within a manufacturing environment.

Monitoring

For monitoring, the system has concrete contextual information of all equipment in
the factory. On top of that, it has domain knowledge about the equipment. One example of
the use of this is to monitor the performance of sensors present in the factory. Should one
be acting outside the manufacturer specified operational range, the system will suggest
different sensors that can be ordered instead that might be more cost effective.
Predictive Maintenance

Predictive maintenance in an autonomous system introduces a new layer of
capabilities that can minimize downtime of the production facility. The multimodal data
generated can be used to create health indicators for different assets. The autonomous
system can then allocate jobs based on the equipment health indicators, maintenance
schedules, factory workload and orders. This can aid in prolonging equipment lifetime and

minimize needed maintenance.

Quality Control
Quiality indicators are derived from heterogenous sources in the manufacturing

facility while keeping up with the different trends of the market. An autonomous system

13



will allocate jobs while maintaining a certain standard of quality by considering market

trends, machine health indicators and generated sensor data.

2.3.3 Integration of Semantic Web in Manufacturing

This section will look at the intersection between Semantic Web and Smart
Manufacturing, more specifically detailing the integration methodology of Semantic Web
technologies into manufacturing facilities.
2.3.3.1 Semantic Annotation

In manufacturing, sensors generate large volumes of which need to be annotated to
be used. Raw sensor data demands annotation with semantic metadata to obtain
contextualized information. Standardized annotation allows greater interoperability
between machines, and more accessible data models. This annotation effort represents the
translation of the raw sensor data to RDF, based on specific ontology mapping. Different
ontologies for sensor data mapping have been developed in the context of manufacturing.

The OGC Sensor Web Enablement Ontology (Botts et al., 2008) was established
by the Open Geospatial Consortium (OGC). It includes Observation & Measurement
(O&M), Sensor Model Language (SensorML) and Sensor Observation Service (SOS).
O&M and SensorML provide a standard model and XML schema for captured
measurements. The SOS model offers a mechanism to query the observations and sensor
metadata. Developed by W3C, the Semantic Sensor Network (Compton et al., 2012)
ontology is a standard for modelling sensor devices, knowledge of the environment and
observations and sensor platforms. Semantic Sensor Observation Service (SemSOS)
(Henson et al., 2009) provides the knowledge base to derive higher level abstractions from

the annotated sensor data. It retains the standard SOS specifications/service interactions
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while offering a semantic backend. SemSQOS is the principal component of the Semantic

Sensor Web (Sheth et al., 2008), the precursor to the SSN.

2.3.3.2 Integration Methodology

A
Domain
Knowledge —
° oA
. - » Enterprise o
Enterprise - — Knowledge M -
Layer ‘o e o
Factory Factory | Factory |
I Annotated Data ’ 1 2 \{ o ‘
Shop Floor o= |||n|||l'| "
Layer lloT
Gateways Edge Devices
IMuItimodaI Data
| - S S
& 2|
-] s
Equipment 3 bolissd
Layer KRobots PLC Sensors canveyoy / /

Figure 2.2: Layered Equipment Architecture for Factories

This section will outline the vision for Semantic Web integration in
manufacturing that can be deployed on different devices and equipment. It consists of
three layers shown in Figure 2.2. The first layer is the Equipment layer which contains
all the manufacturing equipment such as Robots, Conveyors, and Programmable Logic
Controllers (PLC). The second is the Shop Floor layer which introduces computational
and processing capabilities and includes devices such as edge devices and gateways.
Finally, the Enterprise layer introduces the cloud level and adds another and more
powerful computational level. The Enterprise layer also acts as the hub of all knowledge

whether it be domain knowledge or generated locally.
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Equipment layer

The Equipment layer oversees communication within the industrial assets of the
factory, providing the needed logic to advance manufacturing lines. State-of-the-art digital
transformation techniques are fundamental to automate rapid understanding of acquired
data supplied by the physical infrastructure. For instance, industrial sensors can be installed
on legacy equipment to acquire process variables (throughputs, wastes, product levels,
material feeds, visual inspection, etc.) and machine health variables (temperature,

vibration, force, etc.).

PLC’s can monitor process signals such as control logic signals which indicate the
machine states, torque signals, safety signals, and actuator signals. The Open Platform
Communications (OPC) protocol (Leitner & Mahnke, 2006) can be used to send these
variables to different equipment which allows interoperability between manufacturing
systems (Xia et al., 2019a). On top of that, advanced sensing technologies can allow state
acquisition. An example of this would be visual monitoring systems (Saidy et al., 2020)
(Xia, Saidy, et al., 2021a) which include high-resolution security cameras, thermal infrared

cameras, and wireless inspection cameras.

Shop Floor layer

The Shop Floor layer introduces edge analytic capabilities on real-time collected
data. Data from sensors on industrial assets are typically in a raw format and do not
provide contextualized information. Annotating the data at the level of devices near the

source could be sufficient to integrate the raw data from heterogeneous sources.
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RDF can be utilized in this scenario. Adding Semantic Web technologies to
resource constraint devices and the study of multiple semantic representations for sensor
measurements with regards to energy efficiency of data communication and processing
were evaluated (Su et al., 2015) and concluded that Entity Notation (EN) (Su et al., 2012)
and JSON for Linked Data (JSON-LD) are adequate representations of RDF.

Different formats can be transformed to RDF using SDM-RDFizer (lglesias et
al., 2020) for uniform reasoning of sensor data. One approach for resource constraint
devices is to format RDF from Sensor Markup Language (SenML) which supports JSON
and Efficient XML Interchange (Su et al., 2014). In addition to this, a binary XML format
was developed due to the difficulty in storing RDF on resource-constrained devices from
the textual representation of RDF. However, prevalent reasoning mechanisms such as
Jena reasoning engine (Ameen et al., 2014), Pellet (Sirin et al., n.d.), RacerPro (Haarslev
et al., 2011), and Fact++ (Tsarkov & Horrocks, 2006) used with KGs have limited use

within current edge devices due to processing complexity.

Enterprise layer

The Enterprise layer can perform complex decision-making using edge analytics,
domain expertise, and global knowledge bases. It is also responsible for communication
among devices at the Shop Floor layer, allowing them to build their own networks and
perform autonomous decision-making. The Enterprise layer consists of processing-
intensive cloud components with the help of the Enterprise KG (EKG). The EKG acts as
the hub of information from joint departmental efforts involving backlog of events, analytic

outputs, sensor readings, and domain expertise. This knowledge is required for any
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emergent production tasks and future occurrences of similar tasks. The EKG may also be

dynamic and capture new knowledge.

Streamed Linked Data (Le-Phuoc et al., 2011) allows the storage and processing of
continuous streams of factory states which provides the ability to update physical and
virtual components of the framework to enhance productivity and remove faulty/irrelevant
segments (Tao et al., 2017). This introduces the concept of Dynamic KGs (Pujara &
Getoor, n.d.) (Das et al., 2018)(Padhee et al., 2018) that can update a triple in a KG when
new sensor data is acquired.

2.4 Autonomous Manufacturing

2.4.1 Background

Autonomous systems can execute high level tasks without human intervention
(Rosen et al., 2015). It refers to the complete automation of decision making (Bourne &
Mark S. Fox., 1984). Different definitions have been given to the term autonomous
manufacturing such as the “ability to identify their status and capability autonomously,
to collect data, and to take decisions according to the changes of the manufacturing
system”(Ding, Lei, Chan, et al., 2020), “the autonomous communication and
collaboration between the WIP and the machines during production”(Park & Tran, 2011),
and employing “Industry 4.0 technologies like the Industrial Internet of Things (IloT),
artificial intelligence (Al), and data analytics to modify and optimize production on the
run”’(David Rand, 2021). Each of these definitions tackles autonomous manufacturing
from different perspectives whether it is the ability to autonomously create decisions,

communicate with other equipment, or optimize production.
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2.4.2 Approaches to Autonomous Manufacturing

Several earlier efforts have sought to implement Autonomous systems in a
manufacturing environment. Many of these works adopt the smart manufacturing concepts
discussed in this chapter and integrate further Al principles to create a decision-making
model for manufacturing lines. This section will highlight a few of these works grouped
together by the technologies used to create the autonomous system.

As autonomous systems involve decision making processes, and need to be
deployed without explicit programming, Machine Learning (ML) was widely adopted as a
common approach to build an autonomous manufacturing process. In fact, a large portion
of the research community is focused on the development of new algorithms in
manufacturing (Sharp et al., 2018). ML is a field of research focused on learning systems
and algorithms (Qiu et al., 2016). ML aims towards providing the machine with the
capability to create data-driven decisions by inputting a large amount of data so the created
ML model can leverage that data.

ML models can be split into three categories: supervised learning, unsupervised
learning, and reinforcement learning. Supervised learning requires a training data set with
labeled inputs and their corresponding outputs. During training, the model will learn the
relationship between the inputs and outputs and will eventually be able to deduce the output
for new inputs based on the learned inputs. Unsupervised learning attempts to detect
patterns not outlined previously with minimal human supervision. Unsupervised learning
does not use labeled data but models’ probability densities based on the input data set.
Reinforcement learning relies on an agent learning the correct decisions by reward

accumulation.
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2.4.2.1 Reinforcement Learning

ML was applied in a manufacturing system that builds parts according to user-
specified performance indicators (Alam et al., 2020). The work developed supervised and
reinforcement learning algorithms deployed on digital counterparts of the manufacturing
process to assess performance with little data generation. A reinforcement learning model
was developed as a means of successful collaboration between different autonomous robots
working within the same shop floor (Agrawal et al., 2021). Similarly, a reinforcement
learning model was trained on a DT of a manufacturing shop floor to ensure no collisions

occur (Xia, Sacco, et al., 2021).

2.4.2.2 Supervised Learning

Supervised learning models were developed in the context of manufacturing to
reduce cost and waste while increasing productivity of a cutting tool in machining lines (C.
P. de Carvalho & Bittencourt, 2021). A supervised learning approach was adopted that
learns from previous events to allow variable levels of autonomy for a robotic arm
conducting object relocation tasks (Wheeless & Rahman, 2021). Supervised learning was
used to inspect the elements in an ‘inspection by exception’ methodology that only inspects
manufactured parts that cannot be categorized above a certain confidence level whether the

part is healthy or unhealthy (Papananias et al., 2020).

2.4.2.3 Unsupervised Learning

The above model was also coupled with an unsupervised learning model that is
trained to categorize the healthy and unhealthy parts as well (Papananias et al., 2020). An
unsupervised learning model was adopted as a tool for dynamic task allocation of

unmanned surface vehicles in constrained environments. This was done through splitting
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up the task management into two categories, task allocation and task execution (Ma et al.,
2021). Supervised and unsupervised learning models were coupled to monitor performance
by classifying defects. The traditional supervised learning model is trained to detect any
defect while the unsupervised learning model is used to ensure that the data set that the
first model is trained on is still relevant and add new defects that may arrive achieving a

truly autonomous inspection capability (Banf & Steinhagen, 2022).

2.4.3 Characteristics of Autonomous Manufacturing

Autonomous manufacturing systems can be summarized by some characteristics
that highlight their capability. An autonomous system can be fault-tolerant to a faulty
sensor by preventing a temporary breakdown of a line or factory by suggesting a
replacement sensor with similar functionality (Thuluva et al., 2017). This system can also
dynamically allocate resources at runtime (self-organization), rather than pre-allocating.
This can be done while considering factors such as the machines’ current conditions,
machine availability, maintenance schedule, and customer orders. Resource allocation
could also consider external electricity rate data reduce factors such as energy consumption
and carbon footprint by offsetting carbon emissions. Furthermore, when production
demands lead to the introduction of a new machine in factories, it can simply participate
by announcing its services and features during the resource allocation process (agile
manufacturing). This illustrates the agility of a factory, where a new machine can be
integrated in a plug-and-produce fashion according to market demands with minimal
downtime. Based on these characteristics, a total of twenty-two autonomous manufacturing

publications were selected and categorized. These papers are shown in Table 2.3.
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Table 2.3: Categorized AM Implementations

Paper Description Self- Agile Fault
Organizing | Manuf. | Tolerant
(lwamura & Real Time Scheduling of tasks for X
Sugimura, AGV’s
2010)
(Grundstein et | Control of order release, sequencing, X
al., 2017) and capacity control
(Hildebrandt et | Flexible production system in complex X
al., 2016) pick and place tasks.
(Wada & Execution control system for X
Okada, 2002) dispatching tasks
(Moergestel et Agile production of different X X
al., 2011) equipment.
(Tharumarajah, Adaptable Scheduling of X
1998) Manufacturing Lines
(Goldsmith & Distributed scheduling systems for X
Interrante collaboration and improved
1998) ’ performance
(Bourne & Control and planning of shop floor X
Mark S. Fox., jobs
1984)
(Caoetal., Autonomous Distributed Systems for X
2020) personalized product manufacturing.
(Aly et al., Workspace design to optimize X
2010) autonomous production.
(Jarvis, Jarvis, Autonomous execution of robot X X
Lucas, et al., assembly processes
2001)
(Ding, Lei, Collaboration based on optimal X
Zhang, et al., production decisions.
2020)
(Jarvis, Jarvis, Resources-dependent autonomous X X
McFarlane, et assembly process
al., 2001)
(Schuster et Autonomous assembly process by two X
al., 2017) robotic arms
(B. Scholz- Compensate for manual intervention X
Reiter et al., in manufacturing process.
2009)
(Park & Tran, | A manufacturing process capable of X
2011) adapting to disturbances
(Huetal., Dynamic Scheduling for flexible X
2020) manufacturing systems
(Agrawal et Collaboration between different X X
al., 2021) autonomous robots working within the

same shop floor
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(Xia, Sacco, et | Ensure no collisions in manufacturing X

al., 2021a) shop floor
(C.P.de Reduce cost and waste while X
Carvalho & increasing productivity of a cutting
Bittencourt tool in machining lines
2021)
(Wheeless & | Variable levels autonomy for a robotic X
Rahman arm carrying out object relocation
2021) ' tasks
(Alam et al., Builds parts according to user- X
2020) specified performance
Total 17 7 2

The selected papers were published between 1984 and 2021 to attempt and achieve
a holistic view of the history of research in autonomous manufacturing. The publications
are also collected from a wide variety of sources ranging from IEEE journals to the Journal
of Manufacturing Systems to Conference Proceedings. This was in part to attain a sample
pool representing all different fields of research that autonomous manufacturing can be
relevant in. Table 2.3 displays a stark contrast between the number of efforts aimed towards
implementing a self-organizing and flexible system compared to fault tolerant systems.
The capability of self-organization and flexibility can be found in 17 and 7 publications

respectively, whereas fault tolerance can only be found in two of them.
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Figure 2.3: AM Research Field Overview

To gain a more complete perspective of the autonomous manufacturing research
field, the network in Figure 2.3 was generated to give a more comprehensive perspective
of the field of the autonomous manufacturing research. This network is a compilation of
keywords from one thousand autonomous manufacturing papers. These papers were
gathered from the Web of Science search engine and all the keywords were extracted.

These keywords were then visualized using VOSviewer (https://www.vosviewer.com/).

The keyword must have appeared at least ten times to show up in this network. A link
between keywords signifies that they have appeared in the same paper. From this network,
different research areas can be pinpointed including Autonomous Vehicles, Smart
Manufacturing, Multi-Agent Systems, Distributed Manufacturing Systems, and Industry
4.0. The main outcome from this network is the shortage of Semantic Web terminologies

with the only one present being “ontology.” This does not mean that no work has been
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done at all but that the work has not been explored excessively or has not produced many
significant outcomes.
2.5 Discussion and Gap Assessment

From the above analysis, there are different research gaps that could be addressed
in this thesis. The first being research work aiming at accomplishing fault tolerance.
Among the publications reviewed, only two previous implementations had relevant work
to fault tolerance. This represents a small sample size of the overall pool even though this
capability is of significant value to manufacturers. Hence, this thesis will attempt to
achieve an autonomous manufacturing use case that can showcase the fault tolerance
capability. In addition to that, Semantic Web has not been a widely adopted approach to
witness such capability, with previous works adopting Semantic Web for collaboration
(agile manufacturing) and resource allocation (Self-Organizing).

Additionally, there are five phases in utilizing KGs: Knowledge Acquisition,
Knowledge Fusion, Knowledge Processing, Knowledge Storage, and Knowledge
Utilization. Within a sample pool of collected works involving Semantic Web and
manufacturing, none had fully undergone the five phases. (Teern et al., 2022). In addition
to that, a lack of effort has been observed regarding integrating heterogenous sources
such as sensors, material required, work orders, and quality of material (Yahya et al.,
2021). This thesis will be tackling all five of the above phases within a manufacturing
environment and integrating different sources into one central KG. To be able to achieve
that goal, this thesis aims to find the intersection between the three research fields
discussed in this chapter by utilizing Smart Manufacturing and Semantic Web techniques

to tackle the identified gap. The approach is detailed in Figure 2.4.
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Within Smart Manufacturing, this thesis covers the implementation of the state-of-
the-art testbed infrastructure in the Future Factories lab. This includes Edge Computing
and Digital Twin capabilities that will be utilized for the use case. The Semantic Web
integration methodology outlined in this chapter will also be employed to realize this use

case. Chapter three will outline the process of developing this use case in greater detail.

Smart Manufacturing

Build Future Factories Infrastructure.

Utilize
equipment to
introduce
semantic
technologies.

Set up data
architecture

An autonomous
manufacturing process
using Semantic Web in
the Future Factories
testbed

Autonomous
Manufacturing

Create use case for
future factories
infrastructure

Semantic Web

Integrate Semantic
Sensor Network
Ontologies

Develop full autonomous
manufacturing use case
using semantic web.

Figure 2.4: Contribution Outline
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Chapter 3

Theory and Development

3.1 Introduction

As described in Chapter two, this thesis focuses on creating a manufacturing testbed
in the Future Factories (FF) lab at the University of South Carolina and utilizing Semantic
Web technologies on this testbed to realize an autonomous manufacturing use case. This
section will narrow down the use case adopted in this thesis. Following that, various aspects
of the developed testbed are introduced that showcase its capabilities and how they fit in
with the overall use case. Finally, this section will cover the implementation plan of the
application developed in this thesis.

3.2 Autonomous Manufacturing

3.2.1 Use Case

To showcase an autonomous manufacturing process, this thesis narrows down one
characteristic of those outlined in the previous section and adapts it to the FF lab. More
specifically, a fault tolerance use case is developed.

The developed application can be broken down into the significant parts shown in
Figure 3.1. In order for fault tolerance to be realized, the existing manufacturing assets
within a factory floor must react appropriately to a sudden malfunction of a certain sensor.
This reaction allows the process to continue without any downtime for maintenance or

replacement. For this to happen, assets must be aware of the different data sources available
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that can be utilized. Semantic Web presents an ideal solution to this issue as all the different
information mentioned can be stored in interoperable fashion ready to be used whenever
needed. It also presents greater advantages than the minimal existing cases of fault
tolerance which do not utilize Semantic Web as it provides a standardized approach and

model which can be modified to different knowledge discovery applications.
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Integrate Reasoning
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Figure 3.1: Semantic Web Application in Manufacturing

This application begins with the reading of the raw sensor data by the controller
present within the facility. Once that data is acquired it is semantically annotated using a
user defined mapping derived from the Semantic Sensor Network ontology(Compton et
al., 2012), a standard ontology to represent sensor data. This information is then integrated

with other information including the domain knowledge of the facility and manufacturer
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specifications. In this case, the domain knowledge includes the different sensors that can
be used for a certain process. The manufacturer specifications outline the output range of
a normally functioning sensor. Once all this information is integrated into one KG, a
reasoning process can help deduce whether the sensor is functioning properly. This is done
by comparing the data read from the actual sensor with the manufacturer specification
output range present in the KG. A corresponding triple is added to the KG which shows
the sensors functionality status. Based on this, the query engine decides which sensor to
use based on the domain knowledge present in the KG. This decision can then be relayed
to the controller. Semantic Web also improves upon traditional exception handling which
requires every exceptions to be hard coded. This leadng to numerous lines of code. The
different components built in this application can also be used for different capabilities

minimizing the need for redundant work.

3.2.2 Requirements

To realize this autonomous manufacturing use case in the FF lab, a certain set of
requirements are needed. The first requirement deals with the physical infrastructure
needed to implement the use case on. To satisfy this requirement, work must be
accomplished that integrates different manufacturing and processing equipment together
to achieve a full testbed. These devices should have open communication channels and
must have equipment with the processing ability to handle the required data. These
requirements are met through the developed testbed. The second requirement is from the
Semantic Web aspect. In this requirement, the work must integrate the needed data. It will

show how locally generated data can be semantically annotated, then integrated to create
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the KG. This KG is then used to come up with decisions for the manufacturing process.
These steps are discussed in more detail in the remainder of this chapter.

3.3 Future Factories Testbed
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Figure 3.2: Future Factories Lab Set Up
The testbed in the FF lab at the University of South Carolina’s McNair Aerospace

Research Center is designed to be a testing environment for different technologies to be
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integrated in smart manufacturing processes. The testbed is a platform to introduce state of
the art tools in robotics, the Industrial Internet of Things (l110T), data analytics, and edge
computing. This testbed is made up of four conveyor belts (Figure 3.2) assembled to
provide maximum flexibility with respect to manufacturing processes. Currently, this
testbed can accomplish a simple assembly process of a custom 3D-printed model rocket.
This assembly process is achieved through cooperation between the different equipment in
the testbed. The procedure, while simple, is intended to show the capabilities of the
different platforms and assets in the testbed. The testbed exhibits all the requirements
needed for the autonomous manufacturing use case to be applied to, with communication
between devices set up and the availability of processing-intensive devices. This section
will cover the characteristics of the testbed alongside a background on the relevant tools
integrated within.
3.3.1 Characteristics

The testbed created was built with a few characteristics in mind. The infrastructure
is intended to be reusable, meaning it can be utilized to realize different use cases. Since
this testbed is supposed to be the foundation for future manufacturing research, it can be
exploited depending on the required use case. For example, this testbed can be used to
undergo research on edge computing or digital twin. The testbed uses communication
protocols which can be configured with devices from different manufacturers. This testbed
has the capability to be autonomous such that different Machine Learning techniques can
be deployed on the equipment for autonomous decision making. The testbed is also cross-
domain since it utilizes equipment from various manufacturers such as Siemens, IBM, Dell,

Yaskawa and others.

31



3.3.2 Digital Twin

Digital Transformation has become more prevalent in the manufacturing industry
over the last years. One aspect of Digital Transformation is the concept of a Digital Twin
(DT). Essentially, a DT is the virtual counterpart of a physical facility. It can be anything
from a simple CAD model of the facility to a complex system capable of two-way
communication from the virtual to the physical entity that can undergo real-time decision-
making or predictive analysis that affects the physical system. Currently, the FF testbed
has some DT capabilities with the integration of Siemens Tecnomatix Process Simulate as
the primary DT tool. Process Simulate is a software capable of modelling the physical

testbed in virtual space as seen in Figure 3.3.

Figure 3.3: DT of the FF Testbed
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It can also be used to program robot arm paths to be deployed onto the physical
systems and assess feasibility of different processes. In the FF testbed, Process Simulate
was first used to design the lab before the physical infrastructure was put in place.
However, it is currently being used to create different robot paths. The capabilities of this
tool go beyond that, including real-time DT systems and more custom functions. This
highlights the reusable and autonomous characteristics of the testbed. In relation to the
autonomous manufacturing use case, this DT technology permitted the initial design of the

testbed alongside the formulation of the path that the robot must undertake.

3.3.3 Off-line Programming

DTs are often utilized to program and assess different robot paths before
deployment into the physical system. Off-line Programming (OLP) refers to the act of
using the DT to program a robot or any other system through the virtual model in the DT.
OLP is used to program industrial robot arms in systems containing multiple instances of
robot arms that must perform different tasks. This is because hand-training multiple robots
would be time-consuming relative to the time OLP requires. This testbed uses Siemens
Tecnomatix Process Simulate as the OLP tool as well. As such, this testbed can easily
introduce new paths and processes for the robot arms. This aids with the reusable
characteristic listed above, as different use cases can be implemented with the introduction
of new paths for the robots. OLP was used to program the robot with the required path to

realize the autonomous manufacturing use case.

3.3.4 PLC Programming
A Programmable Logic Controller (PLC) acts as the brain of the operational

equipment in the FF Testbed. A PLC is a controller that has been adapted to manufacturing
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environments to control manufacturing processes. It can control equipment such as robotic
devices, assembly lines, and other machines. A PLC uses ladder logic meaning it
continuously monitors the inputs to generate with the required output. FF utilizes the
Siemens S7-1516F CPU to run the PLC logic with multiple /0O modules. The PLC program
was made through Siemens Totally Integrated Automation (TIA) Portal. This software
allows the user to program using ladder logic, functional block diagrams, statement list,
and structured control language. The FF testbed uses PLC programming to create the
different processes needed. The capability of writing the PLC code from scratch allows
this testbed to be reusable and interoperable as the code can be altered to different use cases
and sets up communication between the different operational devices. A custom PLC code
was written that integrates the sensor data and the robot paths to create the necessary logic
to implement the autonomous manufacturing use case.
3.3.5 Virtual Commissioning

Virtual Commissioning (VC) is a means of integrating both PLC Programming and
Digital Twins. In VC, a DT is commissioned to run the logic usually deployed on a PLC.
This ability allows users to test the PLC code on the virtual environment before the physical
counterpart. VC can be accomplished by providing a simulation or emulation of a PLC
(Software in the Loop) or coupling a physical PLC with the DT (Hardware in the Loop).
In the FF testbed, Process Simulate is coupled with a virtualized PLC using Siemens
PLCSim Advanced software. VC has been used to test the PLC code created before
deployment. VC allows the testbed to be reusable by reconfiguring the code and DT design
to fit the use case desired with ease. VC was used to test the custom PLC code written for

the autonomous manufacturing use case.
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3.3.6 Internet of Things (1oT) and Sensors

Internet of Things (1oT) refers to a system of interconnected computing devices
with other assets for the purpose of data exchange and processing. While 10T deals mainly
with consumer appliances such as smart home devices and prototyping equipment such as
Arduino processors, Industrial Internet of Thing (110T) refers to assets in manufacturing
systems such as robot arms, industrial sensors, and other machines. In this testbed, 1l0T
was developed through the integration of various sensors on different equipment and the
introduction of processing equipment capable of data collection and analysis. Currently,
10T techniques are utilized in the FF testbed to enable data communication between
sensory devices and logic controllers with more processing intensive devices such as the
edge device. One of the main components of the autonomous manufacturing use case are

the different sensors needed which are integrated into the FF testbed.

3.3.7 Edge Computing

As described in chapter two, Edge Computing is a field of research that introduces
processing capabilities closer to the data source rather than relying on cloud computing
technologies. This allows computing operations to be performed on generated data in real
time. This is usually done with edge devices located on premise, directly communicating
with the operational assets. Currently in the FF testbed, Edge Computing is being employed
to filter data before being sent to the cloud. This filtering is done to minimize the amount
of redundant data being stored. One current use case also includes closed loop control of
the assembly process using image processing. This thesis will explain how edge computing
is employed to introduce Semantic Web capabilities by mapping the raw data to

contextualized information for the fault tolerance use case.
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3.3.8 Cloud Computing

Cloud Computing describes the ability to perform processing intensive tasks over
the internet (“the cloud”). Generally, this capability requires equipment such as servers to
be introduced. Cloud Computing can be used for data storage, data analytics, and complex
intelligence. Cloud Computing can be useful in connecting data from multiple physical
locations into one centralized server. The testbed at the FF lab has different cloud
computing platforms currently being integrated. These platforms include Siemen’s
Mindsphere and IBM’s Maximo Application Suite. Current use cases for Cloud Computing
in the testbed are straightforward dashboarding and data visualization as work is still being
done on the connection of data from the PLC up to the different platforms. Cloud
Computing will be integrated as the platform for further reasoning of contextualized
information from the edge for the autonomous manufacturing use case.
3.4 Semantic Web in the Future Factories Testbed

This section will delve deeper into the fault tolerance use case. It will cover the
integration of Semantic Web concepts into the FF testbed and the process taken to

implement the use case.

3.4.1 Abstraction of Data

For the use case to be realized, proper abstraction of the manufacturing data must
be implemented.

Figure 3.4 describes an example of data abstraction. The Data, Information,
Knowledge, Wisdom (DIKW) pyramid has four layers. The lowest layer being the data

layer describes the raw data that is acquired by the sensor. The raw data provides no other
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information but the actual analog value that the sensor generates. The information level,

the second layer, connects this sensor data to spatial, temporal, or thematic elements.
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Figure 3.4: Example with different abstraction levels

In this example the information level connects the raw data value to the spatial
context within our manufacturing cell by connecting the value to the sensor generating it
and robot one, the larger asset that the sensor is connected to. The third layer is the
knowledge layer which utilizes the contextualized information to deduce knowledge that
cannot be measured directly. In this example, the measured value from the sensor linked
to robot one allows us to deduce that the robot gripper is closed. Finally, the fourth layer
makes use of the deduced knowledge from the previous layer to come up with decisions

regarding the process. In this example, the deduced knowledge reaffirms that the robot can
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continue its path in the manufacturing process. Even though the above is a very simple
example, this methodology can be used at a much more complex level. The aggregation of
multiple sensors in similar fashion can allow more complex monitoring of processes or
prediction capabilities. This same abstraction process will be implemented to realize the

autonomous manufacturing use case.

3.4.2 Development Methodology

Figure 3.5: Implementation Plan

Figure 3.5 outlines the steps taken to execute the full autonomous manufacturing
use case in the FF testbed. The first step details the information that the use case will utilize.

The second step focuses on acquiring this information in RDF to be able to manipulate it
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further using Semantic Web technologies. The data coming from the sensor is in raw format
and thus needs to be mapped out accordingly. To do this, an application was developed
that takes as an input this raw data and outputs the value mapped out to the correct entities
each time this value is updated. Once this application was developed, the next step was to
deploy it onto the FF testbed. The tools integrated into the testbed mentioned previously
were leveraged to deploy this application. The output of this application was then
integrated with the other information in a KG. Reasoning Mechanisms were then deployed
on the KG to deduce whether the potentiometer was functional or not. Once this was
known, the system can then decide whether to use the potentiometer or the timer to continue
with the required path. This provides a high-level structure of the implementation plan

adopted throughout this thesis.

3.4.3 Data Modelling
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Figure 3.6: Information for the AM Use Case
The first step was to identify the necessary information for the use case to be
possible. Figure 3.6 outlines the different information leveraged to produce the final
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decision. All the information presented is modelled using the Resource Description
Framework Schema (RDFS). The top half of the figure represents the ontology adopted
which is the Semantic Sensor Network (SSN) ontology.

The first set of information is the local data generated by the sensor in the testbed.
This data is mapped out to the potentiometer. This set has three separate entities in the
schema which are the Sensor, Observation, and Result entities.

1) sosa:Sensor: This entity represents a device that responds to a stimulus and
generates a result which relates to the potentiometer which is a sensor that generates
different results depending on the change in linear motion of its extrusion.

2) sosa:Observation: This entity represents the value of a property which in our case
is the measurement of the potentiometer. These two entities are linked together
using the sosa:madeObservation property.

3) sosa:Result: This entity represents the actual value of the observation made which
is the value given by the potentiometer which is linked to the Observation using the
sosa:hasSimpleResult property. The lower half of the figure illustrates the instances

created from the described ontology for this use case.

The second data source is the information obtained from the manufacturer. This
source provides information about the lifetime of the sensor and the normal output range
that the sensor should be yielding. This is required as it provides the information set that is
used to deduce the functionality of the potentiometer. The information is mapped as
follows:

1) sosa:Sensor: Similarly, to the first set, this entity represents the potentiometer
again and will be unified into one entity instance in the subsequent KG.
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2)

3)

ssn-system:SystemCapability: This entity represents a property of the Sensor entity.
In this use case, this represents the Range attribute of the potentiometer. This entity
is mapped to the Sensor entity through the ssn-system:hasSystemCapability
property.

ssn-system:MeasurementRange: This entity is the set of values that a sensor can
return which is the normal output range that the manufacturer specified for the
Potentiometer. This entity is mapped to the above entity using the ssn-

system:hasSystemProperty property.

Finally, the third data source is the domain knowledge about the testbed. As

described above, a robot arm can use the data from two different sensors to continue with

the implemented path. Either the potentiometer or a timer can provide the needed data to

deduce whether the gripper is in the required state or not. This set of information is integral

as it will be the basis of which the autonomous system will decide which sensor to rely on

for the process to move forward. This information is mapped as follows:

1)

2)

sosa:Sensor: Once again this entity describes the sensors used and will be instanced
twice for this source, once for the potentiometer and once for the timer.
sosa:Procedure: This entity describes a workflow, plan, or algorithm that makes a
change to the state of the world. In our use case, this will be instanced as Pathl
which is the path programmed on the robot to pick up the object. Pathl moves the
robot from its home location to the location of the part needed to be picked up.
Once the part is picked up which is indicated by the potentiometer value, this path
finishes by moving that part to a second predetermined location. This entity is
linked to the sensor entity using the ssn:implements property.
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Chapter 4

Implementation

4.1 Introduction

This chapter will provide a detailed view of all the steps taken as part of the
contributions in the Thesis. Section two will go over the development of the FF Testbed
and outline all the equipment available and the overall communication set up. Section three
will detail the Autonomous Manufacturing use case presented in Chapter three using a
Semantic Web approach.
4.2 Future Factories Testbed

To discuss all the assets available at the FF Testbed, this section will be broken
down into the three factory layers introduced in Chapter 2.
4.2.1 Equipment Layer
4.2.1.1 Robotic Arms

The FF testbed hosts five Yaskawa six-axis Robots (two HC10s and three GP8s)
and are controlled by YRC1000 and YRC1000micro robot controllers. Figure 4.1 shows
the Yaskawa GP8’s (on the right) and the Yaskawa HC10’s (on the left). The two GP8s
are primarily used for assembly tasks.

Their high speed and high repeatability accuracy allows them to cooperatively
assemble a wide range of items. The three HC10s are utilized to facilitate material intake

and output.

42



Figure 4.1: Robotic Arms in Future Factories

Additionally, they perform inspection procedures and some collaborative tasks with
the other robots. They can either be operated manually with smart pendants or remotely
through the PLC system. Custom designed pneumatic end-effector tools are 3D printed in

the lab and attached to the end of the robot arms to grip the rocket parts.

4.2.1.2 Conveyor System

The FF testbed also contains a four-conveyor system all connected to achieve full
loop around the different robots as seen in Figure 4.2. The C4N Conveyor Belts and Stands
are used to transport the manufactured or assembled products throughout the different
stations available in the testbed. They are controlled by the Sinamics GS120 Variable
Frequency Drives which in turn are connected to the Programmable Logic Controller. The
conveyor system is pivotal for allowing collaboration between the different robotic arms

available.
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Figure 4.2: FF Testbed Setup

4.2.1.3 Programmable Logic Controller

The devices and machines in the lab communicate to each other through a Siemens
SIMATIC CPU 1517F-3 PN S7-1500 PLC. PLC code is written in Siemens Totally
Integrated Automation (TIA) Portal engineering software, where the layout of devices in
the PLC network is configured and managed. The PLC communicates to connected devices

using a wide variety of communication protocols, the most notable being the Profinet
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Industrial Ethernet standard. The PLC is connected to three ET200SP Distributed 1/0
devices, which are essentially extended I/0O modules with larger numbers of available
inputs and outputs, and they are mounted near the controlled device as opposed to being
seated directly on the PLC rail. The Distributed I/0O modules are mounted by the robot
stations and communicate to the PLC network via a Profinet connection. Distributed 1/0
provides an advantage when communicating to devices such as robots that require a large
amount of 1/O signal allocation. In the TIA Portal software, PLC data tags have their data
type defined, and they are mapped to the robots’ concurrent I/O signals. These PLC tags
represent the actual logic state of the concurrent 1/0 signal. By creating a function block -
which essentially works like a class from a standard programming language - input, output,
and temporary variables can be created and assigned to the PLC tags. By writing PLC code
(whether using ladder diagrams, Structured Control Language, or Function Block
Diagrams), logic can be performed on the variables to manipulate the logic state of the PLC
tags upon triggering of the specified conditions moving the manufacturing process forward.
4.2.1.4 End Effectors

A pneumatic end-effector gripper tool was designed, and 3D printed in the Future
Factories lab and attached to the end of each robot. The design of the end-effector allows
the attachment of different gripper configurations depending on the shape of the workpiece
being manipulated, increasing the flexibility to address a broader range of manufacturing
use-cases. The end-effector hosts several sensors - accelerometers, potentiometers, and
load sensors, etc. - that report real-time status data to the Siemens Distributed I/O modules

mounted on the shop floor.
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4.2.1.5 Sensors

Motion Capture Cameras

Future Factories incorporates an OptiTrack motion capture system, Figure 4.3, into
the manufacturing cell using an optical motion capture software called Motive.
Retroreflective markers are placed at various locations within the cell to be tracked by
OptiTrack motion capture cameras that are mounted on the truss surrounding the cell. The
marker locations are calibrated in Motive, and once they are mapped within the generated
virtual 3D space, their coordinates can be linked within the software to create rigid bodies
to represent physical objects within the cell. OptiTrack plugins can be used to transmit real-
time motion data into other programs such as Unity or Unreal Engine; in the scope of
manufacturing, OptiTrack motion data is imported into Process Simulate for virtual
commissioning purposes.
Potentiometer

One of three sensors mounted on the Robot’s end effector, the Sensata-BEI
potentiometer measures the linear position of the extruding rod shown in Figure 4.4. The
main function of the potentiometer is to provide data about the status of the gripper. The
value given by the sensor when the gripper is closed differs from the one given when open
and thus the value provides knowledge about whether the gripper is open or closed. The

resistive sensor outputs a voltage that feeds directly into our PLC 1/0 modules.
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Figure 4.3: Opti Track Motion Capture System

Accelerometer

The second sensor mounted on the end effector is the TE Connectivity
accelerometer. The accelerometer measures the vibrations of the gripper. The main
function of this sensor is to determine the time interval where the gripper is closing or
opening. The opening and closing of the gripper will cause a sudden spike in vibrations

and thus when the accelerometer values are minimal, we can deduce that the gripper is in
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a stable state, and we can continue with the process. The accelerometer is connected

directly into the PLC 1/0 modules as well.

Figure 4.4: End Effector Sensors

Load Cell
The final sensor mounted on the end effector is the TE Connectivity amplified load
cell. The load cell measures the force or pressure that is applied to it. The main function of

the load cell in our testbed is to determine whether an object is currently being held by the
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gripper or not. When the gripper is closed and the object is being held, then the load cell
value will increase with the increase of pressure. However, when there is no object then

the value remains minimal. The load cell is also directly connected to the PLC 1/0 module.

Gateway

Figure 4.5. MistLX Vibration Sensors
Inductive Proximity Sensors

As part of the manufacturing processes, multiple stations were created on the
conveyors for flexibility of scheduled paths. However, to integrate this station onto the

conveyors, inductive proximity sensors had to be placed at every station. These sensors
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allow us to recognize when an object is at the station and ready to be manipulated with.
The proximity sensor is a digital sensor that is either on when an object is detected or off
when nothing is detected. These sensors are also directly connected to the PLC 1/O
modules.
Wireless Vibration Sensors

The MistLX Advanced Wireless Monitoring vibration sensors were installed on the
motor drives of every conveyor. These sensors are used to analyze the vibration frequencies
of the different conveyors and deduce equipment health indicators. The data is relayed onto
a gateway wirelessly and pushed onto the edge device for processing. Both the sensor and

gateway can be seen in Figure 4.5.
4.2.2 Shop Floor Layer

4.2.2.1 Simatic IPC227E

The IPC227E (Figure 4.6) is the main edge device used in the Future Factories lab.
It includes 240GB SSD storage, 8GB RAM, and an Intel Celeron N2930 processor. The
device has two ethernet ports as well. One port is connected to the PLC system through
Profinet connection, the other port is connected to the UofSC network. The second
connection allows users to access the edge device through the Siemens IPC Management
System. This management system is installed on the UofSC network and allows users to
access and configure many [PC’s while on the local network. Within the Future Factories
lab, the IPC has multiple uses including data collection and visualization, connection with
cloud services, and hosts the application developed as part of this thesis to transform raw

data to RDF triples.
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Figure 4.6. SIMATIC IPC227E (Left), Karbon 700 (Right)

4.2.2.2 KARBON 700

Another edge device present in the FF Lab is the Karbon 700 Rugged Edge
Computer (Figure 4.6). This device has 64GB SSD of storage, 4GB RAM and an Intel
Celeron G4900T Processor. This edge device is connected to the gateways and mainly
functions as a sink for data generated by the wireless sensors before sending them to the
cloud platform.
4.2.3 Enterprise Layer

The Enterprise layer in FF is still in the early stages of configuration and set up.
Currently, this layer includes two cloud platforms with limited connectivity to the data
generated within the testbed.
4.2.3.1 Siemens Mindsphere

One of the cloud platforms utilized is Siemens Mindsphere. Mindsphere is a
Siemens solution created as an 10T platform to seamlessly integrate the generated data from

a factory environment. Mindsphere has a variety of capabilities built within the software
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alongside the ability to deploy custom made applications. Within the FF lab, Mindsphere
is currently being utilized as a data lake alongside simple visualization of metrics.
4.2.3.2 IBM Maximo Application Suite

IBM Maximo Application Suite (MAS) is another cloud platform being integrated
into the FF lab. This platform is broken up into three different suites; Maximo Manage,
Health, and Monitor. Manage is intended to add assets to the platform which represent the
different equipment in the factory floor alongside the topology of their connection. Health
reads different data generated from the equipment and sensors then outputs different health
performance indicators and maintenance prediction. Monitor can be utilized to create
dashboards and visualizations of all the data connected to the platform. In the FF lab,
Maximo is currently being configured and as such is not being fully utilized for any specific

use case.
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Figure 4.7. Communication Architecture in FF testbed
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4.2.4 Communication Architecture

The overall communication architecture of the FF testbed is shown in Figure 4.7.
The figure outlines the variety of communication protocols that are implemented ranging
from wired Profinet and Distributed I/O connections to wireless Gateway and MQTT
communication. These connections allow data to be sent up through the defined layers from
the Equipment to the Enterprise layer and vice versa.
4.3 Fault Tolerance Use Case

With the FF testbed fully built the next step was to develop the use case presented
previously. Chapter three specified in detail the information that will be used in this use

case. With the requirements defined, the raw sensor data generated had to be translated.

4.3.1 Semantic Annotation

This translation process is called semantic annotation. In order to translate the raw
data to contextualized information, the generated sensor values had to be connected to
existing entities in the KG created for this use case. To do so, one of the Semantic Web
technologies describes in Chapter two was used and customized to fit into our case, SDM-
RDFizer (lglesias et al., 2020). SDM-RDFizer is an interpreter that transforms
unstructured data into RDF KGs. For this interpreter to function properly, the user must
perform some steps. The first step is to define the mapping that the interpreter must abide
by when functioning. This mapping must be defined in a Terse RDF Triple Language
(TTL) file, a common file format used to express RDF data. Within this file, triples are
defined using RDF Mapping Language (RML) (Dimou et al., 2014). RML allows the user
to define custom mapping rules for heterogeneous data structure to an RDF data model.

The raw data received is sent within a JSON object.
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"id": "101",
"qe": 3,

"ts": "2021-11-11T17:55:21.487Z",
"val": 5000

}.l'

Figure 4.8. Sensor Data in JSON

Figure 4.8 showcases a snippet of the JSON object that the raw data is sent
within. This object has four separate key-value pairs. The first is the unique 1D of the
sensor which allows us to identify which sensor this value corresponds to. QC refers to
the quality code or otherwise known as quality of service (QoS) which determines the
status of the message delivery. Ts is the timestamp of the generated value and finally
“val” is the actual value that the sensor is generating. The unique ID’s are assigned to
sensors based on the deployment of the SIMATIC S7 Connector (SIMATIC S7 Connector
Configurator Operating Manual V1.1, 2021) which provides connectivity for the Edge
Device being used to different PLC data tags which are set up for each sensor. When
configuring the S7 Connector, an ID is assigned to the PLC data tag based on the order
the tags are added starting from 101. In the mapping rules, the only key-value pairs that

are of interest for our use case are the ID and value.

RML functions through defining the triples and connecting them to the input data.
The first triple defined in this file is the triple connecting the sosa:Measurement entity to

the sosa:Result entity. The Measurement entity is appended with the time stamp of the data
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then connected to the value from the JSON object through the sosa:hasSimpleResult

relationship.
5000 1634
}131 ‘hagSimpleR ezult }Sl ‘hasSimpleR esult
ns3:2021-11-11T17:53:21.487Z ns4:2021-11-11T17:53:21.487Z
Wdeobsewatiml a a /uslzladeobsewatim]
ns2:Sensorl01 ns2:Sensorl02

Figure 4.9. Output of Annotated Data

After that triple is defined, the ID of the sensor is instantiated as a sosa:Sensor
entity and connected to the sosa:Measurement entity created in the previous triple through
the sosa:madeObservation relationship. Figure 4.9 shows the generated KG from the data

received for two sensors. This KG has four triple instantiations alongside the entity classes.

4.3.2 Deployment of Application

With the annotation application ready, it now needed to be deployed onto the FF
testbed. Referring to the three-layered architecture, the Equipment layer did not represent
a good option for such an application since it was more complex than simple logic
processing. Therefore, the Shop floor layer was chosen as the location of deployment. More
specifically, the IPC227E Edge device described above. The first step in deploying an
application onto the edge device requires containerization of the application. This step
essentially places all the written functions and their dependencies into one container that
can be run independently on any device. To accomplish this, Docker for Windows (Cook,

2017) was used. Running within a container also allows the application to run infinitely
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which in turn permits the translation of new data each time a new message payload is
received.

Once the application is containerized, the deployment process requires uploading
the docker image onto the edge device management system through the Siemens

Application Publisher.

m |

SIEMENS m o Pg 2

Figure 4.10. View of Application on Management System.

Figure 4.10 shows the application once uploaded to the management system. After
that, the application can be installed by pressing the install button on the right side of the
screen. Once completely installed, the application architecture is shown in Figure 4.11.

Sensors, conveyors, and robots are all connected to different 1/0 modules on the
PLC with unique data tags. The data associated with each data tag is then sent to the edge
device through the S7 Connector. This connector then publishes all this data in the internal
Industrial Edge data bus within the edge device through an MQTT connection. At this
point, the data is still raw and present in JSON. The deployed translator application

subscribes to the topic that the S7 Connector publishes to. Once subscribed, the application
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translates the data as described previously and publishes the annotated data back onto the
data bus through a different topic. This translation happens in near real time as the RDF

triples can be seen on the data bus as soon as the raw data is.
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Figure 4.11. Edge Device Application Architecture
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4.3.3 KG Generation

With the RDF triples being generated on the edge level, the next step is the creation
of the needed KG. This is done on a separate machine to simulate cloud level processing.
At this level, the Jena Reasoning Mechanism (Ameen et al., 2014) is utilized to be able to

integrate all the different information into one model.
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// STEP 1 : LOAD SEMANTIC SENSOR DATA for Jena
Model model = ModelFactory.createDefaultModel () ;

ReadFile.enrichJenaModelOntologyDataset{model,
FACTORY_DATA) ;

// GENERIC APPLICATION
GenericApplication generic_appli = new GenericApplication{model);

// STEP 2: SPECIFIC DOMAIM ONTOLOGIES AND DATASETS
ReadFile.enrichJenaMode lOntologyDataset{generic_appli.model,
MANUF_SPECS) ;

ReadFile.enrichJenaModelOntologyDataset{generic_appli.model,
DOMAIN_KNOWLEDGE) ;

Figure 4.12. KG Generation using Jena

Figure 4.12 shows the steps required to generate the KG. Step one creates the model

and integrates the generated triples. Step two combines those triples with the domain

knowledge and manufacturer specifications present in different files.

# if Sensorl®l value LESS THAN 40808 then Sensor needs changing

[NeedsChange:
(sosa:Measurement1980 sosa:hasSimpleResult ?v)
(ssn-system:Range ssn-system:hasSystemProperty ?r)
lessThan(?v, ?r)
->
(ssn:Sensorl@l sosa:MeedsChange "True™)

]

[DoenstNeedsChange:
(sosa:Measurement1988 sosa:hasSimpleResult ?v)
(ssn-system:Range ssn-system:hasSystemProperty ?PH
greaterThan(?v, ?r)
->
(ssn:Sensorl@®l sosa:MNeedsChange "False™)

]

Figure 4.13. Jena Rules
58



sosa:NeedsChange

—
ssn-system:hasSurvivalRange & ssn-system:LifeTime
_—

ssn:Potentiometer Sh:s Capability

Y d y Range
sosa:madeObservation o

sosa:Measurement1980
b

False

ssn:Timer sosa:NeedsChange

2000
Talypo Wi Tiwww w3 org/2001/XMLS homat docimal

1000

Datatype: hiip-wwwwi

sosa:NeedsChange False

ssn:Timer
sosa:NeedsChange

; ssn-system:LifeTime
: ssn-system:hasSurvivalRange
ssn:Potentiometer

ssn-system:hasSystemCapability

ssn-system:Range
sosa:madeObservation y B

sosa:Measurement1980

2000 ]
ype: hlip:/jwwww3 org/2001/XMLSchema#decimal |

4000
Datatype: hitp:fwww.w3.0rg72001/XMLSchema# decimal

4500 ]
org/2001/XMI Scl |

Figure 4.14: Final generated KG with functioning or malfunctioning potentiometer

4.3.4 Knowledge Deduction and Decision Making

With the KG created, reasoning was introduced to deduce knowledge from the
information present. This reasoning was introduced in the form of rules that allow the
creation of new entities which will be used in the decision-making process. Figure 4.13
shows the two rules that were implemented in this use case to deduce knowledge from the
information provided in the KG. Should the generated KG have a Potentiometer value of

less than that given in the manufacturer specifications, then the sensor needs changing. The
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visualized KGs whether the potentiometer is malfunctioning or not can be seen in Figure
4.14.

With the KG manipulation accomplished, the next step was to come up with the
final decision regarding the best way to complete the required path. To iterate through the
KG SPARQL (shorturl.at/QWZz35) was used which is a query language for RDF. In the
query statement in Figure 4.15, the status of the sensor is extracted. If the status returned
was that the sensor needs changing, then the different sensors that can be used are
discovered. The final projected result of the query statement is the decision made on which

sensor value to use shown in Figure 4.16 and Figure 4.17 .

SELECT ?Change WHERE{
ssn:Potentiometer sosa:NeedsChange ?bool.
sosa:Pathl sosa:ImplementedBy ?Sensors.
BIND(IF(?bool = "True", ?Sensors , ?hool) AS ?Change)

Figure 4.15. SPARQL Query

<ssn-system:hasSurvivalProperty rdf:datatype="http:/
</rdf:Description:
</rdf:RDF>
Mo Change Needed

Figure 4.16: Output if Sensor Operational
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<ssn-system:hasSurvivalProperty rdf:datatype="http://www.
</rdf:Description>
</rdf:RDF>»
Potentiometer needs changing
Will use [https://www.w3.org/ns/ssn/Timer] instead

Figure 4.17: Output with Malfunctional Sensor

4.4 Discussion

In this thesis, the incorporation of Semantic Web technologies was described within a
manufacturing context. The use case follows through with the full process of semantic
annotation of raw data, knowledge graph generation, and deduction of implicit knowledge.
For this thesis, Semantic Web was chosen as it presents a technology capable of
centralizing all the information required in one central database. It can also help provide
more fault tolerance capabilities beyond sensor malfunction, as different equipment can
work dynamically to cover for larger machinery failure by using the information present
about machine capabilities, production line layout, and scheduled jobs. This approach also
presents different advances to manufacturing in general.

4.4.1 Standardized Data Integration Process

The steps taken within this thesis to integrate the different information sources can be
applied within many different domains and use cases. Even though this use case focuses
mainly on one certain instance of a malfunctioning sensor, this process can be generalized
to encapsulate whichever capability required. This thesis also showcases the applicability
of undergoing real time translation of the raw data. This work presents a way forward for

incorporating heterogenous data sources from shop floors.
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With this procedure outlined alongside the technologies, further work can be undergone to
integrate more information and address other issues that may occur on the manufacturing
shop floor. This provides a great advantage over traditional exception handling which
requires numerous lines of code to cover every instance that may occur. Within this
approach, exceptions such as that tackled in this thesis, can be dealt with dynamically rather

than coded before deployment.

4.4.2 Interoperability

With more data being generated on manufacturing shop floors, more issues begin to arise
when addressing interoperability of that data. In that sense, Semantic Web provides a step
towards solving such issues with the emerging standards being adopted for structuring the
raw data in an accessible fashion between machines and equipment. These standards

include ontologies such as the one used in this thesis, the SSN ontology.

4.4.3 Domain Knowledge

Finally, KGs present a great opportunity for integrating domain knowledge for
manufacturing processes. As such, traditional specification mediums such as manuals can
be analyzed to include much of the information in there within the KG. This use case
focused only on output range but there are endless possibilities of information that can be
extracted whether it be operating or set up instruction. Having all this integrated into one
central KG can lead to different data accessibility and autonomous manufacturing
capabilities.
4.5 Limitations

One limitation with the developed application is the current lack of a user interface.

To develop the mapping required in the edge application, the user must have knowledge of
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RML coding for the application to output the correct RDF triples. Within the future work,
an interface can be created where users can create the mapping through in a graphical drag
and drop fashion. This can allow a broader range of users to collaborate in the data

integration effort as more assets can be mapped out.
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Figure 4.18: Application Installed on Edge

Another limitation this application has is the computational requirement needed to
process the data whether in the annotation or reasoning stage. Currently, the application
deployed on the edge device only reads two analog values and translates them into the RDF
triples outlined in the mapping. Even with the minimal data tags, the application still
requires 11% of the CPU and 1.21GB in storage as seen in Figure 4.18. Within
manufacturing facilities, hundreds of data tags would have to be processed to create a true
Knowledge Graph that encapsulates the full facility. This will cause an issue for resource
constraint devices such as the one used in this thesis as there will not be enough processing

capabilities to be allocated. For such an integration process to be possible, the application
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needs to be optimized at first to minimize the needed storage. Multiple edge devices could
also be utilized, each focusing on translating a range of data tags and thus distributing the

processing throughout the shop floor.
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Chapter 5

Conclusion

The need for autonomous manufacturing has become more apparent in the age of
Industry 4.0. With an ever-changing market and added focus on customized production,
factory floors must be agile and dynamic to adapt to different needs. In that regard, the
added capabilities of autonomous manufacturing can allow this new era of manufacturing
to be introduced at a greater scale. As discussed earlier, an autonomous manufacturing
system can be fault-tolerant to a faulty sensor by preventing a temporary breakdown of a
line or factory by suggesting a replacement sensor with similar functionality. It can
dynamically allocate resources at runtime (self-organization) and when production
demands lead to the introduction of a new machine in factories, it can simply participate
by announcing its services and features during the resource allocation process (agile
manufacturing). This illustrates the agility of a factory, where a new machine can be
integrated into plug-and-produce fashion according to market demands with minimal
downtime. All these capabilities can lead to optimized, customized, and faster
manufacturing lines in different factory floors.

As a first step towards this reality, this thesis narrowed down the implementation
to one specific use case derived from the above characteristics. Fault tolerance was a
capability that was not tackled thoroughly with only a couple of previous works addressing
it from the full number of works gathered. In addition to that, from the works cited, none

utilized Semantic Web to showecase it. As such, fault tolerance was identified as the
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necessary contribution. To be able to achieve that goal, this thesis aimed at finding the
intersection between the three research fields discussed in chapter two by utilizing Smart
Manufacturing and Semantic Web techniques to tackle the identified gap in autonomous
manufacturing.

The adopted use case was a specific capability that can be applied to the FF testbed.
The FF testbed has processes and paths that depend on certain sensor readings to continue.
In our case, the robot requires sensor readings from a potentiometer to know whether a
gripper is closed and if it can continue its scheduled path. However, to be fault-tolerant,
the system should be able to continue with the process when the potentiometer
malfunctions. This brought up two main requirements. The first requirement deals with the
physical infrastructure needed to implement the use case on. To satisfy this requirement,
work was accomplished that integrates different manufacturing and processing equipment
together to achieve a full testbed. These devices have open communication channels and
equipment with the processing ability to handle the required data. This testbed has
advanced capabilities and equipment as outlined in this thesis. The second requirement is
from the Semantic Web aspect. In this requirement, the work integrates the needed data. It
shows how locally generated data can be semantically annotated then integrated to create
a KG. This KG is then used to come up with decisions for the manufacturing process.

This thesis provides a foundation for different research directions moving forward.
From one aspect, the developed testbed is a state-of-the-art environment for testing and
developing new technologies that could benefit the manufacturing sector. With the
available infrastructure, future research directions could lean towards different Al use cases

from image recognition and inspection, predictive maintenance and modelling, to complex
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event understanding. The possibilities are endless as new equipment can be easily
integrated and platforms configured.

Within Semantic Web, future work should focus on further integration into
manufacturing settings. This thesis contributes with the real time annotation of raw data.
However, more complex processing such as reasoning is done outside the limits of the
testbed due to the lack of processing power of equipment at the time. The next step in this
use case involves integrating the full Semantic Web capabilities within the equipment in
the testbed allowing the knowledge to truly be infused into the process as the robots are
operational. When that step is achieved, then different capabilities are needed to realize
autonomous manufacturing beyond fault tolerance can be attained.

Following from that, more complex systems can be created that aim at creating
machine event understanding. This means that all equipment can deduce knowledge about
different events happening around them and reacting accordingly. On a broader aspect, this
work can be a springboard to further developing Semantics in manufacturing including
building a novel standardized smart manufacturing KG that can be utilized within different
factories.

Finally, the contributions laid out within this Thesis provide an intersection
between the different research done in the participating research teams, the Artificial
Intelligence Institute, and the Future Factories team at the University of South Carolina.
Infusing semantics with manufacturing and pushing the research forward in both teams.
5.1 Situation Research

This study in knowledge infusion into manufacturing processes represents an

overall goal of the research undertaken at the Future Factories laboratory at the University
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of South Carolina’s McNair Center. These works attempt to recognize mechanical features
(Harik et al., 2017) for manufacturability analysis (Y. Shi et al., 2018) and cover topics
such as semantic segmentation (Xia, Saidy, et al., 2021b) of images for enhanced event
understanding. Previous works also integrate reinforcement learning with digital twins for
increased intelligence (Xia, Sacco, et al., 2021b), multi-modal robotic health through loT
(Saidy, 2021), and virtual commissioning (Xia et al., 2019b). All these works aim at
increasing autonomy of manufacturing processes similar to this thesis by introducing
Acrtificial Intelligence in manufacturing through different approaches. On top of that, this
work was built upon the early design work done to create the Future Factories testbed

(Saidy et al., 2020)
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