
University of South Carolina University of South Carolina 

Scholar Commons Scholar Commons 

Theses and Dissertations 

Fall 2022 

Human Activity Recognition (HAR) Using Wearable Sensors and Human Activity Recognition (HAR) Using Wearable Sensors and 

Machine Learning Machine Learning 

Chrisogonas Odero Odhiambo 

Follow this and additional works at: https://scholarcommons.sc.edu/etd 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Odhiambo, C. O.(2022). Human Activity Recognition (HAR) Using Wearable Sensors and Machine 
Learning. (Doctoral dissertation). Retrieved from https://scholarcommons.sc.edu/etd/7057 

This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in 
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please 
contact digres@mailbox.sc.edu. 

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F7057&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarcommons.sc.edu%2Fetd%2F7057&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/7057?utm_source=scholarcommons.sc.edu%2Fetd%2F7057&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu


 
 

HUMAN ACTIVITY RECOGNITION (HAR) USING WEARABLE SENSORS AND 

MACHINE LEARNING 

 

by 

 

Chrisogonas Odero Odhiambo 

 

Bachelor of Science 

Maseno University, 2004 

 

Master of Science 

University of South Carolina, 2008 

 

 

 

Submitted in Partial Fulfillment of the Requirements 

 

For the Degree of Doctor of Philosophy in 

 

Computer Science 

 

College of Engineering and Computing 

 

University of South Carolina 

 

2022 

 

Accepted by: 

 

Homayoun Valafar, Major Professor 

 

Marco Valtorta, Committee Member 

 

Michael Huhns, Committee Member 

 

Forest Agostinelli, Committee Member 

 

Cindy Corbett, Committee Member 

 

Ray Bai, Committee Member 

 

Cheryl L. Addy, Interim Vice Provost and Dean of the Graduate School



 

ii 

© Copyright by Chrisogonas Odero Odhiambo, 2022 

All Rights Reserved.



 

iii 

DEDICATION

I wish to dedicate this work to all who have made it possible for me to get this far in my 

academic journey. I thank Almighty God for sound health and sane mind. I acknowledge 

my family – my wife, Everlyn Constance Nyaoro, and the children (Gracie Maya Achieng’ 

‘Mama Gee’, Shanice Adhiambo Ochanji ‘Nyakadero’, and Griffin Elvis Odero ‘Jatelo’) 

– for their patience, love, and unwavering support throughout the journey. I recognize the 

support of all other family members who have been part of the story, one way or the other. 

I acknowledge the love and support from my angel mother (Grace Mary Atieno), though 

no longer with us. Equally, I recognize the support and encouragement from my father 

(Philip Odhiambo Okong’o), as well as all the siblings. I dedicate this work to all the 

teachers and professors who have been instrumental in my academic journey, including but 

not limited to, my greatest primary school Math and English teachers, Mr. Caleb Ochieng’ 

Okode (Bongu Pr. School) and the late Mr. Benson Anuro Ngicho (Kachar Pr. School), as 

well as my high school Director, and mentor, the late Dr. Geoffrey William Griffin, 

Founder of Starehe Boys’ Center. 

Special mention to incredible brothers, families, and mentors, Dadaji (Paul Khelli) 

and Didi Doggette, and Lore Minudi. Their support has been authentic and unwavering. I 

cannot thank enough, Francine Platt, of Salt Lake City, UT, my Columbia, SC, hosts for 

the last five years, Mama Sara and Frank Santoro, and SC friends Toni Jones and Eileen 

Newman. Your kindness and friendship offered great support during this grueling journey.



 

iv 

ACKNOWLEDGEMENTS

This dissertation is a consummation of very many fronts.  First and foremost, I wish to 

appreciate the support of all the members of ValafarLab, but particularly the colleagues we 

have worked with in the Human Activity Recognition (HAR) studies. I thank Andrew 

Smith, Musa Azeem, Luke Ablonczy, and Casey Cole. Thanks to every Machine Learning 

enthusiast in the lab, led by my good friend, Brendan Odigwe.  

Very special thanks to Dr. Michael Huhns, my Master’s Theses Committee Chair, 

and Dr. Homayoun Valafar, my Ph.D. Advisor and the incumbent Department Chair. 

Special mention to Dr. Valtorta, the incumbent Graduate Director, for being very flexible 

and accessible. I hugely thank Dr. Cindy Corbett, Director ACORN Center, College of 

Nursing, and her team (Dr. Pamela Wright and Sydney Reichardt, among others) for their 

support and collaboration. Thanks to Dr. Bai of Statistics Department and Dr. Agostinelli 

of the AI Institute for being a great resource. 

Finally, I wish to register immense appreciation for the support of my entire 

committee members in a special way. Without their meticulous and rigorous tutelage, this 

work would not be possible. I feel privileged to have benefited from their combined diverse 

wealth of experience.  

I thank all friends and amazing professors at The University of South Carolina who 

have been part of my academic and social life have been.



 

v 

ABSTRACT

Humans engage in a wide range of simple and complex activities. Human Activity 

Recognition (HAR) is typically a classification problem in computer vision and pattern 

recognition, to recognize various human activities. Recent technological advancements, 

the miniaturization of electronic devices, and the deployment of cheaper and faster data 

networks have propelled environments augmented with contextual and real-time 

information, such as smart homes and smart cities. These context-aware environments, 

alongside smart wearable sensors, have opened the door to numerous opportunities for 

adding value and personalized services to citizens. Vision-based and sensory-based HAR 

find diverse applications in healthcare, surveillance, sports, event analysis, Human-

Computer Interaction (HCI), rehabilitation engineering, occupational science, among 

others, resulting in significantly improved human safety and quality of life.  

Despite being an active research area for decades, HAR still faces challenges in 

terms of gesture complexity, computational cost on small devices, and energy 

consumption, as well as data annotation limitations. In this research, we investigate 

methods to sufficiently characterize and recognize complex human activities, with the aim 

to improving recognition accuracy, reducing computational cost and energy consumption, 

and creating a research-grade sensor data repository to advance research and collaboration. 

This research examines the feasibility of detecting natural human gestures in common daily 

activities. Specifically, we utilize smartwatch accelerometer sensor data and structured 
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local context attributes and apply AI algorithms to determine the complex gesture activities 

of medication-taking, smoking, and eating. 

This dissertation is centered around modeling human activity and the application 

of machine learning techniques to implement automated detection of specific activities 

using accelerometer data from smartwatches. Our work stands out as the first in modeling 

human activity based on wearable sensors with a linguistic representation of grammar and 

syntax to derive clear semantics of complex activities whose alphabet comprises atomic 

activities. We apply machine learning to learn and predict complex human activities. We 

demonstrate the use of one of our unified models to recognize two activities using 

smartwatch: medication-taking and smoking. 

Another major part of this dissertation addresses the problem of HAR activity 

misalignment through edge-based computing at data origination points, leading to 

improved rapid data annotation, albeit with assumptions of subject fidelity in demarcating 

gesture start and end sections. Lastly, the dissertation describes a theoretical framework for 

the implementation of a library of shareable human activities. The results of this work can 

be applied in the implementation of a rich portal of usable human activity models, easily 

installable in handheld mobile devices such as phones or smart wearables to assist human 

agents in discerning daily living activities. This is akin to a social media of human gestures 

or capability models. The goal of such a framework is to domesticate the power of HAR 

into the hands of everyday users, as well as democratize the service to the public by 

enabling persons of special skills to share their skills or abilities through downloadable 

usable trained models.
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CHAPTER 1: INTRODUCTION

Human Activity Recognition (HAR) has been treated as a typical classification problem in 

computer vision and pattern recognition to recognize a variety of human activities in daily 

living, as well as anomalies. Anomaly refers to abnormal behavior or activities. Recent 

technological advancements, the miniaturization of electronic devices and the deployment 

of cheaper and faster data networks have propelled environments augmented with 

contextual and real-time information, such as smart homes and smart cities. These context-

aware environments, alongside smart wearable sensors, have opened the door to numerous 

opportunities for adding value and personalized services to citizens. Vision-based HAR 

techniques rely on image and video data to recognize behavior while Sensor-based 

counterparts rely on sensor data to achieve the same goal. Sensors are converters that 

quantify the physical aspects of the world around us into electric values that can be 

perceived by a digital system [1]. This capability makes it possible to gain knowledge about 

human activities. This study considers the use of wearable sensors. Sensor-based HAR 

generally broadly comprises five steps: sensor selection, data collection, feature extraction, 

model training and testing[2]. 

A machine learning problem is focused on learning abstract relationships that allow 

consistent generalization when new samples are provided. HAR being a pattern recognition 

problem of specific actions uses classifiers and action detection methods. It aims to 
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understand daily behaviors of people through the analysis of observation sensor or vision 

data obtained from people and their context. 

Over the past three decades, there has been a steady advancement, availability, and 

proliferation of miniature wearable sensor devices from necklaces to smart phones, 

smartwatches, etc. Human Activity recognition has so far found use in diverse domains 

such as healthcare, surveillance, sports, linguistics, event analysis, Human Computer 

Interactions (HCI)[3], among others. HAR has been used to characterize human behavior, 

understand human interactions, improve quality of life such as the case of continuous 

health monitoring, improving human safety and well-being, all over the world. Other areas 

of application include activity of daily living, physiological signals, quantified-self, 

postures detection, gestures detection, gait analysis, and indoor localization [4]–[6].  

Wearable sensors come with significant benefits such as personalized health 

monitoring, removal of healthcare barrier, allowing for evenly distributed health 

monitoring, and affordability by majority populations. These benefits can be exploited for 

social and economic good such as remote healthcare monitoring and response systems. 

Correct interpretation of motions such as falls, medication, eating, smoking, etc. can be 

used to trigger appropriate response of caregivers, translating to reduced risks for the 

elderly and other vulnerable persons from potentially catastrophic tumbles, poor 

medication adherence, unhealthy eating habits, or inactive lifestyle activities. Accurate 

assessment of health behaviors in humans is necessary to evaluate health risk, and therefore, 

effectively intervene to facilitate behavior change, improve health, and reduce disease risk. 

The next section of this work spells out the dissertation focus, problem purpose statement, 

challenges and specific objectives, significance and broader impact, contributions, 

innovation, as well as the analysis of relevant recent overarching literature. While the work 
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focuses on wearable sensors, it is imperative to comprehend and appreciate the place of Sensor-

based HAR in the bigger scope of HAR. 

1.1 Dissertation focus 

In this research, we begin by focusing on understanding the challenges in developing an 

automated system to recognize complex human activities. Based on this, we then consider 

a complex activity recognition framework as well as various approaches to recognize the 

signature of complex human activity based on the sequencing and contextualization of 

atomic activities that form the basic building blocks of complex activities. We further 

describe our design and development of a smartwatch model-based activity recognizer. 

Our final study focuses on the designing and implementation of models that recognize 

complex functional activities using sensor triaxial values, and simple atomic human 

activity context. This study focuses on detection and identification of human activities 

coded dark maroon at the leaves of Figure 1.1. 
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Figure 1.1: Taxonomy of Human Activities (based on [7] and [8]) 

1.2 Problem Purpose Statement 

With the growth of IoT and proliferation of miniature affordable consumer sensor devices 

like smartwatches and smartphones, there is a ready platform to deploy tools that can take 

advantage of these sensors to provide useful data to improve healthcare services for 

vulnerable populations. The purpose of this study is to examine, evaluate, and implement 

machine learning models that can recognize signatures for various human activities, 
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making it possible for the use of wearable sensors in areas such as monitoring seniors living 

at home for falls, late-night activity, sleeping habits, medication adherence, healthy eating, 

or smoking habits. Although significant body of research has been done in the domain of 

HAR, but little has been done in complex human activity recognition based on the signature 

recognition of the sequenced sum recognition of the basic atomic activities.  

1.3 Research Challenges and specific objectives 

Objective #1: Develop a comprehensive, research-grade data acquisition and 

dissemination system, optimized for collection of sensor data from broad-range wearable 

devices. 

Objective #2: Baseline gesture detection. Explore the effectiveness of CNN and LSTM 

neural networks to extract fine-grained features for detection and recognition of 

medication, smoking, eating, and exercise events. Design the framework of HAR as 

Personalized AI Models (HARP). 

Objective #3: Evaluation of the proposed models on multiple different real datasets, using 

actual device to detect medication, smoking, eating, and selected exercise activities in a lab 

setting. 

Objective #4: Analysis of device resource utilization, with a focus on memory, CPU, and 

battery life, based on number and type of active sensors, sampling rate and window size 

1.4 Significance and Broader Impact 

Technology: Understanding human behavior and its context is significant because it 

provides us with meaningful understanding of various social and health challenges. Certain 

human behaviors can be personally or/and socially harmful or beneficial. Smoking is 

harmful directly to the smoker, and indirectly to the secondary smokers. Smoking remains 
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a leading cause of preventable deaths in the United States. Overeating or poor eating can 

lead to obesity, diabetes, and sleep problems which can in turn result into cognitive 

disorders. Lack of regular exercise can lead to cardiovascular diseases. These behaviors 

are often induced by contexts. Our fundamental development of software technology and 

application of AI for recognizing human behaviors in context will enable the future 

investigations of these, as well as the social means for mitigating their harmful effects. 

  Importantly, taking advantage of commonplace wearable sensor technology such 

as smartwatches, our work stands great chance of improving existing healthcare solutions. 

Remote monitoring of an elderly, or any vulnerable dependent subject can be easily 

automated as is illustrated by the Figure 1.2 [9] in the 2015 study by Attal et al. The home 

supportive environment delivers trend data and detection of incidents using non-intrusive 

wearable sensors. This in turn facilitates a quick measurement and fast acceptance at the 

same time. Through real-time processing and data transmission, healthcare suppliers can 

monitor the subject’s motions during daily activities as well as detect unpredictable events 

that may occur. The subject’s records can be used in medical decision support, prediction, 

and prevention. Detecting and responding to life-threatening health situations such as falls 

among the elderly or children, detecting seizures and tremors in epilepsy patients [10]–[12] 

and intervening with timely communication to prevent injuries as well as respond with 

emergency services, are some of the ways in which our research can add significant impact 

in the healthcare space. 
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Figure 1.2: Remote health monitoring architecture based on wearable sensors 

Dissemination: This research has produced a variety of rich HAR datasets, a 

comprehensive suite of tested software tools related to data acquisition, annotation, and 

management for smart watches. We have implemented a robust HAR database available to 

the public to support research and collaboration. We will distribute our software through 

Google App Store and a public version control sites such as Bitbucket or GitHub. The 

publicly available data and software will enable a wide range of investigations into the 

context-based detection of human behaviors, and the social interactions among humans. 

Electronic documentation, tutorials, and representative data created will be made 

accessible to the international community through our research websites. All related 

publications are publicly available as a contribution to research. The HAR database also 

includes discussion features around datasets to make it possible for the online consumers 

to engage more directly in the interrogation of the data or related discussions among 

themselves or share feedback. 

Energy Efficiency: Finally, our work in Objective #4 generates useful insights to enable 

end users and application developers to efficiently calibrate miniature sensor devices for 

better battery life. Good resource calibration translates into better performance. 
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1.5 Innovation 

This research is novel in multiple ways: 

a) We tap into existing sensor data of smartwatches to analyze common complex human 

activities using modern predictive tools and technologies to understand relevant human 

behavior as well as create practical software tools to solve everyday problems. Based 

on the sensor data insights alongside other supportive characteristics such as time and 

context, we have created sophisticated Neural networks capable of extracting fine-

grained features of human activity for detection and subsequent recognition. We 

investigate and implement machine learning models that recognize medication-taking 

gestures, smoking gestures, eating human activities. Through this, we have generated 

comprehensive knowledge of human behavior that can be exploited further for 

purposes of enhancing remote healthcare services, smoking cessation solutions, 

personal wellness assistance, and healthy eating support. 

b) Through assisted edge-annotation of self-activity data, we provide seamless 

aggregation and integration of user personalized data to centrally shareable repository 

and AI engine to train and deploy models, which can be refined generic baseline models 

or new personalized models. Based on this outcome and the proposed HARP 

Framework, the idea can be extended to serve HAR as Personalized AI Models (HARP) 

on affordable commodity sensor devices. 

c) This study turns affordable commodity devices, smartwatches in this case, to generate 

important human activity data, which is exploitable for useful analytics to further 

research, or provide a basis for custom HAR tools for smart devices users. 

1.6 Dissertation organization 

The dissertation is organized as follows: 
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In chapter 2, we examine state transition modeling of the smoking complex 

behavior using LSTM recurrent neural networks. We focus on modeling the smoking 

activity and the use of smartwatch sensors to recognize the activity. More specifically, we 

demonstrate how we reformulated one of our previous works in detection of smoking to 

include in-context recognition of smoking. We present a reformulation of the smoking 

gesture as a state-transition model comprising mini-gestures. 

In chapter 3, we further examine the use of smartwatch sensors in medication 

adherence monitoring using neural networks on smartwatch accelerometer sensor data. We 

also consider the data process from watch to preprocessing, and network training. We 

demonstrate the use of smart applications to perform semi-annotation of data. 

In chapter 4, we examine the problem of human activity recognition on time series 

accelerometer sensor data using LSTM recurrent neural networks. The use of sensors 

available through smart devices has pervaded everyday life in several applications 

including human activity monitoring, healthcare, and social networks. In this study, we 

focus on the use of smartwatch accelerometer sensors to recognize eating events from a 

dataset of ten participants. 

In chapter 5, we look at a feasibility study on detecting medication gestures using 

machine learning and accelerometer data collected via smartwatch technology. We 

examine the use of wearable sensor devices in the recognition of human gestures and 

application of the same in addressing the costly problem of Medication adherence. 

Medication adherence is a complex human behavior associated with chronic condition self-

management.  
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In chapter 6, we investigate and implement a first step in concurrent identification 

of activities with a single unifying neural network classification approach based on time 

series sensor data. We also examine activity modeling in a linguistic parallel. Finally, we 

explore a theoretical framework for domesticating and democratizing HAR models to 

smart devices users. 

Chapter 7 is a conclusion that converges all the studies through a common framework 

as well as lays out the areas for future work. 

1.7 Literature Review 

The analysis of literature that puts this study into perspective is based on the conceptual 

framework illustrated by Figure 1.3. Just like in Figure 1.1, the dark maroon color in 

represents the HAR focus of this research. The Green color represents a partial focus of 

this research. We discuss the use of GPS data to determine context in smoking behavior, 

but we do not widely exploit the feature in determining context of human activity in the 

other human activity studies, such as medication, eating, and jogging exercise. 
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Figure 1.3: Taxonomy of Human Activity Recognition (based on [1], [8], [13]) 
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1.8 Application Areas 

The study [7] broadly classified HAR application areas under different categories of 

activities: daily living, real-time and user activities (individual and group-based). This 

classification is further illustrated by the work of A. Das Antar in [8]. According to Arshad, 

et al study, data showed that dynamic activities had the highest frequency of application, 

followed by static and group activities, as illustrated by Figure 1.4. This also shows that 

there is still immense room to come up with innovative HAR solutions in the healthcare 

domain. 

 

Figure 1.4: Frequency of application areas by HAR [7] 
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study[15], Hasan et al introduced and trained a Deep Belief Network (DBN) and trained it 

on the same features. The DBN outperformed both the SVM and ANN for HAR. The work 

by Sukor et al. [16] achieved much superior performance of 96.11% accuracy using 

Principal Component Analysis (PCA) on a publicly available dataset. The study applied 

PCA to extract relevant features from mobile phone’s tri-axial accelerometer and 

gyroscope sensor data. 

 Data annotation presents a tedious exercise in the HAR process. Bota et al. [17] 

helped mitigate this process through a Semi-Supervised Active Learning (SSAL) approach 

to relatively automate the annotation process for HAR on self-training (ST). In our previous 

studies on medication and smoking behaviors [18], [19], we automated the annotation 

process through user activity demarcation during data acquisition or activity performance. 

The marked data was persisted to cloud repository, and later downloaded and parsed 

through a further automated script to rapidly generate fully annotated data. This process 

made it possible to rapidly process large amounts of datasets. 

 Zhu et al. [20] proposed a semi-supervised deep learning approach to implement 

temporal ensemble of deep LSTM (DLSTM) on labeled and unlabeled data. In the study 

[21], Du et al proposed a three-stage framework that uses RFID tags for recognizing and 

forecasting HAR with LSTM: post-activity recognition, recognition in progress, and in 

advance prediction. Smart homes show enormous potential in healthcare, power-saving, 

etc. Further, it enables the operation of smart services according to human mind. 

 Chelli and Patzold [22] proposed a multi-activity recognition system. The system 

relied on mobile phone data comprising time and frequency domain features from 

acceleration and angular velocity. [23] introduced a pattern-based semi-supervised deep 
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recurrent convolutional attention network (RCAM) with wearable sensors to address the 

limitations and imbalanced distribution of labelled data as well as challenges of multimodal 

sensor data. Javed et al [24] proposed a 2-axis accelerometer Multilayer Perceptron (MLP) 

classifier to predict physical activities using smartphone accelerometer sensor data. The 

proposed model achieved 93% weighted accuracy using a publicly available WSDM 

dataset. 

 [25] argued that CNN with images will not burden the modern devices. [26] Using 

CNN and LSTM, a framework CNN-LSTM Model was proposed for multiclass wearable 

user identification while performing various activities. [27] and [28] applied some form of 

LSTM in their approaches. [27] Proposed a Contrastive Predictive Coding (CPC) 

framework based on CNN and LSTM for monitoring construction equipment activity. [28] 

Proposed a hybrid model that combines one-dimensional CNN with bidirectional LSTM 

(1D-CNNBiLSTM) to recognize individual actions using wearable sensors. To overcome 

limitations of some techniques such as ignoring data variability, having a large number of 

parameters, consuming a large number of resources, and being difficult to implement in 

real-time embedded devices, Pan et al. [29] employed the GRU network to address these 

issues. The approach collects valuable moments and temporal attention to minimize model 

attributes for HAR in the absence of I.I.D. 

Dynamic Activities 

Sani et al [30] proposed Coarse-to-Fine framework that uses Microsoft Kinect to capture 

activity sequences in 3D skeleton form, groups them into two forms, and then classifies 

them using the Bidirectional Long Short-Term Memory Neural Network (BLSTM-NN) 

classifier. Espinilla et al [31] proposed an online activity recognition with three temporal 
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sub-windows to recognize daily living activities such as showering, toilet, eating, etc. for 

predicting activity start time based on an activity’s end label. The temporal sub-window 

registered an accuracy of 98.95% on the VanKasteren, Ordonez 

(https://deeplearning.buzz/deep-learning-datasets/ (accessed on 16 July 2022)) dataset. 

Alghyaline [32] proposed an approach based on YOLO object detection, Kalman 

Filter, and Homography to detect real-time static and dynamic activities from CCTV 

camera videos. Chen et al. [33] proposed an ensemble Extreme Learning Machine (ELM) 

algorithm to classify and recognize daily living human activities based on smartphone 

sensors, which used Gaussian random projection to initialize base input weights. Two 

experimental results achieved 97.35% and 98.88% accuracy on two public datasets. H. Ma 

et al. [34] proposed the AttnSense model to capture signal sensing dependencies with 

gyroscope and accelerometer sensors. A combination of CNN and a gated recurrent 

network (GRN) sense signals in spatial and temporal domains. 

Almaadeed et al. [35] performed experiments using data representation from each 

person performing multiple activities in the same surveillance video, which is then used to 

detect the corresponding action. They used multiple human action recognition using 

3Dimensional deep learning trained on KTH, Weizmann, and UCF-ARG datasets. Their 

experiment achieved 98% accuracy score. Gleason et al. [36] proposed a two-stage 

approach for HAR. The first stage generated dense spatio-temporal proposals on frame-

wise object detection using hierarchical clustering and jittering techniques. Action 

classification and temporal refinement in untrimmed videos were performed in the second 

stage using the Temporal Refinement I3D (TRI-3D) network. 
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Wu et al. [37] presented AdaFrame, which included LSTM to select relevant frames 

for fast video recognition and reduced computational cost. Nadeem et al. [38] considered 

the significance of accurate detection of body parts in HAR. They proposed a framework 

that combined body part and discriminant analysis, with features extracted as displacement 

parameters that represent body part positions and processed using maximum entropy. Their 

experiment on the UCF dataset using the Markov model for markerless human pose 

estimation and physical activity recognition achieved 90.91% accuracy for body part 

detection. Ishikawa et al. [39] proposed the Action Segment Refinement Framework 

(ASRF) to improve performance on challenging datasets up to 13.7% in terms of segmental 

edit distance and 16.1% in terms of segmental F1 score. Temporal action segmentation is 

divided and refined into framewise action classifications with the Action Segmentation 

Branch (ASB) and action boundary regression with Boundary Regression Branch (BRB). 

D’Arco et al. [40] used SVM to identify daily living activities by adjusting the size 

of the sliding window, reducing features, and implanting inertial and pressure sensors. 

Their system achieved an accuracy score of 94.66% while both sensors were used together. 

According to findings, inertial sensors are most suitable for dynamic actions, while 

pressure sensors are most suitable for static actions. Various researchers relied on pre-

segmented sensor data to identify actions. However, Najeh et al. [41] relied on streaming 

sensors to perform HAR. They tried to establish whether the current action is a continuation 

of a previous action. They achieved this in three steps, namely: sensor correlation (SC), 

temporal correlation (TC), and determination of the activity activating the sensor. 
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1.8.2 Real-Time Activities  

Surveillance 

Jiang et al. [42] attempted to address real-time pedestrian detection by their proposal's 

approach that extracted static sparse features from each frame by feature pyramid and 

sparse dynamic features from successive frames to improve feature extraction speed, then 

combine them in Adaboost classification. [43] proposal spelled out a method to monitor 

traffic and unprecedented violence using CCTV cameras to identify object movements, and 

video synchronization to ensure proper detail alignment in the videos. 

Basha et al. [44] approach employed CNN-DBNN to automatically track and detect 

criminal or brutal activities in videos. They used the CNN module to extract features from 

frames. The features were then subsequently passed to the Discriminative Deep Belief 

Network (DDBN). Experiment results showed increased accuracy at 90%. [45] proposed 

CNN model for multiple action detection, recognition, and summarization (such as two 

people fighting, walking, hand waving, etc.). This approach identified actions by 

comparing existing and generated Histogram of Oriented Gradients (HOG) of the frames 

of each shot’s Temporal Difference Map (TDMap). Their experiments achieved an 

accuracy of 98.9% on a video dataset. 

Qin et al. [46] also proposed a method for detecting and preventing criminal 

activities in shopping malls (DPCA-SM) using a video monitoring approach. The DPCA-

SM could also trace people's routes and detect measures of store settings in real-time using 

surveillance cameras and generating alerts. The method evaluation yielded 92% accuracy 

in crowded conditions. Mahdi and Jelwy [47] proposed an approach for automatically 

detecting unusual situations in academic environments and alerting the appropriate 

authorities. 
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Suspicious Activities 

Mohan et al. [48] used PCANet and CNN to overcome the challenges of manual detection 

of anomalies in videos and false alarms in public spaces. They employed PCA and SVM 

classifier to detect frame-wise anomalous occurrence. Tests on UCSD, UMN dataset, and 

Avenue Dataset showed significant performance score. [49] used Electronic Article 

Surveillance (EAS) systems, relaying CCTV real-time videos to CNN model to detect 

suspicious human activities in the store such as shoplifting, robbery, and break-in, and 

generate an alarm. This approach proved effective even where shoplifters removed labels 

from products. 

Jyotsna and Amudha [50] used a deep learning approach based on a pretrained CNN 

model to obtain features from videos, followed by a feature classifier LSTM to detect 

behavior anomalies in an academic environment and alert the appropriate authorities. 

Pyataeva and Eliseeva [51] proposed a method for smoking event detection based on visual 

data, specifically leveraging video-based spatio-temporal features. Their method employed 

the ResNet three-dimensional CNN to recognize and detect smoking events. Riaz et al. 

[52] employed a pre-trained model to perform feature extraction from videos for pose 

estimation. The features were subsequently passed to a cascaded deep CNN to detect 

anomalies in examination halls.  

Mudgal et al. [53] combined Gaussian Mixture Model (GMM) with the Universal 

Attribute Model UAM to distinguish between normal and abnormal activities such as 

hitting, slapping, and punching. W. Ullah et al. [54] approach employed a two-stream 

neural network using AIoT to recognize anomalies in Big Video Data. This method 

comprised a cloud component that received and analyzed frames for anomalies using a bi-

directional long short-term memory (BD-LSTM) layer. 
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Healthcare 

To address the limitation of Single sensing modality in a smart healthcare 

environment, Gumaei et al. [55] proposed a robust multi-sensor-based framework 

employing a hybrid deep learning model. The framework comprised simple recurrent units 

(SRUs) used to process the sequence of multimodal input data, and gated recurrent units 

(GRUs) used to store and learn from previous information. The framework recorded more 

than 90% accuracy performance on the MHEALTH dataset. Uddin and Hassan [56] 

employed a Deep CNN established on Gaussian kernel-based PCA to recognize activities 

based on features extracted from various body sensors. They tested their approach on the 

Mhealth dataset to determine its effectiveness and use for cognitive assistance. 

While real-time monitoring can be performed using wearable sensors to recognize 

activity features like gait, falls, breathing, swallowing, etc., these devices can be a burden 

as well as source of discomfort to the wearer. Taylor et al. [57] attempted to offer a solution 

to this challenge; their method detected human motion with a quasi-real-time non-invasive 

method. They created a dataset of radio wave signals and developed an RF machine 

learning model to provide near-real-time classification between sitting and standing. [58] 

christened their approach as Ensem-HAR. They proposed a collection of models - “CNN-

net”, “CNNLSTM-net”, “ConvLSTM-net”, and “StackedLSTM-net” models - based on 

one dimensional CNN and LSTM stacked predictions. They then trained a blender on them 

for final prediction. 

Mobile health technology, including sensors worn on the body, can be used to 

passively and remotely collect and transmit objective data. These objective data can be 

much more valid and reliable compared to self-report, particularly for exercises such as 

walking [59]. The passive collection and transmission of data to researchers or clinicians 
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have other advantages, including a dramatic reduction in participant burden and the ability 

to process and provide feedback to participants automatically and in real-time or near real-

time. This critical step provides a platform to develop and deliver ecological momentary 

interventions (EMI) [60] and just-in-time adaptive interventions (JITAI) [61]. EMI and 

JITAIs deliver intervention strategies that are customized to address the specific needs of 

individual participants as soon as these needs are detected. Participant needs are identified 

by evaluation of the objective data from the remote sensors in real-time or near real-time. 

Indeed, EMI and JITAI can provide more automated and cost-effective approaches to 

intervene and improve health behavior remotely while maintaining efficacy [62]–[64]. 

1.8.3 User Activities  

Individual Activities 

Human behavior is a complex phenomenon in several aspects such as motion, 

magnitude, direction, and appearance. Hsu et al. [65] applied unsupervised learning, an 

SVM, and a Condition Random Field (CRF) to label video segments and detect anomalous 

events. Ko and Sim [66] proposed a deep convolutional framework to develop a unified 

framework for detecting behavior anomalies using LSTM in RGB images. They employed 

YOLO to determine the action of individuals in video frames, followed by VGG-16 

classify them. 

Territory or context transition is a challenge in the detection of HAR in live videos. 

[67] proposal provided a solution to this. The HOME FAST (i.e., Histogram of Orientation, 

Magnitude, and Entropy with Fast Accelerated Segment Test) spatiotemporal feature 

extraction approach based on optical flow information detects anomalies by obtaining low-

level features with KLT feature extractor and then relaying the features to DCNN for 
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classification. To overcome the limitation of custom-designed algorithms of being fixed to 

detect only one specific type of behavior, Founta et al. [68] proposed a deep learning a 

unified architecture that utilized the available metadata and combined hidden patterns to 

detect multiple abusive norms that are highly interrelated. The architecture scored highly 

on performance at 98% on detecting behaviors like Cyberbullying, Hateful, Offensive, 

Sarcasm, and Abusive datasets. Dou et al. [69] used SVM to determine abnormal 

pedestrian behavior using extracted feature vectors and vector trajectories from the 

computed optical flow field of determined joint points determined by estimating the 

posture and optical flow field with a camera. 

Moukafih et al. [70] proposed LSTM Fully Convolutional Network (LTSMFCN) 

to detect aggressive driving behavior sessions as time series classification with the aim of 

improving traffic safety. The LTSM-FCN scored 95.88% accuracy for a 5-min window 

length compared to other deep learning models on the UAH-DriveSet dataset collected 

using smartphone. Manual monitoring of CCTV video all of the time is an extremely 

difficult task. In a bid to address this challenge, Lee and Shin [71] proposed a deep learning 

model to automatically detect abnormal behavior such as assault, theft, kidnapping, 

drunkenness, etc. Their experiment results revealed I3D model as the best performer over 

the rest. 

Xia and Li [72] applied a fully CNN and a pre-trained VGG-16 to extract static 

appearance features. The method used temporal attention mechanism to extract appearance 

features at the same position. They then used LSTM network to decode the features to 

predict feature anomalies in the moment to identify abnormal behavior in video frames. In 

a bid to address the challenge of the dynamism of human action, Bhagya Jyothi and 
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Vasudeva [73] proposed a Chronological Poor and Rich Tunicate Swarm Algorithm 

(CPRTSA)-based Deep Maxout Network to extract effective features to recognize human 

activities in different domains. Belhadi et al. [74] classified algorithms into two categories: 

The first performs data mining and knowledge discovery to investigate relationship 

between behaviors and identify anomalies; the second employs deep CNN that learns from 

historical data to detect the collective emergent abnormal behavior. Shu et al. [75] 

considered a graph LSTM-in-LSTM (GLIL) host-parasite architecture for group activity 

detection, which can be several person LSTM (P-LSTM) or graph LSTM (GLSTM). P-

LSTM and GLSTM are based on interactions between persons. P-LSTM is integrated into 

G-LSTM, and residual LSTM learns person-level residual features comprising both the 

temporal and static features. 

Group Activities 

In an effort to improve performance, Ebrahimpour et al. [76] used both sensor and 

camera data sources to conduct crowd analysis based on three approaches: crowd video 

analysis, crowd spatio-temporal analysis, and social media analysis. [77] applied a deep 

convolutional relational machine (CRM) to recognizes group activities with an aggregation 

component that generated activity maps of individual and group activities with spatial 

information in the video. The map was generated through a multi-stage refinement reduces 

errors. 

Q. Wang et al. [78] proposed the Multiview-based Parameter Free Framework 

(MPF) which comprised L1 and L2 norms. MPF helped in the characterization of structural 

properties of individuals in the crowd. The group overcame the limitation of crowd 

behavior analysis through their framework that automatically detected group numbers in 
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the crowd without using any parameters. H. Ullah et al. [79] method employed a two-

stream CNN architecture that combined spatial and temporal networks to solve the problem 

of capturing information from still frames.  

 [80] implemented a Coherence Constrained Graph LSTM (CCGLSTM) based on 

spatio-temporal context coherence (STCC) and Global context coherence (GCC) constraint 

with a temporal and spatial gate to control the memory. The CCGLSTM component is used 

to recognize group activity at each time stamp by ignoring irrelevant features. Crowd 

density variation complicates crowd behavior analysis. In a bid to address this challenge, 

[81] implemented a two-stream convolutional network, incorporating LSTM, with density 

heat-maps and optical flow information to classify abnormal crowd behavior. T. Wang et 

al. [82] utilized hidden Markov model (HMM) to detect abnormal events in surveillance 

videos by relying on image descriptors derived from HOF orientations as feature extractor 

and a classification method. 

The study "Violence in Crowds" [83] proposed a descriptor called Simplified 

Histogram of Oriented Tracklets (sHOT) based on spatio-temporal level and frame level 

orientation as well as magnitude extracted in spatio-temporal 3D patches at different levels. 

Behavior anomalies were localized in video sequences. To detect anomalies, Amraee et al. 

[84] created an approach that partitioned large non-overlapping cells, followed by the 

elimination of redundant information, and eventually the detection of abnormal events in 

crowded scenes using two distinct one-class SVM models. Liu et al. [85] used a predictive 

neural network to detect abnormal crowd behavior in public places by determining the 

difference between real frames and predictive frames in the moving object. Experiments 

on the UMN dataset scored highly at 97.7% accuracy. Khan [86] approach to congestion 



 

24 

detection used motion features extracted from optical flow and particle advection to show 

a pattern of increasing trajectory oscillation. The proposed method's evaluation showed 

that it could be used in real time. 

 [87] performed experiments using UMN dataset with the goal of determining crowd 

panic states based on entropy and enthalpy; enthalpy refers to the system’s state and 

entropy is a measure of the degree of disorder. Crowd motion data can be obtained using 

optical flow technique. Gupta et al. [88] proposed a framework CrowdVAS-Net based on 

deep CNN for extracting features such as acceleration, velocity, etc., then trained with a 

RF classifier to differentiate between normal and abnormal behavior for effective crowd 

security and management in public places using videos. 

1.9 Data Sources 

 

Figure 1.5: Frequency of data sources by existing literature on HAR [7] 
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1.10 Techniques 

Machine Learning (supervised learning, unsupervised learning, and semi-

supervised learning) form an integral part of HAR. The Figure 1.6 [7] provides a summary 

of frequency of techniques/algorithms used in the existing literature on HAR. 

 

Figure 1.6: Frequency of algorithms used in the existing literature on HAR [7] 
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reveal data issues including unlabeled datasets, incorrectly labeled datasets, lack of 

temporal information, unknown class recognition, missing data, among others. These data 

limitations that must be addressed for good performance in activity recognition and 

prediction. Riaz et al. [52] investigated the impact of data labeling elimination on accuracy. 

On the contrary, Alafif et al. [89] studied the improvement of accuracy of the classifier by 

gathering more labeled data. Du et al. [21] study by spatial knowledge-based method 

established that managing temporal data activities is a challenge. Doshi and Yilmaz [90] 

demonstrated that algorithms may struggle to recognize activity when presented with 

unknown classes of data because they require a better understanding of objects and their 

context. Machine learning algorithms perform highest when trained on known data.  

In their work, Zhu et al. [20] established that current designs are limited to only 

visible classes; that they cannot recognize unseen classes. The work of Hsu et al. [65] 

delved on intra-class variation challenges. They established that predicting an individual’s 

actions is complicated and will vary depending on presence and presentation. [91] averred 

the need for a future project in artificial data generation to address the scarcity of large-

scale image and video datasets. The works by Nadeem et al. [38], Köping et al. [14], Zhang 

et al. [92] and Lazaridis et al. [81] established that models trained on large datasets 

outperform counterparts trained on small datasets [49]. 

1.11.2  Data Preprocessing 

After the collection of data, data preprocessing exercise helps to find the valuable 

input data for HAR Machine Learning training. Different studies identify “appearance and 

feature extraction” and “background reduction” as some of the key issues in data 

preprocessing. Ullah et al. [79] aimed to build hand-crafted characteristics and merge them 
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with deep learning architecture to increase implementation. Wang et al. [78] studied the 

need for more cooperative attributes in order to determine crowd actions. Amraee et al. 

[84] identified the significance of background images to be computed after a specific 

frequency and subsequently ingested into the proposed method. Jiang et al. [42] focused 

on how address cases of abrupt fluctuations of video backgrounds. 

1.11.3 Hardware and Techniques 

Hardware is the backbone and the ecosystem of all data and computations in the 

HAR process. Various disparate hardware may be involved concurrently, asynchronously, 

or synchronously. Where large size of data is involved, the hardware capacity becomes an 

important factor. The most common hardware are cameras for vision-based data, 

smartphones, smartwatches, and other different types of sensor implementations. This 

hardware may exhibit some limitations such as computational cost and hardware problems. 

Besides, some hardware is costly to acquire such as the case with good smartwatches. Xia 

and Li [72] investigated the intense computation power requirement for feature extraction 

by deep CNN. They attempted to come up with a simpler algorithm to extract appearance 

and motion features [93]. 

To shift away the burden from hardware as far as existing large-scale dataset is 

concerned, [74] investigated other possible representations of behavioral data to improve 

behavioral analysis time significantly. Yoon et al. [93] considered computational 

complexity as a constraint in their design of activity recognition as a multitask learning 

problem. Bhargava et al. [94] reported that DBN has a longer computation time when 

detecting anomalies. Ma et al. [95] established that the cost of computation load to 

determine the start and end of activity directly affects recognition performance, and this 
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should be optimized. Camera placement, both in location and orientation, determines the 

accuracy in HAR. The camera should be placed in such a way that it captures the required 

features. Where multiple views are necessary, multicamera are required such as analyzed 

in the study of crowd disasters control [88]. [96] looked at window size, network intensity, 

and breadth as factors that can be optimized for best recognition performance. J. Zhang et 

al. [97] investigated the perspective distortion compensation algorithm to obtain accurate 

weight calculation in a particular situation. Muhammad Shoaib et al. [98] investigated 

resource consumption of online activity recognition on smartphones and smartwatches on 

six different classifiers. They considered three different sensors, at different sampling rates 

and window sizes and analyzed the utilization of CPU, memory, and battery. 

1.11.4 Complex Activities Detection 

Most human activities are complex in the sense that they typically comprise 

multiple sub-activities, which can be decomposed further into more atomic or most basic 

activities. Cooking, eating, reading, medication, smoking, fighting, etc. are examples of 

complex activities. Complex Activities occur when multiple atomic activities occur 

sequentially or interleaved in time, whereas Atomic Activities are the simplified unit level 

activities that cannot be decomposed further, given the application semantics [99]. The 

complex activities comprise both the activities and real-time detection. Various studies 

have looked at the problem of concurrent activity datasets algorithms to improve 

performance of complex activity recognition [100]. Alafif et al. [89] work focused on 

complex attributes and application of deeper algorithms to process large data. With the 

proliferation of smartphones and smartwatches, there is great potential in the use of real-
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time biometric data to recognize individual activities. Such an approach could generate 

real-time alerts from a live streaming camera [53]. 

1.11.5 Misalignment of Activities  

Data annotation is one of the most tedious exercises of the data process in HAR, 

yet it remains fundamental to the process. Further, if not done well, annotation can result 

in inaccurate labeling and ambiguity in activity timing. Incorrectly labeled dataset 

translates to compromised performance. Furthermore, if the frame length of action is short, 

repeated instability in prediction can be observed due to frame limit uncertainty [101]. 

Misalignment is the outcome of an action's frame getting split into multiple frames, leading 

to the loss of some useful information during frame segmentation. Misalignment 

consequently leads to incorrect action detection, hence less reliability of the affected HAR 

solutions [30]. If synchronization of a system is based only on activity end labels, then 

there is a possibility that an activity may fall out of synchronization with the next activity 

in the frame. 
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CHAPTER 2: STATE TRANSITION MODELING OF THE 

SMOKING BEHAVIOR USING LSTM RECURRENT NEURAL 

NETWORKS1 

Abstract – The use of sensors has pervaded everyday life in several applications including 

human activity monitoring, healthcare, and social networks. In this study, we focus on the 

use of smartwatch sensors to recognize smoking activity. More specifically, we have 

reformulated the previous work in detection of smoking to include in-context recognition 

of smoking. Our presented reformulation of the smoking gesture as a state-transition model 

that consists of the mini-gestures hand-to-lip, hand-on-lip, and hand-off-lip, has 

demonstrated improvement in detection rates nearing 100% using conventional neural 

networks. In addition, we have begun the utilization of Long-Short-Term Memory (LSTM) 

neural networks to allow for in-context detection of gestures with accuracy nearing 97%. 

Keywords: Smartwatch, IoT, Artificial Intelligence, Smoking detection, Mini-gesture, 

health, LSTM, ANN 
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International Conference on Computational Science and Computational Intelligence CSCI), "State 

Transition Modeling of the Smoking Behavior Using LSTM Recurrent Neural Networks", Reprinted here 

with permission from the publisher 
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2.1 Introduction 

Cigarette smoking has remained the leading preventable cause of death in the world for 

the past several decades. In the US alone, 20% of the population report that they engage in 

smoking and diseases caused by smoking cost the population over $170 billion in 

healthcare each year (www.cdc.gov, www.who.int)[102]. In addition, the majority of 

smokers report that they want to quit yet among those that make a quit attempt, the majority 

relapse at least once. Reducing the number of relapses is of great interest to the community 

of tobacco-related researchers. Many studies[103]–[106] have been conducted in an 

attempt to both properly describe smoking behavior as well as pinpointing the best-times 

to intervene such that a relapse does not occur. However, these studies are inherently 

limited due to the current methods of studying smoking behavior. Most studies conducted 

rely on participants to self-report their smoking behavior. In various studies[103], [107], 

[108], the accuracy of self-reporting has been shown to be no more than ~76%. To bypass 

the reliance on self-reporting, some studies have been conducted in laboratory-based 

settings. In these studies, participants are required to smoke while being recorded. In 

addition, some studies[103] also enforce that the participants insert their cigarette into a 

device that measures attributes, such as puff duration and the interval between puffs, as 

they smoke. These measures are extremely useful to researchers who study topics like 

craving and the effects of nicotine withdrawal. Whereas these studies bypass the limitation 

of self-reporting, participants often report that they felt uncomfortable in the lab 

environment or dissatisfaction of the smoking experience due to the incorporation of the 

measurement device.  

A potential solution to these limitations is the use of smartwatch devices. The use of 

smartwatch technology allows the study to be conducted in a smoker’s natural 

https://www.cdc.gov/
http://www.who.int/
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environment, therefore eliminating the biases introduced in laboratory settings. In addition, 

commercial smartwatch devices come with a rich array of sensors that can be utilized, in 

conjunction with ML techniques, in order to detect a variety of human activities[109]–

[111]. Automatic detection of behaviors allows for an unobtrusive and passive collection 

and characterization of human activities that does not rely on self-reporting. It also allows 

for “in-time” intervention techniques to be developed. Our previous work[107] in this field 

has indicated that smoking can be detected using only accelerometer data and single-layer 

artificial neural networks (ANNs) with an accuracy of ~95% in laboratory settings and 

~90% in real-world settings[107], [112]. Independent reports[110], [113]–[116] also 

confirmed the usability of smartwatches in the study of human behavior.  

 Interpretation of human activity can substantially benefit from in-context analysis 

since there exist temporal relationship between activities. For instance, one smoking 

gesture clearly consists of a sequence of three consecutive mini-gestures initiated by hand-

to-lip, followed by a duration of hand-on-lip, and concluded by a mini-gesture of hand-off-

lip. To characterize smoking at this more fine-grain level of mini-gestures will require the 

reformulation of the classification problem while providing the benefit of improved gesture 

detection. The primary focus of the presented research is to investigate the impact of mini-

gesture representation of smoking. To that end we will explore the performance of 

conventional and LSTM Neural Networks[117] and compare the results to the previously 

published work. 
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2.2 Background and Method 

2.2.1 Previous and Related Work 

Considering their rich array of sensors, the cost, accessibility, and ease of use, 

smartwatches have emerged as a compelling platform to study human activities 

unobtrusively. Smartwatches have been used as step-counters[116], sleep monitoring[118], 

diet monitoring[113] as well as general fitness tracking[119]. In the context of smoking, 

smartwatches have demonstrated to be usable for in-situ study of smoking[120], [121] with 

high accuracy[107], [120]–[122]. Smartwatches have been used to detect smoking gesture 

with 95% accuracy in laboratory environment[123] and 90% in-situ detection of 

smoking[107]. Study of smoking has also been demonstrated to be more accurate when 

compared to self-reporting (90% versus 78%)[107], [124].  

In this experiment we have utilized the smoking data recorded from five smokers and 

compare our results to the previously published work. The previously reported detection 

of smoking was implemented using a hybrid approach that consisted of an ANN for low 

level detection of smoking puffs alongside a rule-based AI for overall classification of 

detected puffs into smoking sessions. Using this model, a session level detection accuracy 

of 81-90% was achieved. Whereas this demonstrated a high degree of success, 

improvements to the detection of individual puffs have the potential to increase this 

accuracy even further.  

2.2.2 Data Annotation 

In this experiment we used data from a previously published work that in available for 

download from https://ifestos.cse.sc.edu. This data consisted of 10 smoking events along 

with 15 non-smoking events collected across six individuals. Five of the individuals 

collected their data in a laboratory setting and one in real world settings. The non-smoking 

https://ifestos.cse.sc.edu/
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activities collected ranging from eating to typing on the computer. In total, 172 individual 

smoking puffs were collected. An example of a smoking puff is shown in Figure 2.1.  

In the previous study, each smoking puff was annotated by indicating the start and end 

of each puff by an expert. Using MATLAB, each puff gesture was further parsed into three 

sub-gestures: hand-to-lip, hand-on-lip, and hand-off-lip. The hand-to-lip gesture was 

defined as the motion of the cigarette from the resting position (hip, thigh, etc.) to the 

mouth. This region is shown in the left most box in Figure 2.2 and encompasses about 20 

data points (or 0.8 seconds). The hand-off-lip gesture is then defined as the return of the 

participant’s hand to a resting place. This region is shown in as the far-right box in Figure 

2.2 and is also about 0.8 seconds in length. The hand-on-lip gesture was defined to be the 

region in which the person has the cigarette in or near their mouth (inhalation time) and is 

shown in between the two boxes in Figure 2.2. This region is typically longer than both the 

hand-to-lip and hand-off-lip regions and greatly varied across participants as well as within 

each participant. Each hand-on-lip gesture was further broken apart using a rolling window 

of size 20 to make them compatible with the other mini gestures. Non-smoking gestures 

were also extracted in this way.  

 

Figure 2.1: An example of a smoking puff is shown where red indicates the X 

dimension of the accelerometer data, green the Y and blue the Z. 
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Figure 2.2: An example of sub-gesture annotation of a puff where the first box 

denotes the hand-to-lip gesture and the second box the hand-off-lip gesture. 

2.2.3 Overview of Training/Validation/Testing Sets  

The total number of gestures extracted was 172 hand-to-lip, 5054 hand-on-lip, 172 

hand-off-lip and 5854 non-smoking. Due to the imbalance of data in each class, the hand-

to-lip and hand-off-lip sub-gestures were duplicated 30 times to ensure nearly uniform 

number of observations in each training category. The final total number of gestures per 

sub-gesture were 5,160 hand-to-lip, 5,054 hand-on-lip, 5,160 hand-off-lip and 5,854 non-

smoking. The target classes were coded as shown in Table 2.1 with non-smoking labeled as 

1, hand-off-lip as 4, hand-on-lip as 3 and hand-to-lip as 2. One-hot encoding was used to 

generate a target matrix (one-hot encoding for each class shown in Table 2.1). 

Table 2.1: Class assignment and one-hot encoding for each sub-gesture. 

Sub-gesture Class One-hot Encoding 

Non-Smoking 1 1000 

Hand-to-lip 2 0100 

Hand-on-lip 3 0010 

Hand-off-lip 4 0001 

 



 

36 

The resulting dataset was split into the three traditional datasets of training, cross-

validation, and testing sets in the ratios of 70%, 15%, 15%, respectively.  

2.3 Neural Network Platform and Architecture 

Using Keras and TensorFlow as the simulation platform of our ANN, we investigated 

the performance of the conventional feedforward perceptrons, and LSTM neural networks. 

Both networks were trained using the same dataset published by a previous study[123]. 

The following sections provide the details for each individual study. We trained both the 

conventional Artificial Neural Network and Recurrent Neural Network Long-Short-Term 

Memory (LSTM) types of networks. While ANN generally registered high accuracies, 

LSTM comes with unique advantages such as constant error backpropagation within 

memory cells which makes it possible to bridge very long-time lags. It also works well 

over a broad range of parameters. Importantly, the network’s previous knowledge/output 

forms the input of the next unit. This means that LSTM’s learning becomes better with 

every subsequent unit. 

Conventional ANN – As the first step in our investigation, we explored the performance 

of a conventional (shallow) neural network in order to establish the impact of mini-gesture 

detection instead of detection of an entire smoking puff. Here we implemented a 

comparable architecture to the one from our previous study[123] and observed the 

implications of the reformulated study. In our previous study, we utilized a conventional 

ANN consisting of 300 input neurons, 10 hidden neurons and a single output neuron. The 

reformulation of the mini-gesture detection requires 60 input neurons and 4 output neurons 

representing 4 classes of mini-gestures. In this study we investigated the number of hidden 

layers and hidden neurons that will provide the optimal detection performance. During our 
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studies, we investigated activation function, number of batches, and the number of layers 

while using Adam optimization[125] method and Binary-cross entropy loss function for 

training the network. A summary of the Keras python code is shown in Figure 2.3. This 

code segment was modified to incorporate 2-lyaer, 3-layer, and 4 layers of hidden neurons.   

 

 

Figure 2.3: A snippet of Python code used in Keras to define the used ANN. 

LSTM-NN – While the conventional multi-layered feedforward ANNs remain excellent 

tools to be used in the prediction and classification tasks, they poorly incorporate temporal 

information. LSTM recurrent models[117], [126] have demonstrated success in 

incorporating temporal and historical information to their classification protocol and 

address a very critical aspect of the reformulated data i.e. the temporal aspect. For instance, 

a typical and permissible smoking puff should consist of the specific sequence of Hand-

To-Lip, followed by Hand-On-Lip, and terminated by a Hand-Off-Lip mini-gestures. 

Furthermore, a typical puff should consist of approximately a reasonable duration of puff 

(identified by the Hand-On-Lip mini-gesture) that is no shorter than 0.5 second and no 

longer than 3 seconds. Any departure from this allowed range should disqualify the 

identification of a proper puff. All these relationships can define a smoking grammar based 

on the vocabulary of mini-gestures. 

Our preliminary investigation of the LSTM-NN consisted of an exploration over the 

most optimal architecture (number of units) where the input and output of the network 

model = Sequential() 

model.add(Dense(12, input_dim = 60,  

activation='relu')) 

model.add(Dense(8, activation  

= 'relu')) #... (ann-i) 

model.add(Dense(4,activation='sigmoid')) 

model.compile(optimizer='adam',  

loss='binary_crossentropy',  

metrics=['accuracy']) 



 

38 

consisted of 60 and 4 neurons respectively. Figure 2.4 illustrates our model of LSTM in 

the Keras environment. Using this model, we have investigated the performance of varying 

2-unit, 3-unit, and 4-unit LSTM architectures.  

 

 

Figure 2.4: A snippet of Python code used in Keras to define the used LSTM. 

2.3.1 Training and Testing Procedure 

In our investigations, we used the hold-out strategy to set aside a section of the training 

dataset as a validation set that constitutes a fully independent data set. This strategy has a 

lower computational cost compared to k-fold strategy because it is only executed once.  

However, performance evaluation is subject to higher variance, given the smaller size of 

the data. The entire data set was partitioned using the ratios of 70:15:15 for training set, 

validation set, and test set respectively. 

We evaluated our conventional and LSTM neural networks in terms of loss and 

accuracy, as a function of architecture. Accuracy measures the performance of the network, 

while the loss function helps in optimizing the parameters of the neural networks. The 

objective of the training is to minimize the loss by optimizing parameters i.e., weights. We 

calculate loss by matching the annotated target value and the predicted values by the 

network. We used Mean Squared Error (MSE) loss function to quantify the success of our 

ANN in predicting the desired outputs.  We also relied on accuracy measure as an overall 

metric of classification success.  

model = Sequential() 

model.add(LSTM(output_leng,  

batch_input_shape=(None,1,input_leng),  

return_sequences=True,  

activation='sigmoid')) #... (lstm-i) 

model.compile(loss='mse', 

   optimizer='adam',metrics=['accuracy']) 
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The primary objective of our exploration was to discover models of ANN that will 

outperform the previously reported performance of 95%, using the same data set. It is 

noteworthy, that although in this exercise we used the same data as before, the problem 

was reformulated such that the input size was reduced from 300 input neurons to 60, and 

the output neurons was increased from 1 to 4.  

2.4 Results and Discussion 

In this section we provide the results of our investigations for the optimal performing 

architectures for the conventional and LSTM neural networks.  

2.4.1 Conventional Neural Network 

In total, we examined the performance of more than 20 architectures of ANN in order 

to select the relative optimal architecture. Table 2.2 shows the performance outcomes at 

training and testing phases, under some representative architectural and training parameters 

(epochs, batches and units). Highlights show best performance configurations. The first 

entry in this table (with the yellow highlight) indicates the architecture with the most 

optimal performance based on the training set. The loss and accuracy functions for this 

network as a function of epochs are shown in Figure 2.5 and Figure 2.6 respectively. 

Careful examination of these figures indicates an overtraining of the network based on the 

increasing pattern of the loss of the validation set. Based on this observation, we imposed 

two additional constraints that relates to our application. The first criterion was to select 

the most optimal network based on the minimum combined loss of the training and 

validation set. The green entries in Table 2.2 denote all configurations that resulted in a 

combined loss value of 0.06. The second criterion selects against the larger ANN due to 
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the nature of our application that is cognizant of power consumption. Our final selected 

architecture is shown in blue that balances detection performance and power consumption.  

Table 2.2: Mini-gesture detection using different ANN architectures 

E
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%
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T
est (%
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5000 100 4 0.01 0.07 99.54 98.84 98.79 

5000 50 4 0.01 0.09 99.47 98.70 99.65 

5000 50 3 0.02 0.06 99.34 98.72 99.28 

3000 50 2 0.02 0.06 99.31 98.82 98.40 

3000 50 3 0.03 0.07 99.07 98.69 99.17 

2000 50 4 0.02 0.04 99.41 98.91 99.57 

2000 100 4 0.03 0.06 99.13 98.65 99.38 

1500 50 3 0.02 0.05 99.37 98.81 99.13 

1500 50 4 0.02 0.04 99.35 98.85 99.42 

1500 100 4 0.02 0.04 99.18 98.70 99.26 

1000 50 4 0.02 0.05 99.09 98.55 98.69 

1000 100 3 0.03 0.06 98.92 98.54 98.68 
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Figure 2.5: Most optimal ANN architecture loss function as a function of epochs 

 

Figure 2.6: The measure of accuracy as a function of epochs for the training set 

(blue) and validation set (yellow). 

Table 2.3: The confusion matrix of the most optimal ANN architecture. 

Prediction  

A
ct

u
a
l 

 Rest H-to-L H-on-L H-off-L 

Rest 1125 5 9 3 

H-to-L 14 1021 11 0 

H-on-L 59 7 930 9 

H-off-L 25 10 0 1018 
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Table 2.4: Confusion matrix report for the most optimal ANN architecture. 
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0 0.92 0.99 0.95 1142 

1 0.98 0.98 0.98 1046 

2 0.98 0.93 0.95 1005 

3 0.99 0.97 0.98 1053 

micro avg 0.96 0.96 0.96 4246 

macro avg 0.97 0.96 0.96 4246 

weighted avg 0.97 0.96 0.96 4246 

 

2.4.2 LSTM Neural Network 

Table 2.5 provides an overview summary of our investigation of varying LSTM 

architectures in detection of smoking mini-gestures. Similar to the case of the conventional 

ANN, our first selections of the optimal architectures are highlighted in yellow. We 

imposed the minimalism of architecture without any compromise of the performance. As 

an indirect consequence of this selection, the performance of the network on the test set 

increased from approximately 93% to 95% indicating slight memorization by the network 

that can be remedied by smaller LSTM networks. The memorization phenomenon can also 

be confirmed after careful examination of the loss and accuracy functions of the training 

and validation sets shown in Figure 2.7 and Figure 2.8 respectively. Table 2.3 illustrates 

the confusion matrix of the most optimal ANN, while Table 2.4 provides a summary of the 

precision and recall of the confusion table.  
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Table 2.5: A summary of LSTM’s performance in detection smoking mini-gesture as a 

function of different architectural parameters.  
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5000 100 3 0.03 0.03 96.90 95.74 93.57 

5000 50 3 0.03 0.03 96.00 95.29 94.85 

3000 50 3 0.03 0.03 96.67 95.48 94.78 

3000 50 2 0.03 0.03 96.21 95.20 95.02 

1500 100 3 0.03 0.04 95.95 94.94 95.13 

1500 50 3 0.04 0.04 94.67 94.23 94.92 

1000 50 3 0.03 0.03 95.51 94.98 94.44 

500 50 2 0.04 0.04 94.92 94.80 91.90 

 

 

Figure 2.7: Loss function of the most optimal LSTM architecture as a function of 

epochs, illustrated by blue and orange for training-loss and validation-loss, 

respectively. 
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Figure 2.8: The measure of accuracy of the most optimal LSTM architecture 

 

Figure 2.9: Comparing LSTM/ANN loss. 

 

Figure 2.10: Comparing LSTM/ANN Accuracy. 
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Figure 2.9 shows ANN validation loss is generally higher than in LSTM for all trained 

models. Figure 2.10 shows both ANN validation accuracy and accuracy consistently higher 

than in LSTM for all trained models. 

Table 2.6: The confusion matrix of the most optimal LSTM architecture where 

Batch=100, Units=3, Activation=sigmoid, epochs=5000 

Prediction  

A
ct

u
a
l 

 Rest H-to-L H-on-L H-off-L 

Rest 1090 7 33 12 

H-to-L 17 1017 12 0 

H-on-L 43 23 929 10 

H-off-L 10 25 24 994 

Table 2.7: Confusion matrix report for the most optimal architecture of LSTM. 
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0 0.94 0.95 0.95 1142 

1 0.95 0.97 0.96 1046 

2 0.93 0.92 0.93 1005 

3 0.98 0.94 0.96 1053 

micro avg 0.95 0.95 0.95 4246 

macro avg 0.95 0.95 0.95 4246 

weighted avg 0.95 0.95 0.95 4246 

2.5 Conclusion  

In this report, we have presented the reformulation of an entire smoking gesture (puff) 

as a combination of three time-dependent mini-gestures (hand-to-lip, hand-on-lip, and 

hand-off-lip). Using this reformulation, we demonstrated the success of conventional ANN 
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(99%) in improving upon the previously reported detection of smoking (95%) using the 

same set of data. Based on the results shown in Table 2.2, the reformulation of the smoking 

gesture as mini-gestures clearly reduces the complexity of detection as evidenced by the 

improved detection. Although we have achieved a near perfect detection of the smoking 

gesture, we anticipate unforeseen challenges during the live deployment of this technology 

for in-situ study of human smoking behavior. Furthermore, we remain cognizant of the 

battery requirement during the live deployment of this technology. 

In order to incorporate the temporal dependency of human activities, including the 

mini-gestures, we have hypothesized that LSTM recurrent neural networks would exhibit 

a better performance. While our initial and in laboratory investigations have not supported 

this hypothesis, we anticipate that the true value of RNN will be exposed in live deployment 

of the system.  

In summary, our state-transition approach to detection of smoking mini-gestures 

had demonstrated improvements over the previously reported approaches. We expect that 

the declaration of mini-gestures as the “vocabulary” of smoking is instrumental in the 

development of the smoking “grammar” that can be exploited by the incorporation of 

RNNs. 
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CHAPTER 3: MEDSENSOR: MEDICATION ADHERENCE 

MONITORING USING NEURAL NETWORKS ON SMARTWATCH 

ACCELEROMETER SENSOR DATA2 

Abstract – Poor medication adherence presents serious economic and health problems 

including compromised treatment effectiveness, medical complications, and loss of 

billions of dollars in wasted medicine or procedures. Though various interventions have 

been proposed to address this problem, there is an urgent need to leverage light, smart, and 

minimally obtrusive technology such as smartwatches to develop user tools to improve 

medication use and adherence. In this study, we conducted several experiments on 

medication-taking activities, developed a smartwatch android application to collect the 

accelerometer hand gesture data from the smartwatch, and conveyed the data collected to 

a central cloud database. We developed neural networks, then trained the networks on the 

sensor data to recognize medication and non-medication gestures. With the proposed 

machine learning algorithm approach, this study was able to achieve average accuracy 

scores of 97% on the protocol-guided gesture data, and 95% on natural gesture data. 

Keywords: Smartwatch, Wearable Sensors, Wearable Computing, Medication Protocol, 

Medication adherence, Neural Networks, Machine Learning 

 
2 Related Publications and Authors: 

 

Chrisogonas O. Odhiambo, Pamela Wright,  Cindy Corbett, Homayoun Valafar. Proceedings of the 2021 

International Conference on Computational Science and Computational Intelligence CSCI), "MedSensor: 

Medication Adherence Monitoring Using Neural Networks on Smartwatch Accelerometer Sensor Data", 

Reprinted here with permission from the publisher 
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3.1 Introduction 

Poor adherence to prescription medication is a major problem with a myriad health and 

economic implications. It can lead to compromised treatment effectiveness, medical 

complications, and even death especially when strict adherence to medication dosage and 

frequency is required. It can also lead to loss of billions of dollars in unnecessary health 

care expenses due to wasted medicine or further health complications arising from poor 

medication adherence [127]–[129]. Studies show that 33-69% of all medication-related 

hospital admissions in the United States (US) are caused by poor medication adherence, 

which translates to an annual cost of approximately $100 billion [130], [131]. 

Annually in the US, non-adherence can account for up to 50% of treatment failures, 

approximately 125,000 deaths, and up to 25% of hospitalizations [132]. Typically, 

adherence rates of 80% or more are needed for optimal therapeutic efficacy. However, it is 

estimated that adherence to chronic medications is around 50% [132]. 

The two main causes of poor medication adherence are stress and the complexity of 

medication procedure or steps [133]. Both physical and emotional stress on a patient may 

result in depression, anger, denial of illness, or fear of medication. The complexity includes 

factors such as the dosage, frequency, duration, cost, and refill policy, which can 

demotivate the patient. While stress may be difficult to control by external factors or tools, 

the complexity burden may be reduced by technology. 

With these economic and health implications, it is imperative to provide tools and 

means to enable medication adherence. The question then becomes: What are some of the 

readily available and affordable tools that can leverage modern technology to support 

adherence to medication? The purpose of this study was to explore the use of smartwatch 
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sensors in monitoring human hand motions to detect medication-taking, with the aim to 

help people adhere to their prescriptions, hence minimizing the negative effects of poor 

medication. This, in conjunction, with other messaging technologies such as Amazon 

Alexa, or simple SMS notifications, can provide useful medication reminders. 

3.2 Background 

3.2.1 Wearables in Human Activity Detection 

Various studies demonstrate how smartwatches have been used to monitor and detect 

human motions, such as the case of smoking detection [122], [134]–[136], or fall-detection 

[110], [137]–[139]. Independent reports [113], [115], [140]–[143] also confirm the 

usability of smartwatches and other smart wearables in the study of complex human motion 

behaviors such as eating habits, physical activities, and foot motion [113], [115], [116], 

[118]–[120], [140]–[143]. Considering the rich array of sensors, cost, accessibility, and 

ease of use, smartwatches have emerged as a compelling platform to unobtrusively study 

human activities. Uses of Smartwatches include step-counters [116], sleep monitoring 

[118], diet monitoring [113] as well as general fitness tracking [119]. Smartwatches have 

demonstrated [120], [121] high accuracy for detecting smoking gestures [120]–[122]. 

Smoking gestures were detected with 95% accuracy in the laboratory environment[123] 

and 90% accuracy in-situ [122]. Studies to identify smoking via gestures has also been 

demonstrated to be more accurate when compared to self-reporting (90% versus 

78%)[122], [124].  
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3.2.2 Wearables in Detection of Medication Adherence 

Monitoring medication-taking can be broadly categorized as direct or indirect. The 

former involves  observation of  a person e taking medicines or drug-testing in a laboratory  

[133]. The latter involves self-reporting, pill counting, medication refill tracking, and 

electronic tracking using smart wearables, cameras or pill caps with medication event 

monitoring systems [127], [130], [144]. Direct methods are most accurate, but generally 

more obtrusive, time-consuming, and expensive. Indirect methods are relatively 

inexpensive, efficient, and less obtrusive tools for monitoring and reporting medication-

taking. This study focuses on indirect approaches of medication monitoring. 

Smart wearable devices have been utilized in indirect observation of medication 

adherence in numerous ways including: (1) self-reporting facilitated by mobile 

devices[145], (2) sensors worn around neck such as the SenseCam[146] was originally 

envisaged for use within the domain of Human Digital Memory to create a personal lifelog 

or visual recording of the wearer's life, which can be helpful as an aid to human memory, 

(3) multi-axis inertial sensors worn on wrists[147], [148], and (4) the use of commodity 

smartwatches [149]. In summary, all the approaches have collectively demonstrated the 

potential of smart sensors to promote medication adherence, but leave potential for 

improvement in performance, cost, convenience, and usability.  

3.3 Data Collection and Method 

The overall approach to our investigation included data collection from human subjects 

(n=31) followed by developing and testing the performance of Artificial Neural Networks 

to identify medication-taking events. The following sections provide the details for each 

step of our studies.  
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3.3.1 Data Collection Protocol 

The data collection was performed using Wear OS compatible smartwatches worn on 

each participant’s right wrist. A custom software package named MedSensor was installed 

on the smartwatches to facilitate data collection, annotation, storage, and transmission. The 

acquired data consisted of time stamp and x, y, and z components of the accelerometer data 

sampled at 25Hz intervals. In addition, information regarding the start and end of each 

medication-taking session was provided by the user and recorded to assist with data 

annotation. Participants marked the beginning and end of each medication-taking activity 

by pressing the corresponding button (shown in Figure 3.1) on the MedSensor app. A total 

of 31 participants were included in the data collection activities. Each participant was 

directed to record 10 protocol-guided medication-taking activities per day for 5 days, 

followed by 5 days of recording 10 medication-taking activities per day using their natural 

medication-taking gestures. In total 1300 protocol-guided and 1300 natural medication-

taking gestures were collected. 

 

Figure 3.1. MedSensor interface used for annotation at the edge. 

3.3.2 Medication Taking Activity 

Our data collection consisted of two broad categories of protocol-guided and natural 

medication-taking gestures. The first phase of our study (presented here) focused on the 
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recognition of the protocol-guided medication-taking activity as a proof of concept. The 

protocol-guided medication-taking activity is defined as the five explicit consecutive steps 

shown in Table 3.1. The natural gesture medication-taking activity is purely defined by the 

participant and likely consists of many permutations of the sub-activities shown in Table 

3.1Table 3.1 and performed by any combination of left or right hands. It is important to note 

that medication-taking gestures cannot be performed by a single hand, and it must involve 

the use of both hands.  

Table 3.1. Protocol-guided medication-taking activity. 

Step Description Activity 

1 

Unscrew the medicine bottle cap with 

your right hand while holding the 

bottle by your left hand. 

 

2 

Tip the medicine bottle with left hand 

to dispense pill(s) onto your right 

hand. 

 

3 
Place/toss pill to mouth using the right 

hand. 

 

4 

Pick up beverage/drink with the right 

hand, bring to mouth and drink to 

swallow “pill”. 
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5 

Set glass down, hold the medicine 

bottle in left hand, and put its cap back 

using right hand. 

 

 

3.3.3 Data Consolidation and Transfer 

Upon completion of medication-taking recording sessions, each participant submitted 

the medication-taking gesture data collected by the watch to their paired smartphone via 

Bluetooth. Further, the participant submitted the data from the phone to the cloud storage 

via an internet connection and the MedSensor phone application. The phone provided the 

bridge between the watch and cloud because the watches did not provide for direct file 

upload to the cloud. Besides this role, the phones were not necessary. Other than data 

transfer to cloud through the phone, it was also possible to access watch data directly via 

data cables or Wi-Fi. However, such a method would not be practical for some participants. 

To establish a homogenous protocol, the participants were directed to use the MedSensor 

interface to collect and submit data to a centralized cloud storage. This was a better 

locationally transparent process that also preserved the integrity of data from capture to 

dispatch. The data from the watch is a zip of two csv files: actual sensor data and annotation 

points that identify the medication gestures and the non-medication gestures. It is important 

to note that the data collected includes non-medication gestures. These are equally 

important in the network training since they ultimately help the models discern what is a 

valid and what is not a valid medication gesture. 



 

54 

3.3.4 Data Annotation Process 

Careful and proper data annotation is one of the most critical, time-consuming, and 

challenging aspects of utilizing supervised learning. In our study, we used the self-reported 

start and end of each medication-taking event to easily expose a small section of a person’s 

recorded medication-taking gestures. Figure 3.2 shows an example of one activity of 

interest embedded within a larger recording session. The self-reported start and end 

annotations are rough approximations and require further scrutiny by a trained supervisor. 

Aside from human error in marking the beginning and end of an activity by a user, the 

recorded data can include unrelated activities such as the gesture that is required to mark 

the START/END on the smartwatch. Therefore, we further refined the start and end of the 

medication-taking activity while confirming the existence of one. This process produces a 

more reliable and accurate set of training and testing data. A typical medication gesture is 

shown in Figure 3.2. 

Although in our current investigation we use the entire medication taking gesture as 

one complete signal, in principle, it is possible to subdivide and analyze the signal as a 

temporal sequence of sub-gestures as denoted by segments A-D in Figure 3.2. These 

segments correspond to open-bottle dispense-medicine (A), Hand-to-mouth pill-to-mouth 

hand-off-mouth (B), pick-up-water drink-water lower-cup-to-table close-bottle (C), and 

post-medication (D), respectively. Figure 3.3 is a superimposition of three separate 

medication-taking events collected from the same participant.  
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Figure 3.2: Visualization of a full medication gesture from one participant. 

 

 

Figure 3.3: Visualization of the superimposition of three medication gestures from 

one participant. 

3.3.5 ANN Training and Testing Methodology 

We explored three related aims in our investigations. These aims are as follows and 

gradually span the gamut of the intended applications of our software: 

Exp #1. Explore the capabilities of the network when trained and tested with 

protocol-guided data from all participants. The test data was a split in-sample dataset 

from the protocol-guided dataset.  

Exp #2. Explore the capabilities of the network when trained with the protocol-

guided data from n-1 participants to be tested with the n-th participant. Both the train 

and test datasets were protocol-guided gestures except the test dataset that was an out-

of-sample. 
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Exp #3. A preliminary exploration of training a network using all gestures (both the 

protocol-guided and natural) from n-1 participants and tested on the n-th participant. 

The training dataset also included the protocol guided dataset of the n-th participant. 

In all these experiments, the explored ANNs were presented with an entire gesture. 

Therefore, the input size of ANNs consisted of the longest medication-taking gesture across 

all the training and testing sets. This consisted of 1500 consecutive accelerometer data 

points (approximately 20 seconds) that required an input size of 4500 neurons to 

accommodate the x, y, and z components of the accelerometer. The output layer consisted 

of a single neuron reporting the presence or absence of a medication-taking event. We 

employed a parsimonious strategy in determining the size and number of hidden layers. 

During each phase of our experimentation, an array of hidden neurons was explored to 

yield the optimal performance. In all the experiments, a single hidden layer sufficed 

(general architecture shown in Figure 3.4), and we therefore did not explore deep 

architectures. Generally, the number of hidden neurons started at 10 and was incremented 

in steps of 10 to as many as 100 hidden neurons. In each application, the optimal 

architecture was then selected to be carried for testing purposes.  

In experiment #1 the training and testing data sets were randomly selected from all the 

data in the ratio of 80:20 respectively. Each bootstrapping exercise (Exp #2, and #3) was 

repeated n-times by excluding each participant in each round. We used Keras/TensorFlow 

platform for all our ANN simulations. A loss function of accuracy defined in Eq 1 was 

used to assess the performance of the trained ANN. In this equation the terms TP, TN, FP, 

and FN correspond to true positive, true negative, false positive, and false negative, 

respectively. 
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Figure 3.4: Artificial Neural Network high-level architecture 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  Eq (1) 

 

3.4 Results and Discussion 

3.4.1 Results of Experiment #1 

The first experiment was the most fundamental test that could be conducted. The results 

of this experiment are shown in Table 3.2 

Table 3.2. Each experiment was repeated three times to assess whether results varied 

due to randomization of the training/testing datasets. In general, the results did not vary 

noticeably and therefore, we report the results of one single instance of training/testing. 

Based on the results shown in this table, when developing a single ANN to detect a 

medication-taking event across the entire sample, a hidden layer size of 90 neurons is the 

optimal architecture. Although not a significant reduction, the performance of ANN 

slightly decreases with a larger or smaller hidden layer size.  

Based on these results, it is possible that a single ANN (with optimal architecture of 

4500, 90, 1) can detect a medication-taking event with as high as 97.8% accuracy if the 31 

participants in our study provided a comprehensive representation of all medication-taking 
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events across the entire population. Skeptical of this conclusion, we embarked on 

evaluation of ANNs in detecting medication-taking events for new participants in the next 

experiment.  

Table 3.2. Results of a two-layer ANN as a function of hidden neurons  

Hidden Neurons Accuracy Training Accuracy Testing 

100 98.90% 95.99% 

90 98.95% 97.77% 

80 98.58% 95.99% 

70 98.96% 95.99% 

60 98.25% 97.18% 

50 98.93% 97.48% 

40 98.41% 96.59% 

30 99.08% 97.18% 

20 98.24% 97.48% 

10 99.06% 96.59% 

Max 99.08% 97.77% 

Min 98.24% 95.99% 

Average 98.74% 96.82% 

 

3.4.2 Results of Experiment #2 

To better address the generalizability and practical applications of the presented 

detection mechanism, we tested the ability of ANN to identify the protocol-guided 

medication-taking event for a new participant. This approach allows the immediate use of 

the developed application on any new user without the need to retrain the network. 
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Therefore, ANNs were trained using bootstrapping to train a network on n-1 participants and 

testing with the n-th out-sample/participant dataset using the protocol-guided medication-taking 

events. This experiment was repeated 10 times for each of 31 participants by altering the hidden 

neurons from 10 to 100 in increments of 10; in total, 310 ANNs were examined.  

Table 3.3 and Table 3.4 show summary of results for the first 10 of the 31 participants, for both 

training and testing accuracy scores, respectively, for the best and worst architectures. The Hidden 

Neurons column shows the number of hidden neurons in the configurations that produced the 

highest and lowest train or test accuracies. The averages in both tables refer to the average for the 

31 participants. As an example, in Table 3.3 for Participant 1 (row 1), the best training performance 

was achieved by the configuration 4500-20-1 while best test performance (according to the 

corresponding Table 3.4) was achieved by the configuration 4500-40-1. The lowest corresponding 

train/test scores from the two tables were recorded by the configurations 4500-30-1 and 4500-80-

1, respectively. 

Several conclusions can be derived from the results shown in the two tables. First, 

detection of medication-taking events from new participants is possible with accuracies 

varying from 98% (participant 1) to 100% (participants 2 and 7) with an average of 99.7% 

across all participants. However, the optimal performance corresponds to a different 

number of hidden neurons for each participant. This anecdotal observation agrees with the 

general expectation of human behavior where some people may exhibit a more complex 

behavioral signature while others exhibit a simpler behavioral signature. The complex 

signatures require a more capable ANN, which translates to a greater number of hidden 

neurons. The results shown in Table 3.5 are the average performance of each ANN 

configuration across the entire sample. 
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Based on these results, an ANN with 60 or 100 hidden neurons exhibits an average 

performance of 96.8% across all participants and therefore, while not optimally configured 

for any one participant, they perform consistently well across our entire cohort. It further 

shows that no one model was the best fit for all participants. This was perhaps due to the 

fact that each participant’s hand motions have some degree of uniqueness or signature as 

illustrated by Figure 3.2 and Figure 3.3. The latter shows that gestures from the same 

participant vary. However, there is clearly an emergent motion pattern in all the gestures. 

Table 3.3: Training Accuracy Results of ANN training using a bootstrap approach after 

experimenting with 10 different hidden layer sizes for each excluded participant 

Participant 
Accuracy Scores Hidden Neurons Count for 

Highest Lowest Highest Accuracy Lowest Accuracy 

1 97.48% 96.30% 20 30 

2 98.10% 94.44% 60 50 

3 97.54% 92.78% 10 90 

4 96.78% 95.55% 30 90 

6 97.70% 97.09% 40 10 

AVG 97.49% 93.60%   

 

Table 3.4: Testing Accuracy Results of ANN training using a bootstrap approach after 

experimenting with 10 different hidden layer sizes for each excluded participant. 

Participant 

Accuracy Scores Hidden Neurons Count for 

Highest Lowest 

Highest 

Accuracy 

Lowest 

Accuracy 

1 97.99% 31.66% 40 80 
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2 100.00% 84.82% 10 90 

3 100.00% 79.44% 50 10 

4 100.00% 100.00% 10 10 

5 100.00% 100.00% 10 10 

6 100.00% 100.00% 10 10 

AVG 99.11% 86.79%   

Table 3.5: The average performance of ANNs for each architecture. 

Hidden Neurons Avg. Training Accuracy (%) Avg. Testing Accuracy (%) 

100 96.76% 93.25% 

90 96.40% 96.49% 

80 96.54% 95.42% 

70 96.79% 97.25% 

60 96.77% 97.12% 

50 96.52% 97.79% 

40 96.64% 96.48% 

30 96.42% 96.59% 

20 96.82% 96.90% 

10 94.93% 94.50% 

 

3.4.3 Results of Experiment #3 

This experiment was conducted with an out-sample natural gesture dataset as follows: 

The training dataset comprised of all protocol-guided data of n-participants plus (n-1) 

natural datasets. The nth natural gesture dataset was used as the test set. Table 3.6 shows 

the highest, lowest and average accuracy scores as well as the number of observations used 
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in the training and testing procedure for the first cohort of participants who completed the 

data collection process successfully (n=10).  

For experiment #3, using the data from participants’ natural gestures, we also tested all 

the 10 configurations as was the case with the protocol-guided data. 

Table 3.6: Performance by participant 

Participant 
Highest (%) Lowest (%) Averages (%) Dataset Sizes 

Train Test Train Test Train Test Train Test 

User1 97.7 98.3 96.5 94.7 97.3 97.7 5228 57 

User2 97.8 98.2 96.9 69.6 97.3 89.1 5230 56 

User3 97.3 98.2 77.5 46.3 94.7 91.3 5234 54 

User4 97.1 100 95.0 69.6 96.4 94.8 5250 46 

User5 97.5 100 95.6 84.8 96.7 96.5 5250 46 

User6 97.4 100 96.3 77.8 97.0 85.8 5172 45 

User7 97.2 100 96.1 100 96.9 100 5254 44 

User8 97.5 100 96.0 84.0 96.8 98.4 5292 25 

User9 97.5 100 95.7 95.8 96.8 96.3 5294 24 

User10 97.6 100 96.0 82.4 96.7 93.5 5308 17 

AVG 97.5 99.5 94.2 80.5 96.7 94.3   

 

Note that all tests were conducted on the trained models with out-sample natural gesture 

datasets; the sample was excluded from the model training. 

3.5 Conclusions  

Three experiments were conducted to identify participants’ medication-taking gestures. 

We demonstrated that we could leverage smartwatches non-obtrusively to harness the 
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power of technology to consistently identify medication-taking gestures. Neural networks 

predicted medication-taking gestures that were greater than 97% accurate for protocol-

guided data and 95% accurate for natural medication-taking gestures. Importantly, we were 

able to establish that every person has some uniqueness in medication-taking hand-

motions. We trained different fitting models to suit each of these unique characteristics. 

The ability to accurately identify medication-taking gestures has the potential to improve 

medication adherence monitoring and translate to better population health outcomes and 

reduced health care costs. Combining medication reminders through SMS notifications or 

the use of conversational agents such as Amazon Echo may be particularly effective to 

improving medication adherence rates.  

3.5.1 Future Work 

In our future work, we intend to evaluate distinct parts of the medication-taking 

gestures as well as consider the full gesture. Correct recognition of parts of the whole may 

better distinguish medication-taking gestures from other similar gestures such as drinking 

in the absences of medication-taking. This may be better achieved using Long Short-Term 

Memory (LSTM) recurrent neural networks which are architecturally suited for order and 

sequence prediction problems. Finally, this study was done with a single smartwatch worn 

on the wrist of the right hand. This meant that majority of the recorded and analyzed hand 

motions were based on the right-hand motions. In a few cases, we observed gestures that 

showed less pronounced motions. It is possible that in such cases, the participant wore the 

watch on the wrist that was not executing the actual medication motions for the natural 

gesture, Therefore, for future studies and for a more comprehensive analysis and 
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characterization of medication gestures, it will be useful to consider concurrent data 

collection using two smart watches on both hands. 
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CHAPTER 4: HUMAN ACTIVITY RECOGNITION ON TIME 

SERIES ACCELEROMETER SENSOR DATA USING LSTM 

RECURRENT NEURAL NETWORKS3 

Abstract – The use of sensors available through smart devices has pervaded everyday life 

in several applications including human activity monitoring, healthcare, and social 

networks. In this study, we focus on the use of smartwatch accelerometer sensors to 

recognize eating activity. More specifically, we collected sensor data from 10 participants 

while consuming pizza. Using this information, and other comparable data available for 

similar events such as smoking and medication-taking, and dissimilar activities of jogging, 

we developed an LSTM-ANN architecture that has demonstrated 90% success in 

identifying individual bites compared to a puff, medication-taking or jogging activities. 

Keywords: Smartwatch, Accelerometer, Sensors, Artificial Intelligence, Machine 

Learning, LSTM, Human Activity Recognition, Eating, Bite, Food Intake 
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4.1 Introduction 

Accurately assessing health behaviors in humans is necessary to evaluate health risk 

and effectively intervene to facilitate behavior change, improve health, and reduce disease 

risk. Health behaviors, such as eating, smoking, exercise (e.g., jogging), and medication-

taking are frequently assessed with subjective self-report methods, such as diaries, which 

participants complete throughout the day. The accuracy of self-report methods is poor, 

however, particularly for assessing food intake and physical activity [150]. Self-report 

methods are also burdensome for participants, particularly if health behaviors need to be 

assessed over the long term [151].  

Mobile health technology, including sensors worn on the body, can be used to passively 

and remotely collect and transmit objective data. These objective data can be much more 

valid and reliable compared to self-report, particularly for exercises such as walking [59]. 

The passive collection and transmission of data to researchers or clinicians have other 

advantages, including a dramatic reduction in participant burden and the ability to process 

and provide feedback to participants automatically and in real-time or near real-time. This 

critical step provides a platform to develop and deliver ecological momentary interventions 

(EMI) [60] and just-in-time adaptive interventions (JITAI) [61]. EMI and JITAIs deliver 

intervention strategies that are customized to address the specific needs of individual 

participants as soon as these needs are detected. Participant needs are identified by 

evaluation of the objective data from the remote sensors in real-time or near real-time. 

Indeed, EMI and JITAI can provide more automated and cost-effective approaches to 

intervene and improve health behavior remotely while maintaining efficacy [62]–[64].  
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 Here we report a novel application of Artificial Neural Networks to, objectively and 

automatically, identify and discriminate eating activity from three other activities namely 

smoking, medication-taking, and jogging using accelerometer data acquired from a 

smartwatch. Validation of the algorithm would make it possible to develop and deploy 

novel EMI and JITAI to improve these four health behaviors. Machine Learning algorithms 

have been used to achieve great results in developing practical solutions in multiple 

domains: health diagnosis [152]–[154], sports [143], [155], human activity recognition 

[18], [156], [157], among many others. 

4.2 Background and Method 

4.2.1 Previous and Related Work 

Considering their rich array of sensors, the cost, accessibility, and ease of use, 

smartwatches have emerged as a compelling platform to study human activities 

unobtrusively. Smartwatches have been used as step-counters[116], sleep monitoring[118], 

diet monitoring[113] as well as general fitness tracking[119]. In the context of smoking, 

smartwatches have been demonstrated to be usable for in-situ study of smoking[120], [121] 

with high accuracy[107], [120]–[122]. Smartwatches have been used to detect smoking 

gestures with 95% accuracy in a laboratory environment[123] and 90% in-situ detection of 

smoking[107]. The study of smoking has also been demonstrated to be more accurate when 

compared to self-report (90% versus 78%)[107], [124]. 

Wearable devices have been utilized in indirect observation of some activities with 

clear health implications, such as medication adherence in numerous ways, including (1) 

self-report the behavior via mobile devices[145], (2) sensors worn around the neck e.g. the 

SenseCam[146] was originally envisaged for use within the domain of Human Digital 
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Memory to create a personal lifelog or visual recording of the wearer's life, which can be 

helpful as an aid to human memory, (3) multi-axis inertial sensors worn on wrists[147], 

[148], and (4) the use of commodity smartwatches [149]. In summary, all the approaches 

have collectively demonstrated the potential of smart sensors to promote the study of 

human activities but leave potential for improvement in performance, cost, convenience, 

and usability.  

In this experiment we have utilized our collected data for eating activity and previously 

available data for smoking, medication-taking, and jogging recorded from human subjects. 

We have used this data to train and test an ANN capable of detecting eating behavior at the 

bite level.  

4.2.2 Data and the Acquisition Process 

This study involved four sets of activities, namely eating, smoking, medication-taking, 

and jogging. The selection of these activities was influenced by several factors including 

the availability of data, and the degree of their similarity. In particular, smoking and 

medication-taking were included in this study to challenge the detection of eating by 

providing similar behaviors. Three of the four activities (eating, smoking, medication-

taking) consist of hand-to-mouth, hand-off-mouth, and hand-on-mouth sequence of events 

and should, therefore, provide a reasonable assessment of the network’s performance.    

The following three behaviors were recorded using smartwatches (Polar M600, Asus 

Zenwatch, Motorola, TicWatch) running android operating system: eating pizza (without 

cutlery/utensils), medication-taking, and smoking. The participants wore the smartwatches 

on the wrist (right or left). Each watch is equipped with accelerometer sensor to measure 
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the 3D acceleration, and gyroscope sensor to measure the 3D angular velocity. In this study, 

we only utilized the accelerometer sensor data sampled at a frequency of 25 Hz. 

 

Figure 4.1: Illustration of sensor axes on a typical smartphone and smartwatch. 

The fourth behavior evaluated, jogging, relied on an open public data from Wireless 

Sensor Data Mining (WISDM) Lab (http://www.cis.fordham.edu/wisdm/) that was 

recorded using smartphone strapped to the waist location of the participant. 

Data recording using the smartwatch was performed independently at the 

convenience of the participant. The paired phone was only necessary in data transmission. 

Both the phone and the watch were installed with Android App. On the watch side of the 

activity, our software performs the following: (1) initiate data collection, (2) allow the user 

to indicate start and end of an activity during data collection, (3) transmit data to the phone 

via Bluetooth. On the phone, the application performs the following: (1) receive data from 

watch, (2) uniquely name files and upload them to the research cloud repository. The cloud 

is a webservice that receives and logs data files from the phone. 

4.2.3 Data Pre-processing 

Data pre-processing is a crucial step in the data-mining process. It involves data-

filtering, replacement of the missing and outlier’s values, as well as feature 

http://www.cis.fordham.edu/wisdm/
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extraction/selection. The windowing technique is commonly used to extract features from 

raw data. The technique involves the segmentation of the sensor signals into small time 

blocks with overlapping [9], [158]. There are three types of windowing techniques namely: 

(i) sliding window, where the signals are divided into fixed-length blocks/windows, (ii) 

event-defined windows, where specific events are located/identified and restructured as 

successive data partitioning, and (iii) activity-defined windows, where partitioning is based 

on detection of specific activity changes [9]. This study applies the sliding window 

approach, which is well suited to real-time applications because it does not require any pre-

processing. 

The raw data logged at the cloud repository comprises zipped sensor files. Each zipped 

file comprises two files: actual raw data of tri-axial values and the corresponding 

timestamps. The second file contains annotation data provided by the user that identifies 

the approximate time of the activity of interest in the stream of raw data. These two files 

were processed using an in-house developed utility program that extracted gesture features 

from the raw data based on the approximate start/stop timestamps reported by the user in 

the second file. It is important to note that the timestamps reported by users are not directly 

useful for several reasons.  

First, a participant may report false start and stop times for a variety of reasons 

including simple human error. When accurately reported, the start and end portions of the 

signal will include hand movements that are unrelated to the activity of interest. For 

instance, hand movements related to clicking the start/stop buttons will also be included as 

part of the activity of interest. Therefore, to reduce noise in the data, increase its integrity 

and improve network model performance, the gestures were visually confirmed and 
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trimmed at both ‘tail’ and ‘head’ ends of each activity by a “supervisor.” Using this pre-

processing pipeline, the usable output files were generated for training and testing of 

Machine Learning.  

4.3 Neural Network Platform and Architecture 

Although in this study we evaluated numerous ML approaches, in the interest of 

brevity, here we report the most successful approach that consisted of LSTM-ANN. Long 

short-term memory (LSTM) is an artificial Recurrent Neural Network (RNN) architecture 

with feedback connections [159], [160]. An LSTM unit comprises a cell, an input gate, an 

output gate and a forget gate. The cell remembers values over arbitrary time intervals and 

the three gates regulate the flow of information into and out of the cell. LSTM networks 

find suitable applications in classifying, processing, and making predictions based on time 

series data. LSTM architectures address the vanishing gradient problem that can be 

encountered when training traditional RNNs. Figure 4.2 is an illustration of a typical LSTM 

cell where xt is the input vector to the LSTM unit, ht is the hidden state vector (or LSTM 

unit output vector), ct is the cell state vector, and ct-1 is the cell input activation vector. 
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Figure 4.2: The LSTM cell can process data sequentially and keep its hidden state 

through time (By Guillaume Chevalier - File: The_LSTM_Cell.svg, CC BY-SA 4.0) 

In the classification of sequential data, it is common to ignore the sequential aspect of 

data and treat the data as if it were independently and identically distributed (iid), and 

subsequently apply a standard machine learning classification algorithm that is designed 

for iid data [161]. It is important to note that the temporal dependence in the sequence of 

data will determine the effectiveness of the approximation. This, however, depends on how 

data is pre-processed i.e., is the raw data passed to the classifier as-is, or are features 

computed from the time-series and then in turn passed to the classifier. The human 

activities of interest in this study – eating-pizza, medication-taking, smoking, and jogging 

– are each sequence of mini-activities whose temporal aspect adds important component 

in the overall activity recognition. For example, the eating activity is made up of a series 

of mini-actions namely pick-pizza slice, raise slice to mouth, bite-pizza, lower slice from 

mouth. The sub-activities, and their sequence, is important. The past sub-features are useful 

and relevant as far as recognition of the full activity is concerned. For this reason, LSTMs 

find most relevant application in recognition of this human activity time-series data. 
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Our implementation of LSTM architecture comprised 2 fully-connected and LSTM 

layers (stacked on each other) with 64 units each. Stacking LSTM hidden layers makes the 

model deeper, more accurate, making it suitable for complex activities. Although the output 

of the system could have consisted of a single neuron to denote the presence or absence of 

eating event, we decided to design a two-neuron output. One of the two neurons is 

designated to the presence of an eating event and the other neuron indicates the presence 

of the other activities (smoking, medication-taking, jogging, or others). This design was 

used in light of our future expansion of the system to detect an array of activities. The input 

of the network (window size) was experimentally determined to consist of 150 consecutive 

points representing six seconds of recording time. The window step was maintained at 10 

datapoints, and hence an overlap computed as Window-size – Step-size; for example, in 

the case of window-size of 50 units, the overlap is given by (50 – 10 = 40). While we did 

not vary the step size, it is important to note that the smaller the step-size, the more real-

time the data-series is. Smaller step-size improves performance, but increases window 

counts and slows down detection. The sliding window-with-overlaps process significantly 

transforms and reduces the training dataset. Further, the transformation assigns the most 

common activity (i.e., mode) as a label for the sequence; some windows comprise two or 

more activities, but the mode is considered the dominant or overriding activity. We 

transform the shape of our input into sequences of 150 rows, each containing x, y and z 

values (representing the accelerometer data). We also apply a one-hot encoding to the 

labels to transform them into numeric values that can be processed by the model [162]–

[164].  
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4.3.1 Training and Testing Procedure 

As the first step in training of a network, we balanced the data by randomly repeating 

a continuous segment of the recorded data so that all classes have an approximately equal 

representation. The train/test datasets were generated from the balanced dataset by 

partitioning in 80:20 ratio, respectively. During the training process, the learning rate was 

set at 0.0025 and the model was trained for 50 epochs while keeping track of accuracy and 

error. The batch size was maintained at 1024. We applied L2 regularization (Ridge 

Regression) to the model. The L2 penalty/force removes a small percentage of weights at 

each iteration, ensuring that weights never become to zero. The penalty consequently 

reduces the chance of model overfitting. 

4.3.2 Evaluation 

The study used accuracy to evaluate classifiers performances. The metric measures the 

proportion of correctly classified examples. Accuracy can be expressed as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (i) 

Where TP (true positives) represent the correctly classified positive examples, TN (true 

negatives) represents the correctly classified negative examples, FP (false positives) 

represent negatives misclassified as positives, and FN (false negatives) represent positives 

misclassified as false. The accuracy measure does not take into account the bias arising 

from unbalanced datasets. Thus, the metric has a bias favor for the majority classes. For 

this reason, the study considered the following evaluation criteria: Precision, recall, F-

measure, and specificity. Below are the formulae to compute the metrics: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (ii) 
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𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (iii) 

 

F-measure is the combination of precision and recall. It is calculated as follows: 

𝐹~𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
(1+ 𝛽2).𝑟𝑒𝑐𝑎𝑙𝑙.𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝛽2𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (iv) 

 

where β is a weighting factor and a positive real number i.e., the weighted harmonic mean 

of precision and recall, reaching its optimal value at 1 and its worst value at 0. The beta 

parameter determines the weight of recall in the combined score. It is used to control the 

importance of recall/precision. To give more weight to the Precision, we pick a Beta value 

in the interval 0 < Beta < 1; To give more weight to the Recall, we pick a Beta Value in the 

interval 1 < Beta. We applied a score of 1.  

Specificity is computed as follows: 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
   (v) 

4.4 Results and Discussion 

4.4.1 Exploration and Visualization of the Data 

Table 4.1 presents a summary of the total amount of data that was acquired or prepared 

for use in this study. In this table, the column denoted by Participants indicates the number 

of participants in each study, while Datapoints reports the total number of sampled data 

points collected across all participants. In essence, the number of Datapoints, when divided 

by 25 will correspond to the total duration of recording in seconds (e.g., a total of 3.03 

hours of recording of the eating event). The column denoted as Patterns indicates the total 

number of presentations on the ANN that will contain the activity of interest (e.g., 5434 

input patterns that contained an eating event). The large number of patterns is a result of a 

stream of data that presents different portions of the same activity (e.g., the same bite for 
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the same participant) to ANN. Therefore, one singe gesture may consist of several input 

patterns to the ANN that consists of the activity of interest. 

Table 4.1: Summary of all the datasets used in the study 

Activity Datapoints Patterns Participants 

Eating pizza 272822 5434 10 

Jogging 287461 5882 27 

Medication 412798 3100 31 

Smoking 62823 1279 15 

As another critical step in annotation of data, it is important to visualize the data to 

become familiar with the intricate nature of each activity. This is a critical step for a 

“supervisor” to confirm and adjust the labeling of the outcome associated with each 

activity.  

 

Figure 4.3: An entire recording of consuming pizza consisting of 6 bites that in 

total took 147 seconds. 

Figure 4.4, Figure 4.5, Figure 4.6 and Figure 4.7 are visualizations of the tri-axial data 

for individual eating, smoking, medication-taking, and jogging activities, respectively. It 

is important to note that eating, smoking, and jogging consist of repetitious sub-activities 



 

77 

(a bite, a puff, a step) that are displayed in each of the corresponding graphs.   Medication-

taking activity, on the other hand, is composed of several sub-activities that appear in some 

temporal sequence and collectively appear only once. For instance, one medication-taking 

activity may consist of the sequence of opening a pill bottle, dispensing a pill, taking the 

pill, drinking water, putting everything back (pill bottle and water bottle, etc.). Previous 

work provides a detailed dissection of the medication-activity with an annotation of the 

sub-activities [18]. 

 

Figure 4.4: An eating gesture consisting of a single bite of pizza. 

 

 

Figure 4.5: Single smoking gesture
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Figure 4.6: A single medication-taking gesture that consists of multiple sub-

events (opening bottle, dispensing pill, taking pill, drinking water, etc.) 

 

Figure 4.7: Three consecutive steps during jogging activity. 

4.4.2 Training of ANN 

The training of the LSTM-ANN proceeded upon the creation of the labeled input files 

(with balancing) using the hyper-parameters described in sections II.C and II.D.  In this 

study we utilized TensorFlow/Keras as the primary ANN simulation platform. The training 

and testing process took place on Google Colab(oratory). The Colab is a Google Research 

cloud service with a web IDE for python as well as computing services. The specifications 

of the computing resources we used were as follows: Intel(R) Xeon(R) CPU @ 2.20GHz, 

13GB RAM, and 40GB of storage. The storage is upgradable to 108GB. The training of 

the system with 50 epochs required approximately 3 hours of dedicated compute time. The 

training and testing loss functions are illustrated in Figure 4.8. Based on the results shown 
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in this figure, it is clear that network has successfully learned the presented classification 

task.  

 

Figure 4.8: Training plot for the window size of 150 units whose configuration 

produced the best performance among the different models. 

4.4.3 Testing Results 

Following the successful training of the LSTM-ANN, we embarked on testing of the 

system using 20% of the randomly selected original data set. Table 4.2 lists the results for 

the test set using different metrics. Based on the results shown in this table, the system 

achieved a performance of approximately 90% success. To explore the full nature of the 

misclassifications, the confusion table (shown in Table 4.3) was examined. The accuracy, 

precision, recall, F-measure, and specificity, as described by the formulae i, ii, iii, iv and v, 

respectively, are presented the Table 4.2. 

Table 4.2: Metrics for the best performing configuration of window size 150 

Activity Precision Recall F-Measure Specificity Accuracy 

Eating 0.89 0.97 0.93 0.96 0.96 

Other 0.94 0.92 0.93 0.99 0.98 
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Table 4.3: Confusion matrix for the window size of 150 units 

T
ru

e 
la

b
el

 
Eating 5286 288 

Other 792 13587 

 Eating Other 

 

Predicted label 

4.5 Conclusion  

Automated detection of eating activity is of critical importance in relation to obesity 

and healthy weight management. Automatic detection of eating sessions will help to 

remove the burden of self-reporting from the participants and therefore, provide a simpler 

way of tracking eating events. In this report, we demonstrated successful identification of 

individual bites with an accuracy of approximately 90% when tested against activities that 

significantly resemble to eating. In particular, smoking and medication-taking will share 

the common mini-gestures of hand-to-mouth, hand-on-mouth, and hand-off-mouth. 

Although not presented here, our initial investigation has confirmed very little confusion 

between eating and jogging. Therefore, we speculate the accuracy of the system to increase 

notably if other natural daily activities are included in our training and testing sets due to 

their dissimilarity to the eating gesture.  

Although in this work we have achieved a reasonably high detection of the eating 

gesture, a number of additional investigations can be initiated to increase the performance 

and usability of the system. First, as an ultimate objective, we aim to develop one 
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application that can decipher numerous human activities to establish correlative or 

causative relationship between activities. For instance, eating at 1:00 PM may lead to a 

cigarette smoking soon after. The ability to monitor the temporal relationship between 

these two events would be very useful. To accomplish this, we need to engage in a formal 

investigation of the optimal viewable window size to and ANN that will be sufficient to 

successfully decipher between all activities of interest. Furthermore, there exists some 

inherent parallel between human activities and the principles of written language. To fully 

leverage this parallel analogy, human activities need to be examined in the more 

fundamental fashion by identifying the mini gestures that are the basis set of all complex 

activities. Here we will resort to some of the previous work [156] in order to understand 

the mini-gesture decomposition of the eating activity in relation to other similar activities 

such as smoking.  
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CHAPTER 5: DETECTING MEDICATION GESTURES USING 

MACHINE LEARNING AND ACCELEROMETER DATA 

COLLECTED VIA SMARTWATCH TECHNOLOGY: A 

FEASIBILITY STUDY 4

5.1 Abstract 

Background: Medication adherence is a complex human behavior associated with chronic 

condition self-management. Medication adherence is a global public health challenge, as 

only about 50% of people adhere to their medication regimes. Smartphone apps and 

reminders have shown promising results in promoting medication adherence. However, 

practical mechanisms to determine whether a medication has been taken or not, once 

people are reminded, have been elusive. Emerging smartwatch technology may more 

objectively, unobtrusively, and automatically detect the medication-taking than currently 

available methods.  

  

 
4 Related Publications and Authors: 
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Medication Gestures using Machine Learning and Accelerometer Data Collected via Smartwatch 
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Objective: This study aimed to examine the feasibility of detectng natural medication-

taking gestures using smartwatches.  

Methods: Recruited participants (N=28) ranged in age (20 to 60 years) and comprised 

57.0% males and 43.0% females. The majority were college students (71.4%), single 

(86.0%), and working at least part-time (61.0%). The sample represented racial diversity 

with 4% African American, 43% Asian, 43% White, and 10% reported two or more races 

[165]. Most participants were right-hand dominant (82%), while only one participant (4%) 

was ambidextrous. During data collection, each participant recorded at least five protocol-

guided (scripted) medication-taking events (sMTE) and at least ten natural instances of 

medication-taking events (nMTE) per day for 5 days. Using a smartwatch, the 

accelerometer data was recorded for each session at 25Hz of sampling rate. The raw 

recordings were scrutinized by a team member to validate the accuracy of self-reports. The 

validated data were used to train an Artificial Neural Network (ANN) to detect a 

medication-taking activity. The training and testing data included previously recorded 

accelerometer data from smoking, eating, and jogging activities in addition to the 

medication-taking data recorded in this work. The accuracy of the model to identify 

medication-taking was evaluated by comparing the ANN’s output to the actual output. 

Results: In total, 2,800 medication-taking gestures (1400 natural plus 1400 scripted 

gestures) were used to train the network. During the testing session, 560 nMTE events that 

were not previously presented to the ANN were used to assess the network. Various 

metrics, such as accuracy, precision, and recall, were calculated to confirm the performance 

of the network. The trained ANN exhibited an average True-Positive performance of 

96.5% and an average True-Negative performance of 94.5%. The network exhibited less 
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than 5% error in incorrect classification of the medication-taking gestures. 

Conclusions: Smartwatch technology can provide an accurate, non-intrusive means of 

monitoring human behaviors such as natural medication-taking gestures. The use of 

machine learning algorithms combined with modern sensing devices may significantly 

improve medication adherence and monitoring.  

 

Keywords: Machine Learning; Neural Networks; Automated Pattern Recognition; 

medication adherence; Ecological Momentary Assessment; Digital Signal Processing; 

Data Mining. 

5.2 Introduction 

Over three decades of international research has indicated that complete models of 

human health comprise complex interactions of biological, behavioral, and environmental 

factors. While there have been substantial technological advances in studying the 

biological and environmental bases of diseases, there have been relatively minor advances 

in technologies for characterizing human behaviors that influence health. Technological 

devices have pervaded and revolutionized much of our social and private lives, yet their 

implementation and utilization in healthcare remain sparse. In particular, the innovative 

use of existing, widely used, commercially available technology to influence health-

promoting behaviors has been under-utilized. Adapting smart technologies, such as phones 

and watches, have the potential to initiate more effective health-promoting interventions 

for behaviors such as weight loss, physical activity, and chronic condition self-

management. Adapting these devices to promote healthier behavior requires solving the 

crucial problem of characterizing and monitoring human behavior in a way that will be 

most useful, unobtrusive, and personally relevant. Once resolved, the subsequent step of 
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developing the optimal intervention mechanisms and personalized interventions can be 

explored.  

Better understanding of daily activities such as eating, smoking, sleeping, 

exercising, and medication-taking can have a significant impact on population and 

individual health, with the potential to significantly reduces overall healthcare costs 

worldwide. In this study, we focus on the universal challenge of medication adherence. 

Medication adherence, defined as taking medicines according to decisions agreed upon 

between prescribing healthcare professionals and patients,[166], [167] is a complex human 

behavior associated with chronic condition self-management. Medication adherence is a 

global public health challenge, as only about 50% of people adhere to their medication 

regimes [168]. Studies have identified forgetfulness as the top reason for non-adherence to 

many long-term medicines.[169]  To address forgetfulness, findings from a meta-analysis 

of medication adherence interventions among adults demonstrated that linking medication-

taking with existing daily routines and using behavioral strategies (e.g., prompts to take 

medication) are the most effective approaches to promote adherence.[169]  Smartphone 

apps and other technology-based reminders also have shown promising results for 

promoting medication adherence.[128], [170]–[172] However, practical mechanisms to 

determine whether a medication has been taken or not, once people are reminded, have 

been elusive.  

Different methods, both direct and indirect, exist to measure medication adherence, 

however, none are considered a gold standard. Direct measurements, such as clinical 

biomarker specimens or metabolites from pharmaceutical metabolism and direct 

observations of medication-taking, can be expensive and impractical in large population 
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settings [173]. Indirect methods, such as pill counts, electronic monitoring, and self-report, 

offer simpler alternatives but, at best, approximate adherence through proxy data that can 

be initially overestimated with even less reliability over time[174]. An ideal method to 

measure medication adherence should be accurate, affordable, and practical (i.e., easy to 

implement).  

Recent advances in sensor technology and artificial intelligence (AI) present an 

innovative opportunity to measure medication adherence objectively, unobtrusively, and 

conveniently. Wearable devices such as smartwatches may offer the platform to observe 

medication adherence, as well as people’s other daily activities [115], [175], [176]. From 

a modest 37 million units in 2016, smartwatch shipments around the world are projected 

to grow to 253 million units by 2025 [177] As prices for smartwatches continue to decline, 

be equipped with additional sensors, and offer more mHealth applications, they are likely 

to become as pervasive as cell phones.  Anticipating this trend, our team is investigating 

smartwatch use for human health promotion, including as a tool that can be used not only 

to remind people to take their medicine, but also to monitor medication adherence. In this 

report, we present an Artificial Neural Network (ANN) approach[18]  that can detect the 

complex behavior of medication-taking, called the natural Medication Taking Event 

(nMTE), with as high as 95% accuracy using sensor data available from common 

smartwatches. To challenge the ability of the trained ANN in deciphering nMTE from other 

similar gestures, our experiments included sensor recordings of smoking, eating, and 

jogging. The eating and smoking gestures constitute a good basis for testing the system’s 

ability to identify nMTE.   
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5.3 Methods 

5.3.1 Overview 

The use of sensors to automatically detect human activities was pioneered by the 

work of the Neural Network house and reported in the late 1990s. [178]–[181] in the more 

recent decade, inspired by the introduction of smart wearable devices, Human Activity 

Recognition has expanded to include activities such as detecting cigarette smoking [122], 

[135], falls,[182]–[184]   and sleep [118], [185]. Sleep activity has been studied further 

using sensor data obtained from electroencephalogram (EEG) and electromyogram (EMG) 

devices to develop neural network models to examine and ascertain the sleep state of 

rodents in order to understand the sleep behavior in humans[186]. In relation to detecting 

medication-taking (MT), numerous approaches and technologies have been introduced 

including experimental devices worn on wrists, [18], [127], [131], [149] sensors worn 

around the neck to detect swallowing, [187]–[189]  and vision modules embedded in smart 

environments such as the Microsoft’s EasyLiving project.[190], [191], The EasyLiving 

project showcased the early investigations into context-aware computing using an array of 

video-capture devices instead of more traditional physical sensors. By employing several 

vision modules in each room, the system could identify motion, people, gestures, and the 

surrounding environment. The project also focused on geometric relationships between 

people, places, and things to build context and form interaction information that would 

associate objects with their likely use, which could later be used in a more intelligent 

system for behavior prediction. Although vision-based medication adherence monitoring 

is a viable human activity recognition method, users’ privacy concerns and the identifiable 

nature of the data act as heavy deterrents in the practical adoption of this method.  On the 

other hand, sensor-based smartwatches provide a scalable and practical platform for 
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conveniently, unobtrusively, and securely studying human behavior conveniently in 

natural settings (e.g., people’s homes). Our previous work highlighted the potential for 

smartwatches to monitor medication taking events under protocol-guided (scripted) 

conditions (sMTE), where all participants followed the same method of taking their 

medication (e.g., use of right hand to perform most activities) [18]. However, participants’ 

nMTE may significantly depart from the scripted method. For instance, a person may prefer 

to take the pill with their right hand while drinking water with their left hand. To establish 

a more practical application of this technology, we explored the feasibility of detecting 

unscripted, and nMTE that extends our previous work. The ability to detect nMTE that is 

applicable to the general population is a powerful tool in more accurately quantifying 

medication adherence rate. It has the potential to be an effective intervention tool that can 

increase adherence, reduce accidental over-medication instances, and be used for 

medication adherence monitoring by support persons or health professionals. To test the 

capabilities of our detection engine, we used sensor data from medication-taking events 

(sMTE and nMTE) and similar activities such as eating and smoking, and a dissimilar 

activity of jogging. 

5.3.2 Participant Recruitment and Data Collection Process 

This study was conducted during the height of the COVID-19 pandemic and 

required a substantial departure from a traditional means of engaging human participants 

in sensor recognition studies, which has primarily occurred in laboratory settings. 

Participants (n=28) were recruited using snowball sampling. An appointment was made 

with each potential participant to explain the purpose, benefits, and risks of the study, and 

address any questions or concerns. After obtaining informed consent, the participant 
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completed a demographic questionnaire and then received a packet with a Smartwatch and 

phone, two charger cables, user manual, pill bottle, and placebo medication. The user 

manual was presented and discussed in detail to the participant.  Prior to data collection 

research team members had a video meeting with each participant to train them to collect 

and transfer the data, which culminated with participants properly demonstrating the 

activities. 

Collected Data. Figure 5.1 shows the two devices - smartphone and smartwatch with 

triaxial sketches. The smartwatch was used to collect data and the phone was used to upload 

the data to cloud storage. The participants wore the watch on their right wrist in the case 

of sMTE, or on their wrist of preference in case of nMTE. The collected data comprised 

hand-motion accelerometer sensor logs of the triaxial values, recorded by the watch at a 

sampling rate of 25 Hz. The data included the timestamp and orientation and acceleration 

of the hand during the medication event taking activities. The xyz-sensor values were 

logged to a CSV file by the medication-taking app on the watch. The file was moved to the 

phone via Bluetooth, periodically and asynchronously.  

 

Figure 5.1: An illustration of Smartphone and smartwatch accelerometer axes 

Data Collection Protocol. Following the medication-taking training sessions, participants 
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independently completed data collection in their homes. The exercise comprised one week 

(i.e., 5 days) of performing medication-taking behaviors using the participant’s natural way 

of taking medications (nMTE) and a second week of performing medication-taking 

behaviors according to a scripted protocol (sMTE)[18]. Each participant (n=28) was 

directed to record 10 nMTE gestures per day for the first 5 days and then 10 sMTE gestures 

for the next 5 days. In total 1400 nMTE and 1400 sMTE were collected, tallying 2800 

gestures. 

To enable seamless transfer of data from the watches to cloud storage, each watch 

was paired with a smartphone. Both the watch and the phone were installed with respective 

versions of a custom android application called MedSensor, software developed by the 

research team. At the participant’s convenience, watch data was relayed to the phone via 

Bluetooth connectivity.  

Closure. After collecting and transferring 10 days of collected data, the participants 

returned the smartwatch and phone to the study project coordinator and received a $25 gift 

card as an incentive. The smart devices were sanitized according to Centers for Disease 

Control (CDC) guidelines prior to use by other participants.  

5.3.3 Data Preparation and Annotation 

Proper use of data in supervised machine learning (ML) approaches requires 

reliable annotation of the data.  The process requires a “supervisor” (an expert) to identify 

and define the gestures of interest to be used during the training of artificial intelligence 

(AI)/ML models. As a cumbersome process, the “supervisor” must have prior familiarity 

with the gesture of interest. To develop an understanding of what signal constitutes a 

medication taking activity, the scripted data were collected and used to understand the 
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individual components of the gesture. The exact details of the scripted gesture can be found 

in our previous report [18] and are briefly summarized in Figure 5.3. Using this 

information, team members then proceeded to identifying and annotating the individual 

gestures. The process of gesture identification and annotation was heavily accelerated by 

the self-reports that included time stamps indicating the beginning and ending of each 

MTE.  

The raw data files logged at the cloud repository comprised a time stamp that 

included hour, minute, second, and millisecond; a date that included day, month, and year; 

and the x, y, and z components of the accelerometer data. A second file contained the time 

stamps corresponding to the start and end of each MTE reported by the participant. In 

theory, the self-reported MTE should be sufficient to identify the gesture of interest (i.e., 

medication-taking). However, in practice, participants may report the activity erroneously, 

or the time stamps may roughly indicate the start and end of a given activity. Therefore, 

visual confirmation of the gesture of interest is required to ensure high quality data. A 

separate utility program was developed to facilitate this process and to create the final 

usable data.[9]  After this final step, the data files are presented in a usable format for the 

training and testing of the AI model.  

5.3.4 Secondary Data Acquisition and Preparation 

This study integrated accelerometer data from four different human activities, with the 

primary focus on recognizing MTE gestures as recorded by smartwatches (Polar M600, 

Asus Zenwatch, Motorola, TicWatch) as described above. The sMTE data was recorded 

by each participant wearing the smartwatch on the right wrist then sequentially performing 

the mini events of medication i.e., open bottle, dispense pills to right palm, toss pills to 
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mouth, drink water, and close bottle. For the nMTE, the participant performed the same 

mini events, in any sequence that they deemed natural i.e., how they would take medicine 

every other day.  Smartwatch data for other behaviors (i.e., smoking, eating, and jogging) 

consisted of data reported in previous work [18], [192], while the MTE data were collected 

in this study using the protocol described above. The jogging dataset, on the other hand, is 

an open public data from Wireless Sensor Data Mining (WISDM) Lab[193]  that was 

recorded using smartphone strapped to the waist location of the participant. 

Table 5.1: Summary of all the datasets used in the study 

Activity Datapoints Gestures Participants 

Medication 824,000 2,800 28 

Eating 272,822 5,434 6 

Smoking 62,823 1,279 12 

Jogging 287,461 5,883 27 

 

Data Preprocessing and Standardization. Prior to the integration of data from multiple 

studies, several normalization and standardization steps were performed. Specifically, 

attention was made to the consistent standardization of the accelerometer data and the 

sampling rate of the data. Because the devices used for data collection across all studies 

consisted of Android devices (versus Apple devices), the sensor data followed a common 

frame of x, y, and z axes. As the next step, all datasets were processed to adhere to a 

sampling rate of 25 Hz by excluding data points (in the case of oversampling) or resampling 

based on interpolation of the data (in the case of under sampling). To normalize for the 

different number of gestures per activity, the individual gestures were represented multiple 

times in our dataset to provide a balanced representation of activities.  
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5.4 Development of the Artificial Neural Network 

5.4.1 Neural Network Platform and Architecture 

The human activities of interest in this study – medication-taking, eating (pizza), 

smoking, and jogging – are each a sequence of mini-activities that have temporal 

properties, which is an important component in the overall activity recognition. For 

example, MTE comprise a series of mini actions namely (A) open-bottle and dispense-

medicine, (B) Hand-to-mouth, pill-into-mouth and hand-off-mouth, (C) pick-up-water, 

drink-water, lower-cup-to-table and close-bottle (see Figure 5.3). The sub-activities, and 

their temporal sequence, are important. Therefore, the sub-features are useful and relevant 

for recognition of the full activity. Long-Short-Term Memory Neural Networks (LSTM-

NN) are therefore, relevant in the application of human activity recognition because they 

contain internal memory of the past events in the analysis of time-series data. LSTM-NN 

is an artificial Recurrent Neural Network (RNN) architecture with feedback connections 

that facilitate awareness of past activities at the present time of the activity. [159], [160]  

Figure 5.2 is an illustration of a typical LSTM cell where xt is the input vector to the LSTM 

unit, ht is the hidden state vector (or LSTM unit output vector), ct is the cell state vector, 

and ct-1 is the cell input activation vector. In this study, our model contained two fully 

connected and two LSTM layers (stacked on each other) with 64 units each. The learning 

rate was set at 0.0025. 
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Figure 5.2: The LSTM cell can process data sequentially and keep its hidden state 

through time  

5.4.2 Training and Testing Procedure 

The LSTM network was trained for 150 epochs using the annotated data while 

keeping track of accuracy and error. The batch size was maintained at 1024. The train/test 

datasets were partitioned in the 80:20 ratio, respectively after the balancing procedure. We 

applied L2 regularization (Ridge Regression) to the model. The L2 penalty/force removes 

a small percentage of weights at each iteration, ensuring that weights never become zero. 

The penalty consequently reduces the chance of model overfitting. 

The LSTM model expects the training data to be of fixed length. This fixed length 

of data that is directly presented to LSTM is referred to as the “window size.”  In this study, 

a window size of 150 points was empirically determined to provide an acceptable 

performance. At a sampling frequency of 25Hz, a window size of 150 represents 6 seconds 

of recording. While the window size represents the portion of the raw data that should be 

in direct view of the ANN at the time of classification, any relevant past contextual 

information is saved in the internal cell of the LSTM architecture. 
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The temporal exposure of the LSTM-NN can be accomplished in a variety of ways 

including a sliding window of appropriate size. In this study a sliding window size of 10 

points was selected as an optimal compromise between performance, simplicity, and 

responsiveness. The sliding window-with-overlap significantly transforms and reduces the 

training dataset. Further, the transformation assigns the most common activity (i.e., mode) 

in the exposed window of 150 points as a label for the sequence. This is necessary since 

some windows may comprise two or more activities, but the mode is considered the 

dominant or overriding activity. Consequential of the input definition, the data was 

reshaped into sequences of 150 rows, each containing x, y and z values with 10 points of 

overlap between two consecutive windows. The desired output of the system was based on 

one-hot encoding of the labels to transform them into numeric values that can be processed 

by the model [162], [164]. 

5.4.3 Evaluation of the Trained Network 

During the training phase of an ANN, a single metric of performance needs to be 

defined to assess network performance. The network performance metric is used by the 

operator to direct the network to improve overall performance. In this study, we evaluated 

the performance of classifiers using the Accuracy metric as defined in Equation 1. In 

Equation 1, TP (true positives) represent the correctly classified positive examples, TN 

(true negatives) represents the correctly classified negative examples, FP (false positives) 

represent negatives misclassified as positives, and FN (false negatives) represent positives 

misclassified as false.  
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                           eq( 1) 

As a network performance measure, Accuracy does not account for the bias arising 

from unbalanced datasets. To remove the effect of unbalanced data (unequal representation 

of different activities), data within each activity were repeated to arrive at approximately 

equal number of representations for medication taking, eating, smoking, and jogging. 

Despite the adjustments to enforce dataset balance, some datasets remained larger than the 

rest, translating into a biased favor for the majority classes. For this reason, the study team 

considered the following additional evaluation criteria: Precision, recall, F-measure, and 

specificity. Precision indicates what fraction of positive predictions were truly positive. 

Recall (positive) indicates what fraction of all positive samples were correctly predicted as 

positive by the classifier (True Positive Rate). Recall (negative) indicates what fraction of 

all negative samples are correctly predicted as negative by the classifier (True Negative 

Rate). 

Below are the formulae to compute the metrics: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                            eq( 2) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                   eq( 3) 

 

F-measure is the combination of precision and recall. It is calculated as follows: 

𝐹~𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
(1+ 𝛽2).𝑟𝑒𝑐𝑎𝑙𝑙.𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝛽2𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                                                   eq( 4) 

 

Where β is a weighting factor and a positive real number. It is used to control the 

importance of recall/precision. 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                                            eq( 5) 
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5.5 Results 

5.5.1 Visualization of MTP Gesture 

As the first step in performing activity recognition with wearable devices, a more 

detailed understanding of the gesture of interest needs to be developed. Figure 5.3 

represents an example of an entire scripted MTE recorded from a right-hand dominant 

participant. After careful and repeated examination of the gesture, sequential segments of 

the gesture were identified (Figure 5.3). When considering the C portion of the gesture 

corresponding to the water-drinking (phase C), the gradual increase of the accelerometer’s 

y-axis depicts the beginning of the drinking phase. It can be used both as a hallmark of an 

MTE and to quantifying drinking duration.  

 

Figure 5.3: MTE complex activity atomic segmentations  

Our medication-taking study consisted of scripted and natural methods of 

administering the medication. We based the scripted protocol on the natural behavior 

observed in most of our preliminary studies. Never-the-less, people’s nMTE vary from the 

sMTEs as illustrated in  Figure 5.4.  

   
(a) (b) (c) 

Figure 5.4: Illustration of MTP intra-class differences 



 

98 

It is important to highlight the challenging task of identifying nMTEs given gesture 

diversity in the mini activities among different participants. For instance, the simple 

method of drinking water between two participants can vary significantly as illustrated in 

Figure 5.4 panels b and c. The participant in panel performs the task of drinking water with 

a sudden removal of glass from mouth, the participant in Figure 5.4 panel c removes the 

glass from their mouth more gradually. These differences in the individual mini activities 

are the root of the challenges associated with smartwatch gesture detection.  

5.5.2 Validation and annotation of medication taking events 

The study of human behavior with wearable devices has several advantages over 

the traditional self-report methods. Specific to medication-taking, self-reported adherence 

is known to be over-estimated[194].  In comparison to self-report, wearable devices can 

provide additional useful information such as the time of the day the medication was 

administered and the number of times the medication was taken in a day without incurring 

additional time, effort, or cost to the user. Table 5.2 displays additional data extracted from 

smartwatch MTE with MedSensor. Considering the average time needed to complete MTE, 

outliers can be examined for accuracy as shown in Table 5.3Table 5.3. In this study, we 

considered outliers (both natural and scripted) as gestures of duration 8 seconds and below 

for the lower category, or 100 seconds and above for the upper category. In determining 

the outliers, we considered the mean and standard deviations for natural gestures at 18.47 

and 14.34, and scripted gestures at 20.11 and 20.65, respectively. The outliers were 

observably fewest in scripted than natural gestures. For the lower category, a random 

sample of 20 out of 103 gestures were examined, and all were invalid gestures, indicating 

that the users probably annotated start/stop of gestures in quick succession. On the other 
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hand, for outliers ≥ 100 seconds in duration, the majority contained one or more MTE 

gestures in most cases. To better understand the cause of these temporal discrepancies and 

therefore, validate or invalidate the reported gestures, each recording session was examined 

by a team member for validity. The results are depicted in Table 5.4.  

Table 5.2: Time in seconds required for natural and scripted/protocol gestures. 

 Mean (SD) Median Range (seconds) 

Natural 18.47 (14.34) 17 5-331 

Scripted 20.11 (20.65) 18 4-686 

Table 5.3: Outliers count for natural and scripted medication gestures, based on gestures 

longer than 100 seconds or shorter than 8 seconds as outliers. 

 Count 

Description/Category Scripted Gestures Natural Gestures 

Duration >= 100 seconds 6 2 

Duration <= 8 seconds 63 40 

Table 5.4: Analysis of upper-category outliers in seconds. 

Subject  Duration Observations  Correction 

U1 371 The participant reported 7 

consecutively taken medications as 

one medication event.  

Individual MTP events 

were separated by a 

ML supervisor. 

U1, U2, 

U3, U4, 

U5, U6,  

162 One MTP event was observed with 

some unrelated activities at the 

beginning or end of the recording.  

The unrelated portions 

of the recording were 

trimmed. 

U3 279 Comprises random activities that 

do not match medication gesture 

pattern 
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5.5.3 ANN Training and Testing  
 

As the first step in the training of a Neural Network, examination of the learning curve 

can be instrumental. Figure 5.5 provides an illustration of the learning curve of the designed 

LSTM-NN after the proper treatment of the outlier data. This figure illustrates the training 

accuracy (depicted in green) for the training and testing sets (dashed or solid lines 

respectively). Here, the consistently increasing values of accuracy is an indication that the 

network is successfully learning the classification task. The agreement of accuracies 

reported during the training and testing datasets indicate that the network is successful in 

generalizing the problem and not performing a memorization of the training patterns (avoid 

overfitting). The patterns shown in red describe the error function for the training and 

testing datasets (dashed versus solid lines). A decreasing value of error function is further 

indication of a successful learning with a gradually plateauing pattern that indicates a 

saturated training session. Table 5.5 summarizes the performance metrics for the final 

trained neural network that used a fixed window size of 150 epochs. The accuracy, 

precision, recall, F-measure, and specificity, as described by the equations 1, 2, 3, 4 and 5, 

respectively, are presented the Table 5.5. The test accuracies for eating, jogging, 

medication, and smoking were 94.3%, 100%, 93.6% and 98.6%, respectively. The average 

performance attained was 96.6%. To explore the full nature of misclassifications, the 

confusion tables (shown in Table 5.6 and Table 5.7) were examined.  
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Figure 5.5: Training plot for the window size of 150 units. 

Table 5.5: Metrics for the best performing configuration of window size 150 

Activity Precision Recall F-Measure Specificity Accuracy 

Eating 0.802 0.920 0.857 0.948 0.943 

Jogging 1.000 1.000 1.000 1.000 1.000 

Medication 0.961 0.924 0.943 0.951 0.936 

Smoking 0.888 0.769 0.824 0.996 0.986 

Average 91.3% 90.3% 90.6% 97.4% 96.6% 
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Table 5.6: MTP/Non-MTP Confusion matrix for the window size of 150 units. 

  

Predicted label 
T

ru
e 

la
b

el
 

True MTP 7412 708 

True Non-

MTP 
271 12224 

  
ANN_MTP ANN_NonMTP 

 

  



 

103 

Table 5.7: MTP/Non-MTP Confusion Matrix (in %) 

  
Predicted label 

T
ru

e 
la

b
el

 

True MTP 96.47273 5.474791 

True Non-

MTP 
3.527268 94.52521 

  
ANN_MTP ANN_NonMTP 

 

While the overall best performance of 96.6% accuracy is good, this study has not 

explored all possible nuanced configurations. Besides the sliding window size, it is possible 

to manipulate the hyperparameters such as the learning rate, adjust the number of LSTM 

units, windows step size, batch size, etc. to arrive at an even better performance. This is 

certainly an area for future exploration and further experiments.  

5.6 Discussion 

5.6.1 Principal Results 

Studying human activities with smart and wearable devices has numerous 

advantages over the traditional approaches. Wearable devices provide the advantage of 

unobtrusively, continuously observing human behavior in their natural settings with little 
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burden to the user. The collected sensor data from these devices can be used to validate 

data reported by the user, therefore improving the accuracy and completeness of self-

reports. In this work, participants used the smartwatch to report the beginning and end of 

their MTE. Errors in participants’ self-reported MTE were identified. Some self-reported 

MTE had implausibly short or long durations. By validating the digitally recorded temporal 

gestures, we demonstrated the ability to correct erroneous self-reports, therefore improving 

the quality of the reports. Furthermore, the temporal signature that has been reported by 

the array of sensors available on wearable devices, can provide a plethora of additional 

information such as the temporal variation of an activity within a given user, or across a 

population of users. For example, in our study we demonstrated that nMTE were completed 

in an average of 18 seconds, but there were distinct differences across participants. Such 

comparison of behaviors provides several dimensions along which the study of human 

behavior can be expanded. 

In addition to the expanded information that can be obtained from these devices, 

the ability to automatically detect and identify a nMTE with high accuracy will be 

beneficial. Automatic detection of an MTE event can be used as the foundation for both 

measuring and improving adherence. In the latter case, non-detection of an nMTE offers 

the opportunity to alert patients or support persons of the missed medications to improve 

adherence and the health outcomes associated with improved medication adherence.  

Improved medication adherence has the potential to significantly reduce morbidity [195]–

[197], mortality [167], [197], and healthcare costs [195], [198]–[200]. Hence, detecting 

nMTE with smartwatches has exponential utility.  
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5.6.2 Limitations 

The limitation of our approach given the current state of the technology is the 

availability of data from a single hand. Therefore, activities such as smoking that can be 

completed by a single hand, may not be detected by a watch that is worn on an opposite 

hand. Fortunately, because activities such as medication-taking are difficult to complete 

with a single hand, a residual portion of the activity will always be present from the 

perspective of a single watch. This problem can easily be overcome with the presence of a 

sensing device on each hand (or possibly each limb). Although not common presently, the 

arrival of smart wristbands, rings, and other forms of wearable is likely to provide a more 

complete picture of a person’s daily activities. [141], [182], [184], [201]–[203] 

A second limitation is the method by which people may wear their watch. A watch 

can be worn in four distinct ways of on left or right hand, and inside or outside of the wrist. 

In this study, we asked participants to wear their watch on their right hand, and on the 

outside of their wrists. However, sensor data recorded by the same watch in any of the 

other three configurations will produce related but undistinguishable signals by the ANN. 

Consistently wearing a watch on the outside right hand is critical at the current stage of our 

scientific development. However, using the existing human body symmetry, and the 

relationship between inside and outside of the wrists, mechanisms of unifying sensor 

signals collected from any mode of use can be developed as demonstrated previously [122]. 

This will produce high-capacity models with broader experience to recognize medication 

gestures regardless of watch-face orientation. 
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5.6.3 Proposed Improvements to Protocol 

Generally, our current protocol worked very well. However, our future 

investigations will benefit from two additional steps to our existing protocol. The first step 

will collect calibration data during the initial orientation session. Currently, our orientation 

consists of familiarizing the participant with the watch, the app, and the use of the app. In 

the future, we will use this orientation session to collect data from a set of simple activities 

(e.g., touch toes, touch hip, and touch head) with the watch worn on each hand to obtain 

useful participant-specific data at baseline. By collecting data from left and right hands, we 

can establish a more precise relationship between the right and left hands for given 

participants. Although perfect human symmetry may indicate a 180-degree rotation 

between the two, natural human posture may create a departure from an ideal 180-degree 

symmetry. This information can be used to allow the user to wear the watch in any 

preferred method and provide the necessary information for the correction that is needed 

for the existing right-handed ANN.  

5.7 Conclusions 

Medication adherence is a complex human behavior associated with chronic 

condition self-management. It remains a global public health challenge, since nearly 50% 

of people fail to adhere to their medication regimes. Automated detection of medication-

taking activity is of critical importance in relation to improved treatment effectiveness. The 

automatic detection of medication gestures will also help to eliminate the burden of self-

reporting from the participants and therefore, provide a simpler way of tracking medication 

events. In this study, we demonstrated the use of LSTM-NN to detect and recognize mini 

activities, and the complex activities. We have demonstrated successful identification of 
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individual medication gestures with an accuracy of approximately 93.6% when tested 

against activities that significantly resemble medication, such as smoking and eating, which 

share the common mini-gestures of hand-to-mouth, hand-on-mouth, and hand-off-mouth. 

Our investigation also compared medication activity against jogging activity, and our 

models confirmed very little confusion between medication and jogging. This could be 

explained by the fact that the mini activities of both complex dynamic activities are largely 

different. By this observation, we speculate the accuracy of the system to increase notably 

if other natural daily activities are included in our training and testing sets due to their 

dissimilarity to the medication gesture. 

Although in this work we have achieved a reasonably high detection of the 

medication-taking gesture, several additional investigations can be initiated to increase the 

performance and usability of the system. First, as an ultimate objective, we aim to develop 

one application that can decipher numerous human activities to establish correlative or 

causative relationship between activities. For instance, medication activity may occur at 8 

PM before sleep activity, or at 7 AM before breakfast eating activity, or eating activity at 

1 PM may be followed by cigarette smoking soon after. The ability to monitor the temporal 

relationship between these events would be very useful to provide the much-needed context 

to further understand human behavior and therefore model useful health-related solutions 

or provide real-time intervention reminders. To accomplish this, we need to engage in a 

formal investigation of the optimal viewable window size to an ANN that will be sufficient 

to successfully decipher between all activities of interest. Additionally, there exists some 

inherent parallel between human activities and the principles of written language. To fully 

leverage this parallel analogy, human activities need to be examined in the more 
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fundamental fashion by decomposing complex activities further to their most basic 

building blocks, referred in this study as mini gestures. Our previous work[18], [192] 

illustrates the mini-gesture decomposition of the eating activity in relation to other similar 

activities such as smoking. 
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CHAPTER 6: TOWARD CONCURRENT IDENTIFICATION OF 

HUMAN ACTIVITIES WITH A SINGLE UNIFYING NEURAL 

NETWORK CLASSIFICATION: FIRST STEP5 

6.1 Abstract 

Background: Medication adherence, smoking, and unhealthy eating are complex human 

behaviors associated with chronic conditions self-management and mental health. About 

50% of people in the United States fail to adhere to their medication regimes, creating a 

major public health challenge. Smoking remains a leading preventable killer. Obesity 

epidemic is a public health crisis associated with poorer mental health outcomes and 

reduced quality of life. Smartphone apps and reminders have shown promising results in 

promoting medication adherence. However, practical mechanisms to determine whether a 

medication has been taken or not, or determine excess consumption of nicotine, or 

determine unhealthy eating, have been elusive. Emerging smartwatch technology may 

more objectively, unobtrusively, and automatically address this gap. 
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Objective: This study aimed to examine the feasibility of detecting natural medication-

taking gestures using smartwatches. 

Methods: Recruited participants (N=28) ranged in age (20 to 60 years) and comprised 

57.0% males and 43.0% females. The majority were college students (71.4%), single 

(86.0%), and working at least part-time (61.0%). The sample represented racial diversity 

with 4% African American, 43% Asian, 43% White, and 10% reported two or more races1. 

Most participants were right-hand dominant (82%), while only one participant (4%) was 

ambidextrous. During data collection, each participant recorded at least five protocol-

guided (scripted) medication-taking events (sMTE) and at least ten natural instances of 

medication-taking events (nMTE) per day for 5 days. Using a smartwatch, the 

accelerometer data was recorded for each session at 25Hz of sampling rate. The raw 

recordings were scrutinized by a team member to validate the accuracy of self-reports. The 

validated data were used to train a unified Artificial Neural Network (ANN) to detect a 

medication-taking, smoking, eating, and jogging activities. The training and testing data 

included previously recorded accelerometer data from smoking (12 participants), eating (6 

participants), and jogging (27 participants) activities in addition to the medication-taking 

data recorded in this work. The accuracy of the model to identify medication-taking was 

evaluated by comparing the ANN’s output to the actual output. 

Results: A total of 2,800 medication-taking gestures (1400 natural plus 1400 scripted 

gestures), 5,434 eating gestures, 1,279 smoking gestures, and 5,883 jogging gestures were 

used to train the network. The training and testing datasets were split in the ration of 80:20, 

respectively. Various metrics, such as accuracy, precision, and recall, were used to measure 

the network performance. The trained ANN exhibited an average True-Positive 
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performance of 96.5% and an average True-Negative performance of 94.5%. The network 

exhibited less than 5% error in incorrect classification for the overall average accuracy.  

Conclusions: Smartwatch technology can provide an elegant, accurate, non-intrusive 

means of monitoring human behaviors such as natural medication-taking gestures, 

smoking activities, as well as unhealthy eating events. The use of machine learning 

algorithms combined with modern sensing devices may significantly improve healthcare 

support and healthy lifestyles. 

Keywords: Machine Learning; Neural Networks; Automated Pattern Recognition; Smart 

Healthcare; Ecological Momentary Assessment; context-aware environments, Human 

Activity Recognition. 

6.2 Introduction 

Over three decades of international research has indicated that complete models of human 

health comprise complex interactions of biological, behavioral, and environmental factors. 

Technological devices have pervaded and revolutionized much of our lives, yet their 

implementation and utilization in healthcare remain sparse. The innovative exploitation of 

existing, widely used, commercially available technology to influence health-promoting 

behaviors has been under-utilized. There is a huge potential in adapting smart technologies, 

such as phones and watches, to develop more effective health-promoting interventions for 

behaviors such as weight loss, physical activity, and chronic condition self-management. 

The successful adoption of these devices to promote healthier behavior requires solving 

the crucial problem of characterizing and monitoring human behavior in a way that will be 

most useful, less obtrusive, and personally relevant. When this is sufficiently realized, the 



 

112 

subsequent step of developing the optimal intervention mechanisms and personalized 

interventions can be explored. 

Human Activity Recognition (HAR) has been treated as a typical classification problem 

in computer vision and pattern recognition to recognize an array of human activities in 

daily living as well as anomalies i.e., abnormal behavior or activities. Vision-based HAR 

techniques rely on image and video data to recognize behavior while Sensor-based 

counterparts rely on sensor data to achieve the same goal. The patterns are related to 

specific actions[1]. It aims to understand daily behaviors of people through the analysis of 

observation sensor or vision data obtained from people and their neighboring environments 

of living. Recent developments have seen a steady advancement, availability, and 

proliferation of miniature wearable sensor devices from necklaces to smart phones, 

smartwatches, etc. The accuracy of these devices can be affected by various factors such 

as lighting, background, crowded scenes, camera location and behavior complexity[204]. 

Human Activity recognition enables us to solve many human-centered problems, such 

as health care, individual assistance, the need to infer various simple to complex human 

activities. So far, HAR has found use in diverse domains such as healthcare, surveillance, 

sports, linguistics, event analysis, Human Computer Interactions (HCI)[3], among others. 

HAR has been applied to characterize human behavior, understand human interactions, 

improve daily life such as the case of continuous health monitoring, improving human 

safety and well-being, all over the world. Other areas of application include activity of 

daily living, physiological signals, quantified-self, postures detection, gestures detection, 

gait analysis, and indoor localization [4]–[6].  
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Wearable sensors come with significant benefits such as (i) Personalized health 

monitoring, (ii) Removal of healthcare barrier, allowing for evenly distributed health 

monitoring, and (iii) Affordability by majority populations. Further, it they make it possible 

for automatic crowd analysis in detecting threats and anomalous activities by analyzing 

crowd modeling, crowd tracking, density estimation and crowd behavior understanding. 

These sensors can help to recognize complex human actions, translating into significant 

social and economic benefits such as remote healthcare monitoring and response systems. 

Correct interpretation of motions such as falls, medication, eating, smoking, etc. can be 

used to trigger appropriate response of caregivers. This can be used to reduce risks for the 

elderly persons from potentially catastrophic tumbles, monitor medication adherence, 

eating habits or exercise activities. 

Abnormal behavior depends on context; for example, throwing fists can be normal 

during an exercise, but abnormal during a domestic exchange or a physical bullying 

context. Machine learning models refer to mathematical systems that share many common 

features. Machine learning algorithms work with data to create associations, find 

relationships, discover patterns, generate new samples, as well as work with well-defined 

datasets. A machine learning problem is focused on learning abstract relationships that 

allow consistent generalization when new samples are provided [205], [206]. HAR being 

a pattern recognition problem of specific actions uses classifiers and action detection 

methods divided into three main categories: (1) Generative models which is a probability-

based method to learn the statistical distribution of the underlying data distribution, (2) 

Deterministic models, which are static classifiers trying to learn the hidden feature 

representations from labeled data, (3) Non-parametric methods[1]. 
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Accurate assessment of health behaviors in humans is necessary to evaluate health risk, 

and therefore, effectively intervene to facilitate behavior change, improve health, and 

reduce disease risk. Health behaviors, such as eating, smoking, exercise (e.g., jogging), and 

medication-taking are frequently assessed with subjective self-report methods, such as 

diaries, which participants complete throughout the day. The accuracy of self-report 

methods is poor, however, particularly for assessing food intake and physical activity 

[150]. Self-report methods are also burdensome for participants, particularly if health 

behaviors need to be assessed over the long term [151].  

In this study, we aim to develop a unifying Neural Network model that can recognize 

multiple signatures of various human activities, making it possible for the use of wearable 

sensors to aid daily living activities such as monitoring seniors living alone at home for 

falls, late-night activity, sleeping habits, medication adherence, healthy eating, or smoking 

habits. Falls kill thousands of elderly adults each year and injure millions more. 

Highlighting risk factors or timely response could save lives, reduce insurance premiums, 

and help caregivers serve this population more efficiently. According to CDC, falls among 

adults aged sixty-five and older are very costly. It reports that each year the United States 

spends about $50 billion on medical costs related to non-fatal fall injuries and $754 million 

on injuries related to fatal falls [207]. According to [208], only one-third of those who fall 

seek medical care. In Netherlands, according to a study [209] on Health care costs of injury 

in the older population (trauma patients aged 65 years and above), the main cost drivers 

were the post-hospital costs due to home care and stay at an institution. Falls (72%) and 

traffic injury (15%) contributed most to the total health care costs, although costs of cause 

of trauma varied with age and sex. The study showed that in-hospital costs were especially 
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high in patients with high injury severity, frailty, and comorbidities. Several patient and 

injury characteristics including age, high injury severity, frailty and comorbidity were 

associated with post-hospital health care costs. 

Poor medication adherence presents serious economic and health challenges, including 

compromised treatment effectiveness, medical complications, and loss of billions of dollars 

in wasted medicine or treatment procedures. Studies show that 33-69% of all medication-

related hospital admissions in the United States (US) are caused by poor medication 

adherence, which translates to an annual cost of approximately $100 billion [130], [131]. 

Annually in the US, non-adherence can account for up to 50% of treatment failures, 

approximately 125,000 deaths, and up to 25% of hospitalizations [132]. 

Smoking remains the leading cause of preventable death. Annually, tobacco use causes 

more than seven million deaths worldwide. According to CDC, over sixteen million 

Americans are living with a disease caused by smoking. In the US alone, 20% of the 

population report that they engage in smoking; diseases caused by smoking cost the 

population over $170 billion in healthcare each year according to CDC. 

In the United States, more than two-thirds of adults are overweight or obese [210], 

[211]. According to CDC, obesity epidemic is a public health crisis because it is associated 

with poorer mental health outcomes and reduced quality of life. Obesity is also associated 

with the leading causes of death in the US and worldwide, including diabetes, heart disease, 

stroke, and some types of cancer. Apart from proper health education and counterforce 

health care providers, healthy eating (foods) and regular exercise make for crucial 

preventive measures against obesity. 
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There are social and economic benefits of HAR such as assisting elderly people during 

their daily activities, increasing their safety, well-being, and autonomy. Activity 

recognition based on new wearable technologies remains an important research challenge. 

The elderly people living alone, physically, or mentally disabled persons, and children need 

continuous monitoring of their activities to detect abnormal situations or prevent 

unpredictable events such as falls [9]. Recognizing and monitoring human activities are 

fundamental functions to provide healthcare and assistance services to these populations. 

The new technologies of health monitoring devices range from on-body wearable sensors 

to in vivo sensors. 

Sensors are converters that quantify the physical aspects of the world around us into 

electric values that can be perceived by a digital system [1]. This capability makes it 

possible to gain knowledge about human activities. This study considers the use of 

wearable sensors in HAR. Human activity recognition plays a critical role in helping to 

solve human-centered problems. Better understanding daily activities such can have a 

significant impact on population and individual health, translating into significantly 

reduced overall cost of healthcare worldwide. Sensor-based HAR generally broadly 

comprises five steps: sensor selection, data collection, feature extraction, model training 

and testing[2]. 

Vision-Based Systems embedded in smart environments or "Smart Homes [204], [212] 

. Although vision-based monitoring of medication adherence may be the primary choice of 

pursuit, the identifiable nature of the data acts as a heavy deterrent in the practical 

adaptation of this technology. On the other hand, smartwatches provide a scalable and 

practical platform for conveniently, unobtrusively, and securely studying human behavior 



 

117 

conveniently in natural settings such as homes. Recent advances in sensor technology and 

artificial intelligence (AI) present an innovative opportunity to measure medication 

adherence objectively, and conveniently. Wearable devices such as Smartwatches may 

offer the platform to observe medication adherence, as well as people’s other daily 

activities [7]–[9]. 

From a modest 37 million units in 2016, smartwatch shipments around the world are 

projected to grow to 253 million units by 2025, making them as pervasive as cell phones. 

In complementary to this vast computing landscape is the entrenchment of the Internet of 

Things (IoT), Internet of Everything (IoE), as well as the convenience of miniaturization 

of wearable computing devices. These developments have essentially devolved significant 

computing power to things or objects. Wearables, fashion technology, smart wear, tech 

togs, skin electronics or fashion technology electronics are smart electronic devices that 

are worn close to and/or on the surface of the skin, where they detect, analyze, and transmit 

information concerning e.g., body signals such as vital signs, and/or ambient data and 

which allow in some cases immediate biofeedback to the wearer. In other cases, the 

feedback is returned to remote monitoring system such as the case with the remote health 

monitoring of the vulnerable persons like the elderly [213]–[215]. 

6.3 Methodology 

6.3.1 Generic Procedure of Recognition 

The recognition process involved the following steps, as further illustrated by Figure 6.1: 

(i) Data acquisition from inertial sensors, (ii) Data preprocessing for feature extraction, (iii) 

Model training and optimization, as well as model tests, (iv) Performance evaluation, and 

(v) Perform prediction. 
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Figure 6.1: General process of activity recognition model preparation 

6.3.2 The Data Process: Origination, Pre-processing, Storage, Analysis, and 

Retrieval. 

Figure 6.2 is a high-level representation of the data process as proposed, developed, and 

implemented in this study. We christened this process as METASENS to loosely label it 

as the versatile data ocean for all wearable sensor data and related metadata artefacts. The 

implementation details are described in the next sections. In this study, we consider the 

data process as a critical component of research because the quality of research outcome is 

directly dependent on the quality of the data and the data process that supports the research. 

The data process comprises the following components: 

A: Data Origination is the source of raw sensor data recorded by smartwatches. 

Besides the tri-axial values, we also capture timestamp and activity performed by the user. 

These features are written to a flat datafile saved locally in the smartwatch. Besides the 

data file, there is a second metadata flat file used to record annotation values indicating the 

start and end of user activity. Each of these points has date and time in the format 
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DD/MMM/YY HH:MM:SS. For example, the line below shows the user activity ran 

between 2nd February 2022 06:15:38 and 2nd February 2022 06:15:53 i.e., the activity took 

a total of 15 seconds. 

REPORT_SELF: Recording, 02-Feb-10 06:15:38, 02-Feb-10 06:15:53 

B: Data Route or Extended Data Origination Platform. This is represented by 

the smartphone. The smartwatch is limited in resources such as CPU power. In cases where 

more CPU power is necessary, such as map and GPS resources are part of the data required, 

some of the watch operations may be offloaded to the phone. More importantly, the phone 

provides a larger storage that may hold the data routed from watch to the phone. This may 

be useful in cases where participants may need to collect data over a period and delay to 

submit it to the cloud perhaps due to weak data speeds or purely as local backup. The phone 

may also be used to conduct surveys that do not need to be real time with the watch data 

activity recording events. The phone provides larger user interface that is much easier to 

interact with especially when it comes to typing and navigation. Most importantly, for our 

purposes, the phone provided a means to route data over from the smartwatch to the cloud 

storage. The watches we used for the exercise did not have cellular capabilities, meaning 

we had to pair them with smartphones, and use Bluetooth to move data from watches to 

phones, then from phones to cloud, we relied on internet connectivity via Wi-Fi or cellular 

data services. In some cases where we conducted experiments in the lab, we used the 

alternative means of direct data extraction from phone to PC as shown by the dashed line 

in Figure 6.2. The watch is a minicomputer with a file system just like any other computer. 

This is accessible via ADB commands or Android Studio. Through these means, the files 

can be accessed directly and copied to the PC. 
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C: Cloud Server and Web Services. This component provides the web hosting, 

file storage and database services. The phone routes files to the cloud server via the 

webservices that process and log the files into the remote storage. All files are assigned 

unique names before storage to avoid conflicts. The web server manages and controls web 

requests. The database server stores both the metadata as well as various user security data. 

The file system also allows users to upload datasets and their related videos or/and images. 

These extra files can be useful in describing a dataset, e.g., where a user records a video of 

how he/she performed an activity. The same applies to images, where user may share 

photos of the recorded activities. 

D: Data Pre-processing and Analysis represents any local network access to the 

data for further preprocessing, particularly where a user needs to prepare the dataset(s) for 

a neural network training process or custom analysis. 

E: Public Access Interface (PAI) provides any member of public the user interface 

to interact with the data system to perform activities such as creating their own projects, 

uploading, and managing their own datasets, uploading, and managing dataset related 

artefacts or metadata such as videos, images, related statistics, etc. PAI provides the user 

end of the METASENS that allows not only the onboarding, but also the consumption of 

data as a research resource by the research community. The datasets also allow for open 

public discussions around them. This is one of the ways by which meaningful active and 

open discussion can be encouraged among the users of these datasets. The METASENS 

forms part of a larger framework as described below and illustrated by Figure 6.3. 
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6.3.3 Proposed HARP Architecture 

The HARP framework aims to define a workflow framework that allows a user to record 

and upload own HAR dataset using wearable sensor devices, upload it to METASENS 

cloud database, request for models trained on the personal dataset, and then download and 

deploy the models to own device for activity recognition. Below is a description of the 

framework: 

A: METASENS Portal: This component is described above and is implemented 

in Python Django web framework and MySQL database. It stores and manages user 

datasets, data security, integrity as well as user accounts. The portal is illustrated by Figure 

6.2. 

B: ML Pipeline: represents the Machine Learning pipeline engine. It can be 

implemented as TensorFlow Extended (TFX) or MLflow. These two solutions are available 

as open-source tools to the public. The ML Pipeline manages the Machine Learning 

workflow from data input, to training, testing and deployment. 

C: HARP Models Web server: When the ML Engine is done by training and 

testing, it deploys the ready models to the HARP Models Web Server that hosts the models 

for the users. The web server runs web server applications that serves content to the public 

through web browser or webservice access. 

D: User: This component represents any public user of the workflow who wants to 

record and share datasets about HAR activities. The user can upload own datasets to 

METASENS. The user can also send a request to get models trained on own datasets. For 

example, if a user wants to monitor medication, the user can record data using smartwatch, 

upload the data to METASENS, use the same interface to request for a model trained based 

on the uploaded medication dataset, and deploy that model to local device, smartwatch in 
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this case. Once deployed, user can use the model or simply run HAR tests. This means that 

the workflow will require model installer into the smartwatch. It is possible to turn the web 

server into a public repository resource or library of human activity models called HARPs, 

which can be shared by portal users, if HARP owner avails own models to the public. This 

can be seen in a sense as a social media of Human Activities. 
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Figure 6.2: High-level framework of the data process from data origination to storage, to retrieval, and analysis. 
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Figure 6.3: HAR as Personalized AI Models (HARP) high-level framework 
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6.3.4 Data Acquisition 

Figure 6.4 shows a smartphone and a smartwatch with triaxial sketches. The smartwatch 

was used for actual data collection while the phone was used to upload the data to the cloud 

storage. The participants wore the watch on their right wrist in the case of scripted gestures 

approach, or on their wrist of preference in case of natural gestures approach. The collected 

data comprised hand-motion accelerometer sensor logs of the triaxial values, recorded by 

the watch at a sampling rate of 25 Hz. The data included the timestamp, orientation, and 

acceleration of the hand during an activity – medication-taking, smoking, or eating. The 

xyz-orientation values were logged to a CSV file by the MedSensor App on the watch. The 

file was moved to the phone via Bluetooth, periodically and asynchronously. 

 

Figure 6.4: An illustration of Smartphone and smartwatch accelerometer axes 

6.3.5 Participant Recruitment and Data Collection Process 

a. Medication Data Acquisition 

Participants (n=28) were recruited using snowball sampling. An appointment was 

made with each potential participant to explain the purpose, benefits, and risks of the study 

and address any questions or concerns. After obtaining informed consent, the participant 

completed a demographic questionnaire and then received a packet with a Smartwatch and 
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phone, two charger cables, user manual, pill bottle, and placebo medication. The user 

manual was presented and discussed in detail to the participant either in person or remote 

meetings. Additional training included an online question/answer session and 

demonstration to ensure the participant was properly collecting and transferring data. 

Data Collection Protocol. Following the medication-taking training sessions, 

participants independently completed data collection in their homes. The exercise 

comprised one week (i.e., 5 days) of performing medication-taking behaviors using the 

participant’s natural way of taking medications (nMTE) and a second week of performing 

medication-taking behaviors according to a scripted protocol (sMTE) [18]. Each 

participant (n=28) was directed to record 10 nMTE gestures per day for the first 5 days and 

then 10 sMTE gestures for the next 5 days. In total 1400 nMTE and 1400 sMTE were 

collected, tallying 2800 gestures. To enable seamless transfer of data from the watches to 

cloud storage, each watch was paired with a smartphone. Both the watch and the phone 

were installed with respective versions of a custom android application called MedSensor, 

software developed by the research team. At the participant’s convenience, watch data was 

relayed to the phone via Bluetooth connectivity.  

Closure. After collecting and transferring 10 days of collected data, the participants 

returned the smartwatch and phone to the study project coordinator and received a $25 gift 

card as an incentive. The smart devices were sanitized according to Centers for Disease 

Control (CDC) guidelines prior to use by other participants.  

b. Eating Data Acquisition 

The eating activity was performed in a laboratory-controlled environment. For the purposes 

of the study, the activity was a pizza eating exercise for all. Where a participant did not 

want to eat pizza, they simply simulated using a hard paper without executing any bites. 
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Participants were scheduled to visit the lab in at different slots convenient to their 

schedules. There were before and after noon slots. Each participant emailed in to confirm 

their preferred slot. Each participant turned up at the lab. They went through a consent 

form, and after they confirmed their agreement to the exercise, they were each ran through 

a mock exercise to demonstrate of how to go about the data process. That was followed by 

the actual exercise of eating activity. The participant was handed an android watch, which 

he/she wore on the right wrist with the watch face facing outwards. The eating event 

comprised picking a slice of pizza, raising it to mouth level, taking a bite, and lowering it 

off mouth. This event was repeated multiple times until participant was done eating, or 

participant decided he/she had had enough. Upon completion of the exercise, the 

participant handed back the watch to the lab data team. The data was directly extracted 

from the watches via android studio and backed up in a local structured file repository. The 

data comprised watch ID, timestamp for each triaxial data logs, normal date/time log, tri-

axial values, and the activity label. 

c. Smoking Data Acquisition 

The smoking data was based on data as collected in one of our previous studies [156] 

d. Jogging Data Acquisition 

The jogging dataset came from open public dataset, Wireless Sensor Data Mining 

(WISDM) Lab [193] that was recorded using smartphone strapped to the waist location of 

the participant. 

6.3.6 Data Preparation and Annotation 

This study integrated accelerometer sensor data from four different human activities 

recorded by smartwatches (Polar M600, Asus Zenwatch, Motorola, TicWatch E and E3 
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series). Table 6.1 provides a summary of the four different datasets, datapoints, and the 

number of points for each category.  

 

 

 

Table 6.1: Summary of all the datasets used in the study 

Activity Datapoints Gestures Participants 

Medication 824,000 2,800 28 

Eating 272,822 5,434 6 

Smoking 62,823 1,279 12 

Jogging 287,461 5,883 27 

 

Data Preprocessing and Standardization. Prior to the integration of data from 

multiple studies, several normalization and standardization steps needed to be performed. 

Attention needed to be made to the consistent standardization of the accelerometer data 

and the sampling rate of the data. Since all the devices used in data collection across all 

studies consisted of Android devices (versus Apple devices), the sensor data followed a 

common frame of x, y, and z axes. As the next step, all datasets were processed to adhere 

to a sampling rate of 25 Hz by excluding data points (in the case of oversampling) or 

resampling based on interpolation of the data (in the case of under sampling). To normalize 

for the different number of gestures per activity, the individual gestures were represented 

multiple times in our dataset to provide a balanced representation of activities.  

Data Annotation: Proper use of data in supervised Machine Learning approaches 

requires annotation of the data. This is the process in which a supervisor (an expert) will 
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identify and define the gestures of interest. This is generally a cumbersome process and 

requires prior familiarity of the “supervisor” with the gesture of interest. To develop an 

understanding of what signal constitutes a MT activity, the scripted data were collected 

and used to understand the individual components of the gesture. The exact details of the 

scripted gesture can be found in our previous report [18]. Using this information, team 

members then proceeded to identifying and annotating the individual gestures. The process 

of gesture identification and annotation was heavily accelerated by the self-reports that 

included time stamps indicating the beginning and ending of each MT activity.   

The raw data files logged at the cloud repository comprised a time stamp that 

included Hour, Minute, Second, and Millisecond; a Date the included day, month, and year; 

the x, y, and z components of the accelerometer data. A second file contained the time 

stamps corresponding to the start and end of each activity reported by the participant. In 

theory, the self-report of activities should be sufficient to identify the gesture of interest 

(e.g., MT). However, in practice, participants may report the activity erroneously, and the 

time stamps may roughly indicate the start and end of a given activity. Therefore, visual 

confirmation of the gesture of interest is executed to ensure high quality data. A separate 

utility program was developed to facilitate this process and to create the final usable data 

using a sliding window, which is well suited to real-time applications because it does not 

require any pre-processing. After this final step, the data files are presented in a usable 

format for the training and testing of our AI model.  

6.3.7 Definition of Context 

Context is an important aspect of gesture recognition in this study. The richness of activity 

characterization lies in the attention that it gives to multiple dimensions of analyzing human 
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engagement with the world. Saguna et al. [216]–[219] proposed a model for recognizing 

multiple concurrent and interleaved complex activities using a Context Driven Activity 

Theory (CDAT), which uses probabilistic data analysis for recognizing sequential, 

concurrent, and interleaved activities. As described earlier in the study, this research 

considers HAR as a language based on the alphabet of atomic activities. These atomic units 

form the building blocks of complex activities. For example, smoking activity can be 

decomposed into hand-to-lip, hand-at-lip for about three seconds, hand-off-lip [156]. These 

simple activities could be decomposed even further. Some of the atomic activities such as 

hand-to-mouth occur in many complex activities such as scratching face, taking medicine, 

eating, among others. To address this ambiguity and successfully recognize each complex 

activity correctly, there is need to determine the context of each activity. The context 

ultimately determines the signature or uniqueness of each complex activity. This is what is 

achieved through supervised training with a carefully calibrated sliding window and other 

hyperparameters. 

Context can be either physical or cognitive. The former can be defined as the 

environmental information or the sensor data e.g., GPS location, time, temperature, etc. 

The latter refers to the mental states, preferences, tasks, and social affinities of the users 

[220]. Additionally, situation can be considered as an important factor in HAR. Human 

activity is situation-driven. This is also averred by Saguna et al., “Situations are set of 

circumstances in which a human or an object may find itself” Physical context can be useful 

where geographic location and/or time add critical value to interpreting human activity or 

delivering a service to the subject. Alternatively, context can also be determined by in situ 

aspects of an activity such as sequence, frequency, time, delays, etc. In this study, we 
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implement and investigate this alternative in situ context. We consider context to be a 

sentence of atomic activities alphabet in specific sequence, or simply a sequence of atomic 

alphabets. This sequence vector also includes the frequency of an activity, temporal data, 

sensor orientation as well as the length of time the hand stays at a location i.e., how long 

sensor orientation remains unchanged. Figure 6.5 is the illustration of context as applied in 

this study: 

 

Figure 6.5: Gesture context components 

Figure 6.6 is a representation of a complex behavior signature as the fusion of a set of 

atomic activities, activity sequence data, and context attributes i.e.: 

Activity Signature = Atomic Activities Set + Sequence data + Context Attributes 
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Figure 6.6: Complex activity signature 

6.3.8 Tri-axial Sensor Data Definition 

To understand the nature and structure of sensor data processed for neural network input, 

consider an accelerometer sensor that is attached to a human body and takes samples (at 

time index t) of the form: 

𝑟𝑡 = 𝑟𝑡
∗ + 𝑤𝑡,  t = 1, 2, . . .   (1) 

 

Where: 𝑟𝑡 =  [𝑟𝑡
𝑥   𝑟𝑡

𝑦
   𝑟𝑡

𝑧]
𝑇
  is a 3D accelerometer data point generated at time t and 

comprises 𝑟𝑡
𝑥   𝑟𝑡

𝑦
  𝑎𝑛𝑑 𝑟𝑡

𝑧 which represents the x, y, and z acceleration components, 

respectively. The correct acceleration value in each axis channel is a floating-point value 

bounded to some known constant B > 0 such that 𝑟𝑡
𝑥  ≤ 𝐵,  𝑟𝑡

𝑦
 ≤ 𝐵,  𝑎𝑛𝑑 𝑟𝑡

𝑧  ≤ 𝐵. For 

example, for an accelerometer with B = 2g units, it means that it can record proper 

acceleration up to twice the gravitational acceleration (recall that 1g = 9.8 meter/second2) 

[221]. An accelerometer that is placed on a flat surface records a vertical acceleration value 

of ±1g upward. 
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 𝑟𝑡
∗ ∈  ℝ3 refers to a tri-axial noiseless vector of acceleration readings. 𝑤𝑡 ∈  ℝ3 is a noise 

vector of independent, zero-mean Gaussian random variables with variance 𝜎𝑤
2  such that 

𝑤𝑡~𝑁(0, 𝜎𝑤
2 ∏3). Examples of noise during signal acquisition include the effect of 

temperature drifts and electromagnetic fields on electrical accelerometers [222]. 

Three channel frames 𝑠𝑡
𝑥,  𝑠𝑡

𝑦
𝑎𝑛𝑑 𝑠𝑡

𝑧 ∈  ℝ𝑁 are then formed to contain the x, y, and 

z acceleration components, respectively. These channel frames are structured as a sliding 

window as follows: 

 𝑠𝑡
𝑥 =  [𝑟𝑡

𝑥 …  𝑟𝑡+𝑁−1
𝑥 ]𝑇     (2) 

 𝑠𝑡
𝑦

=  [𝑟𝑡
𝑦

…  𝑟𝑡+𝑁−1
𝑦

]
𝑇
     (3) 

 𝑠𝑡
𝑧 =  [𝑟𝑡

𝑧 …  𝑟𝑡+𝑁−1
𝑧 ]𝑇     (4) 

The sequence size N i.e., window size, should be carefully calibrated to ensure the 

most accurate activity recognition. Where we assume that the system supports M different 

activities: let A = {a1, a2, . . ., aM} be a finite activity space. Based on the windowed excerpts 

𝑠𝑡
𝑥,  𝑠𝑡

𝑦
𝑎𝑛𝑑 𝑠𝑡

𝑧, the activity recognition method infers the occurrence of an activity yt ∈ A 

[221]. Where the window is smaller than the whole activity, it is considered to be 

recognizing atomic sequences of the larger activity in specific order based on the time they 

were recorded, i.e., First In First Out (FIFO) order, such that by the end of the window 

slide across the atomic sequences of the complex activity, either the model will have 

positively identified one of the M activities or none. 

6.3.9 Artificial Neural Network Architecture and Design - LSTMs 

The human activities of interest in this study – eating-pizza, medication-taking, smoking, 

and jogging – are each composed of sequences of atomic-activities whose temporal aspect 

adds important component in the overall activity recognition. For example, the medication 
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activity is made up of a series of atomic actions namely (a) Open bottle, (b) Dispense 

medicine, (c) Toss pill to mouth, and (d) Drink water. The sub-activities, and their temporal 

sequence, are important. Therefore, the past sub-features are useful and relevant as far as 

recognition of the full activity. 

Human Activity Recognition requires context that remembers the past array of 

atomic activities. The complex activity is the array sequence. By their own architecture, 

LSTMs lend themselves suitable for the classification hence recognition of human 

activities. This chain-like nature of RNNs intimately relate them to sequences and lists. 

They are the natural architecture of neural network to use for such data. Unlike other forms 

of RNNs, LSTMs are explicitly designed to avoid the long-term dependency problem. 

Remembering information for long periods of time is practically their default behavior. 

They can connect previous information to the present task, such as using previous video 

frames might inform the understanding of the present frame. 

LSTMs (Long Short-Term Memory) find most relevant application in recognition 

of human activity because they contain internal memory of the past events in the analysis 

of time-series data. LSTM-NN is an artificial Recurrent Neural Network (RNN) 

architecture with feedback connections that facilitates awareness of past activities at 

present time of the activity[223]. An LSTM unit comprises a cell, an input gate, an output 

gate and a forget gate. The cell remembers values over arbitrary time intervals and the three 

gates regulate the flow of information into and out of the cell. The cell can process data 

sequentially and keep its hidden state through time. Figure 6.7 is an illustration of a typical 

LSTM cell where xt is the input vector to the LSTM unit, ht is the hidden state vector (or 

LSTM unit output vector), ct is the cell state vector, and ct-1 is the cell input activation 
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vector. Our model contained two fully connected and two LSTM layers (stacked on each 

other) with 64 units each. The learning rate was set at 0.0025. 

 

Figure 6.7: The repeating module in an LSTM contains four interacting layers [223] 

 

Below are compact forms of the equations for the forward pass of an LSTM cell with a 

forget gate [160], [224]. 

• 𝑓𝑡 =  𝜎𝑔(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) 

• 𝑖𝑡 =  𝜎𝑔(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) 

• 𝑜𝑡 =  𝜎𝑔(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) 

• 𝑐�̅� =  𝜎𝑐(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) 

• 𝑐𝑡 =  𝑓𝑡  ⨀ 𝑐𝑡−1 +  𝑖𝑡 ⨀ 𝑐�̅� 

• ℎ𝑡 =  𝑜𝑡 ⨀ 𝜎ℎ(𝑐𝑡) 

where the initial values are c0 = 0 and h0 = 0 and the operator ʘ denotes the Hadamard 

product (element-wise product). The subscript t indexes the time step. 
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Variables 

• 𝑥𝑡 ∈  ℝ𝑑: input vector to the LSTM unit 

• 𝑓𝑡 ∈  (0,1)ℎ: forget gate’s activation vector 

• 𝑖𝑡 ∈  (0,1)ℎ: input/update gate’s activation vector 

• 𝑜𝑡 ∈  (0,1)ℎ: output gate’s activation vector 

• ℎ𝑡 ∈  (−1,1)ℎ: hidden state vector also known as output vector of the LSTM unit 

• 𝑐�̅� ∈  (−1,1)ℎ: cell input activation vector 

• 𝑐𝑡 ∈  ℝℎ: cell state vector 

• 𝑊 ∈  ℝℎ𝑋𝑑, U ∈ ℝℎ𝑋ℎand b ∈  ℝℎ: weight matrices and bias vector parameters to 

be learnt during training. The superscripts d and h refer to the number of input 

features and number of hidden units, respectively. 

Activation Functions 

• 𝜎𝑔: sigmoid function 

• 𝜎𝑐: hyperbolic tangent function 

• 𝜎ℎ: hyperbolic tangent function 

6.3.10 Network Training and Testing Procedure 

The LSTM network was trained for 50 epochs while keeping track of accuracy and error. 

The batch size was maintained at 1024. The train/test datasets were partitioned in the 80:20 

ratio, respectively. We applied L2 regularization (Ridge Regression) to the model. The L2 

penalty/force removes a small percentage of weights at each iteration, ensuring that weights 

never become zero. The penalty consequently reduces the chance of model overfitting. 

The LSTM model expects the training data to be of fixed length. This fixed length 

of data that is directly presented to LSTM is referred to as the “window size.”  In this study, 

a window size of 150 points was empirically determined to provide an acceptable 

performance. At a sampling frequency of 25Hz, a window size of 150 represents 6 seconds 
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of recording. While the window size represents the portion of the raw data that should be 

in direct view of the ANN at the time of classification, any relevant past contextual 

information is saved in the internal cell of the LSTM architecture. The temporal exposure 

of the LSTM to the data occurred in sliding window size of 10 points as an optimal 

compromise between performance, responsiveness, and without increasing classification 

error. The sliding window-with-overlaps process significantly transforms and reduces the 

training dataset. Further, the transformation assigns the most common activity (i.e., mode) 

as a label for the sequence; some windows may comprise two or more activities, but the 

mode is considered the dominant or overriding activity. We transform the shape of our 

tensor into sequences of 150 rows, each containing x, y and z values. We also apply a one-

hot encoding to the labels to transform them into numeric values that can be processed by 

the model.  

6.3.11 Evaluation of the Trained Network 

During the training phase of a Neural Network, a single metric of performance needs to be 

defined to assess network performance. The network performance metric is used by the 

operator to direct the network to improve overall performance. In this study, we evaluated 

the performance of classifiers using the Accuracy metric as defined in Equation 1. In 

Equation 1, TP (true positives) represent the correctly classified positive examples, TN 

(true negatives) represents the correctly classified negative examples, FP (false positives) 

represent negatives misclassified as positives, and FN (false negatives) represent positives 

misclassified as false.  
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                           eq(6) 

Accuracy measure does not consider the bias arising from unbalanced datasets. To 

remove the effect of unbalanced data (unequal representation of different activities), data 

within each activity were repeated to arrive at approximately equal number of 

representations. Thus, the metric has a bias favor for the majority classes. For this reason, 

the study considered the following evaluation criteria: Precision, recall, F-measure, and 

specificity. Precision indicates what fraction of positive predictions were positive. Recall 

(True Positive Rate) indicates what fraction of all positive samples were correctly predicted 

as positive by the classifier. Recall (True Negative Rate) indicates what fraction of all 

negative samples are correctly predicted as negative by the classifier. 

Below are the formulae to compute the metrics: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                           eq(7) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                           eq(8) 

 

F-measure is the combination of precision and recall. It is calculated as follows: 

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
(1+𝛽2).𝑟𝑒𝑐𝑎𝑙𝑙.𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝛽2𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                                                    eq(9) 

 

Where β is a weighting factor and a positive real number. It is used to control the 

importance of recall/precision. 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                                           eq(10) 

6.4 Results 

6.4.1 Visualization of MTP Gesture 

As the first step in performing activity recognition with wearable devices, a more detailed 

understanding of the gesture of interest needs to be developed. Figure 6.8 represents an 
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example of the entire MTP activity recorded from a right-hand dominant participant. After 

careful and repeated examination of the gesture, sequential segments of the gesture can be 

identified as shown in the figure. It is of notable interest to highlight the portion of the 

gesture corresponding to the water-drinking phase of the activity illustrated as the latter 

portion of the phase C in Figure 6.8. The gradual increase of the y-axis of the accelerometer 

denotes the beginning of the drinking phase and can therefore be used to quantify the 

duration of the drinking event.  

 

Figure 6.8: The segments correspond to (A) open-bottle dispense-medicine, (B) 

Hand-to-mouth pill-to-mouth hand-off-mouth, (C) pick-up-water drink-water 

lower-cup-to-table close-bottle, and (D) post-medication 

Our study of MTP consisted of scripted and natural methods of administering the 

medication. Although our scripted version was based on the behavior observed in most of 

our preliminary studies, it is possible that participant’s natural behavior to deviate from the 

scripted version. Figure 6.9 provides visual illustration of the differences between scripted 

and natural MTP activity from the same participant (panels a and b), and a natural MTP 

activity from a second participant.  
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(a) (b) (c) 

Figure 6.9: Illustration of MTP differences between a) scripted gesture from user1, b) 

natural gesture from user1, and c) natural gesture from user2. 

It is important to highlight the challenging task of identifying an MTP activity given the 

diversity in the activity among different participants. Numerous variations can be expected 

in the way different participants complete any given activity. For instance, the simple 

method of drinking water between two participants can vary significantly as illustrated in 

Figure 6.9 panels b and c. While the first participant (Figure 6.9 panel b) performs the task 

of drinking water with a sudden removal of glass from mouth, the second participant 

(Figure 6.9 panel c) performs a more gradual removal of the glass from mouth. These 

differences in the individual sub-gestures are the root of the challenges associated with 

detection of any gesture.  

6.4.2 Visualization of other Gestures 

Table 6.2 represents instances of four different activities as described by the caption under 

each figure. The gestures 1 and 3 comprise single instance of the respective complex 

activity. Gestures 2 and 4 comprise three instances of the respective complex activity. 

Gesture number two, the salad eating activity, shows two distinctive alternating regions. 

The sections of increased rapid activity and higher magnitude along y-axis indicate 

moments when the subject was repeatedly forking the salad. The zones immediately after 
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the forking shows hand-to-mouth to deliver fork ‘payload’ to mouth, followed by hand-

off-mouth, followed by a rest period before the cycle repeats. 

Table 6.2: Visualization of pizza bite, eating salad with a fork, smoking and jogging 

activities 

  
1: Single bite of pizza eating gesture  2: Eating salad with a fork 

  
3: Single smoking gesture 4: 3-consecutive steps of jogging activity 

6.4.3 Activity-wise distribution of the signal data 

As seen in Figure 6.10, Figure 6.11, and Figure 6.12 below, it is observed that there is very 

high overlap in the data among activities such as Medication, Eating and Smoking on all 

the axes. Jogging appears to have distinctive values along y-axis and z-axis. The large 

overlaps indicate that there are similar/common atomic activities in the complex activities 

that show interclass similarities. This similarity can also be seen in the Confusion matrix 

where there are significantly higher number of medication and eating gestures similar than 

there are between medication and jogging. 
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Figure 6.10: Signal distribution along x-axis 

 

Figure 6.11: Signal distribution along y-axis 
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Figure 6.12: Signal distribution along z-axis 

6.4.4 Validation and Annotation of Medication Taking Events 

The study of human behavior with wearable devices has several advantages over 

the traditional self-report methods. Specific to medication-taking, self-reported adherence 

is known to be over-estimated[194].  In comparison to self-report, wearable devices can 

provide additional useful information such as the time of the day the medication was 

administered and the number of times the medication was taken in a day without incurring 

additional time, effort, or cost to the user. Table 6.2 displays additional data extracted from 

smartwatch MTE with MedSensor. Considering the average time needed to complete MTE, 

outliers can be examined for accuracy as shown in Table 6.3. 

In this study, we considered outliers (both natural and scripted) as gestures of 

duration 8 seconds and below for the lower category, or 100 seconds and above for the 

upper category. In determining the outliers, we considered the mean and standard 

deviations for natural gestures at 18.47 and 14.34, and scripted gestures at 20.11 and 20.65, 

respectively. The outliers were observably fewest in scripted than natural gestures. For the 
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lower category, a random sample of 20 out of 103 gestures were examined, and all were 

invalid gestures, indicating that the users probably annotated start/stop of gestures in quick 

succession. On the other hand, for outliers ≥ 100 seconds in duration, the majority 

contained one or more MTE gestures in most cases. To better understand the cause of these 

temporal discrepancies and therefore, validate or invalidate the reported gestures, each 

recording session was examined by a team member for validity. The results are depicted in 

Table 6.4.   

Table 6.3: Statistical description of natural and scripted/protocol gestures. 

 Min Mean Median Std. Dev Max 

Natural 5 18.47 17 14.34 331 

Scripted 4 20.11 18 20.65 686 

Table 6.3 summarizes the number of extreme outliers that were identified in our 

pool of acquired data. In this study, we considered outliers (both natural and scripted) as 

gestures of duration 10 seconds and below for the lower category, or 100 seconds and 

above for the upper category. For the lower category, a random sample of 20 out of 103 

gestures, all turned out to be invalid gestures, indicating that the user probably annotated 

start/stop of gestures in quick succession, probably to cancel unintended activity recording, 

or the user simply played start/stop without recording activity. On the other hand, for the 

category, i.e., outliers >= 100 seconds in duration, it turned out that majority of them 

contained one or more medication gestures in most cases, and none in a few cases. Table 

5.3Table 6.3 provides a summary of the outliers’ category and counts. The Table 6.4 shows 

the analysis and observations of the upper-category outliers in terms of the gesture duration 

in seconds as well as the number of gestures identified therein. All the upper-category 
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outliers with at least one valid gesture at the beginning, the first valid gesture activity, or 

at least 24 seconds of activity, was extracted and included in the pre-processed input data 

to the neural network training; the rest of the data was dropped. 

Table 6.4: Outliers count for natural and scripted medication gestures considered from 

gestures longer than 100 seconds or shorter than 8 seconds 

 Count 

Description/Category Scripted Gestures Natural Gestures 

Duration equal to or greater than 100 seconds 6 2 

Duration equal to, or less than 10 seconds 63 40 

To better understand the cause of these temporal discrepancies and therefore, validate or 

invalidate the reported gestures, each recording session was examined by a team member 

for validity. Table 6.4 provides some examples of additional insights that the recordings 

from MedSensor provided and the corrections that were made by a ML supervisor. An 

additional benefit of this manual examination of the data was a more accurate 

representation of the start and end of the MTP activity while ensuring high quality of the 

training data. 

Table 6.5: Analysis of upper-category outliers. 

Subject  Duration Observations  Correction 

U1 371 The participant reported 7 

consecutively taken medications as 

one medication event.  

Individual MTP events 

were separated by a ML 

supervisor. 



 

146 

U1, U2, U3, 

U4, U5, U6,  

162 One MTP event was observed with 

some unrelated activities at the 

beginning or end of the recording.  

The unrelated portions 

of the recording were 

trimmed. 

U3 279 Comprises random activities that do 

not match medication gesture pattern 

 

6.4.5 Neural Network Training and Testing  

Using a fixed window size of 150 produced the performance shown in averages, as 

shown by the tables below. The test accuracies for eating, jogging, medication, and 

smoking were 94.3%, 100%, 93.6% and 98.6%, respectively. The average performance 

attained was 96.63%. 

Table 6.6 shows the summary of performance metrics for the neural network trained 

on data that excluded outliers. A similar experiment for data that included outliers produced 

an accuracy performance of 97.4%. As observed in the averages, there was a slight 

performance difference. This could possibly be attributed to the fact that the outliers made 

up a minute percentage of the training data, such that their exclusion did not amount to 

significant performance difference. It can also be seen from Table 6.4 that the outliers were 

a further minor data of a few subjects, meaning that the network would still generalize to 

majority observations. 
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Figure 6.13: Training plot for the window size of 150 units.  

Table 6.6: Summary metrics for the best performing configuration of window size 150 - 

Excludes outliers 

Activity Precision Recall F-Measure Specificity Accuracy 

Eating 0.802 0.920 0.857 0.948 0.943 

Jogging 1.000 1.000 1.000 1.000 1.000 

Medication 0.961 0.924 0.943 0.951 0.936 

Smoking 0.888 0.769 0.824 0.996 0.986 

Average 91.29% 90.33% 90.59% 97.37% 96.63% 

 

From the experiments with different sliding window sizes, we established that smaller 

windows, (other hyper-parameters remaining fixed), produced lower performances 

(95.5%). The reverse was true for wider windows, with the best performance of 97.4% 
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occurring at 150 units window size. To explore the full nature of misclassifications, the 

confusion matrix shown in Figure 6.15 was examined. The accuracy, precision, recall, F-

measure, and specificity, as described by the equations 1, 2, 3, 4 and 5, respectively, are 

presented the Table 6.5. 

While the overall best performance of ~97% is good, this study has not explored all 

possible nuanced configurations. Besides the sliding window size, it is possible to 

manipulate the hyperparameters such as the learning rate, adjust the number of LSTM 

units, windows step size, batch size, etc. to arrive at an even better performance. This is 

certainly an area for future exploration and further experiments.  

Training Results without Outliers 

 

Figure 6.14: Training plot for the window size of 150 units 
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Figure 6.15: Confusion matrix for the window size of 150 units 

6.4.6 Summary of Data 

Participant Demographics 

The participants comprised 57.0% males and 43.0% females, all of whom were mostly 

college students (71.4%), single (86.0%), and working at least part-time (61.0%). The 

sample represented racial diversity with 4% African American, 43% Asian, 43% White, 

and 10% Mixed. The right hand was dominant for 82%, while only 1 participant was 

ambidextrous.                                                                                                                                               
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6.5 Discussion 

6.5.1 Principal Results 

Studying human activities with smart and wearable devices has numerous advantages over 

the traditional approaches. Wearable devices provide the unobtrusive, continuous 

observation of human behavior in their natural settings with little burden to the user. The 

collected sensor data from these devices can be used to validate data reported by the user, 

therefore improving the accuracy and completeness of self-reports. In this work, 

participants used the smartwatch to report the beginning and end of their MTE. Errors in 

participants’ self-reported MTE were identified. Some self-reported MTE had implausibly 

short or long durations. Participants also used smartwatch to report the beginning and end 

of pizza eating activity. In the same way, the participants recorded their smoking activities. 

We also examined a public dataset for jogging exercise. While these activities in many 

ways involve the use of two hands, we relied on one smartwatch per participant, worn on 

one wrist. This approach certainly ignores data that could prove useful in improving gesture 

richness for activity recognition. We, however, assume for now that the minimal approach 

which depict how most people use the wearable devices like smart watch is still sufficient 

in interpreting human activity, especially when the subject wears the device upon the most 

dominant or active hand. 

By validating the digitally recorded temporal gestures, we demonstrated the ability 

to correct erroneous self-reports, therefore improving the quality of the reports. 

Furthermore, the temporal signature that has been reported by the array of sensors available 

on wearable devices, can provide a plethora of additional information such as the temporal 

variation of an activity within a given user, or across a population of users. For example, 

in our study we demonstrated that nMTE were completed in an average of 18 seconds, but 
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there were distinct interclass differences across participants; equally, there were also intra-

class differences where gesture uniqueness also occurs even among the gestures of the 

same individual. Such comparison of behaviors provides several dimensions along which 

the study of human behavior can be expanded. 

In addition to the expanded information that can be obtained from these devices, 

the ability to automatically detect and identify an nMTE with high accuracy will be 

beneficial. Automatic detection of an MTE event can be used as the foundation for both 

measuring and improving adherence. In the latter case, non-detection of an nMTE offers 

the opportunity to alert patients or support persons of the missed medications to improve 

adherence and the health outcomes associated with improved medication adherence.  

Improved medication adherence has the potential to significantly reduce morbidity [195]–

[197], mortality [167], [197], and healthcare costs [195], [198]–[200]. Hence, detecting 

nMTE with smartwatches has exponential utility. Equally significant, automatic detection 

of eating, and smoking gestures opens an array of opportunity to create innovative solutions 

such as smoking cessation tools, healthy eating assistants, among others. These tools can 

empower everyday persons with simple tools available freely as mobile apps without the 

need of costly expert consultancies.   

6.5.2 Limitations 

The limitation of our approach given the current state of the technology is the availability 

of data from a single hand. Therefore, activities such as smoking that can be completed by 

a single hand, may not be detected by a watch that is worn on an opposite hand. Fortunately, 

because activities such as medication-taking are difficult to complete with a single hand, a 

residual portion of the activity will always be present from the perspective of a single 
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watch. This problem can easily be overcome with the presence of a sensing device on each 

hand (or possibly each limb). Although not common presently, the arrival of smart 

wristbands, rings, and other forms of wearable is likely to provide a more complete picture 

of a person’s daily activities [141], [182], [184], [201]–[203]. This limitation can also be 

mitigated in future studies through the augmentation of wearable sensor data with vision-

based data, particularly in environments where vision devices are mounted. For example, 

it would be easier to verify eating, smoking or medication activities if there is a video or 

picture taken of the same event. This can corroborate and confirm the detected activity. 

With increased environmental sensors embedded in many public places, as well as CCTV 

cameras in the public, and where the laws allow, this approach can be significantly 

complimentary to wearable sensor activity recognition. 

A second limitation is the method by which people may wear their watch. A watch 

can be worn in four distinct ways of on left or right hand, and inside or outside of the wrist. 

In this study, we asked participants to wear their watch on their right hand, and on the 

outside of their wrists. However, sensor data recorded by the same watch in any of the 

other three configurations will produce related but undistinguishable signals by the Neural 

Network. Consistently wearing a watch on the outside right hand is critical at the current 

stage of our scientific development. However, using the existing human body symmetry, 

and the relationship between inside and outside of the wrists, mechanisms of unifying 

sensor signals collected from any mode of use can be developed as demonstrated 

previously [122]. This will produce high-capacity models with broader experience to 

recognize medication gestures regardless of watch-face orientation. 
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6.5.3 Proposed Improvements to Protocol 

Generally, our current protocol worked very well. However, our future 

investigations will benefit from two additional steps to our existing protocol. The first step 

will collect calibration data during the initial orientation session. Currently, our orientation 

consists of familiarizing the participant with the watch, the app, and the use of the app. In 

the future, we will use this orientation session to collect data from a set of simple activities 

(e.g., touch toes, touch hip, and touch head) with the watch worn on each hand to obtain 

useful participant-specific data at baseline. By collecting data from left and right hands, we 

can establish a more precise relationship between the right and left hands for given 

participants. Although perfect human symmetry may indicate a 180-degree rotation 

between the two, natural human posture may create a departure from an ideal 180-degree 

symmetry. This information can be used to allow the user to wear the watch in any 

preferred method and provide the necessary information for the correction that is needed 

for the existing right-handed Neural Network.  

6.6 Conclusions 

Medication activity, Eating event, and Smoking activity are all complex human 

activities that require finer decomposition into atomic sub-activities in order to recognize 

the underlying building blocks of each behavior. Medication adherence challenge is 

associated with chronic condition self-management. Smoking remains a leading cause of 

preventable death, and obesity remains a major health challenge. Automated detection of 

medication-taking activity is of critical importance in relation to improved treatment 

effectiveness. Equally, automated detection of smoking or Eating events hold a huge 

potential for exploitation to improve human health as well as prevent death. In this study, 

we demonstrated the use of LSTM-NN based on in situ context data to detect, and 
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recognize atomic activities, and the complex activities of four complex activities. We have 

demonstrated successful identification of individual medication gestures with an accuracy 

of approximately 93.6% when tested against activities that significantly resemble 

medication, such as smoking and eating, which share the common atomic-gestures of hand-

to-mouth, hand-on-mouth, and hand-off-mouth. By the same unified model, we achieved 

accuracies of 94.3% for Eating, 100% for Jogging, and 98.6% for Smoking. Our 

investigation showed almost no confusion between jogging and the other three activities. 

This could be explained by the fact that the atomic activities and context attribute 

composition of the two categories are largely different. By this observation, we speculate 

the accuracy of the system to increase notably if other natural daily activities are included 

in the training and testing sets due to their dissimilarity. 

Although in this work we have achieved a reasonably high detection of the four 

activities, several additional investigations can be initiated to increase the performance and 

usability of the system. First, as an ultimate objective, we aim to develop one application 

that can decipher numerous human activities to establish correlative or causative 

relationship between activities. For instance, medication activity may occur at 8 PM before 

sleep activity, or at 7 AM before breakfast eating activity, or eating activity at 1 PM may 

be followed by cigarette smoking soon after. The ability to monitor the temporal 

relationship between these events would be very useful to provide the much-needed context 

to further understand human behavior and therefore model useful health-related solutions 

or provide real-time intervention reminders. To accomplish this, we need to engage in a 

formal investigation of the optimal viewable window size to an ANN that will be sufficient 

to successfully decipher between all activities of interest. Additionally, there exists some 
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inherent parallel between human activities and the principles of written language. To fully 

leverage this parallel analogy, human activities need to be examined in the more 

fundamental fashion by decomposing complex activities further to their most basic 

building blocks, referred in this study as atomic gestures. Our previous work[18], [192] 

illustrates the mini-gesture decomposition of the eating activity in relation to other similar 

activities such as smoking. 
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CHAPTER 7: CONCLUSION 

Human activity recognition is a complex pattern recognition problem. In this research, we 

have examined human activity theory as well as the various techniques and approaches 

used to decipher the semantics of human activities grammar. We have studied a variety of 

activities, specifically smoking behavior, medication taking behavior, eating behavior, and 

jogging exercise activities. Medication adherence is a complex human behavior associated 

with chronic condition self-management. It remains a global public health challenge; 

nearly 50% of people fail to adhere to their medication regimes. Automated detection of 

medication-taking activity is of critical importance in relation to improved treatment 

effectiveness. The automatic detection of medication gestures will also help to eliminate 

the burden of self-reporting from the participants and therefore, provide a simpler way of 

tracking medication events. In this study, we demonstrated the use of LSTM-NN to detect 

and recognize atomic activities, and the complex activities. 

We have demonstrated successful identification of individual medication gestures 

with an accuracy of approximately 93.6% when evaluated against activities that 

significantly resemble medication, such as smoking and eating, which share the common 

atomic gestures of hand-to-mouth, hand-on-mouth, and hand-off-mouth. Our investigation 

also compared medication activity against jogging activity, and our model confirmed little 

confusion between medication and jogging. This could be explained by the fact that the 

mini activities of both complex dynamic activities are different. By this observation, we 
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speculate the accuracy of the system to increase notably if other natural daily activities are 

included in our training and testing sets due to their dissimilarity to the medication gesture. 

We further evaluated our unified classifier model against eating, jogging, medication, and 

smoking, with performance outcomes of 94.3%, 100%, 93.6% and 98.6%, respectively, 

and an overall average performance of 96.63%. To reduce the error margins, which can be 

significant when we consider the activities such as medication, the context data can be 

enriched with external attributes like time and location. Where necessary, visual aspects 

can be captured to augment sensor data and make it possible to corroborate triaxial 

orientations. 

Although in this work we have achieved a high detection of the medication-taking 

gesture, several additional investigations can be initiated to increase the performance and 

usability of the system. Future work on the unified model should be aimed to both decipher 

numerous human activities as well as establish correlative or causative relationship 

between activities. For instance, medication activity may occur at 8 PM before sleep 

activity, or at 7 AM before breakfast eating activity, or eating activity at 1 PM may be 

followed by cigarette smoking soon after. The ability to monitor the temporal relationship 

between these events would be particularly useful to provide the much-needed context to 

further understand human behavior and therefore model useful health-related solutions or 

provide real-time intervention reminders. To accomplish this, we need to engage in a 

formal investigation of the optimal viewable sliding window size to the Neural Network 

that will be sufficient to successfully decipher between all activities of interest. 

Additionally, there exists great potential in exploiting the inherent linguistic parallel 

between human activities and the principles of written language. To fully leverage this 
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parallel analogy, human activities need to be examined in the more fundamental fashion 

by decomposing complex activities further to their most basic building blocks akin to 

alphabets, otherwise referred in this study as mini or atomic gestures. In two of our studies, 

we have applied this parallel to model HAR as a language. 

By the language concept, we have presented the reformulation of an entire smoking 

gesture (puff) as a combination of three time-dependent mini-gestures (hand-to-lip, hand-

on-lip, and hand-off-lip). Based on the results shown in the reformulation of the smoking 

gesture as mini gestures, we addressed one major HAR challenge of by reducing the 

complexity of detection as evidenced by the improved detection. Although we have 

achieved a near perfect detection of the four activities, we anticipate unforeseen challenges 

during the live deployment of this technology due to other noise data such as background 

or intra-class gesture variations.  

To incorporate the temporal dependency of human activities, including the mini-

gestures, we implemented LSTM. We expect that with more data, and better annotation, 

these performance metrics can be improved significantly. We observe that our state-

transition approach to detection of atomic gestures had demonstrated improvements over 

the previously reported approaches. We expect that the declaration of atomic gestures as 

the “vocabulary” of human activities is instrumental in the development of the activity 

“grammar” that can be exploited by the incorporation of RNNs and transfer learning. 

Further, our research addresses two major challenges associated with HAR sensor data. 

Through edge-enabled annotation at the device, we significantly improve data annotation 

and preprocessing, making it possible to automate more processing downstream. Although 

this approach does not guarantee 100% gesture integrity, it makes data process more 
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efficient than conventional tedious manual data annotation. Most important, and tied to the 

data process, we implement a comprehensive online Sensor Database that streamlines the 

data process, enables research and collaboration, and meaningfully organizes datasets in a 

way that allows controlled, secure access. This is what we call the METASENS project. 

We have already deployed it for lab use, but ultimately, it will be a resource to the public 

to open for a wider HAR research community. 

This research also spent significant time investigating efficient energy utilization by 

smartwatches. Energy use, and hence battery life, remains one key problem especially for 

small devices. Thankfully, recent industry development has improved small battery 

capacity making most watches last for more than 24 hours on full use. We emerged with 

crucial analysis that would still help users and application developers to get more life out 

of small devices when the devices are correctly calibrated. In most cases, there is no need 

to run all sensors since accelerometer data alone is sufficient in the characterization of 

human motions. Where there is need to fuse sensor data, other sensors can be initialized, 

otherwise they can be deactivated. We share some of these findings in our presentations. 

Finally, HAR remains active research seeking more efficient solutions particularly in 

data acquisition and labeling, computation overheads, data augmentation, intra-class and 

inter class variability challenges. It is our expectation that our work adds value to the 

research community, and we hope to come up with more innovative solutions to the 

existing domain challenges.  
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