
University of South Carolina University of South Carolina

Scholar Commons Scholar Commons

Theses and Dissertations

Fall 2022

The Effects of Project-Based Game Development on Student The Effects of Project-Based Game Development on Student

Learning and Attitudes: Action Research in an 8Learning and Attitudes: Action Research in an 8thth Grade Grade

Introductory Computer Science Course Introductory Computer Science Course

Theodore G. Jenks

Follow this and additional works at: https://scholarcommons.sc.edu/etd

 Part of the Curriculum and Instruction Commons

Recommended Citation Recommended Citation
Jenks, T. G.(2022). The Effects of Project-Based Game Development on Student Learning and Attitudes:

Action Research in an 8th Grade Introductory Computer Science Course. (Doctoral dissertation). Retrieved
from https://scholarcommons.sc.edu/etd/7060

This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please
contact digres@mailbox.sc.edu.

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F7060&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/786?utm_source=scholarcommons.sc.edu%2Fetd%2F7060&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/7060?utm_source=scholarcommons.sc.edu%2Fetd%2F7060&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu

THE EFFECTS OF PROJECT-BASED GAME DEVELOPMENT ON STUDENT

LEARNING AND ATTITUDES: ACTION RESEARCH IN AN 8TH GRADE

INTRODUCTORY COMPUTER SCIENCE COURSE

by

Theodore G. Jenks

Bachelor of Science

The University of North Carolina at Chapel Hill, 2000

Master of Science

Southern Methodist University, 2009

Submitted in Partial Fulfillment of the Requirements

For the Degree of Doctor of Education in

Curriculum and Instruction

College of Education

University of South Carolina

2022

Accepted by:

Ismahan Arslan-Ari, Major Professor

Michael Grant, Committee Member

Yingxiao Qian, Committee Member

Anna C. Clifford, Committee Member

Cheryl L. Addy, Interim Vice Provost and Dean of the Graduate School

ii

© Copyright by Theodore G. Jenks, 2022

All Rights Reserved

iii

DEDICATION

 This dissertation is dedicated to everyone who supported me through this process.

Thank you to the students who participated in this study. Without your willingness to

participate, this study would not have been possible. Without your perseverance and hard

work, this work would not have been successful. Thank you to my administration, which

allowed me to grow a computer science program and perform research at their institution.

 Thank you to my mother, who provided babysitting and proofreading services.

You started law school when I was two, and I can now empathize with that experience.

 Most of all, this is dedicated to Claire, Gavin, and Valerie. You allowed me the

space to work and were remarkably understanding for a long time. We are near the end –

love you muches!

iv

ACKNOWLEDGMENTS

 I acknowledge several people who assisted with this dissertation and my journey

through this program. First, my major professor, Dr. Ismahan Arslan-Ari, patiently

guided me through the process of transforming raw ideas and data into a written form that

others could understand. Without her support, my qualitative and quantitative analyses

would have been an incoherent mess. My other committee members, Dr. Michael Grant,

Dr. Yingxiao Qian, and Dr. Anna C. Clifford, provided welcome critiques to improve this

work. I may not have another opportunity for a group of highly credentialed educators to

review my work in such depth. I suspect that, as with many significant experiences, I

may not fully appreciate this process until much later. I am very grateful to the

committee for their time and efforts.

 In addition to my major professor and committee members, other professors in the

Learning Design and Technologies concentration were incredibly generous with their

time. They demonstrated an unwavering commitment to students’ success. Those

professors from which I had the pleasure of learning and who had a special impact on me

were: Dr. Fatih Ari, Dr. Allison Moore, Dr. William Morris, Dr. Stephen Rodriguez, and

Dr. Lucas Vasconcelos. Dr. Angie Starrett provided help with statistical analysis long

after I had left her statistics class.

 Finally, thank you to cohort RNR for their support and camaraderie during this

process.

v

ABSTRACT

 The purpose of this action research was to implement a digital game development

project and describe its effects on the performance and attitudes of eighth-grade students

in a required computer science course at South Carolina School District Alpha. The

following research questions were explored: (1) How does the game development project

impact participants’ ability to analyze and develop algorithms? (2) What is the effect of

the game development project on participants’ attitudes toward computer science? and

(3) What is the relationship between participants’ attitudes toward computer science and

their performance?

 There were 28 participants composed of students in a science, technology,

engineering, and mathematics magnet program. A convergent parallel mixed-methods

approach was used to answer the research questions. A content knowledge assessment

pretest and posttest were administered to measure performance before and after the

intervention. Content knowledge assessment scores after the intervention were

significantly larger than the content knowledge assessment scores before the intervention.

A survey measuring attitudes toward computer science was administered to participants

before and after the intervention. The survey consisted of five subscales: (a) self-

concept, (b) learning at school, (c) learning outside of school, (d) future participation, and

(e) importance. For all five subscales, the subscale measure after the intervention was

significantly larger than the subscale measure before the intervention. The linear

correlation between participants’ attitudes toward computer science and their

vi

performance was measured at the end of the intervention. Findings suggested that as

participants’ scores on the post-survey for attitudes toward computer science increased,

so did participants’ scores on the post-content knowledge assessment.

 Qualitative data was collected in the form of field notes from classroom

observations and participant interviews. Inductive and deductive analysis was performed

on the qualitative data to help answer the research questions. Findings showed that (a)

participants’ performance and attitudes improved after the intervention, (b) participants

experienced barriers to success, and (c) attitudes and performance were related and

appeared to influence each other. Implications and limitations of the research were

discussed.

vii

TABLE OF CONTENTS

Dedication .. iii

Acknowledgments.. iv

Abstract ... v

List of Tables ... ix

List of Figures .. xi

List of Abbreviation ... xiii

Chapter 1 : Introduction .. 1

Chapter 2 : Literature Review ... 15

Chapter 3 : Method ... 36

Chapter 4 : Analysis and Findings .. 82

Chapter 5 : Discussion, Implications, and Limitations ... 141

References ... 176

Appendix A: Checkpoints ... 199

Appendix B: Participant Information.. 201

Appendix C: Game Development Project Directions ... 204

Appendix D: Content Knowledge Assessment ... 226

Appendix E: Survey .. 240

Appendix F: Interview Protocol.. 242

Appendix G: IRB Approval .. 245

Appendix H: District Study Approval .. 247

viii

Appendix I: Original and Current Pseudonyms .. 248

ix

LIST OF TABLES

Table 3.1 Interviewed Participant Demographics ... 40

Table 3.2 SC READY Math and ELA Performance .. 41

Table 3.3 Interviewed Participant Academic History ... 41

Table 3.4 Project-Based Design Element Implementations ... 51

Table 3.5 Research Question and Data Sources Alignment ... 56

Table 3.6 Content Knowledge Assessed by Question .. 57

Table 3.7 Course Standard Assessed by Content Knowledge Assessment 59

Table 3.8 Alignment of Interview Questions to Research Questions 64

Table 3.9 Research Question, Data Sources, and Data Analysis Alignment 65

Table 3.10 Timeline of Phases and Tasks ... 68

Table 4.1 Interpretation of Effect Size .. 83

Table 4.2 Performance Task Percent Agreement ... 84

Table 4.3 Correct Responses Per Item on Multiple-Choice Assessment.......................... 85

Table 4.4 Descriptive Statistics of the Pretest and Posttest .. 86

Table 4.5 Paired Samples t-Test Results for Content Knowledge Assessment Scores 87

Table 4.6 Survey Subscales .. 87

Table 4.7 Internal Consistency Measure of Survey (Researcher)..................................... 88

Table 4.8 Descriptive Statistics of Pre and Post-CS Attitude Survey Subscales 88

Table 4.9 Survey Subscale Assumption Checks ... 89

Table 4.10 Parametric Inferential Results of Pre and Post-Survey Subscales 90

x

Table 4.11 Nonparametric Inferential Results of Pre and Post-Survey Subscales 91

Table 4.12 Interpreting the Size of a Correlation Coefficient .. 93

Table 4.13 Summary of Qualitative Data Sources.. 95

Table 4.14 Examples of First Cycle Coding Methods .. 104

Table 4.15 Category Progression .. 110

Table 4.16 Hierarchical Structure of Themes ... 114

Table 4.17 Description of Themes .. 116

Table B.1 Participant Demographics .. 201

Table B.2 Participant Academic History .. 202

Table H.1 Original and Current Pseudonyms ... 248

xi

LIST OF FIGURES

Figure 3.1 Zulama Pinball Rule Set .. 46

Figure 3.2 Zulama Pinball Drop Button Create Event .. 46

Figure 3.3 Zulama Scat Score Hand Function .. 47

Figure 3.4 Abridged Game Design Document from Aleesha ... 73

Figure 3.5 Status Report from Julia .. 75

Figure 3.6 Abridged Playtest Document from Bree ... 76

Figure 4.1 Composite Post-Survey Scores Vs. Posttest Scores .. 93

Figure 4.2 Field Notes Composition Notebook .. 96

Figure 4.3 Handwritten Field Notes.. 97

Figure 4.4 Word Document Field Notes ... 98

Figure 4.5 Otter.ai Needs Cleaning Folder ... 99

Figure 4.6 Otter.ai Cleaned Interviews Folder.. 100

Figure 4.7 Review Interview Transcript Email ... 101

Figure 4.8 Delve Codes Export to Excel .. 105

Figure 4.9 Second Coding Cycle in Excel .. 105

Figure 4.10 Second Cycle Transition Notes One in Excel ... 106

Figure 4.11 Second Cycle Transition Notes Two in Excel ... 108

Figure 4.12 Grouped Codes in Excel at the End of Cycle Three 109

Figure 4.13 Performance Improvements in Delve .. 111

Figure 4.14 Barriers to Success in Delve .. 111

xii

Figure 4.15 Positive Attitudes in Delve .. 112

Figure 4.16 Attitude Performance Feedback Loop in Delve .. 113

Figure 4.17 Compiler Error Symbol in GameMaker .. 134

Figure 4.18 Compiler Error Window in GameMaker ... 135

Figure 4.19 Runtime Error Window in GameMaker .. 135

xiii

LIST OF ABBREVIATION

AP .. Advanced Placement

AP CSA ... Advanced Placement Computer Science A

AP CSP .. Advanced Placement Computer Science Principles

API ... application programming interface

ASD.. Agile software development

CP ... college prep

CS ... computer science

DGBL .. digital game-based learning

GBL.. game-based learning

GDBL .. game development-based learning

IDE .. integrated development environment

IRB ... Institutional Review Board

PBL .. problem-based learning

PjBL ... project-based learning

STEM ... science, technology, engineering, and mathematics

1

CHAPTER 1: INTRODUCTION

National Context

 Software development is one of the fastest-growing occupations for 2021-2031,

with a 25% projected growth rate and 500,000 jobs currently unfilled in the United States

(U.S. Bureau of Labor Statistics, 2022). The projected growth rate does not include jobs

in the computational sciences and engineering, where computer science (CS) is a

necessary tool for conducting research or designing applications. Of all new jobs in

science, technology, engineering, and mathematics (STEM), 67% are in computing (U.S.

Bureau of Labor Statistics, 2022). Computer science concepts and competencies are

becoming necessary for an increasing number of sciences and industries (Culic et al.,

2019; Repenning et al., 2015; Zendler & Klaudt, 2012). Companies are unable to fill

software development jobs due to a lack of individuals with adequate computer science

skills (Southern Regional Education Board, 2016).

 The U.S. Department of Education explicitly focused on computer science within

its STEM initiatives. The U.S. Department of Education emphasized computer science

for the following reasons: (a) CS education improves critical thinking; (b) CS education

improves problem-solving abilities; and (c) CS job openings exceed the number of

qualified candidates (DoED Secretary’s Final Supplemental Priorities and Definitions for

Discretionary Grant Programs, 2018). The shortage of qualified CS professionals has

prompted United States technology companies to petition the federal government to

increase the number of H1-B visas for technologically skilled workers (Repenning et al.,

2

2015). China and India each produced over three times more CS university graduates

than the United States (Loyalka et al., 2019).

 Computing will impact the lives of today’s students. They may work in fields

affected by computing, and nearly all students will be affected culturally by computing.

Today’s average student will need to understand computer science principles to function

in society (Tucker et al., 2003). College should not be the first opportunity for students

to study computer science; students should be introduced to computing concepts in K-12

(Barr & Stephenson, 2011).

 In this study, algorithm will be defined as “a set of rules for how to take some

input or starting state and produce a corresponding output or end state” (Wilkerson-Jerde,

2014). Algorithm analysis and development will be defined as understanding what

existing algorithms do and developing algorithms to solve problems (McGregor & Sykes,

2001). In computer science, algorithm analysis refers to measuring the storage and time

complexity of algorithms; that is not how the term will be used in this study. Computer

programming, a subset of computational thinking, involves writing and analyzing

algorithms. Programming is difficult for students to learn because of the many skills that

must be mastered (Alturki, 2016; Cheah, 2020; Javidi & Sheybani, 2014; Végh &

Stoffová, 2019). Students must identify problems, design solutions, translate solutions

into a form that complies with the rules of syntax and semantics for a particular

programming language, and test the solutions (João et al., 2019; Végh & Stoffová, 2019).

Students often have difficulty writing and analyzing algorithms due to low ability in

mathematical thinking and logical reasoning (Cetin & Andrews-Larson, 2016; João et al.,

2019). Algorithmic solutions must be translated into a programming language, and

3

programming languages take time to master. Another impediment to student learning is

low interest in CS and an unwillingness to devote sufficient time to mastering

programming skills (Culic et al., 2019; João et al., 2019).

 In the past, few students in the United States elected to take CS due to its

perceived difficulty. Students who pursued CS were typically from affluent families that

could afford expensive computing equipment and provide parental expertise (Goode &

Margolis, 2011; Repenning et al., 2015). These students arrived in CS courses with some

exposure to computing and a willingness to devote significant time to the subject. Until

about 2011, College Board’s Advanced Placement Computer Science A (AP CSA)

course was the only computer science offering for high school students (CollegeBoard,

2020a). Its steep learning curve and use of Java console programs failed to reach

students who did not already possess an affinity for computing (Goode & Margolis,

2011). Methods for teaching CS should be developed for students who do not receive

exposure to computing at home.

 Several alternatives to console programming have been implemented to make CS

more accessible to students. In 2016, College Board introduced Advanced Placement

Computer Science Principles (AP CSP) as a more accessible first introduction to CS than

AP CSA (CollegeBoard, 2020b). In addition to programming and algorithm

development, AP CSP focused on creativity, abstraction, data and information, the

Internet, and global impact (CollegeBoard, 2020b). Block programming languages such

as Scratch allow students to program visually and relieve some of the syntax overhead

involved with text-based languages (Cucinelli et al., 2018). Arduino includes a

development board and integrated development environment (IDE) that enable students

4

to build interactive devices (Perenc et al., 2019). Lego and Vex offer robotics kits that

allow students to make and program robots.

 Many children today spend a significant amount of time playing computer games,

which suggests that gaming is engaging for young people (Anderson & Jiang, 2018).

Leveraging the engagement produced by computer games could be a valuable learning

tool. Constructivist theory states that learning is more efficient when constructed by

students than when communicated by an instructor; students learn best when constructing

“concrete and meaningful artifacts that can be shared with others” (An, 2016, p. 556).

Project-based learning and game development have been found to improve learner

attitudes and performance (Erümit et al., 2020; Theodoraki & Xinogalos, 2014; Topalli &

Cagiltay, 2018; Végh & Stoffová, 2019; Wu & Wang, 2012). A project-based game

development unit combined with a game development tool has several potential benefits

if implemented carefully: (a) novice programmers should be able to produce visually

appealing artifacts relatively early, (b) complex projects are available to students, (c) a

wide range of projects are available to students based on their preferences (Erümit et al.,

2020; Robertson, 2013; Végh & Stoffová, 2019).

Local Context

 South Carolina School District Alpha has 1,401 seventh and eighth-grade students

and 2,371 high school students in grades 9 through 12 (South Carolina Department of

Education, 2019c). The student population is 43% Black or African-American, 14%

Hispanic or Latino, 3% two or more races, 39% White, and 1% or fewer other races; 74%

of the district’s students are in poverty (South Carolina Department of Education, 2019a).

The percentage of students who scored met or exceeding on the SC Ready exam was

5

35.6% in English Language Arts and 35.9% in Mathematics (South Carolina Department

of Education, 2019b). The percentage of students scoring C or higher on the End-of-

Course Assessment was 43.3% in English 1 and 44.5% in Algebra 1 (South Carolina

Department of Education, 2019b).

 Before 2013, South Carolina School District Alpha offered few CS courses.

Students were able to take courses such as business applications, image editing, and

digital desktop publishing for their CS credit. In 2013, AP CSA was added to the course

offerings. AP CSA was a challenging course for most students. While students

performed well on the Advanced Placement (AP) exam, most students struggled initially.

In 2014, networking was added to the course offerings. In 2016, AP CSP was added to

the course offerings. AP CSP was a much less demanding introduction to computer

science than AP CSA, but students struggled with the programming portion of AP CSP.

In 2018, an advanced Java course was added to the course offerings as a dual-credit

course through a neighboring technical college. The rigorous CS courses were elective,

and enrollment consisted of students who were high-achieving or highly interested in

computing. South Carolina School District Alpha has two high schools. All advanced

CS courses (AP and dual-credit) are offered at Delta High School. Students from the

other high school travel to Delta High School to take advanced CS.

 In the 2018-2019 school year, 1.1% of the high school student body in South

Carolina School District Alpha (26 out of approximately 2373 students) elected to take

CS, but the South Carolina Department of Education will require all students to take

computer science in the 2019-2020 school year (Malone, 2019). The district was granted

a waiver; students who entered grade nine before 2021, and who had earned credit for

6

one of the previously qualifying courses, would not have to take the required computer

science course for graduation. Implementing a successful CS curriculum for all students

will be challenging. Abstraction and algorithm analysis and development are challenging

topics in computer science for students with no programming background.

 Mathematical ability is positively correlated with performance in traditional

programming courses (Balmes, 2017; Southern Regional Education Board, 2016).

Prerequisites for computer science courses in South Carolina School District Alpha have

previously included honors mathematics. Prat et al. (2020) question the evidence for the

relevance of mathematical skills to programming, claiming that other measures are more

important for learning programming languages. There is an important distinction

between learning a programming language and algorithm analysis and development.

While learning the syntax of a programming language may involve linguistic skills more

than mathematical ones, algorithm analysis and development is inherently mathematical

(Cetin & Andrews-Larson, 2016; CollegeBoard, 2020a; Lewis & Papadimitriou, 1998).

 In 2017-2018, 35.5% of South Carolina School District Alpha students performed

at grade level in mathematics; 51.4% scored a C or higher on the SC end-of-course

assessment for algebra 1 (State of South Carolina Department of Education, 2018).

Because of their low mathematical proficiency, at least half of the student body is likely

to struggle with a traditional programming course. South Carolina has digital literacy

standards for grades K – 8, which include computational thinking, algorithms, and

programming (South Carolina Department of Education, 2017). As the district gradually

implements the K – 8 digital literacy standards, students may enter high school with a

stronger background in computational thinking.

7

 A teaching strategy should be implemented that motivates students and makes

programming more accessible. In South Carolina School District Alpha, 72.3% of

students are in poverty, so most students are unlikely to have access to expensive

technology at home (State of South Carolina Department of Education, 2018). It follows

that students are also unlikely to enter school with a desire to explore computer science

topics. Some students in the district exhibit a high degree of apathy. Many are

unmotivated by grades, even the possibility of failing grades. Cell phones are a constant

distraction for students in school and lead to many off-task behaviors. Teaching

programming through game development may be more successful than through a

traditional programming course (Ernst & Clark, 2012; Martins et al., 2018; Thomas et al.,

2011; Topalli & Cagiltay, 2018; Wu & Wang, 2012). An intervention that takes

advantage of students’ affinity for gameplay and technology has the possibility of

capturing the interest of previously apathetic students (Boyle et al., 2016; Qian & Clark,

2016).

Statement of the Problem

 The South Carolina Department of Education will require all students to take

computer science starting in the 2019-2020 school year (Malone, 2019). In the past, few

students requested computer science as an elective. Because a small percentage of

students have elected to take computer science, South Carolina School District Alpha

does not have a tested method of teaching computer science to all students. Even for

students who demonstrated an interest in computer science, introductory computer

science was a challenging course. Challenges with teaching all students the

programming component of computer science are highly probable. In summary,

8

computer science is a difficult subject even for students who demonstrate an interest in it

by electing to take computer science courses. We should expect greater challenges in

computer science courses when all students are required to take it.

Purpose Statement

 The purpose of this action research was to implement a digital game development

project and describe its effects on the performance and attitudes of eighth-grade students

in a required computer science course at South Carolina School District Alpha.

Research Questions

1. How does the game development project impact participants’ ability to analyze

and develop algorithms?

2. What is the effect of the game development project on participants’ attitudes

toward computer science?

3. What is the relationship between participants’ attitudes toward computer science

and their performance?

Researcher Subjectivities and Positionality

 My first career was not in education. I obtained a Bachelor of Science in

mathematical sciences, a Master of Science in software engineering, and worked for 10

years as a software engineer before entering education. Marketing departments where I

worked dictated that applications should not require people to read or think. They

wanted applications that captured and held people’s attention and created a sense of

urgency to buy. Most of the applications that I developed were designed to sell people

things that they did not need. I developed a strong skepticism of technology and the

motivations of people selling it.

9

 I always wanted to teach, so in 2008 I entered the South Carolina Program of

Alternative Certification for Educators (PACE). Since 2008, I have been teaching

mathematics, computer science, and networking in grades 8-12 and at a technical college.

Sales tactics in educational technology were similar to those in software development.

The customers in education tended to be much less discerning regarding technology

purchases. It was common for technology packages to be purchased with little demand

for evidence of efficacy. I wanted to develop an ability to read existing research in

educational technology and perform research, so I decided to pursue a doctorate in

educational technology. I am interested in researching and ultimately improving the

learning experiences of students in introductory computer science courses.

 My positionality was that of an insider because I conducted research on my own

teaching practice (Herr & Anderson, 2005). The focus of my research will be on the

effect of a project-based game development unit on the attitudes and performance of

students. I will be the instructor and interact with the participants daily. I will directly

influence participants’ experience of the game development unit and their learning

experiences.

 The pragmatic paradigm is how I will approach my research. I am fundamentally

concerned with solving a problem. Pragmatism is not concerned with methods; it is

concerned with understanding and solving a problem using any approach (Creswell &

Creswell, 2018). Pragmatism also complements action research, where the immediate

goal is to improve conditions for the participants (Zeni, 1998). Computer science has

been an elective course until this year. Even students who have an interest in computer

science struggle with some aspects of the course, such as algorithm analysis and

10

development. We face the challenge of teaching these concepts to students who have no

interest in the subject and could lack the prerequisite skills necessary to comprehend

some topics adequately. The pragmatist paradigm will allow me to select approaches

best suited to teaching computer science concepts and measuring student learning.

 I want my students, who are the participants, to have a positive learning

experience. I also want to maximize their skill development. I will be careful not to

underreport the failures of the intervention. If the intervention is not producing desired

results, necessary modifications will be made. Assessing the intervention will begin by

avoiding leading research questions (Agee, 2009). I enjoy computer science immensely,

but I need to remember that many students will be taking computer science because it is

required, so they may not share my enthusiasm for the subject. I should remain patient

with these students and not communicate frustration.

Definition of Terms

 Algorithm: “a set of rules for how to take some input or starting state and produce

a corresponding output or end state” (Wilkerson-Jerde, 2014).

 Algorithm analysis and development: understanding what existing algorithms do

and developing algorithms to solve problems (McGregor & Sykes, 2001).

 Application programming interface: a documented interface of available data and

functionality.

 Attitudes: beliefs, evaluations, or emotional responses toward ourselves, an object,

an idea, or a person (Giannakos, 2014; Saldaña, 2021; Simonson, 1979).

11

 Black box testing: test cases are executed using the software’s specification

without regard to the software’s implementation; also referred to as functional testing or

specification-based testing (McGregor & Sykes, 2001).

 Compiler error: a defect that prevents a high-level language from translating

instructions into machine language. A compiler error will also be referred to as a syntax

error.

 Computer science: “the study of computers and algorithmic processes, including

their principles, their hardware and software designs, their applications, and their impact

on society” (Tucker et al., 2003). Programming is a subset of computer science.

 Content knowledge assessment: an assessment of participants’ knowledge and

performance. The assessment consisted of a multiple-choice portion and a performance

task. When a content knowledge assessment score is referenced without qualification, it

refers to the summed scores of the multiple-choice assessment and performance task.

 Convention: a practice of writing code that is not enforced by the compiler or a

standards body (Fowler, 2004).

 Defect: a problem with software (Tian, 2005). In this research, defects will

manifest in one of three ways: 1) as a failure of the game to launch; 2) the game ends

suddenly due to a fault; 3) the game exhibits unexpected behavior during play. A defect

will also be referred to as a bug.

 Defect detection and removal: the process of identifying and removing defects

(Tian, 2005). In this study defect detection will typically be implemented as a test with

the goal of inducing a software product to perform incorrectly, thereby exposing a defect

12

(Sommerville, 2001). Defect removal will be implemented by correcting syntax,

runtime, and logic errors in program code. Defect detection and removal will also be

referred to as debugging or troubleshooting.

 Design: a conceptual solution for a set of requirements that does not include

implementation (Larman, 2002).

 Development: the creation of one or more software artifacts (Bass et al., 2006;

Larman, 2002; Sommerville, 2001).

 Feedback loop: a system that returns a portion of the output signal of the system

to the input of the system (Spencer, 1994)

 Game design: “the process of creating the rules and content of a game, beginning

with a general idea of a game, and ending with a detailed documentation describing all

the elements that make up the game: conceptual, functional, artistic, and others” (Swacha

et al., 2010, p. 249).

 Game development: a software process that includes art, possibly audio, and

interactive gameplay. The art will be experienced audiovisually by the player of the

game. Art may be created by the student, or it may be an existing artifact that is used

with or without modification by the student.

 Integrated development environment: software for developing applications that

combines several tools into a graphical user interface.

13

 Intrinsic motivation: “engaging in learning opportunities because they are seen as

enjoyable, interesting, or relevant to meeting one’s core psychological needs” (Froiland

et al., 2012).

 Logic error: a defect resulting in incorrect program behavior.

 Modding: the process of editing or extending an existing codebase to change the

functionality or add new functionality.

 Performance: a measure of students’ ability to demonstrate achievement of

educational goals. Performance measures are the learning outcomes examined in this

study.

 Playtesting: black box testing that also tests design. It is possible for a playtest to

fail if it functions according to specification, but the client perceives a design flaw.

 Posttest: the content knowledge assessment administered after the intervention.

 Pretest: the content knowledge assessment administered before the intervention.

 Programming: the process of designing and implementing computer instructions

to accomplish a goal. Algorithm analysis and development are a subset of programming.

 Runtime error: a defect that occurs while the program is running, which will

typically terminate the execution of the program unless handled.

 Scope creep: project work extends beyond what was originally intended,

increasing the time required to complete the project.

 Software process: “a set of activities and associated results which produce a

software product. …. [The] activities are: software specification[,] …. software

development[, and] …. software evolution” (Sommerville, 2001, p. 8). The primary

14

software process activities in this study will be: (a) requirements gathering, (b) game

design, (c) software development, and (d) testing.

 YYZ: an archive file used by GameMaker that includes the project file and all

assets associated with the game.

15

CHAPTER 2: LITERATURE REVIEW

Introduction

 The purpose of this action research was to implement a digital game development

project and describe its effects on the performance and attitudes of eighth-grade students

in a required computer science course at South Carolina School District Alpha. This

study was guided by three research questions: (1) How does the game development

project impact participants’ ability to analyze and develop algorithms? (2) What is the

effect of the game development project on participants’ attitudes toward computer

science? and (3) What is the relationship between participants’ attitudes toward computer

science and their performance?

Methodology for the Literature Review

 Based on the research questions, six main variables guided the literature search:

(a) game development, (b) computer science, (c) learning outcome, (d) attitude, (e) high

school, and (f) game development-based learning. The databases used to search for

literature were (a) Academic Search Complete, (b) Applied Science & Technology

Source, (c) Computer Source, (d) Education Source, (e) ERIC, (f) ProQuest, and (g)

Google Scholar. Alternate terms were used to widen the search: (a) “game design” for

“game development;” (b) “programming” for “computer science;” (c) “middle school,”

“K-12,” and “K12” for “high school;” (d) “game design-based learning” and “game-

based learning” for “game development-based learning;” and (e) “performance” and

“achievement” for “learning outcome.” An example of a search phrase was (“game

16

development” OR “game design”) AND (programming OR “computer science”) AND

(“high school” OR “middle school” OR “K-12” OR “K12”). A separate set of search

terms was used in the literature search related to learning and instructional theories: (a)

constructivism, (b) inductive learning, (c) active learning, (d) inquiry-based learning, and

(e) project-based learning. Recent information was prioritized by initially searching

within the last five years. When necessary, the search was expanded to include the

previous ten years. References were mined from the recent literature. Some of the mined

literature was older than ten years if it was cited frequently.

 This literature review chapter contains three main sections: (a) challenges in

teaching introductory programming, (b) theoretical foundation for game development-

based learning, and (c) game development-based learning.

Challenges in Teaching Introductory Programming

 Computer science is difficult for novices, and introductory computer science

courses have high failure rates (Topalli & Cagiltay, 2018; Végh & Stoffová, 2019).

Programming, specifically algorithm analysis and development, is the most challenging

component of CS (Erol, 2020; Topalli & Cagiltay, 2018). In the United States, CS is

rarely a required course (Code.org et al., 2022). In 2018, South Carolina was the first

state to require CS for high school graduation. However, due to optional waivers, the

requirement did not take effect in practice until the 2020-2021 school year. Four other

states have since added CS as a graduation requirement: (a) Arkansas, (b) Nebraska, (c)

Nevada, and (d) Tennessee. Mandating CS for all students is a new practice in other

countries as well. For example, the United Kingdom and Portugal made computing

mandatory for all students in 2014 and 2018, respectively (Gurer et al., 2019; João et al.,

17

2019). Because compulsory CS is a new phenomenon, little information is available

regarding the performance and attitudes of students in the United States who were

compelled to take CS.

 In most studies reviewed, participants elected to take computer science; therefore,

they probably had some interest in the subject. Some schools and majors have added

computer science requirements; they have found that teaching computer science to non-

technical students is difficult (Culic et al., 2019). Since computer science success is

correlated with mathematical ability, students with weak mathematical abilities are likely

to struggle in a required computer science course (Balmes, 2017). Students with low

natural language aptitude are also expected to struggle with programming (Prat et al.,

2020). This section will address two main topics: (a) definitions and metrics associated

with assessing the success of a computer science course and (b) failure rates in computer

science courses.

Metrics Related to Challenges

 Performance is a measure of students’ ability to demonstrate achievement of

educational goals. Maximizing performance is a primary goal in computer science

courses because skill development is a critical aspect of the course. In CS, performance

is typically measured using written exams and coding exercises (Alturki, 2016). Written

exams assess students’ knowledge of programming concepts and ability to analyze

algorithms (Alturki, 2016; CollegeBoard, 2020b). Coding exercises and projects assess

students’ ability to design, implement, and test algorithms to solve problems or

accomplish tasks (Alturki, 2016; CollegeBoard, 2020b).

18

 Attitudes are students’ beliefs regarding the intended learning content (Giannakos,

2014). Simonson (1979) provides a persuasive argument for why and how attitudes

should be measured: a reasonable assumption would be that students will devote more

time and remember more when they have positive attitudes toward instruction and

content. Some common forms of attitude measurement are (a) questionnaires or surveys,

(b) interviews, and (c) observations. While a causal relationship between attitudes and

achievement is difficult to demonstrate, a relationship between attitudes and achievement

has been established by some researchers (Alvarez et al., 2019; Gurer et al., 2019; Tsai et

al., 2019). In a university computer programming course (N = 242), Alvarez et al. found

significant correlations between (a) performance scores and perceived value and (b)

performance scores and perceived self-efficacy. In a university computer science course

(N = 119), Gurer et al. found a correlation between achievement and attitude with r =

.473 and p < .01. Not all studies have confirmed a relationship between performance and

attitude. In a university programming course (N = 58), Cetin and Andrews-Larson (2016)

implemented an intervention that produced significant performance gains but no change

in students’ attitudes toward computer programming.

Failure Rates

 Computer science majors often fail their first computer programming course

(Cheah, 2020; Végh & Stoffová, 2019). Over 30% of computer science students in the

world failed or dropped an introductory programming course; some institutions have

failure and drop rates of up to 65% (Alturki, 2016). Programming is a learned skill that

can be improved with practice (Végh & Stoffová, 2019). Learners must spend a lot of

19

time programming to learn the skill. Listening to an instructor absent other instructional

methods is not generally effective (Al-Makhzoomy, 2018; Gao & Hargis, 2010).

 Programming has a steep learning curve and is highly stressful for students (Al-

Makhzoomy, 2018; Javidi & Sheybani, 2014). Végh and Stoffová (2019) summarized

the work required by students in computer science courses to develop proficient

programming skills. Students needed to learn several concepts: (a) data types, (b) data

structures, (c) control structures, and (d) programming language syntax. Logical and

algorithmic thinking had to be mastered, which can take years of practice that novice CS

students do not have. CS students were expected to solve a large number of

programming problems with a wide range of difficulties.

 Novice introductory computer science students must simultaneously absorb

several computing themes: (a) the concept of programming; (b) an abstraction of a

computer; (c) the syntax and semantics of programming; (d) standard programming

problems and their solutions; and (e) a simple software process consisting of

requirements gathering, design, implementation, testing, and quality control (Gurer et al.,

2019). Keeping students motivated and eager to continue learning is challenging (Javidi

& Sheybani, 2014).

 Computer science courses and careers require high levels of math achievement.

There is a strong connection between mathematics and computer science (Southern

Regional Education Board, 2016). Difficulties in learning to program are related to

“difficulties in problem solving activities with logical reasoning and mathematical

thinking; they [students] use inadequate studying methods and do not work hard enough

to develop programming competences” (João et al., 2019, p. 4). Many computing tasks,

20

such as implementing and analyzing sorting algorithms, are inherently mathematical

(Cetin & Andrews-Larson, 2016; CollegeBoard, 2020a). Review of mathematical

concepts such as geometry, algebraic equations, and function must sometimes be

included in computer science curricula (Javidi & Sheybani, 2014). Prat (2020) suggests

that mathematical ability is overemphasized as a predictor of programming ability. Prat

examined students’ ability to learn programming languages. However, the syntax of

programming is a small part of creating programs; students must understand much more

than mere syntax to solve complex computing problems (Cheah, 2020).

 Several factors are positively correlated with programming performance: (a) self-

efficacy, (b) amount of time programming, (c) attitude, and (d) perceived learning (Erol,

2020; Gurer et al., 2019; Tsai et al., 2019). A positive attitude may be a prerequisite to

success in programming. Because programming requires a considerable investment of

time and determination to fix numerous errors, students must be persistent to succeed

(Cheah, 2020). Confounding findings regarding the correlation between attitude and

performance exist. Cetin and Andrews-Larson (2016) conducted a study in which

achievement was significantly raised, but attitudes were not significantly raised.

 The following section will describe the theoretical foundation for game

development-based learning (GDBL). The theory supports GDBL as a possible

intervention for addressing the challenges of an introductory computer science course.

Theoretical Foundation for Game Development-Based Learning

 GDBL is based primarily on inductive learning. Inductive learning is an essential

part of inquiry learning, problem-based learning, project-based learning, case-based

teaching, discovery learning, and just-in-time teaching, which are all constructivist

21

methods (M. J. Prince & Felder, 2006). Constructivism states that knowledge is

constructed from experiences, perceptions, interpretations, and interactions with others

(Harasim, 2012). Inductive methodologies begin with real, practical information and

tasks, which allow the learner to generalize concepts (Gavriel, 2015). Active learning

and inquiry-based learning emphasize student ownership of learning and are effective

methods of enhancing student learning (Zhu, 2020). Project-based learning (PjBL) has

students build a product and has demonstrated positive effects on problem-solving skills

and attitudes toward learning (Harris et al., 2015; M. Prince & Felder, 2007).

 The following section will describe the learning and instructional theories that

support GDBL: (a) constructivism and (b) inductive learning. The GDBL intervention

will use aspects of these theories.

Constructivism

 Constructivism is both an epistemology and a theory of learning. Constructivism

posits that learners construct knowledge from available information, prior knowledge,

and new meaningful experiences (Dewey, 1916; Jumaat et al., 2017; Minner et al., 2010).

Students learn by actively constructing knowledge, not by passive acquisition. Piaget

believed that learners used cognitive structures to understand the environment and

assimilate information into existing schemas (M. J. Prince & Felder, 2006; Schcolnik et

al., 2006). If new information contradicts existing schemas or cannot be integrated into

existing schemas, the new information can be memorized but not learned.

 Constructivism relies on several principles for effective instruction (M. J. Prince

& Felder, 2006). Before new knowledge is presented, topics should be introduced

through experiences and contexts familiar to students to incorporate the new knowledge

22

into existing schemas. Because abstract concepts are more difficult to relate to existing

knowledge structures than concrete concepts, real-world applications should be the focus.

Information should not be presented that requires drastic changes to existing schemas.

Allowing students to improve and augment their conceptual models gradually improves

the probability that new knowledge will be incorporated into their schemas. Students

should be required to extrapolate or research material provided by the instructor.

Dependence on the instructor should be decreased so that students can become

independent learners. Students should be encouraged to work together during instruction

to support collaborative learning. Perceptions are shaped through interactions with others

(Harasim, 2012).

Inductive Learning

 Inductive learning starts with real, practical concepts and leads to conclusions

about abstract and generalized concepts (Gavriel, 2015; M. Prince & Felder, 2007). Real,

practical concepts can take the form of analyzing real data, a case study, or a real-world

problem, allowing students to recognize the need for content knowledge and skills

immediately. Traditional deductive approaches tend to start with theory and then provide

real, practical examples that support the theory. Failure to connect instruction to the real

world has contributed to students leaving the sciences (M. Prince & Felder, 2007). When

students perceive a benefit or need for learning, their motivation increases (M. J. Prince

& Felder, 2006). Inductive learning takes advantage of prior knowledge and learners’

desire and ability to recognize patterns. Inductive learning promotes critical thinking

skills and self-directed learning. Inductive learning can be implemented in several ways,

23

three of which will be addressed: (a) active learning, (b) inquiry-based learning, and (c)

project-based learning.

Active Learning

 With active learning, students apply material to real life, reflect on what they are

learning, and internalize what they are learning (Gao & Hargis, 2010). Teamwork in

small groups is typical. Active learning students achieve higher conceptual

understanding than students in traditional learning approaches (Zhu, 2020). A meta-

analysis by Freeman et al. (2014) compared active learning to traditional methods in

STEM courses. Freeman et al. found that student performance on assessments increased

by about six percent with active learning and that students in traditional environments

were 1.5 times more likely to fail. In active learning environments, student satisfaction is

higher, and student retention in STEM education increases (Pundak et al., 2010; Zhu,

2020). Instructional methods include collaborative/cooperative, project/problem-based

learning, role play, and debates (Gao & Hargis, 2010).

Inquiry-based Learning

 Inquiry-based learning is student-centered learning where students design

questions and direct inquiry to address challenges for which knowledge has not been

provided (M. Prince & Felder, 2007; Silm et al., 2017). Part of the student-centered

aspect is student responsibility for learning (Minner et al., 2010). Students are expected

to make decisions regarding how and what they learn, identify weaknesses in pursuing

knowledge, and request help when necessary. Inquiry-based learning can be used to

target higher-order thinking skills (Veletsianos et al., 2016). Inquiry-based learning

should be used to encourage technology exploration and increase the effectiveness of

24

STEM teaching. The 6E instructional model includes: engaging, exploring, explaining,

engineering (elaborating), enriching, and evaluating (Lai, 2018). Inquiry-based

approaches are time-consuming and should be used judiciously. Teacher-centered

methods should be used for lower-order thinking and skills to increase efficiency

(Veletsianos et al., 2016).

Project-Based Learning

 Project-based learning reflects the theory of constructivism (Jumaat et al., 2017).

A problem or question motivates learning by constructing an artifact or project in an

authentic context (Helle et al., 2006). Open-ended problems are best (Papanikolaou &

Boubouka, 2011). Learners collect, analyze, and synthesize information (Papanikolaou

& Boubouka, 2011). Learners acquire knowledge and skills through an extended inquiry

process involving complex, authentic questions and developing products (English &

Kitsantas, 2013). The teacher’s role is to structure activities and facilitate learning

through scaffolding and feedback (English & Kitsantas, 2013). After the activity,

students produce a product, and their performance is evaluated (Helle et al., 2006; Jumaat

et al., 2017). Reflection and revision of the work product are essential; therefore, project

submission, evaluation, and revision may go through several iterations (Papanikolaou &

Boubouka, 2011).

 PjBL learning can be implemented in several different ways and roughly

categorized by three models: (a) project exercise, (b) project component, and (c) project

orientation (Helle et al., 2006). In a project exercise, students apply knowledge and skills

already acquired to complete a project defined by the instructor. The project is confined

to a single subject and may take the form of a capstone event for a unit or the entire

25

course. In a project component, the project solves a real-world problem and may be

interdisciplinary. Objectives include the development of problem-solving and time

management skills. Project orientation refers to an entire program of study that is

project-based. The project requirements determine the instruction and subject material.

Students often have input into the projects that they complete. Larmer et al. (2015)

identify seven essential project design elements: (a) challenging problem or question, (b)

sustained inquiry, (c) authenticity, (d) student voice and choice, (e) reflection, (f) critique

and revision, and (g) public project.

 PjBL approaches have demonstrated the potential to increase student

performance. Saavedra et al. (2021) employed PjBL in high school AP courses. The

PjBL curriculum produced a four percent increase in qualifying scores among all students

and an eight percent increase in qualifying scores among exam-takers. Some studies of

PjBL implementations found improved attitudes, conceptual understanding, and problem-

solving, but only comparable results for performance on content knowledge assessments

(M. Prince & Felder, 2007). The Hewlett Foundation has a group of schools committed

to schoolwide PjBL (Larmer et al., 2015). These schools averaged higher mathematics,

reading, and science scores on the OECD PISA-based Test for Schools than comparative

schools. Students in the Hewlett Foundation schools achieved higher scores on state tests

in English and mathematics. They also saw improvements in attitude, self-efficacy,

collaboration, and engagement.

 Inductive learning can increase student motivation and performance. Students

understand the utility of the content from the beginning. Inductive learning exploits

students’ innate desire to seek patterns and construct meaning. The following section

26

will describe GDBL. GDBL is based on the principles outlined in the learning theories

and instructional methodologies discussed previously.

Game Development-based Learning

 GDBL attempts to leverage many young people’s affinity for digital games

(Anderson & Jiang, 2018). Gamification and game-based learning attempt to educate

students through gameplay or incorporating gaming elements (Kingsley & Grabner-

Hagen, 2015). GDBL has students learn through developing games instead of primarily

by playing games. GDBL is a specific type of project-based learning where the artifact is

a playable game. GDBL has been shown to have positive effects on learning and

attitudes (Stoffová, 2019; Topalli & Cagiltay, 2018).

 The following section will describe three main topics: (a) gamification and game-

based learning, (b) GDBL, and (c) project-based learning alternatives to GDBL.

Evidence will be provided that supports GDBL with an emphasis on PjBL as an

intervention for an introductory computer science course. The characteristics of GDBL

that make it an effective intervention will be examined.

Gamification and Game-Based Learning (GBL)

 Young learners show a high degree of interest in gaming (Anderson & Jiang,

2018). Anderson and Jiang (2018) of the Pew Research Center reported the following

data:

• Eighty-four percent of teens (75% female and 92% male) have access to a game

console at home.

• Ninety percent (83% female and 97% male) play video games.

27

• Eighty-five percent of teens from households earning less than $30,000 per year

have a game console at home.

Gamification

 Gamification is the use of game elements in non-game contexts. The intent of

gamification is to combine intrinsic and extrinsic motivation to increase motivation,

engagement, and active participation. Symbols of learning progression, like badges, are

an example of gamification (Kyewski & Krämer, 2018). Gamification has the potential

to make schoolwork feel like activities enjoyed outside of school. Kingsley and Grabner-

Hagen (2015) reported the following student perceptions of gamification:

• 95.8% of students reported a preference for days when games were used for

learning.

• 87.2% of students reported that technology made learning easier.

• 93.6% of students enjoyed earning gaming badges.

However, the competitive elements (badges and leaderboards) of a gamified classroom

may produce negative educational outcomes. Students in the gamified classroom showed

decreases in motivation, satisfaction, and empowerment. Students in the gamified

classroom also had lower final exam scores. Lower exam scores were attributed to a

reduction in intrinsic motivation. Giving rewards for tasks that are already interesting

decreases intrinsic motivation (Hanus & Fox, 2015).

GBL

 All et al. (2015) proposed three categories of desired learning outcomes: learning,

motivation, and efficiency. Learning outcomes have the following subcomponents: (a)

increased interest in the subject matter, (b) increased objective performance, and (c)

28

learner ability to transfer knowledge and skills acquired during digital game-based

learning (DGBL) to real-world contexts. Motivation outcomes have the following

subcomponents: (a) enjoyment and (b) increased motivation. Efficiency outcomes have

the following subcomponents: (a) time management and (b) cost-effectiveness.

 Seven randomized control trials (RCTs) measuring knowledge acquisition

reported that DGBL performed better than the control condition (Boyle et al., 2016). Ten

randomized controlled trials measuring skill acquisition reported that DGBL performed

better than control groups. Elements of uncertainty enhanced learning. Variable priority

training is superior to full emphasis training. Design-based games were more effective

than educational or entertainment games (Qian & Clark, 2016).

 Computer games can improve engagement and motivation. Games are integral to

cognitive and social development (Hwang & Wu, 2012). Engagement is related to

cognitive and emotional involvement (Abdul Jabbar & Felicia, 2015). Cooperative

games led to higher motivation than competitive games. Enjoyment of games was

improved with rewards such as earning points and finding rare items (Boyle et al., 2016).

“Multirole-play or collaborative role-play works effectively when coupled with learning

tools and interactive elements and materials to motivate and help learning” (Abdul Jabbar

& Felicia, 2015, p. 768). Challenges and conflicts must be matched to the abilities of the

students. The following types of games and game elements had benefits: (a) role-playing

games for immersion, (b) massively multiplayer online role-playing games for an

engaging experience, (c) competitive play for active GBL, (d) collaborative play, (e)

playing an intelligent fictional hero, (f) puzzle-based and simple gaming mechanics for

engagement and learning, (g) virtual reality and multimedia elements for playful learning

29

and discoveries, (h) challenges and conflicts for motivation, and (i) control and choices

for attention and interests (Abdul Jabbar & Felicia, 2015).

GDBL

 In GDBL, learners modify or develop games as an integral part of a computer

science course using a game development framework. (Wu & Wang, 2012). GDBL is

closely related to game design-based learning; some researchers define game design-

based learning in the same way GDBL is defined. Swacha et al. (2010, p. 249) define

game design as “the process of creating the rules and content of a game, beginning with a

general idea of a game, and ending with a detailed documentation describing all the

elements that make up the game: conceptual, functional, artistic, and others.” Swacha et

al. expressly exclude game programming from game design.

 In the software engineering discipline, development is the term used to describe

the creation of any software artifact such as (a) requirements documents, (b) architecture

documents, (c) design documents, (d) program code, and (e) quality control documents

(Bass et al., 2006; Larman, 2002; Sommerville, 2001). The software process includes all

activities leading to a final software product (Sommerville, 2001). Design has a specific

meaning in software engineering: a conceptual solution for a set of requirements that

does not include implementation (Larman, 2002). In this study, development refers to the

entire software process; therefore, design is a subset of development.

Effect on Performance

 GDBL generally produces positive effects on performance (Johnson, 2017;

Kynigos & Grizioti, 2020). Topalli and Cagiltay (2018) conducted a study using game

development to teach introductory programming. Three hundred twenty-two students

30

took a Senior-project course. These students had completed an introduction to computer

programming course offered in two versions: (a) 48 of them took an enriched version,

and (b) 274 took the traditional course. The traditional course used the C programming

language, theoretical lectures, and laboratory sessions where students wrote console

programs. The enriched course added 15 minutes of Scratch instruction to the laboratory

sessions of the traditional course. Students also created a game in Scratch for the

enriched course. The course grades of the enriched programming course participants

were significantly better than the students’ grades in the traditional course. In the Senior-

project course, students who took the enriched introductory programming course

performed better on their senior projects.

 Végh and Stoffová (2019) conducted an experiment to determine game

development’s effect on performance in an object-oriented programming (OOP) course.

The average test score from the OOP class without gaming was 59.57%, while the

average test score from the gaming class was 64.55%. Results for subtopics were mixed.

The gaming students had more fun, were more engaged, and had more ideas on

improving their programs. Knowledge gains by students, student surveys, and teacher

surveys support game creation for improving computer science competency (Ernst &

Clark, 2012; Javidi & Sheybani, 2014).

Effect on Attitudes

 GDBL generally produces positive effects on attitude (Erümit et al., 2020;

Hughes-Roberts et al., 2020; Johnson, 2017). Theodoraki and Xinogalos (2014) showed

that game development could significantly increase students’ motivation and enjoyment

31

of programming. Games can be played within lectures to improve participation (Wu &

Wang, 2012).

Years of experiences and the researches [sic] show that both, beginners and

advanced programmers consider computer game programming to be interesting

and entertaining, so they can playfully acquire not only new knowledge but also

other experiences and skills from the creation and implementation of software

applications. (Stoffová, 2019, p. 40)

The motivation of students can be achieved by making lessons playful and competitive

(Stoffová, 2019). By providing students with a more rewarding and creative

environment, GDBL strongly incentivizes students to practice programming (Theodoraki

& Xinogalos, 2014). Allowing students to design games in groups can increase

enjoyment and motivation (Swacha et al., 2010). Javidi and Sheybani (2014) showed that

game development could increase enrollment in advanced STEM courses.

Game Development Frameworks

 Scratch. Cucinelli et al. (2018) used Scratch in their study as an accessible entry

point to programming. Participants (N = 30) ranged in age from seven to 75 years old.

The intervention was a five-hour workshop involving game development using Scratch.

The following aspects were measured: (a) storytelling, (b) problem-solving, (c)

collaborating, (d) creativity, (e) understanding game rules, and (f) programming. Before

the intervention, participants rated themselves the lowest in the programming aspect;

many identified their programming skill with a zero. After the intervention, the

programming aspect showed the largest progression.

32

 Topalli and Cagiltay (2018) used Scratch and game creation in their study to

enrich a traditional programming course. Because Scratch was a block-based

programming language, syntax errors were reduced. Scratch allowed for an algorithm-

first approach because students did not have to struggle with learning programming

language syntax and troubleshooting syntax errors.

 Stagecast Creator. Denner et al. (2012) conducted a study in which Stagecast

Creator was used in an after-school class for middle school girls to measure what the

participants learned when programming a game. The participants were 59 girls who

volunteered for an after-school program focused on computer game programming.

Participants completed one to five games each. Each game was completed in four to six

weeks with one to two hours per week of development time. Participants were not

required to demonstrate specific programming skills. The study was designed to measure

what programming tasks participants would undertake independently. Participants

engaged in moderate levels of complex programming. Participants did not persist in the

face of challenges and abandoned features requiring complex programming constructs.

Participants rarely made more than one attempt at debugging their programs when they

did not work as expected.

 GameMaker. GameMaker can positively affect students' attitudes regarding

technology and computer science and their perceptions of the class and instructor

(Doman et al., 2015). GameMaker has advantages for teaching an introductory

programming course because of the IDE and GameMaker programming language, which

is similar to other C-based languages (Doman et al., 2015). The use of gaming and

GameMaker may increase computer science performance. Ernst and Clark (2012)

33

reported a mild increase in the number of students intending to pursue a career related to

computer science. A case study suggested several modifications to GDBL using

GameMaker (Johnson, 2017). Students tended to begin implementation before adequate

planning; therefore, game design assignments should be included. A significant amount

of direct instruction was required to teach basic programming concepts and avoid

frustrating programming experiences. Topics that required direct instruction included (a)

problem decomposition, (b) planning, (c) testing, and (d) debugging.

Project-based Learning Alternatives to GDBL

 Viable project-based alternatives to GDBL were reviewed. Two examples of

such alternatives are physical devices and applications, which are discussed below.

Physical Devices

 Console programs reduce engagement due to the absence of graphics and limited

ability to interact with the programs. Because students born in 2000 and later have been

constantly exposed to modern technologies, teaching and learning methods should mimic

that media. Knowledge acquisition is improved when students understand practical

applications and are engaged (Perenc et al., 2019).

 Robotics has been utilized to teach programming using a physical, instead of a

purely virtual, medium. Robotics helps students visualize their programs' output and

makes the programming process more understandable (Erol, 2020; Pullan, 2013). Lego

Mindstorms NXT is an example of a robotics kit that has been widely used to teach

programming. Arduino boards are also popular methods for teaching programming.

Combining technology with active learning improved students’ understanding of the

subject matter, attitude, and self-efficacy.

34

Applications

 Malik et al. (2019) studied the PROBSOL application's effectiveness in

improving novice programmers' problem-solving skills. Participants consisted of 65

university students. The use of PROBSOL was found to support students’ cognitive

gains and engagement. Programming understanding and problem-solving skills

improved. Students’ attitudes toward completing exercise questions also improved.

Student achievement was improved, and attrition was reduced. The failure rate of

students using PROBSOL was 6% compared with 9% using a traditional approach. The

dropout rate of students using PROBSOL was 3% compared with 7% using the

traditional approach.

Summary

 Computer science is a difficult course for novices. High failure rates are common

for students who elect to take computer science courses (Alturki, 2016). A reasonable

assumption would be that students forced to take CS as a required course would find CS

even more difficult. Inductive learning approaches are effective for improving

performance and attitudes (M. J. Prince & Felder, 2006). Guided instruction, including

appropriate scaffolding and just-in-time instruction, should be included (Kirschner et al.,

2006; Novak, 2011; Sweller et al., 2007). PjBL produces significantly better results than

traditional methods in (a) assessments of conceptual understanding, (b) ability to solve

problems, and (c) attitudes to learning (Çelik et al., 2018; M. J. Prince & Felder, 2006).

 Young learners spend a significant amount of their free time playing games

(Anderson & Jiang, 2018). Gamification and GBL attempt to leverage students’

enjoyment of games to make education more engaging. Similarly, GDBL engages

35

students by having them develop a playable game using a PjBL approach (Wu & Wang,

2012). GDBL is an effective methodology for improving student performance and

attitudes (Ernst & Clark, 2012; Stoffová, 2019; Topalli & Cagiltay, 2018; Végh &

Stoffová, 2019). The next chapter will describe the proposed methodology for

implementing a GDBL intervention.

36

CHAPTER 3: METHOD

 The purpose of this action research was to implement a digital game development

project and describe its effects on the performance and attitudes of eighth-grade students

in a required computer science course at South Carolina School District Alpha. This

study was guided by three research questions: (1) How does the game development

project impact participants’ ability to analyze and develop algorithms? (2) What is the

effect of the game development project on participants’ attitudes toward computer

science? and (3) What is the relationship between participants’ attitudes toward computer

science and their performance?

Research Design

 Action research was utilized to address the purpose of this study. The South

Carolina Department of Education requires that all students pass a rigorous high school

computer science course to graduate (Malone, 2019). South Carolina School District

Alpha must implement a solution to this new requirement and analyze the effect of the

solution. Action research was appropriate for this study because immediate action and

evaluation were needed to address this local-level problem of practice (Mertler, 2019).

Additional indicators for action research in this study were (a) the primary motivation for

this study was practical, not theoretical; and (b) the research was performed by a

practicing professional instead of professional researchers (Willis & Edwards, 2014).

The researcher worked with other stakeholders to understand how students performed in

a rigorous computer science course. We implemented changes to the traditional

37

computer science curriculum in an attempt to improve the experiences of students and

improve their chances of completing the computer science course.

 Action research is defined as a form of systematic investigation in which the

researcher(s) and other stakeholders attempt to address problems in the setting in which

they work (Willis & Edwards, 2014). Action research is distinct from other forms of

research in that it is participative since the researcher is more than an objective observer;

it “allows teachers to study their own classrooms” (Mertler, 2019, p. 6). In action

research, a problem is specified, a new solution is developed, and the effectiveness of the

solution is evaluated. Mertler defines action research as a “cyclical process of planning,

acting, developing, and reflecting” (2019, p. 18). The stages do not necessarily occur

linearly or in the same order for every cycle. The flexibility to modify the solution

during the study is another distinguishing feature of action research, which was critical to

this study.

 This study used a convergent parallel mixed-methods design, which included

qualitative and quantitative elements (Mertler, 2019). This design is also called

concurrent triangulation mixed-methods (Edmonds & Kennedy, 2017). Qualitative and

quantitative data were collected concurrently and emphasized equally (Mertler, 2019).

The two sources of data were compared to determine if the findings confirm each other

(Creswell & Creswell, 2018). The qualitative data added context and aided with the

interpretation of the quantitative data (Tracy, 2020). Qualitative research has three core

concepts: self-reflexivity, context, and thick description (Tracy, 2020). Self-reflexivity

describes the researcher’s consideration of how their beliefs and roles influence their

interaction and interpretation of the study (Tracy, 2020). Context can be understood by

38

contrast with a quantitative study in a laboratory. Qualitative studies typically take place

in the natural environment and consider how the setting affects the topic of study (Tracy,

2020). Thick description describes recording fine detail about the context to derive

meaning (Tracy, 2020). Qualitative research is useful for uncovering unanticipated

issues, which will be of particular benefit to this study because of the novelty of the

situation.

 Quantitative research typically involves measuring variables using instruments

and performing statistical analysis on the data (Creswell & Creswell, 2018). This study

measured the effect of a game development project on participants’ performance and

attitudes. The relationship between performance and attitude was also measured. A true

experimental design was not possible because there was no control group, nor could

participants be assigned to groups randomly (Creswell & Creswell, 2018). A one-group

pretest-posttest design was used to measure the change in performance after the

intervention (Creswell & Creswell, 2018). A survey design is ideal for producing a

quantitative description of student attitudes and how they change after the intervention

(Creswell & Creswell, 2018). The survey was longitudinal with two iterations of data

collection, one before the intervention and one after the intervention. A correlational

design was used to measure the relationship between performance and attitude after the

intervention (Mertler, 2019).

 I approached this study with a pragmatic worldview. I was fundamentally

concerned with improving computer science learning experiences for my students. The

pragmatic worldview gives researchers the freedom to choose methods that best fit the

research purpose (Creswell & Creswell, 2018).

39

Setting

 The intervention occurred in Beta Middle School (BMS) as part of a year-long

game design and development course. BMS was located in South Carolina, and was part

of South Carolina School District Alpha. BMS was home to the STEM magnet program

serving all South Carolina School District Alpha students. The intervention at BMS was

available to all eighth-grade students in the district, which had three middle schools. The

intervention took place in a computer lab, which had a desktop for each participant. Each

participant was also issued a Chromebook as part of a one-to-one technology initiative in

the district. GameMaker Studio 2, the game development software, was licensed per

installation. Participants with Windows or Mac computers at home were able to install a

free version of the software if they wanted to use it at home.

Participants

 Study participants (N = 28) were a purposive sample of eighth-grade students in

the Science, Technology, Engineering, and Mathematics (STEM) magnet program who

were assigned to the game design and development course by South Carolina School

District Alpha. Purposive sampling was used to select information-rich cases that would

maximize understanding of the intervention effects (Bloomberg & Volpe, 2015; Creswell

& Creswell, 2018). These participants had a history of academic success. Students in the

high school game design and development courses had a wide range of academic

performance and behavior histories. The researcher wanted to test the intervention on

participants who were academically motivated and were unlikely to present classroom

management challenges. If the intervention failed to improve the attitudes and

40

performance of the STEM participants, it would likely fail with students with lower

academic achievement.

 Participants applied to the STEM program and passed a performance-based

engineering assessment. There were 28 participants in the course. The age of the eighth-

grade participants was 13 and 14. There were 16 females and 12 males. Two

participants were American Indian or Alaska Native; one was Asian; six were Black or

African American; one was Black or African American & White; 18 were White. See

Table 3.1 for the demographics of participants who were interviewed.

Table 3.1 Interviewed Participant Demographics

Pseudonym Age Sex Race

Bree 14 Female White

Abegail 14 Female White

Qianna 14 Female Black or African American

Jonie 13 Female White

Marlena 14 Female American Indian or Alaska Native

Aleesha 14 Female White

Julia 14 Female White

Monster Fan 14 Male White

Annabelle 14 Female White

Teddie 13 Male White

Pibb 14 Male White

Oakley 14 Male White

Note. N = 28. Age as of 4/29/22.

 The STEM participants were high-achieving and had demonstrated consistent

academic success. The STEM participants took algebra 1 honors and English 1 honors in

the eighth grade. 20 participants were recognized as gifted and talented. See Table 3.2

for the Math and ELA performance on the 2021 South Carolina College-and Career-

41

Ready Assessments (SC READY). Table 3.3 shows the academic information for each

participant who was interviewed.

Table 3.2 SC READY Math and ELA Performance

Performance 2021 SC READY Performance

Level

ELA Math

Exceeds Expectations 21 18

Meets Expectations 6 6

Approaches

Expectations

1 4

Does not Meet

Expectations

0 0

Note. N = 28.

Table 3.3 Interviewed Participant Academic History

Pseudonym Gifted

and

Talented

2021 SC READY Performance Level

 ELA Math

Bree Yes Exceeds Expectations Exceeds Expectations

Abegail No Meets Expectations Meets Expectations

Qianna Yes Exceeds Expectations Meets Expectations

Jonie Yes Meets Expectations Approaches Expectations

Marlena Yes Meets Expectations Exceeds Expectations

Aleesha No Exceeds Expectations Approaches Expectations

Julia Yes Exceeds Expectations Exceeds Expectations

Monster Fan Yes Exceeds Expectations Exceeds Expectations

Annabelle No Meets Expectations Exceeds Expectations

Teddie No Exceeds Expectations Meets Expectations

Pibb No Exceeds Expectations Exceeds Expectations

Oakley Yes Exceeds Expectations Exceeds Expectations

Note. N = 28.

42

 STEM students were divided into two groups by the district. Group one was

higher performing and took algebra one honors during semester one, geometry honors

during semester two, and Project Lead the Way’s Introduction to Engineering Design

throughout the year. The study participants were in group two. They took algebra one

honors and Game Design and Development honors throughout the year. South Carolina

released computer science and digital literacy standards in 2017 for Kindergarten through

grade eight (South Carolina Department of Education, 2017). Study participants should

have been exposed to the grade seven standards, which included a set of standards on

algorithms and programming:

1. Design, evaluate, and modify simple algorithms (e.g., steps to make a sandwich;

steps to a popular dance; steps for sending an email).

2. Use and compare simple coding control structures (e.g., if-then, loops).

3. Decompose problems into subproblems and write code to solve the subproblems

(i.e., break down a problem into smaller parts).

4. Design and code programs to solve problems.

5. Identify variables and compare the types of data stored as variables.

The participants demonstrated no evidence of having been exposed to these standards,

much less having mastered them. When asked directly about their exposure to algorithms

and programming, they gave no indication of learning these standards in grade seven.

One participant claimed some programming experience in the form of modding for the

Half-Life series. Modding is the practice of modifying or adding to an existing codebase.

 Participants developed four games and a cutscene before the intervention, which

progressed in difficulty and student autonomy. Early games were scripted and

43

straightforward, providing explicit detail on nearly every implementation step.

Subsequent games provided less implementation detail and allowed for more participant

design decisions. Participants developed the following games: (a) Pinball, (b) Ball

Bouncer, (c) Matching, (d) 31 / Scat, and (e) Sky is Falling cutscene. Participants were

exposed to several general programming concepts: (a) variables and data types, (b)

number calculations, (c) booleans and selection statements, (d) loops, (e) functions, and

(f) arrays. Participants learned how to use GameMaker Studio 2 and GameMaker

Language to create games (YoYo Games, 2021). The Scat game had a significant jump

in difficulty. Participants were required to design loops, functions, and arrays, which

were new concepts for them. Most participants demonstrated a lack of mastery and

needed significant assistance to complete the game.

 The researcher’s role was to develop the intervention, perform the research, and

act as the instructor for the course. The researcher’s responsibility to the student

participants was to maximize their learning, giving them the best opportunity to pass the

course and fulfill their computer science graduation requirement. The researcher strove

to report the findings of the study objectively. If participants provided inaccurate

information to please the researcher, the results might have been skewed. The researcher

encouraged participants to disregard any concerns over how the researcher perceived

their input. All participants (N = 28) were invited for interviews after the intervention.

Fourteen participants returned the assent forms, and thirteen registered for an interview

time. One participant had several scheduling conflicts and could not be interviewed. In

the end, 12 participants were interviewed. See Tables 3.1 or 3.3 for a list of the

participants who were interviewed. Of the participants who were interviewed, (a) eight

44

were female, and four were male; (b) 10 were White, one was Black or African

American, and one was American Indian or Alaska Native; (c) seven were Gifted and

Talented; (d) on the 2021 SC Ready ELA assessment, eight exceeded and four met

expectations; and (e) on the 2021 SC Ready math assessment, seven exceeded, three met,

and two approached expectations.

Intervention

 The intervention in my action research was a PjBL unit in a game development

course. Participants designed, implemented, and tested a computer game of their choice

for their project. Traditional programming courses had high failure rates due to students

with low motivation, low math ability, and low abstract thinking ability (Balmes, 2017;

Culic et al., 2019; Martins et al., 2018; Végh & Stoffová, 2019). Engaging participants in

the creation of a complex gaming system had the potential to improve attitudes and

problem-solving abilities (Akcaoglu, 2014; Ernst & Clark, 2012; Javidi & Sheybani,

2014; Theodoraki & Xinogalos, 2014; Wu & Wang, 2012). Guided instruction was

provided just in time to ensure that participants had the skills to complete the unit

successfully (M. Prince & Felder, 2007).

Background

 The game development course was piloted in the 2019-2020 school year at

Gamma Middle School in South Carolina School District Alpha. The researcher was the

instructor for the pilot course. The students were in grade eight and part of the

Advancement Via Individual Determination program. Participants partially completed a

curriculum created by Zulama called Introduction to Computer Science through Game

Design (Carnegie Learning, 2021). The Zulama curriculum was utilized without

45

modification. The curriculum consisted of directions for developing six predesigned

games and one game of student choice. The rules and visual assets were created for the

students in the six predesigned games. Figure 3.1 shows the rule set for the first game,

Zulama Pinball. Students were responsible for implementing game logic in GameMaker

Studio 2 using the GameMaker Language. In the first game, the instructions detailed

nearly every action and line of code that the students required to make the game work.

Students could copy the directions verbatim and make the game work. Figure 3.2 shows

the code provided to students in Zulama Pinball for the drop_button Create event.

Subsequent games removed explicit directions for behavior that had already been

implemented. Instead of providing students with code to type, the students were given

partial code segments that needed to be completed, or students were given a rule that to

be implemented without any starter code. Figure 3.3 shows a code template for scoring a

hand in Zulama Scat. Participants were responsible for implementing the behavior

described in the comments (text following double forward slash).

46

Figure 3.1 Zulama Pinball Rule Set

Figure 3.2 Zulama Pinball Drop Button Create Event

47

Figure 3.3 Zulama Scat Score Hand Function

 The students did not have a positive learning experience in 2019-2020. The

instructor’s training for the course consisted of completing the Zulama curriculum. The

instructor was relatively new to GameMaker and was unprepared for the numerous

mistakes that students made with GameMaker. Students did not follow the directions in

the curriculum carefully, and they were careless about changing settings in GameMaker.

48

The instructor was unable to correct those mistakes expediently. Therefore, students

spent most of their time struggling with minor syntax errors and environment settings

instead of meeting the course objectives. Deadlines for project deliverables were two

weeks or more. Students exhibited excessive off-task behavior because they did not feel

a sense of urgency to complete tasks. The year ended prematurely due to COVID while

students were working on the fourth predesigned game.

 In the 2020-2021 school year, the game development course was moved to Beta

Middle School. The students were in grade eight and part of the STEM program. The

researcher was the instructor for this course. This year realized significant gains over the

previous year in terms of learning objectives met and student productivity. The instructor

was able to efficiently resolve issues with GameMaker. Guided instruction was added to

supplement the Zulama curriculum. Deliverables were shortened to notify the instructor

and students earlier if the students were not maintaining the desired pace. Projects still

took twice as long as desired. Problems noticed in the previous year persisted but were

much less severe:

• Students had difficulty reading the instructions provided in Zulama and

implementing them in GameMaker.

• Any deadline longer than about two days resulted in off-task behavior.

• The instructor was reacting to trivial problems and solving them quickly, but too

much time was lost to GameMaker settings and minor syntax errors.

• Students completed tasks in the curriculum but were not learning the desired skills

and concepts.

49

• Students were unable to effectively interpret error reports in GameMaker and

resolve errors without assistance.

• Students were unable to use the GameMaker application programming interface

(API) as a programming language reference.

 In the 2021-2022 school year, the researcher was again the game design and

development course instructor. In the first semester of the 2021-2022 school year, the

instructor corrected most of the severe problems experienced in the previous two years.

For the first project, Pinball, the instructor completed the entire project with the class.

The instructor demonstrated how the curriculum instructions should be interpreted and

implemented in GameMaker. The instructor identified and discussed common errors in

advance, just before students were likely to encounter them. Every student implemented

the game on their computer to maximize their exposure to the game development

software, GameMaker. The instructor checked students’ progress every two days to keep

students on task and correct errors early.

 After Pinball, students worked in pairs and completed three more projects and one

cutscene using the Zulama curriculum: Ball Bouncer, Matching, Scat, and Sky is Falling

cutscene. Checkpoints were established to keep students on task and allow the instructor

to provide scaffolding to struggling students. See Appendix A for the checkpoints.

 Guided instruction was added just before students needed to apply new skills.

Participants intermittently completed part of a module on Khan Academy, Intro to

JavaScript (JS): Drawing & Animation, where they learned basic programming

techniques and syntax (Northway et al., n.d.). Programming techniques were delivered

just in time for use in game development (M. Prince & Felder, 2007).

50

 Students experienced significant difficulty with the Scat project. Iteration and

arrays were introduced and were challenging for students. Students performed poorly on

assessments related to iteration and arrays. Most students struggled to complete the

programming tasks associated with the Scat game.

PjBL Aspects

 Effort was made to improve participants’ attitudes and performance by designing

PjBL with the following elements: (a) challenge, (b) sustained inquiry, (c) authenticity,

(d) choice, (e) reflection, (f) critique and revision, (g) a public product, and (h)

collaboration (Blumenfeld et al., 1991; Helle et al., 2006; Jumaat et al., 2017; Larmer et

al., 2015; M. Prince & Felder, 2007). Before the intervention, participants complained

that they did not enjoy the games. Some participants were content to submit incomplete

games and games with defects. When participants chose and designed their games, they

enjoyed working on their games. Presenting their games to clients encouraged

participants to take pride in their work and correct problems.

 An anticipated risk was that participants might resist engaging in cognitively

demanding tasks; however, they responded favorably to the project because they found

the project interesting and valuable, and they perceived that they could complete the

project (Blumenfeld et al., 1991). The researcher provided appropriate scaffolding, so

that the participants found the challenge manageable. Having participants develop games

for clients improved authenticity (Papanikolaou & Boubouka, 2011). Two Participants

developed a serious game for a teacher; other participants developed entertainment games

for their peers. Participants found the project challenging. The project was their first

experience in game design. They saw five game design documents and completed the

51

implementations, but they had not undertaken game design. They had to apply their

coding skills without specific prompts for the first time. Participants had to research the

GameMaker API to implement some aspects of their games. Participants had a great deal

of choice in the project. They negotiated the game requirements with their clients, made

design and implementation decisions, had very few restrictions on the games’ aesthetics,

and chose additional clients after the first. Participants experienced cooperation by pair

programming with a peer and working with a client. Table 3.4 shows a summary of how

PjBL design elements were implemented.

Table 3.4 Project-Based Design Element Implementations

Design Element Implementation

Challenge This was the participants’ first design experience. They had

to enumerate goals and rules constrained by their current

abilities. Their game had to include alarms, step events, and

loops, all of which were poorly understood by most

participants at the start of the intervention. Many

participants designed overly challenging games that had to

be scaled back. For instance, some participants wanted to

create multiplayer games requiring networking.

Sustained inquiry Participants were required to create games with features that

had not been implemented in the past. This required

students to research methods for implementing novel game

behavior. Several participants implemented platforming

mechanics, which had not been covered before the

intervention.

Authenticity Several elements of a software process were included in the

project: (a) a requirements and design document, (b)

feedback from the researcher and designated client, (c)

collaboration with a partner to iteratively develop a digital

game, (d) weekly progress reports, and (e) difficult

decisions to remove features that threatened a hard project

deadline.

Participant choice Participants had a high degree of freedom to select the

theme of their game and include features of their choice.

Aesthetic elements, including graphics and sounds, were

under participants’ control. Participants were constrained

52

Design Element Implementation

by a hard project deadline and required programming

elements.

Reflection Participants were required to reflect on their project

progress in weekly progress reports. When implementing

features, participants reviewed prior work for applicable

solutions. After playtesting during iterative development,

participants had to analyze algorithms that were not

producing desired behavior.

Critique and revision Participants received feedback from the researcher and

client during the design phase. The researcher provided

feedback on features that were likely to cause project failure

and features that were unlikely to satisfy required

programming elements. Clients provided feedback on

playability. Participants revised their work based on

feedback.

Public project Participants developed a game to be played by their peers.

One group developed a serious game for their music class to

train students on transposing pitch based on the instrument.

Collaboration Participants worked with a partner to develop their games.

They also had to negotiate gameplay with one or more

clients.

 Participants perceived that they were capable of completing the project

(Blumenfeld et al., 1991). The instructor carefully reviewed participants’ design choices

to ensure that participants were creating a project that they could complete in the allowed

time frame. This PjBL unit was intended for participants to apply existing skills when

coding their games. Because knowledge and skills in the implementation phase were

familiar from previous work, the likelihood of student resistance was reduced (M. Prince

& Felder, 2007). However, participants had known weaknesses with some required

programming elements, such as alarms, step events, and loops. Participants also designed

game features that required them to learn new content and skills. Proper scaffolding and

supervision were applied to help participants complete their projects. Participants

53

submitted weekly status reports and had several opportunities to revise their work based

on instructor and client feedback (Helle et al., 2006).

Guided Instruction

 Participants demonstrated difficulty with researching solutions to novel problems

and applying skills in unfamiliar contexts. Whole group guided instruction and direct

just-in-time instruction were provided when required, which was particularly beneficial

for younger learners of nonuniform skills (Hmelo-Silver, 2004). Guided instruction was

an efficient method for improving student knowledge quickly (Winarno et al., 2018).

Guided instruction was delivered to the entire class based on deficits identified in the

content knowledge assessment pretest and problems from previous games. Instruction on

selection and iteration statements was provided in 10-minute lessons during the first week

of the intervention. When the researcher recognized that several participants were

struggling with features related to platforming, a short lesson on implementing

platforming elements was delivered. Scaffolding was provided as needed to participants

who were struggling. This normally involved directing participants to (a) similar game

behavior they had previously implemented or (b) documentation related to the desired

functionality. Sometimes the researcher delivered a short personalized lesson or

conducted a code trace to explain a defect.

Intervention Phases

 The intervention was implemented in three phases:

1. Game design

2. Game implementation

3. Quality engineering

54

Game Design Phase

 The game design phase lasted one week. Requirements for the game project were

reviewed. Participants designed a game of their choosing that demonstrated specific

programming skills as detailed in the project description in Appendix C. Participants

worked with a client to gain the experience of developing a product for another person.

Clients were other participants or teachers. The instructor approved the design before

participants began detailed documentation and implementation. Participants produced a

game design document, which was assessed according to the rubric in Appendix C. The

game design document included game rules, room information, asset information, object

behavior, and a timeline for deliverables.

Game Implementation Phase

 The game implementation phase lasted three weeks. Participants utilized aspects

of Agile software development (ASD) to implement their games, but they were not

constrained by a formal development process. ASD is characterized by iterative

development, regular client collaboration, fast development cycles, and adapting to

changing requirements (Beck et al., 2001; Oyong & Ekong, 2019). Participants found

that some of their design decisions needed to change. They needed to renegotiate

requirements with clients. Participants were required to submit a working version of their

game every week, along with a status report. Working versions were free of compiler

errors, and working features were free of runtime errors. Features in each version

matched the deliverables timeline from the game design document, or participants

provided an explanation for discrepancies. Participants found that some game features

needed to be removed to meet deadlines. ASD does not focus on documentation, but

55

participants were required to update their documentation when changes were made. ASD

was well-suited to team programming environments (Sakulvirikitkul et al., 2020).

 Guided instruction and scaffolding were provided as needed to individual

participants and the whole class. Guided instruction was provided to the entire class

during week one of this phase, targeted at deficient skills identified by the content

knowledge assessment pretest and previous games. Short lessons, 10 minutes maximum,

were provided two or three times per week to (a) address algorithm analysis and

development problems common to several participants and (b) prepare participants for

the post-content knowledge assessment.

Quality Engineering Phase

 The quality engineering phase lasted two weeks. Participants documented defects

and playability suggestions from their clients on the playtest document (see Appendix C).

Participants then revised their games based on client feedback. Participants were

required to correct defects or document their existence if they could not be corrected in

the remaining time. Participants chose to implement client playability suggestions or not

and documented their decisions. At the end of the first week, participants submitted a

status report. The first week was a hybrid phase for many participants who were still

completing the game implementation phase. At the end of the quality engineering phase,

participants submitted the following artifacts as part of their completed project:

• Game Design Document

• GameMaker YYZ file (archive file containing all game logic and assets)

• Playtest Document

56

Data Collection Methods

 Four methods of data collection were employed in an attempt to achieve

triangulation, which improved the validity of results and increased understanding of the

phenomena under study (Bloomberg & Volpe, 2015; Creswell & Creswell, 2018). The

following sources of data were collected in this study: (a) pretest and posttest content

knowledge assessments, (b) pre- and post-intervention attitudes toward computer science

surveys, (c) classroom observations in the form of field notes, and (d) interviews. Table

3.5 summarizes the alignment between the research questions and data sources.

Table 3.5 Research Question and Data Sources Alignment

Research Question Data Sources

RQ1: How does the game development project

impact participants’ ability to analyze and

develop algorithms?

• Content knowledge assessments

• Classroom observations

• Participant interviews

RQ2: What is the effect of the game

development project on participants’ attitudes

toward computer science?

• Participant surveys

• Classroom observations

• Participant interviews

RQ3: What is the relationship between

participants’ attitudes toward computer science

and their performance?

• Participant surveys

• Content knowledge assessments

• Participant interviews

• Classroom observations

Content Knowledge Assessments

 The content knowledge assessment measured the knowledge and skills that

participants demonstrated at the time of the assessment. Evidence must be provided to

the South Carolina Department of Education that students have learned computer science

standards (Exploring Computer Science, 2019). When this study was proposed, the

content knowledge assessment was considered the most important metric for judging the

value of the game development unit. At the conclusion of the study, the researcher was

57

ambivalent about the relative importance of participants’ content knowledge and their

attitudes. The prioritization of improving content knowledge or attitudes will be

elaborated in the discussion.

 A one-group pretest-posttest design was used, in which participants took a pretest

at the beginning of the intervention and a posttest at the end of the intervention (Mertler,

2019). The content knowledge assessment was administered in two parts to measure

participants’ ability to analyze and develop algorithms. Part one of the content

knowledge assessment consisted of nine multiple-choice questions. The multiple-choice

assessment was administered as a Google Forms quiz, and the results were downloaded

in Microsoft Excel. Three aspects of algorithms were measured: (a) sequencing, (b)

selection, (c) and iteration. The multiple-choice questions were adapted from practice

questions provided by AP Classroom for AP Computer Science Principles

(CollegeBoard, 2020b). CollegeBoard validates the ability of their exams to correctly

place students into higher-level college courses (Patterson & Ewing, 2013). The

programming language was changed from pseudocode used on the AP Computer Science

Principles exam to GameMaker Language. Table 3.6 summarizes the knowledge

assessed by each question. The content knowledge assessment was reviewed by a

colleague in the technology department who teaches Fundamentals of Computing to

ensure content validity.

Table 3.6 Content Knowledge Assessed by Question

Question Numbers Content Knowledge

1 – 3 Sequencing

4 – 6 Selection

7 – 9 Iteration

58

 Part two of the content knowledge assessment was a performance task that

measured participants’ ability to implement algorithms given a set of game behavior

requirements. The programming language used in the assessment was GameMaker

Language. Participants used GameMaker Studio 2 in the performance task. Participants

were using GameMaker Studio 2 and GameMaker Language for over a semester, so they

were familiar with the syntax and IDE. Appendix D contains the content knowledge

assessment and rubric for the performance task.

 The performance tasks were scored by playtesting participants’ submissions.

Scores for the rubric items were recorded in Microsoft Excel. A colleague independently

scored half of the performance tasks that were randomly selected. Inter-rater reliability

was calculated to ensure validity.

 The content knowledge assessment was administered as a pre and posttest. The

pretest was administered prior to the intervention, and the posttest was administered at

the conclusion of the intervention. Participants had one hour to complete the multiple-

choice portion and one hour to complete the performance task. Because the class periods

were one hour, the multiple-choice portion was completed in one class meeting, and the

performance task was completed in the following class meeting. The multiple-choice

portion was worth nine points, with each question worth one point. The performance task

was worth fifteen points, with points awarded as detailed in the rubric. Participants spent

most of their time in the course and the intervention developing games and writing

algorithms to satisfy requirements. Therefore, the performance task was weighted more

59

than the multiple-choice because it directly matched the skills participants had been

practicing.

 The course standards assessed were detailed in the Fundamentals of Computing

course standards document (Computer Science Discoveries ('19-’20), 2019). The

following standards from section H, problem solving and computational thinking, were

assessed:

1. Solve a problem by applying appropriate problem solving techniques (understand

the problem, plan the solution, carry out the plan, review and discuss).

2. Demonstrate an understanding of algorithms and their practical applications.

3. Create, evaluate, and adjust algorithms to solve a variety of problems.

The following standards from section I, fundamentals of programming, were assessed:

1. Analyze and explain how a particular program functions.

2. Write code that uses variables, events, functions, operators (i.e. arithmetic,

relational, logical), conditional control structures (e.g., if, if-else) and

repetition/iteration control structures (e.g., while, for).

3. Edit, compile/run, test, and debug a program.

Table 3.7 shows where the course standard was assessed in the content knowledge

assessment.

Table 3.7 Course Standard Assessed by Content Knowledge Assessment

Course Standard Content Knowledge

Assessment

Solve a problem by applying appropriate problem solving

techniques (understand the problem, plan the solution, carry

out the plan, review and discuss).

• Multiple-choice

• Performance task

Demonstrate an understanding of algorithms and their

practical applications.
• Multiple-choice

• Performance task

60

Course Standard Content Knowledge

Assessment

Create, evaluate, and adjust algorithms to solve a variety of

problems.
• Multiple-choice

• Performance task

Analyze and explain how a particular program functions. • Multiple-choice

Write code that uses variables, events, functions, operators

(i.e. arithmetic, relational, logical), conditional control

structures (e.g., if, if-else) and repetition/iteration control

structures (e.g., while, for).

• Performance task

Edit, compile/run, test, and debug a program. • Performance task

Student Surveys

 Attitudes toward computer science surveys provided quantitative data about

participants’ attitudes necessary to answer research questions two and three (Shen et al.,

2014). Participants completed the survey before the intervention and following the

intervention. The surveys were administered on Google Forms and downloaded to

Microsoft Excel. Participants expressed their degree of agreement with 26 question

statements using a 5-point Likert scale. The five choices for their degree of agreement

were: (a) strongly disagree, (b) disagree, (c) neutral, (d) agree, and (e) strongly agree.

Attitudes toward computer science were classified into five subscales: (a) self-concept in

computer science, (b) learning computer science at school, (c) learning computer science

outside of school, (d) future participation in computer science, and (e) importance of

computer science. To measure the internal consistency of the survey, Shen et al. (2014)

calculated Cronbach’s alpha coefficients for each aspect in two implementations. All

subscales had good reliability, α > .80 (George & Mallery, 2002; Taber, 2018).

Subscales

 All survey items are in Appendix E.

61

Self-Concept in Computer Science. The self-concept in computer science subscale

measured participants’ perception of content mastery and enjoyment of computer science.

There were five statements in this subscale. Examples of statements were

• Computer science is fun.

• I feel at ease with computer science, and I understand concepts easily.

Learning Computer Science at School. The learning computer science at school

subscale measured participants’ enjoyment of their computer science course while in

class. There were five statements in this subscale. Examples of statements were

• We learn interesting things in computer science lessons.

• I look forward to my computer science lessons.

Learning Computer Science Outside of School. The learning computer science at

school subscale measured participants’ enjoyment of their computer science course while

outside of class. There were six statements in this subscale. Examples of statements

were

• I would like to join a computer science club.

• I would like to do more computer science activities outside school.

Future Participation in Computer Science. The future participation in computer

science subscale measured student’s plans or desires to continue studying or working

with computer science. There were five statements in this subscale. Examples of

statements were

• I would like to study more computer science in the future.

• I would like to have a job working with computer science.

62

Importance of Computer Science. The importance of computer science subscale

measured participants’ perception of the impact of computer science on society. There

were five statements in this subscale. Examples of statements were

• Computer science and technology are important for society.

• Computer science and technology make our lives easier and more comfortable.

Classroom Observations

 Semistructured observations were conducted to gather information that

participants were uncomfortable discussing or did not remember (Creswell & Creswell,

2018). The researcher fielded questions and assisted participants, which prohibited

structured observations. Actual student behavior was recorded, which provided data that

would be impossible to gather in another way (Mertler, 2019).

 Field notes were used to collect observations. The researcher was looking for

specific behaviors and attitudes that aligned with the research questions. Student

attention was observed by documenting the frequency and duration of off-task behavior.

The amount of effort that participants displayed while attempting to solve problems and

meet deadlines was also observed. Some observation time was devoted to documenting

everything that was seen, which allowed patterns to emerge organically (Mertler, 2019).

 Field notes were divided into three columns: (a) observation number, date, and

time; (b) observations; and (c) observer’s comments to add interpretations of

observations (Mertler, 2019). As many participants as possible were observed. Field

notes were hand-written in a composition notebook and transcribed into Microsoft Word.

63

Participant Interviews

 Participant interviews served two purposes. First, participants provided

information that was missed or could not be gathered with observations; second,

participants confirmed or disconfirmed observations of the researcher (Creswell &

Creswell, 2018). The interviews also provided context to the student surveys and

suggested information that should be included in future surveys. Interviews were an

opportunity for participants to directly inject their views into the study (Tracy, 2020).

 Fourteen participants returned the assent forms to be interviewed, and 13

participants scheduled interviews. Twelve participants were interviewed; one was not

interviewed due to scheduling problems. Saturation was reached, which occurred when

new information added little to existing findings (Tracy, 2020). One possible exception

to saturation was that only one participant was highly critical of the intervention and

reported a net negative experience. This will be discussed further in the limitations.

 The interviews lasted approximately 30 minutes each. Interviews were conducted

virtually over Google Meet on the weekend when possible. Other interviews were

conducted during class time in the hallway outside of the classroom when participants

were unable to meet outside of class meeting time. The interviews were conducted after

the content knowledge posttest. The interview was audio-recorded and transcribed by

Otter.ai. The interview transcripts were cleaned and downloaded to Microsoft Word.

The interview questions were aligned to the research questions and survey.

 The interview was semistructured, which allowed flexibility with questions and

probes (Mertler, 2019; Tracy, 2020). The interview was not overly formal, which

encouraged participants to relax and answer freely. See Appendix F for the interview

64

protocol. Table 3.8 summarizes the alignment between the interview questions and the

research questions.

Table 3.8 Alignment of Interview Questions to Research Questions

Research Question Interview Question

How does the game

development project

impact participants’

ability to analyze and

develop algorithms?

1. Can you describe what you learned in this unit? Please

include what you think you were expected to learn and

what you actually learned. Did the assessment provide

an accurate measure of what you know for each skill?

2. Describe how effective the game development project

has been in helping you learn in our course.

3. How did the game development project help you learn to

analyze and develop algorithms? Can you give me an

example?

What is the effect of the

game development

project on participants’

attitudes toward

computer science?

4. Describe any programming or game development skills

that improved during the project.

5. Can you recall any instances when you enjoyed

developing your game?

6. Describe how you generally feel when you come to

class. How does that compare with your other courses?

7. Describe how your interest in computer science has

changed outside of school.

8. Tell me about any plans you have to study or work with

computer science in the future.

9. What is the most beneficial effect of computer science

and technology on society? Why?

10. What is the most harmful effect of computer science and

technology on society? Why?

What is the relationship

between participants’

attitudes toward

computer science and

their performance?

11. In what ways do your attitudes toward computer science

affect your performance in the course?

12. Would you please describe any attitudes or feelings that

may have affected your ability to learn in the computer

science course?

13. Describe your reactions to errors and setbacks in the

game you developed. Include how you felt during the

troubleshooting process.

65

Data Analysis

 This mixed-methods study included qualitative and quantitative analysis. Table

3.9 summarizes the data analysis performed for each data source.

Table 3.9 Research Question, Data Sources, and Data Analysis Alignment

Research Question Data Sources Data Analysis

RQ1: How does the game

development project impact

participants’ ability to

analyze and develop

algorithms?

• Content

knowledge

assessments

• Classroom

observations

• Participant

interviews

• Descriptive statistics and

paired samples t-test on

pretest and posttest scores

RQ2: What is the effect of

the game development

project on participants’

attitudes toward computer

science?

• Participant

surveys

• Classroom

observations

• Participant

interviews

• Descriptive statistics and

paired samples t-test or

Wilcoxon signed-rank test

on each survey subscale

• Inductive and deductive

analysis using interview

and observation data

RQ3: What is the

relationship between

participants’ attitudes toward

computer science and their

performance?

• Participant

surveys

• Content

knowledge

assessments

• Participant

interviews

• Classroom

observations

• Pearson’s r on composite

post-survey and posttest

scores

• Inductive and deductive

analysis using interview

and observation data

Quantitative Analysis

 The quantitative data was formatted in Microsoft Excel. JASP was used for data

analysis. Descriptive statistics were reported for all quantitative data.

66

Content Knowledge Assessments

 Data were uploaded to JASP for descriptive and inferential statistics. The

bivariate normality was confirmed with the Shapiro-Wilk test. A paired samples t-test

with an alpha value of .05 was run on the pretest and posttest scores to answer research

question one (Adams & Lawrence, 2019).

Student Surveys

 Data were uploaded to JASP for descriptive and inferential statistics. The

bivariate normality was confirmed for each subscale with the Shapiro-Wilk test. A paired

samples t-test (if normality was confirmed) or Wilcoxon signed-rank test (if normality

was not confirmed) was run on each subscale to help answer research question two

(Adams & Lawrence, 2019). An alpha value of .05 was used to determine the

significance of a single test. Because five tests were performed simultaneously, a

Bonferroni correction was used by dividing the alpha value by the number of tests,

resulting in an adjusted alpha value of .01. The Bonferroni correction controls the

family-wise error rate, which controls the probability of making at least one false

discovery (Glickman et al., 2014; Perneger, 1998). Bonferroni is a very conservative

correction for multiple comparisons, which increases the likelihood of type II errors

(Glickman et al., 2014; Perneger, 1998).

Relationship of Attitudes and Performance

 The post-content knowledge assessment data and post-survey data were added to

Microsoft Excel. Data were uploaded to JASP for descriptive and inferential statistics.

Composite post-survey scores were calculated for each participant using an unweighted

average of the subscale scores. Pearson’s r was calculated with the composite post-

67

survey and the posttest scores to help answer research question three. The following

assumption checks were performed:

• The bivariate normality was confirmed with the Shapiro-Wilk test.

• Homoscedasticity was confirmed by examining a scatterplot of the data and

verifying uniform variance along the line of best fit.

Qualitative Analysis

 This study analyzed two qualitative data sources, including observation field

notes and interview transcripts. Microsoft Word documents containing the field notes

and interview transcripts were uploaded to Delve for analysis. The observation field

notes were not verbatim text; they contained abbreviated descriptions of observed

behavior with detailed interpretations of the researcher. The interview transcripts were

verbatim text, some with rich narratives added (Bernard et al., 2017). Inductive and

deductive analysis were used to winnow and organize data to identify critical patterns and

themes (Creswell & Creswell, 2018; Fereday & Muir-Cochrane, 2006; Mertler, 2019).

Strategies and steps were not performed linearly. Some steps occurred simultaneously,

and some steps were repeated. The inductive and deductive analysis process consisted

of: (a) transcribing, (b) memoing, (c) identifying noteworthy quotes, (d) mapping similar

codes and emerging concepts, (e) drafting recurring aspects of the data, and (f)

developing a theme by interpreting the data (Creswell, 2017; Saldaña, 2021).

 Memoing took place in the observation field notes and interview transcripts.

Coding categorized the raw data into groups of similar data (Saldaña & Omasta, 2017).

The unit of analysis was a complete thought. For the first round of coding, initial coding

was used for the observations and interviews to avoid forcing a framework on the data

68

analysis (Creswell, 2017; Saldaña, 2021). Codes were modified as the data were

analyzed and similarities discovered. Inductive and deductive analysis was performed to

iteratively group similar codes into categories and similar categories into more general

categories until themes emerged (Creswell, 2017; Fereday & Muir-Cochrane, 2006;

Saldaña, 2021; Saldaña & Omasta, 2017).

 Findings for qualitative data included narrative text through themes, a table

display with assertions, evidence, and descriptive narratives. Similarities and

dissimilarities with the quantitative findings were explored. Similarities helped validate

the quantitative data, while dissimilarities suggested problems such as invalid

measurement or confounding factors (Randolph, 2008).

Procedures

 The intervention for this study took six weeks in phases one, two, and three, as

described in Table 3.10. Data collection occurred at the end of phase zero and continued

through phase four. During phase zero, approximately five weeks during January and

February were lost to rolling COVID quarantines. All participant artifacts were

submitted to the instructor in Google Classroom. Each phase and the associated tasks are

described below.

Table 3.10 Timeline of Phases and Tasks

Phase Tasks Duration in weeks

Phase 0: pre-intervention 1. Direct instruction

2. Programming in Khan

Academy

3. Four games and one

cutscene

4. Study description

5. Distribute consent and

assent forms

24

69

Phase Tasks Duration in weeks

6. Review of content

knowledge assessment

by colleague

7. Content knowledge

pretest

8. Participant pre-surveys

Phase 1: study introduction

and game design

1. Review requirements

for game project

2. Assign clients

3. Game design document

creation

4. Instructor and client

review of game design

document

5. Revision of game

design document

6. Field notes

1

Phase 2: game

implementation

1. Guided instruction

2. Iterative game

development

3. Weekly progress reports

4. Field notes

3

Phase 3: quality

engineering

1. Client playtesting

2. Playability revision

3. Field notes

2

Phase 4: post-intervention

data collection

1. Content knowledge

posttest

2. Participant post-surveys

3. Participant interviews

2

Phase 5: data analysis 1. Member checking

2. Inter-rater reliability for

content knowledge

assessment performance

task

3. Descriptive statistics

and paired samples t-

test on pretest and

posttest scores

4. Descriptive statistics

and paired samples t-

test on each survey

subscale

4

70

Phase Tasks Duration in weeks

5. Pearson’s r on

composite post-survey

and posttest scores

6. Inductive and deductive

analysis using interview

and observation data

7. Peer debriefing sessions

on qualitative analysis

8. Audit trail

Phase 0: Pre-Intervention

 During the first semester and start of second semester, students received guided

instruction on basic programming skills:

• sequencing

• selection

• iteration

• user-defined functions

• arrays

JavaScript was used for the initial guided instruction. Participants completed small

programming assignments for practice in Khan Academy using JavaScript. The Khan

Academy course was called Computer programming, and the unit was Intro to JS:

Drawing & Animation. The following Khan Academy modules were completed in the

Intro to JS Drawing & Animation unit: (a) Intro to programming, (b) Drawing basics, (c)

Coloring, (d) Variables, (e) Animation basics, (f) Interactive programs, (g) Becoming a

community coder, (h) Bonus: Resizing with variables, (i) Text and strings, and (j)

Functions. Participants implemented four games and one cutscene using GameMaker

Studio 2 and the Zulama curriculum: (a) Pinball, (b) Ball Bouncer, (c) Matching, (d) Scat,

71

and (e) Sky is Falling cutscene (Carnegie Learning, 2021). Once participants started

using GameMaker, guided instruction was delivered in GameMaker Language.

Participants requested their partners for the Matching game and worked with those

partners from the start of that game.

 Before beginning the intervention, permission to conduct the study was obtained

from the University of South Carolina Institutional Review Board (IRB) and South

Carolina School District Alpha (see Appendix G and Appendix H). Following the

completion of the Sky is Falling cutscene in semester two, the study was described to

participants. All participants were invited to participate. Consent and assent forms were

distributed to participants and their parents. Participants were informed that those who

did not consent to the study within two weeks would not have their data included in the

study; they would not participate in the post-survey or interviews. All participants

returned the signed consent forms. The assent forms were used for the interviews.

Fourteen participants returned the signed assent forms. Participants took the content

knowledge pretest over two days. The multiple-choice section was administered on the

first day, followed by the performance task on the second day. The multiple-choice

section was administered on a Google Form quiz, and participants had one hour to

complete it. Participants completed the performance task in GameMaker and submitted a

YYZ file; they had one hour to complete the performance task. The pre-survey was

administered the day after the content knowledge assessment on a Google Form. The

content knowledge assessment and the survey were administered in the normal classroom

setting during regularly scheduled class time.

72

Phase 1: Study Introduction and Game Design

 Phase one lasted one week. On day one, the requirements for the game project

were reviewed with the participants. Participants read the project directions and rubrics.

The instructor reviewed the requirements for the game design document and client

interaction in detail. On day two, participants requested clients, which were approved by

the instructor. Clients were other participants in the study. In one case, the client was a

music teacher who wanted a serious game. Accommodations were made for participants

who found other acceptable clients. Finally, participants created a game design document

with their partners and clients according to the project directions and game design

document rubric in Appendix C. Two days were scheduled for the process of negotiating

requirements with the client and creating the game design document. On the fourth day,

participants submitted their game design documents to the instructor for review. On day

five, the instructor returned recommendations to the participants. Participants made

revisions and resubmitted their game design documents on day five. See Figure 3.4 for

an abridged version of the game design document submitted by Aleesha. Field notes

were recorded to generate qualitative data as participants developed their game design

documents.

73

Figure 3.4 Abridged Game Design Document from Aleesha

Phase 2: Game Development

 Phase two lasted three weeks. Guided instruction with a spiral approach was used

to reinforce concepts that the participants needed to demonstrate in their games.

Participants were not expected to utilize any programming skills that were not covered in

phase zero. However, as discussed earlier, deficits in participants’ knowledge were

identified by the researcher. The content knowledge assessment revealed skills that

needed review. Those skills were demonstrated to the participants in week one of phase

two. Twenty minutes of each hour during week one was budgeted for guided instruction,

but 10 minutes was the maximum used for whole group guided instruction. Participants

used Agile software development to create their games.

74

 One participant from each group created a cloud directory on Google Drive to

store project assets. Edit access to the directory was provided to the other participant in

the group and the researcher. The game design document, status reports, playtest

documents, and GameMaker project backups were stored in the shared project directory

on Google Drive. Participants were required to save a functional (no compiler errors)

version of their game daily by exporting their projects as YYZ files and saving them to

Google Drive. This backup process protected participants from losing their entire project

due to three causes that the instructor had witnessed in previous courses: (a)

malfunctioning hardware, (b) corrupted game, or (c) the district office of computing

services reimaging machines without warning if suspected malware was detected. A

corrupted game usually resulted from students unintentionally adding or deleting files

from the GameMaker project directory. A few participants experienced corrupted

projects, but they were able to restore projects from their backups. Therefore, no

participant lost more than one day of work due to a corrupted project.

 Participants submitted status reports at the end of each week during phase two.

The three main sections of the status report were: (a) what was accomplished, (b) what is

left to do, and (c) questions and challenges. See Figure 3.5 for an example of a status

report from Julia. See Appendix C for a full description of the status report. Field notes

were recorded to generate qualitative data as participants developed their games.

75

Figure 3.5 Status Report from Julia

Phase 3: Quality Engineering

 Phase three lasted two weeks. The first week blended with phase two, as some

participants used a few days to finish development. Participants had their clients,

including at least one peer group playtest their games. Most participants had several

other groups playtest their game. Five was the recommended number of playtesters.

Based on playtest feedback, participants revised their games to remove previously

undetected defects and improve playability. Participants submitted a status report at the

end of week one. At the end of week two, participants submitted final versions of the

following:

• game design document

• game as YYZ file

• playtest document

See Figure 3.6 for an abridged playtest document from Bree. Field notes were recorded

to generate qualitative data as participants test their games.

76

Figure 3.6 Abridged Playtest Document from Bree

Phase 4: Post Intervention Data Collection

 Phase four lasted five weeks. Participants took the content knowledge posttest

over two days. The multiple-choice section was be administered on the first day,

followed by the performance task on the second day. The multiple-choice section was

administered on a Google Form quiz, and participants had one hour to complete it.

Participants completed the performance task in GameMaker and submitted a YYZ file;

they had one hour to complete the performance task. The attitudes toward computer

science post-survey was administered the day after the content knowledge assessment on

a Google Form. The content knowledge assessment and the survey were administered in

the normal classroom setting during regularly scheduled class time.

77

 Twelve participant interviews took place over five weeks. Each interview was

scheduled for 30 minutes. When possible, the interviews were conducted virtually on

Google Meet on the weekend. Other interviews took place in the hallway outside of the

class during regularly scheduled class time to accommodate participants who could not

meet virtually on the weekend. Automatic transcription was performed using Otter.ai.

See Appendix F for the interview protocol.

Phase 5: Data Analysis

 Phase five lasted about 13 weeks. Data from Google Forms was exported to

Google Sheets and converted to Microsoft Excel. Data in Microsoft Excel was formatted

so that the data could be imported to JASP. JASP was used for the statistical analysis,

including:

• descriptive statistics of the content knowledge pretest and posttest scores

• assumption and reliability checks on the content knowledge assessment data

• paired samples t-tests on the content knowledge pretest and posttest scores

• descriptive statistics of the pre- and post-survey subscale scores

• reliability checks on the survey subscales

• paired samples t-tests and Wilcoxon signed-rank tests on the pre- and post-survey

subscale scores

• assumption checks for the correlation statistics on composite post-survey and

posttest scores

• linear correlation of composite post-survey and posttest scores

Delve and Microsoft Excel were used for the inductive and deductive analysis of the field

notes and interview transcripts.

78

Rigor & Trustworthiness

 Validity and reliability are measures of rigor and trustworthiness in quantitative

designs; qualitative designs use other methods (Creswell & Creswell, 2018). The

following methods will be used to establish rigor and trustworthiness in the qualitative

data collection and analysis of this study: (a) triangulation, (b) member checking, (c) peer

debriefing, (d) an audit trail, and (e) inclusion of negative or discrepant data.

Triangulation

 Triangulation involves examining evidence from multiple data sources and

generating findings from the convergence of the data sources (Creswell & Creswell,

2018). Individual data collection methods suffer from methodological shortcomings, but

using multiple methods together compensates for the shortcomings (Shenton, 2004).

This mixed-methods study employed multiple qualitative and quantitative measures: (a)

observations, (b) participant interviews, (c) participant surveys, and (d) pretest and

posttest content knowledge assessments. “Triangulation is an inherent component of

mixed-methods research designs” (Mertler, 2019, p. 142). When several sources of data

confirmed a finding, validity was increased for that finding. When sources of data did

not lead to the same finding, a problem with methodology or interpretation of results may

have occurred.

Member Checking

 Member checking is used to confirm the accuracy of qualitative findings with

participants of the study (Creswell & Creswell, 2018). In this study, interview

transcripts, observations, and themes were shared with participants, which allowed

participants to review how they were represented in the study. The abstract was shared

79

with participants so that they could review the broad findings of the study.

Trustworthiness was increased by allowing participants to audit the pertinent elements of

the study (Shenton, 2004).

Peer Debriefing

 Peer debriefing involves other professionals or colleagues reviewing the data

collection and analysis in the study (Mertler, 2019). Meetings were held with the

dissertation major professor, Dr. Arslan-Ari, to verify the rigor of the study. Several

improvements to qualitative coding were made during peer-debriefing sessions with Dr.

Arslan-Ari: (a) more detail was added to first cycle codes, (b) ambiguous symbols and

abbreviations that may have confused reviewers were removed from codes, (c)

misleading and ambiguous phrasing in code names was improved, and (d) improperly

categorized codes were recategorized. Dr. Arslan-Ari, other professors, colleagues, and

participants reviewed various elements of the study throughout the research process to

increase rigor.

Audit Trail

 The audit trail is used to record the researcher’s development of interpretations as

data is collected (Shenton, 2004). Notes were taken to document how codes, patterns,

categories, and themes were generated from observations, surveys, and interviews.

Details were recorded regarding decisions on categorizing and grouping data. Multiple

exports from Delve to Microsoft Excel were produced to track the progression of codes,

categories, and themes.

80

Negative or Discrepant Information

 Negative or discrepant information includes data that does not support findings in

the study (Creswell & Creswell, 2018). When possible, negative or discrepant

information was used to revise findings so that the information no longer ran counter to

the findings. When findings could not be modified to incorporate negative information,

the negative information was reported with the findings to increase trustworthiness in the

interpretations. Negative information will be reviewed in the discussion.

Plan for Sharing and Communicating Findings

 The findings were shared with the following members of administration: (a)

administrators of the school in which the study was conducted, (b) the assistant

superintendent for secondary education, (c) the director of the technology center, and (d)

other district personnel who request access. I plan to share the findings with other

computer science teachers in the district during a department meeting on an inservice

day. My findings will be shared with my dissertation committee. Finally, the findings

will be shared with the participants, who will be able to review data and conclusions

before other stakeholders. The feedback obtained from stakeholders will be used to

improve instructional strategies used in teaching programming. Participants were able to

withdraw their data from the study at any time in the research process (Banister, 2007).

The participants understood their influence on future iterations of the action research. I

applied to present my research at the Future of Education Technology Conference (FetC)

in January 2023. My application was accepted, and I plan to present my finding pending

the approval of my district.

81

 Participants’ confidentiality was respected and protected. Data was anonymized;

pseudonyms were used for student names, the district, and schools. Participants had the

option of selecting their pseudonyms. Monster Fan and Pibb chose their pseudonyms. A

random name generator was used to assign the remaining pseudonyms (Campbell, 2021).

Pseudonyms were originally selected from a list of Egyptian and Greek gods, but those

names were judged to be distracting. Appendix I displays the map of original

pseudonyms to current pseudonyms. Raw data was stored in a separate location from

student identification, and the data will be destroyed after five years in order to protect

participants’ identity and confidentiality. Participants’ identification was stored in a

password-protected spreadsheet.

82

CHAPTER 4: ANALYSIS AND FINDINGS

 The purpose of this action research was to implement a digital game development

project and describe its effects on the performance and attitudes of eighth-grade students

in a required computer science course at South Carolina School District Alpha. This

study was expected to provide insight into the impact of PjBL and GDBL in an

introductory CS course. The collection of data for this study was guided by three

research questions: (1) How does the game development project impact participants’

ability to analyze and develop algorithms? (2) What is the effect of the game

development project on participants’ attitudes toward computer science? and (3) What is

the relationship between participants’ attitudes toward computer science and their

performance? This chapter presents the analysis and findings of the collected data,

including pre and post-content knowledge assessments, pre and post-computer science

attitude surveys, field notes from classroom observations, and participant interviews.

This chapter will include quantitative and qualitative analysis.

Quantitative Findings

 The purpose of this quantitative analysis was to measure the effects of a digital

game development project on participants’ performance and attitudes toward CS. Two

quantitative data sources were used to answer the research questions: (a) a content

knowledge assessment and (b) an attitudes toward computer science survey. A one-

group pretest-posttest design was used (Creswell & Creswell, 2018). A content

knowledge assessment was administered as a Google Forms quiz before and after the

83

intervention to answer research question one. For research question two, an attitudes

toward computer science survey was administered on Google Forms before and after the

intervention (Shen et al., 2014). For research question three, the correlation between

participants’ attitudes toward computer science and their performance was calculated

using the post-intervention content knowledge assessment and the post-intervention

attitudes toward computer science survey. Google Forms data was downloaded in

Microsoft Excel. Data was organized in Microsoft Excel and exported to JASP to

calculate descriptive and inferential statistics. No outliers were identified for removal

from the final analysis. There was no missing data. Effect sizes were interpreted based

on benchmarks proposed by Cohen (1988). See Table 4.1 for the interpretation of effect

sizes. Cohen’s d and rank-biserial correlation were used as measures of effect size for

parametric and non-parametric data, respectively (Cohen, 1988; King et al., 2018;

Lakens, 2013; Sawilowsky, 2009).

Table 4.1 Interpretation of Effect Size

Interpretation Minimum d or rb

small 0.2

medium 0.5

large 0.8

Content Knowledge Pre and Post-Assessments Results

The content knowledge assessment consisted of a multiple-choice test worth nine

points and a performance task worth 15 points. The multiple-choice test consisted of

nine questions; three questions each assessed: (a) sequencing, (b) selection, and (c)

iteration. The performance task required participants to implement a set of behaviors in

GameMaker using a set of requirements and a grading rubric. Participants’ multiple-

84

choice scores and performance task scores were summed to create a total content

knowledge assessment score. Strategies used to ensure reliability and content validity are

discussed below.

Interrater Reliability

 Interrater reliability is the extent to which multiple assessors agree on the

evaluation of the same target (Adams & Lawrence, 2019). Interrater reliability was

calculated to improve the reliability of the data analysis of the performance task. The

performance task was scored according to the rubric (Appendix C). To establish

interrater reliability, the chair of the business education and CS department, the interrater,

scored 14 of the 28 performance tasks. The interrater was given all 28 performance tasks

and randomly selected 14 of them to score. As shown in Table 4.2, the percent

agreement between the researcher and the interrater was calculated for each of the eight

rubric items, also referred to as rows. The total score for the performance task was

calculated by summing the eight row scores. Finally, Cohen’s weighted kappa was

calculated for the total score. There was almost perfect agreement between the two

graders’ total scores, κ = .95, 95% CI [.79, 1], n = 14 (McHugh, 2012).

Table 4.2 Performance Task Percent Agreement

Rubric Row Exact Match Percent Agreement

1 13 93

2 13 93

3 13 93

4 12 86

5 11 79

6 13 93

7 13 93

85

Rubric Row Exact Match Percent Agreement

8 12 86

Note. n = 14 for each rubric row.

Internal Consistency

 Kuder-Richardson Formula 20 (KR20) was calculated for the multiple-choice

portion of the content knowledge pretest and posttest. KR20 for the pretest was .53, and

KR20 for the posttest was .18. The quantitative claims made in this study regarding

research questions one and two should be interpreted in the context of the low KR20

scores; note that some research considers KR20 of .50 acceptable, but most considers .70

or above as the minimum acceptable KR20 (Anselmi et al., 2019; Ebel, 1967; Mitchell et

al., 2018; Osadebe, 2015). Low variance and high item difficulty may have affected

KR20. Nine points were available on the multiple-choice assessments, one point for each

test item. The mean multiple-choice pretest score was 3.75 (σ2 = 3.33), and the mean

multiple-choice posttest score was 6.14 (σ2 = 2.19). Table 4.3 shows the number of

correct answers for each test item. KR20 will be discussed further in the discussion of

limitations.

Table 4.3 Correct Responses Per Item on Multiple-Choice Assessment

Test Item Multiple-Choice

 Pretest Posttest

1 20 21

2 10 19

3 17 24

4 9 19

5 10 18

6 22 23

7 3 16

86

Test Item Multiple-Choice

 Pretest Posttest

8 6 18

9 8 14

Note. N = 28. The Multiple-Choice columns represent how many

participants answered each question correctly.

Descriptive Statistics

 Table 4.4 summarizes the mean and standard deviation of the pretest and posttest.

The mean pretest score was 7.93 (SD = 3.43), and the mean posttest score was 16.14 (SD

= 5.25). None of the 28 participants scored lower on the posttest than on the pretest.

Qianna’s pretest score was the same as the posttest score, and she was the only

participant to exhibit zero improvement on the assessment.

Table 4.4 Descriptive Statistics of the Pretest and Posttest

Assessment M SD

Pretest 7.93 3.43

Posttest 16.14 5.25

Note. N = 28.

Inferential Statistics

 To test the assumption of normality, the Shapiro-Wilk test was conducted to

determine whether the differences in pretest and posttest could have been produced by a

normal distribution (Razali & Wah, 2011). The results of the test were not significant,

W(27) = .95, p = .209, indicating that the assumption of normality was met.

 To address the first research question, a paired samples t-test was conducted to

compare the total content knowledge assessment scores before and after the intervention.

An alpha level of .05 was used. When calculating the test statistics, the alternative

hypotheses specified that the posttest mean was greater than the pretest mean. The

87

results of the paired samples t-test indicated that the difference between the posttest

scores (M = 16.14, SD = 5.25) and pretest scores (M = 7.93, SD = 3.43) was significant,

t(27) = 9.12, p < .001. The mean difference was 8.21, and the effect size was large, d =

1.72. See table 4.5 for the results of the paired samples t-test.

Table 4.5 Paired Samples t-Test Results for Content Knowledge Assessment Scores

Pretest Posttest

M SD M SD t p d

16.14 5.25 7.93 3.43 9.12 <.001 1.72

Note. N = 28.

Attitudes Survey Results

The survey contained 26 questions divided into five subscales; each subscale had

five or six questions. Questions used a 5-point Likert scale ranging from 1 (strongly

disagree) to 5 (strongly agree). The survey subscales and associated items are shown in

Table 4.6.

Table 4.6 Survey Subscales

Subscale Description Items

Self-concept in computer science 1-5

Learning computer science at school 6-10

Learning computer science outside of school 11-16

Future participation in computer science 17-21

Importance of computer science 22-26

 Reliability. A Cronbach alpha coefficient was calculated for each subscale. The

Cronbach’s alpha coefficient was evaluated using the guidelines suggested by George

and Mallery (2002), where > .9 was excellent, > .8 was good, > .7 was acceptable, > .6

was questionable, > .5 was poor, and ≤ .5 was unacceptable.. As shown in Table 4.7,

88

Cronbach’s alpha was calculated for each subscale. All subscales had acceptable

reliability, α > .70 (George & Mallery, 2002; Taber, 2018).

Table 4.7 Internal Consistency Measure of Survey (Researcher)

Subscale Description Cronbach’s α

 Pre Post

Self-concept in computer science .92 .91

Learning computer science at school .87 .93

Learning computer science outside of

school

.86 .93

Future participation in computer science .87 .92

Importance of computer science .72 .85

All Items .95 .97

Note. N = 28. Pre = survey before intervention; Post = survey after

intervention.

Descriptive Statistics

 Table 4.8 summarizes the descriptive statistics for the pre- and post-computer CS

attitude surveys. The mean of every subscale increased from pre- to post-survey. The

importance of CS subscale was high in the pre-survey relative to the other subscales. The

subscales with the largest mean differences were self-concept in CS and learning CS at

school.

Table 4.8 Descriptive Statistics of Pre and Post-CS Attitude Survey Subscales

Subscale Pre Post

 M SD M SD

Self-concept in CS 1.90 0.92 3.01 1.07

Learning CS at school 1.86 0.88 2.79 1.15

Learning CS outside of school 1.55 0.72 2.21 1.11

Future participation in CS 1.64 0.86 2.34 1.22

89

Subscale Pre Post

 M SD M SD

Importance of CS 3.25 0.85 3.70 0.98

Note. N = 28.

Inferential Statistics

 To test the assumption of normality, the Shapiro-Wilk test was conducted on each

subscale to determine whether the differences in pre and post-survey subscales could

have been produced by a normal distribution (Razali & Wah, 2011). For self-concept in

CS, the results of the test were not significant, W(27) = .95, p = .244, indicating that the

assumption of normality was met. For learning CS at school, the results of the test were

not significant, W(27) = .96, p = .425., indicating that the assumption of normality was

met. For learning CS outside of school, the results of the test were significant, W(27) =

.88, p = .005, indicating that the assumption of normality was not met. For future

participation in CS, the results of the test were significant, W(27) = .82, p < .001,

indicating that the assumption of normality was not met. For importance of CS, the

results of the test were not significant, W(27) = .95, p = .229, indicating that the

assumption of normality was met. See Table 4.9 for a summary of the subscale

assumption checks.

Table 4.9 Survey Subscale Assumption Checks

Subscale W p

Self-concept in CS .95 .244

Learning CS at school .96 .425

Learning CS outside of

school

.88 .005

Future participation in CS .82 < .001

Importance of CS .95 .229

90

Note. W is the Shapiro-Wilk test statistic.

 To address the second research question, a paired samples t-tests was conducted

on each subscale mean difference where the assumption of normality was met to compare

the subscale means of 28 participants before the intervention and after the intervention

(see Table 4.10 for each parametric test result). A Wilcoxon signed-rank tests was

conducted on each subscale median difference where the assumption of normality was

not met to compare the subscale medians of 28 participants before the intervention and

after the intervention See Table 4.11 for each nonparametric test result. When

calculating the test statistics, the alternative hypotheses specified that the post subscale

mean was greater than the pre subscale mean. The conservative Bonferroni adjustment

was applied to account for the increased chance of Type I errors when running five tests,

which changed the alpha level from .05 to .01 (Perneger, 1998).

Table 4.10 Parametric Inferential Results of Pre and Post-Survey Subscales

Subscale Pre Post

 M SD M SD M Diff t p d

Self-concept in

CS

1.90 0.92 3.01 1.07 1.11 7.31 < .001 1.38

Learning CS at

school

1.86 0.88 2.79 1.15 0.94 5.16 < .001 0.97

Importance of

CS

3.25 0.85 3.70 0.98 0.45 2.90 .004 0.55

Note. N = 28. Pre = survey before the intervention; Post = survey after the intervention;

M Diff = mean difference; d = Cohen’s d

91

Table 4.11 Nonparametric Inferential Results of Pre and Post-Survey Subscales

Subscale Pre Mdn Post Mdn Hodges-

Lehmann

Estimate

z p rb

Learning CS

outside of school

1.33 1.83 0.75 3.26 < .001 0.79

Future

participation in CS

1.30 2.20 0.90 3.36 < .001 0.88

Note. N = 28. Pre = survey before the intervention; Post = survey after the intervention;

rb = rank-biserial correlation.

 For the first subscale, the results of the paired samples t-test indicated that the

difference between the post-self-concept in CS mean (M = 3.01, SD = 1.07) and pre-self-

concept in CS mean (M = 1.90, SD = 0.92) was significant, t(27) = 7.31, p < .001. The

mean difference was 1.11, and the effect size was large, d = 1.38.

 For the second subscale, the results of the paired samples t-test indicated that the

difference between the post-learning CS at school mean (M = 2.79, SD = 1.15) and pre-

learning CS at school mean (M = 1.86, SD = 0.88) was significant, t(27) = 5.16, p < .001.

The mean difference was 0.94, and the effect size was large, d = 0.97.

 For the third subscale, on average, learning CS outside of school was higher after

(Mdn = 1.83) the intervention than before (Mdn = 1.33). A Wilcoxon signed-rank test

indicated that this difference was statistically significant, z = 3.26, p < .001. The Hodges-

Lehmann estimate was 0.75, and the effect size was medium, rb = 0.79.

 For the fourth subscale, on average, future participation in CS was higher after

(Mdn = 2.20) the intervention than before (Mdn = 1.30). A Wilcoxon signed-rank test

indicated that this difference was statistically significant, z = 3.36, p < .001. The Hodges-

Lehmann estimate was 0.90, and the effect size was large, rb = 0.88.

92

 For the fifth subscale, the results of the paired samples t-test indicated that the

difference between the post-importance of CS mean (M = 3.70, SD = 0.98) and pre-

importance of CS mean (M = 3.25, SD = 0.85) was significant, t(27) = 2.90, p = .004.

The mean difference was 0.45, and the effect size was medium, d = 0.55.

Relationship of Attitudes and Performance

 Mean survey composite scores were calculated for each participant by taking an

unweighted average of the five subscales on the post-survey. To address research

question three, Pearson’s r was calculated for the mean post-survey composite scores (M

= 2.81, SD = 0.97) and the post-content knowledge assessment scores (M = 16.14, SD =

5.25) to measure the linear correlation between participants’ attitudes toward computer

science and their performance. When calculating the test statistics, the alternative

hypothesis specified that survey and assessment scores correlated positively.

 Assumption Check. The bivariate normality of scores was assessed using the

Shapiro-Wilk test. The results of the test were not significant, W(27) = .99, p = .963,

indicating that assumption of normality was met. Homoscedasticity was assessed by

examining the variances along the line of best fit, as shown in Figure 4.1. No extreme

dissimilarities in variances were observed; therefore, homoscedasticity was assumed.

93

Figure 4.1 Composite Post-Survey Scores Vs. Posttest Scores

 Correlation sizes were interpreted based on benchmarks proposed by Hinkle et al

(1979). See Table 4.12 for the interpretation of correlation sizes. Composite post-survey

scores and posttest scores were found to be moderately positively correlated, r(26) = .53,

p = .002. This suggests that as participants’ scores on the post-survey for attitudes

toward computer science increase, so do participants’ scores on the posttest.

Table 4.12 Interpreting the Size of a Correlation Coefficient

Interpretation Size of Correlation

Very high positive (negative) correlation .90 to 1.00 (-.90 to -1.00)

High positive (negative) correlation .70 to .90 (-.70 to -.90)

Moderate positive (negative) correlation .50 to .70 (-.50 to -.70)

Low positive (negative) correlation .30 to .50 (-.30 to -.50)

Little if any correlation .00 to .30 (.00 to -.30)

94

Quantitative Results Summary

 The purpose of the quantitative analysis was to determine if there were (a)

significant changes in participants’ performance before and after the intervention, (b)

significant changes in participants’ attitudes before and after the intervention, and (c) a

correlation between performance and attitudes after the intervention. To answer research

question one, a paired samples t-test was conducted on the pre-content knowledge

assessment scores and the post-content knowledge assessment scores. The results of the

test indicated that there was a significant difference between pretest and posttest,

indicating that the posttest scores were significantly higher than the pretest scores. To

answer research question two, a paired samples t-test or a Wilcoxon signed-rank test was

conducted between each of the five survey subscales before and after the intervention.

All five tests were significant, indicating that for each subscale, the scores for post-survey

were significantly greater than those for pre-survey. Finally, to address research question

three, a correlational analysis was conducted between the post-survey composite scores

and post content knowledge assessment scores. The correlation indicated that there was a

moderately positive significant relationship between the variables, such that as attitudes

toward computer science increased, so did the scores on the content knowledge

assessment. The next chapter will discuss the implications of these results.

Qualitative Findings & Interpretations

 For the qualitative portion of this study, semi-structured interviews were

conducted with 12 participants after the intervention. The researcher observed

participants during the intervention and compiled field notes. Qualitative data were

95

recorded and transcribed to prepare for analysis. The qualitative data sources and

analysis are discussed below.

Qualitative Data Sources

 This study used two methods for collecting qualitative data. A total of 31 field

notes were collected during the intervention, and transcripts of participant interviews

were analyzed using a process of inductive and deductive analysis (Creswell & Creswell,

2018; Fereday & Muir-Cochrane, 2006; Mertler, 2019; Tracy, 2020). Table 4.13

summarizes the number of codes applied to the field notes and transcripts during the first

coding cycle.

Table 4.13 Summary of Qualitative Data Sources

Data Source Number Codes References

Field notes 31a 91 147

Participant Interviews 12 393 473

Total 43 484 620

a Number of days that field notes were recorded.

Field Notes

 Field notes consisting of researcher observations were recorded in a composition

notebook during the intervention, as shown in Figure 4.2. Participant behaviors were

recorded, including work on the custom game, conversations, and off-task behaviors.

Researcher inferences of participants’ attitudes and emotional reactions were also

recorded. Most behaviors were recorded as they were observed. Researcher interactions

with participants were recorded following the interactions.

96

Figure 4.2 Field Notes Composition Notebook

Participant Interviews

 Twelve participants completed semi-structured interviews after the intervention.

Individual interviews were scheduled for 30 minutes. None of the interviews were

affected by the time restriction, even when they took longer than the scheduled 30

minutes. The shortest interview took 9:54 minutes, and the longest interview took 39:51

minutes. Most interviews took place virtually in Google Meet on weekends. A few

interviews were conducted during class for participants who had difficulty meeting on the

weekend. The interviews were automatically transcribed in Otter.ai.

Analysis of Qualitative Data

 Field notes were copied from the composition notebook into a Word Document.

The Word Document consisted of three columns: (a) date, (b) observations, and (c)

memo. Handwritten field notes, as shown in Figure 4.3, were copied to the observations

97

column in the Word Document, as shown in Figure 4.4. Analytic memos were added to

the memo column of the Word Document. Once analytic memoing was completed, the

field notes Word Document was uploaded to Delve for coding.

Figure 4.3 Handwritten Field Notes

98

Figure 4.4 Word Document Field Notes

 The interviews were recorded and automatically transcribed in Otter.ai. The

initial audio files and transcriptions were placed in a Needs Cleaning folder, as shown in

Figure 4.5. The recordings were compared to the transcriptions to ensure accuracy. An

example of a sentence that Otter.ai transcribed from Jonie was, “Like you said the current

learning was hard to read.” After comparing this sentence to the audio, the sentence

transcription was revised to, “Like you said, the Carnegie Learning was hard to read.”

The cleaned audio files and transcriptions were placed in a Cleaned Interviews folder, as

shown in Figure 4.6. Note that Figures 4.5 and 4.6 used the original pseudonyms (see

Appendix I). The cleaned interview transcripts were then downloaded as Word

Documents. The interview transcript Word Documents were uploaded to Delve for

99

coding. Cleaned interview transcripts were emailed to the appropriate participant for

member checking. The email template is shown in Figure 4.7. None of the participants

responded to the email.

Figure 4.5 Otter.ai Needs Cleaning Folder

100

Figure 4.6 Otter.ai Cleaned Interviews Folder

101

Figure 4.7 Review Interview Transcript Email

 Three cycles of coding were performed on the qualitative data in Delve as part of

the inductive and deductive analysis (Creswell & Creswell, 2018; Fereday & Muir-

Cochrane, 2006; Mertler, 2019; Saldaña, 2021; Tracy, 2020). Inductive coding was used

primarily in the first coding cycle to remain open to new discoveries (Saldaña, 2021).

Deductive coding was used later to make connections to the research questions (Mertler,

2019). In the first cycle of coding, the researcher read the transcripts line by line to

become familiar with the data. Excerpts of the transcripts were grouped into individual

codes. In the second cycle of coding, the researcher identified connections between

codes and further refined them. Related codes were placed in categories that reflected

their shared meaning. In the third cycle of coding, the researcher named themes and

patterns based on the codes and categories that had been refined in previous steps.

 Following each coding cycle, the researcher reviewed the generated codes and

compared them to existing findings to ensure that the codes were reflective of the data.

Coding cycles were used to allow for an iterative data analysis process. Within each

cycle, multiple rounds of coding were conducted. Codes were compared to each other to

identify instances where codes could be merged, revised, or removed. This process

ensured that the codes accurately reflected the data.

102

 Data analysis was guided by a hybrid approach of inductive and deductive coding

(Fereday & Muir-Cochrane, 2006; Saldaña, 2021). Inductive coding was used in the first

coding cycle. During rounds of coding in the second cycle, connections to the research

questions were made using structural and pattern coding (Mertler, 2019; Saldaña, 2021).

Categories were refined so that they were relevant to the research questions. The themes

that emerged in the third coding cycle functioned as answers to the research questions.

 Participants regularly devoted several sentences of their verbal responses to the

same concept without adding new information. For example, participants would repeat

themselves. Therefore, data were coded on the level of a complete thought when

appropriate. For instance, the following statement from Monster Fan was treated as a

complete thought and thus assigned one distinct code, disliked missing class:

I could not know that, you know, I’d like you know, like, on like, some days, like,

you know, because like, I had been like a while ago, there would have been like

three days I was out, you know, and so I couldn’t, you know, work on the project.

And I like been planning on like big stuff to do or like not real big, but you know,

like planning on stuff to do. And because you know, that like me being behind by

a little bit a few days, you know, I probably have like gone and as far as like I

possibly could have, you know, iron out a couple of bugs, but you know, like

when I’ve found bugs, you know, I could at some time figure out how to get rid of

them. I like honestly, like didn’t like being out those days because like I said I

was planning on doing stuff for the project – couldn’t do that.

103

First Coding Cycle

For the first cycle of coding, the following methods were used: (a) descriptive, (b)

in vivo, (c) process, (d) values, and (e) causation (Saldaña, 2021). Additional coding

methods were used when convenient; for instance, simultaneous coding was used

sparingly to apply multiple codes to a datum (Saldaña, 2021). For example, the codes

coding is hard and no future interest were applied to Annabelle’s statement, “Um, coding

is hard, and [I] don’t want to pursue any sort of career that involves computer science.”

Descriptive coding was used to identify topics. In vivo codes were used whenever

possible to prioritize participants’ voices. Process coding was appropriate for identifying

the behaviors of participants while they attempted to reach a goal or solve a problem.

Values coding was used to capture participants’ attitudes, which addressed two of the

three research questions. Causation coding was used to infer the effects that the

intervention had on participants’ performance and attitudes. Causation coding was also

used to explore relationships between attitude and performance. Examples of codes for

each of the main first cycle coding methods are listed in Table 4.14. After a peer

debriefing session with Dr. Arslan-Ari, an effort was made to make first cycle codes

more specific. For example, codes for demonstration of learned skills (LS) included

information about which skills were learned. Ls: coordinates coded participants who

used the coordinate system to position visual output. Ls: movement coded participants

who implemented moving instances. Four hundred eighty-seven codes emerged after the

first coding cycle. The right arrow symbol (→) is used in causation coding to indicate

that the cause on the left produced the outcome on the right (Saldaña, 2021).

104

Table 4.14 Examples of First Cycle Coding Methods

Method Example Code Code Explanation

descriptive Learned skill: arrays Participants reported learning how to use

arrays.

in vivo “Now I don’t see it

boring at all”

The participant thought coding was boring

prior to the intervention but did not view

it that way after the intervention.

process Enjoying aesthetic

design

Participants reported or were observed

enjoying aesthetic work in their games.

values Not feeling confused The participant reported feelings of

confusion prior to the intervention but did

not feel confused about the content after

the intervention.

causation Choice → fun The participant reported that developing

the game was fun because “I [the

participant] got to do what I [the

participant] wanted to do.”

Second Coding Cycle

Pattern and structural coding were used for subsequent rounds of coding to group

codes into condensed categories and connect categories to the research questions

(Saldaña, 2021). In pattern coding, summarized segments of data are grouped into

condensed categories and themes (Saldaña, 2021). In structural coding, conceptual

phrases relate data to specific research questions (Saldaña, 2021). Microsoft Excel was

used in the second coding cycle to organize codes into categories. First cycle codes were

exported from Delve into Excel as shown in Figure 4.8. During the second coding cycle,

codes were organized into categories; a partial view is shown in Figure 4.9. Codes that

were determined to have similar meaning or represent a group of codes were coalesced.

Fifteen categories were generated by codes and categories of similar meaning. The 15

categories included: using resources, hurting performance, impacts performance

105

measurement, real-life lessons, enthusiasm, soliciting feedback, engagement, pride in

work, dev problems, ambitious, beyond scope, experimenting, skill evidence, perception

of assessment, and attitude/perception.

Figure 4.8 Delve Codes Export to Excel

Figure 4.9 Second Coding Cycle in Excel

 In subsequent rounds of coding, categories were created in Excel with the

research questions in mind. Excel was also used to track which categories were

106

subsumed by new categories, as shown in Figure 4.10. Impacts performance and beyond

scope included codes, such as unfair assessment, that interfered with participants’ ability

to demonstrate skills or knowledge; therefore, they were subsumed by hurting

performance. Dev problems contained instances of participants who struggled initially

but later demonstrated skills or knowledge following appropriate scaffolding. Thus dev

problems was renamed scaffolding. Drop was created to hold codes that did not seem

relevant such as expected multiplayer.

Figure 4.10 Second Cycle Transition Notes One in Excel

Self-concept, learning at school, learning outside school, future participation, and

importance related directly to the survey subscales. The hybrid process of inductive and

deductive coding allowed themes to emerge from the data through inductive coding and

the analysis to be guided by the research questions serving as a priori templates (Fereday

& Muir-Cochrane, 2006). Codes from attitude/perception that dealt with a change in

attitude during the intervention were moved to the categories corresponding to the survey

subscales. Using resources, ambitious, and experimenting included codes, such as ability

to dig deeper, that demonstrated confidence in the participants’ knowledge and skills;

they were subsumed by self-concept. Enthusiasm, soliciting feedback, engagement, and

pride in work contained codes, such as excited about progress, that demonstrated positive

107

attitudes during the intervention at school; they were subsumed by learning at school.

Real-life lessons contained codes, such as ignoring game instructions, demonstrating

participants’ understanding of how computer science impacted individuals or society

outside of school; real-life lessons was subsumed by importance. Codes from

attitude/perception, such as good attitude → try to fix problems, that implied a

relationship between attitude and performance were moved to attitude performance

relationship.

 In the next round of coding, codes were categorized in Excel. The coding

structure in Excel was then applied to the codes in Delve. Category changes were tracked

in Excel, as shown in Figure 4.11. The codes that reflected a positive change in self-

concept were moved from self-concept to pos self-concept, while the codes that reflected

a negative change in self-concept were moved from self-concept to neg self-concept. For

example, good at coding was categorized as pos self-concept, and cs is complicated was

categorized as neg self-concept. The codes that reflected a positive attitude change in

learning at school were moved to pos learning at school, while the codes that reflected a

negative attitude change in learning at school were moved to neg learning at school. For

example, doing is fun was categorized as pos learning at school, and don’t enjoy class

was categorized as neg learning at school. Learning outside school and future

participation indicated changes in attitude beyond the intervention and were subsumed

by sparked interest. Some codes, such as time with error correlated with level of

struggle, that revealed a relationship between attitude and performance were moved from

self-concept to attitude performance relationship.

108

Figure 4.11 Second Cycle Transition Notes Two in Excel

 After a peer-debriefing session with Dr. Arslan-Ari, another round of coding

examined the category attitude performance relationship. Subcategories were added to

provide additional information regarding the relationship of the 65 codes in the attitude

performance relationship category. Codes in attitude performance relationship were

categorized as (a) rolling with the punches, (b) negative att, (c) no relationship, (d)

general att, (e) intervention positive, (f) baggage, (g) success multiplier, and (h)

frustrating errors.

Third Coding Cycle

 Delve was used to categorize codes and develop themes in the third coding cycle.

Codes were exported from Delve to Excel to obtain code counts for each category. In

Excel, codes were grouped and collapsed for a summative view of themes and categories,

as shown in Figure 4.12. After a peer debriefing session with Dr. Arslan Ari, several

changes were made to the categories. As shown in Figure 4.13, the theme performance

improvements was created with the following categories: (a) transfer, (b) productivity, (c)

algorithm skills, (d) tool skills, and (e) +collaboration | learning from. Scaffolding and

skill evidence were removed as categories, and most of their codes were moved to

109

algorithm skills. To improve clarity, the label “problem,” which appeared in several of

the scaffolding codes, was changed to “scaffold.” Problem: object destruction was

changed to scaffold: object destruction and moved from scaffolding to algorithm skills.

Several codes from pos self-concept, such as performance task better, did not mention

attitudes and were moved to performance improvements. Table 4.15 contains a detailed

depiction of the progression of categories through coding cycles two and three and the

themes that emerged at the end of cycle three.

Figure 4.12 Grouped Codes in Excel at the End of Cycle Three

110

Table 4.15 Category Progression

Coding Cycle Categories

2 Using resources, Hurting performance, Impacts performance

measurement, Real life lessons, Enthusiasm, Soliciting feedback,

Engagement, Pride in work, Dev problems, Ambitious, Beyond

scope, Experimenting, Skill evidence, Perception of assessment,

Attitude/perception

2 Hurting performance, Scaffolding, Skill evidence, Drop?, Self-

concept, Learning at school, Learning outside school, Future

participation, Importance, Attitude performance relationship

2 Hurting performance, Scaffolding, Skill evidence, Drop?, Positive

self-concept, Negative self-concept, Positive learning at school,

Negative learning at school, Sparked interest, Importance, Attitude

performance relationship

3 Algorithm skills, Positive collaboration and learning from others,

Productivity, Tool skills, Transfer, Algorithm trouble, Factors

decreasing performance, Positive attitude at school, Negative attitude

at school, Importance, Positive self-concept, Negative self-concept,

Sparked interest, Nonpositive interest, Baggage, Frustrating errors,

General attitude, Intervention positive, Negative attitude, No

relationship, Rolling with the punches, Success multiplier

3 Themes: Performance improvements, Barriers to success, Positive

attitudes, Attitude performance feedback loop

111

Figure 4.13 Performance Improvements in Delve

 Hurting performance was dissolved into two categories: algorithm trouble and

factors dec performance. Algorithm trouble codes documented participants’ difficulties

with algorithms. Codes in factors dec performance documented factors that interfered

with participants’ ability to learn or perform. As shown in Figure 4.14, algorithm trouble

and factors dec performance were then added to the theme barriers to success.

Figure 4.14 Barriers to Success in Delve

 The theme changes in attitude was changed to the theme positive attitudes. Many

of the codes and participant statements did not specifically mention change. Some

categories represent negative attitudes, but the net attitudes reported by participants were

112

overwhelmingly positive. As shown in Figure 4.15, the theme positive attitudes

contained the following categories: (a) positive attitude at school, (b) negative attitude at

school, (c) importance, (d) positive self-concept, (e) negative self-concept, (f) sparked

interest, and (g) nonpositive interest. After a peer-debriefing session with Dr. Arslan-Ari,

“Learning” was judged to be a misleading name for a category with codes addressing

attitudes, but not learning. Therefore, Pos learning at school and neg learning at school

were changed to positive attitude at school and negative attitude at school, respectively.

Sparked interest contained codes for participants who expressed no interest in computer

science, such as no future interest. Those codes were placed in a new category,

nonpositive interest.

Figure 4.15 Positive Attitudes in Delve

113

 The category attitude performance relationship was developed into a theme and

renamed attitude performance feedback loop, as shown in Figure 4.16.

Figure 4.16 Attitude Performance Feedback Loop in Delve

 Several criteria were used for creating categories and determining which codes

had significance: (a) relevance to the research questions; (b) high frequency of related

codes; (c) counterevidence to the claims made in the study; and (d) insightful participant

comments, especially if they were unsolicited by the interview questions. Most

categories with fewer than 10 codes were either counterevidence or insightful comments.

Table 4.16 presents the thematic structure of analysis.

114

Table 4.16 Hierarchical Structure of Themes

Themes Categories Sample Codes

1. Performance

improvements

Algorithm skills

Applying knowledge→learning,

playtesting feedback→improvement,

initial

 Positive

collaboration and

learning from

others

teamwork improved, pair programming,

compromise, express all ideas, share

ideas,

 Productivity Code formatting for management,

improved time management

 Tool skills Good information on errors→easy to fix,

data type mismatch→unpredictable

behavior

 Transfer Math

2. Barriers to

success

Algorithm trouble MC test hard, concepts not sticking, no

algorithm example, coding is hard

 Factors decreasing

Performance

GDD missing the point, not using prior

work and not using resources and not

using docs and API useless,

3. Positive

attitudes

Positive attitude at

school

Enjoying CS, enjoying playing, playing

as reward, dread→custom game→eager

 Negative attitude at

school

Morning fatigue, random boredom, bugs

were a bummer, arguing, fighting like

siblings

 Importance CS helps people, AI accident, tech in

psychiatry, benefit: fix bugs, many

benefits

 Positive self-

concept

Going through the motions, not feeling

confused, self-reliance, scripted harder

 Negative self-

concept

Troubleshooting stressful, “I’m not a

coding type person”

 Sparked interest More CS classes, future interest

animation, future CS courses, Possible

jackpot

 Nonpositive

interest

Grasping future interest, no future

interest and not changing interest

115

Themes Categories Sample Codes

4. Attitude

performance

feedback loop

Baggage People talking → mad → decreased

performance, unmotivated →

unproductive, tired → unproductive

 Frustrating errors Persistent error → confusion, frustration

level depends on time to fix,errors →

anger

 General attitude Bad attitude → decreased learning, no

interest → decreased learning, good

attitude → better results

 Intervention

positive

Creative freedom → brain flow →

success, positive attitude → productive,

early low motivation → low attention

 Negative attitude Bad attitude → don’t care → accept low

scores, dislike coding → decreased

motivation

 No relationship No attitudes affected learning

 Rolling with the

punches

Quick fix errors → no frustration, initial

errors → neutral reaction

 Success multiplier Good attitude → try to fix problems,

want to learn CS → positive learning,

focus → learning

Presentation of Findings

 Qualitative data were recorded as field notes from observations and participant

interview transcripts. Twenty-eight participants were observed, and 12 of those

participants were interviewed. Four themes emerged from the qualitative analysis of the

data, as shown in Table 4.17: (a) performance improvements, (b) barriers to success, (c)

changes in attitude, and (d) attitude performance feedback loop. Quotations were

verbatim from participant interview transcripts or field notes that recorded participants’

conversations. Participants’ names have been replaced with pseudonyms or redacted to

ensure confidentiality.

116

Table 4.17 Description of Themes

Themes Assertions

1. Performance improvements Participants demonstrated performance

improvements during and after this intervention by

developing a digital game.

2. Barriers to success Many factors that were not directly related to the

intervention reduced the effectiveness of the

intervention.

3. Changes in attitude Participants’ attitudinal changes were

overwhelmingly positive throughout the

intervention.

4. Attitude performance

feedback loop

Participants’ attitudes and performance were

related and magnified each other.

Performance Improvements

 Most participants exhibited and reported performance improvements after this

intervention, as indicated by codes for performance improvements appearing 185 times

throughout the field notes and interview transcripts. All participants successfully

constructed a digital game and satisfied the minimum project requirements. All 12

participants who were interviewed reported performance improvements. For this study,

performance is defined as a demonstration of learning or application of a skill. Previous

research indicated that PjBL and GDBL were effective strategies for introducing

programming concepts (Erümit et al., 2020; Johnson, 2017; Theodoraki & Xinogalos,

2014). Participants were observed learning and applying computer science concepts

during the development of a digital game. After the intervention, participants reported an

increase in their computer science knowledge and ability to construct a digital game.

This theme is supported by five categories: (a) algorithm skills, (b) positive collaboration

and learning from others, (c) productivity, (d) tool skills, and (e) transfer.

117

 Algorithm Skills. The category algorithm skills represented participants’

increased ability to analyze and develop algorithms following the intervention.

Participants (n = 12) demonstrated or reported an increased ability to analyze and develop

algorithms after the intervention. These skills have some independence from the

GameMaker IDE and could be applied to other programming languages and IDEs.

Qianna said, “If I read like a paragraph on like, what to do, then I had to like, analyze it,

and like, break down the steps in order to do it.” The ability to evaluate a large problem

and separate it into manageable tasks is a fundamental skill in algorithm development

(Bowden, 2019; Committee on STEM Education of the National Science and Technology

Council, 2018). Julia reported learning iteration, “I learned how to make for loops, that

was a big one.” Jonie indicated success with analyzing sequencing, “We had to …

rethink about the question because … the numbers had to be in a specific order.”

Sequencing and iteration are fundamental constructs in algorithm development

(CollegeBoard, 2020b; Moreno, 2012). Annabelle stated that before the intervention, “I

copied the exact code word for word, maybe changed a couple of numbers. But that was

it. And now I can actually code some if I’m just following instruction [sic].” Pibb said,

“It’s [the intervention] helped me to … program my own code personally, like not having

to write off the template.” Annabelle’s description indicated little perceived learning

before the intervention. After the intervention, Annabelle and Pibb described the ability

to write software from requirements without starter code.

 Collaboration. The category positive collaboration and learning from others

provided evidence that collaboration skills improved. Jumaat et al. (2017) considered the

opportunity to work collaboratively as an essential PjBL element. Participants reported

118

improvements in their ability to collaborate effectively. Julia said, “We would switch off

each day while the other person would … put the code into the game, and their partner

read the code and tell the partner how to do it.” Jonie reported utilizing other participants

for help: “If I had like a bug in my game, and before asking you I would turn to

somebody beside me [to] see if they can help.” Pair programming and peer review have

the potential to improve code quality and speed when used correctly. Julia and Jonie

were able to improve their programming efficiency through collaboration.

Other participants reported improved teamwork and communication skills.

Annabelle said, “Teamwork was one thing I developed because I didn’t … like working

… with people.” Marlena said, “I guess taking this course was helping me become a

little bit more social towards other people in my class.” Marlena also said, “The

computer science course … involves to listen [sic] to other people’s opinions.” After

discussing sharing ideas between partners, Aleesha explained that it was important to

share ideas “so you can make games you both want to make. So it’s not just one-sided.”

These comments demonstrate that participants developed an appreciation for others’

opinions and a willingness to compromise.

 Productivity. The category productivity provided evidence of productivity

increases that were not directly related to algorithm analysis and development or

GameMaker. In this study, productivity refers to the ratio of correctly implemented game

behaviors to development time. Participants were not explicitly asked about productivity,

but Pibb and Julia mentioned productivity improvements when asked about what skills

participants were expected to learn. Pibb said, “Indenting, when you get to coding a lot

… you can have like huge pages worth of code, and it can get really hard to manage, but

119

indenting helps me see … what affects the other thing.” Indentation is not required by

the GameMaker compiler, but it is a useful coding convention for indicating that code

blocks belong to control structures. As Pibb indicated, when the codebase grows,

indentation improves the readability of the code. Pibb said that the intervention helped

with understanding “how to manage the time I have with programming because we really

didn’t have … too much time to work on it.” Julia said, “It [the intervention] also

improved my time management because I knew I had to get it done.” Participants were

given a strict development schedule to guarantee that they had a working game by the

end of the intervention. When Pibb and Julia claimed that the intervention helped with

their time management skills, they were probably referring to the deliverable schedule

provided with the project directions.

 Tool Skills. The category tool skills documented skills related to the GameMaker

language and IDE. Unlike algorithm skills and productivity, tool skills were limited to

GameMaker and would not necessarily transfer to another development environment or

programming language. Bree said, “I feel like I’m a lot faster. … I know where

everything is on GameMaker.” Adding specificity, Bree said, “Debugging and using the

search and replace is very helpful for us.” Bree reported increased development

efficiency due to increased familiarity with GameMaker. Qianna made a similar

comment, “With GameMaker, it’s like you can do like so much more with it … it seems

like you can do anything with it.” Like Bree, Qianna expressed increased familiarity with

GameMaker and an increased ability to produce desired results.

 Transfer. The transfer category characterized the way in which learning in the

intervention enhanced learning in areas outside of computer science. One participant

120

commented on transfer. Participants were not asked about the perceived benefits that the

intervention had in other subject areas. When asked about game development or

programming skills acquired during the intervention, Abegail stated, “It also helped me

with math a little too.” Programming is expected to have a positive transfer effect on

mathematical skills (Scherer et al., 2019). Abegail could not provide significant detail

regarding mathematical skills that benefitted from the intervention. When prompted,

Abegail responded, “X and y values? And sometimes you have to multiply, divide.” All

participants were enrolled in an algebra one mathematics course during the intervention.

Some topics that appeared in the intervention and the algebra one course were (a) the

Cartesian coordinate system, (b) rates of change, and (c) linear relationships.

Barriers to Success

 Participants experienced some difficulty with mastering concepts and

implementing their games during the intervention, as indicated by codes for barriers to

success appearing 73 times throughout the field notes and interview transcripts. Nine

participants reported barriers to success in the interviews. Barriers to success were

expected; previous research stated that programming is challenging for students (Alturki,

2016; Cheah, 2020; Javidi & Sheybani, 2014; Végh & Stoffová, 2019). A small number

of statements indicated problems with algorithm analysis and development, which the

intervention directly targeted. The vast majority of barriers to participants’ success

involved factors that were not directly related to the concepts or activities the intervention

intended to address. This theme is supported by two categories: (a) algorithm trouble

and (b) factors decreasing performance.

121

 Algorithm Trouble. The category algorithm trouble provided evidence of

participants (n = 4) who struggled with algorithm analysis and development. Teddie said,

The multiple choice one - I think it was a little hard for me. … I did better on the

performance test. I understood the code more, and I knew I understood what I

was supposed to do better than when I first did it.

Teddie’s declaration that the multiple-choice test was hard indicates difficulty with

analyzing algorithms. Her relative success with the performance test shows that she was

able to develop algorithms from requirements written in natural language. However,

Teddie was unable to provide an example of an algorithm from the project: “I don’t think

I’d be able to give you an example. What do you mean by like algorithm, because I think

that was one of the requirements right to make like an algorithm?” The researcher

supplied Teddie with a definition of algorithm, but Teddie was still unable to produce an

example. Teddie implemented several algorithms in the custom project. Teddie may

have been anxious during the interview and had probably never integrated a useful

algorithm definition. Some participants initially appeared confused when asked for an

algorithm example, but almost all immediately provided an example when given a

description of an algorithm.

 Annabelle expressed an inability to retain concepts, “It’s not sticking completely

… how to do it isn’t going to stick for like the next 20 years. … [concepts and skills]

from the pinball game didn’t stick with me when I was working on the custom project.”

An expectation that programming concepts will stick for 20 years without reinforcement

is probably unreasonable. However, Annabelle’s following observation is essential. The

pinball game was completed before the intervention, and the custom game was part of the

122

intervention. Participants were provided a codebase and detailed instructions for

modifications to achieve desired game behavior. Annabelle expressed an inability to

apply the techniques in the pinball game to the custom project. Annabelle said, “Coding

is hard, and [I] don’t want to pursue any sort of career that involves computer science.”

Abegail echoed Annabelle’s statement about the difficulty of coding, “I didn’t know how

hard it was to actually code a game.” Abegail also said, “It’s [the intervention] been

pretty effective, I would say because I went into the course knowing absolutely nothing,

but now I know a lot more than I did at the beginning.” The contrast between

Annabelle’s and Abegail’s statements was striking. Both found coding difficult.

Annabelle’s reaction was adverse, and Annabelle decided to avoid computer science.

Abegail’s reaction was one of appreciation for the difficult work of programming a game.

 Factors Decreasing Performance. The category factors decreasing

performance provided evidence of behaviors and misunderstandings that decreased

participants’ (n = 7) performance. Many factors decreased participants’ performance in

the intervention. Instances of participants’ failing to utilize previous work and examples

were documented in the field notes. Participants were instructed to keep a coding

“cookbook” with common development and debugging procedures. Participants got

stuck on problems that were nearly identical to previously solved problems. The

researcher observed that few participants were utilizing their cookbooks when

developing. The researcher would ask for their cookbooks when they asked for

assistance on previously solved problems. Participants were rarely able to locate their

cookbooks, indicating that the cookbooks were not utilized.

123

 Wasted time due to off-task behavior was infrequent but observed during the

intervention. Typical off-task behaviors were playing or messaging on smart devices and

completing work for other courses. The intervention took place during the participants’

first period; if they failed to complete homework the previous day, they would attempt to

complete it during the first period. Development errors precipitated some of the off-task

behavior. The following participant statements are examples of this problem.

• Aleesha: “When we got a bunch of errors, it kind of made us want to stop.”

• Marlena: “If I couldn’t do it, I’d give up.”

• Jonie: “Like five to 10 minutes [before I give up because of an error].”

• Monster Fan: “If you like touched, you know, supposed to disappear just wasn’t

disappearing. … I just forgot to put in the line of code. … And so you goof off a

little bit.”

Participants were given heuristics for identifying and resolving errors. Unfortunately,

several participants were not using the heuristics effectively.

Some participants exhibited frustration with the researcher’s attempts at

scaffolding because the researcher would not solve problems for participants. Instead,

the researcher tried to lead participants to the information that would help them.

Annabelle expressed this frustration:

When there were some errors that we couldn't figure out, we tried to get you to

help, but … you're talking to us like we're college students on like, almost senior

level in college, and we're like down all the way down here. And … you didn't

give us enough information on how to do what you were saying. And so when we

ran into an error that we couldn't figure out, and we kept asking you for help, and

124

you kept giving us answers, and we tried to implement what you said. But we

couldn't because … we didn't understand how to do it completely. Because

neither of us are … people who want to code. … It affected learning and doing

code. … Maybe instead of explaining what we need to do, try explaining how we

need to do it.

Annabelle stopped caring about understanding the content; she just wanted the errors

fixed. Annabelle’s comment about “talking to us like we’re college students” indicated a

vocabulary deficit or a lack of prerequisite knowledge from previous units. The

researcher’s explanations may have demanded excessive cognitive load from this

participant.

Positive Attitudes

 For this study, attitudes were defined as beliefs, evaluations, or emotional

responses toward ourselves, an object, an idea, or a person (Giannakos, 2014; Saldaña,

2021; Simonson, 1979). Of particular interest were attitudes toward computer science

specified by the subscales in the associated survey: (a) self-concept, (b) learning at

school, (c) learning outside of school, (d) future participation, and (e) importance.

Previous research suggested that participants’ attitudes would improve following a game

development-based learning intervention (Çelik et al., 2018; Doman et al., 2015;

Theodoraki & Xinogalos, 2014). The positive attitudes theme is supported by seven

categories: (a) positive attitude at school, (b) negative attitude at school, (c) importance,

(d) positive self-concept, (e) negative self-concept, (f) sparked interest, and (g)

nonpositive interest. These categories represented attitudes that were not directly

connected to performance, although relationships to performance could have been

125

inferred. Codes representing a direct relationship between attitudes and performance

were represented in the attitude performance feedback loop theme.

 Positive attitudes were coded in the categories (a) positive attitude at school, (b)

positive self-concept, and (c) sparked interest. Participants reported net positive attitudes

after the intervention, as indicated by codes appearing 192 times throughout the interview

transcripts and field notes in the positive categories. All participants reported positive

attitude changes.

 Negative attitudes were coded in the categories (a) negative attitude at school, (b)

negative self-concept, and (c) nonpositive interest. Negative attitudes appeared 32 times

throughout the interview transcripts and field notes in the negative categories. Seven

participants reported negative attitudes. Annabelle was the only interview participant

whose attitude was consistently negative. Annabelle’s interview transcript contained 18

of the 32 negative attitude codes.

 Importance was considered a neutral category. Codes relating to the importance

of computer science appeared 66 times in the interview transcripts and field notes. All

participants felt that computer science was an important subject.

 Positive Attitude at School. The category positive attitude at school captured

participants’ expressions of positive attitudes during the intervention while in the

computer science class. Participants’ attitude toward computer science at school during

and after the intervention was remarkably positive. Before the intervention, participants

completed games with predefined rules and gameplay. Qianna said, “In the beginning …

I didn't want to do it [program digital games] because it wasn't like [I didn’t like] the

games that we were doing. I wasn't interested.” Participants found the games before the

126

intervention boring because they had no input into the game design. During the

intervention, observations were recorded in the field notes of participants enjoying the

creation of their games. In the interview, participants were asked if they enjoyed any

aspects of the intervention:

Oakley: We had the freedom to do whatever you want.

Aleesha: Being able to do whatever we wanted without restrictions.

Jonie: When we were trying to figure out what like what aspects to add to

the game. … So I feel like that part was the fun part. We just kind

of messed around with a bunch of stuff.

Bree: I do like the custom game cuz [sic] I feel like you can do anything

with the game like that.

Qianna I did enjoy developing my game because I thought it was fun

because I got to do what I wanted to do.

Participants viewed the creative freedom of the custom game very favorably. They also

enjoyed experimenting with features and gameplay.

 Participants were eager to start class during the intervention. Teddie said, “First

period is definitely the class I look forward to the most compared to other classes.”

Abegail said, “Well, it's the first class. I'm tired, but … the thought of going to the class

… makes the beginning of my day a little bit better.” Pibb stated,

At the end of class every day, I'd suddenly get a new idea. And it'd be terrible

because I had to leave. But the next day, I'd have that idea fresh in my mind. So I

was excited to put it in and try and get it to work.

127

Participants were noticeably more enthused about class during the intervention than they

were before the intervention.

 Participants became especially animated when they were able to playtest each

others’ games. The room was filled with laughter and smiles during the playtesting

phase. Following are remarks recorded in the field notes while participants were

playtesting near the end of the intervention:

• “Can I playtest other games?”

• “What are your comments? We need player comments!”

• “Wanna play?”

• “One last time!”

Participants found the gameplay fun, but they also took pride in their work and were

eager to show their games to their peers. Pibb recalled, “See that really come through

and finally beat [name redacted], I was really, really exciting [sic].” Pibb is referring to

his artificial intelligence system beating a human player. In another instance, Pibb

described adjusting the playability to make the game easier, “At first we didn’t really

give you any chance … I ended up giving three extra rockets. … It’s just so much fun

seeing that come through in the end.” Most participants cared deeply about others

enjoying their games. They found that playability was subjective and challenging; too

easy or repetitive was boring but too hard or unpredictable was frustrating.

 Negative Attitude at School. The category negative attitude at school captured

participants’ expressions of negative attitudes during the intervention while in the

computer science class. Participants expressed negative attitudes toward computer

science after the intervention. The intervention occurred during the first period of the

128

day, just after 8:00. Some participants reported fatigue. Monster Fan said, “You know,

with it being in the morning, I feel kind of like … groggy.” Abegail said, “Well, it’s the

first class. I’m tired, but … the thought of going to the class makes … the beginning of

my day a little bit better.” Tired participants found focusing more challenging and did

not perform at their best.

About half of the codes recorded in this category came from the interview with

Annabelle. Annabelle said, “I hated coding – all of it. … If you’re not one of those

people who’s just like, instantly clicks. … I don’t understand how other people would

choose to do it in life.” Annabelle disliked everything about the whole class, not just the

intervention. Annabelle did not enjoy the content, and held the misconception that

programming was a native ability. Annabelle was aggravated by the environment as

well, from the “freezing” room to the “really annoying kids.” Annabelle described

working with a partner “like working with one of my sisters on literally anything

argumentative.” Annabelle’s attitude and entire experience were very negative.

 Importance. The importance category captured participants’ attitudes toward the

importance of computer science. All participants felt that computer science was an

important field with significant personal or societal impacts. Automation was seen as

both potentially beneficial and harmful. Bree said, “It [self-driving cars] can be helpful

to certain people that like can’t drive.” Jonie said, “For surgeries and stuff, if a robot is

better, then computer science would need to be in that department.” These participants

predicted beneficial effects of computer science. Abegail worried that “it [robots] could

put people out of jobs.” Marlena agreed: “Many people could be losing their jobs

129

because of technology.” These participants worried that technology could create high

unemployment.

 Positive Self-Concept. The category positive self-concept provided evidence of

participants’ positive self-concept after the intervention. Participants reported a net

positive self-concept toward computer science after the intervention. For this study, self-

concept was defined as participants’ beliefs regarding their competence in mastering

computer science (Shen et al., 2014). Participants expressed confidence in their

computer science knowledge and ability to program. Pibb said, “I enjoy doing it

[computer science]. And it seems like I'm pretty good at it.” Teddie said, “In general, I

was able to improve not only the code but my opinion on programming.” Bree, who

struggled before the intervention, said, “I don’t feel like I’m very confused on anything

anymore.” Participants were aware of how much they had learned.

 Participants became more self-reliant after the intervention. Qianna said, “Instead

of just sitting there not like doing anything, … I like look it up online so that I can learn

how to do it myself.” Marlena compared previous projects, which had detailed

development steps, to the custom game where “I had no type of steps. … I had to figure

out that by myself.” Pibb said, “It [the intervention] really, really helped me understand

… how to do things completely on my own with no instructions.” Before the

intervention, participants would passively wait for the researcher to solve problems for

them. After the intervention, participants gained the confidence to problem solve on their

own or collaboratively with other participants.

 Negative Self-Concept. The category negative self-concept provided evidence of

participants’ negative self-concept after the intervention. Some participants expressed a

130

negative self-concept following the intervention. Annabelle said, “I’m not a coding type

person. … My brain doesn’t work that way.” Oakley said, “The troubleshooting part was

stressful, but in the end, you know, we got through it.” Annabelle had a low perceived

computer science competency. The reason provided by Annabelle was a lack of native

ability. Oakley described troubleshooting as stressful but acknowledged success in the

end. Like Oakley, other participants reported negative emotions when dealing with

errors. Reports of negative emotions related to performance decreases were categorized

as frustrating errors.

 Sparked Interest. The category sparked interest provided evidence that

participants had an increased interest in computer science after the intervention.

Participants expressed interest in computer science outside the classroom or in the future.

Marlena described working on the custom game:

There was this one time where I had … a really major error in our soccer game

that I was talking about, and it got to the point where I came home one day and

actually searched it up and took like, like some 20 minutes I think to like, search

up how to solve a problem and then yeah, something that … I used to not do.

Pibb compared his mathematics and computer science experiences:

I don't know how I'm good at programming but so bad at math. … I don't really

work on the stuff [mathematics] at home. … Game design is one of those few

classes [I] will like want to work on things at home.

Marlena and Pibb described working on their custom projects outside of class. Pibb

attributed his relatively poor performance in mathematics and good performance in

computer science to the extra time Pibb spent programming at home.

131

 Participants discussed future interests in computer science. Qianna said, “I feel

like because of this class, I might take one like a computer science class in high school,

because I thought it was interesting, but I would think it'll help with like the job I want to

do.” Jonie detailed a change in interest:

Well, when I walked into this class, I had no interest in computer science at all,

but this class has made me think that maybe I might want to do something when I

go to college with computer science just because it was fun.

Teddie’s future interest was “kind of like a hobby that I will just do in my free time.”

Participants declared interest in taking future computer science classes in high school and

college as well as interests as hobbyists.

 Nonpositive Interest. The category nonpositive interest provided evidence that

participants showed no increased interest in computer science after the intervention. Two

participants showed no interest in computer science outside of the classroom. Bree

described how her interest in computer science changed as “not really much. … I don’t

think I’m really gonna stay in that.” When describing her aversion to computer science,

Annabelle said,

Coding is hard, and [I] don’t want to pursue any sort of career that involves

computer science. … I’m learning something [computer science] that I’m never

going to do. … I have no plans to follow any computer science in my life.

While Bree’s response might indicate no change in interest, Annabelle’s interest declined

severely. When asked about future interest in computer science, Abegail said, “I don’t

know if this applies for being a psychiatrist in the medical field. You have to use a lot of

technology in order to be able to do that.” Abegail’s response acknowledged that

132

technology would be hard to avoid, but Abegail did not reveal an increase in interest in

computer science.

Attitude Performance Feedback Loop

 Participants reported a strong relationship between attitude and performance, as

indicated by codes for attitude performance feedback loop appearing 69 times throughout

the field notes and interview transcripts. All 12 participants who were interviewed

reported a relationship between attitude and performance. A feedback loop between

attitude and performance was inferred from participants’ interview responses. For this

study, feedback loop was defined as a system that returns a portion of the output signal of

the system to the input of the system (Spencer, 1994). According to participants, their

performance influenced their attitudes, and their attitudes influenced their performance.

Previous research suggested that attitude and performance were correlated (Alvarez et al.,

2019; Çelik et al., 2018; Gurer et al., 2019). The theme attitude performance feedback

loop is supported by eight categories: (a) baggage, (b) frustrating errors, (c) general

attitude, (d) intervention positive, (e) negative attitude, (f) no relationship, (g) rolling

with the punches, and (h) success multiplier.

 Baggage. The category baggage provided evidence that participants arrived with

negative attitudes unrelated to the class or intervention. Participants arrived with

baggage before class began. Likewise, the cause of baggage was outside of the class.

Participants reported being tired, irritated by other students, or generally unmotivated

when they entered class. These attitudes negatively affected their performance. Abegail

described a typical early morning experience:

133

I get aggravated really easily, so when people like in the hallways are trying to

talk to me, I’m just not having it. Then … I’ll go into the classroom mad, so it’s

gonna affect how I perform for that first part of class.

Bree described being tired and unmotivated: “If I’ve come in like tired, or like I just don’t

want to do it, it’s just kind of hard to get through it.” The negative attitudes that

participants brought to class hurt their performance and could not be controlled by the

intervention.

 Frustrating Errors. The category frustrating errors provided evidence that

project defects caused participants (n = 9) to feel anger, confusion, and frustration. Pibb

recounted troubleshooting logic errors,

I’ll start with the feeling of desperation. … I didn’t know what was going on. So

I just be sitting there. So so frustrated that I didn’t really have the motivation to

work anymore. … The most frustrating type of error is when it’s like I guess I call

it a soft error [logic error]. … Those are the most frustrating to work on. … When

you’ve got like one of those soft errors [logic errors] where it’s not breaking the

game, but something’s wrong, it can get really frustrating, and … it can get … rid

of a lot of the motivation to work on it. … When it comes out to like your brutal

errors … that take days to fix, it’s really demoralizing.

Julia recalled frustration with errors that could not be fixed quickly, “If I couldn’t fix it, it

was kind of frustrating.” Marlena made a similar comment, “It was like really frustrating

because we had no idea how to like solve the problem.” Qianna described frustration

with runtime errors,

134

I feel like it would tell me where the problem was. But it wouldn't tell me like

what the problem was. … I knew where it was in the error when the box popped

up. It told me what lines, and it had like the actual code that was there, but when I

went to it, it just had like the error, and I didn't know how to fix it, so that was

frustrating.

Most of the scaffolding the researcher provided during the intervention was an effort to

address defects that participants were experiencing with their games. Most participants

quit working when the researcher assisted them and were visibly frustrated. Logic errors

induced the highest level of frustration in participants because GameMaker provided no

information on the error. Most participants were better able to deal with compiler errors

and runtime errors because GameMaker identified the problem code. See Figures 4.17,

4.18, and 4.19 for examples of compiler and runtime error messages from GameMaker.

The negative feelings that participants experienced caused them to shut down, which

negatively affected their performance.

Figure 4.17 Compiler Error Symbol in GameMaker

135

Figure 4.18 Compiler Error Window in GameMaker

Figure 4.19 Runtime Error Window in GameMaker

 General Attitude. The category general attitude contained general views that

participants offered on how attitudes affected learning and performance. Oakley

observed,

136

I definitely think if you really want to learn about computer science, you will

learn something, and you will enjoy it. But I think if you come [to] the class and

think, oh, I don’t want to do this, you’re not gonna learn anything. … I think if

you had a bad attitude, you wouldn’t really want to learn anything.

Oakley implied that students decide in advance, though perhaps not consciously, to learn

and enjoy material.

Annabelle’s view on attitude affecting learning was,

With not wanting to code … it's something you're not going to want to learn, and

that affects your ability to remember it and share it because it's happened [in]

multiple different classes. It's not just coding. When you don't want to do it, it's

not going to stick, and it's not something you want to … stick.

Annabelle believed that students would have a reduced ability to remember material

without a desire to learn. Annabelle took this a step further by stating that students would

not want to remember things that do not interest them. Abegail said, “If I go into the

course with a good attitude, then I’m more likely to … leave the class with better results.”

Abegail believed that a good attitude would improve performance.

 Intervention Positive. The category intervention positive provided evidence that

the intervention improved participants’ attitudes, which was related to performance

improvements. When asked if any attitudes toward computer science affected her

performance, Aleesha said, “When we got the part [the custom game] that I did enjoy, I

worked harder towards what I want to do. Aleesha claimed that because she enjoyed the

intervention, she worked harder. Because of the question Aleesha answered, her

response implied that her performance improved. Aleesha also said, “When we first

137

started [before the intervention], it wasn’t as fun, but now, when we were working on our

custom games that we were more like independent and knew how to do stuff, it was fun.”

Aleesha described the intervention as fun in relation to her improved performance.

Aleesha asserted that her performance and attitude were related. Bree linked her attitude

to productivity:

When I look forward to it, … it goes by smoother, like I can actually code and get

stuff done. … If I’ve come in like tired or like I just don’t want to do it, it’s just

kind of hard to get through it.

Bree reported an improvement in performance when her attitude was positive. When her

attitude was negative, she reported difficulty making progress.

 Negative Attitude. The category negative attitude provided evidence that

negative attitudes reduced performance. Oakley noted, “Games like [the] 31 game, I had

a bad attitude. So when things like the algorithm was messed up, I just didn’t care, and I

was like, I’ll be fine. I’ll just let my score go down.” The 31 card game, also known as

Scat, was implemented before the intervention. Oakley recognized errors in his

algorithms but ignored them because of his negative attitude. Oakley knowingly

accepted a reduced grade on the assignment because he didn’t care about the assignment.

 No Relationship. The category no relationship documented one case of a

participant who was unable to relate an attitude to performance. When asked if any

attitudes affected her ability to learn in the computer science course, Aleesha responded,

“Not really.” Aleesha did not believe that her attitude was related to her learning.

However, as reported above, Aleesha cited specific instances of her attitude changing

with her performance.

138

 Rolling with the Punches. The category rolling with the punches provided

evidence that participants were able to experience errors without a decline in attitude for

short periods. Participants were able to tolerate errors for five to 10 minutes before they

experienced frustration and other negative emotions. When asked about troubleshooting,

Jonie said, “I would get very frustrated if I couldn’t find where the error was. … I get

frustrated, and … my brain would shut off.” When asked how long it would take for her

to feel frustrated, Jonie responded, “Like five to 10 minutes.” Pibb described the

troubleshooting process,

So like when I first see an error, I just kind of [feel] neutral about it. … When it

comes to like areas where it actually shows you where it is and what’s going on, it

becomes a lot easier to fix because … you see where it is and you see like the

error code, so it tells you what’s going on. … It really depends on like, how long

it takes to fix. … [If] it only takes… like 10 minutes to fix, it’s not that bad. … I

… start out pretty fine when it comes to those errors. Like I don’t really care if it

takes like 10 minutes.

Jonie and Pibb estimated a 10-minute time frame for troubleshooting defects before they

experienced frustration, suggesting that negative attitudes did not accompany simple

errors. The ability to quickly locate errors was another critical factor in their

troubleshooting experience. GameMaker provided detailed information on the location

of syntax and runtime errors, which allowed participants to identify problematic code.

Most of the frustration was related to troubleshooting logic errors, which GameMaker

was unable to recognize.

139

 Success Multiplier. The category success multiplier provided evidence of

participants’ (n = 8) who experienced a cycle of success, followed by an attitude

improvement and further success. For example, when Pibb described his experience after

fixing “brutal errors,” he said, “I’m just really relieved. … You’re like praising the Lord.”

Similarly, Abegail said, “When I figured out the problem, I feel relieved.” Pibb also

described success producing feelings of “happiness” and satisfaction. Pibb went on to

describe a specific error with implementing step events, “When I was having an issue

with step events, … [that] helped me get more of an understanding of step events. … I

understand how they work now and … fixing those errors … helps me understand more.”

Julia also commented on successful troubleshooting, “Once I fix the error, it was felt

rewarding.” Pibb and Abegail felt relief after solving a challenging problem. Pibb also

gained a better understanding of the concept causing the problem. This feeling of relief

and improved understanding plausibly contributed to subsequent successes. Julia

reported a rewarding feeling when errors were resolved. Julia added, “Near the end [of

the intervention], I started to like understand it more. So my attitude got a little better,

and it was a lot more enjoyable.” Once again, Julia related success and improved

attitude.

 After the intervention, Teddie commented on attitudes that influenced his

performance and learning,

I enjoy computer science very much, which I think allows me to think about what

I need to do better because if I didn't enjoy the course then my creativity for what

to do next would be much more limited. … I think very highly of computer

science. I think … it's really great. I like it a lot, which allows me to … pay more

140

attention to what I'm doing and to notice small things that I wouldn't normally be

able to notice if I didn't enjoy it.

Monster Fan made a similar comment, “I reckon because of my own like, you know,

enjoyment of code, and it’s probably making me more productive.” Teddie credited his

enjoyment of computer science for improved thinking, creativity, and focus, which led to

learning and performance improvements. Like Teddie, Monster Fan credited his

enjoyment of code with increased productivity.

Qualitative Results Summary

 Participants reported performance improvements after the intervention. The field

notes from observations during the intervention recorded evidence of acquired skills and

successful implementation. Participants experienced barriers to success, some of which

the intervention could not control. Participants reported positive and negative attitudes

after the intervention. There was a large net positive change in participants’ attitudes.

Participants reported a feedback loop between attitude and performance. The feedback

loop was positive in some cases and negative in others. Failures in performance tended

to accompany negative attitudes. Successful performance tended to accompany positive

attitudes. Participants reported a positive correlation between attitude and performance.

The next chapter will discuss the implications of these results.

141

CHAPTER 5: DISCUSSION, IMPLICATIONS, AND LIMITATIONS

 The purpose of this action research was to implement a digital game development

project and describe its effects on the performance and attitudes of eighth-grade students

in a required computer science course at South Carolina School District Alpha. This

chapter discusses the findings in relation to the research questions and literature on

introductory CS courses. Participants’ attitudes and content knowledge assessment

scores rose significantly after the intervention. A positive correlation was found between

participants’ post-intervention attitudes and content knowledge assessment scores. Four

themes emerged from the data analysis (see Table 4.17). Effects of the intervention on

participants were reflected by (a) performance improvements, (b) barriers to success, (c)

positive attitudes, and (d) attitude performance feedback loop. Quantitative and

qualitative methods were utilized for data collection and analysis. Following is a

discussion of the research questions, implications of the research, limitations of the

research, and conclusion.

Discussion

 The quantitative and qualitative findings were evaluated together to answer this

study’s research questions. Previous research on PjBL, GDBL, CS instruction, attitudes,

and performance helped with understanding the findings. Each research question was

discussed in detail below to examine the findings: (1) How does the game development

project impact participants’ ability to analyze and develop algorithms? (2) What is the

effect of the game development project on participants’ attitudes toward computer

142

science? and (3) What is the relationship between participants’ attitudes toward computer

science and their performance?

Research Question 1: How Does the Game Development Project Impact

Participants’ Ability to Analyze and Develop Algorithms?

 South Carolina School District Alpha needed to develop instructional methods for

students who are required to take an introductory CS course. Algorithm analysis and

development, a subset of programming, was the most difficult aspect of CS for students

to master (Culic et al., 2019; Erol, 2020; Végh & Stoffová, 2019). The findings of this

study aligned with previous research suggesting that two sets of instructional strategies

would improve performance in CS: (a) PjBL and (b) GDBL (Blumenfeld et al., 1991;

Çelik et al., 2018; Erümit et al., 2020; Javidi & Sheybani, 2014; Wu & Wang, 2012).

Research question one investigated the impact of the intervention on participants’ ability

to analyze and develop algorithms. Performance improvements related to research

question one included (a) algorithm skills and (b) productivity and tool skills.

Algorithm Skills

 A content knowledge assessment was used to quantitatively measure the change

in participants’ ability to analyze and develop algorithms. The content knowledge

assessment consisted of a multiple-choice test worth nine points and a performance task

worth fifteen points. A pretest was administered before the intervention, and a posttest

was administered after the intervention. Twenty-seven of the 28 participants improved

their content knowledge assessment scores after the intervention. One participant

received the same pretest and posttest scores. There was significant evidence suggesting

that the intervention increased assessment scores with a large effect size. The findings

143

aligned with previous research suggesting that GDBL with GameMaker involving

students working in pairs was successful in teaching introductory programming (Javidi &

Sheybani, 2014; Jenson & Droumeva, 2016).

 Jenson and Droumeva (2016) conducted a study using GDBL with GameMaker in

Ontario, Canada. Participants were 67 students in grade six. The intervention was

conducted over six days for a total of 15 hours. A 16-item test was administered before

and after the intervention. The average score improved from 6.7 before the intervention

to 9.3 after the intervention out of 16 total available points. This study confirmed the

findings of Jenson and Droumeva that GDBL improves performance.

 Amaya Chávez et al. (2020) conducted a quasi-experimental study comparing

problem-based learning (PBL) to lecture-based instruction. Participants were first-year

undergraduate CS and engineering students. The control group contained 40 participants,

and the experimental PBL group contained 39 participants. The percentage of passing

scores after the intervention was 60% and 79.49% in the control and experimental

groups, respectively. Amaya Chávez et al. found that the difference in passing scores

was significant. PBL elements in the Amaya Chávez et al. were similar to the PjBL

elements in this study. In both studies, participants (a) analyzed a problem to be solved

and identified relevant material from the course, (b) researched learning content required

to solve the problem, (c) reported potential solutions and ongoing issues with the

problem, and (d) reflected on the solution to the problem. This study confirmed the

findings of the Amaya Chávez et al. study: PBL and PjBL improve participant

performance.

144

 Qualitative findings confirmed the quantitative findings. Participants successfully

decomposed large problems into smaller solvable problems. Evidence of participants

decomposing problems was recorded in the field notes and interview transcripts.

Evaluating a large problem and separating it into manageable tasks is a fundamental skill

in algorithm development (Bowden, 2019; Committee on STEM Education of the

National Science and Technology Council, 2018). Seven participants described the

intervention as effective in helping them learn to program. Eleven of the 12 participants

interviewed were able to describe improvements in their ability to write algorithms to

solve problems. Participants described both general and specific algorithm development

skills: (a) solving problems independently, (b) handling collisions, (c) making instances

move, (d) programming a delay for instance creation, and (e) randomizing which

instances were created.

 Before the intervention, participants were given predesigned games to modify or

implement. Participants were provided with code when algorithms were required for

novel game behavior. When presented with a requirement for game behavior identical to

that of a previous game, participants were expected to write the algorithm without the aid

of solution code. Participants were able to review code from previous games, so they

were not forced to develop original algorithms. The results of the content knowledge

pretest indicated that the instruction before the intervention was not effective in helping

participants learn to analyze and develop algorithms. Participant interviews revealed that

many participants felt lost and confused at the beginning of the intervention. Participants

reported that the templates provided in games before the intervention did not help with

learning to code. They struggled to reproduce algorithmic solutions that had previously

145

been provided to them. After the intervention, participants gained the ability to develop

algorithms without the aid of a template.

 Johnson (2017) suggested several instructional strategies to support students

during game development: (a) demonstrate coding solutions for common game

mechanics and associated programming constructs, (b) assign small programming tasks

that require students to extend functionality or correct errors, and (c) train students to

read error messages and resolve errors. Deficiencies in participants’ knowledge and

skills were identified; guided instruction was developed to address the deficiencies. The

multiple-choice assessment identified problems with analyzing selection statements and

iteration. The performance task revealed that participants could create sprites, objects,

and instances in GameMaker; however, participants were unable to implement required

behavior: (a) user-controlled instance movement, (c) dynamic instance creation, (d)

collision handling, (e) losing lives, (f) scoring, and (g) handling the end of the game.

During the intervention, guided instruction was delivered as participants needed it to

implement game behavior. When the researcher recognized that several groups would

benefit from a lesson, guided instruction was provided to the entire class on the relevant

concept. Otherwise, guided instruction was provided to individual groups when they

asked the researcher for help or when the researcher recognized that the group required

scaffolding.

 Scaffolding allows learners to engage in learning and activities that would

otherwise be prohibitively challenging (Chen & Law, 2016; Rum & Ismail, 2017).

Scaffolding never included writing code for participants. Instead, scaffolding generally

included: (a) an explanation of programming concepts, (b) algorithm development

146

strategies, (c) error message interpretation, (d) error location, (e) testing strategies, and (f)

an explanation of why a given implementation was not working as intended. Participants

recalled cases where scaffolding was provided. The researcher explained why

implementations were not producing desired game behavior and helped participants

devise strategies that would work as intended. Participants were responsible for

developing algorithms to implement the strategy.

 Johnson (2017) conducted a study using GDBL with GameMaker in South East

England. Participants were 22 students who were 13 to 14 years old. Johnson found that

the constructionist approach of the intervention was not conducive to learning

programming concepts for all participants. Johnson found a need for significant

scaffolding activities and direct instruction to support constructionist game development.

The findings of this study confirm those of the Johnson study. In this study, guided

instruction and targeted scaffolding were utilized to support participants’ understanding

of algorithm design and analysis.

Productivity and Tool Skills

 In this study, productivity refers to the ratio of correctly implemented game

behaviors to development time. Tool skills refer to skills specific to the GameMaker

language, IDE, or API. Because tool skills are related to GameMaker, they would not

necessarily improve algorithm analysis and development in another language. Tool skills

may be considered a subset of productivity because they help participants develop game

behavior efficiently.

 Productivity. Code formatting conventions improved productivity. A

convention is a practice of writing code that is not enforced by the compiler or a

147

standards body (Fowler, 2004). Conventions generally improve readability and

maintainability for the person or persons working on a software product. Indentation of

controlled code was an example of a convention that participants used. Participants

indented code that was controlled or belonged to other lines of code. For example, code

was indented that was controlled by if statements. When looking at large amounts of

code, indentation helped participants identify at a glance which code was controlled by

other structures.

 Participants were given a deliverable schedule consisting of deadlines and

required artifacts. Participants created and submitted a design document in the first week

of the intervention. The design documents were reviewed to ensure that participants

targeted proper functionality for their expected skill set and knowledge. At the end of

each week, participants submitted a status report. The researcher used the status reports

to help participants deliver a working game. If participants were behind schedule, one of

two decisions was made: (a) scaffolding was provided, or (b) functionality was tabled.

Scaffolding was provided if participants were struggling with a minor technical detail or

conceptual misunderstanding. Functionality was tabled if it jeopardized the project

deadline. The researcher watched carefully for scope creep and functionality that was

likely beyond the capability of the participants to complete in the given time. Jenson and

Droumeva (2016) found that student expectations often exceeded their abilities.

Participants were regularly reminded that a working product had to be submitted by the

deadline, even if it lacked functionality from the original design specification. Creating a

complete software architecture, including formal estimates of code volume and time

requirements, was far beyond the scope of the course and intervention (Bass et al., 2006).

148

It was expected that some design elements would be unreasonable to implement in the

given time; participants were advised to remove those design elements. Participants were

told that commercial software often shipped without planned features or defect

corrections to meet release deadlines.

 Tool Skills. Participants acquired numerous tool skills, which helped them

implement game behavior. Participants’ productivity increased due to their increased

familiarity with GameMaker. Baytak et al. (2011) examined eight games developed

using GameMaker in their study. Two games utilized modding of existing game

templates, and the remaining six games were developed from scratch. Baytak et al. found

that students learned to use GameMaker quickly and without much difficulty. This study

confirmed that participants were able to use GameMaker quickly. However, when

participants used GameMaker incorrectly, they initially had difficulty resolving

problems.

 Participants learned to recognize common errors that could be made with

GameMaker. The misuse of assets was documented in the field notes. An example of

this was dynamic instance creation. GameMaker creates instances from objects. Assets,

including objects and sprites, are numerically coded, which is invisible to the developer

unless explicitly queried. Participants frequently supplied a sprite asset instead of an

object asset when creating an instance. If the numerical encoding for the sprite matched

the numerical encoding for an object, an instance of the object matching the numerical

encoding was created. To the participant, it appeared as if an instance of a random object

was being created. Once this problem was explained to participants, they quickly learned

to check the asset provided to the instance creation function. Another example of asset

149

confusion involved sprites and sub-images of sprites. Participants conflated the variables

sprite_index, which referred to a sprite, and image_index, which referred to a sub-image

of a sprite. Participants learned to recognize this error and how to correct it quickly.

 Participants used GameMaker features to detect and remove defects. Pibb

commented that defects were easier to find and correct when GameMaker identified the

error, provided the location, and provided information about the nature of the defect.

GameMaker identifies compiler errors; the user can click on the error, and the user is

taken directly to the code containing the compiler error. GameMaker also provides

detailed information on runtime errors, although the user is responsible for navigating to

the code containing the error. Participants learned to interpret runtime errors and correct

them. The search feature in GameMaker was another useful tool that participants learned

to use. Bree remarked that debugging with the search and replace was “very helpful.”

The code referenced in GameMaker’s runtime error message could be entered in the

search feature, which would take the participant to the relevant code.

Algorithm Trouble and Factors Decreasing Performance

 Relatively few participants reported insurmountable problems with developing

reasonable algorithms. Expectations were managed during the first week, and

scaffolding was provided as needed to assist participants. Participants indicated some

surprise at how difficult programming was. Jenson and Droumeva (2016) encountered

similar reactions from their study participants.

 Multiple factors decreased participants’ performance that were not directly related

to the challenge of analyzing and developing algorithms. Participants spent a lot of time

on game features that were not relevant to their grading rubric. For example, creating

150

aesthetic artifacts often received more focus than the algorithm development, which was

a problem that Baytak et al. (2011) documented in their study. Participants clearly

enjoyed working on images and sound effects, so the work positively affected their

attitudes toward the intervention. The tradeoff between the development of technical

skills and enjoyment will be discussed further in the implications section.

 Eleven incidents of off-task behavior were observed during the intervention and

documented in the field notes. Most of the off-task behavior involved smart devices like

smartphones. Texting, playing games, and social media activity were the smartphone

behaviors documented. Participants attempted to complete other coursework during the

intervention. The intervention took place during the first period. Participants who failed

to complete homework for a course at a later period would try to complete the homework

during the intervention.

 Failure to utilize prior work and resources cost many participants valuable time.

Ten cases of this were documented. Participants were instructed to keep a “cookbook” or

“how-to” document. When the researcher encountered participants struggling with

functionality that they had implemented before the intervention, the researcher asked to

see their cookbooks. Most participants could not produce them. The researcher would

help them locate a previous project where the functionality had been implemented. Some

participants never learned to use the GameMaker API. The API should have been a

valuable reference for the variables and functionality that GameMaker provided. Proper

use of the API should have prevented participants from reproducing functionality that

GameMaker had already implemented.

151

 Participants did not test frequently enough, causing them to waste time on the

custom game and the performance task portion of the content knowledge assessment.

Participants were encouraged to test after every testable element was added; therefore,

participants should have been running a test every five to 10 minutes. When participants

did not test frequently, they had difficulty locating errors, especially logic errors. Logic

errors occurred when unexpected behavior was observed. GameMaker did not provide

any information about logic errors. Participants who failed to test regularly had to

examine many code segments for the source of logic errors.

 A defect detection technique for syntax and runtime errors was demonstrated to

participants. The technique involved commenting blocks of code until the defect

disappeared. GameMaker ignored commented code. The code was gradually

uncommented until the defect was observed again. If used properly, this technique

allowed participants to pinpoint the exact line of code causing the defect. When the

researcher assisted participants who could not identify the code causing a defect, this

technique had not been utilized.

 The pressure of a looming deadline negatively affected some participants.

Annabelle complained that the researcher was trying to explain concepts, but Annabelle

just wanted her errors fixed. Annabelle described a problem that the researcher

frequently encountered with students. In the researcher’s experience, when students are

short on time and have a problem, they stop caring about understanding the problem and

just want the problem fixed.

152

Research Question 2: What Is the Effect of the Game Development Project on

Participants’ Attitudes Toward Computer Science?

 Attitudes should be measured, even if they do not directly impact performance

(Simonson, 1979). While acquiring knowledge and skills may be paramount, positive

attitudes are desirable. If participants have positive attitudes toward a subject, they are

more likely to pursue that subject beyond their current course (Doman et al., 2015;

Giannakos, 2014). This study found that PjBL produced positive attitudes, which

confirmed previous studies (Blumenfeld et al., 1991; Jumaat et al., 2017; Laakso et al.,

2021). Participants demonstrated positive attitudes using GDBL, which confirmed

previous studies (Doman et al., 2015; Johnson, 2017; Wu & Wang, 2012). Research

question two examined the impact of the intervention on participants’ attitudes toward

CS. Four categories of attitudes toward CS were examined: (a) learning at school, (b)

importance, (c) self-concept, and (d) interest.

 A survey measuring attitudes toward computer science was administered to 28

participants before and after the intervention (Shen et al., 2014). The pre- and post-

surveys compared the attitudes of participants toward computer science before and after

the intervention. The survey contained 26 questions divided into five subscales; each

subscale had five or six questions. Questions used a 5-point Likert scale ranging from (1)

strongly disagree to (5) strongly agree. The survey subscales and associated items are

shown in Table 4.6.

 Doman et al. (2015) utilized a GDBL intervention with GameMaker in the

experimental group for their study. Participants were 395 undergraduate students in

seven sections of the control class and eight sections of the experimental class. Two of

153

the data collection instruments were a CS attitude survey and qualitative student

perceptions of GameMaker. The GameMaker students reported positive attitudes toward

CS for the following: (a) self-concept, (b) interest, and (c) useful. This study confirmed

those findings. However, the GameMaker students in the Doman et al. study reported no

difference from the control group for (a) relevance of CS to their careers and (b) future

plans to use CS. This study did not confirm those findings. This study found

improvements in attitudes toward CS importance and future interest following the GDBL

intervention.

 Çelik et al. (2018) conducted a PjBL intervention study in a vocational school of

higher education. Participants were 13 freshman students enrolled in a programming

course. This study confirmed the findings of Çelik et al. Participants’ attitudes toward

learning CS at school improved using PjBL. PjBL sparked participants’ interest in CS.

Participants in the Çelik et al. study stated that they experienced difficulty with

developing computer applications. However, they also claimed that their ability to

develop computer applications improved following the intervention. The findings of this

study were similar: participants found the game development project challenging, but

their self-concept in CS improved.

Attitude Toward Learning Computer Science at School

 Participants’ attitudes toward learning CS at school improved following the

intervention. The learning CS at school subscale of the CS attitude survey was used to

quantitatively measure the change in participants’ attitudes toward CS at school. Four

participants’ attitudes toward learning CS at school decreased following the intervention;

two had no change; 22 increased. There was significant evidence suggesting that the

154

intervention improved participants’ attitudes toward learning CS at school with a large

effect size. The findings of this study confirm those of Çelik et al. (2018) who found that

participants had more fun and found instruction less boring with PjBL. The findings of

this study align with previous research suggesting that students were likely to appreciate

GDBL (R. Reynolds & Caperton, 2011; Swacha et al., 2010; Theodoraki & Xinogalos,

2014). Swacha et al. found that 97% of survey responders would like to participate in

game design classes. Theodoraki and Xinogalos found that 95.7% of participants in their

study believed that GDBL made programming more interesting.

 Qualitative findings confirmed the quantitative findings. Participants found the

pre-designed games before the intervention boring. Qianna said that she was not

interested in the games before the intervention and did not want to work on them. This

was a common sentiment before the intervention. Marlena agreed with Qianna and said

that she was bored and disinterested in the games before the intervention. Previous

research suggested that modding games produced positive results (Grizioti & Kynigos,

2020; O’Grady-Jones, 2020). Modding is the practice of modifying or adding to an

existing codebase. Baytak et al. (2011) chose GameMaker as a development tool in their

study because it was conducive to modding. They cited the following advantages of

modding compared with developing games from scratch: (a) modding begins with proven

game concepts, (b) games are more likely to be engaging, and (c) working prototypes can

be developed rapidly.

 It was surprising to discover how much the participants in this study disliked

modding pre-designed games. Oakley particularly disliked the 31 game. He said that his

negative attitude toward the game reduced his motivation and made him apathetic about

155

errors. He felt like fixing errors would be useless because he did not care about the

game. When modding is employed as an instructional tool, the choice of game can have

a significant impact.

 Participants reported a dramatic increase in enjoyment and excitement during the

intervention. Creative freedom was the primary reason for improving attitudes toward

CS in school. Participants had a choice in nearly all aspects of their custom game during

the intervention, which they appreciated and enjoyed. Participants appeared to attach a

sense of ownership to their custom games and took pride in the results. Participants’

pride in their games was particularly evident during the playtesting phase of the

intervention. They were animated and excited to show their peers the features of their

games. These findings confirmed those of Doman et al. (2015). Doman et al. prompted

participants to describe something interesting about their experience with GDBL and

GameMaker. Participants reported enjoying the creative aspect of designing and

developing a game. They also enjoyed playing their games.

Importance of Computer Science

 Participants’ attitudes toward the importance of CS improved following the

intervention. Alvarez et al. (2019) found a correlation between perceived value and

performance. If perceived value and performance are related, importance of CS may

offer insights into CS performance. The importance of CS subscale of the CS attitude

survey was used to quantitatively measure the change in participants’ attitudes toward the

importance of CS. Six participants’ attitudes toward the importance of CS decreased

following the intervention; one had no change; 21 increased. There was significant

156

evidence suggesting that the intervention improved participants’ attitudes toward

importance of CS with a medium effect size.

 Qualitative findings confirmed the quantitative findings. By the end of the

intervention, participants felt that computer science was an important field with

significant personal or societal impacts. Short weekly discussions were held during the

intervention regarding current events in computing and the global impact of computing.

Computational science was discussed to stress the synergy of computing with other

disciplines. Participants were captivated by the possible impact of automation on the job

market. Participants felt that CS had the potential to improve job performance and

improve people’s lives. They also felt that automation could cause mass unemployment.

Beneficial and harmful effects of computing were cited, but all participants felt that CS

was an important field.

Self-Concept in Computer Science

 Participants’ attitudes toward self-concept in CS improved following the

intervention. For this study, self-concept was defined as participants’ beliefs regarding

their competence in mastering computer science (Shen et al., 2014). Previous research

has found a significant correlation between self-concept and performance (Alvarez et al.,

2019; Gurer et al., 2019). The self-concept in CS subscale of the CS attitude survey was

used to quantitatively measure the change in participants’ self-concept in CS. One

participant’s attitude toward self-concept in CS decreased following the intervention; two

had no change; 25 increased. There was significant evidence suggesting that the

intervention improved participants’ attitudes toward self-concept in CS with a large effect

size. The findings of this study aligned with previous research suggesting that GDBL

157

enhanced the self-efficacy of participants (Jenson & Droumeva, 2016; Laakso et al.,

2021; Theodoraki & Xinogalos, 2014).

 Qualitative findings confirmed the quantitative findings. Participants made

positive declarations of their self-concept in CS. They expressed enjoyment and

understanding of CS. Pibb had some prior programming experience with modding games

and expressed a high self-concept in CS. Teddie and Bree had no prior programming

experience and were struggling with the course before the intervention. Teddie and Bree

said that they no longer felt confused after the intervention. Successfully completing a

custom game without any starter code provided a strong boost to participants’ self-

concept. While the researcher provided scaffolding to participants, the researcher never

wrote code for them. As a result, they were responsible for every working part of their

custom games, which increased their self-concept in CS.

Sparked Interest in Computer Science

 Participants’ interest in CS increased following the intervention. The findings of

this study aligned with previous research suggesting that GDBL increased future

participation in CS (Javidi & Sheybani, 2014; Laakso et al., 2021; Theodoraki &

Xinogalos, 2014). Baytak et al. (2011) found that GDBL with GameMaker resulted in

students continuing to create games after the end of the course. Two subscales of the CS

attitude survey were used to quantitatively measure the change in participants’ interest in

CS: (a) learning CS outside of school and (b) future participation in CS.

 Participants’ attitudes toward learning CS outside of school improved following

the intervention. The learning CS outside of school subscale of the CS attitude survey

was used to quantitatively measure the change in participants’ attitudes toward CS

158

outside of school. Five participants’ attitudes toward learning CS outside of school

decreased following the intervention; six had no change; 17 increased. There was

significant evidence suggesting that the intervention improved participants’ attitudes

toward learning CS outside of school with a medium effect size.

 Participants’ attitudes toward future participation in CS improved following the

intervention. The future participation in CS subscale of the CS attitude survey was used

to quantitatively measure the change in participants’ attitudes toward future participation

in CS. Two participants’ attitudes toward future participation in CS decreased following

the intervention; nine had no change; 17 increased. There was significant evidence

suggesting that the intervention improved participants’ attitudes toward future

participation in CS with a large effect size.

 Qualitative findings confirmed the quantitative findings. Marlena described an

error with her custom soccer game. She researched a solution to the problem at home

and implemented the solution. She added that researching programming solutions at

home was something that she had not done before the intervention. Pibb also described

working on his custom game at home. Pibb speculated that he was “bad at math”

because he did not work on it at home but “good at programming” because he liked to

program games at home. In both cases, participants described working on their custom

games outside of school. No participant related a single instance of working on a game at

home before the intervention.

 Participants expressed future interests in computer science. Qianna expressed

interest in taking CS in high school because she found the game development class

interesting, and she thought it would help with her future career. Jonie stated that she had

159

no interest in CS before the class. After the intervention, she said that she might want to

study CS in college because “it was fun.” Teddie noted that he planned to work on CS

“kind of like a hobby that I will just do in my free time.” Participants declared interest in

future computer science classes in high school and college and interests as hobbyists.

Successfully generating a software product made participants more likely to pursue

computer science in the future.

Research Question 3: What is the Relationship Between Participants’ Attitudes

Toward Computer Science and Their Performance?

 Research question three examined the relationship between participants’ attitudes

and their performance. Attitudes toward computer science and performance in computer

science were positively correlated following the intervention. Negative attitudes were

associated with errors, and positive attitudes were associated with successes.

 A composite survey score was calculated for each participant by taking an

unweighted average of the five subscale means on the post-survey. Pearson’s r was

calculated for the composite survey scores (M = 2.81, SD = 0.97) and the posttest scores

(M = 16.14, SD = 5.25) to measure the linear correlation between participants’ attitudes

toward computer science and their performance. Significant evidence showed that post-

survey and posttest scores were moderately positively correlated.

 Alvarez et al. (2019) studied the relationship of three indicators to academic

performance in an introductory programming course: (a) implicit theories of intelligence,

(b) error orientation, and (c) student attitudes toward computer programming.

Participants were 242 freshman students. Student attitudes toward computer

programming had the strongest correlation to performance, specifically perceived self-

160

efficacy and perceived value. This study confirmed the findings of Alvarez et al.

However, the population of this study was too small to examine the correlations of the

attitudes toward CS survey subscales with performance. Perceived self-efficacy in the

Alvarez et al. study mapped to self-concept in this study. Perceived value in the Alvarez

et al. study mapped to future participation and importance in this study. In another

confirming study, Jenson and Droumeva (2016) found that confidence in problem-

solving was the attitude with the strongest relationship to performance in computer

programming.

 Gurer et al. (2019) studied factors related to pre-service CS teachers’ attitudes

toward computer programming. Participants were 119 university students. Their study

found that attitudes toward computer programming were significantly correlated with (a)

performance mean in computer programming courses, r(119) = .47; (b) self-concept in

CS, r(119) = .74; and (c) perceived learning, r(119) = .71. This study confirmed the

findings of Gurer et al. that attitudes toward CS and performance are positively

correlated. This study found a moderate positive correlation, while Gurer et al. found a

low positive correlation. However, this study treated self-concept as a subscale of

attitudes, whereas Gurer et al. treated self-concept as a separate factor, which had a high

positive correlation with attitudes. Gurer et al. measured the following correlations with

attitudes toward CS, which were not measured in this study: (a) perceived learning, (b)

grade level, (c) high school type, and (d) gender. Only perceived learning was found to

be significantly correlated with attitudes toward CS.

 Frustration was a common reaction to errors during the intervention. Participants

expressed the greatest feelings of frustration and consternation with logic errors. Logic

161

errors demoralized participants and reduced participants’ motivation. Logic errors

manifested as undesired game behavior during playtesting, but GameMaker did not assist

participants with detecting or resolving the error. The researcher quickly assisted

participants with compiler and runtime errors because they were conspicuous. Compiler

and runtime errors were visible on participants’ screens. Participants often had to notify

the researcher of logic errors before the researcher addressed them. Participants

sometimes notified the researcher explicitly of logic errors with a raised hand or verbal

call for assistance. Other times, the researcher recognized that participants were

struggling with logic errors because they were noticeably frustrated or off-task.

 Participants were able to persist with troubleshooting a given error for about 10

minutes. After 10 minutes of troubleshooting, participants typically stopped working.

Some participants reported frustration with compiler and runtime errors. They

complained that GameMaker provided information on the location of the error but not

sufficient information on what was causing the error or how to fix it. Most of the

scaffolding that the researcher provided during the intervention was an effort to address

defects that participants were experiencing with their games. The majority of participants

had quit working and were visibly frustrated when the researcher assisted them with

errors. The negative feelings that participants experienced were associated with a

decrease in performance.

 Some level of frustration and failure was desirable. Psychology and neuroscience

research suggested that failure and emotional response could enhance learning; failures of

mental models to correctly map to reality prime the brain for adaptation (Bjork & Bjork,

2011; Franklin & Grossberg, 2017; Richland et al., 2009; Tyng et al., 2017). Participants

162

who expressed frustration but continued working tended to experience more success than

those who quit quickly. Pibb handled frustration well and was not observed shutting

down. At worst, he would table a feature and work on another part of his game while

waiting for assistance. Frustration caused other participants to quit. Qianna was one of

several participants who would quit troubleshooting after about 10 minutes. When

frustration contributed to participants quitting, their performance suffered. Qianna

showed no improvement in the content knowledge assessment score from pretest to

posttest. Marlena was a participant who would persist in troubleshooting errors or work

on other features while awaiting assistance. She reported feelings of elation after solving

difficult problems. Marlena increased her content knowledge assessment score by 12

points from pretest to posttest, which was higher than the mean difference of 8.21.

 Participants described successes leading to positive attitudes. After successful

troubleshooting, participants reported feelings of relief, happiness, satisfaction, and

reward. They also reported improved understanding of concepts. These positive feelings

and improved understanding plausibly contributed to subsequent successes. Julia

reported a rewarding feeling when errors were resolved. Julia observed that near the end

of the intervention, her understanding increased, which improved her attitude and

enjoyment. Julia and other participants associated success with improved attitudes.

 Other participants implied that their attitudes influenced their performance.

Teddie said that his enjoyment of computer science increased his thinking, creativity, and

attention. Monster Fan claimed that his enjoyment of computer science made him more

productive. Once again, participants associated success with positive attitudes.

163

 The findings of this study align with the claim of Blumenfeld et al. (Blumenfeld

et al., 1991) that for projects to promote learning, students should have a high self-

concept in the knowledge and skills required by the project. Participants reported a

feedback loop between attitude and performance. For this study, feedback loop was

defined as a system that returns a portion of the output signal of the system to the input of

the system (Spencer, 1994). The feedback loop was positive in some cases and negative

in others. Failures in performance were associated with negative attitudes unless a

successful correction followed the failure. Successful performance was associated with

positive attitudes. Participants reported a positive correlation between attitude and

performance. An attempt was made to provide guided instruction and scaffolding to

participants as they needed it. The intent was to produce as many successes as possible

and increase self-concept. For participants like Annabelle and Qianna, the scaffolding

was unsuccessful or too late.

Implications

 This research holds implications for me as an instructor, personnel charged with

computer science instruction, and other researchers investigating methods of computer

science instruction. In the following section, three implications are discussed: (a)

personal implications, (b) recommendations for computer science curriculum in South

Carolina School District Alpha, and (c) implications for future research.

Personal Implications

 This study revealed several implications for my role as a computer science

teacher: (a) PjBL works, (b) keep project groups small, (c) build a strong foundation for

164

open design, and (d) continue to integrate guided instruction with discovery-based

learning.

PjBL Works

 The intervention was much more successful in improving learners’ performance

and attitudes than were previous units in the class. The focus on PjBL was the primary

distinguishing feature of the intervention. The following are essential project design

elements in what the Buck Institute for Education calls gold standard PjBL: (a)

challenging problem or question, (b) sustained inquiry, (c) authenticity, (d) student voice

& choice, (e) reflection, (f) critique & revision, and (g) public product (Larmer et al.,

2015). Previous research also includes the opportunity to work collaboratively as an

essential PjBL element (Jumaat et al., 2017). Elements of PjBL should be introduced as

early as possible using an understanding of learners’ prior knowledge (Jumaat et al.,

2017).

 Choice was the most influential PjBL design element on participants’ attitudes;

evidence for this claim was derived from participants’ responses in interviews.

Introducing choice caused participants to support most of the other PjBL design

elements. Participants proposed projects that were generally too challenging. The

researcher had to scale back some of the proposed functionality. Because of their interest

in their custom games, participants eagerly engaged in sustained inquiry, reflection, and

critique and revision. Participants created games that they wanted to play, so the games

had personal authenticity. The custom games became public products because the games

were distributed to participants’ peers. Sometimes student enjoyment comes at the cost

of academic rigor. PjBL may be one method of increasing both.

165

Keep Project Groups Small

 Improvements in teamwork skills were cited by participants, which was suggested

by previous research (Amaya Chávez et al., 2020). Groups of two worked well. Large

groups may not work well because they involve learners assuming different team roles.

Learners assuming roles that reduced their time developing algorithms would be

undesirable. Previous research found that the level of learning in technical competencies

was related to group roles (Laakso et al., 2021; R. B. Reynolds, 2016).

Build a Strong Foundation for Open Design

 Creating an open design experience can be overwhelming if introduced before a

significant skill set is developed (Jenson & Droumeva, 2016). The intervention would

probably not be successful as the first exposure to programming. Game modding has

been successfully implemented in introductory programming courses (Kynigos &

Grizioti, 2020), but participants in this study disliked it. Identifying predesigned games

that interest students will be a high priority for future class iterations. Allowing students

to choose among several games to modify may improve enjoyment. Playtesting others’

games was one of the most enjoyable aspects of the intervention for participants.

Playtesting could be introduced into modding activities if students were modding

different games.

 Forcing students to practice behaviors that will benefit them in the future may be

necessary. With one instructor and 28 students, the students must have the ability to

research solutions. Many participants in this study did not utilize the suggested coding

cookbook to track solutions and procedures. As a result, the researcher spent significant

166

time helping participants resolve problems that they had solved before. Keeping a

detailed coding cookbook should be a graded activity.

 The API is an invaluable tool for researching the functionality and behavior of the

IDE. The API should be used as a reference for syntax, variable meaning, and function

behavior. More guided instruction should be provided to train students on API use.

Optimizing the use of the API would reduce students’ dependency on the instructor.

 Because successful performance was associated with positive attitudes in this

study, successes should come frequently and as early as possible. Topalli and Cagiltay

(2018) found that using a block-based programming language instead of a text-based

programming language allowed for an algorithm-first approach. Removing syntax errors

as a barrier to programming allowed students to focus on algorithm development much

earlier than with a text-based language. In addition to the text-based GameMaker

Language used in this study, GameMaker has a block-based language called Drag and

Drop. Students should start programming with a block-based language so that frustration

with syntax errors is not their first experience with programming, which should produce

earlier success with algorithm development.

Integrate Guided Instruction and Discovery-Based Learning

 Guided instruction was a successful instructional strategy (Clark et al., 2012;

Johnson, 2017; Kirschner et al., 2006). Continued experimentation with the proper mix

of guided instruction and discovery-based learning will continue. The findings of this

study aligned with previous research suggesting that frustration may be inversely related

to expertise during discovery learning (Clark et al., 2012; Kirschner et al., 2006;

Kirschner & De Bruyckere, 2017; R. Reynolds & Caperton, 2011). In this study,

167

participants with less expertise required greater monitoring and scaffolding than those

with more expertise. Participants identified two areas for improvement in the interviews.

First, participants should master technical vocabulary before encountering it in

scaffolding or project instructions. Second, better instruction on the use of the API

should be provided. The API was an invaluable tool for participants in the problem-

solving process. Without it, they were overly reliant on instructor assistance for

developing algorithms.

Recommendations for Computer Science Curriculum in South Carolina School

District Alpha

 The South Carolina Department of Education has CS and digital literacy

standards for Kindergarten through grade eight that all students are supposed to learn

(South Carolina Department of Education, 2017). In South Carolina School District

Alpha, students take an introductory computer science course in grade seven. The

participants in my study were in the STEM magnet program. Participants showed no

indication of retaining an ability to analyze and develop algorithms when they arrived in

my class.

 South Carolina School District Alpha should be prepared for the South Carolina

Department of Education to create an assessment process for ensuring that CS standards

are being taught. The South Carolina Department of Education may choose to create a

CS end-of-course examination or add CS as a subject in the South Carolina Palmetto

Assessment of State Standards. South Carolina School District Alpha should develop an

evaluation system to measure the degree to which the CS and digital literacy standards

are integrated into the curriculum. Professional development should be offered to assist

168

teachers with including CS and digital literacy standards in their instruction. Considering

the challenges STEM magnet participants experienced with CS, significant challenges

should be expected with teaching CS to the entire student body.

 Finally, South Carolina School District Alpha should carefully consider the level

of rigor required in the introductory computer science course. Most students in the

district currently receive one-half CS credit in grade seven and one-half CS credit in

grade eight. Gifted and Talented students take algebra one in grade eight, and other

students take algebra one in grade nine. As stated earlier, programming ability is related

to mathematical ability (Cetin & Andrews-Larson, 2016; João et al., 2019). College

Board lists algebra one as a prerequisite to AP CSP, an introductory computer science

course (CollegeBoard, 2020b). Students may not have the necessary mathematical

sophistication to complete an introductory computer science course before completing

algebra one.

Implications for Future Research

 Findings in this study suggest implications for future research in CS instruction:

(a) refine PjBL goals and implementation for CS, (b) test nontraditional CS instructional

methods against each other, and (c) explore the long-term impacts of CS attitude changes.

Refine PjBL Goals and Implementation for CS

 PjBL has many components and goals, which makes the impacts of the individual

components challenging to measure (Helle et al., 2006). Computer science activities

aligned with PjBL goals should be well-defined. Methods for measuring students'

potential for handling PjBL elements should also be defined. As an instructor, finding

the appropriate level of challenge for a problem should be more algorithmic and less art.

169

The amount of structure that is optimal for students is also difficult to determine.

Essential project design elements for CS should be tested individually in controlled

experimental tests (Larmer et al., 2015; Sweller et al., 2007). This would help instructors

new to PjBL prioritize the addition of PjBL design elements to their instruction.

Test Nontraditional CS Instructional Methods Against Each Other

 GDBL should be tested against other nontraditional instructional strategies. The

relative contributions to the effect size of GDBL and PjBL were not measured in this

study. Projects other than digital games should be tested. For example, Erol (2020)

found that robotic programming improved students’ attitudes toward programming. The

computer science intervention studies reviewed in the literature for this study used

traditional computer science instruction as a control. A reasonable assumption would be

that students with different backgrounds and interests would respond differently to

GDBL and a robotics programming curriculum. Variation exists within the realm of

GDBL. Modding predesigned games was implemented successfully in other studies, but

participants in this study did not respond well to modding. Multiple development

environments and programming languages can also be used for GDBL.

Explore the Long-Term Impacts of CS Attitude Changes

 Doman et al. (2015) found that short-term attitudes toward CS improved, but

long-term attitudes did not. One of the goals of a successful computer science course

should be to encourage students to enroll in future computer science courses. An

understudied question is whether attitude changes last long enough for students to

continue studying CS. Are there any future behavioral changes attributable to attitude

changes in a CS course?

170

 Tradeoffs between learning activities that align with course standards and

activities that improve attitudes can exist. For example, participants in this study

immensely enjoyed developing aesthetic elements of their games. However, graphics

design and sound effects had no relevance to course standards. Goals in a given course

may be to (a) maximize learning and skills related to standards, (b) prepare students for

related coursework and professional work, and (c) encourage students to continue in a

field of study. Considering the positive correlation between programming experience and

self-efficacy, encouraging additional CS coursework is desirable (Tsai et al., 2019).

Braga et al. (2014) found that their measure of instructor effectiveness was negatively

correlated with students’ evaluations of instructors. Braga et al. compared future

outcomes of students in related coursework to measure instructor effectiveness. This

raises a question regarding the utility of using students’ attitudes as a metric for judging

the quality of a course and may help explain findings suggesting no relationship between

attitudes and performance (Cetin & Andrews-Larson, 2016; Gurer et al., 2019). Further

research should explore the relative long-term impacts of knowledge acquisition and

attitude changes in a given course.

Limitations

 This study had limitations that could be addressed by future research. The

following limitations are discussed below: (a) study design and methodology, (b)

participants, and (c) researcher.

Study Design and Methodology

 This was an action research study. As such, the results may not be generalizable.

The quantitative data collection utilized a one-group pretest-posttest design (Creswell &

171

Creswell, 2018). The identical assessment was administered for the pretest and posttest

with six weeks between administrations. Test familiarity is a threat to internal validity

when using identical assessments for pretest and posttest. The pretest was not recorded

in participants’ grades for the course, but the posttest was. It was common practice for

unit pretests to be formative (ungraded) and unit posttests to be summative (graded).

Participants may have been more motivated on the posttest than the pretest.

 There was an alignment problem with the survey subscale and interview questions

regarding the importance of computer science. The survey subscale emphasized the

benefits of CS (see Appendix E). The interview questions asked about the beneficial and

harmful effects of CS without prioritizing either (see Appendix F). The quantitative data

from the survey subscale and the qualitative data from the interviews regarding the

importance of CS measured slightly different attitudes. Based on the interview

responses, participants’ attitudes toward the importance of CS were heavily influenced by

researcher-led discussions of the beneficial and harmful effects of CS. Participants

should have been directed to research the global impacts of CS for themselves.

 The Kuder-Richardson Formula 20 score for the multiple-choice portion of the

content knowledge assessment was low. KR20 for the pretest was 0.53, and KR20 for the

posttest was 0.18. The quantitative claims made in this study involving the content

knowledge assessment should be interpreted in the context of the low KR20 scores.

KR20 was not viewed as a disqualifying reliability metric for the multiple-choice portion

of the content knowledge assessment in this study. This study was interested in the gain

scores from pretest to posttest. KR20 is important for tests designed to discriminate

between test takers when an assessment is administered once (Anselmi et al., 2019; Ebel,

172

1967; Mertler, 2019; Osadebe, 2015). Low variance and high test item difficulty may

have contributed to the low KR20 score. Because a small number of test items will likely

have a low variance, KR20 is expected to be low for assessments with a low number of

test items. The Spearman-Brown prophecy formula is .85 when the number of test items

is 45; the Spearman-Brown prophecy formula is used to predict reliability when test

items of similar difficulty are added or removed (de Vet et al., 2017). Therefore, the

reliability of the multiple-choice assessment could probably be improved by adding

additional test items of similar difficulty.

Participants

 The participants were a group of eighth-grade students in the STEM magnet

program. This was a purposive sample, not a random sample. The participants were

unlikely to be representative of the general student body. The participants had to apply to

the STEM magnet program and were selected for previous academic achievements. They

were likely motivated by factors such as grades and parental pressure that were not

measured by the study.

 While not formally surveyed, most participants indicated they were not

particularly interested in STEM. The participants stated that their motivating factors for

applying to STEM were to be in classes with other high-achieving students and to avoid

the behavior problems common to classes outside the magnet program. For example,

Julia stated that enrollment in the magnet program, which separated her from the general

student population, was the only reason she attended South Carolina School District

Alpha instead of a private school. When the STEM magnet program ended after grade

eight, Julia transferred to a private school.

173

 The participants did not exhibit disruptive behaviors that would probably have

manifested with students in a college prep (CP) course. CP courses at South Carolina

School District Alpha are less challenging than honors and AP courses. CP courses tend

to have more incidents of disruptive and noncompliant behavior. When the participants

in the study became frustrated with assignments or were waiting for assistance from the

instructor, they exhibited off-task behavior. The off-task behavior was usually not

disruptive to other participants. Therefore, the negative consequences of frustrating tasks

were confined to the participants who experienced the frustration. In contrast, the

disruptive behavior resulting from frustrating tasks in a CP class would probably affect

multiple students.

 Annabelle was the only participant interviewed who expressed strong negative

criticisms and attitudes regarding the intervention. Therefore, this study did not obtain

saturation concerning participants’ perceptions of deficiencies in the intervention.

Ideally, more participants would have been interviewed. Unfortunately, more interviews

could not be conducted due to unreturned assent forms and scheduling problems.

Roughly half of the negative attitude codes were attributed to Annabelle. Negative

attitudes could have been overrepresented in this study due to the equal inclusion of

codes from Annabelle’s interview. Annabelle was an outlier relative to the other

participants who were interviewed. However, Annabelle’s criticisms may have been

shared by some of the participants who were not interviewed. Voicing criticisms to an

authority figure is intimidating. Therefore, other participants who held negative opinions

of the intervention may have avoided the interview.

174

 Member checking was performed, but no participants responded to email. South

Carolina School District Alpha provided Gmail accounts for their students. Participants’

district email addresses were used for member checking. Cleaned interview transcripts

were emailed to the matching interviewee to check for accuracy (see Figure 4.7). The

abstract and description of themes (see Table 4.17) were emailed to all participants for

comment. It is not unusual for South Carolina School Alpha students to ignore their

district email. Member checking may have been improved by utilizing participants’

personal email addresses. However, the researcher has a policy of not using personal

accounts to communicate with students. After the intervention and game development

course ended, Pibb enrolled in AP CSP where the researcher was the instructor. The

major findings of the study were discussed verbally with Pibb. Pibb expressed no

disagreements with the major findings.

Researcher

 The researcher's biases influenced the intervention, data collection, and data

analysis. The content knowledge assessment was constructed by adapting practice test

items from CollegeBoard’s AP Computer Science Principles exam. The researcher

provided instruction to help participants perform well on the assessment. Results on a

test to which the researcher did not have access may have been very different. The

researcher used personal judgment regarding when and how much scaffolding was

provided to participants. When reading interview transcripts, the researcher recognized

many missed opportunities to ask follow-up and clarifying questions. As a result, the

information collected in the interviews could have been much more detailed. The

interview questions may have been leading. The diction used in the questions prompted

175

participants to speculate on causal relationships between attitude and performance. The

participants may have disregarded instructions to be completely honest in an effort to

please the researcher, who was also the instructor. The quantitative results were known

to the researcher when the qualitative analysis was performed. Therefore the quantitative

results probably influenced the qualitative analysis.

Conclusion

 François Chollet, the Keras project lead, recently predicted, “Within 10-20 years,

nearly every branch of science will be, for all intents and purposes, a branch of computer

science. Computational physics, comp chemistry, comp biology, comp medicine…

Even comp archeology. Realistic simulations, big data analysis, and ML everywhere.”

Knowledge of CS will be required by an increasing number of fields. The degree to

which choice in game design affected participants cannot be overstated. The change in

mood was palpable when participants began creating their custom games with complete

freedom to build any game of their choosing. Participants were much more receptive to

guided instruction when it directly applied to a problem that they cared about solving.

Project-based learning with an emphasis on student voice and choice is an instructional

practice with enormous potential to improve attitudes and performance in CS.

176

REFERENCES

Abdul Jabbar, A. I., & Felicia, P. (2015). Gameplay engagement and learning in game-

based learning: A systematic review. Review of Educational Research, 85(4), 740–

779. https://doi.org/10.3102/0034654315577210

Adams, K. A., & Lawrence, E. K. (2019). Research methods, statistics, and applications

(2nd ed.). Sage Publications, Inc.

Agee, J. (2009). Developing qualitative research questions: A reflective process.

International Journal of Qualitative Studies in Education, 22(4), 431–447.

https://doi.org/10.1080/09518390902736512

Akcaoglu, M. (2014). Learning problem-solving through making games at the game

design and learning summer program. Educational Technology Research and

Development, 62(5), 583–600. https://doi.org/10.1007/s11423-014-9347-4

Al-Makhzoomy, A. K. (2018). Effect of game development-based learning on the ability

of information technology undergraduates to learn computer and object-oriented

programming (Publication No. 10973970) [Doctoral Dissertation, Wayne State

University]. ProQuest Dissertations & Theses Global.

All, A., Nunez Castellar, E. P., & Van Looy, J. (2015). Towards a conceptual framework

for assessing the effectiveness of digital game-based learning. Computers &

Education, 88, 29–37. https://doi.org/10.1016/j.compedu.2015.04.012

Alturki, R. A. (2016). Measuring and improving student performance in an introductory

programming course. Informatics in Education, 15(2), 183–204.

177

https://doi.org/10.15388/infedu.2016.10

Alvarez, C., Wise, A., Altermatt, S., & Aranguiz, I. (2019). Predicting academic results

in a modular computer programming course [Paper presentation]. In E. Scheihing, J.

Guerra, V. Henriquez, C. Olivares, & P. J. Munoz-Merino (Eds.), LALA 2019 -

Proceedings of the 2nd Latin American Conference on Learning Analytics (Vol.

2425, pp. 21–30). http://ceur-ws.org/Vol-2425/paper22.pdf

Amaya Chávez, D., Gámiz-Sánchez, V.-M., & Cañas Vargas, A. (2020). Problem-based

learning: Effects on academic performance and perceptions of engineering students

in computer sciences. Journal of Technology and Science Education, 10(2), 306–

328. https://doi.org/10.3926/jotse.969

An, Y. J. (2016). A case study of educational computer game design by middle school

students. Educational Technology Research and Development, 64(4), 555–571.

https://doi.org/10.1007/s11423-016-9428-7

Anderson, M., & Jiang, J. (2018). Teens, social media & technology 2018. In Pew

Research Center (Issue May).

https://www.pewresearch.org/internet/2018/05/31/teens-social-media-technology-

2018/

Anselmi, P., Colledani, D., & Robusto, E. (2019). A comparison of classical and modern

measures of internal consistency. Frontiers in Psychology, 10(2714), 1–12.

https://doi.org/10.3389/fpsyg.2019.02714

Balmes, I. (2017). Correlation of mathematical ability and programming ability of the

computer science students. Asia Pacific Journal of Education, Arts and Sciences,

4(3), 85–88. https://doi.org/10.13140/RG.2.2.22763.23849

178

Banister, S. (2007). Ethical issues and qualitative methods in the 21st century: How can

digital technologies be embraced in the research community? Journal for

Ethnographic and Qualitative Research, 1, 1–10.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is

involved and what is the role of the computer science education community? ACM

Inroads, 2(1), 48. https://doi.org/10.1145/1929887.1929905

Bass, L., Clements, P., & Kazman, R. (2006). Software architecture in practice (2nd ed.).

Addison-Wesley.

Baytak, A., Land, S. M., & Smith, B. K. (2011). Children as educational computer game

designers: An exploratory study. Turkish Online Journal of Educational

Technology, 10(4), 84–92.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,

Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.

C., Mellor, S., Schwaber, K., Sutherland, J., & Thomas, D. (2001). Manifesto for

Agile software development. http://agilemanifesto.org/

Bernard, H. R., Wutich, A., & Ryan, G. W. (2017). Finding themes. In Analyzing

qualitative data: Systematic approaches (pp. 101–123). Sage Publications.

Bjork, E. L., & Bjork, R. A. (2011). Making things hard on yourself, but in a good way:

Creating desirable difficulties to enhance learning. In M. A. Gernsbacher, R. W.

Pew, L. M. Hough, & J. R. Pomerantz (Eds.), Psychology and the Real World:

Essays Illustrating Fundamental Contributions to Society (pp. 55–64). Worth

Publishers.

Bloomberg, L. D., & Volpe, M. (2015). Completing your qualitative dissertation: A

179

roadmap from beginning to end (3rd ed.). SAGE Publications, Inc.

https://doi.org/10.4135/9781452226613.n3

Blumenfeld, P. C., Soloway, E., Marx, R. W., Krajcik, J. S., Guzdial, M., & Palincsar, A.

(1991). Motivating project-based learning: Sustaining the doing, supporting the

learning. Educational Psychologist, 26(3–4), 369–398.

https://doi.org/10.1080/00461520.1991.9653139

Bowden, H. M. (2019). Problem-solving in collaborative game design practices :

Epistemic stance , affect , and engagement. Learning, Media and Technology, 44(2),

124–143. https://doi.org/10.1080/17439884.2018.1563106

Boyle, E. A., Hainey, T., Connolly, T. M., Gray, G., Earp, J., Ott, M., Lim, T., Ninaus,

M., Ribeiro, C., & Pereira, J. (2016). An update to the systematic literature review of

empirical evidence of the impacts and outcomes of computer games and serious

games. Computers & Education, 94, 178–192.

https://doi.org/10.1016/j.compedu.2015.11.003

Braga, M., Paccagnella, M., & Pellizzari, M. (2014). Evaluating students’ evaluations of

professors. Economics of Education Review, 41, 71–88.

https://doi.org/10.1016/j.econedurev.2014.04.002

Campbell, M. (2021). Random name generator. Behind the Name.

https://www.behindthename.com/random/

Carnegie Learning. (2021). Zulama: Computer science education for every classroom.

https://www.carnegielearning.com/solutions/applied-sciences/computer-science/

Çelik, H. C., Ertaş, H., & İlhan, A. (2018). The impact of project-based learning on

achievement and student views: The case of AutoCAD programming course.

180

Journal of Education and Learning, 7(6), 67–80.

https://doi.org/10.5539/jel.v7n6p67

Cetin, I., & Andrews-Larson, C. (2016). Learning sorting algorithms through

visualization construction. Computer Science Education, 26(1), 27–43.

https://doi.org/10.1080/08993408.2016.1160664

Cheah, C. S. (2020). Factors contributing to the difficulties in teaching and learning of

computer programming: A literature review. Contemporary Educational

Technology, 12(2), 1–14. https://doi.org/10.30935/cedtech/8247

Chen, C. H., & Law, V. (2016). Scaffolding individual and collaborative game-based

learning in learning performance and intrinsic motivation. Computers in Human

Behavior, 55, 1201–1212. https://doi.org/10.1016/j.chb.2015.03.010

Clark, R. E., Kirschner, P. a, & Sweller, J. (2012). Putting students on the path to

learning: The case for fully guided instruction. American Educator, 36(1), 6–11.

Code.org, CSTA, & ECEP Alliance. (2022). 2022 state of computer science education:

Understanding our national imperative. https://advocacy.code.org/stateofcs

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Routledge

Academic.

CollegeBoard. (2020a). AP computer science A: Course and exam description. AP

Central. https://apcentral.collegeboard.org/pdf/ap-computer-science-a-course-and-

exam-description.pdf

CollegeBoard. (2020b). AP computer science principles: Course and exam description.

AP Central. https://apcentral.collegeboard.org/pdf/ap-computer-science-principles-

course-and-exam-description.pdf

181

Committee on STEM Education of the National Science and Technology Council.

(2018). Charting a course for success: America’s strategy for STEM education.

White House Office of Science and Technology Policy.

https://trumpwhitehouse.archives.gov/wp-content/uploads/2018/12/STEM-

Education-Strategic-Plan-2018.pdf

Computer science discoveries ('19-’20). (2019). https://studio.code.org/courses/csd-2019

Creswell, J. W. (2017). Qualitative inquiry and research design: Choosing among the

five traditions. SAGE Publications, Inc.

Creswell, J. W., & Creswell, J. D. (2018). Research design: Qualitative, quantitative, and

mixed method approaches (5th ed.). SAGE.

Cucinelli, G., Davidson, A., Romero, M., & Matheson, T. (2018). Intergenerational

learning through a participatory video game design workshop. Journal of

Intergenerational Relationships, 16(1–2), 146–165.

https://doi.org/10.1080/15350770.2018.1404855

Culic, I., Radovici, A., & Vaduva, J. A. (2019). Teaching computer engineering concepts

to non-technical students. ELearning & Software for Education, 1, 249–254.

https://doi.org/10.12753/2066-026X-19-034

de Vet, H. C. W., Mokkink, L. B., Mosmuller, D. G., & Terwee, C. B. (2017).

Spearman–Brown prophecy formula and Cronbach’s alpha: Different faces of

reliability and opportunities for new applications. Journal of Clinical Epidemiology,

85, 45–49. https://doi.org/10.1016/j.jclinepi.2017.01.013

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school

girls: Can they be used to measure understanding of computer science concepts?

182

Computers & Education, 58(1), 240–249.

https://doi.org/10.1016/j.compedu.2011.08.006

Dewey, J. (1916). Democracy and education: An introduction to the philosophy of

education. (n.p.).

Diaz, L., Kick, R. A., & Kuemmel, A. (2016). AP Computer Science Principles

Performance Task. 720–720. https://doi.org/10.1145/2839509.2844711

DoED secretary’s final supplemental priorities and definitions for discretionary grant

programs, 83 Fed. Reg. 9096, (2018).

Doman, M., Sleigh, M., & Garrison, C. (2015). Effect of GameMaker on student attitudes

and perceptions of instructors. International Journal of Modern Education and

Computer Science, 7(9), 1–13. https://doi.org/10.5815/ijmecs.2015.09.01

Ebel, R. L. (1967). The relation of item discrimination to test reliability. Journal of

Educational Measurement, 4(3), 125–128.

Edmonds, W. A., & Kennedy, T. D. (2017). An applied guide to research designs:

Quantitative, qualitative, and mixed methods. SAGE Publications, Inc.

https://doi.org/10.4135/9781071802779

English, M. C., & Kitsantas, A. (2013). Supporting student self-regulated learning in

problem-and project-based learning. Interdisciplinary Journal of Problem-Based

Learning, 7(2). https://doi.org/10.7771/1541-5015.1339

Ernst, J. V, & Clark, A. C. (2012). Fundamental computer science conceptual

understandings for high school students using original computer game design.

Journal of STEM Education: Innovations & Research, 13(5), 40–45.

Erol, O. (2020). How do students’ attitudes towards programming and self-efficacy in

183

programming change in the robotic programming process? International Journal of

Progressive Education, 16(4), 13–26. https://doi.org/10.29329/ijpe.2020.268.2

Erümit, A. K., Öngöz, S., & Aksoy, D. A. (2020). Designing a computer programming

environment for gifted students: A case study. Malaysian Online Journal of

Educational Technology, 8(3), 41–58. https://doi.org/10.17220/mojet.2020.03.003

Exploring computer science. (2019). https://ed.sc.gov/instruction/career-and-technical-

education/programs-and-courses/career-clusters/information-

technology/fundamentals-of-computing-standards/

Fereday, J., & Muir-Cochrane, E. (2006). Demonstrating rigor using thematic analysis: A

hybrid approach of inductive and deductive coding and theme development.

International Journal of Qualitative Methods, 5(1), 80–92.

https://doi.org/10.1177/160940690600500107

Fowler, M. (2004). UML distilled: A brief guide to the standard object modeling

language (3rd ed.). Addison-Wesley.

Franklin, D. J., & Grossberg, S. (2017). A neural model of normal and abnormal learning

and memory consolidation: Adaptively timed conditioning, hippocampus, amnesia,

neurotrophins, and consciousness. Cognitive, Affective and Behavioral

Neuroscience, 17, 24–76. https://doi.org/10.3758/s13415-016-0463-y

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., &

Wenderoth, M. P. (2014). Active learning increases student performance in science,

engineering, and mathematics. Proceedings of the National Academy of Sciences of

the United States of America, 111(23), 8410–8415.

https://doi.org/10.1073/pnas.1319030111

184

Froiland, J. M., Oros, E., Smith, L., & Hirchert, T. (2012). Intrinsic motivation to learn:

The nexus between psychological health and academic success. Contemporary

School Psychology, 16, 91–100.

Gao, J., & Hargis, J. (2010). Promoting technology-assisted active learning in computer

science education. Journal of Effective Teaching, 10(2), 81–93.

Gavriel, J. (2015). Tips on inductive learning and building resilience. Education for

Primary Care, 26(5), 332–334. https://doi.org/10.1080/14739879.2015.1079080

George, D., & Mallery, P. (2002). SPSS for Windows step by step: A simple guide and

reference, 11.0 update (4th ed.). Allyn & Bacon.

Giannakos, M. N. (2014). Exploring students intentions to study computer science and

identifying the differences among ICT and programming based courses. Turkish

Online Journal of Educational Technology, 13(4), 36–46.

Glickman, M. E., Rao, S. R., & Schultz, M. R. (2014). False discovery rate control is a

recommended alternative to Bonferroni-type adjustments in health studies. Journal

of Clinical Epidemiology, 67(8), 850–857.

https://doi.org/10.1016/j.jclinepi.2014.03.012

Goode, J., & Margolis, J. (2011). Exploring computer science: A case study of school

reform. ACM Transactions on Computing Education, 11(2), 1–16.

https://doi.org/10.1145/1993069.1993076

Grizioti, M., & Kynigos, C. (2020). Computer-based learning, computational thinking,

and constructionist approaches. In A. Tatnall (Ed.), Encyclopedia of Education and

Information Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-

60013-0_75-2

185

Gurer, M. D., Cetin, I., & Top, E. (2019). Factors affecting students’ attitudes toward

computer programming. Informatics in Education, 18(2), 281–296.

https://doi.org/10.15388/infedu.2019.13

Hanus, M. D., & Fox, J. (2015). Assessing the effects of gamification in the classroom: A

longitudinal study on intrinsic motivation, social comparison, satisfaction, effort,

and academic performance. Computers & Education, 80, 152–161.

https://doi.org/10.1016/j.compedu.2014.08.019

Harasim, L. (2012). Learning theory and online technologies. Routledge.

Harris, C. J., Penuel, W. R., D’Angelo, C. M., DeBarger, A. H., Gallagher, L. P.,

Kennedy, C. A., Cheng, B. H., & Krajcik, J. S. (2015). Impact of project-based

curriculum materials on student learning in science: Results of a randomized

controlled trial. Journal of Research in Science Teaching, 52(10), 1362–1385.

https://doi.org/10.1002/tea.21263

Helle, L., Tynjälä, P., & Olkinuora, E. (2006). Project-based learning in post-secondary

education - Theory, practice and rubber sling shots. Higher Education, 51(2), 287–

314. https://doi.org/10.1007/s10734-004-6386-5

Herr, K., & Anderson, G. (2005). The action research dissertation: A guide for students

and faculty. Sage Publications, Inc.

Hinkle, D. E., Wiersma, W., & Jurs, S. G. (1979). Applied statistics for the behavior

sciences. Rand McNally College Publishing.

Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn?

Educational Psychology Review, 16(3), 235–266.

https://doi.org/10.1023/B:EDPR.0000034022.16470.f3

186

Hughes-Roberts, T., Brown, D., Boulton, H., Burton, A., Shopland, N., & Martinovs, D.

(2020). Examining the potential impact of digital game making in curricula based

teaching: Initial observations. Computers and Education, 158, 1–15.

https://doi.org/10.1016/j.compedu.2020.103988

Hwang, G., & Wu, P. (2012). Advancements and trends in digital game-based learning

research: A review of publications in selected journals from 2001 to 2010. British

Journal Of Educational Technology, 43(1), E6–E10. https://doi.org/10.1111/j.1467-

8535.2011.01242.x

Javidi, G., & Sheybani, E. (2014). Teaching computer programming through game

design: A game-first approach. GSTF Journal on Computing, 4(1), 17–22.

https://doi.org/10.5176/2251-3043_4.1.303

Jenson, J., & Droumeva, M. (2016). Exploring media literacy and computational

thinking: A Game Maker curriculum study. Electronic Journal of E-Learning, 14(2),

111–121.

João, P., Nuno, D., Fábio, S. F., & Ana, P. (2019). A cross-analysis of block-based and

visual programming apps with computer science student-teachers. Education

Sciences, 9(3), 181. https://doi.org/10.3390/educsci9030181

Johnson, C. (2017). Learning to program with Game Maker. International Journal of

Computer Science Education in Schools, 1(2), 1–20.

https://doi.org/10.21585/ijcses.v1i2.5

Jumaat, N. F., Tasir, Z., Abd halim, N. D., & Mohamad Ashari, Z. (2017). Project-based

learning from constructivism point of view. Advanced Science Letters, 23(8), 7904–

7906. https://doi.org/10.1166/asl.2017.9605

187

King, B. M., Rosopa, P. J., & Minium, E. W. (2018). Statistical reasoning in the

behavioral sciences (7th ed.). Wiley.

Kingsley, T. L., & Grabner-Hagen, M. M. (2015). Gamification: Questing to integrate

content knowledge, literacy, and 21st-century learning. Journal of Adolescent &

Adult Literacy, 59(1), 51–61. https://doi.org/10.1002/jaal.426

Kirschner, P. A., & De Bruyckere, P. (2017). The myths of the digital native and the

multitasker. Teaching and Teacher Education, 67, 135–142.

https://doi.org/10.1016/j.tate.2017.06.001

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during

instruction does not work: An analysis of the failure of constructivist, discovery,

problem-based, experiential, and inquiry-based teaching. Educational Psychologist,

41(2), 75–86. https://doi.org/10.1207/s15326985ep4102_1

Kyewski, E., & Krämer, N. C. (2018). To gamify or not to gamify? An experimental field

study of the influence of badges on motivation, activity, and performance in an

online learning course. Computers and Education, 118(April 2017), 25–37.

https://doi.org/10.1016/j.compedu.2017.11.006

Kynigos, C., & Grizioti, M. (2020). Modifying games with ChoiCo: Integrated

affordances and engineered bugs for computational thinking. British Journal of

Educational Technology, 51(6), 2252–2267. https://doi.org/10.1111/bjet.12898

Laakso, N. L., Korhonen, T. S., & Hakkarainen, K. P. J. (2021). Developing students’

digital competences through collaborative game design. Computers and Education,

174(104308), 1–15. https://doi.org/10.1016/j.compedu.2021.104308

Lai, C. (2018). Using inquiry-based strategies for enhancing students’ STEM education

188

learning. Journal of Education in Science, Environment and Health, 4(1), 110–117.

https://doi.org/10.21891/jeseh.389740

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science:

A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 1–12.

https://doi.org/10.3389/fpsyg.2013.00863

Larman, C. (2002). Applying UML and patterns: An introduction to object-oriented

analysis and design and the unified process (2nd ed.). Prentice Hall PTR.

Larmer, J., Mergendoller, J., & Boss, S. (2015). Setting the standard for project based

learning: A proven approach to rigorous classroom instruction. ASCD.

Lewis, H. R., & Papadimitriou, C. H. (1998). Elements of the theory of computation (2nd

ed.). Prentice-Hall.

Loyalka, P., Liu, O. L., Li, G., Chirikov, I., Kardanova, E., Gu, L., Ling, G., Yu, N., Guo,

F., Ma, L., Hu, S., Johnson, A. S., Bhuradia, A., Khanna, S., Froumin, I., Shi, J.,

Choudhury, P. K., Beteille, T., Marmolejo, F., & Tognatta, N. (2019). Computer

science skills across China, India, Russia, and the United States. Proceedings of the

National Academy of Sciences, 116(14), 6732–6736.

https://doi.org/10.1073/pnas.1814646116

Malik, S. I., Mathew, R., Al-nuaimi, R., Al-sideiri, A., & Coldwell-Neilson, J. (2019).

Learning problem solving skills: Comparison of E-learning and M-learning in an

introductory programming course. Education & Information Technologies, 24(5),

2779–2796. https://doi.org/10.1007/s10639-019-09896-1

Malone, A. H. (2019). Computer science high school graduation credit. In State of South

Carolina Department of Education. https://www.ed.sc.gov/newsroom/school-

189

district-memoranda-archive/computer-science-high-school-graduation-credit-

memo/computer-science-high-school-graduation-credit-memo/

Martins, V. F., Concilio, I. A. S., & Guimarães, M. P. (2018). Problem based learning

associated to the development of games for programming teaching. Computer

Applications in Engineering Education, 26(5), 1577–1589.

https://doi.org/10.1002/cae.21968

McGregor, J. D., & Sykes, D. A. (2001). A practical guide to testing object-oriented

software. Addison-Wesley.

McHugh, M. L. (2012). Interrater reliability: The kappa statistic. Biochemia Medica,

22(3), 276–282.

Mertler, C. A. (2019). Action research: Improving schools and empowering educators

(6th ed.). SAGE.

Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry-based science instruction-what

is it and does it matter? Results from a research synthesis years 1984 to 2002.

Journal of Research in Science Teaching, 47(4), 474–496.

https://doi.org/10.1002/tea.20347

Mitchell, J. D., Amir, R., Montealegre-Gallegos, M., Mahmood, F., Shnider, M.,

Mashari, A., Yeh, L., Bose, R., Wong, V., Hess, P., Amador, Y., Jeganathan, J.,

Jones, S. B., & Matyal, R. (2018). Summative objective structured clinical

examination assessment at the end of anesthesia residency for perioperative

ultrasound. Anesthesia and Analgesia, 126(6), 2065–2068.

https://doi.org/10.1213/ANE.0000000000002826

Moreno, J. (2012). Digital competition game to improve programming skills. Journal of

190

Educational Technology & Society, 15(3), 288–297.

http://search.ebscohost.com.pallas2.tcl.sc.edu/login.aspx?direct=true&db=eue&AN=

79816983&site=ehost-live

Northway, S., Dauphin, Y., Jin, B., Heinan, T., Quispe, A., Mills, B., Cai, C., Guo, P.,

Haynes, L., Ojeda, M., & Lubimir, A. (n.d.). Computing: Computer programming.

Retrieved July 27, 2019, from https://www.khanacademy.org/computing/computer-

programming

Novak, G. M. (2011). Just-in-time teaching. New Directions for Teaching & Learning,

2011(128), 63–73. https://doi.org/10.1002/tl.469

O’Grady-Jones, M. K. (2020). Ready coder one: Action research exploring the effects of

collaborative game design-based learning on gifted fourth graders’ 21st century

skills and science content knowledge. (Publication No. 27744700) [Doctoral

Dissertation, University of South Carolina]. ProQuest Dissertations & Theses @

University of South Carolina.

Osadebe, P. U. (2015). Construction of valid and reliable test for assessment of students.

Journal of Education and Practice, 6(1), 51–56.

Oyong, S. B., & Ekong, V. E. (2019). An explorative survey of formal and agile software

development methods. Global Journal of Pure and Applied Sciences, 25, 71–79.

https://doi.org/10.4314/gjpas.v25i1.10

Papanikolaou, K., & Boubouka, M. (2011). Promoting collaboration in a project-based E-

learning context. Journal of Research on Technology in Education, 43(2), 135–155.

Patterson, B. F., & Ewing, M. (2013). Validating the use of AP exam scores for college

course placement. https://files.eric.ed.gov/fulltext/ED558108.pdf

191

Perenc, I., Jaworski, T., & Duch, P. (2019). Teaching programming using dedicated

Arduino Educational Board. Computer Applications in Engineering Education,

27(4), 943–954. https://doi.org/10.1002/cae.22134

Perneger, T. V. (1998). What’s wrong with Bonferroni adjustments. BMJ (Clinical

Research Ed.), 316(7139), 1236–1238. https://doi.org/10.1136/bmj.316.7139.1236

Prat, C. S., Madhyastha, T. M., Mottarella, M. J., & Kuo, C.-H. (2020). Relating natural

language aptitude to individual differences in learning programming languages.

Scientific Reports, 10(1), 3817–3826. https://doi.org/10.1038/s41598-020-60661-8

Prince, M., & Felder, R. (2007). The many faces of inductive teaching and learning.

Journal of College Science Teaching, 36(5), 14–20.

Prince, M. J., & Felder, R. M. (2006). Inductive teaching and learning methods:

Definitions, comparisons, and research bases. Journal of Engineering Education,

95(2), 123–138. https://doi.org/10.1002/j.2168-9830.2006.tb00884.x

Pullan, M. (2013). Using robotics to improve retention and increase comprehension in

introductory programming courses. Journal of Educational Technology Systems,

42(2), 141–149. https://doi.org/10.2190/ET.42.2.f

Pundak, D., Herscovitz, O., & Shacham, M. (2010). Attitudes of face-to-face and E-

learning instructors toward “active learning.” European Journal of Open, Distance

and E-Learning, 2, 1–12.

Qian, M., & Clark, K. R. (2016). Game-based learning and 21st century skills: A review

of recent research. Computers in Human Behavior, 63, 50–58.

https://doi.org/10.1016/j.chb.2016.05.023

Randolph, J. J. (2008). Multidisciplinary methods in educational technology research and

192

development. JULKAISIJA. http://justus.randolph.name/methods

Razali, N. M., & Wah, Y. B. (2011). Power comparisons of Shapiro-Wilk, Kolmogorov-

Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and

Analytics, 2(1), 21–33.

Repenning, A., Webb, D. C., Koh, K. H., Nickerson, H., Miller, S. B., Brand, C., Horses,

I. H. M., Basawapatna, A., Gluck, F., Grover, R., Gutierrez, K., & Repenning, N.

(2015). Scalable game design: A strategy to bring systemic computer science

education to schools through game design and simulation creation. ACM

Transactions on Computing Education, 15(2), 1–31.

https://doi.org/10.1145/2700517

Reynolds, R. B. (2016). Relationships among tasks, collaborative inquiry processes,

inquiry resolutions, and knowledge outcomes in adolescents during guided

discovery-based game design in school. Journal of Information Science, 42(1), 35–

58. https://doi.org/10.1177/0165551515614537

Reynolds, R., & Caperton, I. H. (2011). Contrasts in student engagement, meaning-

making, dislikes, and challenges in a discovery-based program of game design

learning. Educational Technology Research and Development, 59, 267–289.

https://doi.org/10.1007/s11423-011-9191-8

Richland, L. E., Kornell, N., & Kao, L. S. (2009). The pretesting effect: Do unsuccessful

retrieval attempts enhance learning? Journal of Experimental Psychology: Applied,

15(3), 243–257. https://doi.org/10.1037/a0016496

Robertson, J. (2013). The influence of a game-making project on male and female

learners’ attitudes to computing. Computer Science Education, 23(1), 58–83.

193

https://doi.org/10.1080/08993408.2013.774155

Rum, S. N. M., & Ismail, M. A. (2017). Metocognitive support accelerates computer

assisted learning for novice programmers. Journal of Educational Technology &

Society, 20(3), 170–181.

http://search.ebscohost.com.pallas2.tcl.sc.edu/login.aspx?direct=true&db=eue&AN=

123966665&site=ehost-live

Saavedra, A. R., Liu, Y., Haderlein, S. K., Rapaport, A., Garland, M., Hoepfner, D.,

Morgan, K. L., & Hu, A. (2021). Knowledge in action efficacy study over two years.

Center for Economic and Social Research, USC Dornsife.

https://cesr.usc.edu/sites/default/files/Knowledge in Action Efficacy

Study_18feb2021_final.pdf

Sakulvirikitkul, P., Sintanakul, K., & Srisomphan, J. (2020). The design of a learning

process for promoting teamwork using project-based learning and the concept of

agile software development. International Journal of Emerging Technologies in

Learning, 15(3), 207–222. https://doi.org/10.3991/ijet.v15i03.10480

Saldaña, J. (2021). The coding manual for qualitative researchers (4th ed.). Sage.

Saldaña, J., & Omasta, M. (2017). Analyzing documents, artifacts, and visual materials.

In Qualitative resarch: Analyzing life (pp. 63–88). Sage Publications.

Sawilowsky, S. S. (2009). New effect size rules of thumb. Journal of Modern Applied

Statistical Methods, 8(2), 597–599. https://doi.org/10.22237/jmasm/1257035100

Schcolnik, M., Kol, S., & Abarbanel, J. (2006). Constructivism in theory and in practice.

English Teaching Forum, 44(4), 12–20.

Scherer, R., Siddiq, F., & Viveros, B. S. (2019). The cognitive benefits of learning

194

computer programming : A meta-analysis of transfer effects. Journal of Educational

Psychology, 111(5), 764–792. https://doi.org/10.1037/edu0000314

Shen, C. W., Wu, Y.-C. J., & Lee, T.-C. (2014). Developing a NFC-equipped smart

classroom: Effects on attitudes toward computer science. Computers in Human

Behavior, 30, 731–738. https://doi.org/10.1016/j.chb.2013.09.002

Shenton, A. K. (2004). Strategies for ensuring trustworthiness in qualitative research

projects. Education for Information, 22(2), 63–75. https://doi.org/10.3233/EFI-2004-

22201

Silm, G., Tiitsaar, K., Pedaste, M., Zacharia, Z. C., & Papaevripidou, M. (2017).

Teachers’ readiness to use inquiry-based learning: An investigation of teachers’

sense of efficacy and attitudes toward inquiry-based learning. Science Education

International, 28(4), 315–325.

Simonson, M. (1979). Attitude measurement : Why and how. Educational Technology,

19(9), 34–38.

Sommerville, I. (2001). Software engineering (6th ed.). Addison-Wesley.

South Carolina Department of Education. (2017). South Carolina computer science and

digital literacy standards.

South Carolina Department of Education. (2019a). District headcount by gender,

ethnicity and pupils in poverty 2019-20. https://ed.sc.gov/data/other/student-

counts/active-student-headcounts/2019-20-active-student-head-counts/45-day-

district-headcount-by-gender-ethnicity-and-pupils-in-poverty-2019-20/

South Carolina Department of Education. (2019b). SC school report card: Greenwood

school district 50 | 2018-2019.

195

https://www.screportcards.com/overview/academics/academic-

achievement/?q=eT0yMDE5JnQ9RCZzaWQ9MjQ1MDAwMA

South Carolina Department of Education. (2019c). School headcount by grade 2019-20.

https://ed.sc.gov/data/other/student-counts/active-student-headcounts/2019-20-

active-student-head-counts/45-day-school-headcount-by-grade-2019-20/

Southern Regional Education Board. (2016). Bridging the computer science education

gap: Five actions states can take. https://www.sreb.org/sites/main/files/file-

attachments/cs_commission_2016_0.pdf

Spencer, D. (Ed.). (1994). Webster’s new world dictionary of computer terms (5th ed.).

Macmillan.

State of South Carolina Department of Education. (2018). SC school report card:

Greenwood school district 50 | 2017-2018.

https://www.screportcards.com/overview/print/?q=eT0yMDE4JnQ9RCZzaWQ9Mj

Q1MDAwMA

Stoffová, V. (2019). Educational computer games in programming teaching and learning.

ELearning & Software for Education, 1, 39–45. https://doi.org/10.12753/2066-

026X-19-004

Swacha, J., Skrzyszewski, A., & Sysło, W. A. (2010). Computer game design classes:

The students’ and professionals’ perspectives. Informatics in Education, 9(2), 249–

260.

Sweller, J., Kirschner, P. A., & Clark, R. E. (2007). Why minimally guided teaching

techniques do not work: A reply to commentaries. Educational Psychologist, 42(2),

115–121. https://doi.org/10.1080/00461520701263426

196

Taber, K. S. (2018). The use of Cronbach’s alpha when developing and reporting

research instruments in science education. Research in Science Education, 48,

1273–1296. https://doi.org/10.1007/s11165-016-9602-2

Theodoraki, A., & Xinogalos, S. (2014). Studying students’ attitudes on using examples

of game source code for learning programming. Informatics in Education, 13(2),

265–277.

Thomas, M. K., Ge, X., & Greene, B. A. (2011). Fostering 21st century skill

development by engaging students in authentic game design projects in a high

school computer programming class. Journal of Educational Computing Research,

44(4), 391–408. https://doi.org/10.2190/EC.44.4.b

Tian, J. (2005). Software quality engineering: Testing, quality assurance, and

quantifiable improvement. John Wiley & Sons, Inc.

Topalli, D., & Cagiltay, E. N. (2018). Improving programming skills in engineering

education through problem-based game projects with Scratch. Computers &

Education, 120, 64–74. https://doi.org/10.1016/j.compedu.2018.01.011

Tracy, S. J. (2020). Qualitative research methods: Collecting evidence, crafting analysis,

communicating impact (2nd ed.). Wiley-Blackwell.

Tsai, M., Wang, C., & Hsu, P. (2019). Developing the computer programming self-

efficacy scale for computer literacy education. Journal of Educational Computing

Research, 56(8), 1345–1360. https://doi.org/10.1177/0735633117746747

Tucker, A., Deek, F., Jones, J., Mccowan, D., Stephenson, C., & Verno, A. (2003). A

model curriculum for K-12 computer science: Final report of the ACM K-12 task

force curriculum committee (No. 104043). ACM.

197

Tyng, C. M., Amin, H. U., Saad, M. N. M., & Malik, A. S. (2017). The influences of

emotion on learning and memory. Frontiers in Psychology, 8(1454), 1–22.

https://doi.org/10.3389/fpsyg.2017.01454

U.S. Bureau of Labor Statistics. (2022, September 8). Employment projections.

https://www.bls.gov/emp/tables.htm

Végh, L., & Stoffová, V. (2019). Learning object-oriented programming by creating

games. ELearning & Software for Education, 1, 20–29.

https://doi.org/10.12753/2066-026X-19-002

Veletsianos, G., Beth, B., Lin, C., & Russell, G. (2016). Design principles for “thriving in

our digital world”: A high school computer science course. Journal of Educational

Computing Research, 54(4), 443–461. https://doi.org/10.1177/0735633115625247

Wilkerson-Jerde, M. H. (2014). Construction, categorization, and consensus: Student

generated computational artifacts as a context for disciplinary reflection.

Educational Technology Research and Development, 62(1), 99–121.

https://doi.org/10.1007/s11423-013-9327-0

Willis, J., & Edwards, C. L. (Eds.). (2014). Action research: Models, methods, and

examples. Information Age Publishing, Inc.

Winarno, S., Muthu, K. S., & Ling, L. S. (2018). Direct problem-based learning (DPBL):

A framework for integrating direct instruction and problem-based learning approach.

International Education Studies, 11(1), 119–126.

https://doi.org/10.5539/ies.v11n1p119

Wu, B., & Wang, A. I. (2012). A guideline for game development-based learning: A

literature review. International Journal of Computer Games Technology, 2012, 1–

198

20. https://doi.org/10.1155/2012/103710

YoYo Games. (2021). GameMaker studio 2. https://www.yoyogames.com/gamemaker

Zendler, A., & Klaudt, D. (2012). Central computer science concepts to research-based

teacher training in computer science: An experimental study. Journal of Educational

Computing Research, 46(2), 153–172. https://doi.org/10.2190/EC.46.2.c

Zeni, J. (1998). A guide to ethical issues and action research. Educational Action

Research, 6(1), 9–19. https://doi.org/10.1080/09650799800200053

Zhu, M. (2020). Effective pedagogical strategies for STEM education from instructors’

perspective: OER for educators. Open Praxis, 12(2), 257–270.

https://doi.org/10.5944/openpraxis.12.2.1074

199

APPENDIX A: CHECKPOINTS

Project Module Time Description Date

Pinball 1-5

Ball

Bouncer 6 2

Lesson 21-23: wall blocks, ball, goal, ball-goal

collision, ball-walls collision 9/14

 1

Lesson 24: playing pieces (diamond, octagon,

hour_glass, peak, paddle) added to bin area 9/16

 7 2

Lesson 25a: playing piece drop - drags, legal drop,

dropped piece does not drag, reappears in bin 9/21

 1

Lesson 25b: ball collision with playing piece -

increase score, bounce, destroy diamond 10/11

 1

Lesson 27: ball drops out of cannon; alignment &

direction 10/12

 1 Lesson 28a: goal top, win/loss end screen 10/18

 1 Lesson 28b: max quantity playing pieces 10/19

 1 Lesson 29a: power up 10/20

 1

Lesson 29b: rotating paddle, no playing piece drag

after ball drop 10/21

Matching 8 1 Lesson 31: play and quit buttons work 10/26

 1

Lesson 32: card sprite with 7 frames; card turns

over on left released 10/28

 2 Lesson 33: game timer; 12 cards delt dynamically 11/2

 9 2 Lesson 34: remove match; end screen on 6 matches 11/5

 1

Lesson 35: adjust timer on win (increase or stop);

delay before end screen 11/7

31/Scat 10 1 Lesson 39: sprite for each suit 11/11

 2 Lesson 40-42: deck shuffle in console output 11/15

 2

Lesson 43 (function lesson): deal card to player card

1 11/22

 1 Lesson 44: All cards in room 11/23

 11 4 Lesson 45: draw deck; discard; draw discard; knock 12/1

 3

Lesson 46: computer turn; arrow points to current

turn 12/6

200

 3 Lesson 47: end hand; remove tokens; start new hand 12/13

Sky Falling

CS 12 1 Lesson 49: start screen to cut scene 2/25

201

APPENDIX B: PARTICIPANT INFORMATION

Table B.1 Participant Demographics

Pseudonym Age Sex Race

Christal 14 Female White

Krystina 13 Female Black or African American

Breea 14 Female White

Maris 14 Female White

Jerrod 14 Male White

Denzel 14 Male Asian

Shelly 13 Female White

Abegaila 14 Female White

Mary Jo 14 Female Black or African American

Damion 13 Male Black or African American & White

Dakota 14 Male White

Qiannaa 14 Female Black or African American

Joniea 13 Female White

Lucius 14 Male Black or African American

Indie 14 Female White

Milford 13 Male White

Hailey 14 Female Black or African American

Marlenaa 14 Female American Indian or Alaska Native

Aleeshaa 14 Female White

Juliaa 14 Female White

Monster Fana 14 Male White

Shaylyn 14 Female American Indian or Alaska Native

Annabellea 14 Female White

202

Pseudonym Age Sex Race

Teddiea 13 Male White

Pibba 14 Male White

Sanford 14 Male Black or African American

Oakleya 14 Male White

Reuben 14 Male White

Note. N = 28. Age as of 4/29/22.
a Completed the interview.

Table B.2 Participant Academic History

Pseudonym Gifted

and

Talented

2021 SC READY Performance Level

 ELA Math

Christal No Exceeds Expectations Approaches Expectations

Krystina Yes Exceeds Expectations Exceeds Expectations

Breea Yes Exceeds Expectations Exceeds Expectations

Maris No Exceeds Expectations Meets Expectations

Jerrod Yes Exceeds Expectations Exceeds Expectations

Denzel No Exceeds Expectations Exceeds Expectations

Shelly Yes Exceeds Expectations Exceeds Expectations

Abegaila No Meets Expectations Meets Expectations

Mary Jo Yes Exceeds Expectations Meets Expectations

Damion Yes Exceeds Expectations Exceeds Expectations

Dakota Yes Approaches Expectations Approaches Expectations

Qiannaa Yes Exceeds Expectations Meets Expectations

Joniea Yes Meets Expectations Approaches Expectations

Lucius Yes Exceeds Expectations Exceeds Expectations

Indie Yes Exceeds Expectations Meets Expectations

Milford Yes Exceeds Expectations Exceeds Expectations

Hailey Yes Meets Expectations Exceeds Expectations

Marlenaa Yes Meets Expectations Exceeds Expectations

203

Pseudonym Gifted

and

Talented

2021 SC READY Performance Level

 ELA Math

Aleeshaa No Exceeds Expectations Approaches Expectations

Juliaa Yes Exceeds Expectations Exceeds Expectations

Monster Fana Yes Exceeds Expectations Exceeds Expectations

Shaylyn Yes Exceeds Expectations Exceeds Expectations

Annabellea No Meets Expectations Exceeds Expectations

Teddiea No Exceeds Expectations Meets Expectations

Pibba No Exceeds Expectations Exceeds Expectations

Sanford Yes Meets Expectations Exceeds Expectations

Oakleya Yes Exceeds Expectations Exceeds Expectations

Reuben Yes Exceeds Expectations Exceeds Expectations

Note. N = 28.

a Completed the interview.

204

APPENDIX C: GAME DEVELOPMENT PROJECT DIRECTIONS

Project Directions

Project directions adapted from Zulama (Carnegie Learning, 2021).

You and a partner will be designing and coding an original game. Here are the

parameters for your game project.

1) You can pick any game theme you think can be turned into an engaging and fun game.

However, the theme must be within guidelines set by your teacher. Discuss your game

theme with your teacher before moving forward with it. You might want to talk to a

science or social studies teacher about your project and build a game for another class.

Perhaps you feel strongly about a social issue and would like to build a serious game and

pose solutions to such global problems as world hunger. Maybe you'd like to address a

civic issue such as the election process and voting rights.

Whatever you decide after brainstorming and deciding on a game theme, keep your game

simple. World hunger is a huge topic with a lot of problems to solve. Though it may

seem like a great idea for a game, perhaps it is too much for your first game. Think

simple. Focus on a game idea that poses a problem that is interesting and solvable.

2) You are required to demonstrate specific game design principles and coding skills in

this game. You will find a complete list of these in the upcoming directions. They

include:

• Minimum resource requirements

• Specific requirements for the rooms (for example, main game play level)

• Coding requirements

• Events requirements

The emphasis of your game design should be on the game mechanics and program logic.

See the project rubric for how your game will be scored.

205

3) You will need to have at least two (try for five) people playtest your game. Start

thinking about who that group will be and when that will happen.

4) Your first step is to write the Game Design Document, or GDD. Read on to learn

more about this important document.

The Importance of Game Design Documents

A game design documents, also called a GDD, provides focus for your game's design.

Game design documents used in the games industry are very detailed and include not

only the game's design but also analyze the marketability of the proposed game . It is

very involved and very lengthy.

The competition in the games industry is strong . It takes many months, and sometimes

years, for a game to move from idea to market . Game design companies invest in games

that they believe will earn a healthy profit . They also must decide if an initial loss on a

new game will eventually turn the corner and become quite profitable . This makes the

game design document a critical starting point for individuals wishing to pitch their idea .

A professional game design document includes:

• Theme

• Setting

• Genre

• Core game mechanics and platform

• Monetization model (how the game is sold and can make a profit)

• Project scope (team roles, time frame, cost to produce)

• Elevator Pitch (60 seconds)

• Project description

• What sets the project apart from other similar games

• Game's story

• Gameplay

206

• Assets needed (characters, sound, animation)

• Pseudocode and animation

• Schedule

Can you estimate the number of pages that make up a professional game design

document? Yes, a lot. The document is highly detailed and can run beyond 50 pages. It

is a big part of the initial time investment made by game designers into an idea they

believe will be the makings of a very popular and profitable game.

Your Game Design Document

Your game design document will be much shorter! However, it needs to define the type

of game you plan to make and how that will happen. Read through the Game Design

Document Rubric to see what’s expected. Be sure to include the following elements in

your game design document:

Vision Statement—This is your elevator pitch. It should be a short statement that

captures interest and should be no longer than 60 seconds when read aloud.

Target Audience—Define your audience. Age level? Gender? Beginning players?

Experienced player? Who will play your game?

Platform—You are designing a computer game. Explain that here.

Genre—Identify the type of game you are designing. Is it a race game, a puzzle game, an

adventure or role playing game? Explain that here.

Gameplay—Define the goals, game mechanics, the game's components, and user

experience, including levels, here.

Game art—Describe what is planned for art. What will the style be? Is there a time

period? Is there fantasy art or will the art be more realistic. Define that here.

Detailed User Interface—Include mock ups of the main game levels that show the objects

that will be included on each level along with text to explain the object's mechanics. This

is the section that is often referred to as a one-page design.

Story—Write a short summary of the game's story. Identify characters. Make this short.

Just like your vision statement, this explanation should quickly capture interest.

207

Share your plans for your GDD with your teacher. Be sure you understand your teacher's

requirements for the GDD.

Game Design Document Pitfalls

While your game design document is essential to your project, it also is dynamic. One of

the pitfalls of game design documents is to think of them as absolute. They are not.

Game design documents are edited and changed as the game's development progresses.

Remember to keep track of new versions by renaming them. So, your first version is

v1.0. Your second version could be numbered v1.1, and so on. Your GDD is simply an

editable document that should serve as a guide. It is not a plan etched in granite, so feel

comfortable with making changes to it.

Another pitfall of game design documents is to think it is perfectly fine if a GDD is not

regularly updated. Be careful not to fall into this trap. Trying to list all past design

changes to the game will be very difficult if days pass between the change and logging

the change in your GDD. Keep your game design document current at all times. Visit it

often!

You may think that it is okay to shortcut what you write in your GDD because it is more

important to start designing and coding than to start writing a document. This is a third

pitfall. Your GDD is central to the success of your game project. Give it the time it

needs so that your design process will be smooth and planned.

Keep in mind the concept of Fail Forward. Your GDD should recognize that some of

what you initially plan simply will not work. Every failure is a stepping stone to success

and essential to the process of learning from doing. Your GDD should reflect the many

iterations you make to your game. Be proud of them. They show you care about creating

a really good player experience.

Find a group of friends and begin brainstorming ideas for your game. Remember that

brainstorming means tossing every idea on the table (or against the wall!), using a post a

note for each idea. Number them so when the group goes back to them they are easy to

locate. "Let's revisit idea number 3."

While you do not have to work with the game idea the group settles on as the most viable

idea, you should seriously consider what they have to say.

Work with an Idea

Do you have your game idea? Have you cleared it with your teacher?

208

If so, then it is time to write your game design document and upload it in the Game

Design Document assignment for your teacher to read.

Then read the next set of directions, where you will spend some time thinking about the

player experience.

Is It Fun?

Ask people why they play games and you will often hear that playing games is "fun."

How is fun defined ? Think about a game you enjoy—what makes it fun?

Games as an Imaginary Experience

Playing games is a highly personal experience. It's also highly imaginary. The game is

the vehicle for the imaginary experience. The player controls the pace and, through

choices made during game play, how the game evolves. It is the player who crafts the

experience, but it is the designer who provides the tools for the experience through the

game's mechanics, art, and story.

While some may enjoy games that continually challenge and require strategy and goal

setting, others may only want to play games they are sure to always win. Still others may

like to throw their experience to chance. Take for example, individuals who play

Solitaire over and over again until they win a game. Players know that chance directs the

game, but use of strategy in when and where to move cards balances the game somewhat

and helps to tip a win in favor of the player.

In some games the player becomes his or her own storyteller. The player experience is

defined by the player's choice of characters and whether the story is scripted or if the

game's play is altered by decisions the player makes.

How will you use story in your game's design ?

Mastering Levels

Consider what happens during your game play when you have mastered a level. How

does it affect your player experience ? Do you lose interest in the game ? Do you play

the game again just because you know you can win?

Consider these questions as you design your game:

• How long should it take the player to win a game?

209

• How much risk do you anticipate the player will be willing to take before

either frustration or boredom results and the game is placed to the side?

• What is a good balance of risk and reward?

Adding levels to your game is an effective way to present both challenge and balance to

your game. The beginning levels work for players with limited skills and provide the

opportunity for players to gain new skills. This builds game play interest and confidence.

More advanced players quickly work through the beginning levels, validate their skills,

and then move to more challenging game play.

When designing balance and levels, consider both the skills and the interests of the

player. Let's see what this means in games that may be familiar to you.

Take time to analyze how balance is used in games you play. Then look at games that

are new to you. What role does balance have in the games?

Game Design Principles

You are required to demonstrate specific game design principles and coding skills in this

game.

The following are the minimum resource requirements:

• 4 backgrounds

• 4 rooms

• 10 sprites, at least one of these must include multiple images

• 10 objects

• 1 font

• 1 sound (extra credit)

• 1 user-defined function

The rooms must meet the following requirements:

• Start Screen included

210

• Instructions or Cut scene—Although not required, consider using a

timeline to progress through the game introduction. When players leave this

room, they should be familiar with how to play the game and how the player

controls game moves (key presses and/or mouse clicks.)

• Main game play level—Depending on the game genre and the length of

this level, your game may include additional rooms and levels.

• End Screen which includes feedback on whether the player won or lost.

Each room must include a background.

• Navigation to advance from the start screen, replay, and quit the game

must be based on mouse clicks.

Coding Elements

Keep the following coding requirements in mind as you brainstorm ideas for your game:

Your game must have:

• A scoring system displayed on the main game level

• At least 2 collision events

• A random function so that the game has replayability

• At least 1 object type which is created dynamically when the game is

running

• At least 1 object that moves

• At least 2 Boolean variables

• Clear comments with your code

The following events are also required at some point in the game:

• Create

• Alarm

• Draw

• Step

211

The following coding concepts must be used at some point in your game:

• User-defined variables

• Conditional statements

• Arrays (extra credit)

• Loops

Keep in Mind

The emphasis of your game design should be on the game mechanics and program logic.

Resist the temptation to devote too much time to perfecting the game art. Plan that as one

of your iterations. It is important to have a playable prototype quickly so that you can see

if your design is working and if the project scope is manageable. To help with game art,

use the Internet to search for copyright-free game art. The site OpenGameArt.org is a

starting point.

You will need to have at least 2 (try for 5) people playtest your game. Start thinking

about who that group will be and when that will happen. What type of feedback will you

be hoping to receive from your playtesters ? If you said, "Lots of ideas of how to

improve the game," you are exactly correct!

Develop a plan for building your game. Write your plan as steps you will take to build

and code your game. What will you do first ? Next ? After that ? What is your last

step?

Remember to refer to your checklist often to make sure you have included all required

game design and coding elements.

Now it's time to build your game! Have fun with it.

Status Reports

Status Reports are weekly updates you give to your teacher on your progress. You are

now ready to build your prototype, which means you also are ready to write your first

status report.

As pair programmers you will submit a status report from both of you.

Your status report has three main parts. Bulleted items are added to each section.

http://cs.myemcp.com/ICSGD24#_blank

212

DONE—What's been accomplished from a start date to the current date. Here is an

example of what might be on a DONE list at this point. Make sure you list all that you've

accomplished during the time frame. What else could be on this list ?

• Completed design document

• Uploaded design document for review

• Organized sprites

• Created five new sprites

TO DO—This is a list of what you plan to do during the next time frame (such as the

next week of class). The list should be as detailed as possible. Here is an example of the

start of a TO DO list.

• Build backgrounds and rooms

• Create events

• Code mouse input

• Add goal

• Add the User Interface

QUESTIONS/CHALLENGES—This part of the status report is a list of questions and

challenges you anticipate addressing at some point. This list serves as the basis for

conversations you may have with your classmates and teacher. Asking for feedback and

sharing ideas with others is a good practice to follow, and one that indicates that you are

invested in making the best game possible.

Carefully think through your questions and state them in a clear manner so others

understand what you are trying to achieve in your game.

• Possible question for my teacher

• Possible question for my peers

• Questions I need to address in my game design and / or coding

• Challenges that I may encounter as I work through my To Do list

213

• Challenges I anticipate with the game as a whole.

Several status reports should be submitted from the time you have completed your design

document to the time when you are ready to upload your prototype for review by your

teacher. One status report is due after submitting your Game Design Document. One per

week are due during prototyping. Check with your teacher on the deadlines for your

Status Reports.

It is Ready!

Upload your game to the Prototype assignment in Google Classroom when you have

finished building your prototype and are ready to have it reviewed by your teacher.

You Did It!

• You wrote a design document.

• You built an original game to specs provided for you.

• You completed several status reports.

• You uploaded an original and playable game for review.

That's a lot!

What comes next ? That's right. Playtesting. You are at a very important point in game

development. You have tested your game over and over again as you were building it.

Chances are you have played your game all the way through several times, as well. Are

you ready to share it with others?

Sure!

Go for it! But, what's the best approach to playtesting your game ? How will you get the

most out of playtesting?

Keep the iterative cycle in mind. A big part of your playtesting is to figure out what can

be done to move your game at least one notch higher on a 1–10 scale of playability!

Remember: A game is never really finished!

Now it's time to put together a plan for your playtest.

214

1. Write a playtest plan. Use the Playtest Document as a guide for your

playtest plan.

2. Choose your playtesters.

3. Determine where and when your game will be playtested

Iterative Game Design

Take a look at the Iterative Cycle.

• What does it tell you about game design?

• Where is your game on the iterative game cycle?

• What is meant by "A game is never finished?"

How was your playtest ? Was your game received as you thought it would be ? Did

players finish the game ? Did they seem engaged ? Was it too complex? Consider the

balance of depth and complexity.

Now take a look at the results of your playtest

• Make a list of suggested improvements based on the comments made by

your playtesters.

• Make a list of planned improvements (iterations).

215

• Then set up a time line to complete the iterations.

Second Playtest

A second playtest is important to ensure that the improvements you made to your game

actually make it more playable and engaging. Follow these steps to set up your second

playtest.

• Revise your playtest plan. What did you learn from the organization of

your first playtest?

• Is there anything you would change ? Perhaps the space used or

the time set aside for the playtest ? Change up your plan as needed to

ensure a valued playtest experience.

• Choose your playtesters.

• Should you use the same playtesters or new ones ? Which will

give you the best results ? This decision is up to you, but be prepared

to justify your decision.

Collect the results of the playtest. Decide if your game needs further iterations or is

ready to share. Take the time you need to build a game that you like to play, and well,

like! While it may be difficult to be completely unbiased about your game, you know it

best. If you like playing it, chances are others will, as well. However, be your worst

critic. Remember, a game is never finished, so even if you are ready to share it, you still

can go back and improve it as new ideas for game enhancements come to mind.

216

Project Rubric

All events and code should be labeled Rubric: <description>

I should be able to search your code for Rubric and locate all of the code needed for

grading. You do not have to label the Game Design Document or resources/assets.

Reporting Category Scoring Criteria Decision Rules

Row 1

Game Design Document

(0-4 points)

• See the Game Design

Document Rubric

There are 100 points

available in the Game

Design Document Rubric.

Divide the points earned

by 25 to obtain a range

from 0 to 4.

Row 3

Resource / Asset

Requirements

(0-2 points; 1 extra credit

point)

The submitted game

project includes the

following resources:

• 4 backgrounds

• 4 rooms

• 10 sprites (one with

multiple frames)

• 1 font

• 1 sound (optional)

Award 2 points if all

required resources are

included.

Award 1 point if one or

two required resources are

missing.

Award 1 extra point if a

sound is included.

Row 4

Coding Elements

(0-4 points)

Comments identify

elements for scoring.

Mechanics:

• Score displayed on

main level

• 2 collisions

• Use of random values

• Dynamic instance

creation

• 1 moving instance

• 2 Boolean variables

Events:

• Create

• Alarm

• Draw

• Step

Award 4 points if all

required coding elements

are present and labeled

with comments. Deduct 1

point for each missing

element.

Row 2

Algorithm Implementation

(0-4 points; 1 extra point)

The submitted source code

includes a program code

segment of a student-

Consider ONLY the

section of code identified

as submitted algorithm

217

developed algorithm that

includes:

• user-defined variable

• sequencing

• selection (conditional

statement)

• iteration

• arrays (optional)

through comments in the

submitted source code.

Award one point each for

user-defined variable,

sequencing, selection, and

iteration. These points

may be earned if the

algorithm is not

encapsulated in a

procedure.

If this code segment calls

other student-developed

procedures, the procedures

called from within the

identified procedure can be

considered.

The use of selection and

iteration cannot be trivial

and must affect the

outcome of the game.

Award an extra point for

the use of an array.

Row 3

Procedural Abstraction

(0-2 points)

The submitted source code

includes:

• a student-developed

function with at least

one parameter that has

an effect on the

functionality of the

function.

• at least two calls to the

function with different

parameter values.

Consider ONLY the

section of code identified

as submitted function

definition through

comments in the submitted

source code and calls to

the submitted function.

Award one point for the

function definition.

Award one point for at

least two calls to the

function with different

parameter values. The

parameter values chosen

must demonstrate the

possibility of different

behavior in the selection or

iteration.

218

Row 4

Managing Complexity

(0-1 points)

The submitted source code

includes a comment above

the student-developed

procedure that explains

how the procedure

manages complexity in the

program.

Consider ONLY the

section of code identified

as submitted procedure

definition through

comments in the submitted

source code.

Award one point for an

explanation of how the

procedure manages

complexity in comments

above the procedure

definition.

219

Game Design Document Rubric

Rubric created by Zulama (Carnegie Learning, 2021).

Skills
Assessed

Levels of Achievement (circle the level achieved for each assessed
skill)

Criteria Unsatisfactory Basic Proficient Advanced

Use of
Evidence

Design
Document
lacks linkage
between
concept
explained in
the lesson and
the design
solution.

Design Document
contains a weak
link between the
concept explained
in the lesson and
the design
solution.

Design
Document
contains a
satisfactory link
between the
concept
explained in the
lesson and the
design solution.

Design
Document
contains a
strong, well‐
articulated
link between
the concept
explained in
the lesson to
the design
solution.

0 6 8 10

Accuracy of
Information

Design
Document
contains
design
changes that
lack knowledge
of design goal.

0

Design Document
notes design
changes that will
produce limited
results related to
the design goal.

6

Design
Document
contains a plan
for the
construction of
the pieces and
parts to be
changed, but the
details may be
vague, or it is
unclear if the
plan will achieve
the desired
results. 8

Design
Document
contains a
detailed plan
for the
construction
of the pieces
and parts to
be changed
in order to
meet design
goal. 10

Development
of a Clear
Argument

Design
Document
lacks
explanation of
lesson concept
and how it will
be
demonstrated
in the final
deliverable.

Design
Document
contains a weak
explanation of
both the lesson
concept and how
it will be
demonstrated in
the final
deliverable.

Design
Document
contains some
explanation of
the lesson
concept and
how it will be
demonstrated in
the final
deliverable, but

Design
Document
contains
detailed
explanation
of the lesson
concept and
how it will be
demonstrate
d in the final

220

details are
missing.

deliverable.

0 6 8 10

Logical and
Effective
Reasoning
and
Attention to
Writing
Conventions

Design
Document
lacks detail.
The scope
and intent
of the
project is
ambiguous.

Design
Document
misses a few
major design
details, leading to
misinterpretatio
n of the plan.

Design Document
addresses major
design details, but
does lacks
explanation of every
part of the plan.

Design
Document is
clear and
complete,
addressing all
design details.

0 6 8 10

Design Layout Unsatisfactory Basic Proficient Advanced

Attention to
Writing /
Artwork

Conventions

Layout lacks
changes to
pieces and
parts called for
in the Design
Document;
lacks
connection
between the
written plan
and the
images. The
images are
incomplete.

Layout lacks
many of the
changes to
pieces and
parts called
for in the
Design
Document;
lacks one‐to‐
one
corresponde
nce between
the written
plan and the
images. The
images are
ambiguous.

Layout includes most
changes to pieces
and parts called for in
the Design
Document; there is a
tenuous
correspondence
between the written
plan and the images.
The images are
generally clear but
lack detail.

Layout
includes all
changes to
pieces and
parts called
for in the
Design
Document;
there is a one‐
to‐one
corresponden
ce between
the written
plan and the
images,
displayed in
an easy‐to‐
understand
manner.

0 6 8 10

221

Depth of
Study

Layout lacks
visual
demonstration
of lesson
concepts.

0

Layout
provides
a vague
visual
demons
tration
of lesson
concept
s.

6

Layout visually
demonstrates the
lesson concepts,
but some details are
missing or the
game play is
ambiguous.
8

Layout
visually
demonstrates
the lesson
concepts with
clear, fleshed‐
out detail.
10

Effective
Problem‐
Solving
Strategies

The amount
of work
proposed is far
beyond the
scope of the
assignment.

0

The amount
of work
proposed is
difficult to
achieve within
the
assignment
timeframe
and the
design must
be radically
altered.

6

The amount of work
proposed is
achievable only with
a slight reduction in
scope. Features are
cut before work
begins.

8

The amount of
work proposed
is achievable
within the
assignment
timeframe.

10

Delivera
ble
Project

Unsatisfactory Basic Proficient Advanced

Necess
ary
Knowle
dge
Acquisit
ion

Project barely
runs and
reveals lack of
knowledge
acquisition and
concerted
effort.

0

Project runs
with many
bugs and
design
underwent
radical
changes that
were
capricious
and lacked
ties to design
iteration.

6

Project runs as
designed with minor
bugs OR Project runs
without bugs but slight
unsubstantiated design
changes were made.

8

Project
runs as
designe
d
without
bugs.

10

222

Use of Evidence Project lacks
features that
were detailed
in the Design
Document and
demonstrated
in the Design
Layout.

Very few
features
delivered in
the project
were
detailed in
the Design
Document
and
demonstrate
d in the
Design
Layout.

Most features
delivered in the project
were detailed in the
Design Document and
demonstrated in the
Design Layout.

Features
delivered in
the project
were all
detailed in
the Design
Document
and
demonstrat
ed in the
Design
Layout.
Features
were
added to
the project
in
response
to iterative
playtesting
‐related
changes.

0 6 8 10

Conceptu
al
Integratio
n of
Knowledg
e

The design
choices made
and
implemented
in the project
show little
knowledge of
the design
concept
featured in the
lesson.

0

The design
choices made
and
implemented
in the project
lack adequate
demonstratio
n of the
design
concept
featured in
the lesson.

6

The design choices
made and implemented
in the project clearly
demonstrate the design
concept featured in the
lesson.
The game is enjoyable,
but players may lack
interest in playing
multiple times.

8

The
design
choices
made and
implemen
ted in the
project
clearly
demonstr
ate the
design
concept
featured
in the
lesson.

The
game is
fun to
play.

10

Total Criteria Points 0 60 80 100

223

Student point total = the total points of “Skills Assessed.”

224

Playtest Document

Adapted from Zulama (Carnegie Learning, 2021).

 Before:

Preparation

During:

Observing &

Recording

After: Reflecting

Playability / Fun What do you

expect your player

will enjoy about

the game? (Be

specific.)

On a scale of 1 to

5, with 1 being

boring and 5 being

fun, how would you

rate how much fun

the player had with

your game?

Explain your

rating.

What iterations

could you make in

order to make the

game more fun?

Timing How long do you

think your game

takes to play?

How much time

does the player

spend on your

game?

Will you need to

adjust the length of

play? If so, how

will you

accomplish that?

Player Reactions Which type of

reaction do you

expect your player

to show?

What type of

reaction did the

player show?

Are there any

changes you could

make in order to

elicit more positive

reactions from your

player?

Body Language
What will
you look
for when
observing
body
language?

Describe what you

anticipate

observing.

Describe any body

language that you

see the player use.

What does this

body language

reveal about any

iterations you need

to make?

Strategic What kinds of List the strategies List ideas you have

225

Approach strategies do you

anticipate the

player will use to

overcome obstacles

in your game?

you observe the

player using to

overcome

obstacles.

to improve the

player’s use of

strategy.

Bumps in the

Road

What challenges do

you anticipate the

player may have?

(These are design

aspects of the game

that may need to be

improved, but you

want to see how the

player responds

before changes are

made.)

Is there a moment

where the player

wants to quit or

give up? If so,

when? What

comments are

made that indicate

frustration or

boredom with the

game?

What are some

possible changes

you could make to

improve the game’s

playability?

Player Comments What types of

comments will be

especially helpful

to you as a game

designer?

Write down any

other comments,

questions, or

concerns you hear

the player express.

Based on the

playtest, what can

you list in the two

columns about your

game?

226

APPENDIX D: CONTENT KNOWLEDGE ASSESSMENT

Multiple-Choice

1. A certain game keeps track of the maximum and minimum scores obtained so

far. If num represents the most recent score obtained, which of the following

algorithms correctly updates the values of the maximum and the minimum?

a. If num is greater than the minimum, set the minimum equal to num.

Otherwise, if num is greater than the maximum, set the maximum equal

to num.

b. If num is less than the minimum, set the minimum equal to num.

Otherwise, if num is greater than the maximum, set the maximum equal

to num.

c. If num is less than the minimum, set the minimum equal to num.

Otherwise, if num is less than the maximum, set the maximum equal to

num.

d. If num is greater than the minimum, set the minimum equal to num.

Otherwise, if num is less than the maximum, set the maximum equal to

num.

2. A programmer is creating an algorithm that will be used to turn on the motor to

open the gate in a parking garage. The specifications for the algorithm are as

follows.

-The gate should not open when the time is outside of business hours.

-The motor should not turn on unless the gate sensor is activated.

-The motor should not turn on if the gate is already open.

Which of the following algorithms can be used to open the gate under the

appropriate conditions?

a. Check if the time is outside of business hours. If it is, check if the gate

sensor is activated. If it is, check if the gate is closed. If it is, turn on the

motor.

b. Check if the time is during business hours. If it is, check if the gate sensor

is activated. If it is, check if the gate is open. If it is, turn on the motor.

c. Check if the time is during business hours. If it is, check if the gate sensor

is activated. If it is not, check if the gate is open. If it is not, turn on the

motor.

d. Check if the time is during business hours. If it is, check if the gate sensor

is activated. If it is, check if the gate is open. If it is not, turn on the motor.

227

3. Three different numbers need to be placed in order from least to greatest. For

example, if the numbers are ordered 9, 16, 4, they should be reordered as 4, 9, 16.

Which of the following algorithms can be used to place any three numbers in the

correct order?

a. If the first number is greater than the last number, swap them. Then, if the

first number is greater than the middle number, swap them.

b. If the first number is greater than the middle number, swap them. Then, if

the middle number is greater than the last number, swap them.

c. If the first number is greater than the middle number, swap them. Then, if

the middle number is greater than the last number, swap them. Then, if

the first number is greater than the last number, swap them.

d. If the first number is greater than the middle number, swap them. Then, if

the middle number is greater than the last number, swap them. Then, if

the first number is greater than the middle number, swap them.

4. In a certain game, the integer variable bonus is assigned a value based on the

value of the integer variable score.

-If score is greater than 100, bonus is assigned a value that is 10 times

score.

-If score is between 50 and 100 inclusive, bonus is assigned the value of

score.

-If score is less than 50, bonus is assigned a value of 0.

Which of the following code segments assigns bonus correctly for all possible

integer values of score?

Select two answers.

a. if score > 100 {

bonus = score * 10

} else {

if score >= 50 {

bonus = score

} else {

 bonus = 0

}

}

b. if score >= 50 {

if score > 100 {

 bonus = score * 10

} else {

 bonus = 0

}

} else {

228

bonus = 0

}

c. if score < 50 {

bonus = 0

} else {

if score >= 50 {

bonus = score

} else {

 bonus = score * 10

}

}

d. if score < 50 {

bonus = 0

} else {

if score > 100 {

bonus = score * 10

} else {

 bonus = score

}

}

5. The cost of a customer’s electricity bill is based on the number of units of

electricity the customer uses.

-For the first 25 units of electricity, the cost is $5 per unit.

-For units of electricity after the first 25, the cost is $7 per unit.

Which of the following code segments correctly sets the value of the variable

cost to the cost, in dollars, of using numUnits units of electricity?
a. if numUnits <= 25 {

cost = numUnits * 5

} else {

 cost = numUnits * 7

}

b. if numUnits <= 25 {
cost = numUnits * 5

} else {

 cost = (numUnits – 25) * 7

}

c. if numUnits <= 25 {
cost = numUnits * 5

} else {

 cost = 25 * 5 + (numUnits – 25) * 7

229

}

d. if numUnits <= 25 {
cost = numUnits * 5

} else {

 cost = 25 * 7 + (numUnits – 25) * 5

}

230

6. The ticket prices at a movie theater are given below.

Type of Ticket Price (in dollars)

Regular 12

Child (ages 12 and below) 9

Senior (ages 60 and above) 9

Additional $5 fee for 3-D movies

A programmer is creating an algorithm to set the value of ticketPrice based

on the information in the table. The programmer uses the integer variable age

for the age of the moviegoer. The Boolean variable is3D is true when the

movie is 3-D and false otherwise.

Which of the following code segments correctly sets the value of

ticketPrice?

a. ticketPrice = 12

if age <= 12 or age >= 60 {

ticketPrice = 9

}

if is3D {

ticketPrice = 17

}

b. ticketPrice = 12

if age <= 12 or age >= 60 {

ticketPrice = 9

}

else {

ticketPrice = 17

}

c. ticketPrice = 12

if age <= 12 or age >= 60 {

ticketPrice = 9

}

if is3D {

ticketPrice += 5

}

d. ticketPrice = 12

if age <= 12 or age >= 60 {

ticketPrice = 9

}

else {

ticketPrice += 5

}

231

7. A biologist wrote a program to simulate the population of a sample of bacteria.

The program uses the following procedures.

Procedure Call Explanation

InitialPopulation() Returns the number of bacteria at the start of the

simulation.

NextPopulation(currPop) Based on the current value of currPop, returns

the number of bacteria after one hour

Code for the simulation is shown below.
hours = 0

startPop = InitialPopulation()

currentPop = startPop

while hours < 24 and currentPop > 0 {

 currentPop = NextPopulation(currentPop)

 hours += 1

}

show_debug_message(currentPop – startPop)

Which of the following are true statements about the simulation?

I. The simulation continues until either 24 hours pass or the population

reaches 0.

II. The simulation displays the average change in population per hour over the

course of the simulation.

III. The simulation displays the total population at the end of the simulation.

a. I only

b. II only

c. III only

d. I and II

232

8. The code segment below is intended to display all multiples of 5 between the

values start and end, inclusive. For example, if start has the value 35 and

end has the value 50, the code segment should display the values 35, 40, 45, and

50. Assume that start and end are multiples of 5 and that start is less than

end.

i = start

for(count = 0; count < <MISSING EXPRESSION>;

count++) {

 show_debug_message(i)

 i += 5

}

Which of the following could replace <MISSING EXPRESSION> so

that the code segment works as intended?

a. end – start + 1
b. end – start + 6
c. ((end – start) / 5) + 1

d. 5 * (end – start) + 1

233

9. An algorithm is intended to display the following output:

red red blue red red blue red red blue

Which of the following code segments can be used to display the intended output?

a. for(i = 0; i < 2; i++) {

for(j = 0; j < 3; j++) {

show_debug_message(“red”)

}

show_debug_message(“blue”)

}

b. for(i = 0; i < 2; i++) {
for(j = 0; j < 3; j++) {

show_debug_message(“blue”)

}

show_debug_message(“red”)

}

c. for(i = 0; i < 3; i++) {
for(j = 0; j < 2; j++) {

show_debug_message(“red”)

}

show_debug_message(“blue”)

}

d. for(i = 0; i < 3; i++) {
for(j = 0; j < 2; j++) {

show_debug_message(“blue”)

}

show_debug_message(“red”)

}

234

Multiple-Choice Answer Key

1. b

2. d

3. d

4. a, d

5. c

6. c

7. a

8. c

9. c

235

Performance Task

• Read all task instructions before beginning.

• Width and height numbers are in pixels.

• You may use any of the images provided to you during the course. You may also

create your own images. You will not be assessed on aesthetics, but your objects

should contrast sufficiently with your background so that functionality can be

assessed. All of the images you need can be found in the Pinball resources.

• Create a rectangular room with width 1024 and height 768. You should have

exactly one room.

• Create walls to bound the edges of the rectangular room. The walls should be 32

pixels thick. Your bottom wall will function differently than your other walls.

• Create a rectangular paddle just above the bottom floor with width 160 and height

64.

• The paddle can move right and left by the player pressing the right and left arrow

keys, respectively. The paddle should continue to move when the right or left

arrow key is held down. The paddle should stop moving when it hits the walls.

• The game immediately begins when run. Therefore, you should not add a start

screen or other functionality to start the game.

• Every two seconds, add an instance of a ball to the room with width 32 and height

32. For each ball:

o speed is 4

o gravity is 0.1

o gravity direction is down

236

o direction is a random angle

o y is 100

o x is a random number between 100 and 900

• If a ball hits any wall other than the bottom, the ball should bounce.

• The ball should bounce off of the paddle.

• If a ball hits the bottom wall:

o The ball is destroyed

o A life is lost.

• When lives reach zero:

o Destroy the balls

o Stop spawning new balls

o Display “Game Over” in the middle of the room.

o Display a “Play Again” button that will restart the room when pressed.

Restarting the room should:

▪ Set score to 0

▪ Set lives to 3

▪ Set paddle to starting length

• Start the game with three lives. Display the lives in the upper right corner of the

room.

• Add 10 points to the score every time a ball hits the paddle. Display the score in

the upper left corner of the room.

• When the score reaches 50, change the paddle width to 224.

237

Performance Task Rubric

Reporting Category Scoring Criteria Decision Rules

Row 1

Sprite Dimensions

(0-2 points)

The dimension of the

following sprites should

match the specifications:

• room

• walls

• balls

• initial paddle

• long paddle

2 points: all sprites have

the appropriate

dimensions.

1 point: one sprite is

significantly different.

0 points: more than one

sprite is significantly

different than required.

Row 2

Initial Instances Present

(0-1 points)

The following instances

should be in the room when

the game begins:

• room

• walls

• initial paddle

1 point: all initial instances

are present when the game

begins. The walls should

be on the edges of the

room, and the paddle

should be just above the

bottom wall.

0 points: any incorrect or

missing instances

Row 3

Paddle Movement

(0-2 points)

The paddle

• should move left and

right when the left and

right arrow keys are

pressed.

• should not move left

when the left wall is

reached and should not

move right when the

right wall is reached

2 points: the paddle moves

left and right when the left

and right arrow keys are

pressed, and the paddle

will not move through the

walls.

1 point: the paddle moves

in both directions but

moves through a wall.

0 points: the paddle does

not move or moves in only

one direction OR the

paddle does not continue to

move when the left or right

arrow keys are held down.

Row 4

Ball Spawn

(0-2 points)

A ball

• spawns every second

• has the correct

properties when it

spawns

2 points: a new ball

instance is added to the

room every 1 to 3 seconds

and has properties that

satisfy the requirements.

238

1 point: a ball does not

spawn every 1 to 3 seconds

or has incorrect properties

0 points: a ball does not

spawn every 1 to 3 seconds

and has incorrect

properties OR a ball is in

the room, but no balls were

created dynamically

Row 5

Ball Bounce

(0-2 points)

The ball:

• bounces on collision

with top and side walls

• bounces on collision

with paddle

• if this is difficult to

playtest, check code for

correct collision

handling

2 points: all bounces work

properly.

1 point: one bounce works

properly.

0 points: more than one

bounce does not work

properly

Row 6

Lives

(0-2 points)

• Lives are displayed in

the upper right corner of

the room.

• The game begins with

three lives.

• A life is lost when the

ball hits the bottom

wall.

2 points: all scoring

criteria are met.

1 point: all but one

criterion is met.

0 points: lives are not

displayed OR more than

one criterion is not met

Row 7

Score

(0-2 points)

• The score is displayed

in the upper left corner

of the room.

• The score increases by

10 for each ball that hits

the paddle.

• A score of 50 (cutoff

may be as high as 100)

causes the paddle to

increase in width.

2 points: all scoring

criteria are met.

1 point: all but one

criterion is met.

0 points: score is not

displayed OR more than

one criterion is not met

Row 8

Game Over

(0-2 points)

When lives reach zero:

• Destroy the balls

• Stop spawning new

balls

• Display “Game Over”

in the middle of the

room.

2 points: all scoring

criteria are met.

1 point: “Game Over” or

“Play Again” appears

when lives reach zero.

239

• Display a “Play Again”

button that will restart

the room when pressed.

Restarting the room

should:

o Set score to 0

o Set lives to 3

o Set paddle to

starting length

0 points: score and lives

are not displayed OR more

than one criterion is not

met

240

APPENDIX E: SURVEY

Directions

This series of statements will be used to gauge your attitudes regarding computer science.

There are no right or wrong answers, so please answer honestly. Rate your level of

agreement with the following statements using the following scale: 1 = strongly disagree,

2 = disagree, 3 = neutral, 4 = agree, 5 = strongly agree.

These survey statements and aspects were developed by Shen et al. (2014).

Aspect (a): Self-concept in Computer Science

1. Computer science is fun

2. I feel at ease with computer science, and I understand concepts easily

3. Computer science is one of my best subjects

4. The feeling that I have toward computer science is positive

5. Computer science is a topic, which I enjoy studying

Aspect (b): Learning Computer Science at School

6. We learn interesting things in computer science lessons

7. I look forward to my computer science lessons

8. Computer science lessons are exciting

9. I would like to do more computer science at school

10. I like computer science better than most other subjects at school

Aspect (c): Learning Computer Science Outside of School

11. I would like to join a computer science club

241

12. I like watching computer science programs on TV

13. I like to visit computer science museums

14. I would like to do more computer science activities outside school

15. I like reading computer science magazines and books

16. It is exciting to learn about new things happening in computer science

Aspect (d): Future Participation in Computer Science

17. I would like to study more computer science in the future

18. I would like to have a job working with computer science

19. I would like to become a computer science teacher

20. I would like to become a computer scientist

21. Computer science knowledge is necessary for my future career

Aspect (e): Importance of Computer Science

22. Computer science and technology is important for society

23. Computer science and technology makes our lives easier and more comfortable

24. The benefits of computer science are greater than the harmful effects

25. Computer science and technology are helping the poor

26. There are many exciting things happening in computer science and technology

242

APPENDIX F: INTERVIEW PROTOCOL

Date/Time:

Interviewee:

Informed Consent

 Good morning. I would like to focus on your responses without being distracted

by note-taking. You and your parent or guardian have already signed a consent form, but

I want to review a few important points. I would like to use a tool to record and

transcribe our conversation. Only I will have access to the recording, and your identity

will be kept confidential. Your participation is voluntary, and you may choose to stop at

any time. Your participation will not affect your grade in the course. This interview is

scheduled for 30 minutes. I may need to interrupt you occasionally or move to new

questions to stay within the time restriction. Thank you for participating.

Introduction

 You have been selected to speak with me be3333cause you offer a valuable

perspective on the game development project that you just completed. My research

focuses on improving curriculum and instruction for students learning to program. Please

be completely honest and do not worry about hurting my feelings or anticipating what I

want to hear. Are you ready to begin?

243

Questions

1. Can you describe what you learned in this unit? Please include what you think

you were expected to learn and what you actually learned. Did the assessment

provide an accurate measure of what you know for each skill?

2. Describe how effective the game development project has been in helping you

learn in our course.

3. How did the game development project help you learn to analyze and develop

algorithms? Can you give me an example?

4. Describe any programming or game development skills that improved during the

project.

5. Can you recall any instances when you enjoyed developing your game?

6. Describe how you generally feel when you come to class. How does that

compare with your other courses?

7. Describe how your interest in computer science has changed outside of school.

8. Tell me about any plans you have to study or work with computer science in the

future.

9. What is the most beneficial effect of computer science and technology on society?

Why?

10. What is the most harmful effect of computer science and technology on society?

Why?

11. In what ways do your attitudes toward computer science affect your performance

in the course?

244

12. Would you please describe any attitudes or feelings that may have affected your

ability to learn in the computer science course?

13. Describe your reactions to errors and setbacks in the game you developed.

Include how you felt during the troubleshooting process.

Conclusion

 That concludes the questions that I have prepared. Is there anything that I should

know but failed to ask? Thank you again for your time. When I report my results, I plan

to use fake names for the participants. Should I make one up, or is there a name that you

want me to use for you?

245

APPENDIX G: IRB APPROVAL

OFFICE OF RESEARCH COMPLIANCE

INSTITUTIONAL REVIEW BOARD FOR HUMAN RESEARCH

DECLARATION of NOT RESEARCH

Theodore Jenks

Wardlaw College

820 Main Street

Columbia, SC 29208

Re: Pro00118427

Dear Theodore Jenks:

This is to certify that research study entitled THE EFFECTS OF PROJECT-BASED GAME DEVELOPMENT ON

STUDENT LEARNING AND ATTITUDES: ACTION RESEARCH IN AN 8TH GRADE INTRODUCTORY

COMPUTER SCIENCE COURSE was reviewed on 1/21/2022 by the Office of Research Compliance, which is an

administrative office that supports the University of South Carolina Institutional Review Board (USC IRB). The Office

of Research Compliance, on behalf of the Institutional Review Board, has determined that the referenced research study

is not subject to the Protection of Human Subject Regulations in accordance with the Code of Federal Regulations 45

CFR 46 et. seq.

No further oversight by the USC IRB is required. However, the investigator should inform the Office of Research

Compliance prior to making any substantive changes in the research methods, as this may alter the status of the project

and require another review.

If you have questions, contact Lisa M. Johnson at lisaj@mailbox.sc.edu or (803) 777-6670.

mailto:lisaj@mailbox.sc.edu

246

Sincerely,

Lisa M. Johnson

ORC Assistant Director and IRB Manager

247

APPENDIX H: DISTRICT STUDY APPROVAL

Theodore Jenks Tue, Sep 7, 2021 at 12:09 PM
To: "[name redacted]"
Cc: [name redacted], [name redacted]

Hi [name redacted],

I will be conducting the data collection phase for my doctoral program in the spring. USC requires me
to obtain approval from my building supervisor (principal: [name redacted] at [redacted]) and
district. Whom should I contact for approval at the district?

Very respectfully,

--
Theodore Jenks
Technology Department

Theodore Jenks [email redacted] Wed, Sep 8, 2021 at 12:21 PM
To: [name redacted], [name redacted], [name redacted]

Request for study approval - please let me know if you need more detail.

The purpose of this action research will be to implement a digital game development

curriculum and describe its effects on the learning outcomes and attitudes of eighth-grade

students in a required computer science course at [redacted].
Very respectfully,
Theodore Jenks
Technology Department

 [name redacted] Thu, Sep 9, 2021 at 9:19 AMTo: "Jenks, Theodore"
You have been approved for your doctoral study.
Thanks

[name redacted]--
[name redacted]
Assistant Superintendent for Instruction

248

APPENDIX I: ORIGINAL AND CURRENT PSEUDONYMS

Table H.1 Original and Current Pseudonyms

Original Current

Achlys Christal

Ananke Krystina

Anuke Bree

Aphrodite Maris

Apollo Jerrod

Ares Denzel

Athena Shelly

Bastet Abegail

Demeter Mary Jo

Dionysus Damion

Hades Dakota

Hathor Qianna

Hedetet Jonie

Hephaestus Lucius

Hera Indie

Hermes Milford

Hestia Hailey

Isis Marlena

Mafdet Aleesha

Menhit Julia

Monster Fan Monster Fan

Nemesis Shaylyn

Nepit Annabelle

Nu Teddie

249

Original Current

Pibb Pibb

Poseidon Sanford

Ra Oakley

Zeus Reuben

	The Effects of Project-Based Game Development on Student Learning and Attitudes: Action Research in an 8th Grade Introductory Computer Science Course
	Recommended Citation

	tmp.1679932854.pdf.veEsz

