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Abstract 

The next phase of manufacturing is centered on making the switch from traditional 

automated to autonomous systems. Future Factories are required to be agile, allowing for 

more customized production, and resistant to disturbances. Such production lines would 

have the capability to reallocate resources as needed and eliminate downtime while keeping 

up with market demands. These systems must be capable of complex decision making 

based on different parameters such as machine status, sensory data, and inspection results. 

Current manufacturing lines lack this complex capability and instead focus on low level 

decision making on the machine level without utilizing the generated data to its full extent. 

This thesis presents progress towards autonomy by developing a data exchange architecture 

and introducing Semantic Web capabilities applied to managing the production line. The 

architecture consists of three layers. The Equipment Layer includes the industrial assets of 

the factory, the Shop Floor Layer supports edge analytic capabilities converting raw 

sensory data to actionable information, and the Enterprise Layer acts as the hub of all 

information. Finally, a full autonomous manufacturing use case is also developed to 

showcase the value of Semantic Web in a manufacturing context. This use case utilizes 

different data sources to complete a manufacturing process despite malfunctioning 

equipment. This provides an approach to autonomous manufacturing not yet fully realized 

at the intersection of three paradigms: Smart Manufacturing, Autonomous Manufacturing, 

and Semantic Web. 
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Chapter 1 

Introduction 

Smart Manufacturing has taken a front seat in the advancement of manufacturing 

production lines. This vision of Smart Manufacturing (SM) will be powered by Industrial 

Internet of Things (IIoT), Big Data Analytics, and Artificial Intelligence. These capabilities 

can have a substantial effect on the profitability of industry as a whole since manufacturers 

must respond to fast-changing requirements through productivity advancements and agility 

while maintaining high standards.  

One aspect of manufacturing that SM seeks to tackle is the ability to minimize 

machine downtime. Downtime refers to the period of time that production is halted for a 

variety of reasons, one of which could be to perform maintenance on equipment. According 

to Forbes, unplanned downtime can cost up to $50 billion a year to industrial 

manufacturers. This presents a challenge to manufacturers in finding solutions to such 

problems. Correspondingly, industries are embracing Digital Transformation and SM to 

construct manufacturing systems capable of overcoming faults within and maintaining a 

continuous production line hence increasing efficiency and throughput. These solutions 

utilize IIoT, Data Analytics, and Artificial Intelligence as the driving force.  

 This thesis aims at creating a system capable of utilizing the generated data within 

the production line to tolerate faults or failures and hence minimize the downtime required 

for maintenance. More specifically, this thesis addresses how Semantic Web can be utilized 

to create a fault tolerant autonomous manufacturing system to minimize downtime.  
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We propose a novel approach to fault tolerant autonomous manufacturing that is 

capable of eliminating downtime of a production line through data and domain knowledge 

utilization. The proposed method uses Semantic Web technologies within manufacturing 

to bridge the physical and digital worlds. This technology takes advantage of Knowledge 

Graphs to incorporate sensor data with domain knowledge to react to machine failures 

appropriately while maintaining production.  

This work can lead to a substantial broader impact on the manufacturing industry 

as it is a step towards adopting innovative technologies and standards for SM that can tackle 

one of the costliest issues manufacturers face. This work has applicability in any 

manufacturing site as issues with equipment failure can be present in any manufacturing 

facility whether pharmaceutical, automotive, or aerospace. 

The thesis is organized as follows: Chapter two provides a review of research topics 

relevant to this thesis. This review covers topics such as Edge Computing, Digital Twins, 

Semantic Web, and Autonomous Manufacturing, before narrowing down the focus of this 

thesis. Chapter three describes the use case developed in this thesis and outlines some main 

capabilities that the assembled Future Factories testbed has. This also provides the 

theoretical framework for the developed use case. Chapter four dives into the details of the 

infrastructure of the testbed and the application development process. The results from the 

application are highlighted with a brief discussion of the effect this work has on 

manufacturing and its limitations.
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Chapter 2 

Literature Review 

2.1 Introduction 

We provide an introduction and literature review of three research areas relevant to 

this thesis. First, the field of Smart Manufacturing is introduced alongside the key topics 

of Edge Computing and Digital Twins. Secondly, Semantic Web concepts are introduced 

with an emphasis on different Semantic Web technologies and the integration methodology 

within manufacturing. Finally, the Autonomous Manufacturing research field is introduced 

highlighting its relevant capabilities. The final section introduces research at the 

intersection of these three topics that this thesis will cover in the remaining chapters.    

2.2 Smart Manufacturing 

2.2.1 Background 

Smart Manufacturing or Industry 4.0 refers to the fourth industrial revolution in the 

manufacturing industry. Previously, the first to third Industrial Revolutions correlated to 

steam power, mass production, and finally IT automated production, respectively (Thoben 

et al., 2017). However, Smart Manufacturing aims towards building upon these iterations 

and integrating innovative technologies into manufacturing settings such as Internet of 

Things (IoT). With this, Industry 4.0 is replacing traditional automated systems with 

autonomous systems capable of information exchange, decision-making, and independent 

control. Research in Smart Manufacturing aims at the eight key areas of standardization, 
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infrastructure, safety, work organization, continuous professional development, managing 

complex systems, regulatory framework, and resource efficiency (Dagerman, Wahlster, et 

al., 2013). 

2.2.2 Edge Computing 

Edge Computing introduces processing capabilities closer to the data source. It 

utilizes devices that are on the periphery of data generation rather than relying solely on 

cloud-based technologies. This is due to the efficiency of processing the data closer to the 

point of generation (W. Shi et al., 2016). Its main characteristics include fast processing 

and swift response time (Khan et al., 2019).  

Edge Computing does not refer to one specific device, but rather processing 

location. It can encompass a plethora of resource-constraint devices such as Raspberry Pi’s 

(Wan et al., 2018), Gateways (Wang et al., 2020), and regular computers (Zhang & Ji, 

2020). Edge Computing complements Cloud Computing in latency-sensitive applications 

(G. Carvalho et al., 2021). Most of these applications require quick processing times to 

determine actionable decisions. Table 2.1 showcases different implementations of three 

distinct use cases for Edge Computing: Real Time Analytics, Job Scheduling, and Anomaly 

Detection. 

Table 2.1: Use Cases for Edge Computing 

Use Cases Paper Role of Edge Device Used 

Real Time 

Analytics 

(Cao et al., 2017)  Descriptive analytics are 

used to uncover 

meaningful patterns 

from real-time data 

streams. 

Cisco IR829 

Industrial Integrated 

Services 

Router 
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(Sirojan et al., 

2019)  

Event detection and 

analysis. 

NI single-board 

controller (NI sbRIO-

9637) 

Job 

Scheduling 

(Wan et al., 2018)  Energy consumption 

model related to the 

workload. 

Raspberry pie board, 

UDOO board, 

ESP8266 

(Wang et al., 2020) Algorithm execution Smart Gateways 

Anomaly 

Detection 

(Zhang & Ji, 2020)  Abnormal situations 

detected using the 

trained LSTM. 

Computer equipped 

with a 3.2 GHz Intel 

Core i7 processor and 

8GB RAM. 

(Liu et al., 2021) Anomaly detection 

algorithm. 

MSP430 or ARM 

 

This figure represents only a small subset of the work being done within Edge 

Computing but intends to showcase the variety of applications that can benefit from it, 

whether it was through deployment of machine learning models straight on edge (Schneible 

& Lu, 2017; Zhang & Ji, 2020) or data analysis algorithms with quick processing times 

(Cao et al., 2017; Liu et al., 2021; Wang et al., 2020).  

2.2.3 Digital Twin 

The first notion of a Digital Twin (DT) was introduced in 1964 with the 

development of Ivan Sutherland’s Sketchpad (Ivan Sutherland, 1963). Since then, DTs 

have been adopted in different fields including manufacturing, construction, aerospace, 

automobile, and electricity (Qi et al., 2021). Even with this rich history, the term “Digital 

Twin” was not explicitly coined until 2011 by Michael Grieves (Michael Grieves, 2015). 

With the advancement of technology, DTs began to gain capabilities more complex than 

mere digital representations, but systems capable of analysis and affecting the physical 

system as well.  Table 2.2 details a few applications of DTs in manufacturing.  
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 Table 2.2: Digital Twin Implementations 

Title 

 

(Citation) 

Description 

A Cyber-Physical Machine Tools 

Platform using OPC UA and 

MTConnect 

 

(Liu et al., 2019) 

OPCUA based approach to integration of 

machine tools into a cyber physical data 

collection system 

A Reconfigurable Modeling 

Approach for Digital Twin-based 

Manufacturing System 

 

(Zhang et al., 2019) 

Presents modeling approach for 

reconfigurable manufacturing systems. 

Allows use of digital twin to explore possible 

options and issue corrective actions. 

Analyzing bearing faults in wind 

turbines: A data-mining approach 

 

(Kusiak & Verma, 2012)  

Machine learning approach to fault prediction 

in wind turbines. Predicted over-temp faults 

up to 1.5 hrs before fault. Models based on 

real data from wind turbines, using input 

parameters such as voltage phase, current 

phase, torque, and temperatures. 

Motion planning and scheduling 

for human and industrial-robot 

collaboration 

 

(Pellegrinelli et al., 2017)  

Dynamic path planning for human robot 

interaction. Optimization based on cycle 

times and equipment availability. 

Petri-net-based dynamic 

scheduling of flexible 

manufacturing system via deep 

reinforcement learning with graph 

convolutional network 

 

(Hu et al., 2020)  

Deep reinforcement learning approach to 

manufacturing operation scheduling. Multiple 

learning network approaches used against 

digital model. 

A digital twin to train deep 

reinforcement learning agent for 

smart manufacturing plants: 

Environment, interfaces, and 

intelligence 

 

(Xia, Sacco, et al., 2021a) 

Initial results towards using deep 

reinforcement learning 

applied to manufacturing systems – dynamic 

scheduling, vision, etc. 

Machine Learning Based AFP 

Inspection: A Tool for 

Characterization and Integration 

 

(Sacco et al., 2019) 

Presents methodology for 

automatic recognition of AFP defects using 

ML techniques. 
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2.3 Semantic Web 

In the early years of the Web, information was designed strictly for human 

consumption. However, this meant that it was not interpretable by machines as well. 

Consequently, the Semantic Web was introduced as an extension to define information 

allowing interoperability between different systems and machines (Cardoso & Sheth, 

2006). Semantic Web provides a framework to deal with massive scale, heterogenous, 

and dynamic data (Sheth & Ramakrishnan, 2003). Applications for Semantic Web can 

range from e-Learning (Markellou et al., 2005) to the EventWeb (Jain, 2008) (Sheth & 

Perry, 2008). This section will provide a brief background on Semantic Web concepts 

before exploring it in the context of manufacturing. 

2.3.1 Background 

2.3.1.1 Knowledge Graphs 

The building blocks of the Semantic Web include entities linked together through 

relationships. This creates a Knowledge Graph (KG) that represents information in a 

structured form (Sheth et al., 2019). KGs can be used for enhanced search, browsing, 

integration and analysis of data. 

A KG is made up of two main components, nodes, and edges. A node can 

represent an asset, person, place, or object. Edges on the other hand connect different 

nodes together and create the relationship between them. A KG has two parts, the 

Schema/Ontology and the Instantiations. A schema or ontology defines the classes to be 

used in the KG (Parsons, 2009). In essence, ontology defines the domain of discourse, 

and it consists of a finite list of terms and relationships. As for applications, KGs can be 
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used in various fields from Deep Learning (Gaur et al., 2021), to Robot Knowledge 

Representation (Kho et al., 2014), to the medical domain (Xu et al., 2020).  

2.3.1.2 Resource Description Framework 

Resource Description Framework (RDF) is an international standard for Semantic 

Web data or represent Web resources. RDF provides a common framework for 

representing information to allow interoperability between applications. RDF resources 

are documented through Uniform Resource Identifiers (URI). It is made up of three types 

of resources: subject, object, and predicate as shown in Figure 2.1.  

 

Figure 2.1: RDF Model 

In the context of Semantic Web, RDF is used to define ontologies and create the 

instances needed to generate the overall KG.  

2.3.2 Semantic Web in Manufacturing 

Semantic Web technologies deliver explainable results to decision making and 

offer an approach to autonomous systems that provide the accountability and transparency 

required for manufacturing environments. Similarly, technological advancements of 

different types of sensors, equipment, and robots have led to the generation of large 

amounts of data during the manufacturing process that can provide insights on the status 
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of the production line. Much work has been done to merge these two paradigms to support 

insights and decisions for manufacturing applications. 

Ontologies were developed that can be adopted within a manufacturing context. 

The ManuService ontology was developed (Lu et al., 2019), based on service-oriented 

business interactions. An ontology was developed focusing more specifically on additive 

manufacturing (Dinar & Rosen, 2017). An engineering ontology model was developed on 

an enterprise level (Lin & Harding, 2007). The Bosch Industry 4.0 KG was created to aid 

with interoperability between different systems such as products, machines, equipment, 

and processes (Grangel-González et al., 2020). All these works focus on creating the 

schema to be adopted as a standard when creating KGs for manufacturing purposes.  

Some works oriented these frameworks towards business planning and production 

order. A Semantic Web based architecture was developed to create an integrated business 

process model using OWL (Yang et al., 2005) and integration between a design house and 

manufacturer was established through a Semantic Web service for business interactions 

(Kulvatunyou et al., 2005). Different works also adopted Semantic Web to enable 

collaboration and resource allocation within a manufacturing facility (Cai et al., 

2009)(Alsafi & Vyatkin, 2010)(Yang et al., 2005)(Balakirsky, 2015) .  

Within these KGs, information is stored from different sources. One main 

advantage of KGs is the ability to integrate domain knowledge which provides data from 

external sources rather than from the shop floor. This information can be found publicly 

and integrated within a KG.  
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2.3.2.1 Manufacturing Use Cases 

Based on the above studies, manufacturing use cases for Semantic Web can be 

identified to showcase the potential of the intersection of these two domains. These 

capabilities can be split into three distinct categories: Vertical Integration, Domain 

Integration, and Autonomous Systems. Each category will adopt traditional manufacturing 

use cases to show the enhanced capabilities that can be achieved. These use cases are 

Monitoring, Predictive Maintenance, and Quality Control and will be expanded upon 

within each category listed previously. Monitoring traditionally encompasses the act of 

supervising the manufacturing process and ensuring all assets are operating as they should. 

Predictive Maintenance is a field of research on its own that deals with the analysis of 

equipment data to predict whether and when in the future the maintenance will be required 

so as to minimize downtime and extend the assets’ lifetime. Quality Control measures the 

quality of the product being manufactured and studies how best to maintain that specified 

or targeted standard of quality.  

Vertical Integration 

 

Vertical integration deals with the abstraction of heterogenous data sources in the 

manufacturing facility into one unified data model. It is the abstraction of all components 

of the factory from the raw data level to a data model that can be integrated with other 

components in the factory to create one homogenous and standardized data model, 

represented as a KG, that can be queried to obtain any information that the user requires. 

Unlike traditional IT systems that require significant manual effort to integrate data 

systematically. 
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Monitoring  

With the introduction of the standardized data model that can be queried, 

monitoring becomes simple to achieve. One example is to create a centralized dashboard 

with signals obtained from the equipment and sensors alongside process signals and 

deduced knowledge. A concrete example could be the inclusion of sensor data, process 

signals (indicators such as job number and operating equipment), and deduced knowledge 

such as product state. 

Predictive Maintenance  

Since all data has been unified into a standard model, predictive maintenance 

algorithms can now have a more holistic view of the signals being produced by the 

equipment. For example, a certain asset equipped with a vibration sensor and temperature 

sensor and monitored by a thermal camera can all be easily utilized to derive a well-

developed predictive maintenance model for that asset. 

Quality Control 

Traditional quality control relies on multiple variables obtained from the completed 

product to test the validity and quality before shipping. The unification of all sensor data 

aids in obtaining further indicators from the product testing. For example, a traditional 

quality control method might test for smooth surfaces using one sensor. However, an 

enhanced quality control method can utilize data from the sensors used in the quality check 

and during the manufacturing procedure to produce more holistic quality indicators. 

Domain Integration 

Domain knowledge denotes information from different fields obtained from 

external sources and not generated from the factory. This category outlines examples where 
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the fusion of these two information sources can be of advantage for the traditional 

manufacturing use cases adopted in this section. 

Monitoring 

Dashboards would not only include signals that originate from the factory but can 

work towards adding further context. For a cross domain example, a dashboard can include 

current electricity rates, so technicians decide how best to run equipment to lower the cost 

of electricity usage. This can also include market trends and demands to help optimize 

manufacturing accordingly. 

Predictive Maintenance 

Manufacturer specifications provide ideal conditions and output ranges that can be 

used in training predictive maintenance models. The inclusion of these specifications 

alongside other domains knowledge such as temperature and humidity can allow models 

to predict maintenance schedules more accurately. An example of this can be the 

maintenance of a sensor placed in a rugged environment. The knowledge obtained about 

temperature, manufacturer specifications, and the generated data can all be combined in 

the training set. 

Quality Control 

A factory can focus more of its resources depending on market demands. More 

specifically, a factory that produces face masks and gloves can produce both in equal 

amounts. However, when market demand for masks increases while that of glove 

decreases, instead of increasing production of masks only and produce lower quality masks 

from over working the equipment, the factory will use the knowledge acquired from the 
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market to reallocate resources and produce more masks and less gloves while maintaining 

the same standard of quality. 

Autonomous System  

This category is the culmination of all the abilities mentioned above. It combines 

the unification of local data sources with domain knowledge acquired from external 

sources. The following examples outline how these two paradigms can interact to create a 

full autonomous system within a manufacturing environment. 

Monitoring  

For monitoring, the system has concrete contextual information of all equipment in 

the factory. On top of that, it has domain knowledge about the equipment. One example of 

the use of this is to monitor the performance of sensors present in the factory. Should one 

be acting outside the manufacturer specified operational range, the system will suggest 

different sensors that can be ordered instead that might be more cost effective. 

Predictive Maintenance  

Predictive maintenance in an autonomous system introduces a new layer of 

capabilities that can minimize downtime of the production facility. The multimodal data 

generated can be used to create health indicators for different assets. The autonomous 

system can then allocate jobs based on the equipment health indicators, maintenance 

schedules, factory workload and orders. This can aid in prolonging equipment lifetime and 

minimize needed maintenance.  

Quality Control   

Quality indicators are derived from heterogenous sources in the manufacturing 

facility while keeping up with the different trends of the market. An autonomous system 
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will allocate jobs while maintaining a certain standard of quality by considering market 

trends, machine health indicators and generated sensor data.  

2.3.3 Integration of Semantic Web in Manufacturing 

This section will look at the intersection between Semantic Web and Smart 

Manufacturing, more specifically detailing the integration methodology of Semantic Web 

technologies into manufacturing facilities. 

2.3.3.1 Semantic Annotation  

In manufacturing, sensors generate large volumes of which need to be annotated to 

be used. Raw sensor data demands annotation with semantic metadata to obtain 

contextualized information. Standardized annotation allows greater interoperability 

between machines, and more accessible data models. This annotation effort represents the 

translation of the raw sensor data to RDF, based on specific ontology mapping. Different 

ontologies for sensor data mapping have been developed in the context of manufacturing. 

The OGC Sensor Web Enablement Ontology (Botts et al., 2008) was established 

by the Open Geospatial Consortium (OGC). It includes Observation & Measurement 

(O&M), Sensor Model Language (SensorML) and Sensor Observation Service (SOS). 

O&M and SensorML provide a standard model and XML schema for captured 

measurements. The SOS model offers a mechanism to query the observations and sensor 

metadata. Developed by W3C, the Semantic Sensor Network (Compton et al., 2012) 

ontology is a standard for modelling sensor devices, knowledge of the environment and 

observations and sensor platforms. Semantic Sensor Observation Service (SemSOS) 

(Henson et al., 2009) provides the knowledge base to derive higher level abstractions from 

the annotated sensor data. It retains the standard SOS specifications/service interactions 
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while offering a semantic backend. SemSOS is the principal component of the Semantic 

Sensor Web (Sheth et al., 2008), the precursor to the SSN. 

2.3.3.2 Integration Methodology 

 

Figure 2.2: Layered Equipment Architecture for Factories 

This section will outline the vision for Semantic Web integration in 

manufacturing that can be deployed on different devices and equipment. It consists of 

three layers shown in Figure 2.2. The first layer is the Equipment layer which contains 

all the manufacturing equipment such as Robots, Conveyors, and Programmable Logic 

Controllers (PLC). The second is the Shop Floor layer which introduces computational 

and processing capabilities and includes devices such as edge devices and gateways. 

Finally, the Enterprise layer introduces the cloud level and adds another and more 

powerful computational level. The Enterprise layer also acts as the hub of all knowledge 

whether it be domain knowledge or generated locally. 
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Equipment layer 

The Equipment layer oversees communication within the industrial assets of the 

factory, providing the needed logic to advance manufacturing lines. State-of-the-art digital 

transformation techniques are fundamental to automate rapid understanding of acquired 

data supplied by the physical infrastructure. For instance, industrial sensors can be installed 

on legacy equipment to acquire process variables (throughputs, wastes, product levels, 

material feeds, visual inspection, etc.) and machine health variables (temperature, 

vibration, force, etc.). 

PLC’s can monitor process signals such as control logic signals which indicate the 

machine states, torque signals, safety signals, and actuator signals. The Open Platform 

Communications (OPC) protocol (Leitner & Mahnke, 2006) can be used to send these 

variables to different equipment which allows interoperability between manufacturing 

systems (Xia et al., 2019a). On top of that, advanced sensing technologies can allow state 

acquisition. An example of this would be visual monitoring systems (Saidy et al., 2020) 

(Xia, Saidy, et al., 2021a) which include high-resolution security cameras, thermal infrared 

cameras, and wireless inspection cameras. 

Shop Floor layer 

The Shop Floor layer introduces edge analytic capabilities on real-time collected 

data. Data from sensors on industrial assets are typically in a raw format and do not 

provide contextualized information. Annotating the data at the level of devices near the 

source could be sufficient to integrate the raw data from heterogeneous sources. 
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RDF can be utilized in this scenario. Adding Semantic Web technologies to 

resource constraint devices and the study of multiple semantic representations for sensor 

measurements with regards to energy efficiency of data communication and processing 

were evaluated (Su et al., 2015) and concluded that Entity Notation (EN) (Su et al., 2012) 

and JSON for Linked Data (JSON-LD) are adequate representations of RDF.  

Different formats can be transformed to RDF using SDM-RDFizer (Iglesias et 

al., 2020) for uniform reasoning of sensor data. One approach for resource constraint 

devices is to format RDF from Sensor Markup Language (SenML) which supports JSON 

and Efficient XML Interchange (Su et al., 2014). In addition to this, a binary XML format 

was developed due to the difficulty in storing RDF on resource-constrained devices from 

the textual representation of RDF. However, prevalent reasoning mechanisms such as 

Jena reasoning engine (Ameen et al., 2014), Pellet (Sirin et al., n.d.), RacerPro (Haarslev 

et al., 2011), and Fact++ (Tsarkov & Horrocks, 2006) used with KGs have limited use 

within current edge devices due to processing complexity. 

Enterprise layer 

The Enterprise layer can perform complex decision-making using edge analytics, 

domain expertise, and global knowledge bases. It is also responsible for communication 

among devices at the Shop Floor layer, allowing them to build their own networks and 

perform autonomous decision-making. The Enterprise layer consists of processing-

intensive cloud components with the help of the Enterprise KG (EKG). The EKG acts as 

the hub of information from joint departmental efforts involving backlog of events, analytic 

outputs, sensor readings, and domain expertise. This knowledge is required for any 
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emergent production tasks and future occurrences of similar tasks. The EKG may also be 

dynamic and capture new knowledge. 

Streamed Linked Data (Le-Phuoc et al., 2011) allows the storage and processing of 

continuous streams of factory states which provides the ability to update physical and 

virtual components of the framework to enhance productivity and remove faulty/irrelevant 

segments (Tao et al., 2017). This introduces the concept of Dynamic KGs (Pujara & 

Getoor, n.d.) (Das et al., 2018)(Padhee et al., 2018) that can update a triple in a KG when 

new sensor data is acquired. 

2.4 Autonomous Manufacturing 

2.4.1 Background 

Autonomous systems can execute high level tasks without human intervention 

(Rosen et al., 2015). It refers to the complete automation of decision making (Bourne & 

Mark S. Fox., 1984). Different definitions have been given to the term autonomous 

manufacturing such as the “ability to identify their status and capability autonomously, 

to collect data, and to take decisions according to the changes of the manufacturing 

system”(Ding, Lei, Chan, et al., 2020), “the autonomous communication and 

collaboration between the WIP and the machines during production”(Park & Tran, 2011), 

and employing “Industry 4.0 technologies like the Industrial Internet of Things (IIoT), 

artificial intelligence (AI), and data analytics to modify and optimize production on the 

run”(David Rand, 2021). Each of these definitions tackles autonomous manufacturing 

from different perspectives whether it is the ability to autonomously create decisions, 

communicate with other equipment, or optimize production. 
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2.4.2 Approaches to Autonomous Manufacturing 

Several earlier efforts have sought to implement Autonomous systems in a 

manufacturing environment. Many of these works adopt the smart manufacturing concepts 

discussed in this chapter and integrate further AI principles to create a decision-making 

model for manufacturing lines. This section will highlight a few of these works grouped 

together by the technologies used to create the autonomous system. 

As autonomous systems involve decision making processes, and need to be 

deployed without explicit programming, Machine Learning (ML) was widely adopted as a 

common approach to build an autonomous manufacturing process. In fact, a large portion 

of the research community is focused on the development of new algorithms in 

manufacturing (Sharp et al., 2018). ML is a field of research focused on learning systems 

and algorithms (Qiu et al., 2016). ML aims towards providing the machine with the 

capability to create data-driven decisions by inputting a large amount of data so the created 

ML model can leverage that data.  

ML models can be split into three categories: supervised learning, unsupervised 

learning, and reinforcement learning. Supervised learning requires a training data set with 

labeled inputs and their corresponding outputs. During training, the model will learn the 

relationship between the inputs and outputs and will eventually be able to deduce the output 

for new inputs based on the learned inputs. Unsupervised learning attempts to detect 

patterns not outlined previously with minimal human supervision. Unsupervised learning 

does not use labeled data but models’ probability densities based on the input data set. 

Reinforcement learning relies on an agent learning the correct decisions by reward 

accumulation. 



 

20 

 

2.4.2.1 Reinforcement Learning  

ML was applied in a manufacturing system that builds parts according to user-

specified performance indicators (Alam et al., 2020). The work developed supervised and 

reinforcement learning algorithms deployed on digital counterparts of the manufacturing 

process to assess performance with little data generation. A reinforcement learning model 

was developed as a means of successful collaboration between different autonomous robots 

working within the same shop floor (Agrawal et al., 2021). Similarly, a reinforcement 

learning model was trained on a DT of a manufacturing shop floor to ensure no collisions 

occur (Xia, Sacco, et al., 2021). 

2.4.2.2 Supervised Learning 

Supervised learning models were developed in the context of manufacturing to 

reduce cost and waste while increasing productivity of a cutting tool in machining lines (C. 

P. de Carvalho & Bittencourt, 2021). A supervised learning approach was adopted that 

learns from previous events to allow variable levels of autonomy for a robotic arm 

conducting object relocation tasks (Wheeless & Rahman, 2021). Supervised learning was 

used to inspect the elements in an ‘inspection by exception’ methodology that only inspects 

manufactured parts that cannot be categorized above a certain confidence level whether the 

part is healthy or unhealthy (Papananias et al., 2020).  

2.4.2.3 Unsupervised Learning 

The above model was also coupled with an unsupervised learning model that is 

trained to categorize the healthy and unhealthy parts as well (Papananias et al., 2020). An 

unsupervised learning model was adopted as a tool for dynamic task allocation of 

unmanned surface vehicles in constrained environments. This was done through splitting 
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up the task management into two categories, task allocation and task execution (Ma et al., 

2021). Supervised and unsupervised learning models were coupled to monitor performance 

by classifying defects. The traditional supervised learning model is trained to detect any 

defect while the unsupervised learning model is used to ensure that the data set that the 

first model is trained on is still relevant and add new defects that may arrive achieving a 

truly autonomous inspection capability (Banf & Steinhagen, 2022).  

2.4.3 Characteristics of Autonomous Manufacturing 

Autonomous manufacturing systems can be summarized by some characteristics 

that highlight their capability. An autonomous system can be fault-tolerant to a faulty 

sensor by preventing a temporary breakdown of a line or factory by suggesting a 

replacement sensor with similar functionality (Thuluva et al., 2017). This system can also 

dynamically allocate resources at runtime (self-organization), rather than pre-allocating. 

This can be done while considering factors such as the machines’ current conditions, 

machine availability, maintenance schedule, and customer orders. Resource allocation 

could also consider external electricity rate data reduce factors such as energy consumption 

and carbon footprint by offsetting carbon emissions. Furthermore, when production 

demands lead to the introduction of a new machine in factories, it can simply participate 

by announcing its services and features during the resource allocation process (agile 

manufacturing). This illustrates the agility of a factory, where a new machine can be 

integrated in a plug-and-produce fashion according to market demands with minimal 

downtime. Based on these characteristics, a total of twenty-two autonomous manufacturing 

publications were selected and categorized. These papers are shown in Table 2.3. 
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Table 2.3: Categorized AM Implementations 

Paper Description Self-

Organizing 

Agile 

Manuf. 

Fault 

Tolerant 

(Iwamura & 

Sugimura, 

2010) 

Real Time Scheduling of tasks for 

AGV’s 
x   

(Grundstein et 

al., 2017) 

Control of order release, sequencing, 

and capacity control 
x   

(Hildebrandt et 

al., 2016) 

Flexible production system in complex 

pick and place tasks. 
 x  

(Wada & 

Okada, 2002) 

Execution control system for 

dispatching tasks 
x   

(Moergestel et 

al., 2011) 

Agile production of different 

equipment. 
x x  

(Tharumarajah, 

1998) 

Adaptable Scheduling of 

Manufacturing Lines 
x   

(Goldsmith & 

Interrante, 

1998) 

Distributed scheduling systems for 

collaboration and improved 

performance 

x   

(Bourne & 

Mark S. Fox., 

1984) 

Control and planning of shop floor 

jobs 
x   

(Cao et al., 

2020) 

Autonomous Distributed Systems for 

personalized product manufacturing. 
x   

(Aly et al., 

2010) 

Workspace design to optimize 

autonomous production. 
 x  

(Jarvis, Jarvis, 

Lucas, et al., 

2001) 

Autonomous execution of robot 

assembly processes 
x x  

(Ding, Lei, 

Zhang, et al., 

2020) 

Collaboration based on optimal 

production decisions. 
x   

(Jarvis, Jarvis, 

McFarlane, et 

al., 2001) 

Resources-dependent autonomous 

assembly process 
x x  

(Schuster et 

al., 2017) 

Autonomous assembly process by two 

robotic arms 
x   

(B. Scholz-

Reiter et al., 

2009) 

Compensate for manual intervention 

in manufacturing process. 
  x 

(Park & Tran, 

2011) 

A manufacturing process capable of 

adapting to disturbances 
  x 

(Hu et al., 

2020) 

Dynamic Scheduling for flexible 

manufacturing systems 
x   

(Agrawal et 

al., 2021) 

Collaboration between different 

autonomous robots working within the 

same shop floor 

x x  
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(Xia, Sacco, et 

al., 2021a) 

Ensure no collisions in manufacturing 

shop floor 
x   

(C. P. de 

Carvalho & 

Bittencourt, 

2021) 

Reduce cost and waste while 

increasing productivity of a cutting 

tool in machining lines 

x   

(Wheeless & 

Rahman, 

2021) 

Variable levels autonomy for a robotic 

arm carrying out object relocation 

tasks 

x   

(Alam et al., 

2020) 

Builds parts according to user-

specified performance 
 x  

Total  17 7 2 

 

The selected papers were published between 1984 and 2021 to attempt and achieve 

a holistic view of the history of research in autonomous manufacturing. The publications 

are also collected from a wide variety of sources ranging from IEEE journals to the Journal 

of Manufacturing Systems to Conference Proceedings. This was in part to attain a sample 

pool representing all different fields of research that autonomous manufacturing can be 

relevant in. Table 2.3 displays a stark contrast between the number of efforts aimed towards 

implementing a self-organizing and flexible system compared to fault tolerant systems. 

The capability of self-organization and flexibility can be found in 17 and 7 publications 

respectively, whereas fault tolerance can only be found in two of them. 
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Figure 2.3: AM Research Field Overview 

To gain a more complete perspective of the autonomous manufacturing research 

field, the network in Figure 2.3 was generated to give a more comprehensive perspective 

of the field of the autonomous manufacturing research. This network is a compilation of 

keywords from one thousand autonomous manufacturing papers. These papers were 

gathered from the Web of Science search engine and all the keywords were extracted. 

These keywords were then visualized using VOSviewer (https://www.vosviewer.com/). 

The keyword must have appeared at least ten times to show up in this network. A link 

between keywords signifies that they have appeared in the same paper. From this network, 

different research areas can be pinpointed including Autonomous Vehicles, Smart 

Manufacturing, Multi-Agent Systems, Distributed Manufacturing Systems, and Industry 

4.0. The main outcome from this network is the shortage of Semantic Web terminologies 

with the only one present being “ontology.” This does not mean that no work has been 

https://www.vosviewer.com/


 

25 

 

done at all but that the work has not been explored excessively or has not produced many 

significant outcomes.  

2.5 Discussion and Gap Assessment 

From the above analysis, there are different research gaps that could be addressed 

in this thesis. The first being research work aiming at accomplishing fault tolerance. 

Among the publications reviewed, only two previous implementations had relevant work 

to fault tolerance. This represents a small sample size of the overall pool even though this 

capability is of significant value to manufacturers. Hence, this thesis will attempt to 

achieve an autonomous manufacturing use case that can showcase the fault tolerance 

capability. In addition to that, Semantic Web has not been a widely adopted approach to 

witness such capability, with previous works adopting Semantic Web for collaboration 

(agile manufacturing) and resource allocation (Self-Organizing). 

Additionally, there are five phases in utilizing KGs: Knowledge Acquisition, 

Knowledge Fusion, Knowledge Processing, Knowledge Storage, and Knowledge 

Utilization. Within a sample pool of collected works involving Semantic Web and 

manufacturing, none had fully undergone the five phases. (Teern et al., 2022). In addition 

to that, a lack of effort has been observed regarding integrating heterogenous sources 

such as sensors, material required, work orders, and quality of material (Yahya et al., 

2021). This thesis will be tackling all five of the above phases within a manufacturing 

environment and integrating different sources into one central KG. To be able to achieve 

that goal, this thesis aims to find the intersection between the three research fields 

discussed in this chapter by utilizing Smart Manufacturing and Semantic Web techniques 

to tackle the identified gap. The approach is detailed in Figure 2.4.  
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Within Smart Manufacturing, this thesis covers the implementation of the state-of-

the-art testbed infrastructure in the Future Factories lab. This includes Edge Computing 

and Digital Twin capabilities that will be utilized for the use case. The Semantic Web 

integration methodology outlined in this chapter will also be employed to realize this use 

case. Chapter three will outline the process of developing this use case in greater detail. 

Figure 2.4: Contribution Outline 
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Chapter 3 

 Theory and Development 

3.1 Introduction 

As described in Chapter two, this thesis focuses on creating a manufacturing testbed 

in the Future Factories (FF) lab at the University of South Carolina and utilizing Semantic 

Web technologies on this testbed to realize an autonomous manufacturing use case. This 

section will narrow down the use case adopted in this thesis. Following that, various aspects 

of the developed testbed are introduced that showcase its capabilities and how they fit in 

with the overall use case. Finally, this section will cover the implementation plan of the 

application developed in this thesis.  

3.2 Autonomous Manufacturing 

3.2.1 Use Case 

To showcase an autonomous manufacturing process, this thesis narrows down one 

characteristic of those outlined in the previous section and adapts it to the FF lab. More 

specifically, a fault tolerance use case is developed.   

The developed application can be broken down into the significant parts shown in 

Figure 3.1. In order for fault tolerance to be realized, the existing manufacturing assets 

within a factory floor must react appropriately to a sudden malfunction of a certain sensor. 

This reaction allows the process to continue without any downtime for maintenance or 

replacement. For this to happen, assets must be aware of the different data sources available 
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that can be utilized. Semantic Web presents an ideal solution to this issue as all the different 

information mentioned can be stored in interoperable fashion ready to be used whenever 

needed. It also presents greater advantages than the minimal existing cases of fault 

tolerance which do not utilize Semantic Web as it provides a standardized approach and 

model which can be modified to different knowledge discovery applications.   

 

Figure 3.1: Semantic Web Application in Manufacturing 

This application begins with the reading of the raw sensor data by the controller 

present within the facility. Once that data is acquired it is semantically annotated using a 

user defined mapping derived from the Semantic Sensor Network ontology(Compton et 

al., 2012), a standard ontology to represent sensor data. This information is then integrated 

with other information including the domain knowledge of the facility and manufacturer 
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specifications. In this case, the domain knowledge includes the different sensors that can 

be used for a certain process. The manufacturer specifications outline the output range of 

a normally functioning sensor. Once all this information is integrated into one KG, a 

reasoning process can help deduce whether the sensor is functioning properly. This is done 

by comparing the data read from the actual sensor with the manufacturer specification 

output range present in the KG. A corresponding triple is added to the KG which shows 

the sensors functionality status. Based on this, the query engine decides which sensor to 

use based on the domain knowledge present in the KG. This decision can then be relayed 

to the controller. Semantic Web also improves upon traditional exception handling which 

requires every exceptions to be hard coded. This leadng to numerous lines of code. The 

different components built in this application can also be used for different capabilities 

minimizing the need for redundant work.  

3.2.2 Requirements 

To realize this autonomous manufacturing use case in the FF lab, a certain set of 

requirements are needed. The first requirement deals with the physical infrastructure 

needed to implement the use case on. To satisfy this requirement, work must be 

accomplished that integrates different manufacturing and processing equipment together 

to achieve a full testbed. These devices should have open communication channels and 

must have equipment with the processing ability to handle the required data. These 

requirements are met through the developed testbed. The second requirement is from the 

Semantic Web aspect. In this requirement, the work must integrate the needed data. It will 

show how locally generated data can be semantically annotated, then integrated to create 
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the KG. This KG is then used to come up with decisions for the manufacturing process. 

These steps are discussed in more detail in the remainder of this chapter. 

3.3 Future Factories Testbed 

 

Figure 3.2: Future Factories Lab Set Up 

The testbed in the FF lab at the University of South Carolina’s McNair Aerospace 

Research Center is designed to be a testing environment for different technologies to be 
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integrated in smart manufacturing processes. The testbed is a platform to introduce state of 

the art tools in robotics, the Industrial Internet of Things (IIoT), data analytics, and edge 

computing. This testbed is made up of four conveyor belts (Figure 3.2) assembled to 

provide maximum flexibility with respect to manufacturing processes. Currently, this 

testbed can accomplish a simple assembly process of a custom 3D-printed model rocket. 

This assembly process is achieved through cooperation between the different equipment in 

the testbed. The procedure, while simple, is intended to show the capabilities of the 

different platforms and assets in the testbed. The testbed exhibits all the requirements 

needed for the autonomous manufacturing use case to be applied to, with communication 

between devices set up and the availability of processing-intensive devices. This section 

will cover the characteristics of the testbed alongside a background on the relevant tools 

integrated within. 

3.3.1 Characteristics 

The testbed created was built with a few characteristics in mind. The infrastructure 

is intended to be reusable, meaning it can be utilized to realize different use cases. Since 

this testbed is supposed to be the foundation for future manufacturing research, it can be 

exploited depending on the required use case. For example, this testbed can be used to 

undergo research on edge computing or digital twin. The testbed uses communication 

protocols which can be configured with devices from different manufacturers. This testbed 

has the capability to be autonomous such that different Machine Learning techniques can 

be deployed on the equipment for autonomous decision making. The testbed is also cross-

domain since it utilizes equipment from various manufacturers such as Siemens, IBM, Dell, 

Yaskawa and others. 
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3.3.2 Digital Twin 

Digital Transformation has become more prevalent in the manufacturing industry 

over the last years. One aspect of Digital Transformation is the concept of a Digital Twin 

(DT). Essentially, a DT is the virtual counterpart of a physical facility. It can be anything 

from a simple CAD model of the facility to a complex system capable of two-way 

communication from the virtual to the physical entity that can undergo real-time decision-

making or predictive analysis that affects the physical system. Currently, the FF testbed 

has some DT capabilities with the integration of Siemens Tecnomatix Process Simulate as 

the primary DT tool. Process Simulate is a software capable of modelling the physical 

testbed in virtual space as seen in Figure 3.3. 

 

Figure 3.3: DT of the FF Testbed 
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It can also be used to program robot arm paths to be deployed onto the physical 

systems and assess feasibility of different processes. In the FF testbed, Process Simulate 

was first used to design the lab before the physical infrastructure was put in place. 

However, it is currently being used to create different robot paths. The capabilities of this 

tool go beyond that, including real-time DT systems and more custom functions. This 

highlights the reusable and autonomous characteristics of the testbed. In relation to the 

autonomous manufacturing use case, this DT technology permitted the initial design of the 

testbed alongside the formulation of the path that the robot must undertake. 

3.3.3 Off-line Programming 

DTs are often utilized to program and assess different robot paths before 

deployment into the physical system. Off-line Programming (OLP) refers to the act of 

using the DT to program a robot or any other system through the virtual model in the DT. 

OLP is used to program industrial robot arms in systems containing multiple instances of 

robot arms that must perform different tasks. This is because hand-training multiple robots 

would be time-consuming relative to the time OLP requires. This testbed uses Siemens 

Tecnomatix Process Simulate as the OLP tool as well. As such, this testbed can easily 

introduce new paths and processes for the robot arms. This aids with the reusable 

characteristic listed above, as different use cases can be implemented with the introduction 

of new paths for the robots. OLP was used to program the robot with the required path to 

realize the autonomous manufacturing use case. 

3.3.4 PLC Programming 

A Programmable Logic Controller (PLC) acts as the brain of the operational 

equipment in the FF Testbed. A PLC is a controller that has been adapted to manufacturing 
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environments to control manufacturing processes. It can control equipment such as robotic 

devices, assembly lines, and other machines. A PLC uses ladder logic meaning it 

continuously monitors the inputs to generate with the required output. FF utilizes the 

Siemens S7-1516F CPU to run the PLC logic with multiple I/O modules. The PLC program 

was made through Siemens Totally Integrated Automation (TIA) Portal. This software 

allows the user to program using ladder logic, functional block diagrams, statement list, 

and structured control language. The FF testbed uses PLC programming to create the 

different processes needed. The capability of writing the PLC code from scratch allows 

this testbed to be reusable and interoperable as the code can be altered to different use cases 

and sets up communication between the different operational devices. A custom PLC code 

was written that integrates the sensor data and the robot paths to create the necessary logic 

to implement the autonomous manufacturing use case. 

3.3.5 Virtual Commissioning  

Virtual Commissioning (VC) is a means of integrating both PLC Programming and 

Digital Twins. In VC, a DT is commissioned to run the logic usually deployed on a PLC. 

This ability allows users to test the PLC code on the virtual environment before the physical 

counterpart. VC can be accomplished by providing a simulation or emulation of a PLC 

(Software in the Loop) or coupling a physical PLC with the DT (Hardware in the Loop). 

In the FF testbed, Process Simulate is coupled with a virtualized PLC using Siemens 

PLCSim Advanced software. VC has been used to test the PLC code created before 

deployment. VC allows the testbed to be reusable by reconfiguring the code and DT design 

to fit the use case desired with ease. VC was used to test the custom PLC code written for 

the autonomous manufacturing use case. 



 

35 

 

3.3.6 Internet of Things (IoT) and Sensors 

Internet of Things (IoT) refers to a system of interconnected computing devices 

with other assets for the purpose of data exchange and processing. While IoT deals mainly 

with consumer appliances such as smart home devices and prototyping equipment such as 

Arduino processors, Industrial Internet of Thing (IIoT) refers to assets in manufacturing 

systems such as robot arms, industrial sensors, and other machines. In this testbed, IIoT 

was developed through the integration of various sensors on different equipment and the 

introduction of processing equipment capable of data collection and analysis. Currently, 

IIoT techniques are utilized in the FF testbed to enable data communication between 

sensory devices and logic controllers with more processing intensive devices such as the 

edge device. One of the main components of the autonomous manufacturing use case are 

the different sensors needed which are integrated into the FF testbed. 

3.3.7 Edge Computing 

As described in chapter two, Edge Computing is a field of research that introduces 

processing capabilities closer to the data source rather than relying on cloud computing 

technologies. This allows computing operations to be performed on generated data in real 

time. This is usually done with edge devices located on premise, directly communicating 

with the operational assets. Currently in the FF testbed, Edge Computing is being employed 

to filter data before being sent to the cloud. This filtering is done to minimize the amount 

of redundant data being stored. One current use case also includes closed loop control of 

the assembly process using image processing. This thesis will explain how edge computing 

is employed to introduce Semantic Web capabilities by mapping the raw data to 

contextualized information for the fault tolerance use case. 
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3.3.8 Cloud Computing 

Cloud Computing describes the ability to perform processing intensive tasks over 

the internet (“the cloud”). Generally, this capability requires equipment such as servers to 

be introduced. Cloud Computing can be used for data storage, data analytics, and complex 

intelligence. Cloud Computing can be useful in connecting data from multiple physical 

locations into one centralized server. The testbed at the FF lab has different cloud 

computing platforms currently being integrated. These platforms include Siemen’s 

Mindsphere and IBM’s Maximo Application Suite. Current use cases for Cloud Computing 

in the testbed are straightforward dashboarding and data visualization as work is still being 

done on the connection of data from the PLC up to the different platforms. Cloud 

Computing will be integrated as the platform for further reasoning of contextualized 

information from the edge for the autonomous manufacturing use case. 

3.4 Semantic Web in the Future Factories Testbed 

This section will delve deeper into the fault tolerance use case. It will cover the 

integration of Semantic Web concepts into the FF testbed and the process taken to 

implement the use case. 

3.4.1 Abstraction of Data 

For the use case to be realized, proper abstraction of the manufacturing data must 

be implemented.  

Figure 3.4 describes an example of data abstraction. The Data, Information, 

Knowledge, Wisdom (DIKW) pyramid has four layers. The lowest layer being the data 

layer describes the raw data that is acquired by the sensor. The raw data provides no other 
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information but the actual analog value that the sensor generates. The information level, 

the second layer, connects this sensor data to spatial, temporal, or thematic elements. 

 

Figure 3.4: Example with different abstraction levels 

In this example the information level connects the raw data value to the spatial 

context within our manufacturing cell by connecting the value to the sensor generating it 

and robot one, the larger asset that the sensor is connected to. The third layer is the 

knowledge layer which utilizes the contextualized information to deduce knowledge that 

cannot be measured directly. In this example, the measured value from the sensor linked 

to robot one allows us to deduce that the robot gripper is closed. Finally, the fourth layer 

makes use of the deduced knowledge from the previous layer to come up with decisions 

regarding the process. In this example, the deduced knowledge reaffirms that the robot can 
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continue its path in the manufacturing process. Even though the above is a very simple 

example, this methodology can be used at a much more complex level. The aggregation of 

multiple sensors in similar fashion can allow more complex monitoring of processes or 

prediction capabilities. This same abstraction process will be implemented to realize the 

autonomous manufacturing use case. 

3.4.2 Development Methodology 

 

Figure 3.5: Implementation Plan 

Figure 3.5 outlines the steps taken to execute the full autonomous manufacturing 

use case in the FF testbed. The first step details the information that the use case will utilize. 

The second step focuses on acquiring this information in RDF to be able to manipulate it 
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further using Semantic Web technologies. The data coming from the sensor is in raw format 

and thus needs to be mapped out accordingly. To do this, an application was developed 

that takes as an input this raw data and outputs the value mapped out to the correct entities 

each time this value is updated. Once this application was developed, the next step was to 

deploy it onto the FF testbed. The tools integrated into the testbed mentioned previously 

were leveraged to deploy this application. The output of this application was then 

integrated with the other information in a KG. Reasoning Mechanisms were then deployed 

on the KG to deduce whether the potentiometer was functional or not. Once this was 

known, the system can then decide whether to use the potentiometer or the timer to continue 

with the required path. This provides a high-level structure of the implementation plan 

adopted throughout this thesis.  

3.4.3 Data Modelling 

 

Figure 3.6: Information for the AM Use Case 

  The first step was to identify the necessary information for the use case to be 

possible. Figure 3.6 outlines the different information leveraged to produce the final 
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decision. All the information presented is modelled using the Resource Description 

Framework Schema (RDFS). The top half of the figure represents the ontology adopted 

which is the Semantic Sensor Network (SSN) ontology.  

The first set of information is the local data generated by the sensor in the testbed. 

This data is mapped out to the potentiometer. This set has three separate entities in the 

schema which are the Sensor, Observation, and Result entities.  

1) sosa:Sensor: This entity represents a device that responds to a stimulus and 

generates a result which relates to the potentiometer which is a sensor that generates 

different results depending on the change in linear motion of its extrusion.  

2) sosa:Observation: This entity represents the value of a property which in our case 

is the measurement of the potentiometer. These two entities are linked together 

using the sosa:madeObservation property.  

3) sosa:Result: This entity represents the actual value of the observation made which 

is the value given by the potentiometer which is linked to the Observation using the 

sosa:hasSimpleResult property. The lower half of the figure illustrates the instances 

created from the described ontology for this use case.  

The second data source is the information obtained from the manufacturer. This 

source provides information about the lifetime of the sensor and the normal output range 

that the sensor should be yielding. This is required as it provides the information set that is 

used to deduce the functionality of the potentiometer. The information is mapped as 

follows: 

1)  sosa:Sensor: Similarly, to the first set, this entity represents the potentiometer 

again and will be unified into one entity instance in the subsequent KG. 
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2) ssn-system:SystemCapability: This entity represents a property of the Sensor entity. 

In this use case, this represents the Range attribute of the potentiometer. This entity 

is mapped to the Sensor entity through the ssn-system:hasSystemCapability 

property. 

3) ssn-system:MeasurementRange: This entity is the set of values that a sensor can 

return which is the normal output range that the manufacturer specified for the 

Potentiometer. This entity is mapped to the above entity using the ssn-

system:hasSystemProperty property. 

Finally, the third data source is the domain knowledge about the testbed. As 

described above, a robot arm can use the data from two different sensors to continue with 

the implemented path. Either the potentiometer or a timer can provide the needed data to 

deduce whether the gripper is in the required state or not. This set of information is integral 

as it will be the basis of which the autonomous system will decide which sensor to rely on 

for the process to move forward. This information is mapped as follows: 

1) sosa:Sensor: Once again this entity describes the sensors used and will be instanced 

twice for this source, once for the potentiometer and once for the timer. 

2) sosa:Procedure: This entity describes a workflow, plan, or algorithm that makes a 

change to the state of the world. In our use case, this will be instanced as Path1 

which is the path programmed on the robot to pick up the object. Path1 moves the 

robot from its home location to the location of the part needed to be picked up. 

Once the part is picked up which is indicated by the potentiometer value, this path 

finishes by moving that part to a second predetermined location. This entity is 

linked to the sensor entity using the ssn:implements property.  
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Chapter 4 

 Implementation 

4.1 Introduction 

This chapter will provide a detailed view of all the steps taken as part of the 

contributions in the Thesis. Section two will go over the development of the FF Testbed 

and outline all the equipment available and the overall communication set up. Section three 

will detail the Autonomous Manufacturing use case presented in Chapter three using a 

Semantic Web approach.  

4.2 Future Factories Testbed 

To discuss all the assets available at the FF Testbed, this section will be broken 

down into the three factory layers introduced in Chapter 2. 

4.2.1 Equipment Layer  

4.2.1.1 Robotic Arms 

The FF testbed hosts five Yaskawa six-axis Robots (two HC10s and three GP8s) 

and are controlled by YRC1000 and YRC1000micro robot controllers.  Figure 4.1 shows 

the Yaskawa GP8’s (on the right) and the Yaskawa HC10’s (on the left). The two GP8s 

are primarily used for assembly tasks.  

Their high speed and high repeatability accuracy allows them to cooperatively 

assemble a wide range of items. The three HC10s are utilized to facilitate material intake 

and output. 
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 Figure 4.1: Robotic Arms in Future Factories 

Additionally, they perform inspection procedures and some collaborative tasks with 

the other robots. They can either be operated manually with smart pendants or remotely 

through the PLC system. Custom designed pneumatic end-effector tools are 3D printed in 

the lab and attached to the end of the robot arms to grip the rocket parts.  

4.2.1.2 Conveyor System 

The FF testbed also contains a four-conveyor system all connected to achieve full 

loop around the different robots as seen in Figure 4.2. The C4N Conveyor Belts and Stands 

are used to transport the manufactured or assembled products throughout the different 

stations available in the testbed. They are controlled by the Sinamics GS120 Variable 

Frequency Drives which in turn are connected to the Programmable Logic Controller. The 

conveyor system is pivotal for allowing collaboration between the different robotic arms 

available. 
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Figure 4.2: FF Testbed Setup 

4.2.1.3 Programmable Logic Controller 

The devices and machines in the lab communicate to each other through a Siemens 

SIMATIC CPU 1517F-3 PN S7-1500 PLC. PLC code is written in Siemens Totally 

Integrated Automation (TIA) Portal engineering software, where the layout of devices in 

the PLC network is configured and managed. The PLC communicates to connected devices 

using a wide variety of communication protocols, the most notable being the Profinet 
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Industrial Ethernet standard. The PLC is connected to three ET200SP Distributed I/O 

devices, which are essentially extended I/O modules with larger numbers of available 

inputs and outputs, and they are mounted near the controlled device as opposed to being 

seated directly on the PLC rail. The Distributed I/O modules are mounted by the robot 

stations and communicate to the PLC network via a Profinet connection. Distributed I/O 

provides an advantage when communicating to devices such as robots that require a large 

amount of I/O signal allocation. In the TIA Portal software, PLC data tags have their data 

type defined, and they are mapped to the robots’ concurrent I/O signals. These PLC tags 

represent the actual logic state of the concurrent I/O signal. By creating a function block - 

which essentially works like a class from a standard programming language - input, output, 

and temporary variables can be created and assigned to the PLC tags. By writing PLC code 

(whether using ladder diagrams, Structured Control Language, or Function Block 

Diagrams), logic can be performed on the variables to manipulate the logic state of the PLC 

tags upon triggering of the specified conditions moving the manufacturing process forward. 

4.2.1.4  End Effectors 

A pneumatic end-effector gripper tool was designed, and 3D printed in the Future 

Factories lab and attached to the end of each robot. The design of the end-effector allows 

the attachment of different gripper configurations depending on the shape of the workpiece 

being manipulated, increasing the flexibility to address a broader range of manufacturing 

use-cases. The end-effector hosts several sensors - accelerometers, potentiometers, and 

load sensors, etc. - that report real-time status data to the Siemens Distributed I/O modules 

mounted on the shop floor.  
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4.2.1.5 Sensors 

Motion Capture Cameras 

Future Factories incorporates an OptiTrack motion capture system, Figure 4.3, into 

the manufacturing cell using an optical motion capture software called Motive. 

Retroreflective markers are placed at various locations within the cell to be tracked by 

OptiTrack motion capture cameras that are mounted on the truss surrounding the cell. The 

marker locations are calibrated in Motive, and once they are mapped within the generated 

virtual 3D space, their coordinates can be linked within the software to create rigid bodies 

to represent physical objects within the cell. OptiTrack plugins can be used to transmit real-

time motion data into other programs such as Unity or Unreal Engine; in the scope of 

manufacturing, OptiTrack motion data is imported into Process Simulate for virtual 

commissioning purposes. 

Potentiometer 

One of three sensors mounted on the Robot’s end effector, the Sensata-BEI 

potentiometer measures the linear position of the extruding rod shown in Figure 4.4. The 

main function of the potentiometer is to provide data about the status of the gripper. The 

value given by the sensor when the gripper is closed differs from the one given when open 

and thus the value provides knowledge about whether the gripper is open or closed. The 

resistive sensor outputs a voltage that feeds directly into our PLC I/O modules.  
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Figure 4.3: Opti Track Motion Capture System 

Accelerometer 

The second sensor mounted on the end effector is the TE Connectivity 

accelerometer. The accelerometer measures the vibrations of the gripper. The main 

function of this sensor is to determine the time interval where the gripper is closing or 

opening. The opening and closing of the gripper will cause a sudden spike in vibrations 

and thus when the accelerometer values are minimal, we can deduce that the gripper is in 
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a stable state, and we can continue with the process. The accelerometer is connected 

directly into the PLC I/O modules as well. 

 

 

Figure 4.4: End Effector Sensors 

Load Cell 

The final sensor mounted on the end effector is the TE Connectivity amplified load 

cell. The load cell measures the force or pressure that is applied to it. The main function of 

the load cell in our testbed is to determine whether an object is currently being held by the 
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gripper or not. When the gripper is closed and the object is being held, then the load cell 

value will increase with the increase of pressure. However, when there is no object then 

the value remains minimal. The load cell is also directly connected to the PLC I/O module. 

 

Figure 4.5. MistLX Vibration Sensors 

Inductive Proximity Sensors 

As part of the manufacturing processes, multiple stations were created on the 

conveyors for flexibility of scheduled paths. However, to integrate this station onto the 

conveyors, inductive proximity sensors had to be placed at every station. These sensors 
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allow us to recognize when an object is at the station and ready to be manipulated with. 

The proximity sensor is a digital sensor that is either on when an object is detected or off 

when nothing is detected. These sensors are also directly connected to the PLC I/O 

modules. 

Wireless Vibration Sensors 

The MistLX Advanced Wireless Monitoring vibration sensors were installed on the 

motor drives of every conveyor. These sensors are used to analyze the vibration frequencies 

of the different conveyors and deduce equipment health indicators. The data is relayed onto 

a gateway wirelessly and pushed onto the edge device for processing. Both the sensor and 

gateway can be seen in Figure 4.5. 

4.2.2 Shop Floor Layer 

4.2.2.1  Simatic IPC227E  

The IPC227E (Figure 4.6) is the main edge device used in the Future Factories lab. 

It includes 240GB SSD storage, 8GB RAM, and an Intel Celeron N2930 processor. The 

device has two ethernet ports as well. One port is connected to the PLC system through 

Profinet connection, the other port is connected to the UofSC network. The second 

connection allows users to access the edge device through the Siemens IPC Management 

System. This management system is installed on the UofSC network and allows users to 

access and configure many IPC’s while on the local network. Within the Future Factories 

lab, the IPC has multiple uses including data collection and visualization, connection with 

cloud services, and hosts the application developed as part of this thesis to transform raw 

data to RDF triples.  
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Figure 4.6. SIMATIC IPC227E (Left), Karbon 700 (Right) 

4.2.2.2 KARBON 700 

Another edge device present in the FF Lab is the Karbon 700 Rugged Edge 

Computer (Figure 4.6). This device has 64GB SSD of storage, 4GB RAM and an Intel 

Celeron G4900T Processor. This edge device is connected to the gateways and mainly 

functions as a sink for data generated by the wireless sensors before sending them to the 

cloud platform.  

4.2.3 Enterprise Layer 

The Enterprise layer in FF is still in the early stages of configuration and set up. 

Currently, this layer includes two cloud platforms with limited connectivity to the data 

generated within the testbed.  

4.2.3.1 Siemens Mindsphere 

One of the cloud platforms utilized is Siemens Mindsphere. Mindsphere is a 

Siemens solution created as an IoT platform to seamlessly integrate the generated data from 

a factory environment. Mindsphere has a variety of capabilities built within the software 
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alongside the ability to deploy custom made applications. Within the FF lab, Mindsphere 

is currently being utilized as a data lake alongside simple visualization of metrics.   

4.2.3.2 IBM Maximo Application Suite 

IBM Maximo Application Suite (MAS) is another cloud platform being integrated 

into the FF lab. This platform is broken up into three different suites; Maximo Manage, 

Health, and Monitor. Manage is intended to add assets to the platform which represent the 

different equipment in the factory floor alongside the topology of their connection. Health 

reads different data generated from the equipment and sensors then outputs different health 

performance indicators and maintenance prediction. Monitor can be utilized to create 

dashboards and visualizations of all the data connected to the platform. In the FF lab, 

Maximo is currently being configured and as such is not being fully utilized for any specific 

use case.    

 

Figure 4.7. Communication Architecture in FF testbed 
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4.2.4 Communication Architecture 

The overall communication architecture of the FF testbed is shown in Figure 4.7. 

The figure outlines the variety of communication protocols that are implemented ranging 

from wired Profinet and Distributed I/O connections to wireless Gateway and MQTT 

communication. These connections allow data to be sent up through the defined layers from 

the Equipment to the Enterprise layer and vice versa.  

4.3 Fault Tolerance Use Case 

With the FF testbed fully built the next step was to develop the use case presented 

previously. Chapter three specified in detail the information that will be used in this use 

case. With the requirements defined, the raw sensor data generated had to be translated. 

4.3.1 Semantic Annotation 

This translation process is called semantic annotation. In order to translate the raw 

data to contextualized information, the generated sensor values had to be connected to 

existing entities in the KG created for this use case. To do so, one of the Semantic Web 

technologies describes in Chapter two was used and customized to fit into our case, SDM-

RDFizer (Iglesias et al., 2020).  SDM-RDFizer is an interpreter that transforms 

unstructured data into RDF KGs. For this interpreter to function properly, the user must 

perform some steps. The first step is to define the mapping that the interpreter must abide 

by when functioning. This mapping must be defined in a Terse RDF Triple Language 

(TTL) file, a common file format used to express RDF data. Within this file, triples are 

defined using RDF Mapping Language (RML) (Dimou et al., 2014). RML allows the user 

to define custom mapping rules for heterogeneous data structure to an RDF data model. 

The raw data received is sent within a JSON object.  
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Figure 4.8. Sensor Data in JSON 

Figure 4.8 showcases a snippet of the JSON object that the raw data is sent 

within. This object has four separate key-value pairs. The first is the unique ID of the 

sensor which allows us to identify which sensor this value corresponds to. QC refers to 

the quality code or otherwise known as quality of service (QoS) which determines the 

status of the message delivery. Ts is the timestamp of the generated value and finally 

“val” is the actual value that the sensor is generating. The unique ID’s are assigned to 

sensors based on the deployment of the SIMATIC S7 Connector (SIMATIC S7 Connector 

Configurator Operating Manual V1.1, 2021) which provides connectivity for the Edge 

Device being used to different PLC data tags which are set up for each sensor. When 

configuring the S7 Connector, an ID is assigned to the PLC data tag based on the order 

the tags are added starting from 101. In the mapping rules, the only key-value pairs that 

are of interest for our use case are the ID and value.  

RML functions through defining the triples and connecting them to the input data. 

The first triple defined in this file is the triple connecting the sosa:Measurement entity to 

the sosa:Result entity. The Measurement entity is appended with the time stamp of the data 
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then connected to the value from the JSON object through the sosa:hasSimpleResult 

relationship. 

 

Figure 4.9. Output of Annotated Data 

After that triple is defined, the ID of the sensor is instantiated as a sosa:Sensor 

entity and connected to the sosa:Measurement entity created in the previous triple through 

the sosa:madeObservation relationship. Figure 4.9 shows the generated KG from the data 

received for two sensors. This KG has four triple instantiations alongside the entity classes.  

4.3.2 Deployment of Application 

With the annotation application ready, it now needed to be deployed onto the FF 

testbed. Referring to the three-layered architecture, the Equipment layer did not represent 

a good option for such an application since it was more complex than simple logic 

processing. Therefore, the Shop floor layer was chosen as the location of deployment. More 

specifically, the IPC227E Edge device described above. The first step in deploying an 

application onto the edge device requires containerization of the application. This step 

essentially places all the written functions and their dependencies into one container that 

can be run independently on any device. To accomplish this, Docker for Windows (Cook, 

2017) was used. Running within a container also allows the application to run infinitely 
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which in turn permits the translation of new data each time a new message payload is 

received.  

Once the application is containerized, the deployment process requires uploading 

the docker image onto the edge device management system through the Siemens 

Application Publisher. 

 

 Figure 4.10. View of Application on Management System. 

 Figure 4.10 shows the application once uploaded to the management system. After 

that, the application can be installed by pressing the install button on the right side of the 

screen. Once completely installed, the application architecture is shown in Figure 4.11.  

Sensors, conveyors, and robots are all connected to different I/O modules on the 

PLC with unique data tags. The data associated with each data tag is then sent to the edge 

device through the S7 Connector. This connector then publishes all this data in the internal 

Industrial Edge data bus within the edge device through an MQTT connection. At this 

point, the data is still raw and present in JSON. The deployed translator application 

subscribes to the topic that the S7 Connector publishes to. Once subscribed, the application 
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translates the data as described previously and publishes the annotated data back onto the 

data bus through a different topic. This translation happens in near real time as the RDF 

triples can be seen on the data bus as soon as the raw data is.   

 

 

Figure 4.11. Edge Device Application Architecture 

4.3.3 KG Generation  

With the RDF triples being generated on the edge level, the next step is the creation 

of the needed KG. This is done on a separate machine to simulate cloud level processing. 

At this level, the Jena Reasoning Mechanism (Ameen et al., 2014) is utilized to be able to 

integrate all the different information into one model.  
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Figure 4.12. KG Generation using Jena 

Figure 4.12 shows the steps required to generate the KG. Step one creates the model 

and integrates the generated triples. Step two combines those triples with the domain 

knowledge and manufacturer specifications present in different files. 

 

Figure 4.13. Jena Rules 
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 Figure 4.14: Final generated KG with functioning or malfunctioning potentiometer 

4.3.4 Knowledge Deduction and Decision Making 

With the KG created, reasoning was introduced to deduce knowledge from the 

information present. This reasoning was introduced in the form of rules that allow the 

creation of new entities which will be used in the decision-making process. Figure 4.13 

shows the two rules that were implemented in this use case to deduce knowledge from the 

information provided in the KG. Should the generated KG have a Potentiometer value of 

less than that given in the manufacturer specifications, then the sensor needs changing. The 
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visualized KGs whether the potentiometer is malfunctioning or not can be seen in  Figure 

4.14. 

With the KG manipulation accomplished, the next step was to come up with the 

final decision regarding the best way to complete the required path. To iterate through the 

KG SPARQL (shorturl.at/QWZ35) was used which is a query language for RDF.  In the 

query statement in Figure 4.15, the status of the sensor is extracted. If the status returned 

was that the sensor needs changing, then the different sensors that can be used are 

discovered. The final projected result of the query statement is the decision made on which 

sensor value to use shown in Figure 4.16 and Figure 4.17 .  

 

Figure 4.15. SPARQL Query 

 

Figure 4.16: Output if Sensor Operational 
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Figure 4.17: Output with Malfunctional Sensor 

4.4 Discussion 

In this thesis, the incorporation of Semantic Web technologies was described within a 

manufacturing context. The use case follows through with the full process of semantic 

annotation of raw data, knowledge graph generation, and deduction of implicit knowledge. 

For this thesis, Semantic Web was chosen as it presents a technology capable of 

centralizing all the information required in one central database. It can also help provide 

more fault tolerance capabilities beyond sensor malfunction, as different equipment can 

work dynamically to cover for larger machinery failure by using the information present 

about machine capabilities, production line layout, and scheduled jobs. This approach also 

presents different advances to manufacturing in general. 

4.4.1 Standardized Data Integration Process 

The steps taken within this thesis to integrate the different information sources can be 

applied within many different domains and use cases. Even though this use case focuses 

mainly on one certain instance of a malfunctioning sensor, this process can be generalized 

to encapsulate whichever capability required. This thesis also showcases the applicability 

of undergoing real time translation of the raw data. This work presents a way forward for 

incorporating heterogenous data sources from shop floors. 
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With this procedure outlined alongside the technologies, further work can be undergone to 

integrate more information and address other issues that may occur on the manufacturing 

shop floor. This provides a great advantage over traditional exception handling which 

requires numerous lines of code to cover every instance that may occur. Within this 

approach, exceptions such as that tackled in this thesis, can be dealt with dynamically rather 

than coded before deployment.   

4.4.2 Interoperability 

With more data being generated on manufacturing shop floors, more issues begin to arise 

when addressing interoperability of that data. In that sense, Semantic Web provides a step 

towards solving such issues with the emerging standards being adopted for structuring the 

raw data in an accessible fashion between machines and equipment. These standards 

include ontologies such as the one used in this thesis, the SSN ontology. 

4.4.3 Domain Knowledge 

Finally, KGs present a great opportunity for integrating domain knowledge for 

manufacturing processes. As such, traditional specification mediums such as manuals can 

be analyzed to include much of the information in there within the KG. This use case 

focused only on output range but there are endless possibilities of information that can be 

extracted whether it be operating or set up instruction. Having all this integrated into one 

central KG can lead to different data accessibility and autonomous manufacturing 

capabilities.    

4.5 Limitations 

One limitation with the developed application is the current lack of a user interface. 

To develop the mapping required in the edge application, the user must have knowledge of 
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RML coding for the application to output the correct RDF triples. Within the future work, 

an interface can be created where users can create the mapping through in a graphical drag 

and drop fashion. This can allow a broader range of users to collaborate in the data 

integration effort as more assets can be mapped out. 

 

Figure 4.18: Application Installed on Edge 

Another limitation this application has is the computational requirement needed to 

process the data whether in the annotation or reasoning stage. Currently, the application 

deployed on the edge device only reads two analog values and translates them into the RDF 

triples outlined in the mapping. Even with the minimal data tags, the application still 

requires 11% of the CPU and 1.21GB in storage as seen in Figure 4.18. Within 

manufacturing facilities, hundreds of data tags would have to be processed to create a true 

Knowledge Graph that encapsulates the full facility. This will cause an issue for resource 

constraint devices such as the one used in this thesis as there will not be enough processing 

capabilities to be allocated. For such an integration process to be possible, the application 
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needs to be optimized at first to minimize the needed storage. Multiple edge devices could 

also be utilized, each focusing on translating a range of data tags and thus distributing the 

processing throughout the shop floor. 
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Chapter 5 

Conclusion 

The need for autonomous manufacturing has become more apparent in the age of 

Industry 4.0. With an ever-changing market and added focus on customized production, 

factory floors must be agile and dynamic to adapt to different needs. In that regard, the 

added capabilities of autonomous manufacturing can allow this new era of manufacturing 

to be introduced at a greater scale. As discussed earlier, an autonomous manufacturing 

system can be fault-tolerant to a faulty sensor by preventing a temporary breakdown of a 

line or factory by suggesting a replacement sensor with similar functionality. It can 

dynamically allocate resources at runtime (self-organization) and when production 

demands lead to the introduction of a new machine in factories, it can simply participate 

by announcing its services and features during the resource allocation process (agile 

manufacturing). This illustrates the agility of a factory, where a new machine can be 

integrated into plug-and-produce fashion according to market demands with minimal 

downtime. All these capabilities can lead to optimized, customized, and faster 

manufacturing lines in different factory floors.  

As a first step towards this reality, this thesis narrowed down the implementation 

to one specific use case derived from the above characteristics. Fault tolerance was a 

capability that was not tackled thoroughly with only a couple of previous works addressing 

it from the full number of works gathered. In addition to that, from the works cited, none 

utilized Semantic Web to showcase it. As such, fault tolerance was identified as the 
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necessary contribution. To be able to achieve that goal, this thesis aimed at finding the 

intersection between the three research fields discussed in chapter two by utilizing Smart 

Manufacturing and Semantic Web techniques to tackle the identified gap in autonomous 

manufacturing. 

The adopted use case was a specific capability that can be applied to the FF testbed. 

The FF testbed has processes and paths that depend on certain sensor readings to continue. 

In our case, the robot requires sensor readings from a potentiometer to know whether a 

gripper is closed and if it can continue its scheduled path. However, to be fault-tolerant, 

the system should be able to continue with the process when the potentiometer 

malfunctions. This brought up two main requirements. The first requirement deals with the 

physical infrastructure needed to implement the use case on. To satisfy this requirement, 

work was accomplished that integrates different manufacturing and processing equipment 

together to achieve a full testbed. These devices have open communication channels and 

equipment with the processing ability to handle the required data. This testbed has 

advanced capabilities and equipment as outlined in this thesis. The second requirement is 

from the Semantic Web aspect. In this requirement, the work integrates the needed data. It 

shows how locally generated data can be semantically annotated then integrated to create 

a KG. This KG is then used to come up with decisions for the manufacturing process.  

This thesis provides a foundation for different research directions moving forward. 

From one aspect, the developed testbed is a state-of-the-art environment for testing and 

developing new technologies that could benefit the manufacturing sector. With the 

available infrastructure, future research directions could lean towards different AI use cases 

from image recognition and inspection, predictive maintenance and modelling, to complex 
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event understanding. The possibilities are endless as new equipment can be easily 

integrated and platforms configured.  

Within Semantic Web, future work should focus on further integration into 

manufacturing settings. This thesis contributes with the real time annotation of raw data. 

However, more complex processing such as reasoning is done outside the limits of the 

testbed due to the lack of processing power of equipment at the time. The next step in this 

use case involves integrating the full Semantic Web capabilities within the equipment in 

the testbed allowing the knowledge to truly be infused into the process as the robots are 

operational. When that step is achieved, then different capabilities are needed to realize 

autonomous manufacturing beyond fault tolerance can be attained.  

Following from that, more complex systems can be created that aim at creating 

machine event understanding. This means that all equipment can deduce knowledge about 

different events happening around them and reacting accordingly. On a broader aspect, this 

work can be a springboard to further developing Semantics in manufacturing including 

building a novel standardized smart manufacturing KG that can be utilized within different 

factories.  

Finally, the contributions laid out within this Thesis provide an intersection 

between the different research done in the participating research teams, the Artificial 

Intelligence Institute, and the Future Factories team at the University of South Carolina. 

Infusing semantics with manufacturing and pushing the research forward in both teams. 

5.1 Situation Research 

This study in knowledge infusion into manufacturing processes represents an 

overall goal of the research undertaken at the Future Factories laboratory at the University 
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of South Carolina’s McNair Center. These works attempt to recognize mechanical features 

(Harik et al., 2017) for manufacturability analysis (Y. Shi et al., 2018) and cover topics 

such as semantic segmentation (Xia, Saidy, et al., 2021b) of images for enhanced event 

understanding. Previous works also integrate reinforcement learning with digital twins for 

increased intelligence (Xia, Sacco, et al., 2021b), multi-modal robotic health through IoT 

(Saidy, 2021), and virtual commissioning (Xia et al., 2019b). All these works aim at 

increasing autonomy of manufacturing processes similar to this thesis by introducing 

Artificial Intelligence in manufacturing through different approaches. On top of that, this 

work was built upon the early design work done to create the Future Factories testbed 

(Saidy et al., 2020) 
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