
University of South Carolina University of South Carolina

Scholar Commons Scholar Commons

Theses and Dissertations

Fall 2022

Search for Triple-Proton Decay Using Machine Learning With Search for Triple-Proton Decay Using Machine Learning With

CUORE CUORE

Douglas Adams

Follow this and additional works at: https://scholarcommons.sc.edu/etd

 Part of the Physics Commons

Recommended Citation Recommended Citation
Adams, D.(2022). Search for Triple-Proton Decay Using Machine Learning With CUORE. (Doctoral
dissertation). Retrieved from https://scholarcommons.sc.edu/etd/7115

This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please
contact digres@mailbox.sc.edu.

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F7115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=scholarcommons.sc.edu%2Fetd%2F7115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/7115?utm_source=scholarcommons.sc.edu%2Fetd%2F7115&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu

Search for Triple-Proton Decay using Machine Learning with
CUORE

by

Douglas Adams

Bachelor of Science
University of Michigan 2012

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in

Physics

College of Arts and Sciences

University of South Carolina

2022

Accepted by:

Frank T. Avignone, Major Professor

Richard J. Creswick, Committee Member

Matthias Schindler, Chair, Committee Member

Jeffery Wilson, Committee Member

Thomas O’Donnell, Committee Member

Cheryl L. Addy, Interim Vice Provost and Dean of the Graduate School

© Copyright by Douglas Adams, 2022
All Rights Reserved.

ii

Abstract

A framework to search for a triple-proton decay of 130Te in the CUORE detector

against a background of muons is presented. We use machine learning to classify

different kinds of energy depositing events. We use the classification information to

improve our detection or non-detection limits of a triple-proton decay process. We

derive and use a methodology of combining Poisson counting statistics with super-

vised classification machine learning tools. Additionally, a sensitivity calculation is

provided which uses the classification counting likelihood. Using our analysis tech-

nique, we achieve an lower 2σ half-life bound of 7.43×1024yrs for triple-proton decay

of 130Te.

iii

Table of Contents

Abstract . iii

List of Figures . viii

Chapter 1 Introduction . 1

1.1 Motivation for Triple-Proton-Decay Search 1

1.2 Neutrino Properties . 3

1.3 Neutrinoless Double Beta Decay . 4

1.4 The CUORE Experiment . 6

1.5 CUORE Neutrinoless Double Beta Decay Results 9

1.6 Overview of Search Methodology . 10

Chapter 2 Simulating Events of Interest 12

2.1 Simulations: Triple Proton Decay . 14

2.2 Simulations: Muons . 22

2.3 Calculating the Expected Muon Count as a Prior 25

Chapter 3 Selecting Single Event Features 28

3.1 Features: Total Energy & Multiplicity 29

3.2 Feature: Saturated Crystal count . 29

3.3 Feature: Principle Components . 30

iv

3.4 Feature: Principle Components - Energy Weighted 33

3.5 Visualizations of Many Features . 34

Chapter 4 Extracting Real Data 38

4.1 Data Storage Format . 38

4.2 Pulse Energy & Time Estimation . 40

4.3 Grouping Many Crystals into a Single Event 41

4.4 Choosing Cuts . 43

4.5 Real Data Features : An Emergent Discrepancy 44

4.6 Investigation of the Mar 2020 Real Data Discrepancy 47

Chapter 5 Maximum Entropy to Counting Statistics 52

5.1 Entropy Definition . 52

5.2 Lagrange Multipliers . 53

5.3 Entropy Derivation of the Exponential Distribution 53

5.4 Detectors Underground: Counting Experiments 56

5.5 Counting Statistics: Approximations for Computation 58

5.6 Summary of Relationships Between Expectations 61

5.7 Usage of the Maximum Entropy Derivation 64

Chapter 6 Classification, and other required concepts 65

6.1 Algorithm: Support-vector machines 66

6.2 Algorithm: Decision Tree and Random Forest 68

6.3 Algorithm: Generative Classifier (Density Estimation) 72

v

6.4 Hyperparameter Training . 74

6.5 Assessing Classification Performance: Confusion Matrix 81

6.6 Classify CUORE Simulations: ppp-decays vs muons 82

Chapter 7 Poisson Counting Analysis: No Classification 89

7.1 Background Alone . 89

7.2 Signal Alone . 91

7.3 Background + Signal . 91

7.4 Signal with Exact Background . 93

Chapter 8 Poisson Counting Analysis: With Classification . . . 95

8.1 Poisson Classification Likelihood . 95

8.2 Figure of Merit . 98

8.3 Future work: Figure of Merit to Optimize Classification 99

Chapter 9 Sensitivity Calculation 101

9.1 Calculate Marginal Posterior . 101

9.2 Calculate Sensitivity: Fixed Classifier Success Rates 109

9.3 Calculate Sensitivity: Vary Classifier Success Rates 113

Chapter 10 Results and Conclusion 116

10.1 Summary of Results . 116

10.2 Posterior Classification Probabilities 116

10.3 Expected Muon Count vs Real Observation Count 117

10.4 Marginalize the Final Posterior . 117

vi

10.5 Conclusion . 118

Appendix A Muon Count Prior - Additional Calculations 121

A.1 General Calculation of Expected Count 121

A.2 Initial Location Setups to Expected Counts 122

A.3 Qshields Simulation Initial Conditions (Additional Plots) 130

Appendix B Basic Distributions . 133

Appendix C Basic Distributions Visualized 135

Appendix D Useful Density Marginalizations 137

Appendix E Useful Density Approximations 139

Bibliography . 141

vii

List of Figures

Figure 1.1 An neutrinoless double beta decay feynman diagram. There
are a large number of particles involved in a double beta de-
cay, which require calculation of nuclear matrix elements using
nuclear structure theory. 4

Figure 1.2 A rendering of the CUORE detector. The image was copied
directly from Ref. [1, 2] . 6

Figure 1.3 Single Crystal Within CUORE. Image copied from Ref. [3] . . . 8

Figure 1.4 The full single multiplicity, single crystal energy spectrum ob-
served by CUORE. All events which have time coincidence to
deposit energy simultaneously in more than one crystal has been
discarded. Figure copied from [4] 9

Figure 1.5 Workflow Diagram: The figure illustrates the basic approach
to determining a final likelihood of the life-time and associated
confidence bounds of a Tri-Nucleon decay using a classification
algorithm. We start with a table of every crystal that lights
up in CUORE (Top-Left). The single crystals are grouped into
events (Top-Middle). The events are classified using a version
of Machine Learning algorithm (Top-Right). The classification
results are stored in a "confusion matrix" (Bottom-Right). Then
the confusion matrix is transformed into classification probabil-
ities (Bottom-Middle). The classification probabilities can be
used to formulate a final likelihood (Bottom-Left). 11

Figure 2.1 A qshields rendering of the CUORE detector. "The copper
plates inside the 10 mK shield are in red and blue. The internal
lead shields are in cyan, and the TeO2 array is in white." Image
and caption quote taken from the PhD thesis of Barbara Sue
Wang. [5] (Page 89) . 13

Figure 2.2 Examples of CUORE’s simulated response to both a single
background event (left), and single signal event (right) 14

viii

Figure 2.3 Two conceptual illustrative depictions of single ppp decay events
in CUORE hitting a grid of crystals. The orange blocks rep-
resent crystals with energy deposited by any resulting parti-
cles from the decay chain. The darker orange blocks represent
when crystals are saturated with energy, and CUORE can only
detect that more than 10MeV of energy was deposited in the
crystal. The lighter orange blocks represent events where some
detectable energy is present, and an accurate energy measure-
ment is observed. The white blocks represent other crystals for
which no measurable energy was deposited by the decay chain.
Note how in both examples, the events do not look like a sin-
gle track of energy deposits (a straight line fit would a be poor
approximation). 15

Figure 2.4 Illustration of how a uniform amount of energy is split between
three outgoing particles. For illustration purposes the total
amount of energy in this plots is scaled to 1. All values can
be rescaled to units of 2.71 GeV to obtain real samples. The
sum must equal a constant value therefore we are sampling from
a plane in 3D space. 18

Figure 2.5 An example of a single sample generated by splitting a line
segment of length 1, into random partitions of length between
0 and 1. The Break Points are chosen uniformly randomly
from 0 to 1, and the resulting partition segment lengths are not
uniformly random in length. If each partition length was drawn
from an independent uniform random segment, then the sum
of partition lengths could not possibly add up to a fixed value.
A representative sample of partition length choices can be seen
in Fig 2.4. The partition length distributions are illustrated in
Fig 2.6. 20

Figure 2.6 The histogram shows the energy distribution of each of the sin-
gle events. Individually, each outgoing particle shares the same
non-uniform probability density function. The samples shown
on these distribution histograms are the exact same as the sam-
ples shown in fig 2.4 . 20

Figure 2.7 Three outgoing particles from a ppp-decay are simulated [e+, π+, π+

]. The energies deposited in each crystal by all three particles
is simulated and summed up using qshields [6] [7]. Cubes in
the figure represent crystals in CUORE. The color of dots rep-
resent the amount of energy deposited within each crystal by
the event. The energy deposits do not appear single-track-like. . 21

ix

Figure 2.8 An illustration of a cosmic ray creating a muon in the atmo-
sphere that hits the CUORE detector at LNGS. 22

Figure 2.9 Render Image was produced by Stefano Pozzi using qshields
software. Rock is included above CUORE for the simulations.
Muons are minimum ionizing, so while traveling through the
rock lose energy linearly. Additionally they have a small chance
to collide, and produce produce particle showers starting within
the rock. It turns out that including the rock for simulations
does not significantly change the resulting simulated CUORE
dataset. Showers produced from the rock above would have to
start right before they breach the end surface of rock, and after
a shower starts most of its contents will hit the lead shield sur-
rounding CUORE. For practical purposes only the muon makes
it through the lead shield to deposit energy in the detector. . . . 24

Figure 2.10 Initial muon locations are chosen upon a half sphere. Initial
locations are shown (in green) are those for the subset of sim-
ulations which happen to deposit energy with CUORE. Note:
there exist initialized muons which begin further down on the
edge of the half-sphere. Those initialized further down have a
much lower chance to hit CUORE and deposit energy, because
their initial direction has a good chance to cause them to miss
CUORE entirely. 25

Figure 2.11 For a muon that enters CUORE, qshields computes the amount
of energy deposited in each of the detector’s crystals. Cubes
in the figure represent crystals in CUORE. The color of dots
indicates the amount of energy deposited in each crystal by
the event. The yellow dots are saturated crystals and show the
majority of any energy deposited. The saturated yellow crystals
appear track-like in nature. 26

Figure 3.1 An illustration of principle components and their interpretation
for a single muon event. Each event has a data table, which can
be viewed as a scatter plot of energies in 3D space. Then the
scatter plot’s positions can be modeled as a 3D multivariate
Gaussian. The Gaussian can be interpreted as an ellipsoid that
has describing axes. The principle component vectors and val-
ues describe those axes. 31

x

Figure 3.2 Scatter plot of triple proton decay (blue) and Muons (red) single
events. Single events are shown in Feature Space. Each dot
represents a single event, and each axis is a single feature. Each
feature approximates all the information about a single event
compressed into a single numeric value. For this figure we chose
only 3 features for visualization purposes. Our analysis includes
additional features corresponding to additional axes in feature
space (Figures 3.4, 3.3). 35

Figure 3.3 Triple-proton-decay simulation features corner plot. The diago-
nal plots are histograms for each feature. The off-diagonals are
each scatter plots corresponding to 2 features. Note: This plot
was generated with the corner plot library [8] which has limi-
tations for histograms of discrete values. (Gaps in saturation
count, and peaks in multiplicity, are artifacts of the plotting
library and are unphysical). 36

Figure 3.4 Muon simulation features corner plot. The diagonal plots are
histograms for each feature. The off-diagonals are each scatter
plots corresponding to 2 features. Note: This plot was gener-
ated with the corner plot library [8] which has limitations for
histograms of discrete values. (Gaps in saturation count, and
peaks in multiplicity, are artifacts of the plotting library and
are unphysical). 37

Figure 4.1 Features corner plot for Real Dataset 3601 (green), compared
to Muon simulations (blue). The diagonal plots are histograms
for each feature. The off-diagonals are each scatter plots cor-
responding to 2 features. Note the discrepancy between the
two left-most features (Total Energy, and Normalized Energy
Std-Deviation). 45

Figure 4.2 Features corner plot for Real Dataset 3612 (green), compared
to Muon simulations (blue). The diagonal plots are histograms
for each feature. The off-diagonals are each scatter plots corre-
sponding to 2 features. Note there is no discrepancy between
the two left-most features (Total Energy, and Normalized En-
ergy Std-Deviation). 46

Figure 4.3 Dataset 3601. [M > 10, 500keV < E < 10MeV] Events are
shown as a histogram of 30 minute bins allowing time to progress
along the x-axis. 48

xi

Figure 4.4 Dataset 3612. [M > 10, 500keV < E < 10MeV] Events are
shown as a histogram of 30 minute bins allowing time to progress
along the x-axis. 48

Figure 4.5 Events seen by CUORE before Mar 2020 with [M > 10, 500keV
< E < 10MeV]. Events are shown as a histogram of 30 minute
bins allowing time to progress along the x-axis. 49

Figure 4.6 Events seen by CUORE after Mar 2020 with [M > 10, 500keV
< E < 10MeV]. Events are shown as a histogram of 30 minute
bins allowing time to progress along the x-axis. 49

Figure 4.7 Events seen by CUORE before Mar 2020 with [M > 10, 500keV
< E < 10MeV]. Events are shown by hour of the day. 50

Figure 4.8 Events seen by CUORE after Mar 2020 with [M > 10, 500keV
< E < 10MeV]. Events are shown by hour of the day. 50

Figure 6.1 Linear Support Vector Machines (SVM) Example Image. This
figure’s content is toy-data intended to be an abstract illustra-
tion. However, for concreteness, the reader may imagine that
the blue, and red dots on this figure represent muons and ppp-
decay simulations respectively. Here the reader may visualize
that only two dimensions are shown (x, y), corresponding to
only two features of events in the CUORE detector. If our
simulations produced feature values seen on this scatter plot, a
line of best separation wx − b = 0 and it’s parameters w and b
would be deduced by the SVM algorithm. The SVM algorithm
would then suggest, that any event with features creating a
point on the scatter plot above the green-line should be classi-
fied as muons, and any event with features below the red-line
should be classified as ppp-decays. 67

Figure 6.2 Decision Tree Visualization trained and plotted with the "sklearn"
python library [9]. This decision tree was generated using 100
of each type of simulation in the CUORE detector. The nodes
at the bottom of the tree show when a final decision is reached.
Nodes which are more likely to be muons appear orange, while
nodes that appear more likely to be ppp-decays are blue. This
tree is not very realistic as it was generated with too few simu-
lations. To see a more realistic tree see the one in Fig 6.4. Note
there is a trade-off between performance and readability. 69

xii

Figure 6.3 Random Forest Visualization. The trees shown in this image are
each to be thought of as instances of the larger fully shown tree
in Figures 6.2 6.4. Many such trees are made independently.
After all the trees are constructed, they can be used to classify
an event. Each tree casts a vote upon a single event, and the
voting majority is used to choose the final classification. 70

Figure 6.4 Decision Tree Visualization trained and plotted with the "sklearn"
python library [9]. This is a decision tree taken from a random
forest trained upon 10,000 of each type of simulation in the
CUORE detector. The nodes at the bottom of the tree show
when a final decision is reached. Nodes which are more likely to
be muons appear orange, while nodes that appear more likely to
be ppp-decays are blue. This tree is more realistic than the one
shown in Fig 6.2. Note there is a trade-off between performance
and readability. Our final random forest used to classify muons
vs ppp-decays is 100 different versions of trees which look very
similar to this one. 71

Figure 6.5 Kernel Density Estimation Example This histogram and smooth
curve are both estimates for Dataset1 (Eqn 6.5). This particu-
lar image shows a hyper parameter of b ≈ 2.5. 73

Figure 6.6 Kernel Density Estimation with different Bandwidths. We use
Dataset1 (Eqn: 6.5) which is the dataset shown in (Fig 6.5). . . 76

Figure 6.7 Kernel Density Estimation with different Bandwidths (b=.01,
b=1). We use Dataset2 (Eqn: 6.8), which has data-points
shown in black markers near the x-axis. 77

Figure 6.8 Example Simulated Confusion Matrix plotted with Seaborn python
package [10]. The true source is represented by the horizontal
axis, and the classification identification is represented by the
vertical axis. Here 34 simulated muons are falsely identified as
ppp-decays (signal), and 961 simulated ppp-decays are correctly
identified as signal. Also 375 events are correctly identified as
muons and 38 ppp-decay events are falsely identified as muons. . 81

xiii

Figure 6.9 Many different available classification algorithms within the
"sklearn" python package [9] are run against the CUORE muon
and ppp-decay simulations. Their success rates at classifying
both signal and background are shown. The figure is difficult
to interpret but is complete. As more data is used the clas-
sification algorithms perform better and better. A separate
validation set of data is isolated from the training data for each
training run. We find that a random forest has the highest suc-
cess rate, in conjunction with a low statistical variance on the
success rate. 83

Figure 6.10 Classification success rates of using Sklearn’s linear support vec-
tor machines, and random forests upon CUORE simulations of
muons and ppp-decays [9]. The x-axis is the same as shown in
figure 6.9. Both algorithms can differentiate signal from back-
ground better than a coin flip, and both improve as the amount
of simulation data available to train upon is increased. However
the random forest outperforms the support vector machines. . . 84

Figure 6.11 Validation hyperparameter investigation for random forests used
upon 5000 ppp-decay and muon simulations. There is slight im-
provement as both the tree count increases, and as the depth
increases, however we find diminishing returns for increasing
parameters beyond their default values of of (n_estimators =
100), (max_depth=10) on our specific classification problem. . . 85

Figure 6.12 Classification success rates of using Sklearn’s random forest
with default hyper-parameters (n_estimators = 100), (max_depth=10),
upon CUORE qshields simulations of muons and ppp-decays
[9]. The x-axis on this plot is in log-scale as compared to that
shown previously in figure 6.9. One can see that there are di-
minishing returns to the value of adding additional simulations
to the training dataset. Beyond having 10,000 of each kind of
simulation, there is little improvement. 87

Figure 6.13 The confusion matrix of results of training a random forest with
90k training samples, on a 10k test dataset. We classify muons
correctly about 85% of the time. We classify ppp-decays cor-
rectly about 88% of the time. This confusion matrix was used
to produce the last datapoint in Fig 6.12. Figure was produced
using the Seaborn python package [10]. 87

xiv

Figure 6.14 Results of classifying the 2364 real events from data-sets [3612,
3613, 3614, 3615] with multiplicity greater than 10, in the
CUORE detector. Each datapoint on this figure, corresponds
to a datapoint on Fig 6.12. Our most well trained random forest
thinks it has seen 386 events that look like most like ppp-decays,
and 1978 events that look most like muons. 88

Figure 9.1 Example toy-data posterior, without using any prior informa-
tion. Image constructed using toy-values: psig,good = 0.95,
pbkg,bad = 0.1, kobs,sig = 61000. Our final result using actual
observated events, and a carefully calculated muon prior, is
shown later in Fig 10.1. 102

Figure 9.2 Example of a toy-data posterior produced by including the prior
information about the number of muons we expect to see hit
the detector. The image constructed using toy-values for a num-
ber of observed events, and a number of expected total muons.
psig,good = 0.95, pbkg,bad = 0.1, kobs,sig = 6.1 × 104, µbkg = 6 × 104

Our final result using actual observated events, and a carefully
calculated muon prior, is shown later in Fig 10.1. 102

Figure 9.3 Toy-Posterior corner plot generated by sampling Eqn. 8.11
using the MCMC algorithm "emcee" [11]. Known values are:
psig,good = 0.95, pbkg,bad = 0.1, kobs,sig = 6.1 × 104, µbkg = 6 × 104 . 103

Figure 9.4 Comparison of marginalization techniques: Laplaces Method,
Profile posterior, Profile Guassian Approximation. The com-
parison shown is for a fixed set of classification probabilities.
. 109

Figure 9.5 A sensitivity calculation illustration for fixed: µλbkg
= 60, 000,

psig,good = 0.95, pbkg,bad = 0.1 Line segments: mu, 1σ, 2σ, 3σ
were drawn by hand. The 3σ lower-bound was drawn by hand
(drawn in yellow). The mean fit line µλsig

was drawn by hand
(drawn in red) Hand drawn elements were done for illustration
purposes. The contour plot behind the lines was calculated
numerically using a distinct run of an MCMC to marginalize
the posterior for each bin of kobs. The blocky nature of the
image is an artifact of chosen bin widths. 111

xv

Figure 9.6 A sensitivity calculation for fixed: µλbkg
= 60, 000, psig,good =

0.95, pbkg,bad = 0.1 The color plot results from Eqn 9.22. The nσ
lower bound line (red) is calculated symbolically (Eqn: 9.25).
The intersection line segments represent the lowest λsig sensitiv-
ity calculated from intersecting µλ1 with the kobs,sig axis. (Eqn
9.26). 114

Figure 9.7 A sensitivity calculation for fixed: µλbkg
= 60, 000. The classifi-

cation probabilities: psig,good, pbkg,bad are allowed to vary. Each
pixel on this plot maps to a copy of the sensitivity calculation
machinery behind Fig 9.6. Upon the mostly-blue density plot,
contours are shown as white-lines for specific half-life Sensitiv-
ities. 115

Figure 10.1 Corner plot of our posterior distribution. (Eqn. 8.11) The pos-
sible values of λsig and λbkg are fed through an MCMC algorithm
(emcee) [11], using a half-Ton Year’s worth of real data from
the CUORE experiment. 118

Figure 10.2 Marginal posterior distribution plot of the number of the ex-
pected total ppp-count λsig over the true exposure time of the
real data we observed. These are the same trial values of λsig

which were attempted by an MCMC algorithm (emcee) [11],
shown in Fig 10.1. The result was achieved using the 188 Days
of exposure time covered in datasets [3612,3613, 3614, 3615] the
CUORE experiment (Sec 4). 119

Figure 10.3 Marginal posterior distribution plot of the half-life. Lower 2σ
bound shown in red at 7.43 × 1024yrs. Each of the samples
used to generate this histogram are the same as those in the
MCMC figures 10.1 and 10.2. Each possible sample value for
λsig maps to a corresponding half-life of ppp-decay. Shown here
are possible half-life values sampled according to how likely they
are. Mathematically, this histogram can be interpreted as the
right-tail of a Gaussian distribution that has been cut off at
zero. Thus, a lower 2σ bound has meaning, and an upper 2σ
bound has no physical meaning. 119

Figure A.1 General simulation setup. Particles are started upon a surface
according to some joint distribution of location and direction.
A detector sits under the surface. Each particle started upon
the surface travels downwards and has a chance to hit or miss
the detector. 122

xvi

Figure A.2 A simple disk initial condition. Muons are started upon the disk
with uniformly random location probability. They are started
with directions matching the directional distribution measured
inside the LNGS laboratory. 123

Figure A.3 The CUORE qshields half sphere simulation model. Muons are
started upon the half-sphere with non-uniform location proba-
bility. Their initial direction emulates that of LNGS but dis-
allows the possibility of being directed outside the half-sphere.
We chose a radius for the half-sphere of 5 meters. The half-
sphere is downshifted from the center of CUORE by 1.5 meters. 125

Figure A.4 A set of samples lie upon a half-sphere. Test point (1) is created
exactly upon the top of the half-sphere. Separately, additional
test points are generated at uniformly random locations upon
the half-sphere (2). Cases like test point (3) are problematic
if they include area below the half-sphere. The samples, and a
list of test point locations, can be used to calculate an effective
fraction estimate. 126

Figure A.5 10,000 IL Samples (red), and 10,000 HL Samples (green), are
generated by the CUORE qshields simulations upon a half-
sphere. Separately, we generated 10,000 test points (blue) uni-
formly randomly upon the same half-sphere. 129

Figure A.6 Corner plot [8] of the initial conditions of muons spawned by
the qshields software. Initial muon locations are non-uniform
on a half-sphere. Directions are intended to be those that emu-
late conditions at LNGS, however the cases where muons point
outwards from the half-sphere is disallowed by the simulation
software. 130

Figure A.7 Corner plot [8] of the initial locations of muons spawned by the
qshields software. Initial muon locations are non-uniform on a
half-sphere. 131

Figure A.8 Scatter plot of the initial locations of muons spawned by the
qshields software. Initial muon locations are non-uniform on a
half-sphere. 131

Figure A.9 Scatter plot of the initial direction arrows of muons spawned by
the qshields software. Directions are intended to be those that
emulate conditions at LNGS, however the cases where muons
point outwards from the half-sphere is disallowed by the simu-
lation software. 132

xvii

Figure A.10 Scatter plot of the initial direction for inclination and azimuth
of muons spawned by the qshields software. Directions are in-
tended to be those that emulate conditions at LNGS, however
the cases where muons point outwards from the half-sphere is
disallowed by the simulation software. 132

Figure C.1 Normalized PDF Negative Exponential 135

Figure C.2 Un-normalized Joint PDF Negative Exponential 136

Figure C.3 Un-normalized Joint PDF Poisson 136

xviii

Chapter 1

Introduction

1.1 Motivation for Triple-Proton-Decay Search

The instability of nucleons is theoretically well motivated target to look for physics

beyond the standard model. The standard model Lagrangian was designed with

SU(3)×SU(2)×U(1) local symmetries, and with Poincare global symmetries. Baryon

number conservation, Lepton number conservation, and Baryon-Lepton (B-L) number

conservation are so-called "Accidental Symmetries" in the standard model physical

processes. Because these properties are "accidental" they are good targets for theorists

to violate with new models [12].

Single proton decay (p-decay) is the most simple way to violate Baryon num-

ber. Single proton decay is also highly motivated from the perspective of Grand

Unified Theories (GUTs). One of the most anticipated GUT models for testing was

the Georgi-Glashow model [13] which was proposed in 1974 and described a SU(5)

unified group that can be spontaneously broken into the standard model. The model

was elegant, reduced to the standard model in low energy regimes, and implied a

single proton would decay. Thus searches for single p-decay have been done quite

exhaustively and SU(5) is widely regarded as ruled out. [14].

However, triple nucleon decay searches have not been as widely performed, and are

thus good candidates for a new search of B-L number violation [15]. The Standard

Model has an anomaly-free discrete Z6 symmetry [15, 16]. The Z6 symmetry can

stabilize single nucleons, while allowing groups of 3 nucleons to decay. The most

1

dominant decay processes associated with the Z6 symmetry are:

ppp → e+ + π+ + π+

ppn → e+ + π+

pnn → e+ + π0

nnn → ν̄π0

(1.1)

Of the four processes shown in Eqn 1.1 we will focus on the first and most dominant

tri-nucleon decay process which is the triple proton decay. We will also limit the scope

of our search to three protons decaying within the nucleus of a Tellurium 130 atom.

130Te →127 In + e+ + π+ + π+ (1.2)

The triple proton decay channel from 130Te is the focus of this research. After

three protons decay within a large atom, one would see a positron, and two pions

emitted. If the protons decayed from within the nucleus of a 130Te atom, the resulting

outgoing particles would have 2.71 GeV of kinetic energy shared between them.

Searches for Tri-Nucleon decay have been done recently with two previous exper-

iments. The Majorana demonstrator [17] did a search in 2018 and obtained a 90%

confidence lower bound on the life-time of Tri-Nucleon decay in 76Ge of 1025yr using

35(kg)(yr) of data exposure. The Majorana demonstrator analysis approach involved

searching for decay products. The demonstrator searched for γ-rays from 73Ge, β−

from 73Ga, γ-rays from 73Zn and β− from 73Cu The corresponding spectroscopy of

the daughter nuclei was analyzed. They use plain cuts to reduce their candidates,

and achieve their result.

The EXO200 collaboration [18] did their own search in 2018, to get a final 90%

confidence lower bound of 1023yr and used 223(kg)(yr) of exposure. The EXO analy-

sis technique was to compare the energy spectrum of every event they observed with

and without Tri-Nucleon decay of 136Xe as a source. They concluded that their best

2

fit model without Tri-Nucleon decay fit the spectrum better than their best fit model

including Tri-Nucleon decay.

1.2 Neutrino Properties

The neutrino is a spin 1/2 particle in the standard model. There are three neutrinos

[νe, ντ , νµ] which have left-handed chirality. There are three anti-neutrinos [ν̄e, ν̄τ , ν̄µ]

which have right-handed chirality. The original neutrino models assumed them to be

massless, however more recent experiments have shown that they are not massless.

Neutrinos oscillate between their 3 flavor states as they travel. At any given time a

single neutrino is a linear combination of the different flavor states.

Separately from the neutrino flavors, we denote three neutrino-mass eigen-states

as [ν1, ν2, ν3], and their masses as [m1, m2, m3]. The mass eigen-states and the flavor

eigen-states are each complete bases that can represent the state of a single neutrino.

Because they are each complete, any mass eigen-state can be represented as a linear

combination of flavor states, and any flavor state can be represented as a linear

combination of mass eigen-states. It is more common in recent literature to represent

the state of a neutrino with mass eigen-states. The combination of mass states is

described by the Pontecorvo-Maki-Naka-Sakata (PMNS) mixing matrix (U).

|να >=
3∑
i

U∗
αi|νi > (1.3)

Neutrino oscillation experiments have measured the difference between the squares

of two pairs of observable state masses. We also know from cosmological data analysis

that the total sum of all three neutrino masses is less than a millionth of that of the

electron.

m2
1 − m2

2 ≈ 7 × 10−5eV 2 Solar

|m2
1 − m2

3| ≈ 2 × 10−3eV 2 Atmospheric
(1.4)

3

m1 + m2 + m3 <
me

106 Cosmology (1.5)

The information of the mass differences, leads to 2 possible cases for the absolute

masses. There are two possible hierarchies we are denoted as "normal" and "inverted"

hierarchies. In the normal hierarchy m1 < m2 < m3 and in the inverted hierarchy

m3 < m1 < m2. The mass difference information cannot distinguish which hierarchy

is correct, and cannot state the exact values of the masses.

1.3 Neutrinoless Double Beta Decay

Neutrinoless double beta decay (0νββ) is a well motivated theoretical decay which is

important for probing neutrino physics models. In 0νββ decay there are two neutrons

which simultaneously decay into two protons, and release only two outgoing electrons

(Fig 1.1).

Figure 1.1 An neutrinoless double beta decay feynman diagram. There are a large
number of particles involved in a double beta decay, which require calculation of
nuclear matrix elements using nuclear structure theory.

Bounds on the 0νββ decay rate constrain properties of neutrinos in multiple ways.

The 0νββ rate constrains normal vs inverted hierarchy. If the decay exists, then we

can say that neutrinos are Majorana particles (they are their own antiparticle). If

we observe the decay we can also say that lepton number violation exists. All these

4

properties can be further pinned down with experiments highly sensitive to the 0νββ

decay rate.

The 0νββ decay rate can be written as follows:

1
T 0νββ

1/2
= G0νββ(Q, Z)|M0νββ|2| < mββ > |2 (1.6)

Where T 0νββ
1/2 is the half-life, G0νββ(Q, Z) is a phase-space factor, where Q is the

energy released, Z is the number of protons, M0νββ is a nuclear matrix element, and

< mββ > is the "effective" Majorana mass of the electron-neutrino. The effective

Majorana mass is further defined as a linear combination of neutrino eigen-state

masses:

< mββ >≡ |
∑

U2
αimi| (1.7)

Where U is the PMNS mixing matrix (mentioned in previous section), and mi

is a neutrino mass. Because the effective majorana mass can be expressed in terms

of the neutrino masses, bounding it will directly constrain the neutrino masses. The

effective majorana mass cannot be measured directly, but the 0νββ half-life T 0νββ
1/2

can be measured. Thus constraining T 0νββ
1/2 will constrain the neutrino eigen-state

masses mi.

In experimental searches for double beta decay, one possible background to con-

tend with is single beta decay. Double beta decay occurs from a nucleus (A,Z) to (A,

Z+2) and single beta decay occurs from nucleus (A, Z) to (A,Z+1). In both single

and double beta decays the parent nucleus (A, Z) must be heavier than the daughter

nucleus for the decay to occur. If the single beta decay is allowed, the measurable

detector signal from double beta decay will be overwhelmed by single beta decay.

Thus, experiments are designed with isotopes that energetically forbid single beta

decay. The easiest method to forbid single beta decay is to design the experiment

with an isotope which has two properties: 1) Has an even number of protons as neu-

trons (even-even) and 2) is lighter than its (A, Z+1) beta decay result nucleus. In

5

practice double beta decay is searched for using large, even-even isotopes, which have

a highly suppressed or energy-forbidden single beta decay rate.

1.4 The CUORE Experiment

The Cryogenic Underground Observatory for Rare Events (CUORE) is an experiment

specifically designed to search for neutrinoless double beta decay 0νββ. CUORE is

an underground detector located at the Gran Sasso National Laboratory in Italy. The

ton scale experiment consists of 988 TeO2 crystal bolometers. The primary goal of

CUORE is to search for neutrinoless double beta decay, by looking at energy deposits

in each of the single 0.75kg crystals. Recently CUORE has begun to look for more

kinds of signals, and has begun to look at simultaneous energy deposits in multiple

crystals. We will be using CUORE to probe the stability of nucleons using data in

the regime of high numbers of crystals per single event (high multiplicity events), and

at events with GeV scale energies.

Figure 1.2 A rendering of the CUORE detector. The image was copied directly
from Ref. [1, 2]

6

The CUORE detector is designed to keep and hold the 988 crystal cubes at a

low temperature of 15 millikelvin (mk). [2]. To keep the crystals at such a low tem-

perature, 6 nested vessels are required, two of which are separate vacuum chambers.

The coldest inner temperature is achieved using an external dilution refrigerator con-

nected to a mixing chamber. The low temperature is maintained with pulse tubes.

The mixing chamber is thermally connected to a copper frame hanging below the

mixing chamber. The copper frame houses the crystals. Surrounding the entire de-

tector is a lead shield. The lead shield contains a lower than usual count of internal

radioactive elements to further reduce contaminant background radiation.

Each crystal within CUORE is composed of tellurium dioxide (TeO2). Using

tellurium dioxide has several advantages in the search for nutrinoless double beta

decay. Tellurium 130 (130Te) has a large natural isotopic abundance of 34% so it is

low cost compared to some other nuclei. 130Te is an "even-even" nucleus which is

lighter than 130I. Thus 130Te is disallowed to single beta decay into 130I. Instead
130Te only allows double beta decay into 130Xe.

Each tellurium oxide crystal has an attached germanium thermister mounted with

a thermal paste epoxy such that they are strongly-thermally coupled. A crystal and

it’s attached thermister are assumed to share the same temperature at any given

time. If a decay occurs from within a tellurium oxide crystal we expect to observe

a corresponding change temperature using the thermister. The combination of a

tellurium crystal and it’s attached thermister is denoted in literature as a "bolometer".

Each crystal is also weakly-thermally coupled and mounted to the 15mk copper frame

using Polytetrafluoroethylene (PTFE or Teflon) brackets. The PTFE brackets sit

between the crystal cube and the copper frame.

The thermister consists of a small germanium block, and two gold wires circu-

lating a measurable current through the germanium block within a simple circuit.

CUORE uses germanium thermisters which have been doped with neutrons from a

7

reactor so they have temperature sensitive resistance properties. At the low temper-

atures in CUORE, any temperature fluctuations will change the resistance provided

by the germanium thermister connected to the crystal bolometer. The germanium

thermister, is kept in a simple circuit of gold wires and two other resistors each chosen

to have higher resistance than the germanium to keep the current in the circuit near

constant.

Figure 1.3 Single Crystal Within CUORE. Image copied from Ref. [3]

When a particle deposits energy in a tellurium dioxide crystal the temperature of

both the TeO2 crystal and its attached germanium thermister will rise. There will

be an associated measurable quick increase in voltage and corresponding decrease in

resistance of the germanium thermister. After energy is deposited, the thermistor-

bolometer pair will both slowly cool back down to the temperature of the copper

frame. The cooling time is of order 1-5 seconds depending on the amount of energy

deposited and the PTFE mount properties. These voltage changes for single energy

deposits in CUORE are referred to as "pulses".

8

1.5 CUORE Neutrinoless Double Beta Decay Results

The CUORE experiment has achieved a lower half-life bound for neutrinoless double

beta decay 0νββ of T 0ν
1/2 > 2.2 · 1025 yr at 90% confidence level. To achieve the 0νββ

result, CUORE applied cuts, a blinding procedure, and a Bayesian parametric un-

binned likelihood analysis. Background simulations were performed using the qshields

software (described in sec 2.2), for each known source of background.

Figure 1.4 The full single multiplicity, single crystal energy spectrum observed by
CUORE. All events which have time coincidence to deposit energy simultaneously in
more than one crystal has been discarded. Figure copied from [4]

To search for the result a few different cuts were applied upon data in an attempt

to remove more background than signal. The first cut applied was to remove periods

of time with high noise, assessed by comparing the width of the measured energies

at a known energy source calibration line at 2615 keV. In addition to removing those

periods of time, events that created energy deposits in more than one crystal were

also discarded, knowing that from simulations 88% of the 0νββ decays would only

deposit energies in single crystals within CUORE. The last major kind of cut was to

look at the individual pulses, and discard those which did not appear "physical" in

shape.

The analysis was performed using unbinned bayesian parameter fitting allowing

for each known source of energy contribution to be modeled as a probability density

function in energy, and then summed to produce the full spectrum. CUORE sub-

9

scribes to the technique of "blinded" analysis which is when the analysis framework is

developed without having full access to the real data. One such method of blinding

is known as salting, where fake data is mixed in real data. CUORE blinded the real

data by salting it with an additional artificial set of single crystal energies distributed

about a mean energy value. The entire analysis framework was developed upon the

salted data, before removing the salt. CUORE then performed a fit on the real data

with and without an additional 0νββ energy source. CUORE found no preference for

inclusion of the additional source when trying to reproduce the the real data energy

spectrum.

The CUORE experiment and our 0νββ result has already had impact in two ways.

CUORE has shown that large cryogenic dilution refrigeration systems are feasible,

and next generation experiments such as CUPID, AMoRE, SuperCDMS, CRESST

will benefit from the cryogenic innovations. The 0νββ result itself has implications

for the standard model, by showing that so far, there is no evidence that the neutrino

is a majorana particle.

1.6 Overview of Search Methodology

We will search for triple proton decay with the CUORE detector. The major back-

ground we have to contend with is cosmic ray muons. We will simulate both triple

proton decays and muons from the atmosphere. We use the simulations to learn what

each kind of event looks like in CUORE. We pick some distinguishing properties of

each kind of event which we will denote as "features". We train a machine learning

classification algorithm upon the simulations, and their associated features. We use

combination of counting statistics for expected Muon background, as well as the ma-

chine learning classification to place a bound on the triple proton decay observation

count within CUORE, and associated half-life for the decay of 130Te by this process.

10

Figure 1.5 Workflow Diagram: The figure illustrates the basic approach to de-
termining a final likelihood of the life-time and associated confidence bounds of a
Tri-Nucleon decay using a classification algorithm. We start with a table of every
crystal that lights up in CUORE (Top-Left). The single crystals are grouped into
events (Top-Middle). The events are classified using a version of Machine Learning
algorithm (Top-Right). The classification results are stored in a "confusion matrix"
(Bottom-Right). Then the confusion matrix is transformed into classification proba-
bilities (Bottom-Middle). The classification probabilities can be used to formulate a
final likelihood (Bottom-Left).

11

Chapter 2

Simulating Events of Interest

We have simulated the events we want to classify: simulations of both signal, and

background were required. To perform the simulations CUORE uses Geant4 which is

a computational "toolkit for simulating the passage of particles through matter" [19].

We needed to do many iterations of full simulations of Muons from the sky, [20, 21]

and of triple proton decays [15] within 130Te.

CUORE has already built software which makes use of Geant4 called "qshields"

[22, 6, 7]. The qshields code contains all the relevant geometry within CUORE. By

geometry we mean many of CUORE’s internal components as described in Sec 1.4

including: lead shield, copper framing, thermal plates, and of course the TeO2 cubes

which are thermally monitored producing CUORE data.

We can ask qshields to spawn any standard model particle at any point in space,

with any initial energy and direction. The qshields code will then take that parti-

cle, and simulate the standard model physics that would happen subsequently. The

qshields code will progress through time, allow the particle to travel through any

rendered materials. As the particle travels through a material, it will lose energy by

transferring some energy to nearby electrons it travels near (electron excitation or

ionization), and it will have a chance to collide with a nucleus, triggering a decay into

outgoing particles. The qshields code will then spawn subsequent necessary outgoing

particles from reactions of interest, and follow them through time and space. The

code will keep propagating all particles until an end condition is triggered. Any energy

from a simulated spawned particle is kept track of within the simulation. Ultimately

12

Figure 2.1 A qshields rendering of the CUORE detector. "The copper plates inside
the 10 mK shield are in red and blue. The internal lead shields are in cyan, and
the TeO2 array is in white." Image and caption quote taken from the PhD thesis of
Barbara Sue Wang. [5] (Page 89)

all the initial energy from an incoming simulated particle will either be deposited in

the form of heat into a material, or will be lost in the form of particles traveling out

of CUORE. The energy deposited within each of the crystals in CUORE is measured

by a small attached germanium thermistor that constantly monitors the crystal tem-

perature. Finally at the end of simulating the full reaction chain of a single particle,

the output from the qshields code will contain a table of Tellurium cubes, and the

amount of energy deposited within each.

Using the simulation software we can simulate both triple-proton-decays (ppp-

decays) (Fig 2.3) and Muons(Fig 2.8). The result from a simulation will show how

much energy is deposited in each crystal, for each kind of event. Typical examples

simulation results for each kind of event are shown in Fig 2.2.

There are wildly varying possible decay chains for both signal and background

events. With real data we will not be able to take an arbitrary single event and know

13

(a) Background: Typical Atmospheric Muon (b) Signal: Typical Triple Proton Decay

Figure 2.2 Examples of CUORE’s simulated response to both a single background
event (left), and single signal event (right)

exactly what caused the various energies in each individual crystal (we will not be

able to reconstruct decay chain path information illustrated in Fig 2.3). However,

we can see that Muons and the Triple-Proton decays have geometric properties that

are distinguishable. For example: Muon events have "track-like" (Fig 2.2a) energy

deposits and the Triple-Proton decay events have more "blob-like" (Fig 2.2b) energy

deposits.

In the next section we will quantitatively define properties such as "track-like"

and "blob-like" as well as some other properties of single events. These properties are

known as "features". These features can be used distinguish between different kinds

of events and are explained in detail in Sec 3.

2.1 Simulations: Triple Proton Decay

To simulate the Triple proton decay signal that we are searching for (Section 1), we

use the qshields CUORE software. We know such a decay will result in three outgoing

particles: [e+, π+, π+] Therefore to simulate a triple proton decay event, we can use

qshields to spawn each of the three outgoing particles at the same start location, at

the same time. We will be looking for the decay to happen from within a 130Te atom.

130Te →127 In + π+ + π+ + e+ (2.1)

14

Figure 2.3 Two conceptual illustrative depictions of single ppp decay events in
CUORE hitting a grid of crystals. The orange blocks represent crystals with energy
deposited by any resulting particles from the decay chain. The darker orange blocks
represent when crystals are saturated with energy, and CUORE can only detect that
more than 10MeV of energy was deposited in the crystal. The lighter orange blocks
represent events where some detectable energy is present, and an accurate energy
measurement is observed. The white blocks represent other crystals for which no
measurable energy was deposited by the decay chain. Note how in both examples,
the events do not look like a single track of energy deposits (a straight line fit would
a be poor approximation).

A single triple proton decay simulation is split into three smaller simulations: one

for each of [e+, π+, π+]. Such a simulation split is reasonable so long as the decay

from each outgoing particle does not have a chance interact with the decay from

another outgoing particle. Each single outgoing particle qshields simulation starts off

the particle with an initial location, direction, and energy.

15

2.1.1 PPP-Decay Initial Conditions: Choice and Justification

The initial conditions are chosen in a manner to best reflect the information we have

on the triple proton decay model. Initial start locations are chosen to be within a

randomly chosen single TeO2 crystal. Initial directions are chosen to be uniformly

random, and allowed to propagate outwards from the start location. We also assume

no angular correlation between the outgoing particles. Kinetic Energy of each out-

going particle is chosen as randomly as possible under the condition that the sum of

initial kinetic energies of three outgoing particles equals 2.71GeV.

In this section we will show that these assumptions are reasonable. We limit our

search to Triple proton decays that would happen within a 130Te nucleus. We assume

the nucleus to be at rest within the reference frame of the detector. A 130Te nucleus

that undergoes a triple proton decay would leave a 127In nucleus behind, as well as

produce the three outgoing particles: [e+, π+, π+].

We need statements of energy (E) and momentum (P) conservation:

ET e130 = EIn127 + Eπ+
1

+ Eπ+
2

+ Ee+ (2.2)

0 = −→
P In127 + −→

P π+
1

+ −→
P π+

2
+ −→

P e+ (2.3)

Table 2.1 presents the masses of relevant particles:

Name Symbol Mass
Tellurium 130 130Te 129.906 GeV
Indium 127 127In 126.917 GeV
Pion Plus π+ 139.570 MeV
Positron e+ 0.510 MeV
Proton p+ 0.938 GeV

Table 2.1 Triple Proton Decay Masses

We also need to know how much energy is released through the decay. In a triple

proton decay a 130Te nucleus would lose three protons, and turn into an 127In nucleus.

16

The difference in nucleus mass is turned into the new particle masses as well as kinetic

energy split among the resulting particles.

mT e130 = mIn127 + 2mπ+ + me+ + EKinetic (2.4)

The kinetic energy is then found to be 2.71 GeV (using known particle mass

values) where the kinetic energy is the difference between total energy and rest mass

energy.

EKinetic = mT e130 − (mIn127 + 2mπ+ + me+) ≈ 2.709.35GeV (2.5)

One can show that 127In nucleus will remain non-relativistic and obtain a negligi-

ble amount of energy from the decay. The kinetic energy of the 127In is also negligible,

because the mass of the nucleus is very large compared to the other particles, while

at the same time the the total momentum must be conserved. The kinetic energy

in each of the three outgoing particles [e+, π+, π+] on the other hand, could range

anywhere from 0 to 2.71 GeV. (Details in Sec 2.1.2) Thus splitting the full 2.71

GeV of kinetic energy of the decay randomly between the three outgoing particles is

a reasonable assumption. The momentum conservation (Eqn 2.3) implies that the
127In’s recoil direction can balance out any choice of momentum for the other three

outgoing particles, so arbitrary random direction for the outgoing particles is also

reasonable assumption.

17

2.1.2 PPP-Decay Initial Conditions: Energy Choice Constraint

Figure 2.4 Illustration of how a uniform amount of energy is split between three
outgoing particles. For illustration purposes the total amount of energy in this plots
is scaled to 1. All values can be rescaled to units of 2.71 GeV to obtain real samples.
The sum must equal a constant value therefore we are sampling from a plane in 3D
space.

To obtain a more correct answer without making any limiting assumptions, we

could derive a multi-dimensional probability density function using the maximum

entropy principle (Sec 5). We could take our Energy and Momentum conservation

equations (Eqn 2.2 2.3) as constraints, and then use Lagrange multipliers to derive

a probability density function. Performing the maximum entopy calculation would

derive a result that works in both relativistic and non-relativistic cases for all particles

involved. The amount of work required to perform the maximum entropy result is

beyond the scope of this work. As we highlighted in the previous sections example, the

maximum amount of energy that could possibly given to the Indium-127 is 0.03GeV

of kinetic energy and the large atom nucleus can absorb random combinations of

other momentum directions fairly easily. We have chosen not to obtain the more

correct entropy-based energy split.

Instead of performing a maximum entropy calculation, we feel justified in making

18

the following initial condition assumptions: We split the 2.71 GeV of energy between

the three outgoing particles. The energy conservation condition (part of Eqn 2.2)

implies a constraint for possible energy choices, and takes the form of a plane in three

dimensions. The momentum conservation condition (also Eqn 2.3) does not place

any constraint on the energy or direction of the the particles. Under the conditions

we need to satisfy, we want to divide the energy as randomly as possible.

Our initial conditions amount to choosing energies from the triangle shown in Fig

2.4. We simply need an algorithm to choose points randomly upon the triangle. The

triangle describes the positive energy region a plane defined by Eqn 2.2.

2.1.3 PPP-Decay Initial Conditions: Energy Split Algorithm

Splitting a finite energy E between K items is a continuous analog of the "Stars and

Bars" problem [23]. We can take a line segment, and choose two un-correlated break

points uniformly randomly upon the segment. We can then assign the distance from

0 to the first partition as the first energy, the distance between the two partitions as

the second energy, and the distance from the second partition to 2.71 as the third

energy. Illustration of choice of "break points" and resulting partitions are illustrated

in Fig 2.5.

We will denote the algorithm we used as the "break point algorithm". Despite the

fact the algorithm is very simple, and definitely not novel, the break point algorithm

is very efficient at producing correct behavior. We can visualize a real world example

by imagining picking up a stick from a yard and breaking it at 2 random locations

upon it’s length. The results of executing "break point" algorithm for a line segment

of length 1 are shown in Fig 2.4 and Fig 2.6. The same samples are shown in both

figures and were drawn using the "break point algorithm". To obtain energies for our

triple proton decay, we need only take the samples generated in the two figures, and

re-scale their values to 2.71 GeV scale (multiply a set of samples by 2.71 GeV).

19

Figure 2.5 An example of a single sample generated by splitting a line segment of
length 1, into random partitions of length between 0 and 1. The Break Points are
chosen uniformly randomly from 0 to 1, and the resulting partition segment lengths
are not uniformly random in length. If each partition length was drawn from an
independent uniform random segment, then the sum of partition lengths could not
possibly add up to a fixed value. A representative sample of partition length choices
can be seen in Fig 2.4. The partition length distributions are illustrated in Fig 2.6.

Figure 2.6 The histogram shows the energy distribution of each of the single events.
Individually, each outgoing particle shares the same non-uniform probability density
function. The samples shown on these distribution histograms are the exact same as
the samples shown in fig 2.4

20

After all each of the three smaller simulations (one for each outgoing particle) have

completed, we can ask how much energy was deposited within each TeO2 crystal. We

can sum up any energies deposited in TeO2 by the 3 outgoing particles. The total

energy deposited within each crystal from a group of three outgoing particles is then

stored in a data file. We can then repeat the whole process many times to produce

as many triple proton decays as we would like. To produce simulations modeling N

triple proton decays, we need 3N simulations (For 1 triple proton decay we need 3

qshields simulations, for 2 decays we need 6 simulations, etc...).

2.1.4 PPP-Decays: Typical Simulation

Figure 2.7 Three outgoing particles from a ppp-decay are simulated [e+, π+, π+].
The energies deposited in each crystal by all three particles is simulated and summed
up using qshields [6] [7]. Cubes in the figure represent crystals in CUORE. The color
of dots represent the amount of energy deposited within each crystal by the event.
The energy deposits do not appear single-track-like.

21

Figure 2.8 An illustration of a cosmic ray creating a muon in the atmosphere that
hits the CUORE detector at LNGS.

2.2 Simulations: Muons

In a search for new physics that would yield high multiplicity events, the primary

source of background is cosmic ray muons. Muons are a major background to contend

with in any detector inside the LNGS. For the case of searching for triple proton decay

with CUORE, muons would be the only known source that would both produce a

comparable total energy and crystal multiplicity to the signal we are looking for.

Cosmic ray muons are the only type of muons which are observed by detectors

at LNGS. Free protons in the galactic medium hit the earth’s atmosphere, collide

with atmospheric gasses to produce pions, then the pions decay into what we denote

"cosmic-ray muons". An observed cosmic-ray muon in the CUORE detector traverses

a segment of the Earth’s atmosphere, the mountain rock containing the LNGS cave,

the lead shield around CUORE, and some crystals within CUORE. An illustation of

the typical path of a muon produced by cosmic rays en route to the detector is shown

in Figure 2.8.

22

A small secondary source of muons which CUORE can observe are "neutrino

induced muons". Neutrinos can enter some point on the opposite side of the earth

from CUORE (e.g. American Somoa) travel through the entire earth, collide with

some matter close to the edge of the Earth’s crust under the laboratory (below Grand

Sasso), decay into a muon, and then muon can continue to travel upwards a small

distance through the rest of the earth’s crust without colliding again, and then finally

go through the lead shield, and hit a detector in LNGS. These neutrino induced muons

make up between 1% and 2% of the moun flux at LNGS, and from the perspective

of the detector are traveling upwards. While CUORE does not have event time

signature precision to tell upwards from downwards muons, the Borexino experiment

has measured them [24]. Very few muons in LNGS are neutrino induced. For our

analysis we will completely ignore them.

2.2.1 Muons: Initial Conditions, Choice and Justification

With the goal of identifying the background muons and estimating their rates in

the detector, we perform simulations of the muons in CUORE. To start, we need a

probability distribution for the initial conditions for muons entering the detectors, i.e.

for those muons that made it through the mountain and into LNGS. The qshields

code calculates an estimated under-the-rock flux for average rock, taking into account

the amount of rock traversed by muons coming in from different directions (see Fig

2.9). The muon energy loss as a function of the amount of matter traversed, dE/dx, is

obtained from the Particles Properties from Particle Data Group [25]. Thus qshields

generates the distributions of energy and direction of motion for muons inside LNGS.

The CUORE collaboration’s qshields muon simulation starts the muons upon

5m half-sphere around CUORE (Fig 2.10). A location on the half-sphere is picked

randomly, with the muon direction and energy taken from the distribution described

above (using the LNGS direction and energy). If the muon’s initial direction points

23

Figure 2.9 Render Image was produced by Stefano Pozzi using qshields software.
Rock is included above CUORE for the simulations. Muons are minimum ionizing, so
while traveling through the rock lose energy linearly. Additionally they have a small
chance to collide, and produce produce particle showers starting within the rock. It
turns out that including the rock for simulations does not significantly change the
resulting simulated CUORE dataset. Showers produced from the rock above would
have to start right before they breach the end surface of rock, and after a shower
starts most of its contents will hit the lead shield surrounding CUORE. For practical
purposes only the muon makes it through the lead shield to deposit energy in the
detector.

inwards upon the half-sphere, the initial location is kept, and the simulation continues.

Then we let the muon try to enter the detector (with that energy and direction) and

use GEANT to obtain the track and energy deposited by the muon and the particles

produced by its interactions in the detector. The GEANT tool will calculate how

much energy the muon loses as it travels through materials; the decay or collision of

the muon with material (with certain probability); in the case of decay it follows the

outgoing particles and their energy deposits, etc.

The typical muon on the initial half-sphere can travel in a direction such that

it will miss CUORE and will not deposit any energy in the crystals (See Fig 2.10).

24

Figure 2.10 Initial muon locations are chosen upon a half sphere. Initial locations
are shown (in green) are those for the subset of simulations which happen to deposit
energy with CUORE. Note: there exist initialized muons which begin further down
on the edge of the half-sphere. Those initialized further down have a much lower
chance to hit CUORE and deposit energy, because their initial direction has a good
chance to cause them to miss CUORE entirely.

We perform 10 million muon simulations, such that roughly 100,000 of the particles

actually pass through the crystals in detector and leave a detectable signal.

2.2.2 Muons: Typical Simulation

2.3 Calculating the Expected Muon Count as a Prior

We will use the muon simulations (Sec 2.2) as a tool to calculate an expected CUORE

muon counting rate. We adopt the LNGS muon flux rate of 3.41 × 10−4m−2s−1

deduced from the Borexino experiment [24]. A rough approximation of the muon

flux at LNGS is approximately one muon per square meter, every three hours.

In this section we will outline a simple approximation procedure to combine the

muon flux rate in LNGS with the muon simulations, to calculate an expected CUORE

observed muon count rate. A more detailed discussion regarding more careful treat-

ment of the calculation can be seen in Appendix A. We chose to use the simple

25

Figure 2.11 For a muon that enters CUORE, qshields computes the amount of
energy deposited in each of the detector’s crystals. Cubes in the figure represent
crystals in CUORE. The color of dots indicates the amount of energy deposited in
each crystal by the event. The yellow dots are saturated crystals and show the
majority of any energy deposited. The saturated yellow crystals appear track-like in
nature.

approximation, in favor of the more careful treatment because the expected num-

ber calculated is much closer to the amount observed. The simple approximation

equation for exepcted total count is shown below:

Expected Count = (Muon Flux) × (Hit Probability) × Time × (Effective Area)

(2.6)

The first two terms are defined below and use simple fixed values. We assume

the LNGS muon flux upon the surface of the half-sphere of initial muon simulation

locations (Fig 2.10). The exposure time spanned by the real data-sets we intend to

use in the analysis [3612, 3613, 3614, 3615], is approximately 188 days, or half of a

year.

We call the probability for a single given muon starting on the half-sphere to

26

produce a detectable muon in CUORE a hit-probability. From the many muons we

start upon the half-sphere, only a small percentage actually hit CUORE and deposit

a meaningful level of observable energy (greater than 500keV). From the many muon

simulations initialized upon the half-sphere, we calculate a find a hit probability of

0.0063851. Any given muon started within a muon simulation, has about a 0.63%

chance to deposit more than 500 keV in more than ten crystals within the CUORE

detector.

To calculate the effective area, we need to use information given from the initial

half-sphere. The half-sphere has a radius of 5 meters, and has total surface area of

157m2. The half-sphere is down-shifted by 1.5 meters, such that the bottom portion

is below the location of the internal CUORE crystals. Of the simulated muons which

actually hit CUORE, all of them were initialized above the 1.5m height. The surface

area of the portion of the half-sphere above crystal-height is approximately 71.44m2,

and we use this value as the effective area.

Using the above values for exposure time, LNGS muon flux rate, effective area,

and hit probability, we expect CUORE to observe 2537 muons. We also note that the

corresponding the number of muons we would expect from nature to go through that

half-sphere to be 397,338 muons given the MACRO muon flux, effective area, and

exposure time. We can then approximate a Gaussian prior probability distribution

for λbkg to be that number (2537). We assume that the random variable is truly

Poisson distributed, and reduces to the Gaussian limit where the standard deviation

is equal to the square root of the mean. For a more careful treatment of the expected

count calculation, issues, and possible future improvements see Appendix A.

27

Chapter 3

Selecting Single Event Features

X Y Z Energy (keV)
103 176.5 -722.8 2549.34
103 117.5 -490.8 510.99
191 176.5 -606.8 3638.59
191 176.5 -548.8 10000.0
191 176.5 -490.8 10000.0
191 176.5 -432.8 10000.0
176.5 264.5 -490.8 1704.67

Table 3.1 Example Single Muon Event Dataset

The resulting data from an event simulation is a list of crystal locations and corre-

sponding energy deposited amounts (Table 3.1). The information in its raw format

is not sufficient for a machine learning algorithm. We need to reduce each simulation

of a single event into a few numbers that can be compared with different simulations.

Such comparable numbers are called a "features".

In this section we define a Dataset as a tabular set of data −→
X with any number

of rows and columns. Each row represents a single object that we are to observe, and

each column represents a different observable property (Example shown in Table 3.1).

We will be using consistent notation referring to the same dataset −→
X , and designing

different ways to map the entire dataset into a single number called a "feature".

The best features we can choose are those that can be used to distinguish between

different kinds of events. We determined a list of features which can be used to

classify muons and ppp-decays manually (human inferred features). Automatically

determining features is an active area of research in computer science at the time of

28

writing this. New algorithms are being built to determine features as part of a larger

field of "interpretable AI" research. We relegate algorithmically determining useful

features that describe muons and ppp-decays as a body of future work.

The single event features we are considering include: Total Energy, standard

deviation of crystal energies for a single event, number of crystals hit (Multiplicity),

geometry of the hit crystals represented as "Principal Components", energy weighted

principle components, and the number of saturated crystals within a single event.

We will describe each of the features in detail in this section. The features can then

later be used by a machine learning classification algorithm (Sec 6).

3.1 Features: Total Energy & Multiplicity

The total energy of a given event is simply the sum of the measured energies within

each crystal.

Efeature,tot ≡ Sum(−→X energy,column) (3.1)

The multiplicity of an event is the number of total crystals which have energy

deposited within the detector. In our case, the number of such crystals is represented

within the dataset as it’s length.

Mfeature,multiplicity ≡ length(−→X) (3.2)

3.2 Feature: Saturated Crystal count

Due to current limitations of bolo-metric signal processing techniques, CUORE only

has accurate energy resolution for energy regions of E < 10 MeV. The example event

shown in Table 3.1 has rows which illustrate the limitation. For the example event,

there are exactly 3 saturated crystals.

Sfeature ≡ Count(−→X i,Energy >= 10MeV) (3.3)

29

3.3 Feature: Principle Components

The technique of principle components is general, and used widely throughout ma-

chine learning (6). Because we are specifically only using principle components for

defining a feature of a single event, we choose to place the section here. Additionally,

because we will use the details of the calculation to define our own new feature in

this section, we go into more detail for its calculation than we would otherwise.

Here we outline the mathematics for obtaining the principle components of dataset.

In our case we are interested in applying principle components to a list of crystals

that have energy deposited within them for a single event.

For our case we want to model the single event as some kind of "blob" of energy.

First we need to separate out the spatial position [X,Y,Z] and model it. We can find a

covariance matrix (Σ) of only the position columns of the dataset −−→
Xpos. The elements

of a covariance matrix (Σi,j) are the covariance (Cov) between two columns (i, j) of

the positions, divided by the degrees of freedom Ddof of the dataset.

Ddof = length(−−→
Xpos) − 1

Σ = Cov(−−→
Xpos)/Ddof

Σi,j = Cov(Xi, Xj)/Ddof

(3.4)

There exists a computationally efficient trick for calculating the covariance matrix.

One can re-center the dataset about a mean of zero by subtracting off the true position

mean µX,P os ≡ mean(−→X pos), then multiplying the centered dataset by transposed

copy of itself, before dividing by the number of degrees of freedom.

µX,pos = [Xavg, Yavg, Zavg]
−−−−→
Xpos,ceni = −−→

Xposi − µX,pos

Σ = −−−−→
Xpos,cen

T −−−−→
Xpos,cen

1
Ddof

(3.5)

After we have the covariance matrix, we will use the information within it to

30

describe the shape of the dataset. It is helpful to look at the eigen-vectors −→v k and

corresponding eigen-values λk of the covariance matrix (Σ).

Σ−→v k = λk
−→v k (3.6)

The eigen vectors and eigen values of the covariance matrix can be interpreted as

representations the axis of a triaxial ellipsoid. The vectors represent the direction of

the axis, and the eigen values represent the magnitudes of the axes.

Figure 3.1 An illustration of principle components and their interpretation for a
single muon event. Each event has a data table, which can be viewed as a scatter
plot of energies in 3D space. Then the scatter plot’s positions can be modeled as a
3D multivariate Gaussian. The Gaussian can be interpreted as an ellipsoid that has
describing axes. The principle component vectors and values describe those axes.

In our case we chose not to be concerned with direction, and only with shape.

Mathematically we are choosing to be agnostic to arbitrary rotations of energy de-

posits, but we are not agnostic to difference in relationship between axes of energy de-

posits. As a final step we take the ratio between the principle component eigen-values

as a metric for "track-like". One can quickly see that if the longest axis describing the

31

energy deposits is much longer than the other two axes, we have an even that is more

track-like. Alternatively if we have an event where all three principle component axes

are the same length, we have an event that is much more spherical or "blob-like".

We can define an importance of each axis of the ellipsoid approximation. We

can define the importance by the magnitude of each eigen-value of the principle

component. Previously we defined the eigen values λk of the covariance matrix Σ

(Eqn 3.6). Now we sort and re-label the eigen-values, according to their magnitude

with a numerical index.

−→
λ = sorted[λ1, λ2, λ3]

λ1 = Max(−→λ)

λ2 = Middle(−→λ)

λ3 = Min(−→λ)

(3.7)

Thus we define the principle component importance values (PCk) below:

PC1 =
−→
λ 1∑3
i=1 λi

PC2 =
−→
λ 2∑3
i=1 λi

PC3 =
−→
λ 3∑3
i=1 λi

(3.8)

Note that the PCk’s are normalized and sum to 1:

1 = PC1 + PC2 + PC3 (3.9)

There are a few consequences of scaling the components such that they add up to

one. We need not use the third principle component value because it is informationally

redundant to the first two values. So the spatial principle components we use as

features are PC1 and PC2 as shown in Eqn 3.8. We are also discarding information

regarding absolute size of the ellipsoidal energy deposit. A small number of crystals

32

may provide the same spatial information as a large number over a larger volume.

These properties should not hinder our ability to perform classification between muon

tracks and triple proton decay.

Additionally, we have also disregarded the energy deposited within the crystals.

Thus far, we have treated each crystal as a boolean value. Either there is energy

within a crystal, or there is none. We will modify our principle components algorithm

to make use of the energy information in conjunction with the spatial information in

the next section (Sec 3.4).

3.4 Feature: Principle Components - Energy Weighted

We can design a new principle component metric which takes into account the energy

as well as position. Here we will denote the technique as weighed principle compo-

nents. Previously we calculated the covariance matrix by centering the data about

the mean (Eqn 3.5). Now we have to center the data about a weighted mean. First

we can normalize the weights by making sure they add up to one. Then we construct

the weighted centered dataset.

−→
W = −−−−−−→

Energies/Avg(−−−−−−→
Energies)

µX,pos,weight = 1
len(−→X)

∑
i

Wi

−−−→
Xpos,i

−−−−→
Xpos,ceni = −−→

Xposi − µX,pos

(3.10)

Next we need to use the weighting information within the covariance matrix. We

want to weight each value of the matrix by the relative weight of the element. It is

then convenient to use the same algebraic technique as before in Eqn: 3.5 but this

time add in a diagonal version of the weights applied to each row of the dataset:

Σweighted = −−−−→
Xpos,cen

T (1 ·
−→
W)−−−−→

Xpos,cen
1

Ddof
(3.11)

33

We can now use the weighted covariance matrix Σweighted to get weighted principle

components PC1w, PC2w. The remaining calculation steps are entirely redundant

to those in the previous section, and thus are omitted. However, for completeness

and reproducability, a python code snippet is included that performs each step of

weighted principle components. We use the well accepted standard "numpy" package

as a dependency for linear algebra operations as well as efficient eigen-vector and

eigen-value calculations.

import numpy as np

W = Energ ie s / np . mean(Energ i e s)

DOF = len (W)

WeightedMean = np .sum(X∗np . at least_2d (W) .T, ax i s =0)/DOF

X_cen = X − WeightedMean

Cov_w = np . dot (X_cen .T, np . dot (np . d iag (W) ,X_cen)) / (DOF−1)

PC_vals , PC_vecs = np . l i n a l g . e i g (Cov_w)

3.5 Visualizations of Many Features

After turning each single event into a set of features, it is useful to be able to visualize

them. In our work we present two similar methods of visualization. We have a

standard scatter plot, of which the highest number of dimensions is 3 (Fig 3.2).

We also have a standard corner plot, which can be used to less precisely view higher

numbers of dimensions (Figures 3.4, 3.3). The visualizations themselves are not relied

upon in our analysis, so any further discussion of them is limited to the figures.

In the next section we will present algorithms used to classify the different event

types. First we must visualize an event as a dot living in within a multidimensional

feature space, where each dimension corresponds to a single feature that we calculate

with regard to the event. The task of classification amounts to creating partitions in

that N -dimensional (N−D) feature space that can separate different different kinds of

34

dots represented with different colors. While the visualization images are not relied

upon mathematically, they are useful sanity checks for any choice of classification

algorithm. If the the different event types are not visually separable in some way, we

cannot possibly hope to separate them mathematically or algorithmically. By eye,

we can see that the features we have chosen have a good tendency to separate out

the different kinds of events, so our ability to classify them should be much better

than guessing randomly. Thus our final result should be a strong improvement from

the counting statistics technique (Sec 7.3), when progressing to the classification and

counting technique (Sec 8).

Figure 3.2 Scatter plot of triple proton decay (blue) and Muons (red) single events.
Single events are shown in Feature Space. Each dot represents a single event,
and each axis is a single feature. Each feature approximates all the information
about a single event compressed into a single numeric value. For this figure we chose
only 3 features for visualization purposes. Our analysis includes additional features
corresponding to additional axes in feature space (Figures 3.4, 3.3).

35

Figure 3.3 Triple-proton-decay simulation features corner plot. The diagonal plots are histograms for each feature. The
off-diagonals are each scatter plots corresponding to 2 features. Note: This plot was generated with the corner plot library
[8] which has limitations for histograms of discrete values. (Gaps in saturation count, and peaks in multiplicity, are artifacts of
the plotting library and are unphysical).

36

Figure 3.4 Muon simulation features corner plot. The diagonal plots are histograms for each feature. The off-diagonals are
each scatter plots corresponding to 2 features. Note: This plot was generated with the corner plot library [8] which has
limitations for histograms of discrete values. (Gaps in saturation count, and peaks in multiplicity, are artifacts of the plotting
library and are unphysical).

37

Chapter 4

Extracting Real Data

The CUORE detector is constantly recording information into a complicated database.

Extracting the data is a prerequisite to performing any high level analysis. In this

section we will describe how CUORE stores it’s data at a high level, and how we are

extracting the real data from the CUORE database. We review the different data

types and storage locations within CUORE. We will explain the way that we group

single crystal events together. We show various problems encountered with data ex-

traction. We will explain cleaning procedures that we have introduced to deal with

the problems.

4.1 Data Storage Format

CUORE uses "ROOT" to store the bulk of it’s data. The "Rapid Object-Oriented

Technology" (ROOT) framework was founded by Rene Brun in 1995, which couples

together a data file format and a computer-language [26, 27]. The file format is

denoted with the ".root" extension. ROOT files are designed to be an efficient storage

format for large tables of numbers. The ROOT language is built upon C++, and

designed to be able to quickly read the ROOT files to perform some rudimentary

analysis and charting/graphing with a few lines of code. At time of writing this

thesis, ROOT file storage is standard practice for very large physics data-sets. ROOT

is currently used by the Large Hadron Collider to store petabytes of data tables

at CERN, which is where the ROOT framework was originally developed. While

obviously not as large as the LHC data, CUORE’s raw voltage database is on the

38

order of 10’s of terabytes in size after relying upon highly optimized ROOT file

compression techniques.

CUORE event data in it’s most raw format is a list of voltages as a function

of time. Each of the 988 crystals within CUORE has its own voltage time series

updated every few milliseconds. There exists a logging software which has to store

raw voltage time series data to files. CUORE has decided upon the architecture that

the logging software is manually stopped then restarted by a human approximately

every 24 hours. While the logging software is not running, no voltage information is

being stored in the database. Each approximately 24 hour software logging period is

denoted by CUORE as a single "run". Each crystal is given a unique number, and

each run is given a unique number in the database. For each combination of crystal

number and run number, 24 hours worth of raw voltages are stored in a single file in

ROOT file format. Many such ROOT files make up CUORE’s raw voltage database.

While the voltage time series data is complete for energy depositing events, it

is large and unwieldy for general analysis. Simultaneous to logging the voltage time

series data, there exists a separate software which is constantly monitoring the voltage

for energy deposits in real-time. CUORE has named time series monitoring code

"Diana". Energy deposit events in CUORE are commonly referred to as "pulses"

in CUORE literature. A pulse exhibits a steep voltage ascent as the corresponding

crystal temperature rises, followed by a gradual voltage descent as the crystal cools

back down to the steady state temperature of 15mk of CUORE’s inner cryogenic

chamber [22]. The Diana software constantly searches for energy deposit pulses in

real-time as CUORE is logging data. When a pulse is detected, it is analyzed, then

deducted analysis parameters are logged in a separate set of root files unique to the

run number.

CUORE also has various cryogenic-related sensors (slow-monitor) data time series,

which are kept separate from the raw voltage data. The slow-monitor data is stored

39

in a separate ROOT file database, and the the software for monitoring them is kept

running constantly. Slow monitor logging is intended to be kept independent of

voltage logging "runs". Slow monitor data includes: temperatures of various places

within the detector, seismometer readings, coolant tube flow rates, and pulsing flow

rate phases between different tubes. The collaboration has a person on shift watching

these cryogenic related measurements at all times, as a catastrophic failure could

result in serious damage to the detector.

Finally at the highest level CUORE has two web-services called "CORC" and "elog"

used by a person with the duty of "remote detector operations shifter". The web-

services connect to the the raw voltage database, as well as the cryogenic database,

they do various real-time signal processing useful for human visualization, and stores

valuable human input about the quality of the data. Different complicated moving

averages are taken over the raw voltage time series, other circuitry information (like

pulses for calibration), and the slow monitor data. These moving averages are stored

in yet another much smaller more easily accessible database, and allow for the web-

services to query them. The humans monitoring the cryogenic system and checking

the quality of the run data do so through CORC, and manually input time intervals

we consider to be "bad intervals" where the quality of data is poor for one reason

or another. One common reason that a human would mark a bad interval in the

CUORE data is a nearby earthquake, which often shifts the baseline voltage upwards

in all the crystals simultaneously. These bad intervals are stored, and subsequently

connected to each detected pulse in the database.

4.2 Pulse Energy & Time Estimation

When the start to a pulse is detected, an energy calculation is done. A window of

time (usually 10 seconds - 3 before pulse start, and 7s after pulse start) is analyzed to

calculate energy deposited. The data for that pulse window is recorded as a detected

40

time, and energy. From a pulse, the energy is estimated using the height of the

voltage peak, and the time is estimated using time of the voltage peak. Using the

pulse shape analysis software, a separate smaller database is kept with only a list

of event energies, and times, for each run. Each Dianna-detected pulse is given an

unique ID.

For our analysis we will be restricting our energy range from 500keV to 10 MeV.

For high energy events which deposit more than 10MeV, the software has a tendency

to under estimate the amount of energy deposited, and it will potentially suggest

a delayed event time. High energy events will saturate the crystal, and reach a

peak voltage. Saturated events start with a quickly rising voltage, followed by an

almost constant plateau at peak voltage, followed many seconds later with a gradual

descent towards equilibrium again. Mapping the peak voltage height to an energy

in a saturated crystal will then underestimate the energy deposited. Mapping the

time of the event to the max of the peak will effectively choose a random time during

the plateau. The peak of an expected pulse shape is effectively "decapitated", and of

future interest for the CUORE collaboration is to "re-capitate" high energy events,

in order to estimate an energy.

4.3 Grouping Many Crystals into a Single Event

From having a list of pulses at various times, we need a procedure to determine if

multiple crystals should be grouped together into a single event. We cannot use

existing multi-crystal grouping techinqiues used for 0νββ decay.

For 0νββ decay analysis an existing grouping algorithm is already in use, and

being further developed to handle cases from multiplicity 2 to 5. CUORE already

has a background model, and associated simulations, where all known sources of

energy deposits are considered against our search for neutrinoless double beta de-

cay. From the CUORE background model simulations we can see that non-muon

41

background sources, which produce more than a multiplicity of 5 or more crystals

with energy pulse deposits are rare. For multiplicities of [2,3,4,5] various neighboring

crystal group orientations in Tetris-like shapes are each considered with different en-

ergies and particle-products. Using the Tetris-like neighbor-chain technique quickly

becomes infeasible for grouping methodology, as the multiplicity grows beyond about

5 crystals. For events with multiplicity 5 or greater, the only known source of back-

ground is muons, and our existing grouping techniques do not work.

For our analysis, we are searching for a ppp-decay which may have 10’s or even

100’s of crystals with energy deposits simultaneously. If we impose a minimum search

of multiplicity of 10 or greater, we lose less than 5% ppp-decay signal efficiency ac-

cording to our simulations. We also highly reduce any non-muon background which

has been thoroughly studied by the CUORE collaboration through the existing back-

ground model. To account for the fact that if observed, a triple proton decay would

very likely produce an event in CUORE of multiplicity 10 or greater, we need a simple

way to group many crystals together that fire pulses at similar times.

With the goal of simplicity, we have chosen find events that happen close to-

gether in time, completely ignoring spatial information when grouping them together.

CUORE has a resolution on the order of milliseconds for individual pulses. Physics

events that take place across the entirety of CUORE will take place at most a 10’s

of milliseconds apart. CUORE has a maximum distance between any two crystals

of one meter. The time required for a full ppp-decay chain, or a Muon (which is

relativistic) to traverse the meter entirely will be on the same order as the single

pulse time-resolution of the detector.

We will use a grouping algorithm that aggregates any two pulses as long as they

are less than 20 milliseconds (ms) apart. To be explicit in illustration let us assume

we had a multiplicity 100 event. Our grouping algorithm would allow for us to

group a 100 crystal event together, if each crystal had a pulse 19ms one after the

42

next for a maximum duration of 1.9 seconds. In practice however, grouped events

have measured pulse times clustered much more closely about some mean. Using

this grouping algorithm, we can reasonably say it is unlikely for us to fail to include

two crystals which actually happened from the same physics event. We expect to

see approximately one multiplicity 10 or greater Muon per hour, so the odds of

accidentally grouping two separate Muons into one event are very low. It is possible

that our algorithm would group together two spatially uncorrelated multiplicity 5

events together as one multiplicity 10 event, but again that is highly unlikely given

the occurrence rate of multiplicity 5 or greater events in CUORE.

4.4 Choosing Cuts

Using knowledge of the existing CUORE data storage infrastructure, and energy es-

timation limitations, we need to determine a set of requirements for which energy

pulse events we wish to look at. We will limit the scope of our analysis to those

which pass a certain set of cuts. Because we rely upon the existing CUORE pulse

shape analysis software and its limitations, it is natural to apply both a low energy

cut and a high energy saturation limit. The low energy cut is applied at 500keV as-

suming non-detection for energies lower than that amount. A high energy saturation

cut is applied at 10MeV assuming that any energy measured to be more than 10MeV

should be rounded down to be 10MeV. We also applied a minimum multiplicity cut

of 10 crystals, knowing that we are potentially throwing away about 5% of our ppp-

decay signal, but significantly reducing contamination from non-Muon background

sources in the data. Additionally we apply some data quality requirements on single

crystal event extraction from the database: ’NoHeaterInWindow’=True ’RejectBad-

Intervals’=True, ’IsSignal’=True, and we insist that the energy value extracted from

the database is not a ’NaN’ value.

CUORE does contain what we denote as ’dead channels’. A ’dead channel’ is

43

what we denote any of the 988 CUORE crystals which is not recording data. There

are 4 channels which are permanently dead. Also, at various random times, a small

subset of channels may be flagged by a CUORE shifter as a ’Bad Interval’ for one

reason or another. While we reject the data from bad intervals in the extraction of

the real data, we do not account for the same effect in simulations. In this analysis,

the effect of dead channels is assumed to be negligible in the real data as compared

to the simulations with regards to feature calculation, and count rate calculation. To

properly account for the effect in simulations, one would have to assign each simulated

event a random timestamp within the duration that real data was recorded, and then

ignore any simulated energy deposits within the dead channels at the time for that

particular event.

4.5 Real Data Features : An Emergent Discrepancy

We now have a set of cuts, a multiple crystal grouping method, and a set of features

we can utilize. In lieu of a true bias-free blinded analysis, we planned to use a

small portion of real data to inform our extraction procedure, then scale up to a full

analysis on all the data after our analysis pipeline was built upon the small portion.

CUORE’s data are already broken into data-sets so we originally planned to use the

first finalized dataset which is labeled 3601, and accounts for approximately 30 days

of exposure time. We extracted dataset 3601 and applyed our energy cut from 500keV

to 10MeV and applied the multiplicity cut of 10 or greater.

An unexpected discrepency emerged, and we found that that the real dataset

3601 did not match the Muon simulations, when looking at their features. A features

comparison plot can be seen in Figure 4.1. A few of the feature histograms did

not match between muon simulation and real data. The total energy of a grouped

real event had a tendency to have more low energy events than we expected. The

normalized standard deviation in single crystal energies seemed to be shifted down

44

from where we expected (see 3 for description).

Figure 4.1 Features corner plot for Real Dataset 3601 (green), compared to Muon
simulations (blue). The diagonal plots are histograms for each feature. The off-
diagonals are each scatter plots corresponding to 2 features. Note the discrep-
ancy between the two left-most features (Total Energy, and Normalized Energy Std-
Deviation).

Intuitively we can see that the emergent discrepancies in Figure 4.1 would not be

fixed with inclusion with ppp-decay spectra (Figs 3.3 3.4). We needed to investigate

the problem more deeply. After discussion within the CUORE physics board, we made

the decision to unblind the rest of the real data as compared to muon simulations

with respect to their features. At this point we still had not used the real data to

perform the rest of our analysis pipeline and obtain half-life result for ppp-decay, but

we needed to see if the feature discrepancy was dataset dependent.

We found that the feature discrepancy was indeed dataset dependent. We looked

closely at the same features plot for each of the 16 datasets published within CUORE:

Datasets 3601 through 3615. Datasets 3601 through 3611 do exhibit a disagreement

between muon simulations and real observations and all have feature plots similar

to Figure 4.1. Datasets 3612 through 3615 do not exhibit a disagreement between

45

muon simulations and real observations and all have feature plots similar to Figure

4.2. It seems not only is there a dependence upon datasets, but there also exists time

of transition from disagreement, to agreement. The time of transition and start date

for dataset 3612 is: Mar 12, 2020.

Figure 4.2 Features corner plot for Real Dataset 3612 (green), compared to Muon
simulations (blue). The diagonal plots are histograms for each feature. The off-
diagonals are each scatter plots corresponding to 2 features. Note there is no dis-
crepancy between the two left-most features (Total Energy, and Normalized Energy
Std-Deviation).

With regard to a search for ppp-decay we will simply use data-sets [3612, 3613,

3614, 3615] to obtain our final result. We chose cuts based on knowledge of previ-

ous CUORE analysis. We chose features manually that could illustrate differences

between high multiplicity events. We viewed the features on dataset 3612, and saw

that the data-set’s features seem to be in agreement with muon simulations. With

regard to a search for ppp-decay the reader can continue to the next section knowing

that we we have achieved sufficient pre-requisites to perform an analysis.

46

4.6 Investigation of the Mar 2020 Real Data Discrepancy

While irrelevant for the search for ppp-decay, here we will begin an investigation

into the discrepancy between high multiplicity CUORE data taken before and after

a transition time of Mar of 2020. The discrepancy may have more broad importance

to the collaboration, and to other physics experiments in LNGS than to the rest of

this thesis.

In March of 2020, the Italian COVID-19 lockdown began. Almost all human ac-

tivity in, and around the Grand Sasso National Laboratory (LNGS) ceased during the

lockdown. It is possible that the transition time and the start of full Italian COVID

lockdown is a coincidence. It is also possible that the timing is not a coincidence, and

other experiments could benefit from studying the difference between their recorded

data during the lock down.

To study the timing, we have developed two initial types of plots which may shed

light on possible human activity data contamination at LNGS for high-multiplicity

CUORE data. One type of plot shows events over time with a histogram of 30

minute bins (Figures 4.3, 4.4, 4.5, 4.6). Another type of plot shows the number of

events during each hour of the day (Figures 4.7, 4.8). Both kinds of plots show clear

differences in the CUORE data before and after Mar 2020.

Of specific note are the visual differences between dataset 3612, and 3601 on the

time histogram. The number of counts in a random 30 minute bin should observe

some relationship to the Poisson distribution (Appendix B, Sec 5). With an expected

count rate of about 1 Muon per hour, we can see that dataset 3601 once observes 60

Muon-like events in a single 30 minute window. One can infer that the likelihood of

this happening is well outside a 5 σ bound.

There must be some contamination in data-sets 3601 through 3611, that is not

present in data-sets 3612 through 3615 (while creeping back into one 30 minute bin

of dataset 3615). Given the time-correlation, it is possible that the contamination is

47

Figure 4.3 Dataset 3601. [M > 10, 500keV < E < 10MeV] Events are shown as a
histogram of 30 minute bins allowing time to progress along the x-axis.

Figure 4.4 Dataset 3612. [M > 10, 500keV < E < 10MeV] Events are shown as a
histogram of 30 minute bins allowing time to progress along the x-axis.

due to human activity, which ceased during Covid lockdown. Further investigation

of the issue is required, and is actively being pursued by the CUORE collaboration.

If CUORE finds that human activity was responsible for data contamination be-

fore covid lockdown, and was almost completely avoided during March 2020 covid

lockdown in Italy, we may find that other experiments can use the information to

48

Figure 4.5 Events seen by CUORE before Mar 2020 with [M > 10, 500keV < E <
10MeV]. Events are shown as a histogram of 30 minute bins allowing time to progress
along the x-axis.

Figure 4.6 Events seen by CUORE after Mar 2020 with [M > 10, 500keV < E <
10MeV]. Events are shown as a histogram of 30 minute bins allowing time to progress
along the x-axis.

further clean their data as well, and obtain stronger results on unrelated physics.

There are two known nearby sources of human activity. One source is the road

traffic of cars and trucks driving through the tunnel by the laboratory. Another source

49

Figure 4.7 Events seen by CUORE before Mar 2020 with [M > 10, 500keV < E <
10MeV]. Events are shown by hour of the day.

Figure 4.8 Events seen by CUORE after Mar 2020 with [M > 10, 500keV < E <
10MeV]. Events are shown by hour of the day.

is experiment maintenance related work performed by people inside the laboratory

cave. CUORE personnel are looking into accessing already existing human activity

data sources, as well as potentially creating noise on purpose.

There are some existing data sources which can be used to narrow down the source

of contamination. There exists a road traffic camera dataset for traffic through the

50

LNGS highway tunnel. Separately there may exist a foot traffic dataset, with entry

and exit log information for humans performing active work within the lab as a whole,

or nearby detector huts.

An alternative, easier to implement, and more direct approach to finding the

source may be to actively create the noise on purpose. We could commission a

large heavy truck to drive back and forth through the tunnel. We can log the exact

movement over time for the truck, including starting, stopping, accelerating etc. We

can also have people walk into the Grand Sasso Laboratory and simulate various

kinds of manual labor performed by other scientists in the lab.

The CUORE team is beginning an investigation into this time-based high mul-

tiplicity event count rate discrepancy. Both active and passive analysis methods

are being considered. Understanding how non-particle-physics based contamination

might effect the CUORE detector could have an important impact for how data

analysis is performed within underground cryogenic experiments.

51

Chapter 5

Maximum Entropy to Counting Statistics

5.1 Entropy Definition

First lets introduce the concept of entropy in the context of probability theory, using

precise language:

X is some random variable we can measure

x is an instance of measuring the random variable X

X has a probability density function: X pdf (x)

X pdf has an entropy

(5.1)

The entropy of a density function is defined as follows:

Entropy

[
X pdf (x)

]
= −

∫ ∞

−∞
X pdf (x)log(X pdf (x))dx (5.2)

The entropy is a functional of a function which returns a single number. One can

choose a distribution which maximizes the entropy, while satisfying any limiting con-

straints. Any constraints placed upon the distribution are considered "information".

An axiom in information theory states that the maximum entropy distribution, is the

best guess we can have at the underlying true distribution without data, and only

starting with constraints. This can be written:

X pdf,best(x) = Max

[
Entropy

[
X pdf (x)

]]

...subject to any constraints
(5.3)

52

The mathematics of maximizing functionals such as entropy is beyond the scope

of this thesis. Of specific interest to the reader may be studying calculus of variations,

and Lagrange multipliers. In practice, there are only a handful of constraints physi-

cists might place upon a distribution and the resulting maximum entropy solutions

can be found in existing literature without requiring novel derivation.

5.2 Lagrange Multipliers

Lagrange multipliers are useful tools if we have an arbitrary function f(x) we need

to maximize subject to a constraint g(x) = c. The Lagrangian is then defined as a

new function which includes the original function f as well as the contraint g, and

introduces a new parameter λlag which we call the "lagrange multiplier":

L = f(x) − λlag(g(x) − c) (5.4)

To find the maximum of f subject to the constraint g, we can instead find he

global maximum of L by solving the system of equations defined by:

∇x,λlag
L = 0 (5.5)

Which is a system of two equations and two unknowns. In general the Lagrange

multiplier result is always a critical point but not always an extrema. When solving

general problems one has to worry about finding saddle points with the method or

checking boundaries as part of the constraints. The "Karush–Kuhn–Tucker condi-

tions" determine whether or not saddle points and boundaries need to be considered.

Fortunately, in the context of Maximum Entropy, it turns out that one will always

obtain a maximum, and saddle points and boundary points need not be considered.

5.3 Entropy Derivation of the Exponential Distribution

Here we will derive a density function from a set of constraints using the maximum

entropy principle. We will choose an example which is both simple, and yields a

53

result that is useful to us later. We will use Lagrange Multipliers to maximize the

entropy functional.

Let T be the random variable of interest, which is constrained to be positive.

Let us also state that the expected value of T is known: E
[

T
]

= λt. We can

now ask what is probability density function T pdf (t) which maximizes the entropy

subject to the constraints? We will show that the result is the negative exponential

distribution (Eqn B.1). The constraint of positivity X > 0 can be included by

limiting integration from 0 to ∞.

The first constraint is that probabilities must add or integrate to unity:

1 =
∫ ∞

0
dt T pdf (t) (5.6)

The constraint of expectation E
[

T
]

= λt can be written in equation form:

λt =
∫ ∞

0
dt
(

t T pdf (t)
)

(5.7)

The thing we want to maximize is the entropy (as seen in Eqn 5.2)

Entropy = −
∫ ∞

0
dt T pdf (t)log(T pdf (t)) (5.8)

Our Lagrangian can then be defined by starting with entropy and subtracting

additional terms for each constraint, with additional constants defined as Lagrange

multipliers λj:

J ≡
∫ ∞

0
dt T pdf (t)log(T pdf (t))

− λlag,0(1 −
∫ ∞

0
dt T pdf (x))

− λlag,1(λt −
∫ ∞

0
dt
(

t T pdf (t)
)

)

(5.9)

From our knowledge of Lagrange multipliers, we know we need to take deriva-

tives and set them equal to zero. However with simplistic Lagrange multipliers we

are supposed to take the gradient and set it equal to zero. Instead of taking the

gradient we can use a trick taken from calculus of variations. We can instead take

54

the functional derivative and set it equal to zero. This is only possible because each

term in our defined Lagrangian J contains an integral over our function of interest

T pdf . Choosing to take the functional derivative instead of taking the gradient is

not obvious and is done with knowledge of the calculus of variations.

0 = dJ

d T pdf

0 = ln(T pdf) + 1 − λlag,0 − λlag,1t

(5.10)

We can then solve for the form of T pdf in terms of λlag,0 and λlag,1:

T pdf (t) = e1−λlag,0−λlag,1t

= e1−λlag,0e−λlag,1t

(5.11)

From here we need only to actually solve for the constants λlag,i. To solve for

them, we can use each constraint, which will produce additional equations equal to

the number of unknowns. We start with the first constraint of probabilities integrating

to unity:
1 =

∫ ∞

0
dte1−λlag,0e−λlag,1t

= e1−λlag,0

∫ ∞

0
dte−λlag,1t

= e1−λlag,0
1

λlag,1

(5.12)

Now we satisfy the second constraint of known expectation:

λt =
∫ ∞

0
dt
(

t e1−λlag,0e−λlag,1t
)

= e1−λlag,0

∫ ∞

0
dt
(

t e−λlag,1t
)

= e1−λlag,0
1

λ2
lag,1

(5.13)

Substituting the first constraint equation into the second solves for λ1:

λt = 1
λlag,1

(5.14)

Substituting into the first constraint equation solves for the constant out front:

e1−λlag,0 = λlag,1 = 1
λt

(5.15)

55

Substituting it into our final form of the density function of T pdf :

T pdf (t) = e1−λlag,0e−λ1t

= 1
λt

e
− 1

λt
t

(5.16)

We have obtained the negative exponential distribution as expected. We obtained

the distribution using the maximum entropy princple. We chose the probability

density function out of all possible choices, which maximized the entropy, and still

satisfied the constraints we needed to satisfy. Note that this negative exponential

distribution is not just a good choice given the constraints. It is the only best choice

given those constraints. In a very real way, we have proven that using the negative

exponential distribution to model when some future event happens, is not only a

reasonable thing to do, it is the correct thing to do.

5.4 Detectors Underground: Counting Experiments

In experimental physics we often have a detector sitting underground or inside a

mountain and we want to model the rate of decay. Let us assume that we have some

collection of n particles which will each decay eventually at times [t0, t1, ...tn−1] = −→
t .

Let us also assume that we have information that the expected amount of time for

a single particle to decay is λt. Lets also assume that the particle will decay in the

future so t > 0.

We just showed that such a set of constraints will result in the negative exponential

distribution as the best possible model for the single particle’s decay time:

Information Constraint : E[t] = λt

Probability Density : T pdf (t) = 1
λt

e
− t

λt

(5.17)

Since the events we are observing are independent but share the same underlying

expected E[t] = λt we can easily write the joint probability of observing them all at

the times when we do observe them:

56

Prob(See events at times −→
t |λt) =

∏
i

1
λt

e
− ti

λt = 1
λn

t

e
− 1

λt

∑
i

ti (5.18)

Note we could actually use this joint likelihood, substituting in the times we did see

real events, to get a final result. However, it would not be computationally efficient,

or intuitive to do so. Instead, standard practice is to perform counting statistics as

shown in the next subsection.

5.4.1 Single Events To Counting Statistics (Poisson)

Instead of modeling a joint distribution for individual events, it is more useful to

count how many events we have seen. We can derive the Poisson distribution to

model such counting with the maximum entropy principle.

Prob(See k events at any times −→
t |λt) = Poisson (5.19)

To obtain the Poisson distribution, we can use the negative exponential distri-

bution which we derived earlier. We must define a time window, tstart, tend. There

exist some collection of N particles and each is independently capable of some decay

process that can happen but is very unlikely to actually happen. (N atoms which can

decay).

We want to know: From time 0 to time tend what is the probability that we observe

k events? If we define our time window to start at zero then tend is conveniently also

the duration of the time window. We can start by asking what the probability is

that we see the first single atom decay. If we label each atom in the collection as

"atom number i", then the first one has the label: "atom number 1". We know

the first atom’s decay will happen eventually. We also know the first atom’s decay

has a certain probability of occurring during the time window of interest. What is

that probability? We can calculate it using the negative exponential distribution we

derived previously:

57

Prob(See single eventi in window) =
∫ tend

0
dti

1
λt

e
− 1

λt
ti

= 1 − etend/λt

≡ Pi

(5.20)

We could also ask: What is the probability we see both atom number 1 and atom

number 2? (within the allowed time window)

Prob(See single event1 and event2 in window) = P1P2 = (Pi)2 (5.21)

We know that the atoms are identical and independent. Thus within the time

window the probability of seeing any single atom decay is equal to that of any other

atom. What is the probability we see any k events given that there were N to start

with? We can use the binomial distribution with successes and failures. Each event

has probability of success Pi. Each event has probability of failure 1 − Pi. Using the

binomial distribution we can find the odds of seeing exactly k successes:

Prob(k, n, p = Pi) =
(

n

k

)
P k

i (1 − Pi)n−k (5.22)

Note the expected count λcount is equal to the number of total atoms n times the

probability of a single atom decaying Pi. We could prove this by careful calculation

using the definition of expectation over the discrete probability mass function defined

by the binomial distribution above. Instead we will state the intuitive relationship

between λcount and λt.
λcount ≡ λc ≡ nPi

λcount = n(1 − etend/λt)
(5.23)

5.5 Counting Statistics: Approximations for Computation

With the binomial distribution we have a probabilistic counting model which is cor-

rect. However, calculating factorials of large numbers is not computationally feasible.

58

We need tricks to reduce the computational cost but still get a good approximation

to the true binomial result. In the limit of large n the binomial distribution be-

comes Poisson, and in the limit of small p the Poisson becomes Gaussian. These two

derivations are included for reference in section E.

First lets use the Poisson limit. The limit is that n → ∞, p → 0 and np →

λcount which is a constant. The Poisson limit can also be interpreted as assuming

replacement of any atoms that decayed.

Essentially as the number of events which can happen (n), goes to infinity, then the

Poisson distribution becomes valid and any events that do happen do not significantly

reduce the pile of atoms we started with.

Prob(k, n = BIG, p = SMALL) = Binomial(k, n, p)

=
(

n

k

)
P k

i (1 − Pi)n−k

≈ Poisson(k, λcount = np)

= λk
c e−λc

k!

(5.24)

Next let us use the Gaussian limit. The limit is that n → ∞ and λcount is large.

The resulting Gaussian has µ ≈ λcount and σ ≈
√

λcount. The Gaussian limit can

be interpreted as a Poisson distribution for the case where the mean is well above

zero. The Poisson becomes particularly non-Gaussian in the limit that the number of

expected events is very low (λc < 20). As the mean shifts upwards, and the probability

of Gaussian negative events becomes almost zero, the approximation becomes very

good. In practice we can use a Gaussian approximation in the limit that λcount is

greater than 100.

59

Prob(k, n = BIG, p = SMALL) ≈ Poisson(k, λcount = np)

= λk
c e−λc

k!
≈ Gaussian(k, µ = np, σ = √

np)

= 1√
2πnp

e
− 1

2

(
k−np√

np

)2

(5.25)

We have made statements about what regions where the above approximations

are "good" but we have not made quantitative claims to support the "goodness".

Proving convergence and accepted tolerance on the convergence is a level of extra

work that could be done. However, we can temper our fears about the closeness of

approximation by knowing that the error rate on our counting, and mistakes made

when performing classification in later sections, will far outweigh any small error on

the approximation of the binomial distributing from using a Poisson or Gaussian

distribution. Thus making precise statements on how "big" or "small" parameters

lead to "good" quantitative results is unnecessary.

5.5.1 Concrete examples of Binomial Approximations

Assume there is a detector which only has 100 atoms inside. Let us decide to count the

number of times within a 1-year window, that atoms decay. We know the probably of

any particular atom decaying within the time window is Pi. It turns out we observe

exactly 2 decays. Thus k = 2, n = 100, p = Pi. What is the probability of such an

experiment occurring?

Prob(k = 2, n = 100, p = Pi) = Poissonpdf (λcount = nPi, k)

≡ (nPi)ke−(nPi)

k!

= (100Pi)2e−(100Pi)

2!

(5.26)

60

Now let us do an example where the Gaussian approximation is valid. Let n = 107

and k = 100 and in advance we know know the probably of a single atom decaying

within the time window. We also know that the expected number of observed events

is knowing λcount = nPi. What is the probability of observing those 100 events in

terms of Pi ?

Prob(k = 100, n = 106, p = Pi) = Poissonpdf (λcount = nPi, k)

≈ Gaussianpdf (x = k = 100, µ = λcount, σ2 = λcount)

= Gaussianpdf (k = 100, µ = nPi, σ2 = nPi)

= 1√
2πλcount

e
− 1

2

(
k−λcount√

λcount

)2

= 1√
2π107Pi

e
− 1

2

(
100−107Pi√

107Pi

)2

(5.27)

5.6 Summary of Relationships Between Expectations

In this section we will try to bring a few different distributions and their expectations

together. In addition to the expected lifetime of a single particle λt, and the expected

total count within a time window λcount, it is also common to consider the decay rate

λdecay, and the half-life λhalf . Because all these concepts are defined by a single decay

process in nature, we can view each of these quantities as different versions of the

same information. Here we will provide relationships between all the λ’s of interest.

First, lets use the information we have in order to represent the expected number

of particles remaining as a function of the half-life. If there were no statistical fluctua-

tions involved, and we could have fractional particles, we could represent the number

of remaining particles as a renormalized multiple of the exponential decay probability

distribution. We need to make a new copy of it so that there are 1 particles at time

t = 0 and zero particles at time t → ∞. Such a renormalization is easy and can be

61

done by multiplying the negative exponential distributions by the expected lifetime

λt. Finally we need to multiply by the number of total particles in the ensemble,

because we have more than a single particle.

n(t) = nλt
1
λt

e
− 1

λt
t

= ne
− 1

λt
t

(5.28)

For practical purposes, it is convenient to define a half-life such that the number

of expected remaining atoms that exist at the time of half-life will be exactly N/2.

Using the definition of half-life we can reformulate the same number of time function

in terms of half-life:

n(t) = ne
− ln(2)

λhalf
t (5.29)

From knowing the total number of particles we have as a function of time, we

can also find the rate of change of the number of particles over time by taking the

derivative of the function. For very long half-life’s, the rate of change over the time

window barely changes, so we can denote the derivative as a constant at the time

t = 0, with λdecay.
dn

dt
= rate of change of the ensemble

dn

dt
= −n

1
λt

e
− 1

λt
t

λdecay = dn

dt

∣∣∣∣∣
t=0

= −n
1
λt

(5.30)

Finally we can put all the information together to relate all the λ’s. We need to

use the relationship between the negative exponential distribution and the Poisson

distribution (Eqn: 5.20). We need to use definition of half-life and the formulation of

the negative exponential distribution. And we need to use the rate of change function.

The relationships between all the non-time λ’s can be seen in three separate functions

of λt:

62

λcount = n(1 − etend/λt) (5.31)

λdecay = −n
1
λt

(5.32)

λhalf = λt/ln(2) (5.33)

However, in practice for our analysis we want a convenient relationship between

the half-life λhalf and the total observation count λcount. We are measuring counts,

and we want to obtain a half-life. Therefore we need to represent the half-life as a

function of counting. We can start by substituting Eqn 5.33 into Eqn 5.31.

λcount = n(1 − e−tendln(2)/λhalf) (5.34)

We need to solve the equation for λhalf in a few algebraic steps:

λcount

n
− 1 = −e−tendln(2)/λhalf

ln(1 − λcount/n) = −tendln(2)/λhalf

λhalf = −tendln(2)
ln(1 − λcount/n)

(5.35)

Here lies a hidden final step. 1 − λcount/n is very close to one for large n. Compu-

tation of the log of a number very close to one, will lead to rounding errors. In order

to handle the rounding error in the conversion between λcount and λhalf we will use

the first tool in the physicists toolbox, and try a Taylor-Series. In this case it turns

out that a taylor series exactly solves the problem. We will approximate ln(1 + x) as

a Taylor-Series:

ln(1 + x) ≈ x − x2 + x3... ∀ |x| << 1 (5.36)

63

Letting x = −λcount/n then our expression for λhalf becomes:

λhalf = −tendln(2)
−λcount/n) = tendln(2)n

λcount
(5.37)

5.7 Usage of the Maximum Entropy Derivation

We started with a maximized entropy result derived from constraints to obtain the

negative exponential distribution for the decay time of a single particle. We used

the combination of such a negative exponential distributions to derive the Binomial

distribution. Then we showed that the binomial distribution becomes either a Poisson

distribution or Gaussian distribution in the large number limit. Finally we showed

that the expected count within a window can be transformed into a half-life.

We have shown that that using a Poisson distribution to calculating half-life is

the best possible model under the condition that the only information available is

the expected value of decay time. The derivation will be useful when finding a final

likelihood for a counting analysis which includes classification in the later section (sec

8).

64

Chapter 6

Classification, and other required concepts

Here we will start with an introduction to artificial intelligence (AI), and where

supervised classification fits into the big picture of AI. Then we will explain some

basic algorithms that can perform supervised classification. Finally we will discuss

how to assess the performance of the classification algorithm, so that we can use it

in practice in the next section (sec 8).

Here we broadly define artificial intelligence or "machine learning" as tools that

attempt to solve computation problems that require some generalization beyond sim-

ple "if-then" statements. Machine Learning is subdivided into "instructive-learning"

and "evaluative-learning" (also known as reinforcement learning). Instructive learning

reduces to having the computer build functions on the fly which map known input

to some output. Evaluative learning instead has the computer attempt actions with

a trial and error mindset to learn an environment and obtain rewards. Evaluative

learning is designed for the computer to handle situations with completely unknown

input data, and is a highly active area of new research. Instructive learning is decades

old originally, but is only recently (in the last 10 years) becoming popular among the

physics community for performing data analysis because of its ease of use, and in-

creased performance. Supervised classification, lies within the "Instructive" learning

paradigm, and will be the limited focus of this work.

Classification tools start with a list of items and have the goal to decide which

items are similar enough to belong together in a collection. Here we provide short

summaries of both Supervised and Unsupervised classification, however our re-

65

search is entirely focused on using previously built supervised learning techniques.

Supervised Classification takes a list of predefined sets, and a list of items

already classified, and uses that information to train the classifier. The classifier can

then be tested against another set of items with known sets for accuracy. When

testing the success rate of a classifier, it is very important to separate data into

training validation, and testing datasets (Sec 6.4).

Unsupervised Classification takes a list of items, and decides upon sets to

place them within, in a completely automated fashion. An unsupervised system

determines which sets should exist, and how many there should be. Instead of only

testing accuracy, one also needs to incorporate information about how many sets

should exist compared to how many were created by the algorithm. In our work we

will not make use of unsupervised learning.

6.1 Algorithm: Support-vector machines

Support-vector machines (SVM) is perhaps one of the earliest, and also most intuitive

ways of performing supervised classification. SVM performs supervised classification

from data that contains features from exactly two collections. In basic terms, SVM

draws an optimal line of separation between two sets of dots on a scatter plot. The

line, in its most simple form, must also be a mathematical line. y = mx+b. Therefore

in the case of linear SVM with 2 sets(or "classes"), and in 2 dimensions, the entirety

of support-vector machines reduces to optimizing m and b that best classifies between

two sets of known dots. An illustration is shown with green and blue dots in Figure

6.1.

To calculate the optimal hyperplane for two collections of points that lie in N-D

space we need to optimize the location of the line to best widen a boundary between

the two collections of points (Eqn 6.1). xi is a single point within the dataset of

interest, w is a normal vector to the hyperplane, and b is a constant. The hyperplane

66

Figure 6.1 Linear Support Vector Machines (SVM) Example Image. This figure’s
content is toy-data intended to be an abstract illustration. However, for concreteness,
the reader may imagine that the blue, and red dots on this figure represent muons
and ppp-decay simulations respectively. Here the reader may visualize that only
two dimensions are shown (x, y), corresponding to only two features of events in the
CUORE detector. If our simulations produced feature values seen on this scatter
plot, a line of best separation wx − b = 0 and it’s parameters w and b would be
deduced by the SVM algorithm. The SVM algorithm would then suggest, that any
event with features creating a point on the scatter plot above the green-line should be
classified as muons, and any event with features below the red-line should be classified
as ppp-decays.

satisfies the equation wT x − b = 0. yi is the Boolean choice assigned to each point

in space which in the case of SVM is either 0 or 1, and λclassifier > 0 is an extra

parameter that defines the penalty for points which lie upon the wrong side of the

hyper-plane.

λclassifier||w||2 + 1
n

∑
i=1

max(0, 1 − yi(wT xi − b)) (6.1)

Although ultimatetly not used for our analysis, an extension of support vector

machines exists which produces non-linear manifolds of separation.

67

6.2 Algorithm: Decision Tree and Random Forest

Decision trees are another early adoption method for obtaining supervised classifi-

cation. Unlike support-vector machines explored above, decision trees easily extend

to multiple classes. They are highly intuitive, and are somewhat methodologically

contradictory to the basis of our definition of machine learning, because they can

be exactly defined by a set of "if-then" statements to obtain a result. Because of

their simplicity, they are computationally efficient, and can be presented in human

understandable formats. Unfortunately, basic decision trees in practice are not very

effective.

Random forests are the next logical extension to decision trees. Instead of a single

tree, we can create many. Instead of relying upon the conditions for a single tree to

be correct in making a decision, we create many trees with random conditions, then

allow each to vote with a prediction (Fig 6.3). With many trees to draw from, and

the ability to ask each for a prediction we can get much better accuracy on our ability

to classify. There is the drawback however; the more trees that get added, the less

interpretable the final result is for humans who want to understand how the choices

are made.

When calculating our ppp-decay half-life bound, we rely upon a random forest.

We found that the random forest had the best success rates within a reasonable

amount of computation time. See sections 6.6.3 and 6.5 for more details.

68

Figure 6.2 Decision Tree Visualization trained and plotted with the "sklearn"
python library [9]. This decision tree was generated using 100 of each type of sim-
ulation in the CUORE detector. The nodes at the bottom of the tree show when a
final decision is reached. Nodes which are more likely to be muons appear orange,
while nodes that appear more likely to be ppp-decays are blue. This tree is not very
realistic as it was generated with too few simulations. To see a more realistic tree see
the one in Fig 6.4. Note there is a trade-off between performance and readability.

69

Figure 6.3 Random Forest Visualization. The trees shown in this image are each
to be thought of as instances of the larger fully shown tree in Figures 6.2 6.4. Many
such trees are made independently. After all the trees are constructed, they can be
used to classify an event. Each tree casts a vote upon a single event, and the voting
majority is used to choose the final classification.

70

Figure 6.4 Decision Tree Visualization trained and plotted with the "sklearn"
python library [9]. This is a decision tree taken from a random forest trained upon
10,000 of each type of simulation in the CUORE detector. The nodes at the bottom
of the tree show when a final decision is reached. Nodes which are more likely to be
muons appear orange, while nodes that appear more likely to be ppp-decays are blue.
This tree is more realistic than the one shown in Fig 6.2. Note there is a trade-off
between performance and readability. Our final random forest used to classify muons
vs ppp-decays is 100 different versions of trees which look very similar to this one.

71

6.3 Algorithm: Generative Classifier (Density Estimation)

Suppose that for each class Cj we have a known density function fj(−→x). Further

assume that for class Cj it’s points xj,i were drawn from it’s density function fj.

What is the probability that some new point xnew came from class Cj? We can use

the known density functions fj, and choose whichever class produced the highest

density value for the new point. The process of using density functions for each class

to choose which class a new point lies within is known as Generative Classification.

The choice of class for the new point becomes:

Class(xnew) = ArgMax([f0(xnew), f1(xnew)...fn(xnew)]) (6.2)

Because generative classification relies entirely on modeling each group of points

as density functions instead of choosing a partition, the entire problem reduces to

estimating a probability density function from a set of known points. We could

simply choose a parametric model out of the box for each set of points such as a

simple Gaussian fit. Choosing simple Gaussians to model each class of points is

known as a Naive Bayes classifier.

fi,NaiveBayes = Gaussian(x, µ = mean(−→xi), σ = StdDev(−→xi)) (6.3)

With any generative density estimation model, after defining the model we may

want to define the likelihood of the model. In general the likelihood is defined as

the probability of observing the data which was observed, after assuming the model

was completely correct. For models which are densities themselves, the simplest form

of the likelihood that we can define is a simple product over each datapoint in the

dataset:

Lsimple =
N∏
n

f(−→x n) (6.4)

72

6.3.1 Kernel Density Estimation

While it is possible to choose Gaussian as a density estimate for a set of points, in

practice it is much more practical to have a non-parametric model, which can more

easily bend it’s shape around the points of interest. The simplest non-parametric den-

sity estimation algorithm is known as a "Kernel Density Estimation" [28, 29]. Instead

of modeling the points with a single gaussian, we use a sum of smaller Gaussians.

Each small Gaussian is centered upon a single observed datapoint. A kernel density

estimation has only 1 hyperparameter called the "bandwidth" b, which defines the

width each individual Gaussian centered about each observed point. We can show an

example dataset (Eqn. 6.5), the equation of the kernel density (Eqn. 6.6), and the

image of the estimate (Fig. 6.5) using a bandwidth of b = 2.5.

Dataset1 ≡ [−3, −2, −.5, 5.1, 6] (6.5)

Figure 6.5 Kernel Density Estimation Example This histogram and smooth curve
are both estimates for Dataset1 (Eqn 6.5). This particular image shows a hyper
parameter of b ≈ 2.5.

fkde(x) =
∑

i

Gaussian(µ = xi, σ = b, x) (6.6)

The standard likelihood function defines the probability of generating a sample

of points which were observed assuming that some density function f(x) was used to

73

generate the sample. The likelihood is equal to the product of the probability density

of each point. We can formally write down the likelihood as follows:

Lkde,simple =
∏
k

∑
n

Gaussian(µ = xn, σ = b, xk) (6.7)

For the context of training machine learning algorithms, later we will find band-

widths using the likelihood with proper validation techniques (Sec 6.11). While rules

of thumb have been developed for estimating a bandwidth [30, 31], it is illustrative

to calculate bandwidths using iterative optimization methods directly upon a likeli-

hood. We will show that further "tweaks" must be made to the likelihood for fitting

purposes.

6.4 Hyperparameter Training

After choosing a classification algorithm, we have to train it on our data. In general

the algorithm will be a function of the data we give it to train upon, regular param-

eters (−−−−→
bregular) which vary when training one single time, as well as some additional

hyper-parameters (−−−→
bhyper) which introduce changes to the overall structure of the

algorithm. To relate the concept to previous reading in this document, examples of

hyper-parameters could be: the standard deviation width σ described in the support

vector machines radial basis function, the number of leaves nleaves in a decision tree,

the number of leaves & trees & features per leaf: [nleaves, ntrees, nfeatures] defining a

random forest, and the bandwidth b of the kernel density estimation. These hyper-

parameters will change how a given model performs, and how complex it becomes.

Before we can start training algorithms, we have be able to ask how well the

algorithm is performing. At first glance one might think that we can simply run the

classification algorithm on a large set of training data, make claims about the success

rates and be done. However in practice, one might produce a trained algorithm that

is very good on exactly the data provided to train it, but very bad on new data it

74

has not yet seen. Such an issue is known as the "over-fitting" problem. We need to

carefully determine how our algorithm might be over-fitting the data before we can

make claims about the algorithm’s success rates within a larger data analysis.

The over-fitting problem is pervasive through-out machine learning. The entire

point of machine learning is to get a computer to handle a broad set of possibilities of

input data to produce good decisions. How then, do we get the computer to handle

the inputs we know, and also handle new inputs not yet seen?

6.4.1 Over-Fitting: A Kernel Density Estimation (KDE) Example

A very clear concise example of over-fitting can be illustrated as follows. Suppose one

has N data points xi which lie upon the real number line. Suppose also we wish to

model these points with univariate probability density function f(x). Thus we have

a density estimation problem. Suppose further that we have decided to model

the density of this single set of points, using the Kernel Density Estimation defined

earlier (Eqn 6.6).

Before we can train our model, we need a metric to evaluate its performance. One

might naively suggest that a reasonable metric which can be defined, is a standard

mathematical likelihood Lkde,simple function defined previously (Eqn 6.7). It turns

out that using the simple likelihood to evaluate the best choice of parameter b will

yield a terrible solution.

The simple likelihood (Eqn 6.7) will be maximized under the condition that

the bandwidth hyper parameter, b, will approach zero Max(L) = fkde(b → 0).

Mathematically this will reduce our model to a sum of delta functions, each cen-

tered about a different observation, instead of a sum of Gaussians. (Reminder,

limb→0 Gaussian(µ, b, x) = δ(x − µ)). A comparison between bandwidth choices

can be seen in figures 6.6 and 6.7.

By using the definition of a likelihood, and finding best fit parameters we have

75

arrived at a drastically wrong solution. How could we have optimized our likelihood

model, and come to the conclusion that delta functions are the best choice to model

our data? Intuitively we know that choosing tiny bandwidths (such as b = 0.01) is

wrong and a poor choice of hyperparameter. The problem stems from using the same

data to both create the model f , and to construct the likelihood L. The likelihood

was maximized by training our model to assume that the data we observed, is 100%

probable, and any data we have not yet observed, is almost impossible. Upon further

reflection our model was trained in exactly the way we would expect under such

conditions. In order to avoid such an obvious over-fitting, we need to modify our

objective. Our likelihood function should reflect the probably of seeing some yet

unseen point, instead of assuming the points we have already seen were the only

possibilities. Changing the philosophy used to build the likelihood, will naturally

cause the likelihood to conclude b = 0.001 as a poor choice of hyperparameter and

instead favor a more reasonable bandwidth such as b = 1 for our example.

Figure 6.6 Kernel Density Estimation with different Bandwidths. We use Dataset1
(Eqn: 6.5) which is the dataset shown in (Fig 6.5).

76

6.4.2 Training, Validation, Testing: (KDE Example Continued)

To avoid the over-fitting problem, a standard technique to quantify how well our

algorithm is performing is to split data into different groups. We can split our full

pool of data into 3 distinct groups: Training, Validation, Testing. The largest portion

of data is used for training. The second largest portion is used to validate our training,

and the third portion is used to quantify performance upon completion.

For our illustrations above the Dataset1 (Eqn: 6.5) defined above was so small

that attempting to split the data with training validation and testing would not

leave us enough data to even attempt a kernel density estimation (KDE). There exist

techniques for handling a "small data problem" as well, which we will discuss later in

sec 6.4.3. For now, let us define another dataset which has a few more data points

than (Eqn 6.5) but which was drawn from the same underlying bi-modal distribution.

Dataset2 ≡ [−3, −2.5, −4, −2.7, −2, −1. − .5, 4., 4.5, 4.7, 5.1, 5.5, 6] (6.8)

Figure 6.7 Kernel Density Estimation with different Bandwidths (b=.01, b=1).
We use Dataset2 (Eqn: 6.8), which has data-points shown in black markers near the
x-axis.

77

Randomly select 3 datapoints for validation, and 3 for testing, leaving only 6 for

training:

Dataset2validation ≡ [−2.7, 4.7, 6]

Dataset2testing ≡ [−2, −3, 5.5]

Dataset2training ≡ [−2.5, −4, −1. − .5, 4., 4.5, 4.7, 5.1]

(6.9)

Our model is then a sum of gaussians only over the training dataset.

ftraining(x) =
∑

training,i

Gaussian(µ = xtraining,i, σ = b, x) (6.10)

Our validation likelihood function (the function we need to optimize) is now only

calculated by multiplying over the validation datapoints (instead of all the data-

points):

Lvalidation =
∏

validation,j

f(xj, b)

= f(−2.7, b)f(4.7, b)f(6, b)

max(Lvalidation) = Lvalidation

∣∣∣∣∣
b=.791

(6.11)

Now we can actually run a simple optimization method on the kernel density

estimate created from dataset 2. Maximizing Lvalidation by varying b (Eqn 6.11) turns

out to yield the best bandwidth from the validation data of b ≈ 0.791.

Our final likelihood test result is then calculated using only the test data, and using

the best bandwidth obtained from the training-validation process. By sequestering

a portion of the data from the training process entirely, we know that the model

design has not been influenced by the test data. In the general case of fitting any

model (density estimation, regression, classification), we can "trust" the test likelihood

result, as long as it was not calculated/tainted with data used to construct the model

in the first place. For completeness we calculate the test likelihood, and we can plot

the final trained model with the best bandwidth according to the validation.

78

Ltest =
∏

test,i

f(xi, b = 0.79)

= f(−2, b = 0.79)f(−3, b = 0.79)f(5.5, b = 0.79)
(6.12)

6.4.3 Cross Validation: Introduction

The simplest way to avoid over-fitting is to split data into training, validation, and

testing partitions (sec 6.4.2). However, by splitting the data into such partitions,

we are reducing the potential size of our training data that could have been used to

improve the model. For example in our KDE model, we only had 12 data-points to

start with, and then half were sequestered away to avoid the over-fitting problem,

thus we only had 6 to create the model in the first place. Cross-Validation defines

the set of more sophisticated techniques which are used to prevent over-fitting, while

allowing larger portions of the dataset to be used in the training of the model.

The basic trick to each cross validation algorithm is to run the training, validation

step we ran before, many times with different portions of the data each time. For

example, in our KDE example, what if instead of having predefined training, vali-

dation, testing, data partitions, we lump the training and validation data-sets into

a single partition of 9 data-points. Twofold cross-validation uses half the data to

train, and half to validate, then swaps halves, retrains for both cases, and takes the

average of both cases as our score. Leave-one-out validation uses all but one data-

point as training, then validates on the left-out point, and then switches through all

possible points, and again averages at the end. A k-fold validation achieves a balance

between two-fold and leave-one-out validation techniques, by dividing the data into

equal fractions, and isolating one equal part for validation, and repeating each part,

and again averaging the results at the end.

In general one can play many versions of such games with choosing different

subsets for training, and for validation, then taking an average. By performing these

79

validation games, we can increase the amount of data we are using to both train, and

to validate, at the cost of extra computation. In general it is advisable to have some

validation at the very least for training hyper-parameters, and at a minimum do the

training/validation/testing split. In practice however, it is most accepted to use some

version of a k-fold validation, which achieves a balance between the maximum use of

data and computational cost.

These validation games are worth playing more carefully, as we enter situations

were the data are more scarce. For example, consider in the highly limiting case of

having only 12 data-points in our KDE example. One could choose to brute force

through every possible choice of training/validation data subsets and remove testing

entirely. The brute force example takes an average over all of the
(

12
k

)
∀k < 12

possibilities. Such an extreme approach extracts as much information as possible

from each datapoint, at the cost of more computation operations. We also can feel

justified to avoid wasting data on a test, because we have included every possible test

already within the validation. We could not possibly favor one subset of data over

another, and thus we avoid the over-fitting problem.

The takeaway is that there is a trade-off between ease of execution (computation-

ally and interpretability), and robustness of the cross-validation technique to make

use of all the data. There is no generally accepted best practice, which will work

for any dataset. However, if the size of the available dataset feels large, it is almost

always easiest to form the simplistic data partitions of 50-70% training, and the rest

validation & testing. If the size of the available data is small, one should consider

using some kind of multiple-validation technique that tries many different partitions

and averages over them.

80

6.5 Assessing Classification Performance: Confusion Matrix

The most common way of visualizing the performance of a machine learning classi-

fication algorithm is to use a confusion matrix. After a classification algorithm is

trained upon one dataset, it is tested upon another. The test is to take a set of events

for which we have the true classification, and ask the algorithm to attempt to classify

those same events using only the features of those events. The algorithm’s predic-

tion can then be visually compared against the truth using the confusion matrix. A

confusion matrix is a square matrix with the number of rows and columns equal to

the number of kinds of events that need to be classified. Each possible case of cor-

rect classification and incorrect classification is included within the matrix. Correct

predictions are represented by the counts along the diagonal of the matrix. A perfect

classification algorithm will result in a confusion matrix that contains all zeros off the

diagonal.

Figure 6.8 Example Simulated Confusion Matrix plotted with Seaborn python pack-
age [10]. The true source is represented by the horizontal axis, and the classification
identification is represented by the vertical axis. Here 34 simulated muons are falsely
identified as ppp-decays (signal), and 961 simulated ppp-decays are correctly iden-
tified as signal. Also 375 events are correctly identified as muons and 38 ppp-decay
events are falsely identified as muons.

Here we provide an example (Fig 6.8) with only 2 sources, for a total of 2 × 2 = 4

81

possible elements in the matrix. Our confusion matrix shows a false negative and

false positive rate of our signal and background sources.

6.6 Classify CUORE Simulations: ppp-decays vs muons

We now have some completed CUORE simulations with associated features, an un-

derstanding of classification techniques, knowledge of using validation to avoid over-

fitting. Here we will put all the pieces together to classify muons vs ppp-decays.

6.6.1 Choosing a classification Algorithm

First to choose a classification algorithm, we have to say something about how each

performs. We have taken the approach of attempting a suite of standard tools an

applying all of them to different amounts of test simulation data. Because we use

python for the majority of our data analysis code, and we wish to use an existing

classification algorithm, it was convenient for us to use the package "sklearn" [32].

We use the full list of available sklearn package classification algorithms with default

parameters upon 10,000 ppp-decay muons simulations. We then choose the algorithm

which performs the best. We have chosen to use the random forest algorithm.

82

Figure 6.9 Many different available classification algorithms within the "sklearn" python package [9] are run against the
CUORE muon and ppp-decay simulations. Their success rates at classifying both signal and background are shown. The figure
is difficult to interpret but is complete. As more data is used the classification algorithms perform better and better. A separate
validation set of data is isolated from the training data for each training run. We find that a random forest has the highest
success rate, in conjunction with a low statistical variance on the success rate.

83

Figure 6.10 Classification success rates of using Sklearn’s linear support vector
machines, and random forests upon CUORE simulations of muons and ppp-decays
[9]. The x-axis is the same as shown in figure 6.9. Both algorithms can differentiate
signal from background better than a coin flip, and both improve as the amount
of simulation data available to train upon is increased. However the random forest
outperforms the support vector machines.

6.6.2 Validating our algorithm

In practice we will be using "Random Forests" (sec 6.2). In general a random forest

has the benefit of being easy to visualize, quick to train, and have great performance.

We can see from trying out the default parameters on many different algorithms, we

can see that random forests was one of the best performers. Although not presented

here, from running the training program, it can be shown that training the random

forests was computationally efficient compared to some of the other algorithms (e.g.

Gaussian process regression was prohibitively slow, and could not even be attempted),

Additionally because the random forest is quick to execute we can attempt different

visualization schemes.

Although we have attempted many algorithms already (Fig 6.9) we have not yet

obtained best possible performance from the algorithm of interest. The support vector

machines algorithm training (Fig 6.10) did not require any hyper-parameters to train,

84

so its performance cannot be improved. The random forest algorithm however, has a

few different parameters we can tweak to potentially improve performance upon the

same dataset. Hyper-parameters that define the random forest include: the number

of trees, the depth of each tree, and the number of features to select upon in each node

of the tree. Due to the nature of the data we are using, and the ease of interpretation,

we will limit the number of features per node to be exactly 1. The two remaining

hyper-parameters we can train are number of trees (n_estimators), and the depth of

each tree (max_depth).

Figure 6.11 Validation hyperparameter investigation for random forests used upon
5000 ppp-decay and muon simulations. There is slight improvement as both the
tree count increases, and as the depth increases, however we find diminishing returns
for increasing parameters beyond their default values of of (n_estimators = 100),
(max_depth=10) on our specific classification problem.

We tried various ranges for random forest depth and tree count, and found that

the performance did not improve much beyond the default parameters, which have

depth of 10, and number of trees to be 100. In Fig 6.11. We decided to use the

85

default parameters available in the sklearn machine learning package [32]. Possible

future work for improving the analysis could be to try throwing more computation

power behind larger random forests with millions of trees to see if the performance

improves, or if there is some phase shift where many more simulations are required to

see that having more trees in the random forest provides some kind of step functional

improvement.

6.6.3 Training the chosen algorithm

We can also see from Figs (6.9, 6.10) that although the performance increased as we

get more data, there are diminishing returns to the improvement of the result. After

about 5000 simulations of each type of data, the test results upon the same 1000

separate data-points do not improve much as the count of the number of simulations

is increased to 6000. We can vet our conclusion that the amount of data will not

improve the classification rates by much by further increasing the simulation count.

We can see that increasing the simulation count from 6000 simulations of each kind

of event, to 100,000 of each kind of event only slightly increases the classification

success rates. One could actually fit a curve to the classification success rate curve

as a function of simulation count, and show that obtaining 1 Million of each kind of

simulation will only improve the classification rate by a fraction of a percent. We can

then look at the sensitivity plot (Sec 9, 9.7) and see that such a small improvement of

classification success rate will not actually improve our final result. For these reasons

we feel that training our classifier upon only 100,000 of each kind of simulated event

is sufficient to obtain a strong final half-life bound on a triple proton decay search.

When performing our final analysis we use the random forest trained on the

largest possible training dataset. We classify muons correctly about 85% of the time

and ppp-decays correctly about 88% of the time. We will assume that the standard

deviation on the classification success is negligible to the analysis. In Fig 6.12 one can

86

clearly see the standard deviations are less than 1% compared to the success rates in

the mid 80’s.

Figure 6.12 Classification success rates of using Sklearn’s random forest with default
hyper-parameters (n_estimators = 100), (max_depth=10), upon CUORE qshields
simulations of muons and ppp-decays [9]. The x-axis on this plot is in log-scale
as compared to that shown previously in figure 6.9. One can see that there are
diminishing returns to the value of adding additional simulations to the training
dataset. Beyond having 10,000 of each kind of simulation, there is little improvement.

Figure 6.13 The confusion matrix of results of training a random forest with 90k
training samples, on a 10k test dataset. We classify muons correctly about 85% of the
time. We classify ppp-decays correctly about 88% of the time. This confusion matrix
was used to produce the last datapoint in Fig 6.12. Figure was produced using the
Seaborn python package [10].

87

6.6.4 Classification Results on real data

Previously (Fig 6.12) we have chosen, validated, and trained on simulations a random

forest classification algorithm. Now we use the algorithm upon the 2364 events within

the real data-sets [3612, 3613, 3614, 3615]. Our most well trained random forest thinks

it has seen 386 events that look like most like ppp-decays, and 1978 events that look

most like muons. These numbers are in line with an assumption that all the observed

events are actually muons, and the random forest algorithm has mis-classified 386 of

them as triple proton decays.

Figure 6.14 Results of classifying the 2364 real events from data-sets [3612, 3613,
3614, 3615] with multiplicity greater than 10, in the CUORE detector. Each data-
point on this figure, corresponds to a datapoint on Fig 6.12. Our most well trained
random forest thinks it has seen 386 events that look like most like ppp-decays, and
1978 events that look most like muons.

88

Chapter 7

Poisson Counting Analysis: No Classification

7.1 Background Alone

For our analysis we need the probability density function describing the expected

number of counts, in relation to the number observed, only for background material.

We will assume the background density function is Poisson distributed (for reasons

discussed in Sec 5):

Bkgpdf (λbkg, kbkg) ≈
λ

kbkg

bkg e−λbkg

Γ(kbkg + 1)
(7.1)

Additionally, we may want to define a prior for the expected number of back-

ground events λbkg. We may not be certain the true value of λbkg and wish to express

the uncertainty in a distribution. We will treat λbkg instead as a random variable,

denoted with a box around it as λbkg prior . The full joint likelihood for the observed

background count is then the Poisson distribution multiplied by the density function

of the prior:

Bkgpdf (λbkg, kbkg) ≈
λ

kbkg

bkg e−λbkg

Γ(kbkg + 1) λbkg prior
pdf

(7.2)

7.1.1 Example: Derive expected background count prior

One way one may derive a prior for the expected observed background count λbkg,

would be to write it in terms of λhalf , tend, N which are the half-life, the time we

89

observe the experiment, and the number of atoms respectively. We can use the

previously shown relationships between λ′s (derived in sec 5.6).

λhalf ≈ tendln(2)N
λbkg

λbkg ≈ tendln(2)N
λhalf

(7.3)

In the example, we assume that time is measured precisely, the effective back-

ground half-life is also known precisely but instead of having a fixed number or atoms

N , we want to allow for the number to be modeled as a random variable. We then

denote the random variable as N which has a Gaussian density function.

N pdf ≡ Normalpdf (µN , σN , vN) (7.4)

λbkg and N are now random variables instead of regular variables, so we will denote

them now with boxes λbkg , N . The same algebra holds for the relationship between

the random variables for their definitions, but the relationship between their pdf’s is

non-trivial.

λbkg = t ln(2)
λhalf

N (7.5)

λbkg
pdf

̸= t ln(2)
λhalf

N pdf (7.6)

We must carefully determine what λbkg
pdf

given N pdf . We can use one of two

different techniques to calculate densities from functions of random variables. We

can use the distribution function technique, or we can use monotonic Jacobean trans-

formation technique. In this particular case our new random variable is a constant

times a Gaussian, and we can look up the answer without re-deriving the general

solution. The density of a constant times a Gaussian, is a new Gaussian with mean

and standard deviation scaled by the constant as follows:

90

Example λbkg prior
pdf

= N (t ln(2)
λhalf

µN ,
t ln(2)
λhalf

σN , vλ) (7.7)

The procedure outlined in the example, can be extended for more general cases.

In our example, we knew the relationship between had uncertainty in the number of

atoms N which caused uncertainty in λbkg.

7.2 Signal Alone

Separately, we can calculate an expected signal count. We will assume that the source

of the signal is completely independent from the background. The only information

we have is that the there exists an expected signal count λsig, which could be any

positive number with equal probability. The constraint of positivity is a variant of the

Jeffrey’s Prior. The constraint gives us two pieces of information. First: a Poisson

distribution to model the signal is the best choice (Shown in Sec 5). Second: the prior

on the expected signal count reduces to a uniform distribution from 0 to inf which

only effects normalization at the end of our analysis. Thus the full signal distribution,

is a Poisson distribution (for reasons discussed in Sec 5) with unknown λsig times a

constant prior that can be ignored:

Sigpdf (λsig, ksig) ≈
λ

ksig

sig e−λsig

Γ(ksig + 1) × No Info λsig
pdf

∝
λ

ksig

sig e−λsig

Γ(ksig + 1)

(7.8)

7.3 Background + Signal

We can combine the background and the signal into a combined total count rate.

Here we will introduce the sum of total observations ktot, and the sum of expected

values λtot. If we didn’t have any information other than totals, we could model the

full experiment with it’s own Poisson distribution:

91

But we also know that signal, background, and total are related as follows:

λtot = λsig + λbkg

ktot = ksig + kbkg

(7.9)

And we know we can represent the number of total counts with the joint distri-

bution below:

SigBkgpdf (λsig, ksig, λbkg, kbkg) = Sigpdf (λsig, ksig)Bkgpdf (λbkg, kbkg)

=
λ

ksig

sig e−λsig

Γ(ksig + 1)
λ

kbkg

bkg e−λbkg

Γ(kbkg + 1) λbkg prior
pdf

(λbkg)
(7.10)

We know that we saw a total number of events, but we cannot know if they were

signal or background. Our goal is to place a constraint upon the signal observed, so we

wish to marginalize over background. However, we did not observe the background

count, only the total count. In our joint likelihood, we can replace instances of

expected background count λbkg using the relationship between total count and signal

count. λbkg = λtot − λsig. We arrive at an expression which is only dependent upon

signal, and total count as follows:

SigBkgpdf (λsig, ksig, λtot, ktot) =
(

λ
ksig

sig e−λsig

Γ(ksig + 1)

)(
(λtot − λsig)ktot−ksige−(λtot−λsig)

Γ(ktot − ksig + 1)

)

× λbkg prior
pdf

(λtot − λsig)
(7.11)

We can now obtain a distribution in λsig, ksig only conditional on ktot:

Sigpdf (λsig) ∝
∫

ksig

∫
λtot

SigBkgpdf (λsig, ksig, λtot, ktot = Known Value) (7.12)

So the final result is a function of 4 variables, with 2 integrals, and 1 substituted

value, thus only 1 free variable remains.

92

7.4 Signal with Exact Background

Given the special case where λbkg is known exactly, and is no longer a distribution,

we can write down the joint distribution again without the background prior:

SigBkgpdf (λsig, ksig, λtot, ktot) =
(

λ
ksig

sig e−λsig

Γ(ksig + 1)

)(
(λtot − λsig)ktot−ksige−(λtot−λsig)

Γ(ktot − ksig + 1)

)
(7.13)

And again we can substitute in the values which we do know, and marginalize over

those which we do not. However, because the final form of the equation no longer has

a Gaussian inside, we can actually do the integrals above by hand, instead of using

MCMC. The known values are marked in red below for clarity:

Sigpdf (λsig) ∝
∫

ksig

SigBkgpdf (λsig, ksig, λtot = λsig + λbkg(KNOW N),

ktot = ktot(KNOW N))

=
∫

ksig

(
λ

ksig

sig e−λsig

Γ(ksig + 1)

)(
λbkg

ktot−ksige−λbkg

Γ(ktot − ksig + 1)

)

= (((((((((
(λbkg)ktote−(λbkg)︸ ︷︷ ︸

Constant

∫
ksig

(
λ

ksig

sig e−λsig

Γ(ksig + 1)

)(
(λbkg)−ksig

Γ(ktot − ksig + 1)

)

∝
∫

ksig

λ
ksig

sig (λbkg)−ksig

(
e−λsig

Γ(ksig + 1)

)(
1

Γ(ktot − ksig + 1)

)

= e−λsig

∫
ksig

(
λsig

λbkg

)ksig
(

1
Γ(ksig + 1)Γ(ktot − ksig + 1)

)

(7.14)

Introduce a temporary variable, c, which stores some constants allowing for less

typing. Also define the integral, I, which we want to solve.

c ≡
(

λsig

λbkg

)

Sigpdf (λsig) ≡ e−λsigI

I ≡
∫

ksig

cksig

Γ(ksig + 1)Γ(ktot − ksig + 1)

(7.15)

93

Reformulating the integration as a discrete sum we can do the following:

I ≡
∑
ksig

cksig
1

ksig!(ktot − ksig)!

=
∑
ksig

cksig
1

ktot!

(
ktot

ksig

)

= 1
ktot!

∑
ksig

cksig

(
ktot

ksig

)

= 1
ktot!

(1 + c)ktot

(7.16)

Which leads to a final result:

Sigpdf (λsig) ≡ e−λsigI

= e−λsig
1

ktot!
(1 + c)ktot

= e−λsig
1

ktot!

(
1 + λsig

λbkg

)ktot

≈ e−λsig
1

Γ(ktot + 1)

(
1 + λsig

λbkg

)ktot

(7.17)

For normalization re-introduce the constant removed earlier:

Sigpdf (λsig) ∝ e−λsig
1

Γ(ktot + 1)

(
1 + λsig

λbkg

)ktot

(λbkg)ktote−(λbkg)︸ ︷︷ ︸
Constant

(7.18)

Note that in the Gaussian limit: λtot is the mean and variance of this distribution.

94

Chapter 8

Poisson Counting Analysis: With Classification

8.1 Poisson Classification Likelihood

We need to transform classification results in the form of a confusion matrix defined

in Section 6.5) into a statement of detection or non-detection for likelihood analysis.

From the matrix we can deduce a false positive and false negative rate for each

potential source of signal. While the technique can be extended to any number of

sources of data, in our case we only have data produced from two independent Poisson

processes with expected count rates λbkg for muons, and λsig for ppp-decays:

λbkg = muon count rate

λsig = ppp decay rate
(8.1)

Our two corresponding classification success rates are psig,good and pbkg,good defined

as follows:

psig,good = Probability of classifying true signal correctly

pbkg,good = Probability of classifying true background correctly

psig,bad = 1 − psig,good = Probability classify signal incorrectly

pbkg,bad = 1 − pbkg,good = Probability classify background incorrectly

(8.2)

We need to include these classification probabilities into the the likelihood. We

need to re-write the previous calculated likelihood allowing our previous ksig and kbkg

to now become random variables. To incorporate the difference between observed

counts, and hidden true counts we need the new variables below:

95

ksig,true = True signal count in the detector

kbkg,true = True background count in the detector

ksig,obs = Observed signal count by attempting to classify

kbkg,obs = Observed background count by attempting to classify

(8.3)

To determine the total likelihood, we need to consider the contributions from each

part of the confusion matrix separately. We will consider the cases in separate peices

below:

8.1.1 Consider Signal Seen as Signal ONLY:

If we knew the true observed signal we could represent our count probabilities with

a single simple Poisson distribution. Instead each event can be seen as signal or

background. Thus we need to multiply by the binomial distribution.

P (λsig, ksig,true, ksig,obs) = Poisson(λsig, ksig,true)Binom(ksig,obs, ksig,true, psig,good)

(8.4)

To isolate the λsig, we need to marginalize over the information we don’t know,

and substitute the information we do know. We do not know the true value of the

number of signal events (ksig,true), but we do know the number of signal we have

observed (ksig,obs). We can then marginalize the Poisson times a binomial in Eqn

8.4 over the true number of signal events. The result reduces to a different Poisson

distribution as follows (algebra shown in Appendix D):

P (λsig, ksig,obs) =
∞∑

ksig,true=ksig,obs

Poisson(λsig, ksig,true)Binom(ksig,obs, ksig,true, psig,good)

= Poisson(psig,goodλsig, ksig,obs)
(8.5)

96

8.1.2 Consider Background Seen as Signal ONLY:

If we could classify events perfectly the background data source’s contribution to our

signal would obviously be zero. However because we cannot classify perfectly, we

need to calculate an expected count. Fortunately the mathematics used to derive

Eqn 8.5 is the same as the mathematics used to derive Eqn 8.7.

P (λbkg, kbkg,true, ksig,obs) = Poisson(λbkg, kbkg,true)Binom(ksig,obs, kbkg,true, pbkg,bad)

(8.6)

P (λbkg, ksig,obs) =
∞∑

kbkg,true=ksig,obs

Poisson(λbkg, kbkg,true)Binom(ksig,obs, kbkg,true, pbkg,bad)

= Poisson(pbkg,badλbkg, ksig,obs)
(8.7)

8.1.3 Consider ALL events seen as Signal:

We need to add together (Sig seen as sig) + (Bkg seen as signal).

kobs,sig,S & kobs,sig,B are random variables

kobs,sig,S is described by pdf Sig seen as Sig
pdf

kobs,sig,S is described by pdf Bkg seen as Sig
pdf

(8.8)

Sig seen as Sig
pdf

= Poisson
(

psig,goodλsignal, kobs,sig

)

Bkg seen as Sig
pdf

= Poisson
(

pbkg,badλbkg, kobs,sig

) (8.9)

The two random variables of interest (kobs,sig,S , kobs,sig,B)underlying variables in

their respective probability density functions are independent and uncorrelated. Thus

we can do a simple density convolution to add them, which reduces to yet another

poisson distribution:

97

Sig Seen Tot
pdf

= Convolve

(
(Sig seen as sig), (Bkg seen as Sig)

)

= Ljoint = Poisson
(

psig,goodλsignal + pbkg,badλbkg, kobs,sig

) (8.10)

If we know λbkg exactly we can substitute into equation 8.10. Alternatively if

we have extra information about λbkg but do not know it’s exact value then we can

include the information at the end as a prior pdf and integrate over it (just as in

section 7.3).

Sigpdf (λsig) =
∫

dλbkgPoisson
(

psig,goodλsignal + pbkg,badλbkg, kobs,sig

)
Bkgpdf (λbkg)

(8.11)

8.2 Figure of Merit

We can ask how does the final probability density function change as a function of

the classification probabilities? In the limit of large statistics, Poisson distributions

become Gaussian distributions with σ =
√

λ and µ = λ (See Section E for details).

Our major source of background is muons, which will have large enough statistics for

the large limit to apply. To obtain a simple figure of merit we represent the total

observation count probability density function as a Gaussian instead of a Poisson:

Sig Seen Tot
pdf

(ksig,obs) = Poisson
(

psig,goodλsignal + pbkg,badλbkg︸ ︷︷ ︸
λsig,obs

, kobs,sig

)

≈ Gauss

(
kobs, µ = λsig,obs, σ2 = λsig,obs

) (8.12)

A common figure of merit is the Signal to Noise Ratio (SNR) [33] defined as

the mean divided by the standard deviation:

SNR = µ

σ
(8.13)

98

For our observed signal µsig, vs our observed background σbkg, the SNR is then:

σbkg ∝ √
µbkg ∝ √

pbkg,bad (8.14)

µbkg ∝ pbkg,bad (8.15)

µsig ∝ psig,good (8.16)

and the Figure of Merit ≡ FOM = µsig/σbkg ∝ psig,good√
pbkg,bad

(8.17)

8.3 Future work: Figure of Merit to Optimize Classification

The figure of merit could be used as a metric to use to guide the machine learning

step of our analysis pipeline. In our case, the machine learning component of our

analysis is a classification algorithm. We relied upon a default "accuracy" metric.

The analysis could be improved by switching from accuracy to a different metric.

Earlier, we chose which classification algorithm to use, a set of hyper-parameters,

and regular parameters. We chose a random forest as the algorithm amongst a list of

well accepted competitors (Sec 6.6.1). We manually chose two hyper-parameters (Sec

6.6.2). To make the choice of algorithm and hyper-parameters, we had to rely upon

sklearn’s default methodology for training regular parameters. The default method

for training regular parameters upon data is to use an "accuracy" score which is an

average of classification success probabilities. Maximizing accuracy is equivalent to

maximizing the sum of the counts along the diagonal of the confusion matrix.

Instead of using accuracy to score performance, one could change the scoring

function or "objective" function to some other metric for success. For our analysis,

using the figure of merit (Eqn 8.17) would be a better choice for a classification

algorithm to optimize. One could use the figure of merit scoring function for choice

99

of algorithm, hyper-parameter validation, and final classification training. (We did

not consider training the random forest and the support vector machines to optimize

the figure of merit when choosing between the two algorithms. We did not force

the algorithms to favor internal parameters which mis-classify signal over parameters

which mis-classify background.) Using the figure of merit scoring function would

obtain a stronger final result, with the same set of CUORE observations.

Changing the scoring function within an existing machine learning algorithm is

non-trivial. Each machine learning algorithm relies upon a unique internal set of linear

algebra tricks to train accuracy efficiently. Thus if we change the scoring function, we

may also have to change each classification algorithm’s internal optimization method.

Using the same generic parameter optimization technique on all the classification

algorithms, (such as simulated annealing) is one option to reduce the scope of the

work. However, generic parameter optimization techniques are both computationally

slower, and less reliable, than existing well tested accuracy-based linear methods.

Designing an efficient linear-algebra-based optimization method for a new scoring

function on a single classification algorithm has the potential to be an entire research

paper.

The level of improvement from using a figure of merit as a scoring function is

difficult to estimate in advance of performing the work. After changing the scoring

function, it is not obvious exactly how a machine learning classification algorithm

will shift events around within a confusion matrix.

Due to the difficulty of efficient implementation, we relegate re-training the var-

ious machine learning algorithms based upon a figure of merit to possible future

work. This subsection serves as a note to the reader that using the figure of merit

instead of accuracy could be used to improve a future analysis, without obtaining

more observation data.

100

Chapter 9

Sensitivity Calculation

9.1 Calculate Marginal Posterior

The posterior was originally calculated in a previous section (Eqn: 8.11) and is re-

written here for ease of reading. For illustration purposes, we will pick a number

for the expected background Muon flux rate. Let us assume that we expect about

6 × 104 detectable muons to hit our detector over a 5 year period. We will de-

fine Gaussian(xbkg, µbkg, σbkg) to represent our knowledge of the the total number

of muons we expect to observe without using any data. We define λsig, λbkg to be

the expected count totals observed from the experiment’s measurement of signal and

background Poisson processes respectively. The posterior is a function of both λsig

and λbkg.

Postpdf (λsig, λbkg) =Poisson
(

psig,goodλsignal + pbkg,badλbkg, kobs,sig

)

× Gaussianpdf (x = λbkg, µ = µbkg, σ = σbkg ≈ √
µbkg)

(9.1)

The goal of the analysis is to place bounds on the Poisson process which generates

the "signal" or in this case, the ppp-decay. We must take the posterior and marginalize

over all parameters except for the ones of interest. In this case everything is known

except for two parameters: λsig, λbkg. The final bounds on half-life are direct functions

of the bound we can place on λsig, which requires marginalizing over λbkg.

We can marginalize over the joint posterior, to get the posterior of interest in

multiple ways. Marginalization is most commonly done using Markov Chain Monte

101

Figure 9.1 Example toy-data posterior, without using any prior information. Image
constructed using toy-values: psig,good = 0.95, pbkg,bad = 0.1, kobs,sig = 61000. Our final
result using actual observated events, and a carefully calculated muon prior, is shown
later in Fig 10.1.

Figure 9.2 Example of a toy-data posterior produced by including the prior infor-
mation about the number of muons we expect to see hit the detector. The image
constructed using toy-values for a number of observed events, and a number of ex-
pected total muons. psig,good = 0.95, pbkg,bad = 0.1, kobs,sig = 6.1 × 104, µbkg = 6 × 104

Our final result using actual observated events, and a carefully calculated muon prior,
is shown later in Fig 10.1.

Carlo (MCMC) (Sec 9.1.1) (Fig 9.3). Alternatively we can marginalize over λbkg sym-

bolically instead of computationally (Sec 9.1.2). A third approach is to approximate

the marginalization with a profile likelihood (Sec 9.1.3).

102

9.1.1 Marginalization: MCMC

First, as a benchmark, we should marginalize the posterior using an MCMC al-

gorithm. The posterior in equation 8.11 is sampled many times using the emcee

algorithm. The MCMC technique produces sample values which asymptotically ap-

proach those drawn from the posterior distribution. The samples themselves can be

plotted in scatter plots and histograms to visualize the shape of the distribution.

Figure 9.3 is known as a corner plot and shows every possible histogram, as well as

every possible 2D scatter plot for the samples drawn from the posterior distribution.

Because we wish investigate the signal, we can inspect the histogram of λsig alone

and consider it as the marginalized posterior.

Figure 9.3 Toy-Posterior corner plot generated by sampling Eqn. 8.11 using the
MCMC algorithm "emcee" [11]. Known values are: psig,good = 0.95, pbkg,bad = 0.1,
kobs,sig = 6.1 × 104, µbkg = 6 × 104

103

9.1.2 Marginalization: Algebra

Here we will go through the algebra to use to perform the integral of interest sym-

bolically (without using MCMC numerical algorithms). We first setup the integral,

then use the Laplace method to approximate a result. The symbolic form of the joint

posterior is below (copied from Eqn 8.11):

SigPostpdf (λsig) =
∫

dλbkgPoisson
(

psig,goodλsignal + pbkg,badλbkg, kobs,sig

)

× Gaussianpdf (x = λbkg, µ = µbkg, σ = σbkg ≈ √
µbkg)

(9.2)

Redefine variables for more spatially efficient but less explicit notation:

p1 ≡ psig,good ≡ probability to classify true signal correctly

λ1 ≡ λsig ≡ expected total count from signal Poisson process

p2 ≡ pbkg,bad ≡ probability to classify true background incorrectly

λ2 ≡ λbkg ≡ expected total count from background Poisson process

µ ≡ µbkg ≡ expected total count from background prior to CUORE

σ ≡ σbkg ≡ std-dev total count from background prior to CUORE

k ≡ kobs,sig ≡ number of events seen as signal after classification

(9.3)

The integral of interest is now:

I ≡ SigPostpdf (λ1)

=
∫ ∞

0
dλ2Poisson(p1λ1 + p2λ2, k)Gaussianpdf (λ2, µ, σ)

(9.4)

The full symbolic integral using the definitions of Gaussian and Poisson is written:

I =
∫ ∞

0
dλ2

(p1λ1 + p2λ2)ke−(p1λ1+p2λ2)

Γ(k + 1)
e

− 1
2

(
λ2−µ

σ

)2

σ
√

2π
(9.5)

104

Bring constant terms outside the integral where possible:

I = e−p1λ1

Γ(k + 1)σ
√

2π︸ ︷︷ ︸
C

∫ ∞

0
dλ2

(
p1λ1 + p2λ2

)k
e−p2λ2e

− 1
2

(
λ2−µ

σ

)2

(9.6)

I = C
∫ ∞

0
dλ2

(
p1λ1 + p2λ2

)k
e−p2λ2e

− 1
2

(
λ2−µ

σ

)2

(9.7)

Laplace Method

The Laplace’s method requires an approximation, but we can estimate the error, and

in the regime of interest for our calculation the error is small. The idea is to re-write

the integrand entirely in the exponent labeled as f(λ2):

I = C
∫ ∞

0
dλ2 exp

(
k ln(p1λ1 + p2λ2) − p2λ2 − 1

2
(λ2 − µ

σ

)2

︸ ︷︷ ︸
f(λ2)

)
(9.8)

Write down f , f ′, f ′′ required for a second order taylor expansion of f :

f(λ2) = −λ2p2 + log
(
(λ1p1 + λ2p2)k

)
− 0.5 (λ2 − µ)2

σ2 (9.9)

f ′(λ2) = kp2

λ1p1 + λ2p2
− 1.0λ2

σ2 + 1.0µ

σ2 − p2 (9.10)

f ′′(λ2) = −(kp2
2

(λ1p1 + λ2p2)2 + 1.0
σ2) (9.11)

Solve for the maximum value of f(λ2) by setting it’s derivative equal to zero.

Because we are solving a simple quadratic equation, there will be two solutions. The

correct solution will be the positive one. We introduce the variable α to allow the

solution to fit on one page.

α ≡ kp2
2σ

2 + 0.25λ2
1p

2
1 + 0.5λ1µp1p2 − 0.5λ1p1p

2
2σ

2 + 0.25µ2p2
2 − 0.5µp3

2σ
2 + 0.25p4

2σ
4

(9.12)

λ2,max+ = 0.5 (−λ1p1 + µp2 − p2
2σ

2 + 2.0
√

α)
p2

(9.13)

105

Approximate f with a second order Taylor expansion about the max value:

fT aylor(λ2) ≈ f(λ2,max+) + 0 + 1
2f ′′(λ2,max+)(λ2 − λ2,max+)2 (9.14)

Substitute the Taylor series approximation back into the integral:

I ≈ C
∫ ∞

0
dλ2 exp

(
f(λ2,max+) + 1

2f ′′(λ2,max+)(λ2 − λ2,max+)2
)

(9.15)

Pull out the zero’th order term of the expansion from the integral:

I ≈ Cef(λ2,max+)
∫ ∞

0
dλ2 exp

(
1
2f ′′(λ2,max+)(λ2 − λ2,max+)2

)
(9.16)

We integrate the Gaussian function which can be expressed in terms of the error

function ’erf’:

I ≈ Cef(λ2,max+)
√

π√
2

1√
|f ′′(λ2,max+)|

(
erf

(|λ2,max+|
√

|f ′′(λ2,max+)|
√

2

)
+ 1

)
(9.17)

We can substitute in content for the constant C and simplify:

I ≈ e−p1λ1ef(λ2,max+)

Γ(k + 1)σ
√

2�π
�
�

√
π√
2

1√
|f ′′(λ2,max+)|

(
erf

(|λ2,max+|
√

|f ′′(λ2,max+)|
√

2

)
+ 1

)
(9.18)

After basic simplifications the result works out to be:

I ≈ e−p1λ1+f(λ2,max+)

2σΓ(k + 1)
√

|f ′′(λ2,max+)|

(
erf

(|λ2,max+|
√

|f ′′(λ2,max+)|
√

2

)
+ 1

)
(9.19)

The final integration result (Eqn: 9.19) should be a good approximation, with

very little computational cost for a final result. We can try out different parameters

such as the classification probabilities p1 and p2.

A note on extending to multiple sources:

We can also apply Laplace’s method for the higher dimensional version of this

analysis. If multiple sources of background need to be integrated out, we can apply

a multivariate Taylor series, before integrating. The multiple background Laplace

approximation integrand will be a multivariate Gaussian, with a covariance matrix.

106

9.1.3 Marginalization: Approximation with Profile Likelihood

Instead of marginalizing at all (numerically or symbolically) instead we can find the

best fit parameters and allow the only parameter of interest to vary. Fixing the

nuisance parameters to their best fit values and allowing others to vary is called

taking a "profile" likelihood. In a poisson analysis with classification, the likelihood

of interest is rewritten below (Eqn: 8.11).

SigPostpdf (λsig) =
∫
dλbkgPoisson

(
psig,goodλsignal + pbkg,badλbkg, kobs,sig

)

× Gaussianpdf (x = λbkg, µ = µbkg, σ = σbkg ≈ √
µbkg)

(9.20)

Our likelihood function only has two parameters: λsig and λbkg. We only have one

nuisance parameter: λbkg. The best fit value for the nuisance parameter is obvious

because it is entirely dependent upon our prior distribution, which in this case is a

Gaussian centered at µbkg. Thus our profile likelihood amounts to plug in the best

fit value into the likelihood at λbkg = µbkg, and allowing the other parameter λsig to

vary.

SigPostpdf (λsig) ≈Poisson
(

psig,goodλsignal + pbkg,badµbkg, kobs,sig

)
(9.21)

Further, so long as the expected total observation count is sufficiently large, we

can approximate the profile likelihood with a gaussian:

SigPostpdf (λsig) ≈ Gaussian
(

µ = (kobs,sig − pbkg,badµbkg)/psig,good,

σ =
√

(kobs,sig/psig,good, λsig

) (9.22)

Looking at the joint posterior function (Eqn 8.11), it is clear that the closeness of

the profile approximation is a function of our confidence in the background signal. If

we knew exactly what rate of background events we expect to observe, then we would

107

constrain λbkg much more sharply (as calculated in Sec 7.4). Another way to interpret

the approximation is to look at the Gaussian prior, and ask under which conditions it

would become a delta function. In our particular case, because the standard deviation

is the square root of the mean, in the limit that we had infinite background signal,

the prior distribution would asymptotically approach a delta function.

In practice, as long as the amount of background we expect to see is large, (greater

than a few thousand), the error introduced will be minimal. For a final result, we

can always double check our answer using an overly cautious high sample count

MCMC and make sure both solutions line up. For the sensitivity plot, the profile

approximation is ideal, because it will be computationally very cheap, and get us an

answer to within a few percent which is really the purpose of the sensitivity plot to

begin with.

9.1.4 Comparison of Marginalization Techniques

Each marginalization technique has a different advantage. The MCMC solution is

easy to implement and provides a reliable answer. The symbolic solution requires

working through the algebra to get a result, but is then both computationally efficient

and very accurate. The profile solution requires little algebra, and is computationally

efficient, but runs the risk of being highly inaccurate in certain cases. It will turn

out that in in the context of a sensitivity plot, the profile likelihood, will be the best

choice.

We can compare the computational cost of the MCMC algorithm against those

non-numerical techniques. Constructing the corner plot in Fig 9.3 takes 1 compute

core unit, about 1.5 minutes, compared to a closed form result which would take less

than a millisecond. While it may not seem like much of a difference in absolute terms,

a difference of a factor of 106 is impactful because of the large number of times the

marginalization needs to be done when assessing the sensitivity.

108

Figure 9.4 Comparison of marginalization techniques: Laplaces Method, Profile
posterior, Profile Guassian Approximation. The comparison shown is for a fixed set
of classification probabilities.

What we see from comparing the closed form techniques (Fig 9.4) is that the

profile likelihood is very close to the Laplace method (which is much more accurate).

Essentially, the discrepancy only appears in the tails of the distribution, which we

are not concerned with for a sensitivity analysis. For the sensitivity analysis only, we

ask: If λsig = 300, to what accuracy in standard deviations is that? We don’t actu-

ally care about the probability density value. Thus using the profile likelihood, and

approximating the it as a Gaussian is more than sufficient for a sensitivity analysis.

9.2 Calculate Sensitivity: Fixed Classifier Success Rates

In this work we will define the nσ sensitivity to a half-life as the expectation that

one would obtain an nσ detection result in 50% of many copies of an experiment. In

other words, if there were many copies of CUORE, if a ppp-decay actually existed,

and noting we cannot classify muons vs ppp-decays perfectly, what nσ lower λsig

bound would we achieve in 50% of all the CUORE’s?

109

First we will do the sensitivity calculation for a fixed set of classification success

rates. We take our data and classify all the events. We take the events we have seen

as signal knowing that some percentage of those were wrongly classified. We use the

known rates of classifying successfully. We ask, given those success rates, to what

value of expected signal rate would we achieve an n-sigma detection 50% of the time?

To walk through the calculation, lets assume a single scenario, where we fix µbkg,

psig,good, pbkg,bad (as shown in Fig 9.5). The other values of interest in the posterior

(Eqn:8.11) are λsig, and kobs,sig, and the probability itself P . We can ask: Given the

fixed values how does the posterior probability change as λsig, and kobs,sig are allowed

to vary?

9.2.1 MCMC Sensitivity Illustration

The sensitivity result is shown in illustration Fig 9.5, where many elements were

drawn by hand for illustration purposes. The posterior mean will increase almost

linearly as the number of observed counts goes up (shown in red). A 3σ lower bound

can be found along this curve (shown in yellow). The place where the 3σ lower bound

on λsig begins to be greater than zero (shown in orange), is the same thing as a 3σ

sensitivity as compared to the null hypothesis.

Figure 9.5 indicates that we can achieve a 3σ detection, if we happen to see about

6450 events seen as signal after classification. Such a number of observations seen

as signal would correspond to a best fit number of actual events which were signal

to be 450 (λsig ≈ 450). In our case we would have seen 450 total ppp-decays over 5

years of exposure. 450 events corresponds to a calculable half-life value based on the

number of Te130 atoms in the detector, and the amount of time we were observing

data to perform the analysis. The above image would show that we should expect the

half-life to be on the order of 1025 years for a triple proton decay, to get 450 events.

We would then say we have a 3σ sensitivity to the half life of 1025 years. So the entire

110

Figure 9.5 A sensitivity calculation illustration for fixed: µλbkg
= 60, 000, psig,good =

0.95, pbkg,bad = 0.1 Line segments: mu, 1σ, 2σ, 3σ were drawn by hand. The 3σ lower-
bound was drawn by hand (drawn in yellow). The mean fit line µλsig

was drawn by
hand (drawn in red) Hand drawn elements were done for illustration purposes. The
contour plot behind the lines was calculated numerically using a distinct run of an
MCMC to marginalize the posterior for each bin of kobs. The blocky nature of the
image is an artifact of chosen bin widths.

illustration image (Fig 9.5) reduces to a 3σ sensitivity result of a single number.

While we could do the work to improve our illustration and instead achieve a

real sensitivity result using MCMC, it is not a good use of energy and effort. The

biggest problem with MCMC for a sensitivity plot is that it is too computationally

inefficient. To construct the contour shown in Fig 9.5, twenty different runs of the

MCMC algorithm had to complete and it took a full 100 seconds to run upon a

single CPU core. Each instance of the MCMC required a few thousand samples. The

image we produced after running an earnest computation attempt was still blocky and

highly imprecise. To construct a single smooth copy of the image shown in Fig 9.5 we

would like to do away with the bins on the kobs,sig axis and run on the order 1000 fixed

values (factor of 100 more), and we should increase the number of MCMC samples

within each run by an additional factor of 100. We should expect that producing a

111

single high quality image would take on the order of 106 seconds. Thus we will accept

that using MCMC to attain a sensitivity calculation is not computationally feasible.

We will need another technique.

9.2.2 Profile Likelihood Smooth Result

We would now like to redo all of the logic shown in our illustration example (Sec 9.2.1),

but now we want to use real numbers. Instead of using MCMC we can approximate

the posterior using the profile likelihood. At each possible set of values of kobs,sig and

λsig we can read a probability from Eqn 9.22, thus we can produce a high quality

copy of the image directly. Further, we can use the form of the profile likelihood to

obtain a line fit through the mean value, as well as line fits through the n-sigma lower

bounds by reading the mean and sigma directly from Eqn 9.22:

µprofile = (kobs,sig − pbkg,badµbkg)/psig,good

σprofile =
√

(kobs,sig/psig,good

(9.23)

We can now plot any nσ lower bound as follows:

Lower bound = µprofile − nσprofile (9.24)

And we can calculate the sensitivity by asking when the lower bound hits the

kobs,sig axis of the figure (Fig 9.5).

Lower bound = µprofile − nσprofile = 0

µprofile = nσprofile

(kobs,sig − pbkg,badµbkg)/psig,good = n
√

(kobs,sig/psig,good

(9.25)

We now only need to solve the quadratic equation for the kobs,sig where the line of

the lower bound will intersect with the horizontal axis. The intersection point then

corresponds to a particular mean value of λsig. We then say we have an nσ sensitivity

to particular value of λsig. The axis intersection point for where the lower nσ bound

112

does not have any dependence upon the classification probability for classifying signal

correctly (psig,good). The profile likelihood approximation’s lack of dependence upon

psig,good is surprising, but not a problem.

n = 3 (we wish to obtain a 3 σ sensitivity)

b ≡ −2 ∗ p2 ∗ 60000 + n2

kobs,sig,min ≡ (−b +
√

b2 − 4 ∗ (p2 ∗ 60000)2/2)

(9.26)

The sensitivity however definitely does still have dependence upon both signal,

and background classification probabilities. This can been seen quickly by noticing

that the intersection lower bound must still be substituted in to get the expected

signal count to which we are sensitive.

Sensitivitycounts = (kobs,sig,min − pbkg,bad ∗ 60000)/psig,good (9.27)

Note we still must transform the count sensitivity to a half-life sensitivity using

the transformation shown in Eqn (5.37). The transformation from count total back

to half-life is omitted in this section.

9.3 Calculate Sensitivity: Vary Classifier Success Rates

We now wish to try many possible values for each of psig,good pbkg,bad. If we used

MCMC to produce the plot without any parallelization, we would require at least

100sec × 106 = 108sec ≈ 3years to get a high resolution sensitivity plot. Instead we

can plan to make the same plot, more accurately, in a few seconds using the closed

form profile likelihood approximation. We can show how the sensitivity changes

as a function of the two probabilities. After viewing the plot it becomes clear that

reducing background confusion is more valuable to a final result than improving signal

classification. Such a statement is consistent with the figure of merit calculated earlier

in Sec 8.2

113

Figure 9.6 A sensitivity calculation for fixed: µλbkg
= 60, 000, psig,good = 0.95,

pbkg,bad = 0.1 The color plot results from Eqn 9.22. The nσ lower bound line (red)
is calculated symbolically (Eqn: 9.25). The intersection line segments represent the
lowest λsig sensitivity calculated from intersecting µλ1 with the kobs,sig axis. (Eqn
9.26).

The takeaway from our exercise in sensitivity is that we can use the plot to

determine how well we have to do to be competitive with existing literature. We

need to obtain a result on the order of 1025yrs to compete with previous searches of

triple proton decay. We can achieve such a result using the CUORE detector and a

machine learning algorithm which can classify correctly enough to land us in a good

region of our sensitivity plot.

We should take the lower left corner of the plot with a grain of salt, because in

practice we would not bother to use a classification algorithm that performed worse

than a coin flip for both signal and background. In fact, as a sanity check, if we do fix

the classification probabilities to both being 50%, then we should arrive at a result

similar to the counting statistics result we already derived without classification (Sec

7.3).

In practice we should expect a much better result than using counting statistics

114

Figure 9.7 A sensitivity calculation for fixed: µλbkg
= 60, 000. The classification

probabilities: psig,good, pbkg,bad are allowed to vary. Each pixel on this plot maps to a
copy of the sensitivity calculation machinery behind Fig 9.6. Upon the mostly-blue
density plot, contours are shown as white-lines for specific half-life Sensitivities.

alone. We can obtain at least a 85% success rate on classifying both signal and

background, which will land us squarely on the correct side of the 1025 year 3σ contour

for 5 years of CUORE exposure. One can always improve improve classification

probabilities even further by tweaking our machine learning algorithms and attempt

to push the result to the furthest lower right hand side of the sensitivity plot.

115

Chapter 10

Results and Conclusion

10.1 Summary of Results

In this section we outline how we obtained a 2σ lower-bound of 130Te Triple-Proton-

Decay half-life of 7.43×1024yrs. We obtain the result from using the posterior shown

in Eqn. 8.11. To achieve a final result, we combined observed real data count values,

an expected muon count (Sec 2.3), and classification success rates. After obtaining

a final joint posterior, we marginalize it over the background nuisance parameter to

obtain a distribution of expected observed signal count rate. Finally, we transform

the expected observed signal count rate distribution into a half-life distribution which

is used obtain a bound.

10.2 Posterior Classification Probabilities

To obtain a final result we are using a machine learning random forest model to

classify real events. We showed the classification success rates in Fig 6.12. We showed

what the machine learning algorithm believed about the real data in Fig 6.14. We

will assume that the machine learning algorithm has done its best job using the

maximum level of training samples, which corresponds to the last datapoint on each

figure, and has a training result confusion matrix shown in Fig 6.13. Thus we can

read off that the classification success success probabilities are set to Psig,good = 0.88

and Pbkg,bad = 0.15. Of the 2364 real observed events, the algorithm believed 386

events looked like PPP-decays, and 1978 looked like muons. Thus using notation

116

from our posterior equation (Eqn 8.11) the total number of events we think we see

as signal are kobs,sig = 386

10.3 Expected Muon Count vs Real Observation Count

There is general agreement between the number of muons we expect to see (2537),

and the number of total muon candidate events observed by CUORE (2364) during

the 188 days of time-exposure, with 200kg of 130Te. We have used a directionally

averaged muon flux number from the Borexino collaboration to calculate expected

count. The CUORE observed muon candidate event count is in agreement with the

expected range.

To improve the expected total muon count prior, one would need the expected

muon flux, as a function of direction and energy. One could calculate a more accu-

rate expected CUORE observed muon count prior using data from MACRO, LVD,

and Borexino combined, and modify the corresponding CUORE qshields simulations

accordingly. [34, 35, 24, 21]. Approximating a closed form symbolic expression rep-

resenting the direction and energy dependent muon flux would be required.

10.4 Marginalize the Final Posterior

A final posterior has been achieved substituting in machine learning training results,

and substituting in the calculated muon prior distribution. We now have a joint

probability density function of λsig and λbkg. As the only desired final result is that

of ppp-decay, we must marginalize over the CUORE’s observed muon counts. To

perform the marginalization, we use an MCMC algorithm to explore the posterior

joint density function. We can see the final MCMC result in Figures [9.3 10.3, 10.2].

From the MCMC samples, we find that 95% of them lie above our lower-bound of
130Te triple proton decay half-life of 7.43 × 1024yrs, and thus is a 2σ lower bound.

117

We can also report a 90% confidence level or 1.64σ result lower half-life bound is

7.91 × 1024yrs.

Figure 10.1 Corner plot of our posterior distribution. (Eqn. 8.11) The possible
values of λsig and λbkg are fed through an MCMC algorithm (emcee) [11], using a
half-Ton Year’s worth of real data from the CUORE experiment.

10.5 Conclusion

Using previously built computational tools as arranged in Fig 1.5, we built a workflow

which can search for signal against background using machine learning classification

algorithms. We chose features of single events which can be used by a classification

algorithm to differentiate different kinds of events within the detector. We combined

Poisson counting statistics, with classification success probabilities to obtain a joint

Bayesian likelihood analysis. From a closed form joint likelihood function we obtained

an nσ sensitivity calculation with various levels of approximation when marginalizing

nuisance parameters. We used our general poisson counting classification framework,

118

Figure 10.2 Marginal posterior distribution plot of the number of the expected total
ppp-count λsig over the true exposure time of the real data we observed. These are
the same trial values of λsig which were attempted by an MCMC algorithm (emcee)
[11], shown in Fig 10.1. The result was achieved using the 188 Days of exposure time
covered in datasets [3612,3613, 3614, 3615] the CUORE experiment (Sec 4).

Figure 10.3 Marginal posterior distribution plot of the half-life. Lower 2σ bound
shown in red at 7.43 × 1024yrs. Each of the samples used to generate this histogram
are the same as those in the MCMC figures 10.1 and 10.2. Each possible sample value
for λsig maps to a corresponding half-life of ppp-decay. Shown here are possible half-
life values sampled according to how likely they are. Mathematically, this histogram
can be interpreted as the right-tail of a Gaussian distribution that has been cut off at
zero. Thus, a lower 2σ bound has meaning, and an upper 2σ bound has no physical
meaning.

119

to perform a search for triple proton decay (ppp-decay) against a background of

atmospheric muons in the CUORE experiment.

We obtained a half-life lower-bound of 7.43 × 1024yrs at 2σ or 95% confidence

level. Our ppp-decay half-life lower bound result is comparable to existing results.

The Majorana Demonstrator [17] obtained a 90% confidence 5 × 1025yr lower bound

ppp-decay for Germanium. The EXO200 collaboration [18] obtained a 90% confidence

2 × 1023yr lower bound ppp-decay for Xenon. Direct comparison of these different

ppp-decay results is complicated. Given the ppp-decay theory each kind of atom

nucleus has it’s own decay calculation. Any combination of 3 protons within a nucleus

has a probability of decay however simple combinatorics and Feynman diagrams are

not applicable. Nuclear matrix elements must be calculated for each kind of atom

separately.

The result could be further improved through the use of more data exposure time

or better classification optimized with a figure of merit. Our data exposure-time was

limited by the amount of cleaner data after Mar 2020, which did not show any signs of

contamination. CUORE is actively investigating the data contamination, and upon

completion the same analysis used in this work can be run upon at least twice as

much total data to improve the result. Our classification algorithm performance was

limited by the current ability of well accepted algorithms to classify single events.

The classification performance additionally was not optimized to make use of a figure

of merit, which would favor misclassifying signal over misclassifying background.

In the pursuit of a ppp-decay bound, we developed a generic framework (Fig 1.5)

which can be used by CUORE, to search for other models which may produce high-

energy high-multiplicity events. Additionally, technique of combining both counting

statistics and machine learning classification success rates may also have application

for other underground counting experiments.

120

Appendix A

Muon Count Prior - Additional Calculations

Here we consider calculation details regarding the total number of muons we expect

to hit CUORE over a regular time period. We assume that the muons hit CUORE

at an average regular rate that must be compatible with flux measurements reported

at LNGS by the MACRO [34] and Borexino [24] experiments. We use the CUORE

qshields simulation software in conjunction with the accepted LNGS muon flux to

calculate an expected CUORE observed muon count rate. While the CUORE qshields

simulation software is only capable of starting muons on the half-sphere, we will show

methods for simulations that start muons on a simple flat disk, as well as the half-

sphere.

A.1 General Calculation of Expected Count

To calculate expected count for an experiment given an surface of initial particles, we

need to define flux, and hit probability. A surface can have varying flux and varying

probabilities of hitting the detector at different initial locations. We define associ-

ated functions flux() and hitprob() such that they integrate to intuitive averages as

follows:

Count Through Surface
Time =

∫
Surface

dA flux(location) (A.1)

Average Hit Probability × Area =
∫

Surface
dA hitprob(location) (A.2)

121

Figure A.1 General simulation setup. Particles are started upon a surface according
to some joint distribution of location and direction. A detector sits under the surface.
Each particle started upon the surface travels downwards and has a chance to hit or
miss the detector.

The total number of particles we expect to hit a detector can be intuitively realized

as the product of the time, flux, hit-probability, and area. Because we have non-

constant flux and hit-probability, an integral is required:

Count = Time ×
∫

surface
dA flux(location) hitprob(location) (A.3)

A.2 Initial Location Setups to Expected Counts

Here we consider how to calculate the expected count for a few simulation scenarios.

We will consider a hypothetical simple disk model (A.2.1) as well as the non-uniformly

distributed half-sphere (sec A.2.2) model used by the CUORE qshields simulation

software. As the initial location surface becomes more difficult so does the calculation.

A.2.1 Initial Locations - Simple Disk (hypothetical)

A simple disk is placed on top of CUORE. Muons are spawned by the simulation

from within the disk. The initial locations are chosen to be uniformly random upon

122

Figure A.2 A simple disk initial condition. Muons are started upon the disk with
uniformly random location probability. They are started with directions matching
the directional distribution measured inside the LNGS laboratory.

the disk. The initial directions emulate nature, are non-uniform, and the simulation

accounts for the proper directional-distribution.

A disk at height h = 5 meters above CUORE with a radius of r = 5 meters

should be sufficient to provide a reasonable estimate of total hit count. As the disk

becomes larger, the muons at the edge of the disk have a lower and lower probability

of hitting CUORE. If a muon started at the edge of the disk has zero probability of

hitting CUORE then the disk radius is sufficiently large for reasonable calculations.

Inside LNGS, muons do not have inclination angles larger than about 45 degrees.

The maximum disk radius required is approximately equal to the height of the disk

above the CUORE detector (h = r = 5). The choice of 5 meters for the height of the

disk above CUORE does not have a mathematical justification.

We can start with the general count equation (Eqn. A.3) to proceed:

123

Count = Time ×
∫

disk
dA flux(location)︸ ︷︷ ︸

constant

hitprob(location)

= Time × (Constant Muon Flux)
∫

disk
dA hitprob(location)︸ ︷︷ ︸
Area×(Avg Hit Prob)

(A.4)

Thus the total number of muons we expect to hit CUORE from a disk simplifies

to a simple product of constant flux, total area, time, and average hit-probability:

Count = (Constant Muon Flux) × Time × Area × (Average Hit Probability) (A.5)

The "constant muon flux" is the LNGS-Borexino reported value of 3.41×10−4m−2s−1.

The "average hit probability" is the fraction of the total number of simulated muons

created upon the disk which hit CUORE and deposit a measurable amount of energy

(this number includes any dependence upon energy cuts which are also applied to real

data). The time is the exposure duration considered in seconds. Finally the "Area"

is simply the total surface are of the disk (Area = πr2).

Countdisk = (3.41 × 10−4m−2s−1)(188Days)(78.5m2) (Number of Hits)
(Number of Simulations)

(A.6)

124

A.2.2 Initial Locations - Half-Sphere (CUORE qshields)

Figure A.3 The CUORE qshields half sphere simulation model. Muons are started
upon the half-sphere with non-uniform location probability. Their initial direction
emulates that of LNGS but disallows the possibility of being directed outside the
half-sphere. We chose a radius for the half-sphere of 5 meters. The half-sphere is
downshifted from the center of CUORE by 1.5 meters.

A half-sphere is centered 1.5 meters below CUORE crystals. The qshields simu-

lation allows a choice of radius. We have been advised by collaboration members to

use a 5 meter radius. The distribution of initial location and direction of the muons

started on the half-sphere are intended to match the angular distribution of LNGS

reported by the MACRO and Borexino collaborations.

To calculate expected count we need the general equation (Eqn. A.3):

Count = Time ×
∫

half−sphere
dA flux(location)︸ ︷︷ ︸

not constant

hitprob(location)

= Time
∫ 2π

0

∫ π/2

0
R2sin(θ)dθdϕ flux(θ, ϕ) hitprob(θ, ϕ)

(A.7)

Where flux(θ, ϕ) is the muon flux as a function of start location on the surface

of the half-sphere. At the top of the sphere, flux(ϕ = 0) should equal the reported

LNGS-MACRO flux of 3.41×10−4m−2s−1. The "hitprob() function is the probability

that a given muon starting at a particular location half-sphere hits CUORE (Eqn

A.2).

125

A.2.3 Approximate Count Integral with Simulation Samples

We do not have explicit closed form symbolic expressions for the two functions of

flux() and hitprob() functions. Instead we have two sets of samples that are repre-

sentative of the two functions generated by the CUORE qshields simulation code. Let

us denote the set of initial-location samples as "IL Samples" (Fig A.8), most of which

will never hit CUORE. The initial-location samples can be used to approximate the

muon flux. Let us denote the set of hit location samples as "HL Samples" (Fig 2.10)

all of which have hit CUORE. The hit-location simulation samples can be used to

approximate the hit-probability. We will describe and use the same nearest neighbors

method to approximate both functions from their corresponding sample sets.

Figure A.4 A set of samples lie upon a half-sphere. Test point (1) is created exactly
upon the top of the half-sphere. Separately, additional test points are generated at
uniformly random locations upon the half-sphere (2). Cases like test point (3) are
problematic if they include area below the half-sphere. The samples, and a list of
test point locations, can be used to calculate an effective fraction estimate.

The nearest neighbor method approximates a density function at any given test

point using neighboring samples. At any given test point (labeled 2 in Fig A.4), we

can count the number of location neighbors within some sphere of constant radius.

The density at the test point location will be proportional to the number of neighbors.

126

In the example figure, test point (2) contains 3 neighbors, whereas the top-sphere test

point contains 10. Thus assuming the samples were correctly generated, we would

expect the density at test point (2) to be equal to 3/10 of test point (1). We do

however need be careful that test points close to the bottom edge of the half-sphere

are not under-counting neighbors (test point 3 in Fig A.4). For test point locations

like (3) either a missing area fraction must be calculated, or such points must be

avoided entirely. To account for cases like location 3, we can avoid any test points

lower than a certain height and choose a small radius for neighbor counting.

It is convenient to define an "Average Neighbor Count" as average number of

sample neighbors for uniformly random generated test points upon the half-sphere.

Let xn be a uniformly randomly generated test point on the half-sphere (e.g. location

2 in Fig A.4). Let SampleSet be a set of samples with which we would like to begin

counting neighbors. Let NeighborCount(SampleSet, x) be a function that returns

the count of how many samples from SampleSet are neighbors to the test point x.

Then the average neighbor count can be calculated using the following arithmetic

mean:

Average Neighbor Count = 1
N

N∑
n=1

NeighborCount (SamplesSet, xn) (A.8)

To estimate the muon flux using the IL samples, we treat the top of the sphere

(labeled 1 in fig A.4) as a special location (xtop) that matches the reported LNGS flux

number. The neighbor count for a test point lower down on the half-sphere (labeled 2

in Fig A.4) will be some number less than that of the LNGS reported value. For any

given test point we can compare its neighbor count against the top-sphere neighbor

count.

flux(x) = (LNGS Muon Flux)︸ ︷︷ ︸
3.41×10−4m−2s−1

NeighborCount(SamplesIL, x)
NeighborCount(SamplesIL, xtop) (A.9)

127

To estimate the hit probability using the HL samples, we can define the probability

of a hit at a particular location in terms of a ratio to the average hit probability.

hitprob(x) =
(

HL Samples Hit Count
HL Samples Start Count

)
︸ ︷︷ ︸

Average Hit Probability

NeighborCount(SamplesHL, x)
NeighborCountAvg(SamplesHL)

(A.10)

We can now combine our flux(), hitprob() nearest neighbor approximations with

the integration (Eqn. A.7) to obtain a result using the samples. Instead of integrat-

ing with symbols, we can use a summation over many test points. An integration

over a surface, is equivalent to averaging uniformly distributed test-locations and

multiplying by the area.

I ≡
∫

surface
dS f(x) ≈ Area

N

N∑
n=1

f(xn) (A.11)

Next we can apply the sum approximation to our integral of interest:

Count = Time
∫ 2π

0

∫ π/2

0
R2sin(θ)dθdϕ flux(location) hitprob(location)

≈ Time × Area
N

N∑
n=1

flux(xn)hitprob(xn)
(A.12)

Using Eqn. A.12 we can find an expected count for the CUORE detector using our

two sets of samples. The method finds an expected count of 5144 muons compared

to 2364 events observed. Because there appears to be large discrepancy when using

the nearest neighbors method on sample sets generated with CUORE qshields, we

have opted for the simpler upper sphere surface method outlined previously (Sec 2.3),

which predicts a closer to observed count of 2537 expected muons.

128

Figure A.5 10,000 IL Samples (red), and 10,000 HL Samples (green), are generated
by the CUORE qshields simulations upon a half-sphere. Separately, we generated
10,000 test points (blue) uniformly randomly upon the same half-sphere.

129

A.3 Qshields Simulation Initial Conditions (Additional Plots)

In this section we show additional plots of CUORE-qshields software’s initial condi-

tions of simulated muons. The initial locations and directions are non-uniform upon

the surface of a half sphere in such a manner intended to match conditions at LNGS.

The initial directions only allow for muons to travel inwards from an initial location

upon the half-sphere. The initial energies are a negative exponential function which

visually match those reported by the MACRO [34] and Borexino [24] experiments.

The CUORE qshields code comments have additional reference to a Particle Data

Group (PDG) paper [25]. Figures in this section are provided as reference for how

the CUORE qsheilds code creates initial muons before any particle-interaction.

Figure A.6 Corner plot [8] of the initial conditions of muons spawned by the qshields
software. Initial muon locations are non-uniform on a half-sphere. Directions are
intended to be those that emulate conditions at LNGS, however the cases where
muons point outwards from the half-sphere is disallowed by the simulation software.

130

Figure A.7 Corner plot [8] of the initial locations of muons spawned by the qshields
software. Initial muon locations are non-uniform on a half-sphere.

Figure A.8 Scatter plot of the initial locations of muons spawned by the qshields
software. Initial muon locations are non-uniform on a half-sphere.

131

Figure A.9 Scatter plot of the initial direction arrows of muons spawned by the
qshields software. Directions are intended to be those that emulate conditions at
LNGS, however the cases where muons point outwards from the half-sphere is disal-
lowed by the simulation software.

Figure A.10 Scatter plot of the initial direction for inclination and azimuth of
muons spawned by the qshields software. Directions are intended to be those that
emulate conditions at LNGS, however the cases where muons point outwards from
the half-sphere is disallowed by the simulation software.

132

Appendix B

Basic Distributions

Basic distributions are written here for reference. Descriptions their variables is pro-

vided within the context of their most common usages. The distributions introduced

here will be needed to perform a likelihood analysis. Of specific note to the reader,

is that standard convention has λ describe different values in the context of different

distributions. To perform the distinction between different λ’s we can use different

subscripts.

An Exponential Distribution commonly describes the situation where we are

waiting for an event to happen and want to account for how long we have to wait

until it does happen. Let t be the delay time until an event happens and λt be the

expected amount of time until an event happens.

Prob(t) = Exppdf (λt, t) = 1
λt

e
− 1

λt
t (B.1)

A Binomial Distribution commonly describes the situation where there are

repeated trials of a repeatable experiment which can only have 2 outcomes A&B.

The probability p is that of outcome A, and n is the number of total times we run the

experiment. Finally, k is the number of times that the experiment produced outcome

A.

Prob(k) = Binomialpdf (k, n, p) =
(

n

k

)
pk(1 − p)n−k (B.2)

A Poisson Distribution commonly describes how many total events occur

within a fixed time window, and k is the counted number of events, while λc is the

133

number we expect to count.

Prob(k) = Poissonpdf (λc, k) = λk
c e−λc

k! ≈ λk
c e−λc

Γ(k + 1)
(B.3)

A Gaussian Distribution is the most commonly used distribution, and is

widely used to describe arbitrary random variables. It is used to describe measure-

ments of a continuous quantity measured with repeated experiments. The quantity k

is the value measured once, µ is the value we expect to measure, and σ is the standard

deviation of the value measured.

Prob(k) = Gaussianpdf (k, µ, σ,) = 1√
2πσ

e
− 1

2

(
k−µ

σ

)2

(B.4)

134

Appendix C

Basic Distributions Visualized

A few basic distributions are shown here for illustration purposes. Although normally

shown as normalized functions within the context of probability theory, it is instruc-

tive to also view them as multidimensional functions of both data and parameters.

A few simple distributions can be visualized in the univariate context by fixing their

parameters (λt, λc, µ, σ) to fixed concrete floating point values. However, within the

context of our analysis, we will also need to visualize each instead as multivariate

function of both the random variable of interest (t or k) as well as the parameters

involved (λt, λc, µ, σ).

Univariate Context: Negative Exponential Distribution

Figure C.1 Normalized PDF Negative Exponential

135

Multivariate Context: Exponential Distribution

Figure C.2 Un-normalized Joint PDF Negative Exponential

Multivariate Context: Poisson Distribution

Figure C.3 Un-normalized Joint PDF Poisson

136

Appendix D

Useful Density Marginalizations

Marginalizing Poisson × Binomial The following deriviation / proof was provided

by Jon Oullet

P (λ, ktrue, kobs) = Poisson(λ, ktrue)Binom(kobs, ktrue, p)

= λktruee−λ

ktrue!
ktrue!

kobs!(ktrue − kobs)!
pkobs(1 − p)ktrue−kobs

Note the number of true observations (ktrue) must be greater than the number

observed kobs. Marginalize over all possible values of ktrue:

P (λ, kobs) =
∞∑

ktrue=kobs

Poisson(λ, ktrue)Binom(kobs, ktrue, p)

=
∞∑

ktrue=kobs

λktruee−λ

ktrue!
ktrue!

kobs!(ktrue − kobs)!
pkobs(1 − p)ktrue−kobs

= pkobse−λ

kobs!

∞∑
ktrue=kobs

λktrue

(ktrue − kobs)!
(1 − p)ktrue−kobs

define n = ktrue − kobs.

137

= pkobse−λ

kobs!

∞∑
n=0

λn+kobs

n! (1 − p)n

= (pλ)kobse−λ

kobs!

∞∑
n=0

((1 − p)λ)n

n!

= (pλ)kobse−λ

kobs!
e(1−p)λ

= (pλ)kobse−pλ

kobs!
= Poisson(pλ, kobs)

The final mathematical result is then:

∞∑
ktrue=kobs

Poisson(λ, ktrue)Binom(kobs, ktrue, p) = Poisson(pλ, kobs) (D.1)

138

Appendix E

Useful Density Approximations

Definition of Exponential (e) The actual definition of e can be useful in other

approximations:

e ≡ lim
n→∞

(1 + 1
n

)n (E.1)

Stirlings Formula Stirling’s formula is an approximation to factorial in limit

of large n:

lim
n→∞

ln(n!) ≈ nln(n) − n + 1
2 ln(2πn)

lim
n→∞

n! ≈
√

2πn e−nnn

(E.2)

The proof of Stirling’s formula can be done using a Taylor series. While the basic

execution of the Taylor series is pretty easy, showing that the radius of convergence

spans the positive real number line is more difficult. The proof is omitted.

Binomial limit to Poisson

We need to start with the binomial distribution:

f ≡ Binomialpdf (k, n, p) =
(

n

k

)
pk(1 − p)n−k (E.3)

Define the expected count of total successes with λc in terms of p and n.

λc = np

p = λc

n

(E.4)

139

Plug our new representation of p into our distribution and expand out some terms:

f =
(

n

k

)(
λc

n

)k(
1 − λc

n

)n−k

= n!
k!(n − k)!

(
λc

n

)k(
1 − λc

n

)n(
1 − λc

n

)−k

= λk
c

k!
n!

(n − k)!

(
1
n

)k(
1 − λc

n

)n(
1 − λc

n

)−k

(E.5)

Take the limit that n becomes large (and p is small so that λc is finite). Note

that a few steps are easy but missing to show the convergence of each part of the

expression to the amount shown in the under-brace. The first part approaches the

value of 1 which can be shown by canceling out factorial terms. The middle part’s

limit can be easily derived using the definition of e. The last part trivially reduces to

1 because it has a term dividing by n which goes to zero.

lim
n→∞

f = λk
c

k! lim
n→∞

n!
(n − k)!

(
1
n

)k

︸ ︷︷ ︸
1

(
1 − λc

n

)n

︸ ︷︷ ︸
e−λc

(
1 − λc

n

)−k

︸ ︷︷ ︸
1

= λk
c

k! e−λc

= Poisson(k, λc = n

p
)

(E.6)

Thus in the limit that the number of total trials n becomes very large, and the

probability p of individual trial success is very low, a binomial distribution is well

approximated by a poisson distribution.

Poisson limit to Gaussian In the limit that the expected number of obser-

vations becomes large (λ ⪆ 100) a Poisson distribution can be well approximated

with a Gaussian distribution. A proof is not provided.

lim
λ→∞

Poissonpdf (λ, k) ≈ Gaussianpdf (x, µ = λ, σ2 = λ) (E.7)

140

Bibliography

[1] S. Dell’Oro, D. Q. Adams, C. Alduino, K. Alfonso, F. T. Avignone III, O. Az-

zolini, G. Bari, F. Bellini, G. Benato, M. Biassoni, et al., arXiv:1905.07667 [nucl-

ex] (2019), arXiv: 1905.07667, URL http://arxiv.org/abs/1905.07667.

[2] D. Adams, C. Alduino, F. Alessandria, K. Alfonso, E. Andreotti, F. Avi-

gnone, O. Azzolini, M. Balata, I. Bandac, T. Banks, et al., Progress in Par-

ticle and Nuclear Physics 122, 103902 (2022), ISSN 01466410, URL https:

//linkinghub.elsevier.com/retrieve/pii/S0146641021000612.

[3] N. Chott, Ph.D. thesis, University of South Carolina, Columbia, SC (2016), URL

https://scholarcommons.sc.edu/etd/3984.

[4] The CUORE Collaboration, D. Q. Adams, C. Alduino, K. Alfonso, F. T. Avi-

gnone, O. Azzolini, G. Bari, F. Bellini, G. Benato, M. Beretta, et al., Nature

604, 53 (2022), ISSN 0028-0836, 1476-4687, URL https://www.nature.com/

articles/s41586-022-04497-4.

[5] B. S. Wang, Ph.D. thesis, University of California, Berkeley, Berkeley (2014),

aDS Bibcode: 2014PhDT.......106W, URL https://ui.adsabs.harvard.edu/

abs/2014PhDT.......106W.

[6] C. Alduino, F. Alessandria, K. Alfonso, E. Andreotti, C. Arnaboldi, F. Avignone,

O. Azzolini, M. Balata, I. Bandac, T. Banks, et al., Physical Review Letters 120,

132501 (2018), ISSN 0031-9007, 1079-7114, URL https://link.aps.org/doi/

10.1103/PhysRevLett.120.132501.

141

http://arxiv.org/abs/1905.07667
https://linkinghub.elsevier.com/retrieve/pii/S0146641021000612
https://linkinghub.elsevier.com/retrieve/pii/S0146641021000612
https://scholarcommons.sc.edu/etd/3984
https://www.nature.com/articles/s41586-022-04497-4
https://www.nature.com/articles/s41586-022-04497-4
https://ui.adsabs.harvard.edu/abs/2014PhDT.......106W
https://ui.adsabs.harvard.edu/abs/2014PhDT.......106W
https://link.aps.org/doi/10.1103/PhysRevLett.120.132501
https://link.aps.org/doi/10.1103/PhysRevLett.120.132501

[7] C. Alduino, K. Alfonso, D. R. Artusa, F. T. Avignone, O. Azzolini, T. I.

Banks, G. Bari, J. W. Beeman, F. Bellini, G. Benato, et al., The Euro-

pean Physical Journal C 77, 543 (2017), ISSN 1434-6044, 1434-6052, URL

http://link.springer.com/10.1140/epjc/s10052-017-5080-6.

[8] D. Foreman-Mackey, The Journal of Open Source Software 1, 24 (2016), ISSN

2475-9066, URL http://joss.theoj.org/papers/10.21105/joss.00024.

[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Journal of Machine

Learning Research 12, 2825 (2011), ISSN 1533-7928, URL http://jmlr.org/

papers/v12/pedregosa11a.html.

[10] M. L. Waskom, Journal of Open Source Software 6, 3021 (2021), ISSN 2475-9066,

URL https://joss.theoj.org/papers/10.21105/joss.03021.

[11] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, Publications of the

Astronomical Society of the Pacific 125, 306 (2013), ISSN 00046280, 15383873,

URL http://iopscience.iop.org/article/10.1086/670067.

[12] K. S. Babu, E. Kearns, U. Al-Binni, S. Banerjee, D. V. Baxter, Z. Berezhi-

ani, M. Bergevin, S. Bhattacharya, S. Brice, R. Brock, et al., arXiv:1311.5285

[hep-ex, physics:hep-ph] (2013), report of the Community Summer Study (Snow-

mass 2013), Intensity Frontier – Baryon Number Violation Group, URL http:

//arxiv.org/abs/1311.5285.

[13] H. Georgi and S. L. Glashow, Physical Review Letters 32, 438 (1974), URL

https://link.aps.org/doi/10.1103/PhysRevLett.32.438.

[14] The Super-Kamiokande Collaboration, M. Tanaka, K. Abe, C. Bronner, Y. Hay-

ato, M. Ikeda, S. Imaizumi, H. Ito, J. Kameda, Y. Kataoka, et al., Physi-

142

http://link.springer.com/10.1140/epjc/s10052-017-5080-6
http://joss.theoj.org/papers/10.21105/joss.00024
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://joss.theoj.org/papers/10.21105/joss.03021
http://iopscience.iop.org/article/10.1086/670067
http://arxiv.org/abs/1311.5285
http://arxiv.org/abs/1311.5285
https://link.aps.org/doi/10.1103/PhysRevLett.32.438

cal Review D 101, 052011 (2020), URL https://link.aps.org/doi/10.1103/

PhysRevD.101.052011.

[15] K. S. Babu, I. Gogoladze, and K. Wang, Physics Letters B 570, 32 (2003),

ISSN 0370-2693, URL http://www.sciencedirect.com/science/article/

pii/S0370269303010578.

[16] B. L. G. Bakker, A. I. Veselov, and M. A. Zubkov, Physics Letters B 620,

156 (2005), ISSN 0370-2693, URL https://www.sciencedirect.com/science/

article/pii/S0370269305008166.

[17] Majorana Collaboration, S. Alvis, I. Arnquist, F. Avignone, A. Barabash, C. Bar-

ton, V. Basu, F. Bertrand, B. Bos, V. Brudanin, et al., Physical Review D

99, 072004 (2019), URL https://link.aps.org/doi/10.1103/PhysRevD.99.

072004.

[18] J. Albert, G. Anton, I. Badhrees, P. Barbeau, R. Bayerlein, D. Beck, V. Belov,

M. Breidenbach, T. Brunner, G. Cao, et al., Physical Review D 97, 072007

(2018), ISSN 2470-0010, 2470-0029, URL https://link.aps.org/doi/10.

1103/PhysRevD.97.072007.

[19] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce,

M. Asai, D. Axen, S. Banerjee, G. Barrand, et al., Nuclear Instruments and

Methods in Physics Research Section A: Accelerators, Spectrometers, Detec-

tors and Associated Equipment 506, 250 (2003), ISSN 01689002, URL https:

//linkinghub.elsevier.com/retrieve/pii/S0168900203013688.

[20] Particle Data Group, M. Tanabashi, K. Hagiwara, K. Hikasa, K. Nakamura,

Y. Sumino, F. Takahashi, J. Tanaka, K. Agashe, G. Aielli, et al., Physical Review

D 98, 030001 (2018), URL https://link.aps.org/doi/10.1103/PhysRevD.

98.030001.

143

https://link.aps.org/doi/10.1103/PhysRevD.101.052011
https://link.aps.org/doi/10.1103/PhysRevD.101.052011
http://www.sciencedirect.com/science/article/pii/S0370269303010578
http://www.sciencedirect.com/science/article/pii/S0370269303010578
https://www.sciencedirect.com/science/article/pii/S0370269305008166
https://www.sciencedirect.com/science/article/pii/S0370269305008166
https://link.aps.org/doi/10.1103/PhysRevD.99.072004
https://link.aps.org/doi/10.1103/PhysRevD.99.072004
https://link.aps.org/doi/10.1103/PhysRevD.97.072007
https://link.aps.org/doi/10.1103/PhysRevD.97.072007
https://linkinghub.elsevier.com/retrieve/pii/S0168900203013688
https://linkinghub.elsevier.com/retrieve/pii/S0168900203013688
https://link.aps.org/doi/10.1103/PhysRevD.98.030001
https://link.aps.org/doi/10.1103/PhysRevD.98.030001

[21] M. Ambrosio, R. Antolini, C. Aramo, G. Auriemma, A. Baldini, G. C. Bar-

barino, B. C. Barish, G. Battistoni, R. Bellotti, C. Bemporad, et al., Astroparti-

cle Physics 10, 11 (1999), ISSN 0927-6505, URL http://www.sciencedirect.

com/science/article/pii/S0927650598000371.

[22] M. Biassoni, Thesis, INFN, Milan Bicocca (2013), URL https://inspirehep.

net/literature/1615506.

[23] W. Feller, An introduction to probability theory and its applications. Vol. 1, vol. 1

of Wiley series in probability and mathematical statistics (Wiley, S.l., 2009), 3rd

ed., ISBN 9780471257080.

[24] G. Bellini, J. Benziger, D. Bick, S. Bonetti, M. Buizza Avanzini, B. Cac-

cianiga, L. Cadonati, F. Calaprice, C. Carraro, A. Chavarria, et al., Journal

of Instrumentation 6, 5005 (2011), aDS Bibcode: 2011JInst...6.5005B, URL

https://ui.adsabs.harvard.edu/abs/2011JInst...6.5005B.

[25] W.-M. Yao et al., Journal of Physics G: Nuclear and Particle Physics 33, 245

(2006), ISSN 0954-3899, 1361-6471, revised August 2007 by T.K. Gaisser and T.

Stanev, URL https://iopscience.iop.org/article/10.1088/0954-3899/

33/1/001.

[26] R. Brun, F. Rademakers, P. Canal, A. Naumann, O. Couet, L. Moneta, V. Vas-

silev, S. Linev, D. Piparo, G. GANIS, et al., root-project/root: v6.18/02 (2019),

URL https://zenodo.org/record/3895860.

[27] B. Rene, RootTalk: Re: What does ROOT stand for? (1988), rootTalk

Email Archive, URL https://root.cern.ch/root/roottalk/roottalk98/

0718.html#:~:text=ROOT%20really%20means%20the%20%22roots,Object%

2DOriented%20Technology%22%20Rene%20Brun.

144

http://www.sciencedirect.com/science/article/pii/S0927650598000371
http://www.sciencedirect.com/science/article/pii/S0927650598000371
https://inspirehep.net/literature/1615506
https://inspirehep.net/literature/1615506
https://ui.adsabs.harvard.edu/abs/2011JInst...6.5005B
https://iopscience.iop.org/article/10.1088/0954-3899/33/1/001
https://iopscience.iop.org/article/10.1088/0954-3899/33/1/001
https://zenodo.org/record/3895860
https://root.cern.ch/root/roottalk/roottalk98/0718.html#:~:text=ROOT%20really%20means%20the%20%22roots,Object%2DOriented%20Technology%22%20Rene%20Brun
https://root.cern.ch/root/roottalk/roottalk98/0718.html#:~:text=ROOT%20really%20means%20the%20%22roots,Object%2DOriented%20Technology%22%20Rene%20Brun
https://root.cern.ch/root/roottalk/roottalk98/0718.html#:~:text=ROOT%20really%20means%20the%20%22roots,Object%2DOriented%20Technology%22%20Rene%20Brun

[28] M. Rosenblatt, The Annals of Mathematical Statistics 27, 832 (1956), ISSN

0003-4851, URL http://projecteuclid.org/euclid.aoms/1177728190.

[29] E. Parzen, The Annals of Mathematical Statistics 33, 1065 (1962), ISSN 0003-

4851, URL http://projecteuclid.org/euclid.aoms/1177704472.

[30] B. W. Silverman, Density estimation for statistics and data analysis, no. 26 in

Monographs on statistics and applied probability (Chapman & Hall/CRC, Boca

Raton, 1998), ISBN 9780412246203.

[31] D. W. Scott, Biometrika 66, 605 (1979), ISSN 0006-3444, 1464-

3510, URL https://academic.oup.com/biomet/article-lookup/doi/10.

1093/biomet/66.3.605.

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, A. Müller, J. Nothman, G. Louppe, et al., eprint arXiv:1201.0490

(2012), URL https://arxiv.org/abs/1201.0490.

[33] F. George and B. M. G. Kibria, Current Research in Biostatistics 2, 44 (2012),

ISSN 2524-2229, URL https://thescipub.com/abstract/amjbsp.2011.44.

55.

[34] M. Ambrosio, R. Antolini, G. Auriemma, R. Baker, A. Baldini, G. C. Barbarino,

B. C. Barish, G. Battistoni, R. Bellotti, C. Bemporad, et al., Physical Review

D 52, 3793 (1995), URL https://link.aps.org/doi/10.1103/PhysRevD.52.

3793.

[35] M. Agostini, K. Altenmuler, S. Appel, V. Atroshchenko, Z. Bagdasarian,

D. Basilico, G. Bellini, J. Benziger, D. Bick, I. Bolognino, et al., Journal of

Cosmology and Astroparticle Physics 2019, 046 (2019), ISSN 1475-7516, URL

https://iopscience.iop.org/article/10.1088/1475-7516/2019/02/046.

145

http://projecteuclid.org/euclid.aoms/1177728190
http://projecteuclid.org/euclid.aoms/1177704472
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/66.3.605
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/66.3.605
https://arxiv.org/abs/1201.0490
https://thescipub.com/abstract/amjbsp.2011.44.55
https://thescipub.com/abstract/amjbsp.2011.44.55
https://link.aps.org/doi/10.1103/PhysRevD.52.3793
https://link.aps.org/doi/10.1103/PhysRevD.52.3793
https://iopscience.iop.org/article/10.1088/1475-7516/2019/02/046

	Search for Triple-Proton Decay Using Machine Learning With CUORE
	Recommended Citation

	Abstract
	List of Figures
	Introduction
	Motivation for Triple-Proton-Decay Search
	Neutrino Properties
	Neutrinoless Double Beta Decay
	The CUORE Experiment
	CUORE Neutrinoless Double Beta Decay Results
	Overview of Search Methodology

	Simulating Events of Interest
	Simulations: Triple Proton Decay
	Simulations: Muons
	Calculating the Expected Muon Count as a Prior

	Selecting Single Event Features
	Features: Total Energy & Multiplicity
	Feature: Saturated Crystal count
	Feature: Principle Components
	Feature: Principle Components - Energy Weighted
	Visualizations of Many Features

	Extracting Real Data
	Data Storage Format
	Pulse Energy & Time Estimation
	Grouping Many Crystals into a Single Event
	Choosing Cuts
	Real Data Features : An Emergent Discrepancy
	Investigation of the Mar 2020 Real Data Discrepancy

	Maximum Entropy to Counting Statistics
	Entropy Definition
	Lagrange Multipliers
	Entropy Derivation of the Exponential Distribution
	Detectors Underground: Counting Experiments
	Counting Statistics: Approximations for Computation
	Summary of Relationships Between Expectations
	Usage of the Maximum Entropy Derivation

	Classification, and other required concepts
	Algorithm: Support-vector machines
	Algorithm: Decision Tree and Random Forest
	Algorithm: Generative Classifier (Density Estimation)
	Hyperparameter Training
	Assessing Classification Performance: Confusion Matrix
	Classify CUORE Simulations: ppp-decays vs muons

	Poisson Counting Analysis: No Classification
	Background Alone
	Signal Alone
	Background + Signal
	Signal with Exact Background

	Poisson Counting Analysis: With Classification
	Poisson Classification Likelihood
	Figure of Merit
	Future work: Figure of Merit to Optimize Classification

	Sensitivity Calculation
	Calculate Marginal Posterior
	Calculate Sensitivity: Fixed Classifier Success Rates
	Calculate Sensitivity: Vary Classifier Success Rates

	Results and Conclusion
	Summary of Results
	Posterior Classification Probabilities
	Expected Muon Count vs Real Observation Count
	Marginalize the Final Posterior
	Conclusion

	Muon Count Prior - Additional Calculations
	General Calculation of Expected Count
	Initial Location Setups to Expected Counts
	Qshields Simulation Initial Conditions (Additional Plots)

	Basic Distributions
	Basic Distributions Visualized
	Useful Density Marginalizations
	Useful Density Approximations
	Bibliography

