
University of South Carolina University of South Carolina

Scholar Commons Scholar Commons

Theses and Dissertations

Fall 2022

Empirical Studies on Automated Software Testing Practices Empirical Studies on Automated Software Testing Practices

Alireza Salahirad

Follow this and additional works at: https://scholarcommons.sc.edu/etd

 Part of the Computer Sciences Commons, and the Engineering Commons

Recommended Citation Recommended Citation
Salahirad, A.(2022). Empirical Studies on Automated Software Testing Practices. (Doctoral dissertation).
Retrieved from https://scholarcommons.sc.edu/etd/7135

This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please
contact digres@mailbox.sc.edu.

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F7135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarcommons.sc.edu%2Fetd%2F7135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=scholarcommons.sc.edu%2Fetd%2F7135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/7135?utm_source=scholarcommons.sc.edu%2Fetd%2F7135&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu

EMPIRICAL STUDIES ON AUTOMATED SOFTWARE TESTING PRACTICES

by

Alireza Salahirad

Bachelor of Science
Shahid Beheshti University 2014

Master of Science
University of South Carolina 2018

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in

Computer Science and Engineering

College of Engineering and Computing

University of South Carolina

2022

Accepted by:

Gregory Gay, Major Professor

Marco Valtorta, Committee Member

Csilla Farkas, Committee Member

Pooyan Jamshidi, Committee Member

Ehsan Mohammadi, Committee Member

Dr. Cheryl L. Addy, Interim Vice Provost and Dean of the Graduate School

© Copyright by Alireza Salahirad, 2022
All Rights Reserved.

ii

ACKNOWLEDGMENTS

Years of hard work as a computer scientist have culminated in this dissertation. My efforts

alone would not have taken me to this point. First and foremost, praises and thanks to God,

the Almighty, for countless blessings in my life. Next, my sincere gratitude goes to my su-

pervisor, Professor Gregory Gay, for his immense knowledge, support, mentorship, and pa-

tience throughout this process. Without his support, I would not have been able to make this

journey. Furthermore, I would like to thank my co-advisor, Professor Ehsan Mohammadi,

for all his guidance. I also thank the members of my dissertation committee, Professor

Marco Valtorta, Professor Csilla Farkas, and Professor Pooyan Jamshidi, for their valuable

feedback. I am grateful to all my friends for all their encouragement and help, Shervin

Ghasemlou, Mohammadreza Haghpanah, Hazhar Rahmani, Hussein Almulla, Ying Meng,

Russell Kan, and all my other friends I have missed mentioning. Besides, I would like

to thank Alex Forward and all my colleagues at PhotoniCare Inc. Being part of this elite

team and working on numerous diverse advanced projects has been one of the most excit-

ing chapters of my life. My family has always been one of my most significant sources of

support. Last but not least, my sincere thanks go to them for all their encouragement and

sacrifices during the years I have been away from them.

iii

ABSTRACT

Software testing is notoriously difficult and expensive, and improper testing carries eco-

nomic, legal, and even environmental or medical risks. Research in software testing is

critical to enabling the development of the robust software that our society relies upon.

This dissertation aims to lower the cost of software testing without decreasing the quality

by focusing on the use of automation. The dissertation consists of three empirical studies

on aspects of software testing. Specifically, these three projects focus on (1) mapping the

connections between research topics and the evolution of research topics in the field of

software testing, (2) an assessment of the metrics used to guide automated test generation

and the factors that suggest when automated test generation can detect real faults, and (3)

examination of the semantic coupling between synthetic and real faults in service of im-

proving our ability to cost-effectively generate synthetic faults for use in assessing test case

quality.

• Project 1 (Mapping): Our main goal for this project is to understand better the

emergence of individual research topics and the connection between these topics

within the broad field of software testing, enabling the identification of new topics

and connections in future research. To achieve this goal, we have applied co-word

analysis in order to characterize the topology of software testing research over three

decades of research studies based on the keywords provided by the authors of studies

indexed in the Scopus database.

• Project 2 (Automated Input Generation): We have assessed the fault-detection ca-

pabilities of unit test suites generated by automated tools with the goal of satisfying

eight fitness functions representing common testing goals. Our purpose was not only

iv

to identify the particular fitness functions that detect the most faults but to explore

further the factors that influence fault detection. To do this, we gathered observa-

tions on the generated test suites and metrics describing the source code of the faulty

classes and applied a rule-learning algorithm to identify the factors with the strongest

influence on fault detection.

• Project 3 (Mutant-Fault Coupling): Synthetic faults (mutants), which can be in-

serted into code through transformative mutation operators, offer an automated means

to assess the effectiveness of test suites and create new test cases. However, mutants

can be expensive to utilize and may not realistically model real faults. To enable

the cost-effective generation of mutants, we investigate this semantic relationship

between mutation operators and real faults.

v

TABLE OF CONTENTS

ACKNOWLEDGMENTS . iii

ABSTRACT . iv

LIST OF FIGURES . ix

CHAPTER 1 INTRODUCTION . 1

1.1 Statement of the Problem . 1

1.2 Purpose of the Dissertation . 2

1.3 Contributions of the Dissertation . 12

1.4 Publications Resulting from the Dissertation 13

1.5 Structure of this Dissertation . 14

CHAPTER 2 BACKGROUND . 16

2.1 Software Testing . 16

2.2 Components of a Test Case . 17

2.3 Common Testing Approaches and Practices 18

2.4 The Role of Software Testing in the Software Development Life Cycle . . . 20

CHAPTER 3 MAPPING THE STRUCTURE AND EVOLUTION OF SOFTWARE

TESTING RESEARCH OVER THE PAST THREE DECADES 22

3.1 Introduction . 23

vi

3.2 Background and Related Work . 25

3.3 Methodology . 29

3.4 Results and Discussion . 40

3.5 Further Analysis and Advice to Researchers 61

3.6 Threats to Validity . 67

3.7 Conclusion . 69

3.8 VOSViewer Technical Details . 70

CHAPTER 4 CHOOSING THE FITNESS FUNCTION FOR THE JOB: AUTO-
MATED GENERATION OF TEST SUITES THAT DETECT REAL FAULTS 74

4.1 Introduction . 74

4.2 Background . 79

4.3 Study . 81

4.4 Results and Discussion . 103

4.5 Related Work . 136

4.6 Threats to Validity . 138

4.7 Conclusions . 139

CHAPTER 5 HOW CLOSELY ARE COMMON MUTATION OPERATORS COU-
PLED TO REAL FAULTS? . 142

5.1 Introduction . 142

5.2 Background . 146

5.3 Methodology . 149

5.4 Results and Discussion . 157

5.5 Threats to Validity . 168

vii

5.6 Related Work . 169

5.7 Conclusions . 174

CHAPTER 6 CONCLUSION . 176

BIBLIOGRAPHY . 182

viii

LIST OF FIGURES

Figure 1.1 The three projects that make up this dissertation, with connections. . . . 3

Figure 2.1 Example of a unit test case written using the JUnit notation for Java. . . 18

Figure 2.2 Example of granularity levels of the tests to the left and testing
phases to the right. A: Unit Testing; B: Integration Testing; C: Sys-
tem Testing. 18

Figure 3.1 Number of publications per year retrieved from Scopus. 32

Figure 3.2 Topics associated with software reliability 34

Figure 3.3 A visualization of the connections between publication keywords. 41

Figure 3.4 A subset of keywords connected to automated test generation, col-
ored by the average number of citations. Nodes in yellow attract a
high number of citations (≥ 14). 45

Figure 3.5 Identified research topics (middle layer) and subtopics (final layer),
colored by cluster. 46

Figure 3.6 The map of keywords, colored by the average year of publication.
Note that “2010” should be read as ≤ 2010 and “2016” should be
read as ≥ 2016. 53

Figure 3.7 Keywords with an average publication date newer than June 2015,
along with their associated research topic. The number next to the
list of keywords indicates the number of emerging keywords. Topics
colored in gray are those without emerging keywords. 55

Figure 3.8 Emerging connections, connected by research topic with test ora-
cles, for the cluster pairings with highest ratio of emerging to total
connections. 57

ix

Figure 3.9 Emerging connections, connected by research topic (excluding test
oracles), for the cluster pairings with highest ratio of emerging to
total connections. 58

Figure 3.10 Keywords with an average publication date earlier than June 2011,
along with their associated research topic. Topics colored in gray
are those without declining keywords. Topics with both declining
keywords and a lack of emerging keywords are highlighted. 60

Figure 3.11 Under-explored connections (keywords connected by 4-6 publica-
tions), connected by research topic, for the six cluster pairings with
highest ratio of under-explored to total connections. 64

Figure 4.1 Boxplots illustrating the median, first, and third quartile values for
select metrics from the dataset. 87

Figure 4.2 Total Obligations . 96

Figure 4.3 % Obligations Satisfied . 96

Figure 4.4 Boxplots of the total obligations and % of obligations satisfied for
suites generated for each fitness configuration and search budget. 96

Figure 4.5 Suite Size . 97

Figure 4.6 % Line Coverage (Fixed)] . 97

Figure 4.7 Boxplots of the suite size, length, and line coverage of suites gener-
ated for each fitness configuration and search budget. 97

Figure 4.8 2m Budget . 100

Figure 4.9 10m Budget . 100

Figure 4.10 Baseline class distribution of the generation factors datasets used for
treatment learning. 100

Figure 4.11 2m Budget . 101

Figure 4.12 10m Budget . 101

Figure 4.13 Baseline class distributions for the “overall” code metrics datasets
used for treatment learning. 101

x

Figure 4.14 2m Budget . 106

Figure 4.15 10m Budget . 106

Figure 4.16 Boxplots of the likelihood of detection for each fitness function and
combination. “Def” = Default Combination, “BEM” = BC-EC-MC
Combination. 106

Figure 4.17 Chart (2m) . 113

Figure 4.18 Closure (2m) . 113

Figure 4.19 Lang (2m) . 113

Figure 4.20 Math (2m) . 113

Figure 4.21 Time (2m) . 113

Figure 4.22 Chart (10m) . 113

Figure 4.23 Closure (10) . 113

Figure 4.24 Lang (10m) . 113

Figure 4.25 Math (10m) . 113

Figure 4.26 Time (10m) . 113

Figure 4.27 Average % likelihood of fault detection for fitness functions once
data is filtered for faults where the most effective function for that
system has < 30% chance of detection. 113

Figure 4.28 2m Budget . 120

Figure 4.29 10m Budget . 120

Figure 4.30 Class distributions of the data subsets fitting the top treatments learned
from each dataset for the “High Performance” class. 120

Figure 4.31 2m Budget . 122

Figure 4.32 10m Budget . 122

Figure 4.33 Class distributions of the data subsets fitting the top treatments learned
from each dataset for the “Not Detected” class. 122

xi

Figure 4.34 2m Budget . 124

Figure 4.35 10m Budget . 124

Figure 4.36 Class distributions of the data subsets fitting the top treatments learned
from each dataset for the “Low Performance” class. 124

Figure 4.37 2m Budget . 127

Figure 4.38 10m Budget . 127

Figure 4.39 Class distributions for the subsets of the two overall datasets fulfill-
ing the top-ranked “Yes” treatment for each. 127

Figure 4.40 2m Budget . 129

Figure 4.41 10m Budget . 129

Figure 4.42 Class distributions for the subsets of the two “overall” datasets ful-
filling the top-ranked “No” treatment for each. 129

Figure 5.1 Percentage of mutants generated for each operator matching each
category, sorted by the percentage strongly substituting. 159

Figure 5.2 Number of operators remaining if the median level of coupling is
used as a threshold for determining the subset of operators employed. . . 166

Figure 5.3 Number of mutants remaining if the median level of coupling is used
as a threshold for determining the subset of operators employed. 167

Figure 5.4 Percentage of mutants in the remaining subset (if median level of
coupling is used as a threshold) belonging to each coupling category. . . 167

xii

CHAPTER 1

INTRODUCTION

Software testing is the process of executing input against a system-under-development and

comparing the resulting output to a set of expectations (known as an oracle) [1, 2]. This

activity aims to evaluate the correctness of software functionality through observations of

the systems’ reactions to direct and indirect stimuli.

Software testing plays a central role in ensuring the reliability of software that powers

our society. While many quality assurance techniques exist, testing remains the most well-

known and widespread technique for software verification. Software testing is one of the

largest areas of software engineering research [3–5], and research in this area has led to

significant advances in quality assurance practices in the real world.

However, testing is notoriously difficult and expensive, and improper testing carries

economic [6], legal, and even environmental [7] or medical risks [8]. Further research

advances in software testing are critical to enabling the development of the robust software

that our society relies upon.

1.1 STATEMENT OF THE PROBLEM

The correctness of software is difficult to prove conclusively, as most software has a near-

infinite set of possible input combinations. Therefore, testing cannot prove the correctness

of software. It can only prove the “incorrectness” of software through the selection of input

revealing a fault [9]. It takes time, resources, and money to develop, maintain, and execute

software tests. Furthermore, performing testing requires the assignment of clear responsi-

1

bilities and ensuring that team members have the necessary skills. Since we do not know

what inputs reveal faults, various configurations and inputs must be tested, including cov-

erage of different functional outcomes, input sanitization, testing for timeouts, managing

unexpected events, and so on. Up to half of the lines of code in a project can be devoted to

test cases and testing infrastructure [10]. Selecting input scenarios, running and evaluating

these scenarios, and measuring testing progress are all needed.

Our long-term goal is to lower the cost of software testing, with a focus on automa-

tion. Much of the cost of testing discussed above can be traced directly to the human effort

required to conduct most testing activities, such as producing test input and expected out-

put [11]. One way of lowering testing costs may lie in the use of automation to ease this

large manual burden. Rather than relying on the human effort at all stages of the testing pro-

cess, various steps could be performed automatically—for example, selecting potentially

failure-revealing input scenarios. This makes it possible to increase test coverage without

spending more money. The use of automation also helps to discover faults earlier. Testing

automation leads to shorter software development cycles and faster delivery times [12].

However, research in software test automation is important. There are still limitations to

overcome in automated testing, despite its many benefits. Some of these challenges in-

clude the effectiveness of automation—compared to human-performed testing—as well as

up-front costs, training of users of the technologies, the usability of automation, and the

cost of maintaining automatically-generated test cases [13].

1.2 PURPOSE OF THE DISSERTATION

This thesis consists of three specific projects that address challenges that hinder the attain-

ment of the long-term goal of reducing the cost of software testing. Each project is centered

around an empirical study relating to an important topic in the software testing field, with

a particular focus on automation.

2

Project 1:
Mapping the structure and

evolution of software testing
research

Project 2:
Assessing impact of fitness

functions and source code metrics
on automated input generation

effectiveness

Project 3:
Measuring the semantic coupling of

mutations and real faults

Indicates automated
test generation as a
major research topic
impacting the entire
testing field.

Indicates mutation testing as a
major research topic with
strong connections to
automated input generation
and other topics.

Improving cost of mutation
testing makes use in input
generation viable.

Figure 1.1: The three projects that make up this dissertation, with connections.

Specifically, these three projects focus on (1) mapping the connections between re-

search topics and understanding the evolution of research topics in the field of software

testing through the use of network analysis techniques, (2) assessment of the criteria used

to guide automated test input generation and exploration of the factors that influence the

ability of automated input generation to trigger failures, and (3) examination of the seman-

tic coupling between synthetic and real-world faults to identify the types of synthetic faults

best suited for use in assessing and improving test case quality.

These three projects are illustrated and connected in Figure 1.1, and are described in

more detail below. We apply network analysis techniques in the first project to quantita-

tively map the software testing research field. This project offers an evidence-based method

to characterize research topics in software testing and, more importantly, to identify how

these topics are connected to explore how to exploit existing topic synergies best or identify

new connections to explore. The findings of this project help motivate further research on

the automation of the testing process.

The mapping produced in Project 1 identified automated test generation as one of the

most important topics in all of the software testing. It is a major focus in testing research,

as automating aspects of test creation—such as input selection—offers great promise to

3

reduce costs by alleviating common effort-intensive tasks. Most software functions have

a near-infinite number of possible inputs. It is difficult and time-consuming for humans

to identify input scenarios likely to trigger faults in systems. Therefore, in Project 2, we

explore many of the criteria currently used to generate test input automatically and identify

the limitations and strengths of those criteria, as well as the source code factors that affect

automated test generation. This research offers insight into automated input generation that

can help improve how it is performed in the future.

The general goal of automated input generation is to select failure-triggering input.

Currently, many approaches to automated input generation are based on source code cov-

erage with the hypothesis that tests that execute a large portion of the code structure will

be more likely to expose faults in that code. Code coverage is a prerequisite to fault de-

tection, but code must still be executed in a manner that triggers and exposes a fault. An

alternative to code coverage is mutation coverage—detection of planted synthetic faults.

Mutation coverage can be used to select inputs during automated test generation and may

demonstrate a higher probability of fault detection than code coverage alone. The muta-

tion topic was also identified in Project 1 as a major research topic. However, mutation

coverage is very expensive. In Project 3, we explore which types of mutations have the

most substantial semantic relationship to real-world software faults. Therefore, Project 3

can lead to insights that reduce the cost and increase the effectiveness of mutation testing

on complex systems. In turn, this will make mutation a viable source of information for

automated input selection.

Project 1 (Mapping)

Testing is one of the largest areas of software engineering research [3], and the field rapidly

evolves as new software and hardware advances are introduced. The goal of this project

is to enable both researchers and practitioners to better understand (a) what the predomi-

nant research topics are of the field, (b) how those topics are connected, and (c), how the

4

predominant topics have evolved over time.

In the past, most overviews of the field of testing have been based on qualitative ex-

amination of research. In this project, we have applied a quantitative network analysis

method—co-word analysis—to visualize and analyze the topology of 35 years of soft-

ware testing research based on the author-assigned keywords of Scopus-indexed publica-

tions. Co-word analysis yields an undirected network where the nodes—author-assigned

keywords—represent targeted research concepts. Weighted edges connect keywords based

on their co-occurrence on publications. Finally, keywords are grouped into clusters, repre-

senting densely-connected regions of the network.

Our analysis maps keywords into dense clusters, from which emerge high-level re-

search topics—themes that characterize each cluster—and makes clear the connections

between keywords and topics within and across clusters. It also characterizes the periods

in which low-level keywords and high-level topics have emerged—identifying emerging

research areas, as well as those where research interest has decreased. This snapshot of im-

portant disciplinary trends can provide valuable insight into the state of the field, suggest

topics to explore, and identify connections (or lack thereof) between keywords and topics

that may reveal new insights.

Among others, we have made the following observations:

• Both the most common author-assigned keywords and the keywords that attract the

most citations, on average, tend to relate to automation, test creation and assessment

guidance, assessment of system quality, and cyber-physical systems.

• These keywords can be clustered into 16 topics: automated test generation, creation

guidance, evolution and maintenance, machine learning and predictive modeling,

model-based testing, GUI testing, processes and risk, random testing, reliability, re-

quirements, system testing, test automation, test case types, test oracles, verifica-

tion and program analysis, and web application testing. Below these lie 18 more

5

subtopics.

• Creation guidance, automated test generation, evolution and maintenance, and test

oracles are particularly multidisciplinary topics with dense connections to many

other topics. Twenty keywords connect topics, reflecting multidisciplinary concepts,

common test activities, and test creation information.

• Emerging research particularly relates to web and mobile applications, ML and AI—

including autonomous vehicles—energy consumption, automated program repair, or

fuzzing and search-based test generation. Web applications require targeted testing

approaches and practices, leading to emerging connections to many topics. Test

oracles are also a rapidly-evolving topic with many emerging connections. ML has

emerging potential to support automation.

• Research related to random and requirements-based testing may be in decline.

These insights—and the rich underlying networks of keywords—can inspire both current

and future researchers in the field of software testing.

Project 2 (Automated Input Generation)

With exponential growth in the complexity of software, the cost of testing has risen ac-

cordingly. Means of lowering the cost of testing without sacrificing verification quality

are needed. Automation has great potential in this respect, as much of the invested human

effort is in service of tasks that can be framed as search problems [14]. For example, test

input generation can naturally be seen as a search problem [11]. Hundreds of thousands

of test cases could be generated for any particular class-under-test (CUT). Given a well-

defined testing goal and a numeric scoring function denoting closeness to the attainment

of that goal—called a fitness function—optimization algorithms can systematically search

the space of possible test inputs to locate those that meet that goal [15].

6

The effective use of search-based generation relies on the performance of two tasks—

selecting a measurable test goal and selecting an effective fitness function for meeting that

goal. Adequacy criteria offer checklists of measurable test goals based on the program

source code, such as the execution of branches in the control flow of the CUT [1, 16, 17].

Often, however, goals such as “coverage of branches” are an approximation of a goal that is

harder to quantify—we really want tests that will reveal faults [18]. “Finding faults” is not

a goal that can be measured and cannot be translated into a distance function. To generate

effective tests, we must identify criteria—and corresponding fitness functions—that are

correlated with an increased probability of fault detection.

The goal of this project is to examine whether common fitness functions can produce

effective test input for triggering and detecting real-world faults, as well as to understand

the factors that contribute to the success or failure of automated input generation. In this

study, we have used EvoSuite and eight of its white-box fitness functions (as well as the

default multi-objective configuration and a combination of branch, exception, and method

coverage) to generate test suites for the fifteen systems, and 593 of the faults, in the De-

fects4J database.

In each case, we seek to understand when and why generated test suites were able to

detect—or not detect—faults. Such understanding could lead to a deeper understanding of

the strengths and limitations of current test generation techniques and could inspire new

approaches. Thus, in each case, we have recorded the proportion of suites that detect the

fault and a number of factors—related to suite size, obligation satisfaction, and attained

coverage. We have recorded a set of traditional source code metrics—sixty metrics related

to cloning, complexity, cohesion, coupling, documentation, inheritance, and size metrics—

for each class associated with a fault in the Defects4J dataset. By analyzing these genera-

tion factors and metrics, we can begin to understand not only the real-world applicability of

the fitness options in EvoSuite but—through the use of machine learning algorithms—the

factors correlating with a high or low likelihood of fault detection.

7

To summarize our findings:

• Branch coverage is the most effective criterion. However, regardless of overall per-

formance, most criteria have situational applicability, where their suites detect faults

no other criteria can detect.

• While EvoSuite’s default combination performs well, the difficulty of simultaneously

balancing eight functions prevents it from outperforming all individual criteria. How-

ever, a combination of branch, exception and method coverage outperformed each of

the individual criteria. It is more effective because it adds lightweight situationally-

applicable criteria to a strong, coverage-focused criterion.

• Factors that strongly indicate a high level of efficacy include a high line or branch

coverage over either version of the code and high coverage of their own test obliga-

tions. Coverage does not ensure success, but it is a prerequisite.

• The most important factor differentiating cases where a fault is occasionally detected

and cases, where a fault is consistently detected is the satisfaction of the chosen crite-

rion’s test obligations. Therefore, the best suites are ones that both explore the code

and fulfill their own goals, which may be—in cases such as exception coverage—

orthogonal to code coverage.

• Test generation methods struggle with classes that have a large number of private

methods or attributes and thrive when the class structure is accessible.

• Generated suites are more effective at detecting faults in well-documented classes.

While documentation should not directly assist automated test generation, its pres-

ence may hint at the maturity, testability, and understandability of the class.

• Faults in classes with a large number of dependencies are more difficult to detect

than those in self-contained classes, as the generation technique must initialize and

manipulate multiple complex objects during generation.

Our observations suggest that successful criteria thoroughly explore and exploit the

8

code being tested. The strongest fitness functions—branch, direct branch, and line coverage—

all do so. We suggest the use of such criteria as primary fitness functions. However, our

findings also indicate that coverage does not guarantee success. The fitness function must

still execute the code in a manner that triggers the fault and ensures that it manifests in

failure. Criteria such as exception, output, and weak mutation coverage are situationally

useful and should be applied as secondary testing goals to boost the fault-detection capa-

bilities of the primary criterion—either as part of a multi-objective approach or through the

generation of a separate test suite.

Our observations provide evidence for the anecdotal findings of other researchers [19–

23] and motivate improvements in how test generation techniques understand the behavior

of private methods or manipulate environmental dependencies. While more research is

still needed to understand better the factors that contribute to fault detection, and the joint

relationship between the fitness function, generation algorithm, and CUT in determining

the efficacy of test suites, our findings in this revised and extended case study offer lessons

in understanding the use, applicability, and combination of common fitness functions.

Project 3 (Mutant-Fault Coupling)

When designing test cases, past experience can be used to estimate the potential effective-

ness of the test suite. If we have known software faults—mistakes in the source code [1]—

we can use detection of these faults to predict whether test cases will be effective against

unknown future faults. Essentially, this is an estimation of the sensitivity of the test suite

to changes in the source code. In practice, we typically lack a sufficiently large collection

of faults to draw reasonable conclusions. Instead, we make use of synthetic faults, known

as mutants [24].

Mutation testing [25] is a technique in which a user generates many faulty versions of

a program—the “mutants” mentioned above—through small modifications of the original

code, typically using automated code transformation [24, 26]. Mutation operators define

9

transformations over code structures, such as expressions, operators, or references [27]. For

example, a mutation operator may change one arithmetic operator into another—turning

A+B intoA∗B—permute the order of two statements, add or remove a staticmodifier,

or many other possible changes. There are many mutation operators used in practice [27,

28]. These operators vary in complexity in effect, but all are intended to reflect common,

minor mistakes that developers make when writing code.

Mutation testing is a common technique in both testing research and industrial practice.

In research, it is the most common method of judging the effectiveness of new testing

techniques, particularly those used to automatically generate test cases [26]. Mutation

is also employed at companies such as Google to identify areas of improvement in test

design [29]. In either case, the core hypothesis is those test suites that detect mutants are

also effective at detecting real faults, as they are sensitive to these small changes in the

code [30].

This hypothesis hinges on the idea that mutants can serve as stand-ins for real faults.

Mutants clearly bear little syntactic resemblance to real faults [31]. A glance at any

database of real faults, such as Defects4J for Java faults [32], makes it clear that real faults

are generally more complex than mutants, often affecting multiple lines of code and require

multiple changes to any single line to fix. Instead, the idea that mutants can substitute for

real faults is based on the assumption of a semantic relationship built on two hypotheses.

The first, the “competent programmer hypothesis”, suggests that many programs are close

to correct and that minor changes will be enough to fix them. The second, the “coupling

effect”, suggests that the detection of many simple mutants will equate to the detection of

a single complex fault affecting the same lines of code [1, 33].

However, the truth of these hypotheses—or even the broader hypothesis that, regard-

less of a semantic relationship, that high levels of mutant detection will lead to increased

probability of faulty detection—is not clear. Even if mutation testing can improve the

quality of testing efforts, weak or contradictory empirical results and the immense cost of

10

applying mutation testing to a large codebase [33] suggest the need for improvement in the

implementation and application of mutation testing.

We hypothesize that improving the effectiveness—in terms of both cost and quality—

lies in better understanding the semantic relationship between mutants and real faults,

known as their coupling. In particular, and in contrast to past studies, we turn our fo-

cus to examining the mutation operators. That is, which mutation operators produce the

most (or least) mutants that lead to the same outcomes as real faults?

In this study, we investigate the degree of coupling between mutants and real faults by

executing developer-written test suites against both mutated and faulty versions of classes

from multiple open-source Java projects, based on 144 case examples from the Defects4J

fault database [32]. In particular, we focus on the trigger tests—the tests that detect the

real fault. A mutant that is most strongly coupled to a real fault will be detected only by

the trigger tests, and those tests will fail for the same reasons—i.e., the same exception

or error. Mutants that are more weakly coupled may cause additional—or fewer—tests to

fail or cause tests to fail for different reasons. We have defined a scale rating the strength

of the coupling between a mutant and a corresponding real fault based on the number of

failing tests and reasons for failure. This scale, in turn, allows us to contrast 31 mutation

operators—applied using the muJava++ framework—based on their tendency to produce

mutants with a stronger semantic relationship to real faults.

Understanding this tendency could enable improvements in how mutation testing is ap-

plied. Identifying the mutation operators that most closely semantically model real faults

allows prioritization of the mutants used during testing. The exclusion of weakly-coupled

mutation operators could lead to large cost savings and filtering of ”noise” from test suite

adequacy estimation. In addition, understanding semantic coupling enables potential im-

provements in the implementation of existing mutation operators and may suggest new

mutation operators.

11

1.3 CONTRIBUTIONS OF THE DISSERTATION

Each project offers its own intellectual merit and advancement of state of the art.

Project 1 (Mapping)

The intellectual merit of this project is in its use of data-driven quantitative techniques to

provide researchers with perspectives about the hidden structures and the evolution of the

software testing field. This technique reduces the risk of biased interpretation and enables

the identification of patterns that would be difficult for humans to detect in qualitative

analysis.

Our insights and, more importantly, the rich underlying networks of research topics

have the potential to inspire both current and future researchers. For potential researchers,

a snapshot of important disciplinary trends and authorship patterns can provide valuable

insight into the current state of the field. For researchers operating in the field, the mapping

data can suggest topics and connections to explore. The connections (or lack thereof)

between topics that can reveal new insights. The additional dimension of publication dates

also can offer insight into topics that are emerging, from which new connections to existing

topics can be forged. We have also made our data available so that others may make

additional observations or broaden the horizons of their own research and collaborations.

Project 2 (Automated Input Generation)

The intellectual merit of this project is that it offers researchers and practitioners a greater

understanding of the use, applicability, and combination of common fitness functions. The

impact of specific fitness functions on fault detection has not been examined in depth be-

fore, especially with regard to real faults. Our insights enable more effective use of current

search-based test input generation tools and inform the design of future tools.

In addition, our examination of the impact of source code metrics reveals class features

12

that can affect the effectiveness of search-based input generation, regardless of the specific

fitness functions used. Our observations provide evidence for the anecdotal findings of

other researchers [19–23] and motivate improvements in how test generation techniques

understand the behavior of private methods or manipulate environmental dependencies.

We have additionally made our datasets, as well as new Defects4J case examples, available

to other researchers to aid in future advances.

Project 3 (Mutant-Fault Coupling)

The intellectual merit of this project lies in enabling a deeper understanding of the seman-

tic relationship between synthetic faults (mutations) and real faults. Mutation testing is

advocated on the premise that mutants reflect the mistakes that programmers make. While

the technique could be valuable as an analysis of the sensitivity of test cases to small code

changes, even if this core hypothesis is not true, insight into this relationship enables im-

provements in the cost and effectiveness of the practice.

Under the current implementation, mutation testing is too expensive for practical, real-

world use. Our research offers practitioners insight into how to choose a potentially useful

subset of mutations. By focusing on operators with a stronger semantic relationship to real

faults, they can potentially reduce the cost of mutation testing without decreasing its utility

in assessing the strength and sensitivity of test suites. Our findings also offer researchers

insight that can be used to make recommendations on how to best use mutation testing,

how to change the implementation of existing mutation operators, or a starting position for

the development of new mutation operators. Again, we also make our data available for

other researchers to use as a basis for additional analysis.

1.4 PUBLICATIONS RESULTING FROM THE DISSERTATION

This dissertation has resulted in the following publications:

13

• Project 1 (Mapping)

– Alireza Salahirad, Gregory Gay, and Ehsan Mohammadi. “Mapping the struc-

ture and evolution of software testing research over the past three decades”.

Journal of Systems and Software (2022) [34]: 111518. Available at https:

//arxiv.org/abs/2109.04086.

• Project 2 (Automated Input Generation)

– Hussein Almulla, Alireza Salahirad, and Gregory Gay. “Using search-based

test generation to discover real faults in Guava”. International Symposium on

Search-Based Software Engineering. Springer, Cham, 2017 [35]. Available at

https://greg4cr.github.io/pdf/17guava.pdf.

– Alireza Salahirad, Hussein Almulla, and Gregory Gay. “Choosing the fitness

function for the job: Automated generation of test suites that detect real faults”.

Software Testing, Verification and Reliability 29.4-5 (2019): e1701 [36, 37].

Available at https://greg4cr.github.io/pdf/19fitness.pdf.

• Project 3 (Mutant-Fault Coupling)

– Alireza Salahirad, Gregory Gay. “How Closely are Common Mutation Opera-

tors Coupled to Real Faults?”. To be submitted, 2022.

1.5 STRUCTURE OF THIS DISSERTATION

The remainder of this dissertation is organized as follows:

• Chapter 2 presents a brief overview of the practice of software testing.

• Chapter 3 presents Project 1 (Mapping).

• Chapter 4 presents Project 2 (Automated Input Generation).

14

https://arxiv.org/abs/2109.04086
https://arxiv.org/abs/2109.04086
https://greg4cr.github.io/pdf/17guava.pdf
https://greg4cr.github.io/pdf/19fitness.pdf

• Chapter 5 presents Project 3 (Mutant-Fault Coupling).

• Chapter 6 presents an overall conclusion for this dissertation.

15

CHAPTER 2

BACKGROUND

2.1 SOFTWARE TESTING

Software testing is the process of identifying errors in software. In this process, the ex-

pectations of the software product are checked to ensure the product is free of defects [1].

Evaluation involves executing software and system components manually or using auto-

mated tools to evaluate one or more properties. Software testing is a major activity in

the verification and validation (V&V) process [38]. Verification determines whether the

software has been built according to its requirements. Verification ensures the quality of

software applications, designs, and architectures by checking that they match the develop-

ers’ own expectations of correctness. Validation is the process of assessing whether the

software meets the needs of its customers. During the process, the software is evaluated to

ensure it fulfills its desired use in an appropriate environment.

Introducing a new product to the market requires software testing as the penultimate

step. Costly issues can arise if proper testing is not performed. The consequences of

software bugs can be expensive or even dangerous, which is why testing is crucial. History

is full of examples of software bugs causing monetary and human loss. For example, a

$1.2 billion military satellite launch failed in April 1999 due to a software bug, making it

the costliest accident in history [39]. Many more examples can be found (e.g., [8]).

During software testing, a test suite containing one or more test cases is executed

against a system-under-test (SUT) [1]. A test case applies one or more input steps to

the SUT and checks the resulting actions taken by the SUT against an embedded set of

16

expectations. As the name implies, a test suite is a collection of test cases that are intended

to be used to test a particular set of behaviors in software. As well as detailed instructions

or goals for each collection of test cases, test suites often include information about the

system configuration to be used during testing [40].

2.2 COMPONENTS OF A TEST CASE

Each test case consists of the following components:

1. Setup: Setup steps create reference data and perform interactions needed to make

the SUT ready for the scenario that is the focus of the test case. Setup can be either

specific to a single test case or common for multiple test cases.

2. Test Input: The specific parameters to provide to a function of the SUT. Depending

on the granularity of testing, the input can range from method calls to API calls to

actions within a graphical interface.

3. Test Steps: Interactions where input is provided to the SUT and observations are

recorded. The steps perform tasks such as simulating a request, exchanging data,

evaluating responses, etc.

4. Test Oracle: The oracle determines the test results by comparing the system’s be-

havior to a set of embedded assumptions. An oracle can be a predefined specification

(e.g., an assertion), output from a past version, a model, or even manual inspection

by humans [2].

5. Teardown: Teardown is called after the invocation of each test method to perform

any necessary post-test actions like erasing test data generated during the test.

An example of a test case, written in the JUnit notation, is shown in Figure 2.1. The

test input is a string passed to the constructor of the TransformCase class, then a call to

17

@Test
public void testPrintMessage() {

String str = "Test Message";
TransformCase tCase = new TransformCase(str);
String upperCaseStr = str.toUpperCase();
assertEquals(upperCaseStr, tCase.getText());

}

Figure 2.1: Example of a unit test case written using the JUnit notation for Java.

Figure 2.2: Example of granularity levels of the tests to the left and testing phases to the
right. A: Unit Testing; B: Integration Testing; C: System Testing.

getText(). An assertion then checks whether the output matches the expected output—

an upper-case version of the input. The test steps apply the input, and the assertion repre-

sents the oracle, which expects the program output to match a pre-recorded value.

2.3 COMMON TESTING APPROACHES AND PRACTICES

As shown in Figure 2.2, testing can take place at multiple levels of granularity, including

unit, integration, and system-level testing [1]. During unit testing, the smallest stand-alone

elements of the software—generally single classes—are tested in isolation from the rest

of the system. During integration testing, module interactions are tested after they have

been examined individually during unit testing. Then, during system testing, the SUT is

tested through one of its defined interfaces—a programmable interface, a command-line

interface, a graphical user interface, or another external interface. System testing generally

involves the execution of test cases that verify the compliance of integrated and completed

18

software with their specifications [41].

Following system testing, multiple human-driven testing practices are common on the

final product, including acceptance testing, alpha/beta testing, and exploratory testing [38].

During acceptance testing, an application is assessed to determine if it meets the needs of

end users. This usually occurs when software is developed for a specific client. Volunteer

users try the product in alpha/beta testing and report any failures observed. In alpha testing,

software quality assurance and testing teams perform this type of internal testing with a

small pool of volunteers or clients. The alpha test is the last stage of testing the software

at the development site. Later, companies release a beta version to external users to gather

feedback. A type of software testing called exploratory testing involves testing the system

on the spot without creating test cases in advance. The idea behind exploratory testing

is to discover, investigate, and learn while coding, and it is used widely in agile software

development [42].

Test cases can be designed based on different sources of information. Generally, test

design can be based on either sources of information about the software’s intended behav-

ior (black-box, or requirements-based testing) or the source code (white-box, or structural

testing) [1]. Test design based on both is known as “grey-box testing”). A requirement-

based test design involves designing test cases based on test objectives and test conditions

derived from requirements or other documentation on program behavior. Requirements-

based testing can be further categorized into functional and non-functional testing. Testers

verify software functionality according to a set of specifications. The main concern dur-

ing functional testing is testing how the software behaves—its “functional correctness”.

In non-functional testing, non-functional requirements such as reliability, usability, and

performance are considered. Structural testing is a method of test design that utilizes the

internal design of the software to design test cases. Test cases target particular structural

elements of the code, such as if-statements or loops, and input is chosen to execute those

elements in particular manners recommended by coverage criteria. To implement struc-

19

tural testing, the test engineer must understand the code’s internal executions and how the

software is implemented.

Tests are often written after the code-under-test has been developed. However, the prac-

tice of test-driven development—which advocates for test creation before code development—

has become popular [43].

2.4 THE ROLE OF SOFTWARE TESTING IN THE SOFTWARE

DEVELOPMENT LIFE CYCLE

The software development life cycle (SDLC) defines a series of stages or activities that take

place with the aim of developing software that meets or exceeds customer expectations

and reaches completion within time and cost estimates. The typical SDLC includes the

following activities:

1. Planning: Analysis of requirements and planning are among software development’s

most critical aspects. An analysis of the client’s needs leads to the generation of the

scope document.

2. Design: Developers scrutinize the prepared software for compliance with all end-

user requirements during the design phase. In addition, if the project is technologi-

cally, practically, and financially feasible for the customer. After choosing the best

approach to design, the developer selects the appropriate programming languages

and technologies for the application.

3. Implementation: Software engineers write code according to analyzed require-

ments during this phase.

4. Testing: This stage aims to identify any errors, bugs, or flaws in the software.

20

5. Documentation: Every activity in the project is documented for future reference and

improvement.

6. Deployment and Maintenance: This stage aims to deploy the released tested soft-

ware and maintain it, which includes modifying several features over time, observing

the system performance, fixing bugs, and implementing requested changes.

These activities can be performed or arranged in a different manner depending on the

specific development process employed. The software development process consists of

breaking down the work into smaller, parallel, or sequential steps to improve the design

and product management [38].

The traditional waterfall model presents software development as a sequence of stages,

where requirements are specified, the system is designed, code is written, then tests are

developed. Each stage builds on the previous stage, and each stage must be completed

before the next stage. Completeness and thoroughness are prioritized.

Agile methods have become more popular over time, outside of safety-critical domains

such as avionics or medical devices. Agile software development refers to a set of method-

ologies based on iterative development, which involves cross-functional, self-organized

teams collaborating to develop requirements and solutions through early and continuous

delivery of small pieces of working software. In waterfall project management, a linear

flow is used. Alternatively, agile emphasizes iteration, and small cycles of specification,

design, development, and testing are performed. Agile processes are able to make rapid

adaptations to changing development conditions or requirements. However, their emphasis

on speed and iteration may not be appropriate when there is a high level of risk.

21

CHAPTER 3

MAPPING THE STRUCTURE AND EVOLUTION OF

SOFTWARE TESTING RESEARCH OVER THE PAST THREE

DECADES

Background: The field of software testing is growing and rapidly-evolving.

Aims: Based on keywords assigned to publications, we seek to identify predominant re-

search topics and understand how they are connected and have evolved.

Method: We apply co-word analysis to map the topology of testing research as a network

where author-assigned keywords are connected by edges indicating co-occurrence in pub-

lications. Keywords are clustered based on edge density and frequency of connection. We

examine the most popular keywords, summarize clusters into high-level research topics,

examine how topics connect, and examine how the field is changing.

Results: Testing research can be divided into 16 high-level topics and 18 subtopics. Cre-

ation guidance, automated test generation, evolution and maintenance, and test oracles

have particularly strong connections to other topics, highlighting their multidisciplinary

nature. Emerging keywords relate to web and mobile apps, machine learning, energy con-

sumption, automated program repair and test generation, while emerging connections have

formed between web apps, test oracles, and machine learning with many topics. Random

and requirements-based testing show potential decline.

Conclusions: Our observations, advice, and map data offer a deeper understanding of the

field and inspiration regarding challenges and connections to explore.

22

3.1 INTRODUCTION

Software testing refers to the application of input to a system to identify issues affecting its

correctness or its ability to deliver services [1]. While many quality assurance techniques

exist, testing remains the primary means of assessing software quality.

From nearly the beginning of software development as a discipline, researchers and

practitioners have reasoned about testing and quality assurance [44]. Today, testing is one

of the largest areas of software engineering research [3], and the field is rapidly evolving

as new software and hardware advances are introduced. It is useful, therefore, to under-

stand (a) what the predominant research topics are of the field, (b) how those topics are

connected, and (c), how the predominant topics have evolved over time.

“Science of science” describes a research methodology where text, author, and publica-

tion metadata are analyzed using quantitative bibliometric and scientometric techniques [45,

46]. Computational methods, such as text mining and citation analysis, map the topical

structure of a research field, enabling the discovery of invisible patterns and relationships

in the publications that form that field [47, 48].

We have applied co-word analysis to visualize and analyze the topology of 35 years of

software testing research, based on the author-assigned keywords of Scopus-indexed publi-

cations. Co-word analysis yields an undirected network where the nodes—author-assigned

keywords—represent targeted research concepts. Weighted edges connect keywords, based

on their co-occurrence on publications. Finally, keywords are grouped into clusters, repre-

senting densely-connected regions of the network.

Our analysis maps keywords into dense clusters, from which emerge high-level re-

search topics—themes that characterize each cluster—and makes clear the connections

between keywords and topics within and across clusters. It also characterizes the periods

in which low-level keywords and high-level topics have emerged—identifying emerging

research areas, as well as those where research interest has decreased. The goal of this

study is to provide both current and future researchers with perspectives about testing field,

23

built on a quantitative base. For researchers, a snapshot of important disciplinary trends can

provide valuable insight into the state of the field, suggest topics to explore, and identify

connections (or lack thereof) between keywords and topics that may reveal new insights.

Among others, we have made the following observations:

• Both the most common author-assigned keywords and the keywords that attract the

most citations, on average, tend to relate to automation, test creation and assessment

guidance, assessment of system quality, and cyber-physical systems.

• These keywords can be clustered into 16 topics: automated test generation, creation

guidance, evolution and maintenance, machine learning and predictive modeling,

model-based testing, GUI testing, processes and risk, random testing, reliability, re-

quirements, system testing, test automation, test case types, test oracles, verifica-

tion and program analysis, and web application testing. Below these lie 18 more

subtopics.

• Creation guidance, automated test generation, evolution and maintenance, and test

oracles are particularly multidisciplinary topics, with dense connections to many

other topics. Twenty keywords connect topics, reflecting multidisciplinary concepts,

common test activities, and test creation information.

• Emerging research particularly relates to web and mobile applications, ML and AI—

including autonomous vehicles—energy consumption, automated program repair, or

fuzzing and search-based test generation. Web applications require targeted testing

approaches and practices, leading to emerging connections to many topics. Test

oracles are also a rapidly-evolving topic with many emerging connections. ML has

emerging potential to support automation.

• Research related to random and requirements-based testing may be in decline.

24

We believe that these insights—and the rich underlying networks of keywords—can

inspire both current and future researchers in the field of software testing. We additionally

make our data available so that others may make their own observations or broaden the

horizons of their own research.1

The remainder of this publication is structured as follows. In Section 3.2, we discuss

background concepts and related work. In Section 3.3, we explain our methodology. Sec-

tion 3.4 answers our research questions. In Section 3.5, we provide advice on the use of

this data, as well as exploratory analyses related to under-explored and missing connec-

tions. Section 3.6 details threats to validity. In Section 3.7, we offer our conclusions.

3.2 BACKGROUND AND RELATED WORK

Bibliometrics and Co-Word Analysis

Bibliometric analysis is “the application of mathematical and statistical methods to books

and other means of communication” [49]. Bibliometric studies perform quantitative anal-

ysis of publications and associated metadata—e.g., keywords, authors, institutions, and

citations—to identify themes and patterns within a research field [50]. Such analysis is of-

ten combined with mapping techniques to visualize hidden structures in the metadata of a

particular field [51]. The most common analysis methods used include citation-based, co-

word (also known as keyword co-occurrence), and co-authorship analysis [52]. We focus

on co-word analysis.

In co-word analysis, natural language processing and text mining techniques are used

to discover the most meaningful noun phrases in a collection of documents and visualize

their meaning in a two-dimensional map [53]. In this map, co-occurring terms are con-

nected, with “closer” placement resulting from stronger co-occurrence. Co-word analysis

is generally based on the number of research publications where two keywords are used

1A package containing our data is available at https://doi.org/10.5281/zenodo.7091926.

25

https://doi.org/10.5281/zenodo.7091926

Table 3.1: Comparison of our study to other related work, based on the research field,
methodologies, and analyses performed.

Topic This Study [62] [63] [64–67] [68, 69] [70] [71] [4] [5] [3]
Field Testing All SE All SE All SE All SE Sci. SW SBSE Testing Testing Testing
Method Quan., Qual. Quan. Quan. Quan. Quan. Quan., Qual. Quan. Qual. Qual. Qual.
Research Topics 4 4 6 6 6 4 6 6 4 4

Topic Connections 4 6 6 6 6 6 6 6 6 6

Keyword Clustering 4 6 6 6 6 6 6 6 6 6

Keyword Connections 4 6 6 6 6 6 6 6 6 6

Popular Keywords 4 6 6 6 6 6 6 6 6 6

Emerging Topics 4 6 6 6 6 6 6 4 4 4

Declining Topics 4 6 6 6 6 6 6 6 6 6

Underexplored Con.s 4 6 6 6 6 6 6 6 6 6

Potential Connections 4 6 6 6 6 6 6 6 6 6

Popular Papers 6 6 6 6 6 6 4 6 6 6

Top Authors 6 6 6 4 4 4 4 6 6 6

Author Location 6 4 4 4 4 4 6 6 6 6

Pub. Venue 6 6 4 6 6 4 4 4 6 6

together to describe the research performed [54]. Because keywords succinctly capture the

context of a publication, co-word analysis is an effective method of revealing connections

between publications [55] and identifying trends in a field [48].

Scholars have previously used co-word analysis to depict the structure of fields includ-

ing renewable energy [56], global warming [57], nanoscience and nanotechnology [58],

human computer interaction [59], and big data [60,61]. Our study is the first to apply such

techniques to software testing.

Bibliometrics and Software Engineering

Our study is the first to apply scientometric or bibliometric techniques to the software test-

ing field. However, bibliometric techniques have been applied to other aspects of software

engineering (SE). In Table 3.1, we contrast our study to related work. Below, we further

elaborate on the specific studies. In general, we focus on analysis of research topics and

the connections between topics, and do not analyze authorship trends. Our focus and cho-

sen analysis methods enable a deep characterization of the connections between topics and

low-level publication keywords in software testing.

Garousi and Mäntylä performed a bibliometric analysis of more than 70,000 general

SE publications, finding that the most popular research topics were web applications, mo-

26

bile and cloud computing, industrial case studies, source code, and automated test gener-

ation [62]. Our identified research topics include all of these except source code—which

is subsumed by other topics—and case studies. In our study, case studies would be cat-

egorized based on the problems they address. They also found that a small number of

large countries produce the majority of publications, while small European countries are

proportionally the most active in the field.

Garousi and Fernandes used the same set of publications to assess questions related

to quantity versus the impact of SE research [63]. They broadly found that journal arti-

cles have more impact than conference publications and that publications from English-

speaking researchers have more visibility and impact. Both studies also used Scopus to

gather publications, but had a different focus from our study (all of “software”, rather than

software testing). The studies also differ in their analysis methods. Rather than co-word

analysis, the authors of both studies used citation-based analyses. Co-word analysis allows

examination of the connections between topics.

Karanatsiou et al. targeted SE publications from 2010-2017 for analysis, identifying

top institutions and scholars from this period [64]. Wong et al. did the same for the pe-

riods of 2001-2005 [65], 2002-2006 [66], and 2003-2007 and 2004-2008 [67]. Garousi

et al. also performed bibliometric analysis, specifically, on the SE research communities

in Canada [68] and Turkey [69]. These studies differ from our own in their focus on the

authors of publications, rather than research topics.

Farhoodi et al. reviewed literature related to scientific software, finding that many

SE techniques are being applied in the field and that there is still a need to explore the

usefulness of specific techniques in this context [70]. Their focus differs in both the analysis

techniques, and in their focus on a specific software domain. In Section 3.4, we do observe

the emergence of testing research related to scientific software.

De Freitas and de Souza performed a bibliometric analysis on the first ten years of

research in search-based software engineering—the use of optimization techniques to au-

27

tomate tasks [71]. They identified the most cited papers, most prolific authors, and ana-

lyzed the distribution of the SBSE publications among conference proceedings, journals,

and books. They described networks of collaborations and distributions of publications in

various venues and identified the distribution of the number of works published by authors.

Their study differs from ours in its focus on a particular research domain, as well as its

focus on authors and venues over research topics.

Other Related Work

Purely qualitative analyses of testing research have also been performed. In Table 3.1, we

contrast our study to those discussed below. None of these studies perform a full sum-

marization or mapping of the testing field. Instead, they point out research areas that are

emerging or that have had a major impact. The topics they discuss tend to form a subset

of those in our characterization of the field. In addition, our quantitative analysis methods

enable elaborate analyses of the field and the connections between topics not explored in

these studies.

Harrold, in 2000, examined past research to identify areas of focus for future re-

search [4]. These areas include improvements in integration testing, use of pre-code ar-

tifacts (e.g., specifications) to plan and implement testing activities, development of tools

for estimating, predicting, and performing testing on evolving systems, and process im-

provements. Many of these predictions are now established topics in our map, such as

black box testing, evolution and maintenance, and processes and risk.

Bertolino provided a summary of testing research in 2007, and identified achievements

in the testing process, reliability testing, protocol testing, test criteria, object-oriented test-

ing, and component-based testing as major advances [5]. She identified outstanding chal-

lenges related to testing education, testing patterns, cost of testing, controlled evolution,

leveraging users, test input and oracle generation, model-based testing, and testing of spe-

cialized domains, among others. Many of her achievements and challenges appear in our

28

map as either keywords or full research topics.

Orso and Rothermel assessed research performed in the field between 2000-2014, ask-

ing colleagues what they believed were the most significant contributions and the greatest

challenges and opportunities [3]. The research contributions were categorized into the

areas of automated test generation, testing strategies, regression testing, and support for

empirical publications. The first three of those areas reflect research topics in our map.

Challenges identified included better testing of modern, real-world systems, generation of

test oracles, analysis of probabilistic programs, testing non-functional properties (e.g., per-

formance), testing of specialized domains (e.g., mobile), and leveraging of the cloud and

crowd. Some of these challenges—e.g., mobile and performance testing—are now research

topics in our map.

3.3 METHODOLOGY

Software testing is one of the most popular and fast-growing areas of software engineering

research [3]. Although there are many surveys, mapping studies, and systematic literature

reviews on individual topics, there is a lack of quantitative examination of the field as a

whole—mapping research topics and their connections.

Our primary goal is to provide and analyze a “map” of the field of software testing,

based on the many distinct research keywords that form the field and the connections be-

tween these keywords, linked through research publications. Our mapping is based on

a quantitative method, co-word analysis, that places co-occurring phrases—in our case,

author-supplied keywords—in a network. Within this network, keywords appear as nodes,

with weighted edges indicating how often keywords are linked in publications. Sets of

strongly co-occurring keywords form distinct clusters. This network structure offers a

quantitative method to characterize the research field, which can be used as the basis of

both qualitative and quantitative analyses.

29

Using this map, we examine how keywords are linked into clusters, characterize clus-

ters using high-level research topics, examine the connections between keywords within

and across clusters, and examine how interest in particular keywords and topics have

changed over time. Specifically, we address the following research questions:

RQ1: What are the most popular individual keywords in software testing, as indicated by

the number of publications or citations?

RQ2: What topics characterize the keywords connected within each cluster in the map?

RQ3: How are keywords and research topics most strongly linked across clusters?

RQ4: What keywords, topics, and connections have emerged or grown in popularity over

the past five years?

RQ5: Which keywords and topics have shown the greatest decline in interest?

We begin, in RQ1, by examining the individual keywords targeted by authors. We

are interested in identifying which keywords have been selected most often, and which

receive the most citations per publication on average. We then move into analyses and

characterization of the connections between keywords.

The goal of RQ2 is to summarize each cluster. Keywords within a single cluster are

highly interconnected, providing a basis for identifying research topics that encapsulate

connected keywords. A topic as a keyword or phrase that connects multiple keywords. For

example, “automated test generation” is not just a single keyword, but also a topic that

connects other keywords such as “ant colony optimization” and “genetic algorithm” within

the same cluster.2 RQ3, then, focuses on the connections across clusters, and characterizes

how keywords and research topics connect.

RQ4 and RQ5 focus on an additional dimension, the average age of publications asso-

ciated with each keyword. In RQ4, we identify keywords, topics, and connections between

2Both are algorithms often used to generate tests, linking all three keywords as part of the same topic.

30

keywords and topics that have emerged or grown in popularity in the past five years. In

RQ5, we examine keywords and topics with the oldest average date of publication—those

with a potential decline in interest. These emerging and declining concepts offer insight

into how the field is evolving.

To answer these questions, we (1) collected publications related to software testing

(Section 3.3), (2) constructed a map, using co-word analysis, of clusters of connected key-

words (Section 3.3), (3) removed unrelated or redundant topics (Section 3.3), and (4), ana-

lyzed the map and underlying data (Section 3.3).

Data Collection

To gain an inclusive overview of software testing, we gathered publications from the Sco-

pus database. Scopus is a comprehensive meta-database, covering many conference and

journal publication venues. We retrieved all publications returned for the search term “soft-

ware testing” on September 26, 2020. Only publications published in English were used.

This collection included 57,233 publications.

Following a manual cleaning stage (see Section 3.3), 49,802 publications were in-

cluded, including 36,774 conference papers, 11,640 journal articles, and 1,388 other ar-

ticles. Figure 3.1 gives an overview of the number of publications published per year. Our

aim was to capture a representative sample of the field, not all possible articles on software

testing. When we quote specific numbers of publications, these numbers should not be

taken as absolutes, but as the approximate commonality of a topic.

For each study, we gathered the title, author data (names, affiliations, locations), key-

words, publication date, venue metadata (e.g., publisher, venue, volume, page numbers),

number of citations, DOI, link, and language.

31

Year

N
o

of
 P

ub
lic

at
io

ns

0

1000

2000

3000

4000

5000

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

Figure 3.1: Number of publications per year retrieved from Scopus.

Map Construction

To map testing research, we used co-word analysis [53]. Co-word analysis is a natural

language processing method that extracts important phrases from a textual dataset and

identifies their relationships in a network based on the number of times that two terms co-

occur together in all documents. This technique assumes that terms that co-occur more

often are more strongly related to each other. As a result, all identified terms are classified

into clusters using co-occurrence to measure term similarity and depict the extracted terms

and their relationship in a two-dimensional visualization.

We used VOSviewer (Visualization of Similarities Viewer) to analyze the collected

data. VOSviewer is a tool that creates maps based on network data [72]. These maps

provide visualizations that allow researchers to explore items and relationships. There are

various methods for establishing connections between items in these networks, including

co-authorship, co-occurrence, citation, bibliographic coupling, and co-citation.

We tested title, abstracts, index keywords, and author-supplied keywords as the unit of

32

analysis and found that author-supplied keywords are the most promising way to identify

research topics and their connections.

In this analysis, we considered 20 as the minimum threshold of keyword occurrences.

This threshold places a minimal barrier before a keyword is “important” enough to incorpo-

rate. Keywords appearing in fewer than 20 publications were omitted. This threshold was

chosen after experimentation as a way to control the level of noise and difficulty of interpre-

tation of the dataset and map, while still avoiding potential loss of interesting and emerg-

ing topics. We then iteratively removed keywords that were unrelated to software testing

(e.g., publications that used software as part of classroom testing) and merged redundant

keywords (e.g., “automated test generation” and “automated test case generation”)—see

Section 3.3—leaving a final set of 406 keywords.

VOSviewer produces maps based on a co-occurrence matrix—a two-dimensional ma-

trix where each column and row represents an item—a keyword, in our case–and each

cell indicates the number of times two keywords co-occur. This map construction con-

sists of three steps. In the first step, a similarity matrix is created from the co-occurrence

matrix. A map is then formed by applying the VOS mapping technique to the similarity

matrix. Finally, the map is translated, rotated, and reflected. We provide technical details

on VOSviewer’s algorithm in 3.8.

In VOSviewer, a map is visualized in three ways: The network visualization, the over-

lay visualization, and the density visualization [73]. We have used the network and overlay

visualizations in this study, as well as the raw underlying data.

The network visualization is the standard view, displaying clusters of related items,

connected with edges based on their co-occurrence. Figure 3.3 shows the full network

visualization that is produced. In Figure 3.2, we highlight a small portion to explain how

to interpret the map data.

In this map, each node is a keyword. Figure 3.2 focuses on the keyword “software

reliability”. All keywords with a sufficiently strong connection to the targeted keyword are

33

Figure 3.2: Topics associated with software reliability

highlighted, while unrelated keywords are made partially transparent. The size of a node is

based on the number of occurrences of the keyword. In Figure 3.2, software reliability is

targeted in approximately twice as many publications as “optimization”.

Keywords are organized into clusters according to the process described above. Indi-

vidual keywords can be linked across different clusters. However, the keywords within a

cluster tend to be very closely linked with several other keywords within the same cluster.

The color of the node indicates its cluster. In Figure 3.2, software reliability is marked in

light blue, and other nodes with the same color belong to the same cluster (e.g., “software

reliability growth model”).

Keywords that co-occur in publications are illustrated with an undirected edge. The

thickness of the edge indicates how many publications have targeted both keywords. In

Figure 3.2, software reliability and software reliability growth model share a stronger as-

34

sociation (co-occurring in 35 publications) than software reliability with coverage criteria

(5 publications). A user-controlled threshold determines the minimum connection strength

for visible edges. We used the default, four publications, to control the level of noise when

using the visualization for interpretation. When performing quantitative analyses, we con-

sider all connections, regardless of strength.

The overlay visualization uses colors to indicate certain properties of a node, like the

average number of citations that publications targeting a keyword have received, instead

of using colors to show the cluster. In our case, we use this visualization to analyze the

average age of publications targeting a keyword.

Data Cleanup

The initial data included keywords that were either redundant or irrelevant:

• There are a small number of keywords unrelated to software testing, as the initial

sample was gathered using a broad search string. For example, there were key-

words related to software-based student examination or software-based testing of

hardware. Additional keywords are either too generic to be considered as specific re-

search concepts—e.g., “software testing”—or are research-related terms—e.g., “case

study”, “empirical study”.

• Multiple keywords can refer to the same concept, and can be streamlined into a single

keyword—e.g., “automated test generation” and “automated test case generation”.

The same keyword can appear in singular and plural form—e.g., “test case” and “test

cases”. There are also American and British English spellings (e.g., “prioritisation”

and “prioritization”).

To handle irrelevant and redundant keywords, we performed an iterative process. The

authors discussed each keyword and came to a consensus. We removed irrelevant keywords

from the map, as well as those considered too broad or generic. We removed publications

35

targeting only those keywords, but retained publications that had additional keywords that

remained in our set.

We merged redundant keywords. In performing this process, we limited merging to

cases where a redundancy was obvious—primarily pluralization and British/American En-

glish. This was to limit the risk of biasing the underlying data that we are using to draw

conclusions. We discussed each keyword and its alternatives, and came to a consensus on

which keyword to use in all cases. We then replaced the merged keywords with the final

keyword for each study and recreated the maps. We performed this process multiple times

until we were satisfied that redundant keywords did not remain.

Data Analyses

RQ1 (Popular Keywords): To identify the most common keywords, we sort the keywords

by the number of publications that targeted that keyword, and examine those that are tar-

geted in ≥ 0.50% of publications, or ≥ 250 publications. This threshold was chosen by

examining the drop-off in significance over the ten most popular keywords and by consid-

ering the trade-off between clarity and giving a thorough impression of the testing field. A

total of 20 keywords fall above this threshold (4.93% of keywords).

We also have examined which keywords have received the most citations per publica-

tion, on average. Here, we examine all keywords with an average number of citations≥ 20.

This threshold yields 23 keywords, and was chosen because it yields a similar quantity to

the number of most common keywords, enabling clearer comparison.

RQ2 (Characterization of Clusters into Topics): We perform a qualitative characteri-

zation to summarize the field of software testing, supported by the clusters. We perform

this summarization by assigning a small number of high-level “topics” to each cluster—

keywords or phrases that connect multiple keywords. We have chosen these topics based

on our interpretation of the keywords within each cluster. For example, “performance

testing” is a keyword that connects, e.g., “load testing”, “cloud computing”, and “cloud

36

testing”.3 Because that keyword summarizes many other keywords and connections within

that cluster, “performance testing” can also serve as a topic that describes the cluster as a

whole.

Some clusters can be summarized by a single topic, while others represent multiple

topics. There is no case where all keywords are connected to all other keywords in the same

cluster. Often, two keywords are only indirectly connected through other keywords—e.g.,

“random testing” is connected to “reliability” and “adaptive random testing”, but the latter

two are not directly connected in our sample.

We often observed small sub-groupings of keywords within a topic. In such cases, we

assign both a topic and a subtopic. For example, the topic of test creation guidance can be

broken into four distinct types of creation guidance. A keyword can also belong to multiple

topics or subtopics, linking topics within a cluster.

To assign topics, all authors examined the keywords within a cluster. We then grouped

keywords into one or more groupings. To be grouped, keywords must have a direct or

indirect (via a shared keyword) edge. This grouping was made based on our experience,

literature, and the map data. We grouped keywords if they were used to perform the same

activity, were a technology used to perform an activity, were a source of data for an activity,

or had some other clear shared purpose. The proposed groupings were discussed until a

consensus could be reached. We then identified either a keyword or concept that charac-

terized each grouping. We discussed the options and reached a consensus on the topic to

assign. In cases where a grouping could be split into smaller, but still distinct, groupings,

subtopics were identified.

As all keywords must be grouped into a cluster, there are situations where a small

number of individual keywords do not relate to the topics assigned to that cluster. We have

tried to select topics that are as inclusive as possible.

RQ3 (Connections Across Clusters): In this question, we are interested in characterizing

3“load testing” and “cloud testing” are forms of performance testing that target “cloud computing”.

37

how keywords and topics are connected across clusters. To do so, we have examined two

concepts—measurement of the density of connections between clusters, and the identifica-

tion of keywords that are connected to many other keywords.

Connection Density: We can examine how clusters are connected by identifying the cases

where the largest percentage of possible connections exist between keywords in two clus-

ters, A and B:

(Number of Connections Between Keywords in Clusters A and B)
(Number of Keywords in Cluster A) ∗ (Number of Keywords in Cluster B) (3.1)

A measurement of 1.00 means that all keywords in Cluster A are connected to all keywords

in Cluster B.4

To identify the most densely interconnected clusters, we measured the connection den-

sity between all pairs of clusters. We then focus on the connections with a density ≥ 0.12

(where at least 12% of all possible connections exist). This threshold was chosen after

examination of the measurements—23 of the 45 pairs of clusters (50%) have a connection

density above this threshold.

Connecting Keywords: Some keywords are singular research concepts, while others serve

as “connecting keywords” that link many keywords together. We further characterize con-

nections across clusters by identifying these connecting keywords.

To identify these keywords, we measure the number of keywords that each keyword co-

occurs with outside of the cluster where that keyword is located. We analyze all keywords

connected to ≥ 100 keywords in external clusters. This threshold was chosen as it yielded

the same number of keywords as the threshold for the most popular keyword in RQ1 (20

keywords), enabling direct comparison.

RQ4 (Emerging Keywords, Topics, and Connections): In this question, we are interested

in identifying emerging trends in testing research. We can do this by examining individual

keywords, research topics, and connections between keywords.

4We employ the density because different clusters contain different numbers of keywords. This measure-
ment offers a fairer basis of comparison than the raw number of connections between pairs of clusters.

38

We have classified any keywords with an average date of publication later than June

2015 as our set of emerging keywords. This captures an approximate five year period

ending with the date we took our sample of publications. A recent date implies one of two

things about a keyword: (1) this is a new keyword, or (2), this is a older keyword that has

received more attention in recent years.

We are also interested in examining the connections between keywords and topics, as

related to the set of emerging keywords. There are a total of 2,029 connections where at

least one of the connected keywords is an emerging keyword, of which 1,412 are cross-

cluster connections and 617 are within-cluster connections. To focus our analysis, we

focus on the cross-cluster connections, allowing us to also examine and characterize the

emerging connections between topics.

To identify a subset of those 1,412 connections for further exploration, we use the

cross-cluster connection density to identify the pairs of clusters with the highest proportion

of emerging connections. We have selected the ten pairs of clusters with the highest pro-

portion of emerging connections for further examination, corresponding to a threshold of

≥ 3.5% of all connections between the two clusters consisting of emerging connections.

For each pair of clusters, we group the connections by topic, then examine how the con-

nection between these two topics is being shaped by the emerging connections between

low-level keywords.

RQ5 (Declining Keywords and Topics): We address this question following a similar pro-

cess to RQ4, based on oldest average dates of publication. 66 keywords met the threshold

in RQ4. Therefore, we also examine the 66 keywords with the oldest dates of publication.

This corresponds to a period from November 2001–May 2011.

These keywords represent concepts that are no longer receiving as much interest. This

does not imply with certainty that such concepts are no longer relevant, or that they cor-

respond to “solved” challenges. A keyword could represent (a) a topic or concept in de-

cline (e.g., an older technology or approach that has been potentially superseded), (b) a

39

well-established topic or concept with steady—but not growing—activity, or (c), a topic or

concept that had a “boom” period in the past and a lower level of activity in recent years.

Keywords may experience a resurgence. However, they have reduced relevancy to current

development or testing trends, challenges, and research topics.

Before stating that a particular topic is in decline, we compare the list of keywords

and topics with those in RQ4. We say that a topic is declining in interest if both (a) it has

several keywords with older average publication dates, and (b), lacks keywords with recent

average dates. By examining both the oldest and newest keywords, we can more carefully

discuss whether a topic is potentially in decline.

3.4 RESULTS AND DISCUSSION

Our analyses are based on 406 keywords, which are mapped into 11 clusters. We analyze

this map by identifying the most popular keywords by occurrences and citations (Sec-

tion 3.4) and the overarching research topics of each cluster (Section 3.4), examining how

keywords and topics are linked across clusters (Section 3.4), and exploring keywords, top-

ics, and connections that are emerging or in potential decline (Sections 3.4-3.4). We also

offer advice and further exploratory analyses in Section 3.5.

A visualization of the keyword map is shown in Figure 3.3. An interactive version of

this map can be accessed at https:

//greg4cr.github.io/other/2021-TestingTrends/topics.html

or in the replication package.

40

https://greg4cr.github.io/other/2021-TestingTrends/topics.html
https://greg4cr.github.io/other/2021-TestingTrends/topics.html

Figure 3.3: A visualization of the connections between publication keywords.

RQ1: Popular Keywords

We begin by identifying the most popular individual keywords, sorted by the number of

publications (and percentage of the total sample). These keywords are listed in Table 3.2,

along with a description, percentage of the sample, average age of publication (rounded to

the year), and average number of citations per publication.

These keywords are those that the authors considered important enough to note as one

of the core focuses of their work. There are certainly more than 326 publications in this

sample that use machine learning, for example. However, the authors may not have listed

41

Table 3.2: Keywords targeted in at least 0.50% of publications (≥ 250 publications). Each
keyword is named and described, and the number of publications where the keyword is
targeted, percentage of the sample, average date of publication, and average number of
citations per study are included.

Keyword # Pubs. Percent Citations Date Description
Automated Test Generation 1068 2.14% 16.36 2013 The use of tools to generate full or partial test cases [11].

Regression Testing 701 1.41% 14.03 2014
A practice where tests are re-executed when code changes to
ensure that working code operates correctly [74].

Mutation Testing 596 1.20% 14.83 2014
A practice where synthetic faults are seeded into systems to
assess the sensitivity of tests [75].

Test Automation 567 1.14% 9.71 2014 Tools and practices that enable automation of test execution [76].

Model-based Testing 552 1.11% 8.38 2014
Use of behavioral models to analyze the system, to design or
generate test cases, or to judge results of testing [11].

Genetic Algorithm 519 1.10% 10.10 2014
An optimization algorithm that models how populations evolve over
time [77]. Often used to automate tasks.

Fault Injection 477 0.96% 6.12 2015 Injection of faults into a system for analysis [78].

Software Quality 445 0.89% 8.14 2012
Means to define, measure, and assure the quality of software [79].
Encompasses correctness and quality (e.g., performance or scalability).

Simulation 442 0.89% 4.53 2013
Simulated execution of a system. May encompass how to simulate [80],
testing in simulation [81], or obtaining realistic results [82].

Software Reliability 440 0.88% 12.71 2010
Means to define, measure, and assess the how quality changes
over time [83].

Test Case Prioritization 418 0.84% 17.42 2015 Automated techniques that select a subset of tests for execution [84].

Verification 366 0.73% 16.58 2012
Techniques that assess whether software possesses a property of interest,
often using formal specifications [1]. Testing is one verification technique.

Coverage Criteria 362 0.73% 13.21 2012
Measurements used to assess the strength of a test suite based on how
tests exercise code elements [85].

Combinatorial Testing 349 0.70% 14.35 2015
A technique for generating or selecting test input, based on coverage
of representative values [86].

Machine Learning 326 0.65% 8.32 2017
Algorithms that make inferences from patterns detected in data. Used in,
e.g., automation [2], predictive modeling [87], or evaluation [88].

Reliability 306 0.62% 13.95 2013
Often a synonym for software quality, but can also refer to hardware
quality or a blend of hardware/software.

Symbolic Execution 295 0.59% 14.34 2014
Analyses where software is executed in an abstract form where
one symbolic input matches many real inputs [89].

Embedded Software 268 0.54% 4.86 2014 Complex self-contained hardware and software systems [90].

Neural Networks 266 0.53% 8.53 2015
Network structures inspired by the human brain, used in
machine learning [91].

Security 265 0.52% 7.60 2015
Practices, tools, and techniques intended to prevent misuse of a system’s
capabilities or data [92].

machine learning as a keyword. Therefore, these keywords should be interpreted as the

research concepts the authors felt were the most important and relevant.

RQ1 (Popular Keywords): The most common keywords tend to relate to

automation, test creation and assessment guidance, assessment of system quality, and

cyber-physical systems.

Automation offers promise for increasing the quality and efficiency of testing, and

many keywords (e.g., automated test generation, test automation) relate to automation. Ad-

ditionally, genetic algorithms and symbolic execution often enable automation. Test case

42

Table 3.3: Keywords that received more than 20 citations on average per publication, with
description, average number of citations, number of publications where the keyword is
targeted, and average date of publication.

Keyword Citations # Pubs. Date Description
Testing Strategies 55.50 26 2010 Guiding principles for test design and the testing process [93].

Testing and Debugging 48.48 21 2013
Debugging practices isolate and diagnose faults in the source code [94].
This keyword relates to the combination of testing and debugging techniques.

Partition Testing 35.59 54 2005
Test input selection based on division of the system’s input domain
into partitions, based on a set of rules [95].

Fault-based Testing 34.48 33 2005
Use of pre-specified faults in a program to create and evaluate test
suites [96]. Mutation testing is an automated form of fault-based testing.

Constraints 33.76 25 2011
Conditions that must be met to accomplish a goal, e.g., for input to take
a particular path in a program [89].

Test Suite Minimization 32.97 39 2014 Process of reducing test suite size by eliminating redundant test cases [97].
Random Testing 32.88 218 2011 Testing software by generating random input [98].
Software Fault Prediction 31.82 38 2016 Prediction of fault-prone code using software metrics and fault metadata [99].
Covering Arrays 28.50 96 2013 The set of test specifications selected during combinatorial testing [86].

Compiler Testing 27.28 32 2014
Specialized testing practices for compilers, e.g., the selection of input
programs to ensure the compiler conforms to its target language’s
semantics and syntax [100].

Object Oriented Modeling 25.75 20 2004 Model formats based on object-oriented design and object interaction [101]

Evolutionary Testing 23.93 46 2011
The use of evolutionary algorithms (e.g., genetic algorithms) to generate test
input or automate other tasks [11].

Test Design 23.42 33 2013 The process of defining test cases [102].

Regression Test Selection 23.40 58 2014
Practices to test cases for use during regression testing (e.g., only execute
tests for changed code) [103].

Monte Carlo 22.78 23 2015
A family of algorithms used for optimization, numeric integration, and
probability assessment [104].

Alloy 22.18 22 2014 Language for expressing complex behavior and constraints in software [105].
Automated Debugging 21.76 38 2012 Automated debugging techniques [106].

Adaptive Random Testing 21.51 95 2012
Random testing techniques designed to ensure input is evenly spread over
the input domain [107].

Data Flow Testing 21.47 43 2011
Testing based on the flow of information between variable definitions
and usages [108].

Data Flow 21.42 36 2008 Metrics for tracking the flow of information [108]

Software Standards 20.92 26 2009
Constraints, rules, and requirements that software or testing is expected
to meet [109].

Synchronization 20.07 29 2015
Practices for ensuring components are able to coordinate when completing
tasks in parallel [110].

Sensitivity Analysis 20.00 36 2012
Study of how uncertainty in system output can be traced to sources of
uncertainty in its inputs [111].

prioritization enables efficient test execution, and regression testing is a process performed

as part of a test execution pipeline. Combinatorial testing suggests an important subset of

test input to apply, often as part of automated generation. Models are often used to generate

test input. Machine learning, including neural networks, supports prediction tasks related

to automation.

Many of the remaining keywords relate to assessments of testing effectiveness or test

creation guidance, including mutation testing, fault injection, and coverage criteria. Other

keywords (software quality, reliability, verification, security) relate to the overall quality of

the system, including its correctness, performance, and security. Finally, embedded soft-

43

ware and simulation relate to systems combining software and hardware elements, which

have high safety demands and unique testing activities [82].

The average number of publications per keyword is 75 (0.15%)—far below the number

of publications targeting the top 20 keywords, indicating their importance. It is interesting

that the most popular keyword is only a target of 2.14% of the sample, and that only five

keywords are targets of over 1% of the sample. We believe this is an indication of the

breadth of testing research. There are many challenges associated with testing, from test

creation to automation, execution, assessment, and process. There are many ways to ad-

dress each challenge, including algorithms and tools, human-driven activities, and studies

of those working in the field. Even the median—40 publications—is a reasonable body of

work on any single concept.

We can compare the most-common keywords with the most-cited. In Table 3.3, we

identify keywords that receive, on average, the most citations per publication.

RQ1 (Popular Keywords): The most-cited keywords also relate to automation, test

creation and assessment guidance, and assessment of system quality.

Some of these keywords are linked to the most common keywords—fault-based test-

ing, test suite minimization, covering arrays, partition testing, evolutionary testing, and

regression test selection, in particular. However, no keywords appear in both lists.

However, both the most common and most-cited keywords share common themes.

Many of the keywords relate to automation (e.g., test suite minimization, random test-

ing), test creation and assessment (e.g., testing strategies, data flow testing), or quality

assessment (e.g., software fault prediction, sensitivity analysis). For example, Figure 3.4

illustrates that many keywords associated with automated test generation receive a rela-

tively high number of citations on average.

44

Figure 3.4: A subset of keywords connected to automated test generation, colored by the
average number of citations. Nodes in yellow attract a high number of citations (≥ 14).

In general, the keywords in Table 3.3 are associated with a relatively small number

of publications. They also have an older average date of publication, approximately 2010

versus 2014, allowing more time to attract citations. We hypothesize that these particular

keywords (a) are related to themes that attract attention, and (b) are attached to a small set

of publications containing a subset of particularly influential publications.

RQ2: Characterization of Clusters into Topics

By examining the connections between keywords, we can understand the context in which

keywords form, grow, and thrive. Therefore, we have identified research topics character-

izing the keyword clusters. These topics are detailed in Tables 3.4-3.5. We note a cluster ID

assigned by VOSviewer, the number of keywords in that cluster, the density of connections

between keywords within each cluster (the ratio of the number of existing within-cluster

45

connections to the total possible within-cluster connections,
(

Keywords
2

)
), and the topics and

Software Testing

Test Oracles

Model-Based
Testing

Web Application
Testing

GUI Testing

Evolution and
Maintenance

Regression
Testing

Test Prioritization

Automated Test
Generation

Software Reliability

Random Testing

Performance
Testing

Creation Guidance

White-Box Testing

Black-Box Testing

Mutation Testing

Security Testing

Automated
Program Repair

Verification and
Program Analysis

Concurrency

Fault Injection

Applications of ML

Data Used for ML

ML Techniques

ML and Predictive
Modeling

Test Case Types

Test Automation

Processes and
Risk

Model-Driven
Development

Requirements

System Testing

Quality Attributes

Embedded System
Testing

Other Specialized
Domains and Tech.

Mobile Testing

Figure 3.5: Identified research topics (middle layer) and subtopics (final layer), colored by
cluster.

46

Table 3.4: An overview of clusters 4 - 11, including the cluster ID from VOSViewer, the
number of keywords, inter-cluster connection density (percentage of possible connections
between keywords), identified topics and subtopics, example keywords for each topic, and
a brief description of each topic. Clusters are ordered from smallest to largest.

Cluster Num Density Topics and Example Keywords Description
Keywords (Subtopics)

11 4 100% Test Oracles test oracle,
metamorphic relation

Test component that issues a verdict of correctness [2].

10 16 39%
Model-Based
Testing

model transformation,
timed automata

Use of behavioral models to analyze the system,
to design or generate test cases, or as oracles [11].

9 18 31%
Web Testing web applications,

javascript
Testing techniques, tools, and activities focused on
verification of web-based applications [112].

GUI Testing graphical user interface,
finite state machine

Test design or generation techniques focused on
exercising a system through its graphical interface [113].

8 19 47%

Evolution and
Maintenance

program comprehension,
change impact analysis

Practices for controlling and maintaining quality
as the system changes over time [114].

(Regression Testing)
regression testing,
regression test selection

A practice where tests are re-executed when code changes
to ensure that working code operates correctly [74].

(Test Prioritization)
test case prioritization,
test case selection

Automated techniques that select a subset of tests
for execution [84].

7 28 48%

Automated Test
Generation

genetic algorithms,
branch coverage

The use of tools to generate full or partial test cases [11].

(Automated Program
Repair)

fault localization,
genetic programming

Automated generation of patches for faulty programs [115].

6 30 24%

Reliability reliability growth,
quality control

Means to define, measure, and assess the how quality
changes over time [83].

(Performance Testing)
load testing,
cloud testing

Testing to assess performance and scalability of a system
under different operating conditions [116].

Random Testing adaptive random testing,
statistical testing

Generation of random input for various purposes
(e.g., assessing reliability or performance) [11]

5 32 30%

Creation Guidance certification,
test adequacy

Guidance for how a tester might approach test design—e.g.,
goals, input selection, and assessing test strength.

(White-Box Testing)
coverage criteria,
data flow

Test creation based on source code [85].

(Black-Box Testing)
specification-based testing,
black-box testing

Test creation based on requirements and
other documentation [117].

(Mutation Testing)
mutation score,
mutation operators

Test creation based on synthetic faults
seeded into a system [75]

(Security Testing)
penetration testing,
software vulnerability

Test creation to assess the ability of a system to
prevent exploitation of vulnerabilities [118].

4 35 31%

Verification
and Analysis

dynamic analysis,
static analysis

Analyses performed to ensure that software possesses
properties of interest (e.g., correctness, resilience) [1].

(Concurrency)
parallelization,
synchronization

Analyses of programs that execute over parallel
threads or processes [119].

(Fault Injection)
fault model,
fault tolerance

Injection of faults into a system for analysis [78].

subtopics assigned to that cluster. For each topic or subtopic, we list two example keywords

that fall within that topic, and we briefly describe the meaning of the topic. For additional

clarity, Figure 3.5 outlines these topics, colored by the cluster they emerged from.

RQ2 (Characterization of Clusters into Topics): Based on keyword clustering,

testing research can be divided into 16 topics, with a further 18 subtopics.

While some of the topics within a cluster may seem independent, they are linked by

47

Table 3.5: An overview of clusters 1 - 3, including the cluster ID from VOSViewer, the
number of keywords, inter-cluster connection density (percentage of possible connections
between keywords), identified topics and subtopics, example keywords for each topic, and
a brief description of each topic. Clusters are ordered from smallest to largest.

Cluster Num Density Topics and Example Keywords Description
Keywords (Subtopics)

3 48 26%

Machine Learning machine learning
Algorithms that make inferences from patterns
detected in data [87].

(Applications)
defect prediction,
estimation

Applications of ML in software testing.

(Data Used)
metrics,
complexity

Sources of data used to draw conclusions with ML.

(ML Techniques)
neural networks,
deep learning

ML techniques used in testing research.

2 58 21%

Test Case Types unit testing,
exploratory testing

Practices and levels of granularity for test design.

Test Automation test execution,
testing tools

Tools and practices that enable automation of
test execution [76].

(Mobile Testing)
mobile testing,
android testing

Testing techniques, tools, and activities focused on
verification of mobile applications [120].

Processes and Risk software quality,
test-driven development

The organization, management, and testing process
of a development team [1].

(Model-Driven
Development)

model-driven development,
model-driven testing

Development process based on use of models for
analysis, code generation, and testing [121]

Requirements
Engineering

requirements engineering,
traceability

Requirements indicate correct behavior. Verification
often assesses conformance of code to requirements [1].

1 118 20%

System Testing system testing,
user interfaces

Test cases that interact with an external system interface [1].

(Quality Attributes)
usability,
software performance

Non-functional properties of a system assessed as
part of quality assurance [122]

(Embedded Systems)
real-time system,
simulation

Complex self-contained hardware and software systems [90].

(Other Specialized
Domains)

open source software,
image processing,
autonomous vehicles

System types (e.g., databases, virtual reality, operating
systems) or technologies (e.g., XML, Java) with
dedicated testing approaches.

connections between the underlying keywords. It is important, therefore, to examine both

topics and keywords to come to a full understanding of a particular cluster. For example,

random testing is a topic with widespread applicability. However, it is linked to Cluster 6

because random testing is often used to assess reliability or performance.

Within Cluster 2, the test automation topic encapsulates the emerging subtopic of mo-

bile testing. Mobile testing is not as well-established as web application testing, but is

clearly growing as a distinct research area. In the future, it may emerge as an independent

research topic—perhaps even as its own cluster. Additionally, the model-driven develop-

ment subtopic in Cluster 2 is related to—but also separate from—the model-based testing

topic in Cluster 10. The latter focuses on technical aspects of modelling, while the former

focuses on process and practices that may use these technologies. There are connections

between the two, but they contain different keywords.

48

Table 3.6: Connection density between pairs of clusters. Cross-cluster densities≥ 0.12 are
highlighted. Densities in italics represent within-cluster densities for each cluster.

Cluster 1 2 3 4 5 6 7 8 9 10 11
1 0.20 0.08 0.09 0.11 0.06 0.06 0.06 0.07 0.07 0.09 0.07
2 0.21 0.08 0.09 0.10 0.08 0.09 0.13 0.10 0.14 0.11
3 0.26 0.10 0.08 0.08 0.12 0.13 0.05 0.07 0.15
4 0.31 0.15 0.08 0.12 0.12 0.07 0.10 0.12
5 0.30 0.08 0.20 0.15 0.13 0.14 0.21
6 0.24 0.10 0.11 0.06 0.06 0.12
7 0.48 0.23 0.14 0.14 0.15
8 0.47 0.13 0.15 0.20
9 0.31 0.10 0.17
10 0.39 0.09
11 1.00

Cluster 1 is the least cohesive cluster. However, we can categorize many keywords

under a core topic of system testing. In Cluster 2, there is a topic centered around test

case types (e.g., unit testing). System testing is often grouped with these test case types.

However, it is also a broader concept encompassing many different types of systems and

system interfaces (e.g., embedded systems, operating systems, or databases). Several topics

in our characterization also relate to system-level practices or domains, e.g., web, GUI, and

performance testing. Those topics are established enough to stand independently, while the

system testing topic in Cluster 1 acts as a broad umbrella.

RQ3: Connections Across Clusters

We analyze connections across clusters by measuring the connection density between pairs

of clusters, and by identifying keywords that bridge clusters.

Connection Density: Table 3.6 shows all cross-cluster densities, with those ≥ 12% are

highlighted. 23 of the 45 pairs of clusters meet this threshold, indicating that many research

topics are densely connected.

RQ3 (Connections Across Clusters): Clusters 5 (creation guidance), 7 (automated

test generation), 8 (evolution and maintenance), and 11 (test oracles) are densely

49

connected to several clusters. These clusters represent particularly multidisciplinary

topics.

Cluster 8 appears in eight pairs, Clusters 7 and 11 appear in seven, and Cluster 5 appears

in six. In particular, the pairings between Clusters 7 and 8 and between Clusters 5 and 11

have a higher connection density than the within-cluster densities of Clusters 1 and 2,

indicating the dense interconnection between these topics.

As the most common keyword identified in our analysis, automated test generation

has connections to keywords and topics in every other cluster. If a testing method exists,

there will be an interest in generating tests for it (e.g., Clusters 5, 8, 9, and 10). Oracle

creation often requires manual effort, leading to an interest in automated generation or

reuse of oracles (Cluster 11). Further, machine learning offers the means to assist or enable

automated test generation (Cluster 3).

Test oracles are a necessary component of almost all test cases, leading to dense con-

nections with Clusters 5 (creation guidance), 6 (reliability, performance, random testing), 8

(regression testing), and 9 (web and GUI testing). In addition to the above-mentioned con-

nection to automated generation, machine learning offers a means to automate the creation

of oracles (Cluster 3). Oracles are also a natural part of verification and different program

analyses (Cluster 4).

Maintenance has implications on multiple aspects of testing, such as costs and quality.

Maintenance needs affect the tasks performed during test automation (Cluster 2). Test

prioritization also uses the same information that guides test creation to select tests (Cluster

5), and can be assisted using machine learning (Cluster 3). Both regression testing and test

prioritization are performed for GUIs and web applications (Cluster 9), and can make use

of models (Cluster 10). Further, analyses related to program and test evolution are often

connected to other analyses in Cluster 4.

Test creation practices (Cluster 5) also connect broadly. Beyond automated test gener-

50

ation, test oracles, and test prioritization, several creation practices either have adaptations

for model-based testing (Cluster 10) or for web and GUI testing (Cluster 9). In addition,

there are connections between verification and test creation practices (Cluster 4)—e.g.,

black box testing and verification are connected through specifications, and security test-

ing and analysis are related.

Clusters 1, 2, 3, and 6 have the least-dense connections to other clusters. Clusters 1 and

2 are both large clusters with multiple topics and subtopics that are distinct, but closely-

related. Connections exist to other clusters, but may be less common, as these two clusters

already represent a broad set of keywords. Reliability and performance testing (Cluster 6)

and various forms of predictive modelling in Cluster 3 are also often pursued as standalone

topics, but can be connected to other topics. Out of all density measurements, the lowest

was between Cluster 3 (machine learning) and Cluster 9 (web and GUI testing), with 5%

of possible connections existing in publications.

Connecting Keywords: In Table 3.7, we list all keywords that are connected to at least

100 keywords in external clusters.

RQ3 (Connections Across Clusters): Twenty keywords serve as “connectors”

between clusters, reflecting multidisciplinary concepts (e.g., software quality),

common test activities (e.g., unit testing), and common sources of information for test

creation (e.g., coverage criteria).

For comparison, we also list the total number of connected keywords, and the position

that the keyword had in Table 3.2 (if it appeared in the most commonly-targeted keywords).

Many of the connecting keywords are also among the most common occurring keywords,

with automated test generation on top of both lists. The exact positions of keywords shift

in the ordering, but 14 of the 20 most common keywords are also connecting keywords.

The most common keywords tended to relate to automation, test creation and assessment

51

Table 3.7: Keywords that are connected to at ≥ 100 keywords in clusters other than the
one where the keyword is assigned (both keywords are targeted in at least one study).
Each keyword is named and described, and the number of connected keywords (in external
clusters, and in total) are listed.

Keyword Connected Connected Position in Description
(External) (All) Table 1

Automated Test Generation 217 243 1 See Table 3.2.
Software Quality 164 202 8 See Table 3.2.
Mutation Testing 164 184 3 See Table 3.2.
Regression Testing 157 174 2 See Table 3.2.
Test Automation 152 200 4 See Table 3.2.
Model-based Testing 150 163 5 See Table 3.2.
Coverage Criteria 147 168 13 See Table 3.2.
Verification 143 164 12 See Table 3.2.
Genetic Algorithm 139 161 6 See Table 3.2.
Machine Learning 132 161 15 See Table 3.2.
Test Case Prioritization 119 134 11 See Table 3.2.

Software Maintenance 119 130 -
Practices for controlling and maintaining quality
as the system changes over time [114].

Debugging 117 135 - See Table 3.3.

Unit Testing 114 136 -
A practice where tests are created for a small,
isolated unit of code (typically a class) [1].

Software Reliability 114 132 10 See Table 3.2.
Reliability 108 125 16 See Table 3.2.
Fault Injection 106 128 7 See Table 3.2.

Static Analysis 101 120 -
Analyses performed without executing the code
(e.g., inspection or symbolic execution) [1].

Mutation Analysis 101 116 -
Analyses of programs or tests performed
using injected mutations [27].

Unified Modeling Language 101 111 -
A family of techniques for modelling and
analyzing program behavior [101].

guidance, assessment of system quality, and cyber-physical systems. These concepts—

especially the first three—are broad, with wide-ranging applicability. That suggests that

popularity of a keyword is not only a reflection of a particular concept, but on its multidis-

ciplinary applicability.

In contrast to Table 1, we see a notable rise in the position of software quality, cover-

age criteria, and machine learning. Software quality and machine learning are both very

broad concepts, while coverage criteria are a common source of information and a target

for testing, with applications in test creation guidance, automated test generation, quality

assessment, prediction, and other areas.

We also see several keywords emerge: software maintenance, debugging, unit testing,

static analysis, mutation analysis, and unified modeling language. These include broadly

52

Figure 3.6: The map of keywords, colored by the average year of publication. Note that
“2010” should be read as ≤ 2010 and “2016” should be read as ≥ 2016.

applicable concepts (maintenance, debugging, static analysis, mutation analysis), a com-

mon source of information (unified modeling language), and a common testing activity

(unit testing).

Six of the most common keywords do not meet the threshold for connecting keywords—

simulation (93 external connections), combinatorial testing (96), symbolic execution (83),

embedded software (85), neural networks (83), and security (82). All six are multidisci-

plinary concepts, but are more specific—rather than broad—concepts (combinatorial test-

ing, symbolic execution, embedded software, neural networks).

53

RQ4: Emerging Keywords, Topics, and Connections

A visualization of the map of keywords, colored by average year of publication, is shown

in Figure 3.6. Yellow nodes have an average date of 2016 or newer. Blue nodes have an

average date of 2010 or earlier. A gradient between blue and yellow represents 2010–2016.

We examine keywords, topics, and connections that have emerged or grown in interest since

June 2015.

An interactive version of this map can be accessed as an overlay at https:

//greg4cr.github.io/other/2021-TestingTrends/topics.html

by selecting “Avg. Pub. Year” under the “Color” option.

Keywords and topics: Sixty-six keywords (16.26%) represent new emerging concepts or

have received significant recent attention. Figure 3.7 links these keywords to their respec-

tive research topic. From these results, we can make several observations:

• Many of the growth areas map to shifts in technology. There is growing interest in

web applications, relating to technologies (JavaScript), testing tools (Selenium), and

testing techniques. There is a similar emergence of mobile applications, in both the

subtopic of mobile testing in Cluster 2 (android testing, mobile testing) and tech-

nologies in Cluster 1 (mobile applications, smartphone).

• Machine learning has advanced many fields. Unsurprisingly, it is also one of the

largest growth areas in testing. The keyword “machine learning” has an average

publication date of October 2016, and keywords have emerged related to applica-

tions, data, and specific techniques for ML. “Deep learning” is one of the newest

keywords (average date of September 2018).

• Keywords have also emerged targeting ML and AI-based systems. From the embed-

ded systems and “other domains” topics, we see keywords related to autonomous

54

https://greg4cr.github.io/other/2021-TestingTrends/topics.html
https://greg4cr.github.io/other/2021-TestingTrends/topics.html

Test Oracles

Model-Based
Testing

Web Application
Testing

GUI Testing

Evolution and
Maintenance

Regression
Testing

Test Prioritization

Automated Test
Generation

Software Reliability

Random Testing

Performance
Testing

Creation Guidance

White-Box Testing

Black-Box Testing

Mutation Testing

Security Testing

Automated
Program Repair

Verification and
Program Analysis

Concurrency

Fault Injection

Applications of ML

Data Used for ML

ML Techniques

ML and Predictive
Modeling

Test Case Types

Test Automation

Processes and
Risk

Model-Driven
Development

Requirements

System Testing

Quality Attributes

Embedded System
Testing

Other Specialized
Domains and Tech.

Mobile Testing

2016: metamorphic relation; 2015: scientific software
2

2015: specification mining
1

2016: selenium, test optimization, automation testing; 2015: benchmark, web, javascript6

2016: manual testing1

2016: natural language processing1

2016: swarm intelligence; 2015: ant colony optimization2

2017: automated program repair;
2015: program synthesis

2

2017: big data; 2015: cloud computing2

2016: benchmarking1

2016: fuzzing1

2016: equivalent mutants, software fault
localization; 2015: mutation score

3

2016: software vulnerability, fuzzing;
2015: penetration testing

3

2016: python, llvm, resilience; 2015: gpu4

2016: soft error, vulnerability;
2015: fault simulation

3

2016: high performance computing1

2016: mining software repositories, defect
prediction, software fault prediction

3

2016: energy1

2018: deep learning; 2015: feature
selection, support vector machine

3

2017: android testing, mobile testing2

2015: unit tests1

2018: devops; 2016: continuous integration2

2018: devops; 2016: technical debt; 2015: software development lifecycle3

2015: model-driven engineering1

2017: fault injection attack; 2015: sustainability,
energy efficiency

3

2017: internet of things; 2016: software-defined networking,
autonomous vehicles, openflow, cyber-physical systems;
2015: automotive, energy efficiency

7

2017: path planning, gamification; 2016: augmented
reality, information system, android, autonomous
vehicles, mobile applications, computer vision,
crowdsourcing; 2015: smartphone, image processing

11

2016: machine
learning

1

Figure 3.7: Keywords with an average publication date newer than June 2015, along
with their associated research topic. The number next to the list of keywords indicates
the number of emerging keywords. Topics colored in gray are those without emerging
keywords.

vehicles, computer vision, image processing, and augmented reality. All of these ar-

eas require specialized testing approaches. Autonomous vehicles, in particular, may

55

grow into its own independent subtopic in the future.

• There is growing interest in energy consumption. This is connected to mobile ap-

plications, and a shift to portable devices that rely on batteries. This also reflects

growing interest in sustainability and environmental impact of software.

• Automated program repair has emerged as a subtopic. The core keyword has one

of the newest average publication dates (March 2017), and its connected keywords

(e.g., program synthesis) also have recent dates.

• Fuzzing and search-based approaches (swarm intelligence, ant colony optimization)

have emerged as test generation techniques. Fuzzing, notably, has seen application

in general and security-focused testing topics. Security-related keywords are also

active and growing.

RQ4 (Emerging Keywords, Topics, and Connections): Emerging keywords and

topics relate to, or incorporate, web and mobile applications, machine learning and

AI—including autonomous vehicles—energy consumption, automated program

repair, or fuzzing and search-based test generation.

Connections: We focus our examination on ten pairs of clusters with the highest proportion

of emerging connections to the number of possible connections (≥ 3.5%). The connected

clusters, and their associated topics, have a rapidly evolving relationship.

• Cluster 11 (test oracles) with Clusters 5 (creation guidance; 8.59% of connections

are emerging), 3 (machine learning; 6.77%), 8 (evolution and maintenance; 5.26%),

6 (reliability; 4.17%), 9 (web application and GUI testing; 4.17%), 2 (test case types,

test automation, processes and risk, and model-driven development; 3.88%), and 4

(verification and program analysis; 3.57%).

• Cluster 7 (automated test generation) with Clusters 9 (4.36%) and 3 (3.57%).

56

Test Oracles

Evolution and
Maintenance

Creation Guidance

White-Box Testing

Mutation Testing

Security Testing

ML and Predictive
Modeling

Software Reliability

Performance
TestingWeb Application

Testing

Test Case Types Test AutomationProcesses and
Risk

Requirements

(scientific software and test types)
scientific software,unit testing

(scientific software and processes)
agile development,scientific software
scientific software,test-driven development
(test oracles and processes)
metamorphic relation,software quality

(scientific software and automation)
continuous integration,scientific software

(scientific software and requirements)
scientific software,software quality
(test oracles and requirements)
metamorphic relation,verification and validation
metamorphic relation,software quality

Verification and
Program Analysis

Fault Injection

(test oracles and ML)
machine learning,metamorphic testing
deep learning,test oracle
(scientific software and ML)
machine learning,scientific software

(test oracles and fault injection)
fault tolerance,metamorphic relation
test oracle,vulnerability

(test oracles and reliability)
cloud computing,metamorphic testing
(scientific software and reliability)
scientific software,software reliability

(test oracles and performance testing)
metamorphic relation,performance testing

(test oracles and security testing)
metamorphic testing,software vulnerability
software vulnerability,test oracle

(test oracles and creation technologies)
fuzzing,metamorphic testing

(test oracles and white-box testing)
code coverage,metamorphic relation
control flow graph,metamorphic relation
(scientific software and white-box testing)
coverage criteria,scientific software

(test oracles and mutation testing)
metamorphic relation,mutation analysis
metamorphic relation,mutation testing
(scientific software and mutation testing)
mutation testing,scientific software

(test oracles and analysis)
metamorphic relation,verification
test oracle,vulnerability
(scientific software and analysis)
python,scientific software
runtime verification,scientific software

(test oracles and maintenance)
metamorphic relation,software maintenance
(test oracles and NLP)
metamorphic testing,natural language processing
natural language processing,test oracle

(test oracles and web apps)
javascript,metamorphic testing
test oracle,web

Figure 3.8: Emerging connections, connected by research topic with test oracles, for the
cluster pairings with highest ratio of emerging to total connections.

• Cluster 5 with Cluster 9 (4.69%).

The highlighted connections between topics are shown in Figure 3.8 for topics connected

57

White-Box TestingMutation TestingSecurity Testing

ML and Predictive
Modeling

Web Application
Testing

Automated Test
Generation

Automated
Program Repair

Applications of ML

(ML to support automated program repair)
automated program repair,deep learning
automated program repair,neural networks
(ML to support fault localization)
deep learning,fault localization
fault localization,machine learning

Data Used for ML

(data for automated program repair)
automated program repair,defects
automated program repair,software faults

(ML to support automated generation)
automated test generation,deep learning
machine learning,search-based software testing

(optimization algorithms for prediction)
defect prediction,search-based software engineering
genetic algorithm,software fault prediction
(optimization algorithms for feature selection)
feature selection,genetic algorithm
feature selection,multi-objective optimization

GUI Testing

(automated generation for GUIs)
ant colony optimization,gui testing

(automated generation for web apps)
automated test generation,javascript
automation testing,genetic algorithm

Black-Box Testing

(black-box testing for web apps)
black-box testing,web
specification-based testing,test optimization

(white-box testing for web apps)
coverage criteria,javascript
javascript,symbolic execution

(mutation testing for web apps)
equivalent mutants,web applications
javascript,mutation operators

(security testing for web apps)
penetration testing,web applications
software vulnerability,web application testing

Figure 3.9: Emerging connections, connected by research topic (excluding test oracles),
for the cluster pairings with highest ratio of emerging to total connections.

with test oracles, and in Figure 3.9 for other topics. For each connection between topics, a

small number of example connections between keywords are shown.

RQ4 (Emerging Keywords, Topics, and Connections): Web applications and

scientific computing require targeted testing approaches and practices, leading to

emerging connections to many topics. Test oracles are also a rapidly-evolving topic

with many emerging connections. Machine learning has emerging potential to support

automation.

58

We make several observations about these emerging connections:

• Test oracles appear often because (a) Cluster 11 is a small cluster, (b) this topic has

the largest percentage of emerging keywords, and (c), this topic is naturally con-

nected to all other topics. Research interest in test oracles is growing [2, 123], and

effective oracles are needed for emerging domains such as web applications. The

relationship between oracles and different testing practices is not well understood

yet, leading to many emerging connections. Further, interest is growing in the use of

machine learning to generate test oracles [123].

• The keyword “scientific computing” is part of Cluster 11, due to its frequent con-

nection with metamorphic testing. Inspection of the emerging connections makes it

clear that software testing for scientific computing is emerging as a distinct domain

of interest, with major connections to Cluster 2 and 5.

• As in many other areas of software development, machine learning offers the poten-

tial to automate tasks that traditionally require significant human effort, such as test

and oracle generation and program repair.

• Test creation practices of many types (including white-box, black-box, mutation, and

security) are emerging for web applications.

• New test generation approaches are emerging for GUIs and web applications.

RQ5: Declining Keywords and Topics

Figure 3.10 shows the 66 keywords with the oldest average date, with their associated

research topic. In particular, we highlight three research topics or subtopics that we hy-

pothesize may currently be in decline.

59

Test Oracles

Model-Based
Testing

Web Application
Testing

GUI Testing

Evolution and
Maintenance

Regression
Testing

Test Prioritization

Automated Test
Generation

Software Reliability

Random Testing

Performance
Testing

Creation Guidance

White-Box Testing

Black-Box Testing

Mutation Testing

Security Testing

Automated
Program Repair

Verification and
Program Analysis

Concurrency

Fault Injection

Applications of ML

Data Used for ML

ML Techniques

ML and Predictive
Modeling

Test Case Types

Test Automation

Processes and
Risk

Model-Driven
Development

Requirements

System Testing

Quality Attributes

Embedded System
Testing

Other Specialized
Domains and Tech.

Mobile Testing

2010: unified modeling language, object-oriented
2011: conformance testing

3

2010: vhdl 1

2010: data flow testing; 2011: constraints, evolutionary testing3

2009: software reliability; 2011: software reliability assessment2

2007: data flow; 2009: program instrumentation;
2011: structural testing

3

2005: fault-based testing1

2011: aspect4j, program transformation2

2009: error detection1

2009: software testability; 2010: testability, intrusion
detection; 2011: software development management

4

2003: software measurement; 2009: software
testability; 2010: testability; 2011: stress

4

2006: predictive models1

2011: software analysis, software reuse2

2009: testing strategies; 2010: testing process; 2011: productivity3

2010: formal methods1

2006: computational modeling; 2007: automata; 2008:
hardware, formal specification; 2009: control systems,
benchmark testing; 2010: emulation, real-time system

8

 2002: application software; 2003: object oriented
modeling; 2005: protocols; 2006: operating systems,
internet; 2007: software libraries; 2008: graphical user
interfaces; 2009: xml, distributed system; 2010: cots,
user interfaces, java, mobile computing, navigation

14

2004: partition testing; 2010: random testing2

2007: concurrent programs; 2009: specification
based testing; 2011: database testing

3

2010: formal methods; 2011: software analysis, software reuse3

2006: system testing1

2001: costs; 2007: runtime, inspection; 2008: formal
specification, software standards; 2009: software
design; 2010: software architecture, software
prototyping, performance evaluation, performance
analysis, rapid prototyping

11

Figure 3.10: Keywords with an average publication date earlier than June 2011, along
with their associated research topic. Topics colored in gray are those without declining
keywords. Topics with both declining keywords and a lack of emerging keywords are
highlighted.

60

RQ5 (Declining Keywords and Topics): Older average dates of publication and lack

of emerging keywords suggest that keywords and topics related to random and

requirements-based testing may be in decline.

Briefly, we examine these areas:

• Traditional random testing has been supplanted, to some extent, by semi-random

approaches. As shown in Figure 3.7, search-based and fuzzing techniques are grow-

ing in popularity. Both use sampling heuristics instead of applying pure random

generation, retaining some of the benefits of random testing (e.g., scalability) while

potentially yielding more effective results.

• Many of the keywords related to requirements and black-box testing have older

average publication dates, indicating potential stagnation. Agile processes favor

lightweight requirements (e.g., user stories) over formal and complex requirements.

We hypothesize that this may have led to a shift in attention towards other sources of

information for test creation.

We hesitate to state that these topics are “dying” or are solved challenges. However, we

do see evidence that they have not seen notable growth in popularity or the emergence of

new keywords in recent years. New application areas, techniques, or changes in develop-

ment processes may lead to a resurgence in interest in the future.

3.5 FURTHER ANALYSIS AND ADVICE TO RESEARCHERS

Both the high-level topic overview and the low-level map of connections between keywords

can serve as inspiration for prospective and experienced researchers. We offer the following

advice on how this data could inspire new research.

61

An overview of the testing field: For inexperienced researchers, the high-level topics of-

fer an immediate “snapshot” that can be used to guide exploration of different research

areas. The keywords illustrate key concepts that form research topics, and offer targeted

suggestions on terms the researcher should examine in detail. Connections between those

keywords illustrate how those concepts have been connected in practice, which may en-

courage critical reflection on both the individual concepts and how they relate. The emerg-

ing keywords and topics suggest areas that researchers may wish to pay attention to, and

emerging connections clarify how these keywords fit into the field.

Understanding the context of a keyword or topic: Researchers can analyze the map to

gain a data-driven view of the field for further planing and development. As a starting

point, those interested in a keyword or topic can examine how that keyword or topic fits

into the broader context of testing research.

• What keywords are often associated with a keyword of interest? This may illustrate

the type of research often conducted on this concept (or its associated topic), and

natural areas of synergy between keywords or topics.

• Is interest in this keyword or topic growing, declining, or stable? The average date

of publication may suggest the current level of interest (or lack thereof).

Identification of under-explored connections between keywords or topics: We hypoth-

esize that the map data could potentially inspire future research through analyses of connec-

tions between keywords and topics. There are many ways connections could be analyzed.

One is to identify keywords that have under-explored connections.

Specifically, an under-explored connection is one where (a) at least one publication

has connected the keywords, but (b), the specific number of publications connecting those

two keywords is relatively low—indicating potential for additional research exploration.

Under-explored connections may serve as inspiration, suggesting concepts that could be

connected in further research:

62

• Within a cluster, under-explored connections may suggest ways that concepts within

a particular research topic could be more closely linked. For example, different

mechanisms from automated test generation algorithms could be blended into hy-

brid algorithms.5 An examination of under-explored connections could offer similar

inspiration.

• Across clusters, we could identify either pairs of clusters or topics that could be more

deeply connected in future research. In some cases, these may be topics that are

already connected (e.g., automated test generation and white-box testing), but where

there are opportunities for new research related to specific keywords or aspects of the

topic (e.g., specific test generation algorithms).

There are different ways that under-explored connections could be identified and analyzed.

As an initial exploration, first, one must identify a lower and upper bound on the number

of publications linking keywords. As an example, in the network visualization, four publi-

cations are needed for an edge to be shown (by default). Therefore, one could adopt four

publications as the threshold for this analysis and capture all connections in a short range

of this threshold—e.g., 4-6 publications targeting a pair of keywords.

718 connections have a strength of 4-6 publications. To identify a subset for initial

exploration, we can (a) focus on cross-cluster connections, and (b), use the cross-cluster

connection density to identify the pairs of clusters with the most under-explored connec-

tions. Here, we specifically focus on the cluster pairings where ≥ 2% of all connections

between the two clusters consist of under-explored connections. Six cluster pairings met

the threshold: Cluster 11 (test oracles) with Cluster 9 (web and GUI testing, 2.63%), Clus-

ter 5 (creation guidance, 2.34%), and Cluster 3 (machine learning, 2.08%), and Cluster 7

(automated test generation) with Cluster 8 (evolution and maintenance, 3.38%), Cluster 10

(model-based testing, 2.46%), and Cluster 5 (2.01%).

5As has been done for concolic execution and search-based test generation [124].

63

Test Oracles

Model-Based
Testing

Web Application
Testing

Evolution and
Maintenance

Regression
Testing Test Prioritization

Automated Test
Generation

Creation Guidance

White-Box Testing

Mutation Testing

Security Testing

Automated
Program Repair

Applications of ML

ML Techniques

ML and Predictive
Modeling

(test oracles and web apps)
metamorphic testing,web services
test oracle,web services

(test oracles and ML)
machine learning,metamorphic relation
machine learning,test oracle
metamorphic testing,support vector machine
neural networks,test oracle

(test oracles and creation guidance)
coverage criteria,test oracle
metamorphic testing,mutation analysis
mutation analysis,test oracle

(test generation/program repair and
creation guidance)
automated program repair,mutation testing
automated test generation,security testing
compiler testing,fuzzing
genetic algorithm,symbolic execution
program synthesis,symbolic execution

(test generation and white-box testing)
automated test generation,control flow graph
automated test generation,test adequacy
branch coverage,symbolic execution
code coverage,genetic algorithm
coverage criteria,test data
search-based software testing,structural testing

(test generation and mutation testing)
automated test generation,fault-based testing
automated test generation,mutation operators
fitness function,mutation testing
combinatorial testing,mutation testing
constraint solving,mutation testing

(test generation and models)
activity diagram,automated test generation
genetic algorithm,model-based testing
model-based testing,search-based software engineering
automated test generation,model transformation
constraint solving,model-based testing
alloy,automated test generation
automated test generation,object-oriented
evolutionary testing,object-oriented
genetic algorithm,object-oriented
object-oriented,search-based software engineering
access control,automated test generation

(test generation and test prioritization)
automated test generation,test case reduction
automated test generation,test suite reduction
genetic algorithm,test suite minimization
combinatorial testing,test case selection
covering arrays,test case prioritization
multi-objective optimization,test case prioritization
particle swarm optimization,test case prioritization
search-based software testing,test case prioritization
search-based software testing,test case selection
fault localization,test case prioritization

(test generation and regression testing)
regression testing,search-based software engineering
regression testing,search-based software testing
multi-objective optimization,regression testing
combinatorial testing,regression testing

(test generation and evolution)
automated test generation,software maintenance
fault localization,software evolution
automated test generation,program slicing
automated test generation,service-oriented architecture

Figure 3.11: Under-explored connections (keywords connected by 4-6 publications), con-
nected by research topic, for the six cluster pairings with highest ratio of under-explored to
total connections.

64

For these cluster pairings, we grouped the connections by research topic, then examined

the meaning and potential application of the connections. In Figure 3.11, we illustrate the

identified connections, categorized by their associated research topics.

We make several observations about these connections. First, specific suggestions

emerge for exploring connections in future research, including (among others):

• The relationship between mutations and test oracles.

• Use of mutation as part of automation program repair and test generation.

• Test generation based on specific modeling formats (e.g., object-oriented models

such as activity diagrams).

• Reduction techniques for generated test suites and test cases.

• The relationship between test generation and program evolution (e.g., how often tests

should be generated, how tests should be maintained).

• Generation of tests for regression testing.

• The use of specific optimization algorithms for test case prioritization.

In some cases, “under-explored” coincides with “emerging”—for example, test ora-

cles with machine learning and web services. There are also cases where topics are well-

connected in research (e.g., test generation and white-box testing) through different key-

words (e.g., “coverage criteria” instead of “code coverage”). We retained keywords with

minor differences in meaning, as even minor distinctions may be important. However,

some connections may be well-explored under a different keyword. Even in such cases,

there may be opportunity for further exploration related to these keyword differences, or

connections based on concepts and technologies than have not been explored previously

(e.g., specific generation algorithms or coverage criteria).

65

Identifying new connections between keywords: The absence of a connection between

two keywords does not imply that the concepts cannot be connected. Consider keywords

within a single cluster. Keywords lacking a direct connection may represent entirely in-

compatible concepts. However, in other cases, there may be a natural synergy between

the two concepts that had not yet been considered. While the map cannot directly inform

researchers which keywords can be connected, or how they can be connected, it can serve

as a means to prompt brainstorming.

As an example, we can inspect keywords within a cluster that lack a direct connection

to specific other keywords in their cluster. Cluster 8 (evolution and maintenance, with

subtopics of regression testing and test prioritization) contains 19 keywords. There are

180 cases where two keywords lack a direct link within Cluster 8—e.g., “change impact

analysis” and “test case reduction” are not directly connected in publications.

Not all of these cases offer obvious ideas for new research, but consideration of these

cases may lead to inspiration. For example, we identified the following ideas:

• The use of change impact analysis as part of program comprehension, test case re-

duction, test suite minimization, or test suite reduction.

• The use of information retrieval and natural language processing to provide informa-

tion for test case and suite reduction, selection, and minimization and for regression

test selection.

• The use of regression test selection techniques for use as part of test case and suite

reduction and test case selection.

• The use of program comprehension techniques for regression test selection.

• The relationship between evolution and maintenance of software with test case pri-

oritization, minimization, and reduction.

66

• Service-oriented architecture and web services appear in this cluster because of close

association with particular keywords (e.g., regression testing), but are only indirectly

connected to the majority of the other keywords. The missing connections suggest

the need for targeted test case prioritization, selection, reduction, and minimization

approaches for service-oriented architectures and web services, as well as exami-

nation of the evolution and maintenance of service-oriented architectures and web

services.

Similar ideas may emerge from inspecting missing connections within other clusters.

There are many ways that this map could potentially be analyzed beyond the simple

exploration in this section. We suggest that researchers attempt to analyze different con-

nection types, connection strength thresholds, and other aspects of the collected metadata

(e.g., publication age or number of citations) in order to gain inspiration for new research

or insight into the field.

3.6 THREATS TO VALIDITY

Conclusion Validity: VOSviewer was used to perform visualization. The design of this

tool and the visualizations it produces could potentially bias the observations made. How-

ever, the tool is based on well-understood and established computational principles. Fur-

ther, it has been used in over 500 bibliometric studies (e.g., [58, 61]), in a large variety of

fields and its assumptions have been verified by experts in these fields.6 We have made

efforts to verify the assumptions behind the analyses performed.

External Validity: Our study examined publications from the Scopus database, potentially

omitting relevant venues for software testing research. Scopus is the one of the most com-

prehensive databases covering research publications [125], indexing content from 24,600

6A full list of publications is maintained at https://www.vosviewer.com/publications.

67

https://www.vosviewer.com/publications

active conferences or journals and 5,000 publishers.7 Specifically, Scopus coverage for

computer science research has been found to be better than other databases [126]. Scopus

also enables efficient export of the data we use to perform our mapping. Although some

venues may not be indexed, many of the most important journals and conferences in the

software testing field are included.

We used a single search string to build our sample. Other search strings (e.g., “software

test”) could have complemented the search process. However, our goal is not to capture all

studies ever published in software testing. Rather, we require a sufficiently representative

sample. We hypothesize that the additional value would be minimal compared to the filter-

ing effort required. We believe that our sample of 57,233 publications is sufficiently large

and representative to perform this analysis.

Internal Validity: We based our analysis on publications retrieved using the term “soft-

ware testing”. This pool of papers included publications unrelated to software testing, e.g.,

the use of software to test hardware or as part of student examination. We performed a

manual process to remove unrelated keywords from the mapping. However, it is possible

that some publications remain that are unrelated to the targeted research field. We believe

that these are not enough to influence our observations.

Our analysis is based on author-supplied keywords, and not other sources of topic in-

formation, e.g., titles or abstracts. The use of keywords introduces a risk that publications

are mislabeled (e.g., authors used the wrong term), or that important concepts are omitted.

Still, author-supplied keywords are a clear and appropriate means to capture the struc-

ture of software testing research. Author-supplied keywords are regularly used in other

bibliometric analyses [60, 61, 127] and have been found to effectively reflect structures in

research fields [60, 128]. Even if relevant keywords are omitted, the concepts the authors

felt were most important are reflected. While there is potential inaccuracy, it is likely that

the selected keywords are close to correct. Alternative methods carry similar risks. Auto-

7List of covered journals and conferences: https://www.scopus.com/sources.uri.

68

https://www.scopus.com/sources.uri

mated or external categorization can also be inaccurate and potentially violates the intent

of authors. Other sources of information, such as titles or abstracts, introduce noise and are

difficult to use to categorize publications.

We applied a threshold of a minimum of 20 studies before a keyword appeared in our

dataset or map. We used this threshold to omit minor or highly obscure keywords and to

control the level of noise in the map. This risks also omitting emerging keywords. We

tried lower and higher thresholds then we concluded that the current threshold is enough to

cover terms with lower frequency and provide a meaningful and lower scatter network of

the keywords. It should be noted when we tested lower and higher thresholds, the overall

patterns did not change significantly.

3.7 CONCLUSION

Testing is the primary means of assessing software correctness and quality. Research in

software testing is growing and rapidly-evolving. Based on the keywords assigned to pub-

lications, we seek to identify predominant research topics and understand how they are

connected and have evolved.

We have applied co-word analysis to characterize the topology of software testing re-

search over four decades of research publications. In this map, nodes represent keywords,

while edges indicate that publications have co-targeted keywords. Nodes are clustered

based on density and strength of edges. We examined the most common keywords, summa-

rized clusters into research topics, examined how clusters connect, and identified emerging

and declining keywords, topics, and connections.

We found that the most popular keywords tend to relate to automation, test creation and

assessment guidance, assessment of system quality, and cyber-physical systems. The clus-

ters of keywords suggest that software testing research can be divided into 16 core topics.

All topics are connected, but creation guidance, automated test generation, evolution and

69

maintenance, and test oracles have particularly strong connections to other topics, high-

lighting their multidisciplinary nature. Emerging keywords and topics relate to web and

mobile applications, machine learning, energy consumption, automated program repair and

test generation, while emerging connections have formed between web applications, test

oracles, and machine learning with many topics. Random and requirements-based testing

show evidence of decline.

These insights and the underlying map can inspire researchers in software testing by

clarifying concepts and their relationships, or by facilitating analyses of the field (e.g.,

through identification of under-explored and missing connections). In future work, we will

broaden the type and scope of analyses of this map data, and we make our data available

so that others can do so as well.

3.8 VOSVIEWER TECHNICAL DETAILS

VOSviewer produces maps based on a co-occurrence matrix—a two-dimensional matrix

where each column and row represents an item—a keyword, in our case–and each cell

indicates the number of times two keywords co-occur. This map construction consists of

three steps. In the first step, a similarity matrix is created from the co-occurrence matrix.

A map is then formed by applying the VOS mapping technique to the similarity matrix.

Finally, the map is translated, rotated, and reflected.

Forming the similarity matrix: VOSviewer takes as input a similarity matrix. This sim-

ilarity matrix is obtained from the co-occurrence matrix through normalization. Normal-

ization is done by correcting the matrix for differences in the total number of occurrences

or co-occurrences of keywords. VOSviewer uses the association strength as its similarity

measure [73]—in this case, the number of publications where two keywords are targeted

together. Using the association strength, the similarity si,j between two keywords i and j

70

is calculated as:

si,j = 2mci,j

wiwj

(3.2)

where m represents the total weight of all edges in the network (the total number of co-

occurrences of all keywords), ci,j denotes the weight of the edge between keywords i and

j (the total number of co-occurrences of the keywords), and wi and wj denote the total

weight of all edges of keywords i or j (the total number of occurrences of keywords i or

j and the total number of co-occurrences of these keywords with all keywords that they

co-occur with). Specifically:

wi =
∑

j

ci,j (3.3)

m = 1
2
∑

i

wi (3.4)

The similarity between keywords i and j calculated using Equation 3.2 is proportional

to the ratio between the observed number of co-occurrences of keywords i and j and the

expected number of co-occurrences of keywords i and j under the assumption that occur-

rences of the two keywords are independent.

Map formation: The VOS mapping technique constructs a two-dimensional map in which

keywords 1, ..., n (where n is the total number of keywords) are placed such that the dis-

tance between any pair of keywords i and j reflects their similarity si,j as accurately as

possible. Keywords with a high similarity are located close to each other, while keywords

with a low similarity are located far from each other.

The goal of the VOS mapping technique is to minimize the weighted sum of the squared

Euclidean distances between all pairs of keywords [73]. The higher the similarity between

the two keywords, the higher the weight of their squared distance in the summation. The

specific function minimized by the mapping technique is:

V (x1, ..., xn) =
∑
i<j

si,j‖xi − xj‖2 (3.5)

where xi denotes the location of keyword i in a two-dimensional space, and where ‖xi−xj‖

denotes the Euclidean distance between keywords i and j. To avoid trivial maps in which

71

all keywords have the same location, minimization is subject to the constraint that the

average distance between two keywords must be equal to 1. Specifically:

2
n(n− 1)

∑
i<j

‖xi − xj‖ = 1 (3.6)

The constrained optimization problem—minimizing Equation 3.5, subject to Equa-

tion 3.6—is solved in two steps [72]. The constrained problem is first converted into an

unconstrained problem. Second, the unconstrained problem is solved using a variant of

the SMACOF algorithm, an optimization algorithm commonly used in multidimensional

scaling to produce human-understandable network or graph layouts through minimization

of a stress function over the positions of nodes in the graph [129].

Clustering of Keywords: Keywords are assigned to clusters, and the number of clusters

is determined, through optimization. This is a common approach for clustering nodes in

a network [130]. Potential assignments of keywords to clusters are assessed using the

function:

V (c1, ..., cn) =
∑
i<j

δ(ci, cj)(si,j − γ) (3.7)

where ci is the cluster that keyword i has been assigned to. δ(ci, cj) is a difference function

that yields 1 if ci = cj and 0, otherwise. γ determines the level of clustering, with higher

values yielding a larger number of clusters. This equation is unified with the mapping

function minimized in Equation 3.5, and includes the same similarity measurement si,j

calculated in Equation 3.2.

There is no maximum number of keywords per cluster. The minimum number of key-

words is controlled using a user-specified parameter. We used the default, a minimum of

one keyword. The clustering algorithm will merge small clusters in cases where merging

does not affect the result of Equation 3.7. Therefore, any small cluster that remain are ones

that affect the results of the equation.

Equation 3.7 is maximized using the smart local moving algorithm [131]. Following

the optimization, the assignment of keywords to clusters that maximizes Equation 3.7 is

72

returned. This process yields a small number of clusters containing keywords that are

targeted disproportionately often together in publications.

Translation, rotation, and reflection: The optimization problem introduced in Equa-

tion 3.5 does not have a single global optimal solution [72]. However, consistent results

are desirable. To ensure that the same co-occurrence matrix always yields the same map,

three transformations are applied after optimization:

• Translation: The solution is translated to be centered at the origin.

• Rotation: Principle component analysis is applied in order to maximize variance on

the horizontal dimension.

• Reflection: If the median of x1,1, ..., xn,1 is larger than 0, the solution is reflected

in the vertical axis. If the median of x1,2, ..., xn,2 is larger than 0, the solution is

reflected in the horizontal axis.

73

CHAPTER 4

CHOOSING THE FITNESS FUNCTION FOR THE JOB:

AUTOMATED GENERATION OF TEST SUITES THAT DETECT

REAL FAULTS

4.1 INTRODUCTION

Proper verification practices are needed to ensure that developers deliver reliable software.

Testing is an invaluable, widespread verification technique. However, testing is a notori-

ously expensive and difficult activity [132], and with exponential growth in the complexity

of software, the cost of testing has risen accordingly. Means of lowering the cost of testing

without sacrificing verification quality are needed.

Much of that cost can be traced directly to the human effort required to conduct most

testing activities, such as producing test input and expected output. One way of lowering

such costs may lie in the use of automation to ease this manual burden [11]. Automation

has great potential in this respect, as much of the invested human effort is in service of

tasks that can be framed as search problems [14]. For example, unit test case generation

can naturally be seen as a search problem [11]. There are hundreds of thousands of test

cases that could be generated for any particular class under test (CUT). Given a well-

defined testing goal, and a numeric scoring function denoting closeness to the attainment

of that goal—called a fitness function—optimization algorithms can systematically search

the space of possible test inputs to locate those that meet that goal [15].

The effective use of search-based generation relies on the performance of two tasks—

74

selecting a measurable test goal and selecting an effective fitness function for meeting that

goal. Adequacy criteria offer checklists of measurable test goals based on the program

source code, such as the execution of branches in the control-flow of the CUT [1, 16, 17].

Because such criteria are based on source code elements, we refer to them as “white-

box” test selection criteria. Often, however, goals such as “coverage of branches” are an

approximation of a goal that is harder to quantify—we really want tests that will reveal

faults [18]. “Finding faults” is not a goal that can be measured, and cannot be translated

into a distance function.

To generate effective tests, we must identify criteria—and corresponding fitness functions—

that are correlated with an increased probability of fault detection. If branch coverage is,

in fact, correlated with fault detection, then—even if we do not care about the concept of

branch coverage itself—we will end up with effective tests. However, the need to rely on

approximations leads to two questions. First, can common fitness functions produce effec-

tive tests? If so, which of the many available fitness functions should be used to generate

tests? Unfortunately, testers are faced with a bewildering number of options—an informal

survey of two years of testing literature reveals 28 viable white-box fitness functions—and

there is little guidance on when to use one criterion over another [85].

While previous studies on the effectiveness of adequacy criteria in test generation have

yielded inconclusive results [85, 133–135], two factors allow us to more deeply examine

this problem—particularly with respect to search-based generation. First, tools are now

available that implement enough fitness functions to make unbiased comparisons. The

EvoSuite framework offers over twenty options, and uses a combination of eight fitness

functions as its default configuration [136]. Second, more realistic examples are available

for use in assessment of suites. Much of the previous work on adequacy effectiveness

has been assessed using mutants—synthetic faults created through source code transfor-

mation [75]. Whether mutants correspond to the types of faults found in real projects has

not been firmly established [31]. However, the Defects4J project offers a large database of

75

real faults extracted from open-source Java projects [32]. We can use these faults to assess

the effectiveness of search-based generation on the complex faults found in real software.

In this study, we have used EvoSuite and eight of its white-box fitness functions (as

well as the default multi-objective configuration and a combination of branch, exception,

and method coverage) to generate test suites for the fifteen systems, and 593 of the faults,

in the Defects4J database. In each case, we seek to understand when and why generated

test suites were able to detect—or not detect—faults. Such understanding could lead to a

deeper understanding of the strengths and limitations of current test generation techniques,

and could inspire new approaches. Thus, in each case, we have recorded the proportion

of suites that detect the fault and a number of factors—related to suite size, obligation

satisfaction, and attained coverage. We have recorded a set of traditional source code

metrics—sixty metrics related to cloning, complexity, cohesion, coupling, documentation,

inheritance, and size metrics—for each class associated with a fault the Defects4J dataset.

By analyzing these generation factors and metrics, we can begin to understand not only the

real-world applicability of the fitness options in EvoSuite, but—through the use of machine

learning algorithms—the factors correlating with a high or low likelihood of fault detection.

To summarize our findings:

• Collectively, 51.26% of the examined faults were detected by generated test suites.

• Branch coverage is the most effective criterion—detecting more faults than any other

single criterion and demonstrating a higher likelihood of detection for each fault than

other criteria (on average, a 22.60-25.24% likelihood of detection, depending on the

search budget).

• Regardless of overall performance, most criteria have situational applicability, where

their suites detect faults no other criteria can detect. Exception, output, and weak

mutation coverage—in particular—seem to be effective for particular types of faults,

even if their average efficacy is low.

• While EvoSuite’s default combination performs well, the difficulty of simultaneously

76

balancing eight functions prevents it from outperforming all individual criteria.

• However, a combination of branch, exception, and method coverage has an average

24.03-27.84% likelihood of fault detection—outperforming each of the individual

criteria. It is more effective than the default eight-way combination because it adds

lightweight situationally-applicable criteria to a strong, coverage-focused criterion.

• Factors that strongly indicate a high level of efficacy include high line or branch cov-

erage over either version of the code and high coverage of their own test obligations.

• Coverage does not ensure success, but it is a prerequisite. In situations where achieved

coverage is low, the fault does not tend to be found.

• The most important factor differentiating cases where a fault is occasionally detected

and cases where a fault is consistently detected is satisfaction of the chosen criterion’s

test obligations. Therefore, the best suites are ones that both explore the code and ful-

fill their own goals, which may be—in cases such as exception coverage—orthogonal

to code coverage.

• Test generation methods struggle with classes that have a large number of private

methods or attributes, and thrive when a large portion of the class structure is acces-

sible.

• Generated suites are more effective at detecting faults in well-documented classes.

While the presence of documentation should not directly assist automated test gen-

eration, its presence may hint at the maturity, testability, and understandability of the

class.

• Faults in classes with a large number of dependencies are more difficult to detect

than those in self-contained classes, as the generation technique must initialize and

manipulate multiple complex objects during generation.

Theories learned from the collected metrics suggest that successful criteria thoroughly

explore and exploit the code being tested. The strongest fitness functions—branch, direct

branch, and line coverage—all do so. We suggest the use of such criteria as primary fitness

77

functions. However, our findings also indicate that coverage does not guarantee success.

The fitness function must still execute the code in a manner that triggers the fault, and

ensures that it manifests in a failure. Criteria such as exception, output, and weak mutation

coverage are situationally useful, and should be applied as secondary testing goals to boost

the fault-detection capabilities of the primary criterion—either as part of a multi-objective

approach or through the generation of a separate test suite.

This work extends a prior conference publication [20]. The earlier paper looked at

the same core research questions. However, in order to undergo a deeper investigation

into the topic, we have contributed an additional 240 faults, from fifteen new systems, to

Defects4J—almost doubling the size of the database. Our updated study includes suites

generated over those new case examples, adding further observations and points of discus-

sion. We have also used the findings of our separate research into combinations of fitness

functions [137] to reformulate and extend our experiments and discussion of the effects of

combining criteria. In addition, we have changed how we build and classify data in our

treatment learning analysis, added the source code metric analysis, and have included a

far deeper examination of the factors indicating success or lack thereof in test generation.

Our observations provide evidence for the anecdotal findings of other researchers [19–23]

and motivate improvements in how test generation techniques understand the behavior of

private methods or manipulate environmental dependencies. While more research is still

needed to better understand the factors that contribute to fault detection, and the joint re-

lationship between the fitness function, generation algorithm, and CUT in determining the

efficacy of test suites, our findings in this revised and extended case study offer lessons in

understanding the use, applicability, and combination of common fitness functions.

78

4.2 BACKGROUND

Search-Based Software Test Generation

Test case creation can naturally be seen as a search problem [14]. Of the thousands of

test cases that could be generated for any SUT, we want to select—systematically and at

a reasonable cost—those that meet our goals [15, 18]. Given a well-defined testing goal,

and a scoring function denoting closeness to the attainment of that goal—called a fitness

function—optimization algorithms can sample from a large and complex set of options as

guided by a chosen strategy (the metaheuristic) [138]. Metaheuristics are often inspired by

natural phenomena, such as swarm behavior [139] or evolution [140].

While the particular details vary between algorithms, the general process employed by

a metaheuristic is as follows: (1) One or more solutions are generated, (2), The solutions

are scored according to the fitness function, and (3), this score is used to reformulate the

solutions for the next round of evolution. This process continues over multiple generations,

ultimately returning the best-seen solutions. By determining how solutions are evolved and

selected over time, the choice of metaheuristic impacts the quality and efficiency of the

search process [141].

Due to the non-linear nature of software, resulting from branching control structures,

the search space of a real-world program is large and complex [18]. Metaheuristic search—

by strategically sampling from that space—can scale to larger problems than many other

generation algorithms [142]. Such approaches have been applied to a wide variety of test-

ing goals and scenarios [18].

Adequacy Metrics and Fitness Functions

When testing, developers must judge: (a) whether the produced tests are effective and (b)

when they can stop writing additional tests. These two factors are linked. If existing tests

have not surfaced any faults, is the software correct, or are the tests inadequate? The same

79

question applies when adding new tests—if we have not observed new faults, have we not

yet written adequate tests?

The concept of adequacy provides developers with the guidance needed to test effec-

tively. As we cannot know what faults exist without verification, and as testing cannot—

except in simple cases—conclusively prove the absence of faults, a suitable approximation

must be used to measure the adequacy of tests. The most common methods of measur-

ing adequacy involve coverage of structural elements of the software, such as individual

statements, branches of the software’s control flow, and complex boolean conditional state-

ments [1, 16, 17].

Each adequacy criterion embodies a set of lessons about effective testing—requirements

tests must fulfill to be considered adequate. These requirements are expressed as a series of

test obligations—properties that must be met by the corresponding test suite. For example,

the branch coverage criterion requires that each program expression that can cause control

flow to diverge—i.e., loop conditions, switch statements, and if-conditions—evaluate to

each possible outcome. In this case, a test obligation would indicate a particular expres-

sion and a targeted outcome for the evaluation of that expression. If tests fulfill the list of

obligations prescribed by the criterion, than testing is deemed “adequate” with respect to

faults that manifest through the structures of interest to the criterion.

Adequacy criteria have seen widespread use in software development, and is routinely

measured as part of automated build processes [143]1. It is easy to understand the popular-

ity of adequacy criteria. They offer clear checklists of testing goals that can be objectively

evaluated and automatically measured [144]. These very same qualities make adequacy

criteria ideal for use as automated test generation targets. In search-based testing, the fit-

ness function needs to capture the testing objective and guide the search. Through this

guidance, the fitness function has a major impact on the quality of the solutions generated.

Functions must be efficient to execute, as they will be calculated thousands of times over

1For example, see https://codecov.io/.

80

https://codecov.io/

a search. Yet, they also must provide enough detail to differentiate candidate solutions and

guide the selection of optimal candidates. Adequacy criteria are ideal optimization tar-

gets for automated test case generation as they can be straightforwardly transformed into

efficient, informative fitness functions [145]. Search-based generation often can achieve

higher coverage than developer-created tests [146].

4.3 STUDY

To generate unit tests that are effective at finding faults, we must identify criteria and cor-

responding fitness functions that increase the probability of fault detection. As we cannot

know what faults exist before verification, such criteria are approximations—intended to

increase the probability of fault detection, but offering no guarantees. Thus, it is important

to turn a critical eye toward the choice of fitness function used in search-based test gener-

ation. We wish to know whether commonly-used fitness functions produce effective tests,

and if so, why—and under what circumstances—do they do so?

More empirical evidence is needed to better understand the relationships between ade-

quacy criteria, fitness functions and fault detection [143]. Many criteria exist, and there is

little guidance on when to use one over another [85]. To better understand the real-world

effectiveness, use, and applicability of common fitness functions and the factors leading

to a higher probability of fault detection, we have assessed the EvoSuite test generation

framework and eight of its fitness functions (as well as the default multi-objective config-

uration) against 593 real faults, contained in the Defects4J database. In doing so, we wish

to address the following research questions:

1. How capable are generated test suites at detecting real faults?

2. Which fitness functions have the highest likelihood of fault detection?

3. Does an increased search budget improve the effectiveness of the resulting test suites?

4. Under what situations can a combination of criteria outperform a single criterion?

81

5. What factors correlate with a high likelihood of fault detection?

The first three questions allow us to establish a basic understanding of the effectiveness of

each fitness function—are any of the functions able to generate fault-detecting tests and,

if so, are any of these functions more effective than others at the task? However, these

questions presuppose that only one fitness function can be used to generate test suites.

Many search-based generation algorithms can simultaneously target multiple fitness func-

tions [137]. Therefore, we also ask question 4—when does it make sense to employ a set

of fitness functions instead of a single function?

Finally, across all criteria, we also would like to gain insight into the factors that influ-

ence the likelihood of detection. To inspire new research advances, we desired a deeper

understanding of when generated suites are likely to detect a fault, and when they will fail.

We have made use of treatment learning—a machine learning technique designed to take

classified data and identify sets of attributes, along with bounded values of such attributes,

that are highly correlated with particular outcomes. In our case, these “outcomes” are as-

sociated with whether generated suites from each fitness function detect a fault or not. We

have gathered factors from two broad sets:

• Test Generation Factors are related to the test suites produced—identifying cover-

age attained, suite size, and obligation satisfaction.

• Source Code Metrics examine the faulty classes being targeted, and ask whether fac-

tors related to the classes themselves—i.e., the number of private methods or cloned

code—can impact the test generation process.

We have created datasets based off of both sets of factors and applied treatment learning

to assess which factors strongly affected the outcome of test generation. We make these

datasets, as well as the new Defects4J case examples, available to other researchers to aid

in future advances (see Sections 4.3 and 4.3).

In order to investigate these questions, we have performed the following experiment:

82

1. Collected Case Examples: We have used 353 real faults, from five Java projects, as

test generation targets (Section 4.3).

2. Developed New Case Examples: We have also mined an additional 240 faults from

ten new projects, and added these faults to the Defects4J database (Section 4.3).

3. Recorded Source Code Metrics: For each affected class (both faulty and fixed ver-

sions), we measure a series of sixty source code metrics, related to cloning, cohesion,

coupling, documentation, inheritance, and class size (Section 4.3).

4. Generated Test Suites: For each fault, we generated 10 suites per criterion using the

fixed version of each CUT. We performed with both a two-minute and a ten-minute

search budget per CUT (Section 4.3).

5. Generated Test Suites for Combinations of Criteria: We perform the same pro-

cess for EvoSuite’s default configuration—a combination of eight criteria—and a

combination of branch, exception, and method coverage (Section 4.3).

6. Removed Non-Compiling and Flaky Tests: Any tests that do not compile, or that

return inconsistent results, are removed (Section 4.3).

7. Assessed Fault-finding Effectiveness: We measure the proportion of test suites that

detect each fault to the number generated (Section 4.3).

8. Recorded Generation Statistics: For each suite, fault, and budget, we measure

factors that may influence suite effectiveness, related to coverage, suite size, and

obligation satisfaction (Section 4.3).

9. Prepare Datasets: Datasets were prepared for learning purposes by by adding clas-

sifications based on fault detection to each entry in the generation factor and code

metric datasets. Separate datasets were prepared for each generation budget and

fitness function, as well as sets based on overall fault detection (across all fitness

functions and function combinations) for each budget (Section 4.3).

10. Performed Treatment Learning: We apply the TAR3 learner to identify factors

correlated to each classification for each dataset (Section 4.3).

83

Case Examples

Defects4J is an extensible database of real faults extracted from Java projects [32]2. The

original dataset consisted of 357 faults from five projects: Chart (26 faults), Closure (133

faults), Lang (65 faults), Math (106 faults), and Time (27 faults). For each fault, Defects4J

provides access to the faulty and fixed versions of the code, developer-written test cases

that expose the fault, and a list of classes and lines of code modified by the patch that fixes

the fault.

Each fault is required to meet three properties. First, a pair of code versions must exist

that differ only by the minimum changes required to address the fault. The “fixed” version

must be explicitly labeled as a fix to an issue, and changes imposed by the fix must be

to source code, not to other project artifacts such as the build system. Second, the fault

must be reproducible—at least one test must pass on the fixed version and fail on the faulty

version. Third, the fix must be isolated from unrelated code changes such as refactorings.

In order to expand our study to a larger set of case examples, we have added an addi-

tional ten systems to Defects4J. The process of adding new faults is semi-automated, and

requires the development of build files that work across project versions. The commit mes-

sages of the project’s version control system are scanned for references to issue identifiers.

These versions are considered to be candidate “fixes” to the referenced issues. The human-

developed test suite for that version is then applied to previous project versions. If one or

more test cases pass on the “fixed” version and fail on the earlier version, then that version

is retained as the “faulty” variant. The code differences between versions are captured as a

patch file, which must then be manually minimized to remove any differences that are not

required to reproduce the fault.

Following this process, we added 240 faults—bringing the total to 597 faults from 15

projects. The new projects include: CommonsCLI (24 faults), CommonsCSV (12), Com-

monsCodec (22), CommonsJXPath (14), Guava (9), JacksonCore (13), JacksonDatabind

2Available from http://defects4j.org

84

http://defects4j.org

(39), JacksonXML (5), Jsoup (64), and Mockito (38)3. The ten new systems were cho-

sen because they are popular projects and have reached a reasonable level of maturity—

meaning that the detected faults are often relatively complicated. Two of these systems,

Guava and Mockito, were the subjects of recent research challenges at the Symposium

on Search-Based Software Engineering [21, 147]. Four faults from the Math project were

omitted due to complications encountered during suite generation, leaving 593 faults that

we used in our study.

Code Metric-based Characterization

When assessing the results of our study, we wish to gain understanding of when and why

our test suites were able to detect—or not detect—faults. Such understanding could lead to

a deeper understanding of the strengths and limitations of current test generation tech-

niques, and could inspire new approaches. Gaining such understanding requires fine-

grained information about the faults being targeted—and, more specifically, the classes

being targeted for test generation. To assist in gaining this understanding, we have turned

to traditional source code metrics. Using the SourceMeter framework4, we have gathered

a set of 60 cloning, complexity, cohesion, coupling, documentation, inheritance, and size

metrics for each class associated with a fault included in the Defects4J dataset.

Such metrics, commonly used as part of research on effort estimation [148] and defect

prediction [149], are considered to have substantial predictive power. By characterizing the

classes that host the Defects4J faults using these code metrics, we can better understand the

results of our research. Using the SourceMeter framework, we have measured 60 source

code metrics for each class related to a fault in the Defects4J dataset. These metrics are

recorded for both the faulty and fixed versions of each affected class. The metrics may be

3The new faults have been submitted to Defects4J as a pull request. Until they are accepted, they can be
found at the additional-faults-1.4 branch of https://github.com/Greg4cr/defects4j.

4Available from https://www.sourcemeter.com.

85

https://github.com/Greg4cr/defects4j
https://www.sourcemeter.com

Table 4.1: List of metrics gathered for each class, separated by category. The median and
standard deviation are listed for each.

Category Abbreviation Metric Median Standard Deviation

Clone

CC Clone Coverage 0.00 0.16
CCL Clone Classes 0.00 10.80
CCO Clone Complexity 0.00 453.26

CI Clone Instances 0.00 27.86
CLC Clone Line Coverage 0.00 0.09

CLLC Clone Logical Line Coverage 0.00 0.14
LDC Lines of Duplicated Code 0.00 161.06

LLDC Logical Lines of Duplicated Code 0.00 147.78
Cohesion LCOM5 Lack of Cohesion in Methods 5 1.00 7.31

Complexity
NL Nesting Level 4.00 2.94

NLE Nesting Level Else-If 3.00 1.93
WMC Weighted Methods per Class 55.00 149.58

Coupling

CBO Coupling Between Object Classes 8.00 11.79
CBOI Coupling Between Object Classes Inverse 5.00 61.38

NII Number of Incoming Invocations 16.00 172.67
NOI Number of Outgoing Invocations 14.00 31.31
RFC Response Set For Class 37.50 56.43

Documentation

AD API Documentation 1.00 0.32
CD Comment Density 0.38 0.18

CLOC Comment Lines of Code 127.00 460.47
DLOC Documentation Lines of Code 102.50 443.12
PDA Public Documented API 7.00 28.31
PUA Public Undocumented API 0.00 8.77
TCD Total Comment Density 0.36 0.17

TCLOC Total Comment Lines of Code 144.50 465.29

Inheritance

DIT Depth of Inheritance Tree 1.00 1.15
NOA Number of Ancestors 1.00 1.71
NOC Number of Children 0.00 2.07
NOD Number of Descendants 0.00 3.39
NOP Number of Parents 1.00 0.86

Size

LLOC Logical Lines of Code 208.50 462.19
LOC Lines of Code 382.50 879.00
NA Number of Attributes 8.00 14.33
NG Number of Getters 3.00 14.96

NLA Number of Local Attributes 6.00 10.24
NLG Number of Local Getters 2.00 8.58
NLM Number of Local Methods 21.00 35.03
NLPA Number of Local Public Attributes 0.00 4.35
NLPM Number of Local Public Methods 9.00 29.50
NLS Number of Local Setters 0.00 5.23
NM Number of Methods 28.50 50.96
NOS Number of Statements 109.50 279.94
NPA Number of Public Attributes 0.00 6.17
NPM Number of Public Methods 14.00 44.25
NS Number of Setters 0.00 11.33

TLLOC Total Logical Lines of Code 275.50 503.28
TLOC Total Lines of Code 495.00 919.51
TNA Total Number of Attributes 10.00 17.34
TNG Total Number of Getters 4.00 20.96

TNLA Total Number of Local Attributes 8.00 14.20
TNLG Total Number of Local Getters 2.00 10.62
TNLM Total Number of Local Methods 27.00 44.33
TNLPA Total Number of Local Public Attributes 0.00 4.67
TNLPM Total Number of Local Public Methods 12.00 34.82
TNLS Total Number of Local Setters 0.00 6.20
TNM Total Number of Methods 37.00 79.02
TNOS Total Number of Statements 143.00 293.37
TNPA Total Number of Public Attributes 0.00 6.36
TNPM Total Number of Public Methods 19.00 62.78
TNS Total Number of Setters 0.00 14.01

divided into the following categories:

• Clone Metrics are used to measure the occurrence of Type-2 clones in the class—

code fragments that are structurally identical, but may differ in variable names, liter-

86

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

TLOC
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

TNM
 0

 20

 40

 60

 80

 100

 120

 140

TNA
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

CLLC

 0

 10

 20

 30

 40

 50

 60

LCOM5
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

CBO
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

DLOC
 0

 50

 100

 150

 200

 250

PDA

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

TCD
 0

 1

 2

 3

 4

 5

DIT
 0

 50

 100

 150

 200

 250

 300

 350

NPM

 0

 10

 20

 30

 40

 50

 60

 70

 80

TNLPA
 0

 20

 40

 60

 80

 100

 120

 140

 160

TNS

Figure 4.1: Boxplots illustrating the median, first, and third quartile values for select met-
rics from the dataset.

87

als, and identifiers [150].

• Cohesion Metrics assess the level of cohesion in a class—whether attributes and the

operations that use them are organized into one class, and whether there are methods

that are unrelated to the other methods and attributes in the class [151].

• Complexity Metrics assess the complexity of the class, using information such as

the depth of nesting and the number of control-flow paths through methods [152].

Complexity is often used as part of defect prediction, as more complex methods are

expected to contain more defects than simpler methods.

• Coupling Metrics assess the level of dependency between classes [153]. When

designing a system, developers are cautioned to minimize the level of coupling—to

make each class as independent as possible. Coupling metrics are used to identify

design weaknesses and architectural bottlenecks.

• Documentation Metrics measure the degree that a class is documented by its devel-

opers [154]. Well-documented code is often thought to be higher quality code, and

these metrics can identify classes that may have received less attention.

• Inheritance Metrics tracks the relationships between parent and child classes along

the class hierarchy [153]. As inheritance defines a form of dependence, such metrics

are useful for identifying how code changes can propagate through a system.

• Size Metrics characterize the size and complexity of a class based on structural el-

ements such as the number of lines of code, methods, attributes, setters, and get-

ters [155]. Such metrics can be used, at a glance, to identify some of the more

complex classes in a system.

Table 4.1 lists the gathered metrics. Detailed definitions may be found on the SourceMe-

ter documentation [156]. Table 4.1 notes the median and standard deviation for all metrics.

88

Characterizing the “Average” Class

To help illustrate the “average” class from Defects4J, we have included boxplots for several

of the measured metrics in Figure 4.1. Each box depicts the first and third quartiles, as well

as the median value. Outliers—points more than 1.5 times the interquartile range—are

depicted as well. Rather than depict all 60 metrics, we show a subset indicated as important

in our case study to help characterize the studied classes. First, to set context:

• TLOC (Total Lines of Code) indicates the amount of code is in a class, including

comments and whitespace. TLOC include lines in anonymous, nested, and local

classes. The median TLOC is 495, but a large standard deviation (919.51) indicates

that classes have a wide range of sizes. Studied classes tend to cluster between 0-

1,000 TLOC, and the largest class has 6,481 TLOC.

• TNM (Total Number of Methods) is the number of methods in a class, including

those in anonymous, nested, and local classes, as well as those inherited from a

parent. The median TNM is 37, with the maximum being 806. Classes in Defects4J

tend to have less than 100 methods. Again, however, there are a number of outliers.

• TNA (Total Number of Attributes) is the number of attributes in a class, including

those in anonymous, nested, and local classes, as well as those inherited from a

parent. The median TNA is 10—with values tending to cluster between 5-20—and

the maximum is 139.

The following metrics were indicated in our case study as being able to explain why

generated test suites are able—or not able—to detect faults. We will discuss the implica-

tions of these findings in Section 4.4. Here, we use these metrics to further characterize the

“average” class in Defects4J.

• CLLC (Clone Logical Line Coverage) is the ratio of code covered by code dupli-

cations in the class to the size of the class, expressed in terms of logical lines of code

(non-empty, non-comment lines). Clone Coverage is the same measurement, except

89

that it includes comments and whitespace. The CLLC and CC are both largely con-

centrated towards the low end of the scale, with a median of 0 for both—no code

being duplicated—and a relatively low standard deviation (0.14).

• LCOM5 (Lack of Cohesion in Methods 5) measures the lack of cohesion and com-

putes how many coherent classes the class could be split into. Although there are

many outliers, the LCOM5 is largely concentrated towards the low end of the scale—

with a median of 1—indicating that classes tend to be highly cohesive.

• CBO (Coupling Between Objects) indicates the number of classes that serve as

dependencies of the target class (by inheritance, method call, type reference, or at-

tribute reference). Classes dependent on many other classes are very sensitive to the

changes in the system, and can be harder to test or evolve. The median CBO is 8

and standard deviation is 11.79, indicating that—while classes are connected—the

average class does not overly depend on the rest of the system.

• DLOC (Documented Lines of Code) simply measures the number of line of code

that are comments (in-line or standalone). The median number of documented lines

is 102. However, there are a large range of values, with the maximum DLOC at a

staggering 4,017.

• PDA (Public Documented API) is the number of public methods with documenta-

tion. The median PDA is 7. Again, however, there is a large variance in PDA, with a

standard deviation of 28.31 and a large number of outlying values.

• TCD (Total Comment Density) is the ratio of the comment lines to the sum of its

comment and logical lines of code, including nested, anonymous, and local classes.

The CD (Comment Density), also noted as important, is the same measurement

excluding nested, anonymous, and local classes. The median TCD is 0.36 and the

median CD is 0.38, indicating that the “average” Defects4J class is approximately

one-third documentation.

• DIT (Depth of Inheritance Tree) measures the length of the path from the class

90

to its furthest ancestor in the inheritance tree. The median DIT is 1—many classes

have a parent. The maximum DIT is 5, but this is an extreme outlier—the standard

deviation is 1.15 and almost all classes have 0-2 levels of ancestors.

• NPM (Number of Public Methods) indicates the number of methods that are publicly-

accessible in the class, including inherited methods. Closely related is the TNLPM

(Total Number of Local Public Methods), which includes nested, anonymous, and

local classes, but excludes inherited methods. The median NPM is 14, with the ma-

jority concentrated below 50. The median TNLPM is slightly lower—12. Both are

lower than the TNM, indicating that many classes have a large number of private

methods.

• NLPA (Number of Local Public Attributes), similarly, indicates the number of

publicly-accessible attributes in the class, excluding inherited attributes. The TNLPA

(Total Number of Local Public Attributes) includes nested, anonymous, and local

classes. Both metrics are less consistent than many of the others, with a large num-

ber of outlying values. However, the median for both is 0—indicating that there are

often no public attributes in a class. This is notably lower than the TNA, indicating

that class attributes are generally private.

• TNS (Total Number of Setters) records the number of setter methods in the class,

including inherited methods. Our study also indicated the NS (Number of Set-

ters)—excluding nested, anonymous, and local classes—and TNLS (Total Number

of Local Setters)—excluding inherited setters—as important. This set of attributes

also has a relatively large number of outliers, but is concentrated towards the low end

of the scale. All three of these metrics have a median value of 0, indicating that most

classes in Defects4J have no setter methods.

91

Test Suite Generation

The EvoSuite framework uses a genetic algorithm to evolve test suites over a series of gen-

erations, forming a new population by retaining, mutating, and combining the strongest

solutions. It is actively maintained and has been successfully applied to a variety of

projects [22]. In this study, we used EvoSuite version 1.0.5, and the following fitness

functions:

Branch Coverage (BC): A test suite satisfies branch coverage if all control-flow branches

are taken during test execution—the test suite contains at least one test whose execution

evaluates the branch predicate to true, and at least one whose execution evaluates the

predicate to false. To guide the search, the fitness function calculates the branch distance

from the point where the execution path diverged from the targeted branch. If an undesired

branch is taken, the function describes how “close” the targeted predicate is to being true,

using a cost function based on the predicate formula [145].

Direct Branch Coverage (DBC): Branch coverage may be attained by calling a method

directly, or indirectly—calling a method within another method. When a test covers a

branch indirectly, it can be more difficult to understand how coverage was attained. Direct

branch coverage requires each branch to be covered through a direct method call.

Line Coverage (LC): A test suite satisfies line coverage if it executes each non-comment

source code line at least once. To cover each line of source code, EvoSuite tries to ensure

that each basic code block is reached. The branch distance is computed for each branch

that is a control dependency of any of the statements in the CUT. For each conditional

statement that is a control dependency for some other line in the code, EvoSuite requires

that the branch of the statement leading to the dependent code is executed.

Exception Coverage (EC): The goal of exception coverage is to build test suites that force

the CUT to throw exceptions—either declared or undeclared. As the number of possible

exceptions that a class can throw cannot be known ahead of time, the fitness function

92

rewards suites that throw more exceptions. As this function is based on the number of

discovered exceptions, the number of “test obligations” may change each time EvoSuite is

executed on a CUT.

Method Coverage (MC): Method Coverage simply requires that all methods in the CUT

are executed at least once, through direct or indirect calls. The fitness function for method

coverage is discrete, as a method is either called or not called.

Method Coverage (Top-Level, No Exception) (MNEC): Generated test suites sometimes

achieve high levels of method coverage by calling methods in an invalid state or with in-

valid parameters. MNEC requires that all methods be called directly and terminate without

throwing an exception.

Output Coverage (OC): Output coverage rewards diversity in the method output by map-

ping return types to a list of abstract values [157]. A test suite satisfies output coverage if,

for each public method in the CUT, at least one test yields a concrete return value charac-

terized by each abstract value. For numeric data types, distance functions offer feedback

using the difference between the chosen value and target abstract values.

Weak Mutation Coverage (WMC): Test effectiveness is often judged using mutants [75].

Suites that detect more mutants may be effective at detecting real faults as well. A test suite

satisfies weak mutation coverage if, for each mutated statement, at least one test detects the

mutation. The search is guided by the infection distance, a variant of branch distance tuned

towards reaching and discovering mutated statements [158].

Rojas et al. provide a primer on each of these fitness functions [159]. In order to study

the effect of combining fitness functions, we also generate test suites using two combi-

nations. The first is EvoSuite’s default configuration—a combination of all of the above

methods (called the “Default Combination”). The second is a combination of branch,

exception, and method coverage (called the “BC-EC-MC Combination”). This combina-

tion was identified as an effective baseline in our prior work studying combination efficacy

on the five original systems from Defects4J [137].

93

Test suites are generated that target the classes reported as relevant to the fault by De-

fects4J. Tests are generated using the fixed version of the CUT and applied to the faulty

version in order to eliminate the oracle problem. EvoSuite generates assertion-based ora-

cles. Generating oracles based on the fixed version of the class means that we can confirm

that the fault is actually detected, and not just that there are coincidental differences in

program output. In practice, this translates to a regression testing scenario, where tests are

generated using a version of the system understood to be “correct” in order to guard against

future issues. Tests that fail on the faulty version, then, detect behavioral differences be-

tween the two versions.

Two search budgets were used—two minutes and ten minutes per class. This allows us

to examine whether an increased search budget benefits each fitness function. To control

experiment cost, we deactivated assertion filtering—all possible regression assertions are

included. All other settings were kept at their default values. As results may vary, we

performed 10 trials for each fault and search budget. This resulted in the generation of

118,600 test suites (two budgets, ten trials, ten configurations, 593 faults).

Generation tools may generate flaky (unstable) tests [22]. For example, a test case that

makes assertions about the system time will only pass during generation. We automatically

remove flaky tests. First, all non-compiling test suites are removed. Then, each remaining

test suite is executed on the fixed version five times. If the test results are inconsistent, the

test case is removed. This process is repeated until all tests pass five times in a row. On

average, fewer than one test tends to be removed from each suite (see Table 4.2).

Test Generation Data Collection

To evaluate the fault-finding effectiveness of the generated test suites, we execute each test

suite against the faulty version of each CUT. The effectiveness of each fitness function, for

each fault, is the proportion of suites that successfully detect the fault to the total number

of suites generated for that fault. We refer to this as the likelihood of fault detection.

94

Table 4.2: Statistics on generated test suites (each statistic is explained in Section 4.3).
Values are averaged over all faults (i.e., the average number of obligations, average number
of tests removed, etc.). “Default Combination” is a combination of the eight individual
fitness functions. “BC-EC-MC Combination” combines the branch, exception, and method
coverage fitness functions.

Method Budget Total % Obligations Suite Suite # Tests % Line Coverage % Line Coverage % Branch Coverage % Branch Coverage
Obligations Satisfied Size Length Removed (Fixed) (Faulty) (Fixed) (Faulty)

Branch 120
295.15

58.32% 36.33 195.96 0.38 61.98% 62.04% 58.96% 58.87%
Coverage (BC) 600 65.00% 44.27 268.95 0.75 67.35% 67.23% 65.44% 65.19%

Direct 120
295.15

54.60% 38.32 217.55 0.35 60.01% 59.59% 56.37% 55.93%
Branch (DBC) 600 61.79% 48.27 310.52 0.73 65.53% 64.96% 63.32% 62.65%

Exception 120 12.47 99.41% 11.99 35.54 0.23 21.35% 21.36% 15.82% 15.99%
Coverage (EC) 600 12.57 99.38% 12.12 36.09 0.26 21.60% 21.63% 15.97% 16.15%

Line 120
329.90

61.29% 30.32 162.08 0.28 62.27% 61.69% 53.60% 53.09%
Coverage (LC) 600 66.79% 34.73 207.65 0.45 67.53% 66.90% 59.11% 58.51%

Method 120
31.92

78.99% 22.00 73.78 0.05 37.51% 37.40% 29.18% 29.26%
Coverage (MC) 600 83.30% 24.32 86.62 0.09 38.91% 38.93% 30.36% 30.52%

Method, No 120
31.92

77.59% 21.68 74.54 0.05 39.06% 38.99% 30.39% 30.48%
Exception (MNEC) 600 82.19% 23.79 88.88 0.10 40.84% 40.78% 31.75% 31.91%

Output 120
185.89

42.78% 29.04 133.04 0.12 39.00% 38.82% 32.90% 32.88%
Coverage (OC) 600 46.17% 32.68 161.32 0.26 40.81% 40.67% 34.47% 34.47%

Weak 120
508.38

56.20% 26.48 164.51 0.16 56.02% 55.87% 49.73% 49.50%
Mutation (WMC) 600 62.94% 32.60 246.57 0.42 61.58% 61.31% 56.19% 55.80%

Default 120 1673.19 53.92% 48.71 358.93 0.55 58.25% 58.05% 53.15% 52.95%
Combination 600 1681.19 60.72% 64.57 550.03 1.08 64.65% 64.07% 60.91% 60.30%
BC-EC-MC 120 345.59 63.81% 50.73 262.03 1.06 62.91% 62.22% 59.95% 59.12%
Combination 600 354.84 69.69% 65.10 368.83 2.04 68.00% 67.12% 66.30% 65.24%

To better understand the generation factors that influence effectiveness, we also col-

lected the following for each test suite:

Number of Test Obligations: Given a CUT, each fitness function will calculate a series of

test obligations to cover (as defined in Section 4.2). The number of obligations is informa-

tive of the difficulty of the generation, and impacts the size and formulation of tests [160].

Note that the number of test obligations is dependent on the CUT, and does not differ be-

tween budgets except in the case of exception coverage. As exception coverage simply

counts the number of observed exceptions, it does not have a consistent set of obligations

each time generation is performed.

Percentage of Obligations Satisfied: This factor indicates the ability of a fitness function

to cover its goals. A suite that covers 10% of its goals is likely to be less effective than one

that achieves 100% coverage.

Test Suite Size: We have recorded the number of tests in each test suite. Larger suites are

often thought to be more effective [135,161]. Even if two suites achieve the same coverage,

the larger may be more effective simply because it exercises more combinations of input.

Test Suite Length: Each test consists of one or more method calls. Even if two suites have

95

●

●

●

●

●●
●●

●
●

●

●●
●

●

●

●

●

●

●

●

●●●

●
●●

●

●●●

●●

●●●

●

●

●
●●

●●
●●●●
●●●●

●

●●●

●

●

●
●●
●

●●●● ●

●

●

●

●●●●

●●

●●
●

●

●

●
●●

●●●●
●●●●●
●●
●●
●●●

●

●●

●

●
●

●

●

●

●

●●●●
●●●●●
●● ●

●

●

●

●●●●

●●

●●
●

●

●

●
●●

●●●●
●●●●●
●●
●●
●●●

●

●●

●

●
●

●

●

●

●

●●●●
●●●●●
●●

●●●

●

●

●●●●●●●
●●●●
●●
●●●
●●

●●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●●●

●
●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●
●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●
●
●●●●●●

●
●

●

●●

●

●

●

●

●

●

●
●
●
●
●

●●

●

●●
●
●
●
●

●
●

●

●●●●●●●●●●●

●

●
●●●
●●●●●●
●
●●
●●●●

●

●

●

●

●

●

●
●●
●●
●
●

●
●●●

●

●

●

●

●

●

●●
●●

●
●

●

●●
●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●●

●●●

●

●

●
●●

●●
●●●●
●●●●

●

●●●

●

●

●
●
●●

●
●
●● ●

●

●

●

●●●●

●●

●●
●

●

●

●
●●

●●●●
●●●●●
●●
●●
●●●

●

●●

●

●
●

●

●

●

●

●●●●
●●●●●
●● ●

●
●

●

●●●●

●●

●●
●

●

●

●
●●

●●●●
●●●●●
●●
●●
●●

●

●●

●

●
●
●

●

●

●

●●
●●●
●●

●●

●

●

●●●●●●●●
●●●●
●●
●●●
●●

●●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●●●

●
●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●
●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●
●
●●●●●●

●
●
●

●●

●

●

●

●

●

●

●
●
●
●
●

●●

●

●●
●
●
●
●

●
●

●

●●●●●●●●●●●

●

●
●●●
●●●●●●
●
●●
●●●●
●

●

●●

●

●

●●●
●●
●
●

●●
●●

●

●

D
ef

au
lt−

2m

B
E

M
−

2m

B
C

−
2m

D
B

C
−

2m

E
C

−
2m

LC
−

2m

M
C

−
2m

M
N

E
C

−
2m

O
C

−
2m

W
M

C
−

2m

D
ef

au
lt−

10
m

B
E

M
−

10
m

B
C

−
10

m

D
B

C
−

10
m

E
C

−
10

m

LC
−

10
m

M
C

−
10

m

M
N

E
C

−
10

m

O
C

−
10

m

W
M

C
−

10
m

0

2000

4000

6000

8000

10000

12000

Figure 4.2: Total Obligations

●●
●

●
●

●

●●●●
●

●●●
●

●

●
●
●●

●●

●
●

●

●●●●
●●●
●●●●●

●

●

●

●
●
●
●
●

●
●
●●●
●
●

●

●

●

●●

●

●
●●●●●
●●

●●

●

●

●
●●

●

●

●

●●●
●●●●

●

●●

●
●●●●●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●● ●
●
●
●●●

●
●●●
●

●●●●●●●●●
●
●●●●●●
●
●●●

●

●●

●
●
●●
●
●
●

●

●

●

●

●

●
●
●

●

●

●●●●●

●

●

●

●

●

●

●

●●
●●
●●●●●●

●

●

●

●●

●
●
●
●
●
●●●●●
●
●●

●

●

●

●

●●

●

●●●

●●

●●●

●

●

●

●
●
●
●
●●●●●

●
●

●

●

●

●

●

●

●●●
●

●
●
●

●
●

●

●

●

●

●●

●

●

●●
●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●●

●●

●

●●

●

●

●●

●

●

●

●

●

●●

●●

●●●●

●

●

●

●

●

●
●

●

●●●●●

●

●●

●●

●●

●

●

●

●
●

●
●

●

●

●●●

●

●
●

●●

●●

●
●●

●

●

●●

●

●

●●

D
ef

au
lt−

2m

B
E

M
−

2m

B
C

−
2m

D
B

C
−

2m

E
C

−
2m

LC
−

2m

M
C

−
2m

M
N

E
C

−
2m

O
C

−
2m

W
M

C
−

2m

D
ef

au
lt−

10
m

B
E

M
−

10
m

B
C

−
10

m

D
B

C
−

10
m

E
C

−
10

m

LC
−

10
m

M
C

−
10

m

M
N

E
C

−
10

m

O
C

−
10

m

W
M

C
−

10
m

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.3: % Obligations Satisfied

Figure 4.4: Boxplots of the total obligations and % of obligations satisfied for suites gen-
erated for each fitness configuration and search budget.

the same number of tests, one may have much longer tests—making more method calls. In

assessing the effect of suite size, we must also consider the length of each test case.

Number of Tests Removed: Any tests that do not compile, or that return inconsistent

results, are automatically removed. We track the number removed from each suite.

Code Coverage: As the premise of many adequacy criteria is that faults are more likely

to be detected if structural elements of the code are thoroughly executed, the resulting

coverage of the code may indicate the effectiveness of a test suite. Using EvoSuite’s cov-

96

●

●●

●●

●
●●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●●

●●
●
●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●●

●●●●●
●●
●●
●●
●●●

●

●●

●

●
●

●

●

●

●

●

●

●●
●

●

● ●

●●

●

●

●

●●

●●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●●

●●
●
●

●

●
●●
●
●●●●●
●
●●●●

●
●

●
●●

●

●●
●

●

●

●

●●●●

●

●
●
●
●●
●
●●

●

●●●
●
●●

●

●
●

●
●●
●
●●

●

●

●

●●

●●

●

●

●

●●

●
●
●●●●
●●
●
●

●

●
●
●

●

●

●
●

●

●

●

●

●
●
●
●

●●

●

●

●

●●●

●
●

●
●●●●

●

●
●●

●
●
●●●
●
●

●

●
●
●●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●
●
●
●●
●
●
●●

●
●●

●

●

●
●
●●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

●

●

●●

●●

●

●

●

●●

●●●
●
●
●
●●
●
●
●

●

●
●●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●●

●●

●

●

●

●●

●

●

●●●●
●●

●
●●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●
●
●●

●
●

●●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●
●●●

●

●

●

●●

●

●

●
●

●

●
●●●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●●●●

●●
●
●

●
●●
●●
●●●
●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●●

●

●

●

●

●●

●

●●

●●●●

●●

●●

●
●
●●●●●●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●
●

●

●●
●
●

●

●●
●●
●
●●●●●
●
●
●●●

●
●

●
●●

●

●●●
●

●

●

●

●●●

●

●
●●
●●
●
●●

●

●●●
●
●●

●

●

●

●●
●●

●●
●
●

●

●

●

●●

●●

●

●

●

●
●●●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●
●
●●
●
●

●

●

●
●
●
●

●
●
●

●●
●
●

●●●●●●●●●
●
●●●

●

●

●
●●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●
●●●
●
●

●

●
●●●
●●●●
●

●●●

●

●

●

●
●●●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●●●

●

●

●●●●

●

●

●

●●

●●

●

●

●

●

●

●

●
●●●
●

●
●●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●●●●

●

●

●

●●

●●

●

●

●

●●

●
●
●●●
●●

●
●

●
●
●
●

●

●
●

●

●

●

●

●

●

●●

D
ef

au
lt−

2m

B
E

M
−

2m

B
C

−
2m

D
B

C
−

2m

E
C

−
2m

LC
−

2m

M
C

−
2m

M
N

E
C

−
2m

O
C

−
2m

W
M

C
−

2m

D
ef

au
lt−

10
m

B
E

M
−

10
m

B
C

−
10

m

D
B

C
−

10
m

E
C

−
10

m

LC
−

10
m

M
C

−
10

m

M
N

E
C

−
10

m

O
C

−
10

m

W
M

C
−

10
m

0

200

400

600

800

Figure 4.5: Suite Size

●

●

●

●●

●
●●
●

●●

●
●

●●

●
●●
●

●
●●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●●●
●●

●

●

●

●
●

●

●
●

●
●

●●

●●
●
●●●

●
●

●
●●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●
●●
●

●

●

●
●●

●

●●
●●

●
●

●
●●

●
●
●

●

●●

●

●●
●
●

●

●

●

●●
●

●

●

●

●

●

●

●●

●●●●
●
●●●●
●

●

●

●

●

●

●●●
●
●
●

●●
●●

●
●

●
●

●●
●
●

●

●●

●●●

●●
●

●
●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●●●

●●●●●●●●●●●●
●●
●●●●●●●

●
●
●●●●
●
●

●

●
●●●●
●
●●●●●●●●
●
●●●●

●

●

●

●
●

●●●●●●
●●
●

●●●

●

●●
●●

●
●

●●●●
●●

●●

●●●

●

●

●

●●

●●

●

●●

●

●

●
●

●

●
●●

●●●
●●●●●
●

●●

●

●

●

●

●●●
●●
●●●

●

●●

●

●●

●

●

●●●
●●●

●

●●●●●

●

●

●

●
●
●

●

●

●

●●

●

●●
●
●●
●●
●

●
●

●

●

●

●●
●
●●
●●●●

●

●●

●

●●

●

●

●●●
●
●

●

●●
●
●●●

●

●

●

●
●
●

●

●

●

●●

●

●●
●
●●●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●●

●
●
●

●●
●

●●●
●
●

●
●
●
●●
●
●

●●

●

●●

●

●
●

●●

●
●
●

●

●

●●

●

●

●

●

●●

●

●●
●●

●●

●●

●
●
●
●●

●

●

●●

●●●●●

●●●

●

●●●

●
●●

●

●

●
●
●

●

●

●●

●

●
●

●

●

●

●●●●●●

●

●

●

●

●

●
●●●
●

●
●●●

●
●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●●

●

●●●
●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●●

●●

●

●
●

●

●

●

●

●

●
●

●●
●
●●

●

●

●

●●

●●●

●

●
●

●

●
●

●●

●●

●
●
●
●
●●

●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●
●●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●●
●

●●

●

●

●●
●●

●●

●●
●

●

●●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●●
●
●●

●●●●●●●●●●●●
●●
●●●●●●●●●

●

●
●●●●●
●
●

●

●
●●●●
●
●●●●●●●●●
●
●●●●

●

●●

●

●

●

●●

●●

●●

●

●

●●●●
●

●●
●
●

●

●●
●●

●
●

●●●
●●●
●●

●

●●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●

●
●
●
●●

●

●

●

●

●

●●●●
●
●●
●●

●

●●

●

●
●●

●

●●

●
●

●●●●
●
●●

●

●●
●●●

●

●

●

●
●
●

●

●
●●

●
●

●●

●

●

●

●●
●●
●

●
●

●

●

●

●

●
●●●●●
●
●

●

●●

●

●
●●

●

●●

●●

●
●
●●

●
●
●

●

●●
●
●●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●●●
●●
●●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●●●●

●

●

●

●●

●

●●●●

●

●

●

●●
●●●

●
●

●●
●●●
●

●
●●

●●

●

●●●●

●

●

●

●
●
●
●

●●

●●

●

●
●

●

●

●

●

●
●●●
●

●

●●
●
●●

●

●●

●●

●●
●●

●
●

●●

●

●
●

●●●

●

●

●●

●●●

●●●
●

●
●●

●

●●

●
●

●

●

●

●●

●

●

●

●
●
●

●
●

●

●
●

●

●

●●
●

D
ef

au
lt−

2m

B
E

M
−

2m

B
C

−
2m

D
B

C
−

2m

E
C

−
2m

LC
−

2m

M
C

−
2m

M
N

E
C

−
2m

O
C

−
2m

W
M

C
−

2m

D
ef

au
lt−

10
m

B
E

M
−

10
m

B
C

−
10

m

D
B

C
−

10
m

E
C

−
10

m

LC
−

10
m

M
C

−
10

m

M
N

E
C

−
10

m

O
C

−
10

m

W
M

C
−

10
m

0

2000

4000

6000

8000

Figure 4.6: % Line Coverage (Fixed)]

Figure 4.7: Boxplots of the suite size, length, and line coverage of suites generated for each
fitness configuration and search budget.

erage measurement capabilities, we have measured the line and branch coverage achieved

by each suite when executed over both the faulty and fixed versions of each CUT. Due to in-

strumentation issues, we were unable to measure coverage over two systems—JacksonDatabind

and Mockito. However, we were able to measure coverage over the remaining 516 faults.

Table 4.2 records, for each fitness function and budget, the average values attained for

each of these measurements over all faults for which we were able to take measurements.

In Figure 4.4, we show boxplots of the total obligations and % of obligations satisfied for

97

suites generated for each fitness configuration and search budget. Branch and direct branch

coverage will always have the same number of obligations. Line coverage tends to operate

in the same approximate range. Exception, method, and MNEC have the fewest obliga-

tions, while weak mutation coverage tends to have the most obligations of the individual

fitness functions. Naturally, the two combinations have more obligations—the combina-

tion of their member functions. In terms of satisfaction, the three fitness functions with the

fewest obligations—exception, method, and MNEC—all also have the highest satisfaction

rate. Output coverage has the lowest average, and generally lower, satisfaction rates. For all

functions other than Exception Coverage, there tends to be large variance in the satisfaction

rate.

In Figure 4.7, we show boxplots of the suite size, length, and line coverage of suites

generated for each fitness configuration and search budget. Most fitness functions yield

similar median suite size and variance in results. Exception coverage tends to yield the

smallest suites, owing to its small number of test obligations. Method coverage and MNEC

yield smaller suites than other fitness functions, but not significantly so. Output coverage

tends to have relatively large test suites—comparable in size to branch and direct branch

coverage. Again, the two combinations tend to yield larger test suites, but not significantly

larger than those for branch, direct branch, and weak mutation coverage. Test suite length

largely offers similar observations. However, we do note that the “default combination”

tends to yield very long test suites, composed of more method calls than suites for other

fitness configurations. This is not the case for the BC-EC-MC combination.

Like with obligation satisfaction, there is a large variance in the line coverage attained

by test suites, regardless of fitness function. Exception coverage tends to achieve both

the lowest coverage and the least variance in coverage. This is reasonable, as the fitness

function for exception coverage has no mechanism to encourage class exploration. Natu-

rally, branch, direct branch, line, and weak mutation coverage tend to attain high coverage

rates over classes, as all four use coverage-based fitness mechanisms. Exception, method,

98

MNEC, and output coverage are based on source code elements, but all have fitness repre-

sentations that are not based on control flow. As a result, they tend to attain lower coverage

levels.

Dataset Preparation for Treatment Learning

To understand the factors leading to detection—or lack of detection—of a fault, we have

collected two basic sets of data for each fault: test generation factors related to the test

suites produced and source code metrics examining the classes being targeted for unit test

generation.

A standard practice in machine learning is to classify data—to use previous experience

to categorize new observations [162]. We are instead interested in the reverse scenario.

Rather than attempting to categorize new data, we want to work backwards from classifi-

cations to discover which factors correspond most strongly to a class of interest—a process

known as treatment learning [163]. Treatment learning approaches take the classification

of an observation and reverse engineers the evidence that led to that categorization. Such

learners produce a treatment—a small set of attributes and value ranges for each that, if

imposed, will identify a subset of the original data skewed towards the target classification.

In this case, a treatment notes the metrics—and their values—that indicate that generated

test suites will detect a fault.

For example, the treatment [NS = [0.00..1.00), TCD = [0.52..0.93]]—derived from

the code metric-based dataset—indicates that the subset of the data where the Number of

Setters is less than 1 and the Total Comment Density is between 52-93% has a higher

percentage of “Yes” classifications (“Yes” implying that the fault is detected, while a “No”

classification indicates that the fault was not detected) than the base dataset. Within this

subset, “Yes” classifications account for 72.00% of the class distribution of the subset—

compared to 47.44% of the base distribution.

Using the TAR3 treatment learner [164], we have generated five treatments from each

99

 0

 20

 40

 60

 80

 100

Not Detected Low Performance High Performance

P
e

rc
e

n
t

o
f

D
a

ta
s

e
t 70.00

17.00
13.00

Figure 4.8: 2m Budget

 0

 20

 40

 60

 80

 100

Not Detected Low Performance High Performance

P
e

rc
e

n
t

o
f

D
a

ta
s

e
t

68.00

16.00 16.00

Figure 4.9: 10m Budget

Figure 4.10: Baseline class distribution of the generation factors datasets used for treatment
learning.

dataset that target each of the applied verdicts. A user can specify the minimum number

of examples that may make up the data subset matching a treatment in order to ensure

minimum support for a treatment. We require the subset to contain at least 20% of the total

dataset. In addition, a limit can be placed on the number of attributes chosen for a treatment.

It is thought that large treatments—those recommending more than five attribute-range

pairs—may not have more explanatory power than smaller treatments [164]. Therefore,

we also limit the treatment size to five attribute-value pairings.

Generation-Based Datasets

As discussed in Section 4.3—to better understand the combination of factors correlating

with effective fault detection—we have collected the following statistics for each generated

test suite: the number of obligations, the percent satisfied, suite size, suite length, number

100

 0

 20

 40

 60

 80

 100

No Yes

Pe
rc

en
t o

f D
at

as
et

52.56 47.44

Figure 4.11: 2m Budget

 0

 20

 40

 60

 80

 100

No Yes

Pe
rc

en
t o

f D
at

as
et

50.20 49.80

Figure 4.12: 10m Budget

Figure 4.13: Baseline class distributions for the “overall” code metrics datasets used for
treatment learning.

of tests removed, as well as branch (BC) and line coverage (LC) over the fixed and faulty

versions of the CUT.

This collection of factors forms a dataset that can be used to analyze the impact of

these factors on efficacy. Each record in the dataset corresponds to the values of these

attributes for each fault, and for each criterion or combination of criteria. In total, this

dataset contains 5160 records (516 faults for which we could collect all statistics, times

the ten fitness configurations). We build separate datasets for each search budget. We can

then use the likelihood of fault detection (D) as the basis for a class variable—discretized

into three values: “not detected” (D = 0), “low performance” (D < 70%), and “high

performance” (D ≥ 70%). The class distribution of each dataset is shown in Figure 4.10.

Code Metric-Based Datasets

As with the test generation factors, we have created separate source code metric datasets

split by the search budget used for test generation (two minutes per class or ten minutes

101

per class). Source code metrics do not differ based on the fitness function used in test

generation. Therefore, rather than merging all fitness configurations into a single dataset,

we have produced separate datasets for each fitness function. We also produced “overall”

datasets, classified by whether any fitness function or combination detected a fault. In total,

this process produced a set of 18 datasets for treatment learning: two based on overall

results—split by search budget—and two for each of the eight studied coverage criteria.

In order to learn which metrics predict whether or not a fault is detected, we have added

classifications to each characterization dataset. In this case, we have used two classification

values—yes or no, based on whether or not the fault was detected by the generated test

suites5 For each fault, the characterization dataset has an entry for each class fixed as part

of patching the fault. We apply a “yes” classification if any test suite generated targeting

that class, under that search budget, detects the fault. If no test suites detected that fault

under that search budget, we apply a “no” classification. The class distributions for the

two overall datasets are shown in Figure 4.13. In both cases, the two classes each make up

roughly half of the dataset, with a slight edge to the number of “no” classifications.

Accessing Datasets

We have made all datasets used in this study openly available as community resources.

They can be downloaded from:

5Initially, we used a three-option classification like with the generation factors dataset. However, this did
not yield enough examples to yield detailed treatments in many cases. Instead, we elected to use a two-class
outcome.

102

https://github.com/Greg4cr/coverage-exp-data

4.4 RESULTS AND DISCUSSION

In Section 4.4, we will outline the basic fault detection capabilities of the generated test

suites. Section 4.4 examines the efficacy of each individual fitness function, while Sec-

tion 4.4 outlines the effect of combining fitness functions. In Section 4.4, we examine the

generation factors contributing to fault detection. Finally, in Section 4.4, we examine the

source code metrics that impact detection efficacy.

Overall Fault-Detection Capability

In Table 4.3, we list the number of faults detected by each fitness function, broken down

by system and search budget. We also list the number of faults detected by any criterion,

including and excluding the combinations (which we will discuss further in Section 4.4).

Due to the stochastic search, a higher budget does not guarantee detection of the same

faults found under a lower search budget. Therefore, we list the number of faults found

under either budget, as well as the total number of faults detected by each fitness function.

These results offer a baseline for further discussion. In our experiments:

The individual criteria are capable of detecting 304 (51.26%) of the 593 faults.

Combinations detect a further 17 faults.

While there is clearly room for improvement, these results are encouraging. The studied

faults are actual faults, reported by the users of real-world software projects. The generated

tests are able to detect a variety of complex programming issues. Ultimately, our results are

consistent with previous studied involving Defects4J—for instance, Shamshiri et al. found

that a combination of test generation tools—including suites generated using EvoSuite’s

103

https://github.com/Greg4cr/coverage-exp-data

Table 4.3: Number of faults detected by each fitness function. Totals are out of 26 faults
(Chart), 133 (Closure), 24 (CommonsCLI), 22 (CommonsCodec), 12 (CommonsCSV), 14
(CommonsJXPath), 9 (Guava), 13 (JacksonCore), 39 (JacksonDatabind), 5 (JacksonXML),
64 (JSoup), 65 (Lang), 102 (Math), 38 (Mockito), 27 (Time), and 593 (Overall).

Budget Chart Closure CommonsCLI CommonsCodec CommonsCSV CommonsJXPath Guava JacksonCore JacksonDatabind JacksonXML Jsoup Lang Math Mockito Time Total

BC
2min 17 16 10 12 10 8 3 10 8 3 21 36 53 4 16 227

10min 20 19 12 12 10 7 2 9 8 3 23 35 54 4 17 235
Total 21 21 13 13 11 9 3 10 9 3 25 41 57 4 17 257

DBC
2min 14 16 12 12 11 5 2 9 8 1 20 32 48 4 15 209

10min 19 19 11 13 10 6 2 10 10 2 22 36 47 4 18 229
Total 19 22 13 13 11 7 2 10 10 2 26 40 52 4 18 249

EC
2min 8 7 5 4 2 0 0 5 4 1 9 12 13 3 6 79

10min 10 5 4 3 2 2 0 6 3 1 8 13 12 3 5 77
Total 10 8 6 4 2 2 0 6 4 1 9 16 15 3 6 92

LC
2min 15 12 7 11 11 4 2 8 9 3 14 31 50 3 15 196

10min 18 14 10 11 9 8 2 8 10 3 23 32 52 3 14 217
Total 18 17 11 13 11 8 2 8 11 3 24 37 55 3 15 236

MC
2min 10 6 5 7 5 0 1 5 2 1 7 9 25 2 5 90

10min 10 10 4 6 4 0 2 4 2 1 7 11 24 2 5 92
Total 12 10 6 7 5 0 2 5 2 1 8 14 27 2 6 107

MNEC
2min 9 8 5 7 3 1 2 5 5 1 6 10 29 2 5 98

10min 11 6 2 5 4 2 2 4 4 0 9 13 27 2 3 94
Total 11 9 5 7 4 2 2 5 5 1 9 13 21 2 6 113

OC
2min 9 7 6 8 2 1 2 4 5 2 7 13 36 2 5 109

10min 13 9 5 9 2 2 2 3 4 2 8 17 33 2 6 117
Total 13 12 6 9 2 2 2 4 5 2 9 18 38 2 8 132

WMC
2min 13 15 6 13 8 4 2 10 7 3 19 31 42 3 14 190

10min 18 19 9 15 8 6 3 9 7 2 22 32 48 3 14 215
Total 18 22 9 15 8 6 3 10 9 3 25 37 51 3 15 234

Default
2min 15 17 11 14 10 4 2 9 9 1 17 29 48 5 14 205

10min 17 20 11 14 11 7 2 10 11 1 22 35 57 5 14 237
Total 18 22 11 14 11 7 2 10 11 1 23 36 59 5 15 245

BC-EC-MC
2min 16 19 10 13 11 5 2 10 9 1 21 38 53 4 15 227

10min 20 30 12 12 11 6 3 10 9 1 27 40 55 4 21 261
Total 20 31 12 13 11 6 3 11 10 1 29 41 56 4 21 269

Any 2min 18 23 15 14 11 9 3 10 10 3 31 43 61 5 16 272
criterion 10min 23 29 15 17 11 10 3 10 11 3 33 45 59 5 18 292

(no combinations) Total 23 31 16 17 11 10 3 10 12 3 37 46 62 5 18 304
Any 2min 18 24 15 15 11 10 3 10 10 3 33 44 62 5 16 279

criterion 10min 23 37 15 17 11 10 3 11 12 3 35 46 64 5 21 313
(w. combinations) Total 23 37 16 17 11 10 3 11 13 3 39 47 65 5 21 321

branch fitness function—could detect 55.7% of the faults from the original five systems

from Defects4J [22].

Shamshiri’s work—as well as our studies on Guava [147] and Mockito [21]—offer

explanation of the broad reasons why test generation fails to detect particular faults. Some

of these reasons include a general inability to gain coverage—particularly over private

methods—challenges with initialization of complex data types, and a general lack of the

context needed to set up sophisticated series of method and class interactions.

In this work, we are focused on the capabilities and applicability of common fitness

functions. In the following subsections, we will assess the results of our study with respect

to each research question. In Section 4.4, we compare the capabilities of each fitness

function. In Section 4.4, we explore combinations of criteria. In Section 4.4, we explore

the generation factors that indicate efficacy or lack of efficacy. Finally, in Section 4.4, we

explore the source code metrics that indicate efficacy or lack of efficacy.

104

Table 4.4: Average likelihood of fault detection, broken down by fitness function, budget,
and system. % Change indicates the average gain or loss in efficacy when moving from a
two-minute to a ten-minute budget.

Budget Chart Closure CommonsCLI CommonsCodec CommonsCSV CommonsJXPath Guava JacksonCore JacksonDatabind JacksonXML Jsoup Lang Math Mockito Time Overall

BC
2min 45.00 % 4.66 % 26.67 % 33.18 % 57.50 % 25.00 % 17.78 % 50.77 % 14.62 % 60.00 % 18.13 % 34.00 % 27.94 % 9.21 % 34.81 % 22.60 %

10min 48.46 % 5.79 % 28.33 % 31.36 % 60.83 % 25.00 % 20.00 % 60.00 % 13.08 % 60.00 % 21.72 % 40.15 % 32.75 % 8.42 % 39.26 % 25.24 %
% Change 7.69 % 24.19 % 6.25 % -5.48 % 5.80 % 0.00 % 12.50 % 18.18 % -10.53 % 0.00 % 19.83 % 18.10 % 17.19 % -8.57 % 12.77 % 11.72 %

DBC
2min 34.23 % 5.11 % 27.50 % 35.91 % 60.00 % 18.57 % 20.00 % 55.38 % 14.62 % 20.00 % 16.56 % 30.00 % 24.51 % 8.16 % 31.11 % 20.62 %

10min 40.77 % 6.09 % 26.67 % 36.82 % 65.83 % 25.71 % 17.78 % 54.62 % 14.36 % 22.00 % 20.31 % 38.77 % 28.63 % 8.42 % 40.37 % 23.88 %
% Change 19.10 % 19.12 % -3.03 % 2.53 % 9.72 % 38.46 % -11.11 % -1.39 % -1.75 % 10.00 % 22.64 % 29.23 % 16.80 % 3.23 % 29.76 % 15.78 %

EC
2min 22.31 % 1.35 % 5.83 % 12.27 % 16.67 % 0.00 % 0.00 % 20.00 % 3.33 % 20.00 % 6.41 % 7.54 % 6.37 % 6.05 % 9.26 % 6.56 %

10min 21.54 % 0.98 % 5.83 % 12.27 % 16.67 % 1.43 % 0.00 % 22.31 % 1.79 % 20.00 % 5.94 % 9.23 % 7.06 % 5.26 % 9.63 % 6.64 %
% Change -3.45 % -27.78 % 0.00 % 0.00 % 0.00 % - % - % 11.54 % -46.15 % 0.00 % -7.32 % 22.45 % 10.77 % -13.04 % 4.00 % 1.29 %

LC
2min 38.85 % 4.14 % 21.25 % 22.73 % 59.17 % 20.71 % 21.11 % 51.54 % 15.13 % 60.00 % 12.03 % 31.23 % 25.78 % 5.79 % 30.00 % 19.87 %

10min 46.15 % 4.81 % 22.08 % 21.36 % 50.00 % 25.71 % 20.00 % 53.08 % 17.95 % 56.00 % 17.50 % 34.31 % 29.22 % 5.79 % 36.67 % 22.24 %
% Change 18.81 % 16.36 % 3.92 % -6.00 % -15.49 % 24.14 % -5.26 % 2.99 % 18.64 % -6.67 % 45.45 % 9.85 % 13.31 % 0.00 % 22.22 % 11.97 %

MC
2min 30.77 % 1.58 % 9.17 % 16.36 % 18.33 % 0.00 % 11.11 % 25.38 % 0.77 % 4.00 % 7.34 % 7.54 % 10.98 % 0.53 % 8.15 % 7.77 %

10min 30.77 % 2.26 % 7.92 % 12.27 % 16.67 % 0.00 % 12.22 % 23.85 % 1.03 % 8.00 % 6.56 % 7.69 % 10.88 % 1.58 % 8.15 % 7.71 %
% Change 0.00 % 42.86 % -13.64 % -25.00 % -9.09 % - % 10.00 % -6.06 % 33.33 % 100.00 % -10.64 % 2.04 % -0.89 % 200.00 % 0.00 % -0.87 %

MNEC
2min 23.46 % 2.18 % 9.17 % 14.55 % 12.50 % 0.71 % 11.11 % 20.00 % 4.10 % 2.00 % 7.50 % 6.62 % 12.16 % 1.05 % 6.67 % 7.59 %

10min 30.77 % 1.88 % 7.50 % 15.00 % 12.50 % 4.29 % 12.22 % 24.62 % 5.90 % 0.00 % 7.50 % 7.54 % 12.06 % 0.79 % 5.19 % 8.09 %
% Change 31.15 % -13.79 % -18.18 % 3.12 % 0.00 % 500.00 % 10.00 % 23.08 % 43.75 % -100.00 % 0.00 % 13.95 % -0.81 % -25.00 % -22.22 % 6.67 %

OC
2min 1.15 % 2.03 % 14.17 % 24.55 % 10.00 % 0.71 % 14.44 % 8.46 % 7.95 % 40.00 % 5.31 % 7.85 % 16.57 % 3.68 % 9.63 % 9.31 %

10min 23.85 % 2.56 % 16.25 % 25.00 % 10.83 % 2.14 % 18.89 % 13.08 % 7.69 % 40.00 % 5.00 % 10.92 % 16.76 % 2.89 % 12.22 % 10.25 %
% Change 12.73 % 25.93 % 14.71 % 1.85 % 8.33 % 200.00 % 30.77 % 54.55 % -3.23 % 0.00 % -5.88 % 39.22 % 1.18 % -21.43 % 26.92 % 10.14 %

WMC
2min 38.08 % 4.44 % 19.17 % 31.36 % 41.67 % 15.00 % 16.67 % 44.62 % 8.97 % 26.00 % 15.00 % 24.15 % 23.04 % 5.79 % 25.19 % 17.59 %

10min 46.15 % 5.56 % 20.00 % 33.64 % 45.00 % 17.86 % 18.89 % 42.31 % 7.69 % 18.00 % 18.28 % 32.15 % 27.45 % 5.53 % 27.04 % 20.34 %
% Change 21.21 % 25.42 % 4.35 % 7.25 % 8.00 % 19.05 % 13.33 % -5.17 % -14.29 % -30.77 % 21.88 % 33.12 % 19.15 % -4.55 % 7.35 % 15.63 %

Default
2min 47.31 % 4.51 % 32.08 % 44.09 % 52.50 % 16.43 % 17.78 % 47.69 % 14.10 % 20.00 % 15.63 % 23.85 % 25.78 % 11.84 % 25.93 % 20.56 %

10min 48.08 % 7.07 % 34.58 % 45.91 % 50.00 % 21.43 % 20.00 % 52.31 % 16.15 % 20.00 % 20.94 % 32.62 % 32.84 % 10.79 % 33.33 % 24.69 %
% Change 1.63 % 56.67 % 7.79 % 4.12 % -4.76 % 30.43 % 12.50 % 9.68 % 14.55 % 0.00 % 34.00 % 36.77 % 27.38 % -8.89 % 28.57 % 20.10 %

BC-EC-MC
2min 43.08 % 5.64 % 30.42 % 37.27 % 60.00 % 20.71 % 17.78 % 50.00 % 14.87 % 20.00 % 19.38 % 40.46 % 30.39 % 10.26 % 35.93 % 24.03 %

10min 53.85 % 8.05 % 30.83 % 38.18 % 50.00 % 26.43 % 21.11 % 56.15 % 14.62 % 20.00 % 25.00 % 48.15 % 34.31 % 10.53 % 47.04 % 27.84 %
% Change 25.00 % 42.67 % 1.37 % 2.44 % -16.67 % 27.59 % 18.75 % 12.31 % -1.72 % 0.00 % 29.03 % 19.01 % 12.90 % 2.56 % 30.93 % 15.86 %

Comparing Fitness Functions

From Table 4.3, we can see that suites differ in effectiveness between criteria. Overall,

branch coverage outperforms the other criteria, detecting 257 faults. Branch is closely

followed by direct branch (249 faults), line coverage (236), and weak mutation coverage

(234). These four fitness functions are trailed by the other four, with exception coverage

showing the weakest results (92 faults). These rankings do not differ much on a per-system

basis. At times, ranks may shift—for example, direct branch coverage occasionally out-

performs branch coverage—but we can see two clusters form among the fitness functions.

The first cluster contains branch, direct branch, line, and weak mutation coverage—with

branch and direct branch leading the other two. The second cluster contains exception,

method, method (no-exception), and output coverage—with output coverage producing

the best results and exception coverage producing the worst.

Due to the stochastic nature of the search, one suite generated by EvoSuite may not

always detect a fault detected by another suite—even if the same criterion is used. To

more clearly understand the effectiveness of each fitness function, we must not track only

whether a fault was detected, but how reliably it is detected. We are interested in the

likelihood of detection—if a fresh suite is generated, how likely is it to detect a particular

105

●●●●●●●●●

●

●●●●

●

●

●

●●●●●

●

●●●●●●●

●

●

●

●●

●

●●●●●●●

●

●●●●●●●

●

●

●

●●●●

●

●●●●

●

●

●

●

●●●

●●

●●

●

●●●●●●●●

●

●

●

●

●●●●

●●

●

●

●

●●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●

●●

●●●●

●

●●

●●

●●

●

●

●

●

●●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●●●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●●

●●●

●●

●●

●

●●●

●

●

●●

●

●

●

●●●●●

●

●●●

●

●●●●●●●●●

●

●

●

●●

●

●

●

●

●●

●●●

●

●●●

●

●

●●

●

●●

●●

●

●●●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●●

●

●●

●

●●●

●●

●●●●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

● ●●

●

●●●●●

●●

●

●

●

●●

●●●

●●●●●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●●●●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●●●●●

●

●●

Def BEM BC DBC LC EC MC MNEC OC WMC

0
20

40
60

80
10

0

Figure 4.14: 2m Budget

●●●

●

●●

●

●

●

●

●

●

●●

●●●●●●●●●

●●

●●

●

●●

●●

●●

●●●

●

●●●

●

●●●●

●

●●

●●

●●

●

●●

●

●●●●●●

●

●

●

●●●

●

●

●

●●●●●

●

●●●

●

●●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●●●

●

● ●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●●

●

● ●

●

●●●●●●●

●

●

●

●

●●●●●

●

●●●

●

●●

●●●●

●

●

●●●●

●●

●●●●●

●

●●●●●

●●

●●

●

●●

●

●●

●

●

●

●●●

●

●●●

●

●●

●

●

●

●

●●●●

●●

●●

Def BEM BC DBC LC EC MC MNEC OC WMC

0
20

40
60

80
10

0

Figure 4.15: 10m Budget

Figure 4.16: Boxplots of the likelihood of detection for each fitness function and combina-
tion. “Def” = Default Combination, “BEM” = BC-EC-MC Combination.

fault. To measure the likelihood, we record the proportion of detecting suites to the total

number of suites generated for that fault. The average likelihood of fault detection is listed

for each criterion, by system and budget, in Table 4.4. Figure 4.16 shows boxplots of the

likelihood of detection for each fitness function and combination of functions.

We largely observe the same trends as above. Branch coverage has the highest overall

106

likelihood of fault detection, with 22.60% of suites detecting faults given a two-minute

search budget and 25.24% of suites detecting faults given a ten-minute budget. Direct

branch coverage and line coverage follow with a 20.62-23.88% and 19.87-22.24% success

rate, respectively. While the effectiveness of each criterion varies between system—direct

branch outperforms all other criteria for Closure, for example—the two clusters noted

above remain intact. Branch, line, direct branch, and weak mutation coverage all perform

well, with the edge generally going to branch coverage. On the lower side of the scale,

output, method, method (no exception), and exception coverage perform similarly, with a

slight edge to output coverage.

The boxplots in Figure 4.16 echo these results. All methods have medians near 0%,

reflecting that many faults are not detected. However, for both budgets, branch coverage

has a larger upper quartile than other fitness functions—indicating a large variance in re-

sults, but also that branch coverage yields more suites with a higher likelihood of detection

than other methods. At the two-minute mark, it has a higher upper whisker as well. Di-

rect branch coverage, line coverage, and weak mutation coverage follow in terms of third

quartile size and upper whisker.

Branch coverage is the most effective criterion, detecting 257 faults. Branch coverage

suites have, on average, a 22.60-25.24% likelihood of fault detection (2min/10min

budget).

From Table 4.4, we can see that almost all criteria benefit from an increased search bud-

get. Direct branch coverage and weak mutation benefit the most, with average improve-

ments of 15.78% and 15.63% in effectiveness. In particular, it is reasonable that direct

branch coverage benefits more than traditional branch coverage. In traditional branch cov-

erage, branches executed through indirect chains of calls to program methods contribute

to the total coverage. In direct branch coverage, only calls made directly by the test cases

107

count towards coverage. Therefore, the test generator requires more time, and more method

calls, to attain the same level of branch coverage. As a result, direct branch coverage attains

slightly worse results than traditional branch coverage given the same time budget.

In general, all distance-driven criteria—branch, direct branch, line, weak mutation, and,

partially, output coverage—improve given more time. These criteria all have complex,

informative fitness functions that are able to guide the search process. Discrete fitness

functions, such as those used by method coverage or exception coverage, benefit less from

the budget increase. In such cases, the fitness function is unable to guide the search to-

wards better solutions. More time is of benefit—as the generator can make more guesses.

However, such time is not guaranteed to be beneficial, and does not necessarily result in

improved test suites.

Distance-based functions benefit from an increased search budget, particularly direct

branch and weak mutation.

Further increases in generation time beyond ten minutes may yield further improve-

ments in the likelihood of fault detection. However, there is likely to be a plateau due to

test obligations that the generator cannot satisfy, due to limitations in coverage of private

code or manipulation of complex objects. Further, if test generation requires more time

than it takes for a human to write tests, then the benefits of automation are more limited.

Therefore, there is likely to be a limit to the gain from increasing the search budget.

We can perform statistical analysis to assess our observations. For each pair of criteria,

we formulate hypothesis H and its null hypothesis, H0:

• H: Given a fixed search budget, test suites generated using criterion A will have

a different distribution of likelihood of fault detection results than suites generated

using criterion B.

108

Table 4.5: P-values for Nemenyi comparisons of fitness functions (two-minute search bud-
get). Cases where we can reject the null hypothesis are bolded.

Default Combination BC DBC EC LC MC MNEC OC WMC
BC 0.87 - - - - - - - -

DBC 1.00 0.97 - - - - - - -
EC < 0.01 < 0.01 < 0.01 - - - - - -
LC 1.00 0.59 1.00 < 0.01 - - - - -
MC < 0.01 < 0.01 < 0.01 1.00 < 0.01 - - - -

MNEC < 0.01 < 0.01 < 0.01 1.00 < 0.01 1.00 - - -
OC < 0.01 < 0.01 < 0.01 0.77 < 0.01 0.96 0.94 - -

WMC 0.91 0.07 0.75 < 0.01 0.99 < 0.001 < 0.01 < 0.01 -
BC-EC-MC Combination 0.56 0.99 0.79 < 0.01 0.27 < 0.01 < 0.01 < 0.01 0.02

Table 4.6: P-values for Nemenyi comparisons of fitness functions (ten-minute search bud-
get). Cases where we can reject the null hypothesis are bolded.

Default Combination BC DBC EC LC MC MNEC OC WMC
BC 1.00 - - - - - - - -

DBC 1.00 1.00 - - - - - - -
EC < 0.01 < 0.01 < 0.01 - - - - - -
LC 0.95 0.71 1.00 < 0.01 - - - - -
MC < 0.01 < 0.01 < 0.01 1.00 < 0.01 - - - -

MNEC < 0.01 < 0.01 < 0.01 1.00 < 0.01 1.00 - - -
OC < 0.01 < 0.01 < 0.01 0.50 < 0.01 0.90 0.95 - -

WMC 0.73 0.38 0.92 < 0.01 1.00 < 0.01 < 0.01 < 0.01 -
BC-EC-MC Combination 0.47 0.81 0.23 < 0.01 0.02 < 0.01 < 0.01 < 0.01 < 0.01

• H0: Observations of fault detection likelihood for both criteria are drawn from the

same distribution.

Our observations are drawn from an unknown distribution; therefore, we cannot fit our

data to a theoretical probability distribution. To evaluate H0 without any assumptions on

distribution, we use the Friedman non-parametric alternative to the parametric repeated

measures ANOVA [165]. Due to the limited number of faults for several systems, we have

analyzed results across the combination of all systems. We apply the test for each pairing

of fitness function and search budget with α = 0.05.

At both budgets, the Friedman test confirms with p-value < 0.001 that the results for

all fitness functions are not drawn from the same distribution. To differentiate and rank

methods, we apply the post-hoc Nemenyi test in order to assess all pairs of fitness functions.

The resulting p-values are listed in Tables 4.5-4.6.

The results of these tests further validate the “two clusters” observation. For the four

109

Table 4.7: Number of faults uniquely detected by each suites generated using each fitness
function (with and without considering combinations) for each budget, and for the combi-
nation of budgets.

Two-Minute Budget Ten-Minute Budget All Budgets
Function Number of Faults Number of Faults Number of Faults Number of Faults Number of Faults Number of Faults

(W. Combinations) (No Combinations) (W. Combinations) (No Combinations) (W. Combinations) (No Combinations)
Branch Coverage 5 13 2 7 0 1

Direct Branch Coverage 4 6 3 6 0 1
Exception Coverage 3 4 3 5 1 2

Line Coverage 2 5 3 4 0 0
Method Coverage 0 0 0 1 0 0

Method, No Exception 0 1 1 1 0 0
Output Coverage 1 3 2 7 1 2

Weak Mutation Coverage 3 6 4 7 0 0
Default Combination 2 - 5 - 0 -

BC-EC-MC Combination 4 - 13 - 1 -

criteria in the top cluster—branch, direct branch, line, and weak mutation coverage—we

can always reject the null hypothesis with regard to the remaining four criteria in the bottom

cluster. This is also true in the opposite direction. The performance of the four criteria in

the bottom cluster—exception, method, MNEC, and output coverage—is drawn from a

different distribution to the criteria in the other cluster. Within each cluster, we usually fail

to reject the null hypothesis.

Branch, direct branch, line, and weak mutation coverage outperform, with statistical

significance, method, MNE, output, and exception coverage (both budgets).

Another way to consider performance is—regardless of overall performance—to look

at whether a criterion leads to suites that detect faults that other criteria would not detect.

Table 4.7 depicts the number of faults uniquely detected by each fitness function for each

search budget, then the number of faults uniquely detected regardless of budget. Results

are listed when combinations are considered, which we will discuss in Section 4.4, and

when only considering the individual criteria.

From these results, we can see that almost all criteria clearly have situational applica-

bility—that is, there are situations where their use leads to the detection of faults missed by

other criteria. At both search budgets, a total of 38 faults are detected by a single criterion.

110

Most interestingly, there are six faults that are—regardless of search budget—only detected

by a single criterion.

The general efficacy of branch and direct branch coverage clearly can still be seen here,

where each detects one fault that nothing else can detect, regardless of budget. However,

criteria like exception coverage or output coverage—which have low average performance—

can also detect faults that no other criterion can expose. Both criteria detect two faults,

regardless of budget, that nothing else can catch. At each independent budget level, excep-

tion, output, and weak mutation coverage each detect a number of faults that other criteria

miss. This is especially worth noting at the ten-minute budget level, where suites gener-

ated to satisfy output and weak mutation coverage detect as many unique faults as suites

generated to satisfy branch coverage.

These results suggest that—regardless of absolute efficacy—each criterion results in

different test suites, each of which exercise the code under test in a distinct manner. Even if

a criterion is not universally effective, it offers some form of situational applicability where

it could be considered for use, and where it may have some value as part of a portfolio of

testing tools.

For example, consider fault 100 for the Math project6. To address this fault, an esti-

mation method switches from getting all parameters to only getting unbound parameters.

Tests generated for exception coverage cause an exception by passing in a parameter with

no measurements—i.e., an unbound parameter. This exception, even if triggered, is not

retained by any other fitness function. Exception coverage, by prioritizing exceptions, en-

sures that the observed failure is retained and passed along to testers.

Output coverage is focused on coverage of abstract value classes for particular types

of function output. It is particularly well-defined for numeric types. This makes it well-

suited to discovering faults related to such numeric data types. Consider Mockito fault 26.

6https://github.com/Greg4cr/defects4j/blob/master/framework/projects/
Math/patches/100.src.patch

111

https://github.com/Greg4cr/defects4j/blob/master/framework/projects/Math/patches/100.src.patch
https://github.com/Greg4cr/defects4j/blob/master/framework/projects/Math/patches/100.src.patch

This fault7 lies in the Mockito framework’s code for replicating Java’s primitive datatypes.

Illegal casts can be made from integer to other primitive types. Output coverage is able

to trigger this fault by illegally casting integer variables to double variables. This

contextual use of the class is not suggested by code coverage, and is not attempted by any

of the other criteria.

To further understand the situational applicability of criteria, we filter the set of faults

for those that the top-scoring criterion is ineffective at detecting. In Figure 4.27, we have

taken the faults for five of the systems (Chart, Closure, Lang, Math, and Time), isolated

any where the “best” criterion for that system (generally branch coverage, see Table 4.4)

has < 30% likelihood of detection, and calculated the likelihood of fault detection for each

criterion for that subset of the faults. In each subplot, we display the average likelihood of

fault detection over the subset for any criterion that outperforms the best from the full set.

From these plots, we can see that there are always two-to-four criteria that are more ef-

fective in these situations. The exact criteria depend strongly on the system, and likely, on

the types of faults examined. However, we frequently see the criteria mentioned above—

including exception, weak mutation, and output coverage. Interestingly, despite the sim-

ilarity in distance functions and testing intent, direct branch and line coverage are often

more effective than branch coverage in situations where it has a low chance of detection.

In these cases, the criteria drive tests to interact in such a way with the CUT that they are

better able to detect the fault. The efficacy of alternative criteria in situations where the

overall top performer offers poor results further emphasizes that:

Regardless of overall performance, most criteria have situational applicability, where

their suites detect faults no other criteria can detect. Exception, output, and weak

mutation coverage—in particular—seem to be effective for particular types of faults.

7https://github.com/Greg4cr/defects4j/blob/master/framework/projects/
Mockito/patches/26.src.patch

112

https://github.com/Greg4cr/defects4j/blob/master/framework/projects/Mockito/patches/26.src.patch
https://github.com/Greg4cr/defects4j/blob/master/framework/projects/Mockito/patches/26.src.patch

 0

 5

 10

 15

 20

EC DBC BC

L
ik

e
li
h

o
o

d
 o

f
F

a
u

lt
 D

e
te

c
ti

o
n

12.31

10.00

6.92

Figure 4.17: Chart (2m)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

WMC BC DBC

L
ik

e
li
h

o
o

d
 o

f
F

a
u

lt
 D

e
te

c
ti

o
n

1.40
1.30

1.10

Figure 4.18: Closure (2m)

 0

 1

 2

 3

 4

 5

 6

 7

LC DBC WMC MC BC

L
ik

e
li
h

o
o

d
 o

f
F

a
u

lt
 D

e
te

c
ti

o
n

4.30 4.30
4.00

3.50
3.30

Figure 4.19: Lang (2m)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

OC LC WMC BC

L
ik

e
li
h

o
o

d
 o

f
F

a
u

lt
 D

e
te

c
ti

o
n

7.00 6.86

6.00

5.43

Figure 4.20: Math (2m)

 0

 2

 4

 6

 8

 10

DBC BC

L
ik

e
li
h

o
o

d
 o

f
F

a
u

lt
 D

e
te

c
ti

o
n

7.10

6.50

Figure 4.21: Time (2m)

 0

 5

 10

 15

 20

WMC MC BC

L
ik

e
li
h

o
o

d
 o

f
F

a
u

lt
 D

e
te

c
ti

o
n

14.17

10.83
10.00

Figure 4.22: Chart (10m)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

WMC BC DBC

L
ik

e
li
h

o
o

d
 o

f
F

a
u

lt
 D

e
te

c
ti

o
n

2.40

1.50
1.40

Figure 4.23: Closure (10)

 0

 1

 2

 3

 4

 5

 6

 7

WMC DBC EC BC

L
ik

e
li
h

o
o

d
 o

f
F

a
u

lt
 D

e
te

c
ti

o
n

5.10
4.90

4.10

3.00

Figure 4.24: Lang (10m)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

WMC LC BC

L
ik

e
li
h

o
o

d
 o

f
F

a
u

lt
 D

e
te

c
ti

o
n

6.72

5.47

4.84

Figure 4.25: Math (10m)

 0

 2

 4

 6

 8

 10

BC LC WMC OC DBC

L
ik

e
li
h

o
o

d
 o

f
F

a
u

lt
 D

e
te

c
ti

o
n

9.40

8.10

7.50

6.30 6.30

Figure 4.26: Time (10m)

Figure 4.27: Average % likelihood of fault detection for fitness functions once data is
filtered for faults where the most effective function for that system has < 30% chance of
detection.

Given its strong overall performance, we would recommend that practitioners priori-

tize branch coverage—of the studied options—when generating test suites. However, we

also stress that other criteria should not be ignored. Several—including exception and out-

put coverage—can be quite effective at times, even if they are not effective on average.

More research is clearly needed to codify the situations where such criteria can be effective

113

and should be employed. Alternatively, such criteria could be used in combination with

generally effective criteria such as branch coverage.

Combinations of Fitness Functions

The analysis above presupposes that only one fitness function can be used to generate

test suites. However, many search-based generation algorithms can simultaneously target

multiple fitness functions. EvoSuite’s default configuration, in fact, attempts to satisfy all

eight of the fitness functions examined in this study [159]. In theory, suites generated

through a combination of fitness functions could be more effective than suites generated

through any one objective because—rather than focusing exclusively on one goal—they

can simultaneously target multiple facets of the class under test.

For example, combining exception and branch coverage may result in a suite that both

thoroughly explores the structure of the system (due to the branch obligations) and rewards

tests that throw a larger number of exceptions. Such a suite may be more effective than a

suite generated using branch or exception coverage alone. In fact, rather than generating

tests for multiple independent criteria—when one or more of those criteria may only be

effective situationally—a tester could, in theory, simultaneously generate for a combination

of criteria in an attempt to produce suites effective in all situations.

To better understand the potential of combined criteria, we have generated tests for two

combinations. The first is EvoSuite’s default combination of the eight criteria that were the

focus of this study. The second is a more lightweight combination of branch, exception,

and method coverage—a combination of the most effective criterion overall with two that

were selectively effective. In a recent study on combination of criteria on a subset of the

Defects4J database, the BC-EC-MC combination was suggested as an effective baseline

for new, untested systems [137].

Overall, EvoSuite’s default configuration performs well, but fails to outperform all in-

dividual criteria in most situations. Table 4.3 shows that the default configuration detects

114

245 faults—fewer than branch and direct branch coverage, but more than the other indi-

vidual criteria. It also uniquely detects two faults at the two-minute budget level and five

at the ten-minute level (see Table 4.7). At the two minute level, this is worse than sev-

eral individual criteria, but at the ten-minute level, it finds more faults than any individual

criterion. According to Table 4.4, the default configuration’s average overall likelihood of

fault detection is 20.56% (2m budget)-24.69% (10m budget). At the two-minute level, this

places it below branch, and direct branch coverage. At the ten-minute level, it falls below

branch coverage, but above all other criteria. This places the default configuration in the

top cluster—an observation confirmed by statistical tests (Tables 4.5 and 4.6).

However, it fails to outperform branch coverage in almost all situations. In theory, a

combination of criteria should be able to detect more faults than any single criterion. In

practice, combining all criteria results in suites that are fairly effective, but fail to reliably

outperform individual criterion. The major reason for the less reliable performance of this

configuration is the difficulty in attempting to satisfy so many obligations at once. As noted

in Table 4.2, the default configuration must attempt to satisfy, on average, 1681 obligations.

The individual criteria only need to satisfy a fraction of that total. As a result, the default

configuration also benefits more than any individual criterion from an increased search

budget—a 20.10% improvement in efficacy.

EvoSuite’s default configuration has an average 20.56-24.69% likelihood of fault

detection—in the top cluster, but failing to outperform all individual criteria.

Our observations imply that combinations of criteria could be more effective than indi-

vidual criteria. However, a combination of all eight criteria results in unstable performance—

especially if search budget is limited. Instead, testers may wish to identify a smaller, more

targeted subset of criteria to combine during test generation. In fact, we can see the wisdom

in such an approach by examining the results for the focused BC-EC-MC combination.

115

From Table 4.3, we can see that the BC-EC-MC combination finds a total of 269

faults—more than any individual criterion. From Table 4.4, this combination has a 24.03%

(two-minute) to 27.84% (ten-minute) likelihood of detection. Again, this is better than

any of the individual criteria. This combination also detects four faults uniquely at the

two-minute budget, 13 at the ten-minute budget, and one fault regardless of the budget.The

boxplots in Figure 4.16 show that the BC-EC-MC combination has a higher third-quartile

box than any other method, indicating that it returned more results in that range than other

methods. Statistical tests place this configuration in the top cluster, where it also outper-

forms weak mutation coverage with significance (Tables 4.5 and 4.6).

There are still situations where this combination can be outperformed by an individual

criterion, particularly at the two-minute budget level. This combination requires fewer obli-

gations than the eight-way default combination—around 354, on average—but still more

than any individual criterion. This means that the combination benefits from a larger search

budget (15.86% average improvement), and offers more stable performance at higher bud-

gets. Still, this combination is clearly quite effective.

Of the studied criteria, exception coverage is unique in that it does not prescribe static

test obligations. Rather, it simply rewards suites that cause more exceptions to be thrown.

This means that it can be added to a combination with little increase in search complexity.

The simplicity of exception coverage explains its poor performance as the primary crite-

rion. It lacks a feedback mechanism to drive generation towards exceptions. However,

exception coverage appears to be very effective when paired with criteria that effectively

explore the structure of the CUT. Branch coverage gives exception coverage the feedback

mechanism it needs to explore the code. Adding exception coverage to branch coverage

adds little cost in terms of generation difficulty, and generally outperforms the use of branch

coverage alone.

An example of effective combination can be seen in fault 60 for Lang8—a case where

8https://github.com/apache/commons-lang/commit/a8203b65261110c4a30ff69fe0da7a2390d82757.

116

https://github.com/apache/commons-lang/commit/a8203b65261110c4a30ff69fe0da7a2390d82757

two methods can look beyond the end of a string. No single criterion is effective, with

a maximum of 10% chance of detection given a two-minute budget and 20% with a ten-

minute budget. However, combining branch and exception coverage boosts the likelihood

of detection to 40% and 90% for the two budgets. In this case, if the fault is triggered, the

incorrect string access will cause an exception to be thrown. However, this only occurs un-

der particular circumstances. Therefore, exception coverage alone never detects the fault.

Branch coverage provides the necessary means to drive program execution to the correct

location. However, two suites with an equal coverage score are considered equal. Branch

coverage alone may prioritize suites with slightly higher (or different) coverage, missing

the fault. By combining the two, exception-throwing tests are prioritized and retained,

succeeding where either criterion would fail alone.

Method coverage adds another “low-cost” boost. In general, a class will not have a

large number of methods, and methods are either covered or not covered. Thus, even if

method coverage is not a particularly helpful addition to a combination, its inclusion does

not substantially increase the number of obligations that the test generator is tasked with

fulfilling. An example where the addition of method coverage boosts efficacy can be seen

in Lang fault 349. This fault resides in two small (1-2 line) methods. Calling either method

will reveal the fault, but branch coverage alone can easily overlook them because their

invocation does not substantially improve branch coverage of the class as a whole. The

addition of method coverage adds a useful “reminder” for the generator to invoke these

simple methods.

A combination of branch, exception, and method coverage has an average

24.03-27.84% likelihood of fault detection—outperforming each of the individual

criteria. It is more effective than the default eight-way combination because it adds

9https://github.com/apache/commons-lang/commit/496525b0d626dd5049528cdef61d71681154b660

117

https://github.com/apache/commons-lang/commit/496525b0d626dd5049528cdef61d71681154b660

lightweight situationally-applicable criteria to a strong, coverage-focused criterion.

It is unlikely that the BC-EC-MC combination is the strongest possible combination,

and we can see some situations where a single criterion is still the most effective. In

fact, it is unlikely that any one criterion or combination of criteria will ever universally be

the “best”. The most effective criteria depend on the type of system under test, and the

types of faults that the developers have introduced into the code. Still, there is a powerful

idea at the heart of this combination. When generating tests, a strong coverage-focused

criterion should be selected as the primary criterion. Then, a small number of targeted,

orthogonal criteria can be added to that primary criterion. More investigation is needed

into the situational applicability of criteria in order to better understand when any one

criterion or a combination of criteria will be effective.

Understanding the Generation Factors Impacting Fault Detection

Using the TAR3 treatment learner [164], we have generated five treatments from each of

the two generation factor datasets for each of the three classifications (“Not Detected”,

“Low Performance”, and “High Performance”). The treatments are scored according to

their impact on class distribution, and top-scoring treatments are presented first.

First, the following treatments indicate the factors pointing most strongly to a “high”

likelihood of fault detection:

Two-Minute Dataset:

1. BC (fixed) > 79.71%, LC (fixed) > 87.89%, % of obligations satisfied > 89.59%, BC (faulty) > 79.85%

2. BC (fixed) > 79.71%, LC (fixed) > 87.89%, % of obligations satisfied > 89.59%, LC (faulty) > 88.09%

3. LC (fixed) > 87.89%, % of obligations satisfied > 89.59%, BC (faulty) > 79.85%

4. BC (fixed) > 79.71%, % of obligations satisfied > 89.59%, LC (faulty) > 88.09%

5. BC (fixed) > 79.71%, LC (fixed) > 87.89%, % of obligations satisfied > 89.59%, BC (faulty) > 79.85%,

LC (faulty) > 88.09%

118

Ten-Minute Dataset:

1. BC (faulty) > 86.25%, % of obligations satisfied > 94.34%, LC (faulty) > 92.08%

2. BC (faulty) > 86.25%, % of obligations satisfied > 94.34%, LC (fixed) > 92.23%

3. BC (faulty) > 86.25%, % of obligations satisfied > 94.34%, LC (faulty) > 92.08%, LC (fixed) > 92.23%

4. BC (faulty) > 86.25%, % of obligations satisfied > 94.34%, BC (fixed) > 85.97%, LC (fixed) > 92.23%

5. BC (faulty) > 86.25%, % of obligations satisfied > 94.34%, BC (fixed) > 85.97%, LC (faulty) > 92.08%

In Figure 4.30, we plot the class distribution of the subset fitting the highest-ranked

treatment learned from both datasets. Comparing the plots in Figure 4.10 to the subsets

in Figures 4.30, we can see that the treatments do impose a large change in the class

distribution—a lower percentage of cases have the “Not Detected” class, and more have

the other classifications. This shows that the treatments do reasonably well in predicting

for success. Test suites fitting these treatments are not guaranteed to be successful, but are

likely to be.

Note that some treatments are subsets of other treatments. For example, the third treat-

ment for the two-minute dataset above is a subset of the top treatment. Each treatment

indicates a set of attributes and value ranges for those attributes that, when applied to-

gether, tend to lead to particular outcomes. A smaller treatment that is a subset of a larger

treatment, when applied, will lead to a different subset of the overall data set with a dif-

ferent class distribution to the larger treatment. In general, smaller treatments are easier

for humans to understand—this is why we have limited treatment size to five attributes.

However, within that limit, a larger treatment may have more explanatory power than a

smaller treatment. In this case, as treatments are ranked by score, the larger treatment is

more indicative of the target class and the additional factors offer additional explanatory

power.

We can make several observations. First, the most common factors selected as indica-

tive of efficacy are all coverage-related factors. Even if their goal is not to attain coverage,

successful suites thoroughly explore the structure of the CUT. The fact that coverage is

119

 0

 20

 40

 60

 80

 100

Not Detected Low Performance High Performance

P
e

rc
e

n
t

o
f

D
a

ta
s

e
t

35.00
31.00

34.00

Figure 4.28: 2m Budget

 0

 20

 40

 60

 80

 100

Not Detected Low Performance High Performance

P
e

rc
e

n
t

o
f

D
a

ta
s

e
t

29.00 29.00

42.00

Figure 4.29: 10m Budget

Figure 4.30: Class distributions of the data subsets fitting the top treatments learned from
each dataset for the “High Performance” class.

important is not, in itself, entirely surprising—if patched code is not well covered, the fault

is unlikely to be discovered.

More surprising is how much weight is given to coverage. Suite size has been a focus

in recent work, with Inozemtseva et al. (and others) finding that the size has a stronger

correlation to efficacy than coverage level [135]. However, size attributes—number of tests

and test length—do not appear in any of the generated treatments. Kendall correlation tests

further reinforce this point. For both budgets and for both suite size and length, correlation

strengths were all approximately 0.25—“weak to low” correlations.

However, rather than indicating that larger test suites are not necessarily more effective

at detecting real faults, it is important to look at the suites themselves. As can be seen in

Section 4.3, test suite sizes do not range dramatically between each of the fitness configu-

rations. Within the size ranges of suites in this study, larger suites also do not necessarily

120

outperform smaller suites. Suites for Output Coverage, which performs poorly on aver-

age, are often similar in size to those yielded for the higher-scoring fitness functions. The

suites for the combinations are, naturally, the largest. However, the largest suites belong

to the “default” combination—which is often outperformed by branch coverage and the

BC-EC-MC combination. Exception Coverage, the poorest performing fitness function on

average, does have the smallest test suites. However, other factors, such as its low coverage

of source code, seem to play a larger role in determining suite efficacy than size alone.

The other factor noted as indicative of efficacy is the percent of obligations satisfied.

This too seems reasonable. If a suite covers more of its test obligations, it will be better at

detecting faults. For coverage-based fitness functions like branch and line coverage, a high

level of satisfied obligations naturally correlates with a high level of branch or line cover-

age. For other fitness functions, the correlation may not be as strong, but it is also likely

that suites satisfying more of their obligations also tend to explore more of the structure of

the CUT.

Factors that strongly indicate a high level of efficacy include line or branch coverage

over either version of the code and high coverage of their own test obligations.

Coverage and obligation satisfaction are favored over factors related to suite size or

test obligations.

Note, however, that we still do not entirely understand the factors that indicate a high

probability of fault detection. From Figure 4.30, we can see that the treatments radically

alter the class distribution from the baseline in Figure 4.10. Still, we can also see that

suites from the “Not Detected” class still form a significant portion of that class distri-

bution. From this, we can conclude that factors predicted by treatments are a necessary

precondition for a high likelihood of fault detection, but are not sufficient to ensure that

faults are detected. Unless code is executed, faults are unlikely to be found. Thus, cov-

121

 0

 20

 40

 60

 80

 100

Not Detected Low Performance High Performance

P
e

rc
e

n
t

o
f

D
a

ta
s

e
t

97.00

2.00 1.00

Figure 4.31: 2m Budget

 0

 20

 40

 60

 80

 100

Not Detected Low Performance High Performance

P
e

rc
e

n
t

o
f

D
a

ta
s

e
t

96.00

3.00 1.00

Figure 4.32: 10m Budget

Figure 4.33: Class distributions of the data subsets fitting the top treatments learned from
each dataset for the “Not Detected” class.

erage is impotent. However, how code is executed matters, and execution alone does not

guarantee that faults are triggered and observed as failures. The fitness function determines

how code is executed. It may be that fitness functions based on stronger adequacy criteria

(such as complex condition-based criteria [166]) or combinations of fitness functions will

better guide such a search. While coverage increases the likelihood of fault detection, it

does not ensure that suites are effective.
To better understand factors indicating success, we can also perform treatment learning

for the opposite scenario—what indicates that we will not detect a fault? Factors that
indicate a lack of success include:

Two-Minute Dataset:

1. LC (faulty) ≤ 11.77%, LC (fixed) ≤ 12.41%, BC (faulty) ≤ 8.96%

2. LC (faulty) ≤ 11.77%, LC (fixed) ≤ 12.41%, BC (faulty) ≤ 8.96%, BC (fixed) ≤ 9.33%

3. LC (faulty) ≤ 11.77%, LC (fixed) ≤ 12.41%

122

4. LC (faulty) ≤ 11.77%

5. LC (faulty) ≤ 11.77%, BC (faulty) ≤ 8.96%

Ten-Minute Dataset:

1. LC (fixed) ≤ 15.02%, BC (fixed) ≤ 12.12%

2. LC (fixed) ≤ 15.02%, BC (faulty) ≤ 11.91%

3. LC (fixed) ≤ 15.02%, BC (faulty) ≤ 11.91%, BC (fixed) ≤ 12.12%

4. BC (fixed) ≤ 12.12%

5. LC (fixed) ≤ 15.02%, LC (faulty) ≤ 14.54%

In Figure 4.33, we plot the class distribution of the subset fitting the highest-ranked

treatment learned from both datasets for the “Not Detected” outcome. Comparing the plots

in Figure 4.10 to the subsets in Figures 4.30, we can see a dramatic change in the class

distribution. These treatments predict quite clearly a lack of success, with almost no data

records from the other classes still matching the treatment.

The factors indicating a lack of success are entirely coverage-based. If coverage—line

or branch—is less than approximately 15%, then the odds of effective fault detection are

extremely low. This further reinforces the discussion above:

While coverage may not ensure success, it is a prerequisite. If the code is not

exercised, then the fault will not be found.

Finally, we can examine one additional classification—“low” efficacy. What factors
differentiate situations where a faulty is highly likely to be found from situations where it
is still generally found, but with a low likelihood of detection? The factors that suggest this
situation include:

Two-Minute Dataset:

1. LC (faulty) > 88.09%, % of obligations satisfied > 89.59%, LC (fixed) > 87.89%

2. LC (faulty) > 88.09%, % of obligations satisfied > 89.59%

3. BC (faulty) > 79.85%, BC (fixed) > 79.71%, % of obligations satisfied > 89.59%, LC (fixed) > 87.89%

123

 0

 20

 40

 60

 80

 100

Not Detected Low Performance High Performance

P
e

rc
e

n
t

o
f

D
a

ta
s

e
t

35.00
31.00 33.00

Figure 4.34: 2m Budget

 0

 20

 40

 60

 80

 100

Not Detected Low Performance High Performance

P
e

rc
e

n
t

o
f

D
a

ta
s

e
t

34.00
29.00

37.00

Figure 4.35: 10m Budget

Figure 4.36: Class distributions of the data subsets fitting the top treatments learned from
each dataset for the “Low Performance” class.

4. BC (fixed) > 79.71%, LC (fixed) > 87.89%, % of obligations satisfied > 89.59%, BC (faulty) > 79.85%,

LC (faulty) > 88.09%

5. BC (fixed) > 79.71%, LC (faulty) > 88.09%, % of obligations satisfied > 89.59%, LC (fixed) > 87.89%

Ten-Minute Dataset:

1. LC (faulty) > 92.08%, BC (fixed) > 85.97%

2. LC (faulty) > 92.08%, BC (fixed) > 85.97%, LC (fixed) > 92.23%

3. BC (faulty) > 86.25%, BC (fixed) > 85.97%, LC (fixed) > 92.23%

4. BC (faulty) > 86.25%, BC (fixed) > 85.97%, LC (faulty) > 92.08%

5. BC (faulty) > 86.25%, LC (fixed) > 92.23%

These treatments, and their resulting class distributions—illustrated in Figure 4.36—

are very similar to the factors predicting “high” performance. This is particularly true for

the two-minute dataset, where we simply see a small downgrade in the number of “high”

124

cases. From this, we can again see that coverage is needed to detect faults, but more data

is needed to help ensure reliable detection.

However, we can make one interesting observation from the treatments learned from

the ten-minute dataset. The ten-minute dataset includes more effective test suites from the

start, allowing us to better differentiate high efficacy from low—but extant—efficacy. The

treatments learned from the ten-minute dataset for “low efficacy” are lacking any reference

to satisfaction of their obligations—a factor that is always present in the treatments learned

for the “high efficacy” classification. We can also see a shift in the resulting class distri-

bution in Figure 4.36 from that in Figure 4.30. The percent of “low” efficacy examples

remains the same, but there are fewer “high” cases and more “not detected” cases.

The most important factor differentiating cases where a fault is occasionally detected

and cases where a fault is consistently detected is satisfaction of the chosen criterion’s

test obligations.

Thus, we can observe that the most effective test suites are those that both cover a

large percentage of their own obligations and thoroughly exercise the targeted code. In

the case of criteria like branch coverage, these two go hand-in-hand. However, this also

illustrates why criteria based on orthogonal factors to code coverage—like exceptions—

tend to be best used in combination with coverage-based criteria. In future work, we will

further explore such factors and others, and investigate how to best ensure effective test

suite generation.

Understanding the Code Metrics Impacting Fault Detection

The following treatments were reported by TAR3, from the “overall” (all fitness functions)

code metric datasets, as indicative of situations where generated test suites—regardless of

the targeted criterion—were able to detect a fault. The treatments are scored according to

125

their impact on class distribution and the number of cases in the treatment-fulfilling subset

of the data, and the top-scoring treatments are presented first. Definitions of metrics are

listed in Table 4.1.

Two-Minute Overall Dataset:

1. TCD = [0.52..0.93], NOD = [0.00..1.00)]

2. TCD = [0.52..0.93], NS = [0.00..1.00)]

3. TCD = [0.52..0.93], TNLS = [0.00..1.00)]

4. TCD = [0.52..0.93], TNS = [0.00..1.00)]

5. TCD = [0.52..0.93], TNLS = [0.00..1.00)], NS = [0.00..1.00)]

Ten-Minute Overall Dataset:

1. TCD = [0.52..0.93], CD = [0.53..0.93]

2. TCD = [0.52..0.93]

3. PDA = [30.00..208.00], DLOC = [348.00..4017.00]

4. TNLPM = [38.00..287.00], DLOC = [348.00..4017.00]

5. CD = [0.53..0.93]

Figure 4.39 illustrates the shift in the class distribution for the subset of each overall

dataset fitting the top-ranked treatment targeting the “Yes” classification for each respective

budget. Comparing to the baseline distribution in Figure 4.13, we can see that the class

distribution has shifted heavily in favor of the “Yes” class—from 47.44-71.95% and 49.80-

73.90% respectively. As approximately 25% of the examples still have a “No” verdict,

these treatments are not perfectly explanatory. Some classes may match the treatment and

still evade fault detection. However, the shift in distribution still suggests that the metrics

and value ranges named in the treatments have explanatory power. The treatments indicate

that:

Generated test suites are effective at detecting faults in well-documented classes.

126

 0

 20

 40

 60

 80

 100

No Yes

Pe
rc

en
t o

f D
at

as
et

28.05

71.95

Figure 4.37: 2m Budget

 0

 20

 40

 60

 80

 100

No Yes

Pe
rc

en
t o

f D
at

as
et

26.01

73.99

Figure 4.38: 10m Budget

Figure 4.39: Class distributions for the subsets of the two overall datasets fulfilling the
top-ranked “Yes” treatment for each.

The most consistently-identified metric from the two-minute dataset—and one that ap-

pears in treatments for the ten-minute dataset as well—is that a high Total Comment Den-

sity (52-93%) tends to indicate that the fault is more likely to be found. This is above the

75th percentile of the results depicted in Figure 4.1. From the ten-minute dataset, we can

also see that suites tend to detect faults in classes with a Comment Density of 52-93%, 348-

4,017 Documented Lines of Code, and with 30-208 documented public methods (PDA).

Test generation will yield better results if more of the class is publicly accessible.

A Total Number of Local Public Methods from 38-287 indicates that generated suites

are more likely to detect a fault. From Table 4.1, we can see that this is well above the me-

dian TNLPM (12.00), indicating that allowing direct access to more of your methods will

yield better test generation results. A number of treatments also suggest a (Total) Number

of (Local) Setters (TNS, NS, TNLS) of 0. Having no setters implies that all attributes are

127

publicly-accessible. In addition, while Public Documented API is intended to capture how

well-documented the class is, it also illustrates this point—a high PDA indicates not just

that there are a large number of documented methods, but that a large number of methods

are public as well.

The top treatment for the two-minute dataset also suggests a Number of Descendants

(NOD) of 0. This value reflects the vast majority of classes, and also appears in the treat-

ments for the “No” classification. Therefore, we consider it to be a coincidental factor.

The test suites for Exception, Method, Method (Top Level, No Exception), and Output

Coverage did not detect enough faults to yield useful treatments for the “Yes” classifica-

tion. Test suites for the remaining four criteria—Branch, Direct Branch, Line, and Weak

Mutation Coverage—yielded treatments largely echoing the “overall” dataset. However,

multiple treatments for those criteria-specific datasets included the metric-value pairings

CLLC = [0.24..0.86] and CC = [0.27..0.91]. These metrics—Clone Logical Line Coverage

(CLLC) and Clone Coverage (CC)—tell us that:

Faults are easier to detect if a large proportion of the class contains duplicate code.

These value ranges are the high end of the scale, and do not include the majority of

classes, indicating that the importance of these metrics is not coincidental. Intuitively, if

there is a lot of duplicate code, the overall class structure will be easier to cover. Test

generation methods driven by code coverage will be able to quickly achieve high levels of

coverage, making it easier to reach and execute the code containing the fault.

The following treatments were reported by TAR3, based on the all-fitness-function

datasets, as indicative of situations where generated test suites—regardless of the targeted

criterion—were not able to detect a fault. Figure 4.42 illustrates the shift in the class dis-

tribution for the subset of each overall dataset fitting the top-ranked treatment targeting the

“No” classification for each.

128

 0

 20

 40

 60

 80

 100

No Yes

Pe
rc

en
t o

f D
at

as
et 82.73

17.28

Figure 4.40: 2m Budget

 0

 20

 40

 60

 80

 100

No Yes

Pe
rc

en
t o

f D
at

as
et

82.82

17.17

Figure 4.41: 10m Budget

Figure 4.42: Class distributions for the subsets of the two “overall” datasets fulfilling the
top-ranked “No” treatment for each.

Two-Minute Overall Dataset:

1. DIT = [1.00..2.00)], PDA = [1.00..4.00)]

2. NPM = [0.00..3.00)], NOC = [0.00..1.00)]

3. NPM = [0.00..3.00)], NOD = [0.00..1.00)]

4. NPM = [0.00..3.00)], TNLPA = [0.00..1.00)]

5. CBO = [17.00..98.00], NOC = [0.00..1.00)]

Ten-Minute Overall Dataset:

1. NPM = [0.00..3.00)], LCOM5 = [1.00..2.00)]

2. NS = [0.00..1.00)], CBO = [17.00..98.00]

3. NPM = [0.00..3.00)], NOC = [0.00..1.00)]

4. NPM = [0.00..3.00)], NOD = [0.00..1.00)]

5. NPM = [0.00..3.00)], NOD = [0.00..1.00)], NLPA = [0.00..1.00)]

Comparing to the baseline distribution in Figure 4.13, we can see that the class distribu-

tion has shifted heavily in favor of the “No” class—from 52.56-82.73% and 50.20-82.82%

129

respectively. Once again, not all examples in the subset have a “No” classification. How-

ever, the sharp shift in distribution suggests that the treatments have explanatory power.

From the produced treatments, we can see that:

Test generation methods struggle with classes that have a large number of private

methods or attributes.

The majority of the treatments include a Number of Public Methods (NPM) between

0-3 methods. This is an extremely low number of public methods—far below the median—

indicating that much of the class is private. In these cases, the generated suites are likely

to have low overall code coverage, and are more likely to miss a fault. One treatment also

includes a PDA of 1-3 methods. In this case, this metric’s importance is likely not to be as

an indicator of the level of documentation, but an indicator that there are a low number of

public methods.

Treatments also include a (Total) Number of Local Public Attributes (TNLPA/NLPA)

of 0—indicating that any extant attributes are private. Like with the “Yes” treatments, the

attributes serve a different purpose than methods in test generation—serving as a way to

configure class state and drive coverage of the code contained in the methods. A lack of

public attributes limits the ability of the generation framework to control class state.

It can be more difficult to generate tests for classes with dependencies or inherited

state.

A Coupling Between Objects of 17-98 is well above the mean of 8, indicating that

generated suites are likely to miss a fault in a class coupled to a large number of other

classes. In such cases, the test generation framework would need to set up dependencies

and put them in the state needed to expose the fault in the targeted class—a non-trivial task.

130

A related metric is the Depth of the Inheritance Tree (DIT). A DIT of 1 indicates that

the target class has a parent class. The existence of a parent class indicates that some

methods and attributes are inherited from a parent. This, in itself, is not a problem as

the test generator does not need to properly set up a parent like in the last case (and many

classes in the dataset have a parent). While we have discussed the metric-value pairs in each

treatment as largely being independent, the pairs in a treatment can be related. In this case,

the treatment pairs the DIT of 1 with a low PDA. This implies situations where part of the

class is inherited from a parent, and where the class has a low number of public methods of

its own. If much of the complexity of the class is inherited and new functionality is largely

private, the test generation framework may have difficulty in driving execution to the fault

location.

Once again, the fact that the vast majority of classes have a NOC/NOD of 0 and that

this metric-value pair appears for both targeted classes suggests that these two metrics are

coincidental, and we have chosen to ignore them in our discussion. LCOM5 = 1 matches

the vast majority of classes in the dataset, and is not particularly informative. Therefore, we

also suspect that it is coincidental. All three of these metrics—NOC, NOD, and LCOM5—

are paired with a low NPM. We suspect that the low NPM is the true indicator of test

efficacy.

One treatment includes the metric-value pair NS = 0. This pairing also appeared for

the “Yes” treatments, and captures a majority of case examples. We believe it is coinciden-

tal for this classification, but not the “Yes” classification, as the treatments for the “Yes”

classification included a number of related metrics and often included this pairing. In this

case, it was paired with a high CBO—a more informative metric.

The datasets for all eight coverage criteria offered very similar results to the overall

datasets for the “No” classification. No additional metric-value pairs were observed.

We will summarize the trends observed among the identified metrics, and discuss their

implications. First, test generation methods struggle with classes that have a large

131

number of private methods or attributes, and thrive when the class structure is ac-

cessible. The clearest indication of this trend is in the treatments produced for the “No”

classification, where a low number of public methods appeared in almost every treatment.

In the “Yes” treatments, a large number of public methods is prescribed. This finding is

further backed by the prevalence of the Public Documented API metric for both classifi-

cations, where the “Yes” treatments prescribe for a PDA of 30-208 methods, and in the

“No” treatments, where the treatments prescribe 1-3 methods. PDA is a documentation

metric, intended to highlight classes in need of more documentation. However, as it mea-

sures the proportion of public methods that are documented, it has a strong correlation to

the Number of Public Methods (0.63, measured using the Kendall correlation test). In this

experiment, PDA seems to further indicate the effect of private methods on test generation

effectiveness.

This finding makes intuitive sense. The test generation technique explored in this exper-

iment is driven by various coverage criteria—largely based on different ways of executing

structural elements of the code. The obligations of such criteria will inevitably require that

code structures within private methods be executed in the mandated manner. In practice,

coverage can be measured over private code, and the feedback mechanisms that power

search-based test generation will still reward greater coverage of that code. However, with-

out the ability to directly call such methods, the generation technique will struggle to ac-

tually obtain coverage. Private methods must be covered indirectly, through calls to public

methods. While the generation technique will attempt to adjust the input provided to the

public methods to obtain higher indirect coverage of private methods, this indirect manip-

ulation may prove unsuccessful due to constraints placed on how the public method can

invoke the secondary private method or discontinuity in the scoring method introduced by

this indirect manipulation.

Both the “Yes” and “No” treatments touch on the use of private attributes as well,

through the (Total) Number of (Local) Setters and Total Number of Public Attributes. Pri-

132

vate attributes do not directly prevent code from being covered in the same manner as

private methods do. However, they may still result in lower coverage and missed faults

by limiting the ability of the test generation technique to manipulate the state of the class.

Certain methods may only be coverable by setting the class attributes to particular values,

and some failures may only be triggered under particular class states. If the class attributes

are private, the test generation technique will need to find indirect means of manipulating

those attributes. Again, this is a non-trivial task.

Authors have previously hypothesized that private methods are a reason for poor test

generation results [19, 20, 22]. Our findings offer evidence supporting this hypothesis.

In practice, we would not advocate that developers reduce the use of private methods or

attributes—the protection offered through this feature is crucial. Instead, test generation

techniques need to be augmented with better means of increasing coverage of private meth-

ods. For example, machine learning techniques may be able to form a behavioral model

of the indirectly-called method that could offer better feedback than the existing scoring

function used to guide search-based generation.

Second, generated suites seem to be more effective at detecting faults in classes

with more documentation. The metrics that were the most common indicators of success

are largely documentation-related metrics such as the (Total) Comment Density, the Docu-

mented Lines of Code, and—to a lesser extent—the Public Documented API. As discussed

previously, Public Documented API is strongly correlated to the Number of Public Meth-

ods, and the documentation connection is likely to be a coincidence. TCD and DCLOC

both have a moderate correlation to the PDA (strengths of 0.48 and 0.47, respectively).

However, TCD is only weakly correlated to NPM (0.24) and DLOC is only moderately

correlated (0.42). Therefore, TCD, CD, and DLOC are important indicators of efficacy in

their own right, and are not merely indicative of a higher number of public methods.

There is no reason to expect the presence of documentation to assist automated test

case generation techniques, as such techniques do not make use of documentation in any

133

way. Instead, it is important to consider what the presence of documentation implies. One

theory is that there is an unintended selection bias in how the case examples were gathered

for Defects4J. The studied faults were identified by searching for project commits that

referenced bug reports. Bug reports are more likely to be filed for classes that are frequently

invoked by the users and developers of a project. In turn, classes that are more heavily used

tend to be ones that developers spend more time refining and polishing. Classes that are

expected to be used more heavily will, naturally, be better documented. As a result, it could

be that well-documented classes are more likely to be identified as subjects for Defects4J

than classes with low amounts of documentation.

However, this theory does not completely explain these results. The majority of classes

in Defects4J do not have a high TCD or DLOC. The median TCD—36%—is likely to be

higher than the median for all classes in the wild, but is still well below the TCD pre-

scribed by the treatments—52-93%. The classes with a high TCD are also not necessar-

ily smaller than other examples. The median LLOC—non-comment lines of code—for

classes with a TCD greater than 52% is 288.50, compared to an overall median of 208.50.

The median TNM is 37.50, slightly above the median of 37. This implies that the well-

documented classes are actually larger than the average class in Defects4J. These are not

simpler examples. Further, TCD and DLOC do not have a strong correlation with any non-

documentation metric, meaning that there is not a simple explanation within the collected

date.

Therefore, there must be some additional factor implied by the presence of high levels

of documentation. More research is needed to understand the impact of documentation

in these case examples. While the presence of documentation should not directly assist

automated test case generation techniques, its presence may hint at the maturity, testability,

and understandability of the class.

Third, classes with a large number of dependencies are more difficult to test than

more self-contained classes. This is indicated in the “No” treatments by a Coupling Be-

134

tween Objects (CBO) of 17-98 classes, and—to a lesser extent—an inheritance tree depth

(DIT) of 1, meaning that the target class inherits functionality from a parent. For a class to

be included in Defects4J, it must be directly changed by the patch applied to fix the fault.

This means that the fault lies in the class that depends on other classes, rather than being a

fault in one of the dependencies.

If a class depends on other classes, then the test generation technique may also need to

initialize and manipulate the dependencies properly as part of the test generation process.

By not doing so properly, we may not be able to achieve high coverage of the target class.

Further, we may fail to expose the fault even if the code is covered, as we are trying to

make use of the target class outside of the “normal” use of the rest of its dependencies.

Because of that, we may see the same incorrect behavior from both the working and faulty

versions of the class, missing the fault. Researchers have discussed the problem of config-

uring complex dependencies as part of the broader challenges of controlling the execution

environment when generating test cases [19,21,23]. Again, our observations provide clear

motivation for further research on this topic.

Fourth, when structure-based criteria like Branch Coverage are targeted, test genera-

tion techniques are more effective when a large proportion of the class is duplicated

code. This is supported by the prevalence of Clone Logical Line Coverage (CLLC) and

Clone Coverage (CC) in the criteria-specific “Yes” treatments. This observation makes in-

tuitive sense. If a large proportion of the code is identical, then that code will be easier to

cover through automated generation. Even if the fault does not lie in the duplicated code,

it will be easier to guide execution to the faulty code.

Code duplication is discouraged during development, as any changes will need to be

made in multiple locations. Further, duplicating code rather than encapsulating it in one

location and invoking it throughout the class will not have any benefit, as a high CLLC

simply implies that there is not a significant quantity of non-duplicated code. Rather than

offering actionable information, this observation simply indicates that classes with a lot of

135

duplicate code and very little other functionality are easier to test than complex classes.

4.5 RELATED WORK

Those who advocate the use of adequacy criteria hypothesize that criteria fulfillment will

result in test suites more likely to detect faults—at least with regard to the structures tar-

geted by that criterion. If this is the case, we should see a correlation between higher attain-

ment of a criterion and the chance of fault detection for a test suite [143]. Researchers have

attempted to address whether such a correlation exists for almost as long as such criteria

have existed [85, 133–135, 161, 167–170]. Inozemtseva et al. provide a good overview of

work in this area [135]. Our focus differs—our goal is to examine the relationship between

fitness function and fault detection efficacy for search-based test generation. However, fit-

ness functions are largely based on, and intended to fulfill, adequacy criteria. Therefore,

there is a close relationship between the fitness functions that guide test generation and

adequacy criteria intended to judge the resulting test suites. In recent work, McMinn et al.

have even proposed using search techniques to evolve new coverage criteria that combine

features of existing criteria [171].

EvoSuite has previously been used to generate test suites for the systems in the De-

fects4J database. Shamshiri et al. applied EvoSuite, Randoop, and Agitar to each fault in

the Defects4J database to assess the general fault-detection capabilities of automated test

generation [22]. They found that the combination of all three tools could identify 55.7%

of the studied faults. Their work identifies several reasons why faults were not detected,

including low levels of coverage, heavy use of private methods and variables, and issues

with simulation of the execution environment. In their work, they only used the branch

coverage fitness function when using EvoSuite. Yu et al. used EvoSuite to generate tests

for 224 of the faults in Defects4J, examining whether such tests could be used for program

repair [172]. In our initial study, we expanded the number of EvoSuite configurations to

136

better understand the role of the fitness function in determining suite efficacy [20]. We have

also compared and contrasted test suites generated to achieve traditional branch coverage

and direct branch coverage, noting that each fitness function detects different faults [173].

We used the Defects4J faults to understand the effect of combining fitness functions,

identifying lightweight combinations of fitness functions that could effectively detect faults [137].

Rojas et al. also examined combining fitness functions, finding that, given a fixed genera-

tion budget, multiple fitness functions could be combined with minimal loss in coverage of

any single criterion and with a reasonable increase in test suite size [159]. Others have ex-

plored combinations of coverage criteria with non-functional criteria, such as memory con-

sumption [174] or execution time [175]. Few have studied the effect of such combinations

on fault detection. Jeffrey et al. found that combinations are effective following suite reduc-

tion [176]. Recent efforts have been made to introduce many-objective search algorithms

that can better balance and cover multiple coverage criteria simultaneously [177, 178].

Object-oriented source code metrics have been used for a variety of purposes. For

example, Chowdhury et al. used complexity, coupling, and cohesion metrics as early in-

dicators of vulnerabilities [179]. Singh et al. tried to find the relationship between object-

oriented metrics and fault-proneness at different fault severity levels [180]. Mansoor et al.

used metrics to detect code smells [181]. Cinneide et al. used cohesion and cloning metrics

to guide automated refactoring [182]. Tripathi et al. [183] developed models to predict the

change-proneness of the classes using code metrics [183]. Relevant to this study, Toth et

al. used SourceMeter to gather the same metrics that we used on classes from Java projects

on GitHub [184]. They gathered metrics for multiple revisions, focusing on pairs of re-

visions related to faulty and working versions of the system. They used this dataset for

defect prediction. While our purposes differ and there is no overlap in the studied systems,

our dataset could potentially be used to augment their study. Recently, Sobreira et al. also

assembled a dataset characterizing the faults in Defects4J [185]. Rather than focusing on

class characteristics, they focus on the patches used to fix each fault, characterizing them in

137

terms of size, spread, and the repair actions needed to perform automated program repair.

4.6 THREATS TO VALIDITY

External Validity: Our study has focused on fifteen systems—a relatively small number.

Nevertheless, we believe that such systems are representative of, at minimum, other small

to medium-sized open-source Java systems. We believe that Defects4J offers enough fault

examples that our results are generalizable to other, sufficiently similar projects.

We have used a single test generation framework. There are many search-based meth-

ods of generating tests and these methods may yield different results. Unfortunately, no

other generation framework offers the same number and variety of fitness functions. There-

fore, a more thorough comparison of tool performance cannot be made at this time. Still,

our goal is to examine the coverage criteria, not the generation framework. By using the

same framework to generate all test suites, we can compare criteria on an equivalent basis.

To control experiment cost, we have only generated ten test suites for each combination

of fault, budget, and fitness function. It is possible that larger sample sizes may yield

different results. However, this process still yielded 118,600 test suites to use in analysis.

We believe that this is a sufficient number to draw stable conclusions.

Conclusion Validity: When using statistical analyses, we have attempted to ensure the

base assumptions behind these analyses are met. We have favored non-parametric methods,

as distribution characteristics are not generally known a priori, and normality cannot be

assumed.

Our learning results are based on a single learning technique. Treatment learning was

used to analyze the gathered data, as it is designed to offer succinct, explanatory theories

based on classified data [163]—fitting the goal of our work. TAR3 was thought to be

appropriate, as it is the most common treatment learning approach and is competitive with

other approaches [164].

138

4.7 CONCLUSIONS

We have examined the role of the fitness function in determining the ability of search-

based test generators to produce suites that detect complex, real faults. From the eight

fitness functions and 593 faults studied, we can conclude:

• Collectively, 51.26% of the examined faults were detected by generated test suites.

• Branch coverage is the most effective criterion—detecting more faults than any other

single criterion and demonstrating a higher likelihood of detection for each fault than

other criteria (on average, a 22.60-25.24% likelihood of detection, depending on the

search budget).

• Regardless of overall performance, most criteria have situational applicability, where

their suites detect faults no other criteria can detect. Exception, output, and weak

mutation coverage—in particular—seem to be effective for particular types of faults,

even if their average efficacy is low.

• While EvoSuite’s default combination performs well, the difficulty of simultaneously

balancing eight functions prevents it from outperforming all individual criteria.

• However, a combination of branch, exception, and method coverage has an average

24.03-27.84% likelihood of fault detection—outperforming each of the individual

criteria. It is more effective than the default eight-way combination because it adds

lightweight situationally-applicable criteria to a strong, coverage-focused criterion.

• Factors that strongly indicate a high level of efficacy include high line or branch cov-

erage over either version of the code and high coverage of their own test obligations.

• Coverage does not ensure success, but it is a prerequisite. In situations where achieved

coverage is low, the fault does not tend to be found.

• The most important factor differentiating cases where a fault is occasionally detected

and cases where a fault is consistently detected is satisfaction of the chosen criterion’s

test obligations. Therefore, the best suites are ones that both explore the code and ful-

139

fill their own goals, which may be—in cases such as exception coverage—orthogonal

to code coverage.

• Test generation methods struggle with classes that have a large number of private

methods or attributes, and thrive when a large portion of the class structure is acces-

sible.

• Generated suites are more effective at detecting faults in well-documented classes.

While the presence of documentation should not directly assist automated test gen-

eration, its presence may hint at the maturity, testability, and understandability of the

class.

• Faults in classes with a large number of dependencies are more difficult to detect

than those in self-contained classes, as the generation technique must initialize and

manipulate multiple complex objects during generation.

Theories learned from the collected metrics suggest that successful criteria thoroughly

explore and exploit the code being tested. The strongest fitness functions—branch, direct

branch, and line coverage—all do so. We suggest the use of such criteria as primary fitness

functions. However, our findings also indicate that coverage does not guarantee success.

The fitness function must still execute the code in a manner that triggers the fault, and

ensures that it manifests in a failure. Criteria such as exception, output, and weak mutation

coverage are situationally useful, and should be applied as secondary testing goals to boost

the fault-detection capabilities of the primary criterion—either as part of a multi-objective

approach or through the generation of a separate test suite.

Our findings represent a step towards understanding the use, applicability, and combi-

nation of common fitness functions. Our observations provide evidence for the anecdotal

findings of other researchers [19–23] and motivate improvements in how test generation

techniques understand the behavior of private methods or manipulate environmental de-

pendencies. More research is needed to better understand the factors that contribute to

fault detection, and the joint relationship between the fitness function, generation algo-

140

rithm, and CUT in determining the efficacy of test suites. In future work, we plan to further

explore these topics.

This work is supported by National Science Foundation grant CCF-1657299.

141

CHAPTER 5

HOW CLOSELY ARE COMMON MUTATION OPERATORS

COUPLED TO REAL FAULTS?

5.1 INTRODUCTION

Software testing—the process of applying stimuli to software and judging the resulting

reaction—is the most common means of ensuring that software operates correctly. As

lapses in testing carry financial [6], environmental [7], and medical risk [8], it is imperative

to ensure that testing yields effective results while remaining cost-effective.

When designing test cases, past experience can be used to estimate the potential ef-

fectiveness of the test suite. If we have known software faults—mistakes in the source

code [1]—we can use detection of these faults to predict whether test cases will be ef-

fective against unknown future faults. Essentially, this is an estimation of the sensitivity

of the test suite to changes in the source code. In practice, we typically lack a sufficiently

large collection of faults to draw reasonable conclusions. Instead, we make use of synthetic

faults, known as mutants [24].

Mutation testing [25] is a technique in which a user generates many faulty versions of

a program—the “mutants” mentioned above—through small modifications of the original

code, typically using automated code transformation [24, 26]. Mutation operators define

transformations over code structures, such as expressions, operators, or references [27]. For

example, a mutation operator may change one arithmetic operator into another—turning

A+B intoA∗B—permute the order of two statements, add or remove a staticmodifier,

142

or many other possible changes. There are many mutation operators used in practice [27,

28]. These operators vary in complexity in effect, but all are intended to reflect common,

minor mistakes that developers make when writing code.

Mutation testing is a common technique in both testing research and industrial practice.

In research, it is the most common method of judging the effectiveness of new testing

techniques, particular those used to automatically generate test cases [26]. Mutation is also

employed at companies such as Google to identify areas of improvement in test design [29].

In either case, the core hypothesis is that test suites that detect mutants are also effective at

detecting real faults, as they are sensitive to these small changes in the code [30].

This hypothesis hinges on the idea that mutants can serve as stand-ins for real faults.

Mutants clearly bear little syntactic resemblance to real faults [31]. Mutation operators

tend to make simple, one-line changes to the code1. A glance at any database of real

faults, such as Defects4J for Java faults [32], makes it clear that real faults are generally

more complex than mutants, often affecting multiple lines of code and requiring multiple

changes to any single line to fix. Instead, the idea that mutants can substitute for real

faults is based on the assumption of a semantic relationship, built on two hypotheses. The

first, the “competent programmer hypothesis”, suggests that many programs are close to

correct, and that minor changes will be enough to fix them. The second, the “coupling

effect”, suggests that detection of many simple mutants will equate to detection of a single

complex fault affecting the same lines of code [1, 33].

However, the truth of these hypotheses—or even the broader hypothesis that, regardless

of a semantic relationship, that high levels of mutant detection will lead to increased prob-

ability of faulty detection—is not clear. Studies, even conducted on the same real faults,

have disagreed on the correlation between mutant and fault detection [24, 187]. Others

have found that mutants can serve as a stand-in for real faults under specific conditions,

1These are called “first-order mutants” [186]. Higher-order mutation has been proposed, allowing for
more complex code transformations. However, this concept has not yet been widely explored [33, 186].

143

but not broadly [26, 188]. Even if mutation testing can improve the quality of testing ef-

forts, weak empirical evidence and the immense cost of applying mutation testing to a large

codebase [33] suggest the need for improvement in the implementation and application of

mutation testing.

We hypothesize that improving the effectiveness—in terms of both cost and quality—

lies in better understanding the semantic relationship between mutants and real faults, also

known as their coupling. In particular, and in contrast to past studies, we turn our focus

to examining specific mutation operators. That is, what degree of coupling do specific

mutation operators have with real faults?

We investigate the degree of coupling by executing developer-written test suites against

both mutated and faulty versions of classes from multiple open-source Java projects, based

on 144 case examples from the Defects4J fault database [32]. In particular, we focus on

the trigger tests—the tests that detect the real fault. A mutant that is most strongly coupled

to a real fault will be detected only by the trigger tests, and those tests will fail for the

same reasons—i.e., the same exception or error. Mutants that are more weakly coupled

may cause additional—or fewer—tests to fail or cause tests to fail for different reasons.

We have defined a scale rating the strength of the coupling between a mutant and a corre-

sponding fault, based on number of failing tests and reasons for failure. This scale, in turn,

allows us to contrast 31 mutation operators—applied using the muJava++ framework—

based on their tendency to produce mutants with a stronger semantic relationship to real

faults. Ultimately, we observed:

• Overall, 61.08% of mutants are detected by developer-written tests. 9.92% of the

mutants are strongly coupled to real faults, and a further 9.03% are strongly coupled

with additional tests failing. 51.03% of the faults have at least one strongly coupled

mutant.

• The level of coupling of individual mutants is relatively low—a median score of 2/10.

144

16 of the 35 mutation operators (45.71%) have a median score < 2.00.

• EMM , ASRS, ISD, COI , PRV OUSMART , and EOC yield mutants with the

highest median level of coupling. The average EMM or ASRS mutant strongly

substitutes for corresponding faults. PRV OUSMART mutants are common and tend

to either strongly couple or not be detected—making this operator potentially useful

for improving test suite quality.

• ISI , JTI , AMC, OAN , and LV R have the lowest median scores. They largely

produce mutants resulting in compilation errors.

• JTD, SOR, AODU , PRV ORSMART , and AORU have the the largest percentage

of mutants that are not detected. PRV ORSMART yields subtle mutants with, often,

strong coupling. The other operators could be selectively useful, but may yield many

equivalent mutants or cause non-trigger tests to fail.

• SOR, PRV ORREF INED, AORB, AOD, and EOA have the the largest percentage

of mutants that are only detected by non-trigger tests. These mutants are detected,

but lack a significant relationship with the corresponding real faults.

• Using median level of coupling to filter operators could offer cost reductions while

retaining the power of mutation testing to assess test suite sensitivity. In our set of

mutants, a ≥ 4.0 threshold yields an 81.48% reduction in the number of mutants

while retaining a diverse subset of operators and mutants with strong coupling.

Understanding the semantic relationship between mutation operators and faults could

enable improvements in how mutation testing is applied. For example, identifying strongly-

coupled operators allows prioritization of the mutants used during testing. Exclusion of

weakly-coupled operators could lead to cost savings and filtering of ”noise” from test suite

adequacy estimation. In addition, understanding semantic coupling enables potential im-

provements in the implementation of existing mutation operators—e.g., ensuring that mu-

145

tants will compile—and may suggest new mutation operators. To inspire future research,

we also make our data available for others to analyze2

5.2 BACKGROUND

Analysis of Real Faults

To discuss the relationship between mutation operators and real faults, it is important to

first establish certain concepts and terminology related to faults and fault analysis. We

broadly adopt the same conventions followed by our experimental subject, Defects4J [32].

In this study, when we discuss a fault, each fault meets the following three properties:

1. Each case example consists of a faulty and a fixed source code version. The changes

imposed by the fix must be to source code, not to other project artifacts such as

configuration or build files.

2. Each fault must be reproducible—all tests pass on the fixed version and at least one

test fails on the faulty version, thereby exposing the fault.

3. Each fault is isolated—the faulty and the fixed version differ only by a minimal set

of changes, all of which are related to addressing the fault. That is, the changes are

free of unrelated code changes, such as refactoring or feature additions.

When discussing faults, we use the following terminology:

• The trigger tests are developer-written test cases that expose the fault. This is the

set of tests that fail only on the faulty version.

• The modified classes are those classes that are altered in order to fix the fault.

• The loaded classes are classes loaded by the Java Virtual Machine during execution

of the trigger tests.

2Available from https://doi.org/10.5281/zenodo.7261554.

146

https://doi.org/10.5281/zenodo.7261554

• The relevant tests are the full set of test cases from test classes that load at least

one of the modified classes. The relevant tests are the full set of tests that could

potentially detect mutations of the modified classes. The relevant tests include all

trigger tests, as well as additional tests that pass on both the fixed and faulty versions

of modified classes (but could still detect mutations).

Mutation Testing

Mutation testing [25] is a technique in which a user generates many faulty versions of pro-

gram through modifications of the original code, generally through automated code trans-

formation [24,26]. Usually a single modification is made to each mutant, such as changing

an expression (i.e., substituting addition for subtraction), permuting the order of two state-

ments, or deleting statements. The mutations introduced generally match one or more

models of the types of mistakes that real developers make when building code (mutation

operators). Each mutation operator reflects a repeatable type of program change, which

can be automatically imposed on a program by searching for statements that fit the correct

pattern.

While mutations are individually simpler than real faults, two hypotheses suggest that,

together, mutants are helpful for determining the ability of a test suite to detect real faults.

• The “Competent Programmer Hypothesis” [30, 189] states that programmers tend

to develop programs that are close to correct. Although there may be faults in the

program, such faults can be corrected with a few simple changes. Mutations are

intended to represent types of simple changes that are made in practice [189].

• The “Coupling Effect” [30] states that tests that distinguish a large number of mutants

from the original program are so sensitive that they also will implicitly distinguish

more complex errors as well. Essentially, this hypothesis postulates that mutation

testing is an effective sensitivity analysis, and that test suites that detect more mutants

are more likely to also detect even subtle real-world faults.

147

Generally, mutants are introduced with the intent that they not be trivially detected—

they are both syntactically valid and semantically useful [1]. That is, effective mutants will

compile (“valid”), and will not trivially cause test cases to fail (“useful”) [1]. Mutations

can be used to assess the effectiveness of a test suite by examining how many mutants are

killed (that is, detected) by the tests within the test suite.

Detection can be assessed using either strong or weak mutation [190]. To kill a mutant

using strong mutation, the following four conditions must be met [190]:

• (R) test execution must reach the mutation in the modified class.

• (I) the test must infect program state by causing it to differ between the original and

mutated class.

• (P) incorrect state must propagate to class output.

• (R) assertions in the test must reveal the difference.

Weak mutation only requires the (R,I) steps. A mutant is considered weakly detected

if the mutated statement is reached, and the result of calculating that expression is cor-

rupted [191].

In this study, we employ strong mutation. We do not consider a mutant killed unless an

assertion in the test case is able to reveal the corrupted state through the output of a method

call or by inspecting a class variable. We do not attempt to remove equivalent mutants, as

such detection is generally undecidable [192] and we do not consider equivalence to be a

threat to our results (i.e., if an operator tends to yield many equivalent mutants, it would

not be strongly coupled to real faults).

A mutation score can be determined by dividing the number of killed mutants by the

number of all mutants. Mutants are considered equivalent if no test can corrupt program

state for that mutant. Deciding equivalence is generally an undecidable problem [192], but

techniques exist that can determine equivalence for a subset of mutations [33].

148

5.3 METHODOLOGY

We hypothesize that improving the quality and cost effectiveness of mutation testing re-

quires examining the semantic relationship between mutation operators and real faults.

That is, are there mutation operators that tend to trigger the same outcomes as real faults?

A clearer understanding of how mutation operators tend to couple to real faults carries a

number of potential benefits, allowing prioritization of mutation testing efforts (e.g., en-

abling cost savings by selectively omitting operators that weakly couple to real faults),

improved implementation of existing mutation operators, and insights into new mutation

operators that could be applied.

In this study, we investigate this semantic relationship by assessing the degree of cou-

pling between mutants and real faults using a spectrum of outcomes, based on the number

of failing trigger tests and the reasons for failure. We execute the developer-written test

suite on mutations to the classes (and specific lines) modified to fix a fault, and we examine

which mutants are detect and which tests fail. A mutant that is most strongly coupled to a

real fault will be detected by the trigger tests—and only the trigger tests—and those tests

will fail for the same reasons—i.e., will trigger the same exception or error. Mutants that

are more weakly coupled may cause additional—or fewer—tests to fail or cause tests to

fail for different reasons.

We are interested in addressing the following research questions:

• RQ1: What is the degree of coupling between mutants and real faults?

– RQ1.1: Which mutation operators yield mutants that most strongly couple to

faults?

– RQ1.2: Which mutation operators yield mutants that tend to result in compila-

tion errors or lack of detection?

– RQ1.3: Which mutation operators yield mutants that tend to be detected only

by non-trigger tests?

149

• RQ2: What potential cost savings could be achieved by selectively omitting mutation

operators weakly coupled to faults?

To answer these questions, we performed the following experiment:

1. Collected Case Examples: We have used 144 case examples, from five Java projects,

as case examples (Section 5.3).

2. Generated Mutants: For each fixed modified class for each case example, we gen-

erated mutants for the lines of code that differ between the faulty and fixed versions

of the classes. We perform this generation using 31 mutation operators offered by

the muJava++ framework (Section 5.3).

3. Executed Test Suites: For each mutant, we execute all relevant tests (Section 5.3).

4. Recorded Failure Information: For each mutant, we measure the number of failing

trigger tests, number of failing non-trigger tests, and the reasons for failure (i.e.,

exceptions or error messages) (Section 5.3).

5. Assessed Coupling: For each mutant, we use the information gathered above to

assess the degree of coupling of that mutant to the real fault using a scale that reflects

the outcomes of relevant test execution (Section 5.3).

Case Examples

Defects4J is an extensible database of real faults extracted from Java projects [32]3. De-

fects4J has been used extensively in test generation [22,88], automated program repair [115],

and fault localization [193] experiments. For each fault, Defects4J provides access to the

faulty and fixed versions of the code, developer-written test cases that expose the faults,

and a list of classes and lines of code modified by the patch that fixes the fault.

In this study, we generate mutants for the modified classes for 144 faults from five

projects in Defects4J: Chart (22 faults), Closure (22 faults), Lang (41 faults), Math (47

3Available from http://defects4j.org

150

http://defects4j.org

Table 5.1: ID numbers of studied faults from Defects4J. Faults in bold lacked any strongly-
substituting mutants in our experiment.

Project Bugs
Chart 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 24, 25, 26

Closure 9, 12, 23, 34, 52, 56, 65, 77, 85, 99, 100, 102, 123, 124, 128, 131, 147, 161, 162, 164, 169, 173

Lang 2, 4, 5, 7, 11, 12, 16, 19, 20, 22, 23, 24, 27, 28, 29, 30, 31, 34, 37, 39, 40, 42,
43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 57, 58, 59, 60, 61, 62, 63, 65

Math 3, 5, 8, 9, 11, 15, 17, 19, 22, 23, 24, 27, 29, 30, 37, 40, 41, 43, 46, 47, 48, 49, 51, 53, 54,
56, 60, 64, 66, 67, 68, 69, 70, 72, 73, 82, 84, 85, 89, 95, 96, 97, 98, 102, 103, 105, 106

Time 2, 3, 4, 5, 6, 7, 12, 14, 15, 16, 18, 27

faults), and Time (12 faults). The specific faults utilized are listed in Table 5.1. Some faults

from the version used, Defects4J 1.4, were excluded because (a) the lines of code that

differ between the faulty and fixed versions of classes yielded no mutants for any of the

employed mutation operators, (b) the lines of code that we attempted to mutate used Java

features not supported by muJava++, or (c), muJava++ failed to produce usable mutants

for some other reason. While we were unable to produce mutants for all faults, the subset

of 144 faults yielded a large set of mutants of sufficient variety to produce reasonable

experimental results.

Mutant Generation

There are several frameworks for generating mutants for Java, including PIT [194], mu-

Java [195], and Major [27]. Each tool offers its own features and set of mutation operators.

In this experiment, we used the framework muJava++, an extended version of muJava with

additional and reworked mutation operators4. We employ muJava++ because (a) it offers a

large number and variety of mutation operators, (b) it can be applied to user-specified lines

of code, and (c), it can export mutants as Java files for execution and analysis. We will

further explain each point, and how we applied the framework, below.

Mutation Operators: As our goal is to explore the relationship between mutation opera-

tors and real faults, we require a mutation framework that can produce mutants for a large

4Available from https://github.com/saiema/MuJava.

151

https://github.com/saiema/MuJava

Table 5.2: Mutation operators from muJava++ used in this experiment.

Operator Name Description
AMC Changes the access modifier of methods and class fields.

AOD
Replaces an arithmetic operation with one of its members.
For example, (a = b + c) becomes (a = b) or (a = c).

AODU Deletes basic unary arithmetic operators. (+, -)
AOIS Inserts short-cut arithmetic operators (++, --).
AOIU Inserts unary arithmetic operators (+, -).
AORB Replaces arithmetic operators (*, /, %, +, -) with other operators.
AORS Replaces short-cut arithmetic operators (++, --) with other operators.
AORU Replaces unary arithmetic operators (+, -)

ASRS
Replace short-cut assignment operators (+=, -=, *=, /=,
%=, &=, |=, ˆ=, <<=, >>=, >>>=) with other operators.

COD Deletes conditional operators (&&, ||, &, |, ˆ).
COI Inserts conditional operators (&&, ||, &, |, ˆ).
COR Replaces conditional operators (&&, ||, &, |, !) with other operators.
CRCR A constant C in the code is mutated to be one of (1, 0, -1, -C, C+1, C-1).

EAM
Changes an accessor method name for other compatible accessor method
(where methods have the same signature).

EMM
Changes a setter method name for other compatible setter method
(where methods have the same signature).

EOA
Replaces an assignment of an object reference with a copy of the object,
using the clone() method. Only performed if the object has a declared
clone() method.

EOC
Changes an object reference check to object content comparison through
Java’s equals() method.

ISD
Deletes occurrences of the super keyword so that a reference to a variable
or method is no longer to the parent class’ variable or method.

ISI
Inserts the super keyword so a reference to a variable or method in a child
class uses the parent variable or method.

JT D Deletes uses of the keyword this.
JT I Inserts uses of the keyword this.
LOI Inserts logical operators (&, |, ˆ).

LV R
Replaces a literal with a default value. Numeric literals become (0, 1, -1),
Booleans become (true, false), Strings are replaced with an empty string.

OAN
Changes the number of arguments in method invocations, but only if there
is an overloading method that can accept the new argument list.

P RV OLSMART

The P RV O operator changes object references in assignment statements to
instead refer to other objects of a compatible type. P RV OL mutates references
on the left-hand side of the assignment, and mutations must be compatible with
the right side. P RV OLSMART only uses references to reachable variables.

P RV ORSMART
Same as P RV OLSMART , except applied to the right-hand side of the
assignment, and mutations must be compatible with the left side.

P RV ORREF INED Same as P RV ORSMART , except it also uses literals found inside the method.
P RV OUSMART Same as P RV ORSMART , except applied to return expressions.
P RV OUREF INED Same as P RV ORREF INED , except applied to return expressions.

ROR
Replace relational operators with other relational operators (==, !=, <, ≤, >, ≥),
or replace an entire predicate with true and false.

SOR Replaces shift operators (>>, <<, >>>>) with other operators.

variety of operators. muJava++ supports 62 mutation operators, although some operators

have multiple variations. In our experiments, we were able to produce mutations for 31 of

the operators. These 31 operators are explained in Table 5.2.

Mutant Generation: We generate mutants by applying all operators to the specific lines

of code that differ between the fixed and faulty versions of the modified classes for each

152

Table 5.3: Number of mutants produced for each operator across each project from De-
fects4J (and overall), sorted by the total number of mutants.

Operator Chart Closure Lang Math Time Overall
P RV OUREF INED 5287 4880 3125 3663 1724 18679
P RV OUSMART 540 299 53 2760 54 3706
P RV ORREF INED 121 31 297 940 226 1615
AOIS 185 120 492 295 68 1160
ROR 139 152 489 223 113 1116
ISI 142 121 312 338 66 979
P RV ORSMART 92 159 24 368 77 720
LOI 68 44 278 262 51 703
JT I 84 63 211 269 42 669
CRCR 51 27 223 236 59 596
AORB 4 4 160 204 24 396
P RV OLSMART 95 0 57 216 4 372
COI 44 47 149 67 22 329
AOIU 27 5 73 147 22 274
COR 9 90 129 18 6 252
AOD 6 2 57 112 12 189
EAM 11 1 40 0 44 96
COD 5 8 13 2 0 28
ASRS 0 0 0 18 0 18
EOC 7 2 6 1 1 17
EOA 8 0 4 0 4 16
LV R 0 4 10 2 0 16
AMC 0 0 12 3 0 15
AORS 5 1 3 6 0 15
AORU 4 0 1 10 0 15
AODU 4 0 1 8 0 13
OAN 0 1 5 5 0 11
SOR 0 0 0 4 0 4
ISD 1 0 2 0 0 3
JT D 1 0 0 1 0 2
EMM 0 0 0 2 0 2
Overall 6932 6061 6223 10169 2617 32002

case example in Defects4J version 1.4. We apply this restriction because we are interested

only in the mutants that could potentially semantically replicate an actual fault. It is highly

unlikely that a mutant to another class or an unrelated portion of a modified class could

replicate the real fault. Therefore, mutants outside of the faulty code potentially mislead

the analysis.

We generate all possible mutations for all mutation operators for the lines of code that

have been changed to fix the fault. We apply mutations to the fixed code, as the mutants

should represent alternative “buggy” versions. Table 5.3 lists the number of mutants pro-

duced for each operator for each project from Defects4J, as well as across the dataset.

muJava++ exports each mutant as a Java file that can be substituted for the real file

153

during test execution. This capability allows us to execute the mutants using Defects4J’s

built-in test execution capabilities—ensuring that the assumptions and constraints of the

dataset hold during mutant execution. It also enables further qualitative analysis through

inspection of the mutated code.

Data Collection

To examine the relationship between mutation operators and real faults, we execute the

“relevant tests”—all developer-written test cases that execute, directly or indirectly, the

faulty code—against all mutated versions of the modified classes for each case example.

To perform test execution, we use the defects4j test utility offered by the frame-

work. This utility executes the relevant tests in a controlled test execution environment that

ensures that the expected behavior of the faulty and fixed code is preserved and that all

constraints and assumptions of the dataset hold. To use this utility for test execution for

mutants, we perform the following steps for each mutant:

• We checkout the fixed version of the case example.

• We exchange the appropriate modified class for the mutated class.

• We execute defects4j compile to compile the project. If the mutant does not

compile, we abort execution for that mutant and record the result.

• We execute defects4j test in the verbose mode.

• We record any tests that fail or result in an error, and record the reasons for failure.

The “reason” can include either a failed assertion or a raised exception.

We then compare the test failures and reasons for failure to the trigger tests for that case

example—the developer-written tests that fail for the real fault. The metadata for Defects4J

includes the stack traces for each failing developer-written test, which preserves the reasons

154

that the trigger tests fail for the real fault. This enables direct comparison of both failing

test cases and reasons why those tests fail.

When comparing “reasons”, we check that the same assertions fail or that the same

exceptions are thrown. However, we do not check that the exact same output is issued by

the code. For example, consider a situation where an assertion checks that the return value

is 10. If a mutant returns 7 and the real fault returns 12, we still consider the reason for

failure to be the same—the return value was not 10—even though the mutant and real fault

do not return the same incorrect value. Our definition of semantic similarity is satisfied if a

mutation and a real fault are detected by the same test cases using the same assertions (or

other failure causes).

Based on the test executions, we create a dataset with one line per mutant execution.

For each mutant, we record:

• Basic metadata: the project name, the fault ID, the name of the modified class, an

identifier for the mutant, the mutation operator applied, and the number of trigger

tests for that case example.

• The total number of tests that failed or resulted in an error for that mutant.

• The total number of trigger tests that failed or resulted in an error for that mutant.

• The total number of trigger tests that failed for the same reason for both the real fault

and that mutant.

Coupling Categorization

To assess the semantic coupling of mutants to real faults, we have developed the following

scale. This scale accounts for the range of possibilities when executing the relevant tests

against each mutant:

155

• Strong Substitution: All trigger tests fail, and they all fail for the same reason

that they failed for the real fault. No additional tests fail. This represents an exact

semantic replacement of the real fault, given the developer-written test suite.

• Test Substitution: All trigger tests fail, but one or more fail for differing reasons.

No additional tests fail.

• Partial Substitution: Some, but not all, trigger tests fail. All failing trigger tests fail

for the same reason as the real fault. No additional tests fail.

• Partial Test Substitution: Some, but not all trigger tests fail. Not all failing trigger

tests fail for the same reasons. No additional tests fail.

• (Strong/Test/Partial/Partial Test) + Additional Tests Fail: The same definitions as

above apply, but additional non-trigger tests fail.

• No Substitution: No trigger tests fail, but additional non-trigger tests fail.

• Not Detected: No tests fail.

• Does Not Compile: The generated mutant does not compile, preventing test execu-

tion.

This scale is used to assess, for each mutant, the results of executing the relevant tests

against that mutant in relation to executing the same tests against the real fault. For each

mutant in the above dataset, we assign a categorization from this spectrum of possibilities.

In some analyses, we also assign a numeric value for each of the ten categories on

this scale, with higher values indicating closer coupling. These values are: (0) Does Not

Compile, (1) Not Detected, (2) No Substitution, (3) Partial Test + Additional, (4) Partial

Test, (5) Partial + Additional, (6) Partial, (7) Test + Additional, (8) Test, (9) Strong +

Additional, and (10), Strong Substitution.

156

Table 5.4: Number and percentage of detected mutants for each project (and overall).

Project Detected Total Percentage
Chart 4175 6932 60.23

Closure 3072 6061 50.68
Lang 4160 6223 66.85
Math 6625 10169 65.15
Time 1515 2617 57.89
All 19548 32002 61.08

Table 5.5: Categorization of coupling for each mutant, for each project (and overall).

Category Score Chart Closure Lang Math Time Overall
Compile Error 0 1405 (20.23%) 2724 (44.94%) 785 (12.60%) 1440 (14.16%) 237 (9.05%) 6591 (20.58%)
Not Detected 1 1352 (19.47%) 265 (4.37%) 1278 (20.52%) 2104 (20.68%) 866 (33.07%) 5865 (18.31%)

No Substitution 2 68 (0.98%) 486 (8.02%) 647 (10.39%) 1778 (17.48%) 669 (25.54%) 3648 (11.39%)
Partial Test + Additional 3 74 (1.07%) 251 (4.14%) 436 (7.00%) 40 (0.39%) 18 (0.69%) 819 (2.56%)
Partial Test Substitution 4 453 (6.52%) 0 (0.00%) 256 (4.11%) 110 (1.08%) 0 (0.00%) 819 (2.56%)

Partial + Additional 5 21 (0.30%) 401 (6.62%) 305 (4.90%) 143 (1.41%) 279 (10.65%) 1149 (3.59%)
Partial Substitution 6 2071 (29.82%) 107 (1.77%) 541 (8.69%) 1345 (13.22%) 13 (0.50%) 4077 (12.73%)
Test + Additional 7 131 (1.89%) 1276 (21.05%) 148 (2.38%) 467 (4.59%) 212 (8.10%) 2234 (6.98%)
Test Substitution 8 25 (0.36%) 0 (0.00%) 362 (5.81%) 333 (3.27%) 11 (0.42%) 731 (2.28%)

Strong + Additional 9 374 (5.39%) 494 (8.15%) 568 (9.12%) 1296 (12.74%) 159 (6.07%) 2891 (9.03%)
Strong Substitution 10 958 (13.80%) 57 (0.94%) 897 (14.40%) 1113 (10.94%) 153 (5.84%) 3178 (9.92%)

Table 5.6: Number of real faults with at least one corresponding “strongly substituting”
mutant for each project.

Project With Strongly Substituting Mutants Total Percentage
Chart 12 22 54.55%

Closure 6 22 27.27%
Lang 23 41 56.10%
Math 28 47 59.57%
Time 5 12 41.67%
All 74 144 51.03%

5.4 RESULTS AND DISCUSSION

Overview of Coupling Between Mutants and Real Faults (RQ1)

Table 5.4 presents an overview of the number and percentage of mutants detected by the test

cases (trigger and non-trigger) for each project from Defects4J. As a baseline, we observe:

Overall, 61.08% of mutants are detected.

This percentage is relatively consistent across projects, with the lowest percentage be-

ing 50.68% in the Closure project. The remaining mutants either are not detected by the

157

test cases (18.31%) or resulted in compilation errors (20.58%).

Table 5.5 categorizes each result according to the scale previously defined in Sec-

tion 5.3. To aid further analysis, we also assign a numeric score to each category based

on the degree of coupling, with higher scores indicating closer coupling. Table 5.6 further

indicates the number of faults with at least one mutant categorized as “strong substitution”.

9.92% of the mutants are strongly coupled to real faults, and a further 9.03% are

strongly coupled with additional tests failing. 51.03% of the faults have at least one

strongly coupled mutant.

The strongly substituting mutants can serve as stand-ins for the real faults, yielding the

same failing test cases and the same test outcomes. Approximately half of the studied faults

have at least one strongly-substituting mutant, with relatively consistent results across all

projects other than Closure—where only 27.27% of faults have at least one strongly sub-

stituting mutant. The overall percentage of mutants belonging to this category falls behind

compilation errors (20.58%), “not detected” (18.31%), “no substitution” (11.39%)—where

only non-trigger tests fail–and “partial substitution” (12.73%)—where only a subset of trig-

ger tests fail, but those that fail offer the same reasons for failure.

Test substitution cases—where trigger tests fail, but for alternative reasons—are rarer

than strong substitutions, but still present. Mutations to these lines still cause test cases to

fail, but they do not replicate the semantic effect of the fault. Commonly, these are cases

where a mutation causes an exception to be thrown when one was not expected.

The distribution of mutants belonging to each category varies somewhat between projects.

The Closure project particularly stands out, as only 0.94% of mutants strongly couple to

the faults. In this project—among the detected mutants—the largest category is test sub-

stitution with additional failing tests. The Closure compiler has complex validity checking

158

0,00 10,00 20,00 30,00 40,00 50,00 60,00 70,00 80,00 90,00 100,00

JTD

SOR

EOA

AMC

OAN

ISD

AORU

AORS

AODU

JTI

ISI

COR

EOC

LVR

LOI

PRVOU_REFINED

AORB

AOIS

AOIU

CRCR

PRVOU_SMART

AOD

ROR

COI

EAM

PRVOL_SMART

PRVOR_REFINED

PRVOR_SMART

COD

ASRS

EMM

CompileError NotDetected NoSubstitution ATF+PartialTestSubstitution PartialTestSubstitution ATF+PartialSubstitution
PartialSubstitution ATF+TestSubstitution TestSubstitution ATF+StrongSubstitution StrongSubstitution

Figure 5.1: Percentage of mutants generated for each operator matching each category,
sorted by the percentage strongly substituting.

code5 for the abstract syntax tree produced during compilation. Many mutations are caught

by this code, which throws an exception when a validity condition fails. This produces a

large number of test failures—often for alternative reasons than those expected by the test

designers.

The percentage of generated mutants belonging to each coupling category are depicted

for each of the 31 mutation operators in Figure 5.1. Using the assigned values, we also note

the median and average “scores”, as well as the standard deviation and number of mutants,

for each operator in Table 5.7. Overall, we observe:

The level of coupling of individual mutants is low—a median of 2.00/10.00. 16 of the

31 mutation operators (45.71%) have a median score of < 2.00.

The average scores are higher, but the average can be influenced by outliers. Therefore, we

5E.g., https://github.com/google/closure-compiler/blob/
ca23c597fc17c95ece2aae07f4e503a34c88c61f/src/com/google/javascript/
jscomp/ValidityCheck.java.

159

https://github.com/google/closure-compiler/blob/ca23c597fc17c95ece2aae07f4e503a34c88c61f/src/com/google/javascript/jscomp/ValidityCheck.java
https://github.com/google/closure-compiler/blob/ca23c597fc17c95ece2aae07f4e503a34c88c61f/src/com/google/javascript/jscomp/ValidityCheck.java
https://github.com/google/closure-compiler/blob/ca23c597fc17c95ece2aae07f4e503a34c88c61f/src/com/google/javascript/jscomp/ValidityCheck.java

Table 5.7: For each mutation operator, the number of mutants, median and average cou-
pling score, and standard deviation in coupling score.

Operator Number of Mutants Median Average Standard Deviation
EMM 2 10.00 10.00 0.00
ASRS 18 10.00 8.83 2.79
ISD 3 7.00 7.67 0.47
COI 329 6.00 5.69 3.36

P RV OUSMART 3706 6.00 5.21 3.44
EOC 17 6.00 4.65 2.95
COD 28 5.00 5.79 3.73
EAM 96 5.00 5.69 3.38
AORS 15 4.00 5.33 2.33
CRCR 596 4.00 4.73 3.46
ROR 1116 4.00 4.65 3.41

P RV OLSMART 372 3.00 4.73 3.94
AOIU 274 3.00 4.42 3.44

P RV ORSMART 720 3.00 4.38 3.72
P RV OUREF INED 18679 3.00 3.97 3.50
P RV ORREF INED 1615 2.00 4.62 3.79

AOD 176 2.00 4.09 3.52
AORB 396 2.00 3.98 3.29
AOIS 1160 2.00 3.81 3.57
LOI 703 2.00 3.55 3.54
COR 252 1.00 3.24 3.23

AORU 15 1.00 2.73 2.65
AODU 13 1.00 2.39 2.68
EOA 8 1.00 1.63 2.18
SOR 4 1.00 1.50 0.50
JT D 2 1.00 1.00 0.00
LV R 16 0.00 3.63 4.01
OAN 11 0.00 1.64 3.02
AMC 15 0.00 1.33 2.65
JT I 669 0.00 0.14 0.51
ISI 976 0.00 0.04 0.48

Overall 32002 2.00 4.01 3.58

focus on the median scores. We will discuss specific operators in more detail in the coming

subsections.

However, we can make some initial observations. We observe the highest variance from

the LV R, PRV OLSMART , PRV ORREF INED, COD, and PRV ORSMART operators.

EMM , JTD, ISD, ISI , and SOR have the lowest variance. The level of variance does

not suggest a particular relationship with the level of coupling. Operators with low variance

can tend towards strong coupling (e.g., EMM) or not being detected at all (e.g., JTD or

SOR). Operators with high variance tend to span the range of outcomes—e.g., COD is

split between compilation errors/lack of substitution and strong substitution/strong with

additional tests. However, operators with high variance should be considered further in

160

future research. Implementation details of such operators could be considered. Certain

types of statements could potentially be avoided or prioritized with the goal of increasing

the percentage of mutants that couple with real faults.

Strongly-Coupled Mutation Operators (RQ1.1)

EMM , ASRS, ISD, COI , PRV OUSMART , and EOC yield mutants with the

highest median level of coupling. The average EMM or ASRS mutant strongly

substitutes for corresponding faults. PRV OUSMART mutants are common and tend to

either strongly couple or not be detected—making this operator potentially useful.

The EMM operator replaces a setter method reference for another compatible setter.

EMM mutants are very rare—both mutations were for fault Math-1066, where setIndex(...)

was changed to setErrorIndex(...) in different occurrence of this line. ISD

mutants—which delete occurences of the super keyword—are also quite rare. It is dif-

ficult to generalize from operators yielding so few examples, so both should be further

examined in future work.

EOC changes a comparison (==) to a reference to .equals(). For example, in Lang

397, replacementList[i] == null is changed to replacementList[i].equals(null).

Mutants from this operator are also relatively rare—with only 17 examples, mostly in Chart

and Lang. While some of these mutations result in strong substitution, the majority result

in partial substitution.

The ASRS operator replaces short-cut assignment operators, e.g., changing += to /=.

All 18 mutants for this operator appear in the Math project. Because the Math project

6https://github.com/rjust/defects4j/blob/master/framework/projects/
Math/patches/106.src.patch

7https://github.com/rjust/defects4j/blob/master/framework/projects/
Lang/patches/39.src.patch

161

https://github.com/rjust/defects4j/blob/master/framework/projects/Math/patches/106.src.patch
https://github.com/rjust/defects4j/blob/master/framework/projects/Math/patches/106.src.patch
https://github.com/rjust/defects4j/blob/master/framework/projects/Lang/patches/39.src.patch
https://github.com/rjust/defects4j/blob/master/framework/projects/Lang/patches/39.src.patch

focuses on mathematical functions, such mutants may also be more likely in this project to

match the actual mistakes made by developers. For example, in Math 1028, multiple ASRS

mutations led to the same result as the real fault.

COI and PRV OUSMART both yield a much larger number of faults, appearing across

all projects. Naturally, the median coupling for both is lower than the three rarer operators

already mentioned, but still generally high. The COI operator inserts conditional opera-

tors. For example, in Math 849, COI changes an instance of true to !true. This causes

a return in the same (incorrect) location as the real fault.

PRV OUSMART replaces object references with other compatible references—variables

or methods—in return expressions. For example, in Math 510, it replaces a reference to

INF with calls to float-returning methods (e.g., this.atan()) from the class-under-

test. Because both operators are widely applicable—but still tend towards a strong rela-

tionship to real faults—they are potentially useful for use in assessing and expanding test

suites.

Compilation Errors and Non-Detection (RQ1.2)

We observe two primary reasons for low median coupling scores—either a large percentage

of mutants result in compilation errors or a large percentage are not detected. We discuss

both situations below.

ISI , JTI , AMC, OAN , and LV R have the lowest median scores. They largely

produce mutants resulting in compilation errors.

8https://github.com/rjust/defects4j/blob/master/framework/projects/
Math/patches/102.src.patch

9https://github.com/rjust/defects4j/blob/master/framework/projects/
Math/patches/84.src.patch

10https://github.com/rjust/defects4j/blob/master/framework/projects/
Math/patches/5.src.patch

162

https://github.com/rjust/defects4j/blob/master/framework/projects/Math/patches/102.src.patch
https://github.com/rjust/defects4j/blob/master/framework/projects/Math/patches/102.src.patch
https://github.com/rjust/defects4j/blob/master/framework/projects/Math/patches/84.src.patch
https://github.com/rjust/defects4j/blob/master/framework/projects/Math/patches/84.src.patch
https://github.com/rjust/defects4j/blob/master/framework/projects/Math/patches/5.src.patch
https://github.com/rjust/defects4j/blob/master/framework/projects/Math/patches/5.src.patch

All five of these operators have a median score of 0.00, indicating that the majority of

mutants result in compilation errors. This is confirmed in Figure 5.1. These operators make

changes that can easily “break” code without proper precautions. For example, ISI inserts

the super keyword, JTI inserts the this keyword, and AMC changes access modifiers

for methods and fields. All three can yield useful mutants, but they also assume conditions

of the code that may not be true—e.g., in the case of ISI , not all classes have parents.

Mutations resulting in compilation errors—for these and other operators—are not use-

ful for evaluating the strength of a test suite. Although some time is saved by not needing

to execute the test suite against these mutants, time and effort are still wasted on attempting

compilation and analyzing the resulting failure. Cost savings could be achieved from either

avoiding the use of such mutation operators altogether or improving their implementation

such that compilation errors are avoided.

The developers of mutation frameworks should explore measures that would prevent

the generation of non-compiling mutants. For example, mutations of certain types of code

structures could be avoided. At the very least, mutation testing frameworks should check

whether assumptions are met. In the above examples, the ISI operator implementation

should check that a class has a parent before inserting the super keyword or the imple-

mentation of the JTI operator should check whether a call is to a static method before

inserting this.

JTD, SOR, AODU , PRV ORSMART , and AORU have the the largest percentage of

mutants that are not detected. PRV ORSMART yields subtle mutants with, often,

strong coupling to real faults. The other operators could be selectively useful, but may

yield many equivalent mutants or cause non-trigger tests to fail.

Mutants that do not compile detract from the effectiveness of mutation testing. Those

that are not detected can either detract—if they are equivalent to the original code—or can

163

be very useful—if they are subtle and require sensitive test cases to detect. Therefore, it is

also worthwhile to examine these operators.

The JTD operator deletes uses of the keyword this. There were only two mutants

of this type in our set, and both were equivalent mutants. There are many situations where

this operator could yield equivalent mutants. Therefore, we would suggest only employing

this operator in cases where behavior might be affected significantly when the keyword is

removed.

The AODU operator—which deletes unary arithmetic operators, e.g., changing −1 to

1—and AORU operator—which replaces such operators—may also be selectively useful

when unary operators are employed. However, both also lack strong connections with real

faults. When such mutants are detected, tests outside of the trigger tests tend to fail.

SOR replaces shift operators (e.g., >>) with other operators. This operator produced

four mutants for Math 4011, where two were not detected and two caused non-trigger tests

to fail. Shift expressions are typically only used in specialized code, but it seems this

operator could be useful for assessing test suite adequacy when such operators are used.

PRV ORSMART is similar to the previously-discussed PRV OUSMART . It replaces

object references with other compatible references on the right-hand side of assignment

expressions. When mutants are detected, they often strongly substitute for real faults. Some

of the not-detected mutants are equivalent. Many, however, could be detected with the

addition of further test cases. Therefore, this operator could be useful in improving test

suite quality.

Detection By Non-Trigger Tests (RQ1.3)

One further situation that we would like to examine are the mutation operators that tend to

yield mutants only detected by non-trigger tests. This is the “no substitution” category in

11https://github.com/rjust/defects4j/blob/master/framework/projects/
Math/patches/40.src.patch

164

https://github.com/rjust/defects4j/blob/master/framework/projects/Math/patches/40.src.patch
https://github.com/rjust/defects4j/blob/master/framework/projects/Math/patches/40.src.patch

our scale.

SOR, PRV ORREF INED, AORB, AOD, and EOA have the the largest percentage

of mutants that are only detected by non-trigger tests. These mutants are detected, but

lack a significant relationship with the corresponding real faults.

PRV ORREF INED is an extended version of PRV ORSMART , discussed previously.

The difference between these operators is that PRV ORREF INED is able to also reference

literals found in the method. The use of literals seems to lead to a large number of cases

where tests outside of the trigger tests fail, including both “no substitution” and “additional

tests fail” outcomes.

AORB—which replaces arithmetic operators—and AOD—which replaces an entire

arithmetic expression with one of its member variables—yield mutants that span the en-

tire spectrum of possibilities. These operators lead to many “no substitution” outcomes,

as well as many cases where mutants are not detected or strongly substitute. Based on

these observations, as well as the earlier observations of similar operators often producing

mutants that are not detected, it seems that mutation operators related to arithmetic expres-

sions lack a predictable semantic relationship with real faults. Arithmetic expressions are

common when programming. Developers do make mistakes involving such expressions.

However, such expressions also are not predictive of the existence of a fault.

The EOA operator replaces an assignment of a object reference with a clone of that

object, in situations where the clone() operation is defined. Such mutants are relatively

rare, but largely fall into the “not detected” and “no substitution” categories. This operator

may be of selective use in cases where clone() is implemented.

165

Threshold

N
um

. O
pe

ra
to

rs

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10

Figure 5.2: Number of operators remaining if the median level of coupling is used as a
threshold for determining the subset of operators employed.

Potential Cost Savings Through Filtering Operators (RQ2)

Mutation testing is a notoriously expensive practice, as test cases must be executed against

each mutant [29]. For mutation testing to be a viable technique in industrial development,

that cost must be reduced. Past research has examined methods of filtering the set of

mutants or mutation operators employed (e.g., [196, 197]).

Similarly, the typical degree of coupling of an operator to real faults could be used to

select a subset of mutation operators for use in mutation testing—focusing on operators

that tend to have a close relationship to real faults. If a threshold is carefully selected, this

could lead to a small subset of mutants that are—we hypothesize—useful for assessing the

strength of existing test cases and for targeting in the design of additional test cases.

There are many possible methods of using the assessed degrees of coupling for making

predictions of a subset of operators that could be useful in assessing the test suites of

new projects. We explored one such method—using the median “score” of an operator to

determine its inclusion in the subset employed during mutation testing. In this scenario,

we would select a score threshold and compare the median score for an operator to this

threshold. If it falls above this threshold, we would include it in the subset employed. If

not, the operator would be filtered out.

Figure 5.2 indicates the number of mutation operators that would fall in this subset

for all thresholds (0–10). Figure 5.3, then, indicates the number of mutants in the set

166

Threshold

N
um

. M
ut

an
ts

0

10000

20000

30000

40000

0 1 2 3 4 5 6 7 8 9 10

Figure 5.3: Number of mutants remaining if the median level of coupling is used as a
threshold for determining the subset of operators employed.

0

25

50

75

100

0 2 4 6 8 10
Compile Error, Not Detected No Substitution Partial Test, Partial Test + ATF Partial, Partial + ATF

Test, Test + ATF Strong, Strong + ATF

Figure 5.4: Percentage of mutants in the remaining subset (if median level of coupling is
used as a threshold) belonging to each coupling category.

considered in our experiment that would be included in that subset. Finally, Figure 5.4

indicates the distribution of mutants in this subset matching the different levels of coupling.

Figure 5.2 shows a steady drop in the number of operators as the score threshold grows

higher. However, there are massive reductions in the number of mutants in the subset

(Figure 5.3) when the threshold moves from 3–4, due to the loss of the PRV OUREF INED

operator, and from 6–7, due to the loss of the PRV OUSMART operator.

There are multiple thresholds that could make sense. Ultimately, a developer should

utilize a subset with a reasonable variety of operators to ensure that tests are sensitive to

different types of faults. In addition, that subset should still contain a reasonably high

number of mutants—while still remaining cost-effective—to ensure that tests are robust

across a reasonable span of the codebase. If a threshold is too low, the set of mutants will

167

remain unreasonably expensive to assess. If it is too high, the set of mutants will be too

small and lack diversity—reducing the power of mutation testing to assess the sensitivity

of a test suite across the codebase.

Based on Figures 5.2–5.3, a threshold of 4–6 seems most reasonable. In the scale

defined previously, we would expect the “average” mutant in this subset to range from

“partial test substitution” to “partial substitution”. These threshold yield a reasonably-sized

set of mutants compared to lower thresholds, while still retaining a variety of operators. As

shown in Figure 5.4, the distributions of coupling categories for the mutants in the subsets

considered in our experiment are relatively stable in this range, with approximately 25%

being strongly coupled and approximately 75% being detected. Higher thresholds yield

an increasing percentage of strongly coupled mutants, but the total number of mutants in

the subset becomes so small that the subset would lose its utility to generally assess the

sensitivity of test cases to changes to the code.

Using median level of coupling to filter operators could offer cost reductions while

retaining the power of mutation testing to assess test suite sensitivity. In our set of

mutants, a ≥ 4.0 threshold yields an 81.48% reduction in the number of mutants while

retaining a diverse subset of operators and mutants with strong coupling.

5.5 THREATS TO VALIDITY

External Validity: Our study has focused on five open-source Java projects—a relatively

small number—from a single fault database, Defects4J. Therefore, we cannot claim that our

results will generalize to all types of faults or all systems in all programming languages.

Nevertheless, we believe that the projects studied are representative of, at minimum, other

small to medium-sized Java systems. The projects are popular case examples, that have

been used in many other software testing studies.

168

We also believe that Defects4J offers enough fault examples that our results are gen-

eralizable to other, sufficiently similar, projects. As Defects4J has been applied in many

other research studies, the use of this dataset allows comparisons of our results with related

research, and allows others to more easily replicate or extend our experiments.

Internal Validity: To control experiment cost, we have used 31 mutation operators from

a single mutation testing framework. Other frameworks may offer different mutation op-

erators, which could result in different conclusions. However, muJava++ was the only

framework that met all of our experimental constraints. muJava++ offers a large num-

ber and variety of operators—substantially more than Major, and substantially overlapping

with PIT, the other commonly-used Java mutation frameworks. muJava++ also offers mu-

tation operators not available in PIT. We believe that the operators we have employed are

sufficiently varied to lead to meaningful conclusions.

We use only the developer-written test suites to examine the semantic coupling between

mutants and real faults. These test cases do not form a complete specification of the be-

havior of code, meaning that strong coupling with respect to the existing developer-written

tests may not hold with the addition of more test cases. However, the developer-written

tests reflect that situations that the developers felt were most important to consider. In

most cases, for the studied case examples, the test suites are extensive. Therefore, we feel

that the developer-written test cases are appropriate for use for determining the coupling

between mutants and faults.

5.6 RELATED WORK

Mutation testing relies on the core premise that mutations can serve as stand-ins for real

faults for analyses related to fault detection. Researchers have examined this premise for

years, focusing on two separate—but highly related—questions. First, what is the nature

of the relationship between mutants and real faults? Second, regardless of that nature, asks

169

whether mutants be used in the place of real faults. In other words, is there a correlation

between mutant and fault detection?

Below, we discuss a subset of related work on these two questions. Our study focuses

on the first question, assessing the degree of coupling between mutation operators and real

faults. Broadly, we differ from the previous work in our methodology for examining this

relationship. Our focus is on semantic similarity, rather than syntactic. In addition, we

propose the use of a scale of degrees of coupling, rather than a simple binary assessment.

We also perform a large-scale experiment, making use of many real faults for a variety

of complex Java projects—each containing many different classes. We examine a larger

number of mutation operators than related work. Collectively, these factors enable a thor-

ough analysis of how particular mutation operators relate to real faults. We do not examine

whether there is a correlation between mutant and fault detection. However, our research is

complementary in that the degree of coupling between a mutation operator and real faults

could impact the correlation between mutant and fault detection.

DeMillo at al. were the first to propose the coupling hypothesis [30], showing that

tests that detect one-line mutants also can detect a more complex multi-line mutant. Their

demonstration was simple, but provided evidence for the validity of mutation testing. An-

other early study, by Duran et al., examined a set of 24 mutants and 12 real faults for a

safety-critical C program [198]. They found that mutants replicated all errors—due to ei-

ther incorrect internal state or output—produced by real faults for this program, and that

even simple mutations could create complex erroneous behavior. They conclude that mu-

tations can serve as stand-ins for real faults. Their assessment is simple, and does not

examine the role of mutation operators and their coupling with particular faults.

Gopinath et al. [31] studied the syntactic similarity of mutation operators and real faults

in C, Java, Python, and Haskell. They found that the differences between fixed and buggy

program versions generally involve three to four changes, and those changes are usually

not equivalent to edits made by traditional mutation operators. Their findings somewhat

170

dispute the “competent programmer hypothesis”, as they observe that the syntactic differ-

ence between buggy and fixed programs is often significant. They also find that different

languages have different distributions of code patterns and that mutation operators optimal

in one language may not be optimal for others. We differ in our focus on the semantic rela-

tionship rather than syntactic. Although there are large syntactic differences, the semantic

differences are more subtle and varied in their magnitude.

Chekam et al. proposed the use of machine learning to identify the characteristics that

make mutants valuable in revealing real faults, with the goal of reducing the number of

mutants used during mutation testing [199]. A model is trained using a supervised learning

algorithm that predicts which mutants are more fault-revealing, and those mutants are re-

tained. They trained their model using data from three sets of real faults—Defects4J (Java),

Codeflaws (C), and CoREBench (C)—and mutants generated for seven mutation operators.

They do not examine the relationship between mutants and real faults directly in their re-

search. However, their model—or other machine learning models—could potentially be

used as an alternative way to perform such an assessment.

Jimenez et al. examine the “naturalness” of mutants, the degree to which mutants match

the implicit coding norms of a project, with the hypothesis that mutants that are (a) natural,

and (b), have a large semantic difference with the original program will be more valuable

in assessing the ability of a test suite to detect faults [200]. They examined the impact

of naturalness on which mutants were detected by tests that also detect real faults. Their

results were negative—they found that naturalness was independent of fault detection and

played no significant role in the coupling between mutations and real faults.

Many researchers have examined whether tests that detect mutants tend to also detect

real faults. First, Andrews et al. examine whether mutants can be used instead of real faults

in testing experiments [26, 201], focusing on a set of eight C programs with hand-seeded

faults and an additional program with real faults. They focus on the question of whether

the percentage of detected mutants—generated using nine operators—is predictive of the

171

ratio of real faults detected. Their results suggest that, when using appropriate mutation

operators for the program and removing equivalent mutants, mutant detection predicts for

fault detection. They also find that real faults were easier to detect than the hand-seeded

faults. Their focus is on this correlation, and they do not examine the relationship between

mutation operators and faults, or provide advice for selecting mutation operators.

Just et al. [24] found a statistically significant correlation between mutant and fault de-

tection using both developer-written and generated test cases. They also use Defects4J as

their set of real faults, and generate mutants for five mutation operators. They find that

mutation detection offers a stronger correlation to fault detection than code coverage of

test cases. Relevant to our research, they do examine the relationship between mutants

and real faults. However, their definition of coupling is simpler than ours—if a test fails

when executed on a mutant and a real fault, the mutant and fault are coupled. In addition,

they generate mutants for the full code class affected by a fault, while we only generate

mutants for the lines of code affected by a fault, and they only use a small number of mu-

tation operators. They find that 73% of real faults are coupled to at least one mutant, but

the number of mutants coupled to each fault is small when code coverage is controlled.

Moreover, conditional operator replacement, relational operator replacement, and state-

ment deletion mutants are more often coupled to real faults than other operators. They

suggested strengthening certain mutant operators, as well as adding mutation operators.

Papadakis et al. performed a follow-up study to the one by Just et al., with an expanded

evaluation including both Java and C faults and an alternative methodology [187]. They

find that, when test suite size is controlled, the correlation between mutant and fault detec-

tion is weak. They examine the coupling between mutants and real faults using a similarity

measurement based on test failures and code coverage. Mutants that affect the same state-

ments as a real fault and that are detected by tests that detect the real fault are considered

more similar. They find that less than 1% of mutants represent the behavior of real faults,

reducing the potential correlation. In contrast to our study, they do not consider the reasons

172

that tests fail and consider tests independent of each other, and they also do not examine

the mutation operators.

Kim et al. further this line of research by investigating an additional factor, which code

has been mutated [202]. They explore the influence of code location at the class, method,

and statement levels when computing the correlation between mutant and fault detection.

They found that the granularity level had a significant influence on correlation, and that

test suite size influenced the correlation differently at each granularity level. In particular,

filtering mutants based on method and statement levels increased the likelihood of fault

detection. They suggest locating error-prone code and prioritizing mutants that affect that

code. They also do not examine the coupling between mutation operators and real faults.

Kintis et al. contrast the fault-revealing power of four Java mutation tools (i.e., if devel-

opers use mutants from a tool to select test cases, those test cases would also be sufficient

to detect faults) [203]. They consider a fault revealed when at least one generated mutant is

killed only by the triggering tests (equivalent to either “test” or “strong substitution” in our

coupling scale). In their experiments, a research version of the PIT mutation tool was the

most effective, revealing 97% of real faults. However, no single tool subsumes all others.

Their goal was to contrast the fault-revealing capabilities of mutation tools, so they do not

perform an analysis of the relation of mutation operators to real faults.

Recently, researchers have begun to investigate techniques that can synthesize new

mutation operators, generally based on machine learning and natural language process-

ing [204–209]. The hypothesis behind much of this work is that the learned mutation

operators will be more realistic than traditional mutation operators, increasing their util-

ity. Generally, these techniques are based on the syntactic similarity of mutations to real

faults, favoring mutants that replicate patterns in the textual differences between buggy and

fixed programs. However, Patra et al. extend a syntactic model with additional semantic

metadata that adapts mutants to a local code context [207].

A common assumption is that mutants that are syntactically similar to real faults will

173

also be semantically similarity. Ojdanic et al. investigate whether this hypothesis is true [209].

They use the same notion of semantic similarity used previously by Papadakis et al. [187].

Their experiments suggest that syntactic similarity of mutants to real faults has no predic-

tive relationship to semantic similarity.

5.7 CONCLUSIONS

We hypothesize that improving the effectiveness—in terms of both cost and quality—of

mutation testing lies in better understanding the semantic relationship between mutants and

real faults. In particular, we examine the degree of coupling that specific mutation operators

have with real faults, based on 144 case examples from the Defects4J fault database and

31 mutation operators offered by the muJava++ framework. We have defined a scale rating

the strength of the coupling between a mutant and a corresponding fault, based on number

of failing tests and reasons for failure.

Ultimately, we observed that 9.92% of the mutants are strongly coupled to real faults,

and 51.03% of the faults have at least one strongly coupled mutant. EMM , ASRS, ISD,

COI , PRV OUSMART , and EOC yield mutants with the highest median level of coupling.

ISI , JTI , AMC, OAN , and LV R have the lowest median scores. They largely pro-

duce mutants resulting in compilation errors. JTD, SOR, AODU , PRV ORSMART , and

AORU have the the largest percentage of mutants that are not detected. SOR, PRV ORREF INED,

AORB, AOD, and EOA have the the largest percentage of mutants that are only detected

by non-trigger tests. These mutants are detected, but lack a significant relationship with

the corresponding real faults. We also found that using the median coupling to filter opera-

tors could offer cost reductions while retaining the power of mutation testing to assess test

suite sensitivity. In our set of mutants, a ≥ 4.0 threshold yields an 81.48% reduction in the

number of mutants while retaining a diverse subset of operators and mutants with strong

coupling.

174

Understanding the semantic relationship between mutation operators and faults could

enable improvements in how mutation testing is applied, improved implementation of spe-

cific mutation operators, and inspiration for new mutation operators. We plan to explore

all three avenues further in future work by (1) further analyzing the operators identified

above in experiments on additional fault examples, (2) expanding the range of mutation

operators considered and contrasting implementations of operators from different frame-

works, (3) empirically evaluating cost savings and impact on mutation score from different

filtering methods, and (4), exploring how semantic coupling could be used as the basis for

the design and automated generation (via machine learning) of new mutation operators.

175

CHAPTER 6

CONCLUSION

In this dissertation, we addressed challenges that hinder the attainment of the long-term

goal of reducing the cost of software testing by doing empirical studies relating to impor-

tant topics in the software testing field, with a particular focus on automation. We focused

on (1) mapping the connections between research topics and understanding the evolution

of research topics in the field of software testing through the use of network analysis tech-

niques, (2) assessment of the criteria used to guide automated test input generation and

exploration of the factors that influence the ability of automated input generation to trigger

failures, and (3) examination of the semantic coupling between synthetic and real-world

faults to identify the types of synthetic faults best suited for use in assessing and improving

test case quality.

As discussed in Chapter 3, we applied network analysis techniques to quantitatively

map the software testing research field. We offered an evidence-based method to char-

acterize research topics in software testing and, more importantly, to identify how these

topics are connected to explore how to exploit existing topic synergies best or identify

new connections to explore. The findings of this project help motivate further research on

the automation of the testing process. Our analysis mapped keywords into dense clusters,

from which emerge high-level research topics—themes that characterize each cluster—

and made clear the connections between keywords and topics within and across clusters.

We also characterized the periods in which low-level keywords and high-level topics have

emerged—identifying emerging research areas, as well as those where research interest has

decreased. This snapshot of important disciplinary trends can provide valuable insight into

176

the state of the field, suggest topics to explore, and identify connections (or lack thereof)

between keywords and topics that may reveal new insights.

In this project, we made the following observations:

• Both the most common author-assigned keywords and the keywords that attract the

most citations, on average, tend to relate to automation, test creation and assessment

guidance, assessment of system quality, and cyber-physical systems.

• These keywords can be clustered into 16 topics: automated test generation, creation

guidance, evolution and maintenance, machine learning and predictive modeling,

model-based testing, GUI testing, processes and risk, random testing, reliability, re-

quirements, system testing, test automation, test case types, test oracles, verifica-

tion and program analysis, and web application testing. Below these lie 18 more

subtopics.

• Creation guidance, automated test generation, evolution and maintenance, and test

oracles are particularly multidisciplinary topics with dense connections to many

other topics. Twenty keywords connect topics, reflecting multidisciplinary concepts,

common test activities, and test creation information.

• Emerging research particularly relates to web and mobile applications, ML and AI—

including autonomous vehicles—energy consumption, automated program repair, or

fuzzing and search-based test generation. Web applications require targeted testing

approaches and practices, leading to emerging connections to many topics. Test

oracles are also a rapidly-evolving topic with many emerging connections. ML has

emerging potential to support automation.

• Research related to random and requirements-based testing may be in decline.

These insights—and the rich underlying networks of keywords—can inspire both current

and future researchers in the field of software testing.

177

Furthermore, as discussed in Chapter 4, we examined whether common fitness func-

tions can produce effective test input for triggering and detecting real-world faults. We

shed light on the factors contributing to automated input generation’s success or failure.

In this study, we used EvoSuite and eight of its white-box fitness functions (as well as the

default multi-objective configuration and a combination of branch, exception, and method

coverage) to generate test suites for the fifteen systems, and 593 of the faults, in the De-

fects4J database. In each case, we tried to understand when and why generated test suites

were able to detect—or not detect—faults. Such understanding could lead to a deeper un-

derstanding of current test generation techniques’ strengths and limitations and inspire new

approaches. Thus, in each case, we recorded the proportion of suites that detect the fault

and a number of factors—related to suite size, obligation satisfaction, and attained cover-

age. We recorded a set of traditional source code metrics—sixty metrics related to cloning,

complexity, cohesion, coupling, documentation, inheritance, and size metrics—for each

class associated with a fault in the Defects4J dataset. By analyzing these generation factors

and metrics, we can begin to understand not only the real-world applicability of the fitness

options in EvoSuite, but—through the use of machine learning algorithms—the factors

correlating with a high or low likelihood of fault detection.

We examined the fitness function’s role in determining search-based test generators’

ability to produce suites that detect complex, real faults. From the eight fitness functions

and 593 faults studied, we can conclude:

• Collectively, 51.26% of the examined faults were detected by generated test suites.

• Branch coverage is the most effective criterion—detecting more faults than any other

single criterion and demonstrating a higher likelihood of detection for each fault than

other criteria (on average, a 22.60-25.24% likelihood of detection, depending on the

search budget).

• Regardless of overall performance, most criteria have situational applicability, where

their suites detect faults no other criteria can detect. Exception, output, and weak

178

mutation coverage—in particular—seem to be effective for particular types of faults,

even if their average efficacy is low.

• While EvoSuite’s default combination performs well, the difficulty of simultaneously

balancing eight functions prevents it from outperforming all individual criteria.

• However, a combination of branch, exception, and method coverage has an average

24.03-27.84% likelihood of fault detection—outperforming each of the individual

criteria. It is more effective than the default eight-way combination because it adds

lightweight situationally-applicable criteria to a strong, coverage-focused criterion.

• Factors that strongly indicate a high level of efficacy include a high line or branch

coverage over either version of the code and high coverage of their own test obliga-

tions.

• Coverage does not ensure success, but it is a prerequisite. In situations where achieved

coverage is low, the fault does not tend to be found.

• The most important factor differentiating cases where a fault is occasionally detected

and cases, where a fault is consistently detected, is the satisfaction of the chosen crite-

rion’s test obligations. Therefore, the best suites are ones that both explore the code

and fulfill their own goals, which may be—in cases such as exception coverage—

orthogonal to code coverage.

• Test generation methods struggle with classes that have a large number of private

methods or attributes, and thrive when a large portion of the class structure is acces-

sible.

• Generated suites are more effective at detecting faults in well-documented classes.

While the presence of documentation should not directly assist automated test gen-

eration, its presence may hint at the maturity, testability, and understandability of the

class.

• Faults in classes with a large number of dependencies are more difficult to detect

than those in self-contained classes, as the generation technique must initialize and

179

manipulate multiple complex objects during generation.

Theories learned from the collected metrics suggest that successful criteria thoroughly

explore and exploit the code being tested. The strongest fitness functions—branch, direct

branch, and line coverage—all do so. We suggest the use of such criteria as primary fitness

functions. However, our findings also indicate that coverage does not guarantee success.

The fitness function must still execute the code in a manner that triggers the fault and

ensures that it manifests in failure. Criteria such as exception, output, and weak mutation

coverage are situationally useful and should be applied as secondary testing goals to boost

the fault-detection capabilities of the primary criterion—either as part of a multi-objective

approach or through the generation of a separate test suite.

Our findings represent a step towards understanding the use, applicability, and combi-

nation of common fitness functions. Our observations provide evidence for the anecdotal

findings of other researchers [19–23] and motivate improvements in how test generation

techniques understand the behavior of private methods or manipulate environmental de-

pendencies. More research is needed to better understand the factors that contribute to

fault detection, and the joint relationship between the fitness function, generation algo-

rithm, and CUT in determining the efficacy of test suites. In future work, we plan to further

explore these topics.

Finally, as discussed in Chapter 5, we investigated the degree of coupling between

mutants and real faults by executing developer-written test suites against both mutated

and faulty versions of classes from multiple open-source Java projects, based on 144 case

examples from the Defects4J fault database [32]. In particular, we focused on the trigger

tests—the tests that detect the real fault. A mutant that is most strongly coupled to a

real fault will be detected only by the trigger tests, and those tests will fail for the same

reasons—i.e., the same exception or error. Mutants that are more weakly coupled may

cause additional—or fewer—tests to fail or cause tests to fail for different reasons. We

defined a scale rating as the strength of the coupling between a mutant and a corresponding

180

real fault based on the number of failing tests and reasons for failure. This scale, in turn,

allows us to contrast 31 mutation operators—applied using the muJava++ framework—

based on their tendency to produce mutants with a stronger semantic relationship to real

faults.

Ultimately, we observed that 9.92% of the mutants are strongly coupled to real faults,

and 51.03% of the faults have at least one strongly coupled mutant. EMM , ASRS, ISD,

COI , PRV OUSMART , and EOC yield mutants with the highest median level of coupling.

ISI , JTI , AMC, OAN , and LV R have the lowest median scores. They largely pro-

duce mutants resulting in compilation errors. JTD, SOR, AODU , PRV ORSMART , and

AORU have the largest percentage of mutants that are not detected. SOR, PRV ORREF INED,

AORB, AOD, and EOA have the largest percentage of mutants that are only detected by

non-trigger tests. These mutants are detected but lack a significant relationship with the

corresponding real faults. We also found that using the median coupling to filter operators

could offer cost reductions while retaining the power of mutation testing to assess test suite

sensitivity. In our set of mutants, a ≥ 4.0 threshold yields an 81.48% reduction in the

number of mutants while retaining a diverse subset of operators and mutants with strong

coupling.

Understanding the semantic relationship between mutation operators and faults could

enable improvements in how mutation testing is applied, improved implementation of spe-

cific mutation operators, and inspiration for new mutation operators. We plan to explore

all three avenues further in future work by (1) further analyzing the operators identified

above in experiments on additional fault examples, (2) expanding the range of mutation

operators considered and contrasting implementations of operators from different frame-

works, (3) empirically evaluating cost savings and impact on mutation score from different

filtering methods, and (4), exploring how semantic coupling could be used as the basis for

the design and automated generation (via machine learning) of new mutation operators.

181

BIBLIOGRAPHY

[1] M. Pezze and M. Young. Software Test and Analysis: Process, Principles, and
Techniques. John Wiley and Sons, October 2006.

[2] E.T. Barr, M. Harman, P. McMinn, M. Shahbaz, and Shin Yoo. The oracle prob-
lem in software testing: A survey. IEEE Transactions on Software Engineering,
41(5):507–525, May 2015.

[3] Alessandro Orso and Gregg Rothermel. Software testing: A research travelogue
(2000–2014). In Proceedings of the on Future of Software Engineering, FOSE 2014,
pages 117–132, New York, NY, USA, 2014. ACM.

[4] Mary Jean Harrold. Testing: A roadmap. In Proceedings of the Conference on The
Future of Software Engineering, ICSE ’00, page 61–72, New York, NY, USA, 2000.
Association for Computing Machinery.

[5] A. Bertolino. Software testing research: Achievements, challenges, dreams. In
Future of Software Engineering (FOSE ’07), pages 85–103, 2007.

[6] B. Boehm. Software Engineering Economics. Prentice-Hall, Englewood Cliffs, NJ,
1981.

[7] Gregory Gay, Tim Menzies, Omid Jalali, Gregory Mundy, Beau Gilkerson, Martin
Feather, and James Kiper. Finding robust solutions in requirements models. Auto-
mated Software Engineering, 17(1):87–116, 2010.

[8] Clark S. Turner Nancy G. Leveson. An investigation of the therac-25 accidents.
IEEE Computer, 1993.

[9] A Anand and A Uddin. Importance of software testing in the process of software
development. International Journal for Scientfic Research and Development, 12(6),
2019.

[10] Matthew Heusser and Govind Kulkarni. How to reduce the cost of software testing.
CRC Press, 2018.

182

[11] Saswat Anand, Edmund K Burke, Tsong Yueh Chen, John Clark, Myra B Cohen,
Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, and Phil McMinn. An
orchestrated survey of methodologies for automated software test case generation.
Journal of Systems and Software, 86(8):1978–2001, 2013.

[12] Elfriede Dustin, Thom Garrett, and Bernie Gauf. Implementing automated software
testing: How to save time and lower costs while raising quality. Pearson Education,
2009.

[13] Dudekula Mohammad Rafi, Katam Reddy Kiran Moses, Kai Petersen, and Mika V
Mäntylä. Benefits and limitations of automated software testing: Systematic litera-
ture review and practitioner survey. In 2012 7th International Workshop on Automa-
tion of Software Test (AST), pages 36–42. IEEE, 2012.

[14] M. Harman and B.F. Jones. Search-based software engineering. Journal of Infor-
mation and Software Technology, 43:833–839, December 2001.

[15] Phil McMinn. Search-based software test data generation: A survey. Software
Testing, Verification and Reliability, 14:105–156, 2004.

[16] Edward Kit and Susannah Finzi. Software Testing in the Real World: Improving the
Process. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 1995.

[17] William Perry. Effective Methods for Software Testing, Third Edition. John Wiley
& Sons, Inc., New York, NY, USA, 2006.

[18] Shaukat Ali, Lionel C Briand, Hadi Hemmati, and Rajwinder K Panesar-Walawege.
A systematic review of the application and empirical investigation of search-based
test case generation. Software Engineering, IEEE Transactions on, 36(6):742–762,
2010.

[19] A. Arcuri, G. Fraser, and R. Just. Private api access and functional mocking in
automated unit test generation. In 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST), volume 00, pages 126–137, March 2017.

[20] Gregory Gay. The fitness function for the job: Search-based generation of test suites
that detect real faults. In Proceedings of the International Conference on Software
Testing, ICST 2017. IEEE, 2017.

[21] Gregory Gay. Challenges in using search-based test generation to identify real faults
in mockito. In Search Based Software Engineering: 8th International Symposium,

183

SSBSE 2016, Raleigh, NC, USA, October 8-10, 2016, Proceedings, pages 231–237,
Cham, 2016. Springer International Publishing.

[22] Sina Shamshiri, Rene Just, Jose Miguel Rojas, Gordon Fraser, Phil McMinn, and
Andrea Arcuri. Do automatically generated unit tests find real faults? an empirical
study of effectiveness and challenges. In Proceedings of the 30th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), ASE 2015, New
York, NY, USA, 2015. ACM.

[23] Andrea Arcuri, Gordon Fraser, and Juan Pablo Galeotti. Automated unit test gen-
eration for classes with environment dependencies. In Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineering, ASE ’14,
pages 79–90, New York, NY, USA, 2014. ACM.

[24] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, and
Gordon Fraser. Are mutants a valid substitute for real faults in software testing? In
FSE 2014, Proceedings of the ACM SIGSOFT 22nd Symposium on the Foundations
of Software Engineering, pages 654–665, Hong Kong, November 18–20, 2014.

[25] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge Univer-
sity Press, New York, NY, USA, 2 edition, 2016.

[26] J.H. Andrews, L.C. Briand, Y. Labiche, and A.S. Namin. Using mutation analysis for
assessing and comparing testing coverage criteria. IEEE Transactions on Software
Engineering, 32(8):608 –624, aug. 2006.

[27] Rene Just, Franz Schweiggert, and Gregory M. Kapfhammer. Major: An efficient
and extensible tool for mutation analysis in a java compiler. In Proceedings of the
2011 26th IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE ’11, pages 612–615, Washington, DC, USA, 2011. IEEE Computer Soci-
ety.

[28] Jeff Offutt, Yu-Seung Ma, and Yong-Rae Kwon. The class-level mutants of mujava.
In Proceedings of the 2006 International Workshop on Automation of Software Test,
pages 78–84, 2006.

[29] Goran Petrović and Marko Ivanković. State of mutation testing at google. In Pro-
ceedings of the 40th International Conference on Software Engineering: Software
Engineering in Practice, ICSE-SEIP ’18, page 163–171, New York, NY, USA, 2018.
Association for Computing Machinery.

184

[30] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help
for the practicing programmer. Computer, 11(4):34–41, April 1978.

[31] R. Gopinath, C. Jensen, and A. Groce. Mutations: How close are they to real faults?
In 25th International Symposium on Software Reliability Engineering, pages 189–
200, Nov 2014.

[32] René Just, Darioush Jalali, and Michael D. Ernst. Defects4J: A database of existing
faults to enable controlled testing studies for Java programs. In Proceedings of
the 2014 International Symposium on Software Testing and Analysis, ISSTA 2014,
pages 437–440, New York, NY, USA, 2014. ACM.

[33] Y. Jia and M. Harman. An analysis and survey of the development of mutation
testing. IEEE Transactions on Software Engineering, 37(5):649–678, Sept 2011.

[34] Alireza Salahirad, Gregory Gay, and Ehsan Mohammadi. Mapping the structure
and evolution of software testing research over the past three decades. Journal of
Systems and Software, 195:111518, 2023.

[35] Hussein Almulla, Alireza Salahirad, and Gregory Gay. Using search-based test gen-
eration to discover real faults in guava. In International Symposium on Search Based
Software Engineering, pages 153–160. Springer, 2017.

[36] Alireza Salahirad, Hussein Almulla, and Gregory Gay. Choosing the fitness function
for the job: Automated generation of test suites that detect real faults. Software
Testing, Verification and Reliability, 29(4-5):e1701, 2019.

[37] Alireza Salahirad, Hussein Almulla, and Gregory Gay. Choosing the fitness function
for the job: Automated generation of test suites that detect real faults. Software
Testing, Verification and Reliability, 30(7-8):e1758, 2020.

[38] Ian Sommerville. Software Engineering. Addison-Wesley Publishing Company,
USA, 9th edition, 2010.

[39] Mordechai Ben-Ari. The bug that destroyed a rocket. ACM SIGCSE Bulletin,
33(2):58–59, 2001.

[40] Leandro Sales Pinto, Saurabh Sinha, and Alessandro Orso. Understanding myths
and realities of test-suite evolution. In Proceedings of the ACM SIGSOFT 20th
international symposium on the foundations of software engineering, pages 1–11,
2012.

185

[41] James A Whittaker. What is software testing? and why is it so hard? IEEE software,
17(1):70–79, 2000.

[42] James A Whittaker. Exploratory software testing: tips, tricks, tours, and techniques
to guide test design. Pearson Education, 2009.

[43] Itir Karac and Burak Turhan. What do we (really) know about test-driven develop-
ment? IEEE Software, 35(4):81–85, 2018.

[44] A. Turing. Checking a Large Routine, page 70–72. MIT Press, Cambridge, MA,
USA, 1989.

[45] Santo Fortunato, Carl T. Bergstrom, Katy Börner, James A. Evans, Dirk Helbing,
Staša Milojević, Alexander M. Petersen, Filippo Radicchi, Roberta Sinatra, Brian
Uzzi, Alessandro Vespignani, Ludo Waltman, Dashun Wang, and Albert-László
Barabási. Science of science. Science, 359(6379), 2018.

[46] Christine L. Borgman and Jonathan Furner. Scholarly communication and biblio-
metrics. Annual Review of Information Science and Technology, 36(1):2–72, 2002.

[47] Henk F Moed. Citation analysis in research evaluation, volume 9. Springer Science
& Business Media, 2006.

[48] Ying Ding, Xiaozhong Liu, Chun Guo, and Blaise Cronin. The distribution of refer-
ences across texts: Some implications for citation analysis. Journal of Informetrics,
7(3):583–592, 2013.

[49] Alan Pritchard et al. Statistical bibliography or bibliometrics. Journal of documen-
tation, 25(4):348–349, 1969.

[50] Nicola De Bellis. Bibliometrics and citation analysis: from the science citation
index to cybermetrics. scarecrow press, 2009.

[51] Naveen Donthu, Satish Kumar, and Debidutta Pattnaik. Forty-five years of journal of
business research: a bibliometric analysis. Journal of Business Research, 109:1–14,
2020.

[52] Nees Jan Van Eck and Ludo Waltman. Visualizing bibliometric networks. In Mea-
suring scholarly impact, pages 285–320. Springer, 2014.

186

[53] H.P.F. Peters and A.F.J. van Raan. Co-word-based science maps of chemical engi-
neering. part i: Representations by direct multidimensional scaling. Research Policy,
22(1):23–45, 1993.

[54] Edmund Whittaker. A History of the Theories of Aether and Electricity: Vol. I: The
Classical Theories; Vol. II: The Modern Theories, 1900-1926, volume 1. Courier
Dover Publications, 1989.

[55] Hsin-Ning Su and Pei-Chun Lee. Mapping knowledge structure by keyword co-
occurrence: a first look at journal papers in technology foresight. Scientometrics,
85(1):65–79, 2010.

[56] Luz M Romo-Fernández, Vicente P Guerrero-Bote, and Félix Moya-Anegón. Co-
word based thematic analysis of renewable energy (1990–2010). Scientometrics,
97(3):743–765, 2013.

[57] Werner Marx, Robin Haunschild, and Lutz Bornmann. Global warming and tea
production—the bibliometric view on a newly emerging research topic. Climate,
5(3), 2017.

[58] Ehsan Mohammadi. Knowledge mapping of the iranian nanoscience and technol-
ogy: a text mining approach. Scientometrics Scientometrics, 92(3):593 – 608, 01
Sep. 2012.

[59] Yong Liu, Jorge Goncalves, Denzil Ferreira, Bei Xiao, Simo Hosio, and Vassilis
Kostakos. Chi 1994-2013: Mapping two decades of intellectual progress through
co-word analysis. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’14, page 3553–3562, New York, NY, USA, 2014. Asso-
ciation for Computing Machinery.

[60] Huchang Liao, Ming Tang, Li Luo, Chunyang Li, Francisco Chiclana, and Xiao-
Jun Zeng. A bibliometric analysis and visualization of medical big data research.
Sustainability, 10(1), 2018.

[61] Ehsan Mohammadi and Amir Karami. Exploring research trends in big data
across disciplines: A text mining analysis. Journal of Information Science,
0(0):0165551520932855, 2020.

[62] Vahid Garousi and Mika V. Mäntylä. Citations, research topics and active countries
in software engineering: A bibliometrics study. Computer Science Review, 19:56–
77, 2016.

187

[63] Vahid Garousi and João M. Fernandes. Quantity versus impact of software engi-
neering papers: a quantitative study. Scientometrics, 112(2):963–1006, 2017.

[64] Dimitra Karanatsiou, Yihao Li, Elvira-Maria Arvanitou, Nikolaos Misirlis, and
W. Eric Wong. A bibliometric assessment of software engineering scholars and
institutions (2010–2017). Journal of Systems and Software, 147:246–261, 2019.

[65] W. Eric Wong, T.H. Tse, Robert L. Glass, Victor R. Basili, and T.Y. Chen. An assess-
ment of systems and software engineering scholars and institutions (2001–2005).
Journal of Systems and Software, 81(6):1059–1062, 2008. Agile Product Line En-
gineering.

[66] W. Eric Wong, T.H. Tse, Robert L. Glass, Victor R. Basili, and T.Y. Chen. An assess-
ment of systems and software engineering scholars and institutions (2002–2006).
Journal of Systems and Software, 82(8):1370–1373, 2009. SI: Architectural Deci-
sions and Rationale.

[67] W. Eric Wong, T.H. Tse, Robert L. Glass, Victor R. Basili, and T.Y. Chen. An assess-
ment of systems and software engineering scholars and institutions (2003–2007 and
2004–2008). Journal of Systems and Software, 84(1):162–168, 2011. Information
Networking and Software Services.

[68] Vahid Garousi and Tan Varma. A bibliometric assessment of canadian software en-
gineering scholars and institutions (1996-2006). Computer and Information Science,
3(2):19, 2010.

[69] Vahid Garousi. A bibliometric analysis of the turkish software engineering research
community. Scientometrics, 105(1):23–49, 2015.

[70] Roshanak Farhoodi, Vahid Garousi, Dietmar Pfahl, and Jonathan Sillito. Devel-
opment of scientific software: A systematic mapping, a bibliometrics study, and a
paper repository. International Journal of Software Engineering and Knowledge
Engineering, 23(04):463–506, 2013.

[71] Fabrício Gomes de Freitas and Jerffeson Teixeira de Souza. Ten years of search
based software engineering: A bibliometric analysis. In Myra B. Cohen and Mel
Ó Cinnéide, editors, Search Based Software Engineering, pages 18–32, Berlin, Hei-
delberg, 2011. Springer Berlin Heidelberg.

[72] Nees Jan Van Eck and Ludo Waltman. Software survey: Vosviewer, a computer
program for bibliometric mapping. scientometrics, 84(2):523–538, 2010.

188

[73] Nees Jan van Eck and Ludo Waltman. Visualizing Bibliometric Networks, pages
285–320. Springer International Publishing, Cham, 2014.

[74] Bogdan Korel and Ali M. Al-Yami. Automated regression test generation. In Pro-
ceedings of the 1998 ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA ’98, pages 143–152, New York, NY, USA, 1998. ACM.

[75] René Just. The major mutation framework: Efficient and scalable mutation analysis
for java. In Proceedings of the 2014 International Symposium on Software Testing
and Analysis, ISSTA 2014, pages 433–436, New York, NY, USA, 2014. ACM.

[76] Mark Fewster and Dorothy Graham. Software test automation. Addison-Wesley
Reading, 1999.

[77] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge,
MA, USA, 1998.

[78] J. Voas. Fault injection for the masses. Computer, 30(12):129–130, 1997.

[79] B. Kitchenham and S.L. Pfleeger. Software quality: the elusive target [special issues
section]. IEEE Software, 13(1):12–21, 1996.

[80] W Herzner, R Schlick, A Le Guennec, and B Martin. Model-based simulation of
distributed real-time applications. In 5th IEEE Int’l Conf. on Industrial Infomatics,
pages 989 – 994, June 2007.

[81] Aloysius K. Mok and Douglas Stuart. Simulation vs. verification: Getting the best of
both worlds. In Proceedings of the Eleventh Annual Conf. on Computer Assurance,
COMPASS 96, 1996.

[82] G. Gay, S. Rayadurgam, and M. P. E. Heimdahl. Automated steering of model-
based test oracles to admit real program behaviors. IEEE Transactions on Software
Engineering, 43(6):531–555, June 2017.

[83] Mark Crossley. The Desk Reference of Statistical Quality Methods. ASQ Quality
Press, 2000.

[84] Gregg Rothermel, Mary Jean Harrold, Jeffery von Ronne, and Christie Hong. Em-
pirical studies of test-suite reduction. Software Testing, Verification and Reliability,
12(4):219–249, 2002.

189

[85] G. Gay, M. Staats, M. Whalen, and M.P.E. Heimdahl. The risks of coverage-directed
test case generation. Software Engineering, IEEE Transactions on, PP(99), 2015.

[86] Changhai Nie and Hareton Leung. A survey of combinatorial testing. ACM Comput.
Surv., 43(2), February 2011.

[87] Burak Turhan, Tim Menzies, Ayşe B Bener, and Justin Di Stefano. On the relative
value of cross-company and within-company data for defect prediction. Empirical
Software Engineering, 14(5):540–578, 2009.

[88] Alireza Salahirad, Hussein Almulla, and Gregory Gay. Choosing the fitness function
for the job: Automated generation of test suites that detect real faults. Software
Testing, Verification and Reliability, 29(4-5):e1701, 2019. e1701 stvr.1701.

[89] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In Proceedings
of the 8th USENIX Conference on Operating Systems Design and Implementation,
OSDI’08, pages 209–224, Berkeley, CA, USA, 2008. USENIX Association.

[90] Justyna Zander, Ina Schieferdecker, and Pieter J Mosterman. Model-based testing
for embedded systems. CRC press, 2011.

[91] Toshio Fukuda. Theory and applications of neural networks for industrial control
systems. IEEE Transactions on Industrial Electronics, pages 472–489, December
1992.

[92] A. van Lamsweerde. Engineering requirements for system reliability and security.
Software System Reliability and Security, 9, 2007.

[93] Muhammad Abid Jamil, Muhammad Arif, Normi Sham Awang Abubakar, and
Akhlaq Ahmad. Software testing techniques: A literature review. In 2016 6th inter-
national conference on information and communication technology for the Muslim
world (ICT4M), pages 177–182. IEEE, 2016.

[94] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing input. IEEE
Transactions on Software Engineering, 28(2):183–200, Feb 2002.

[95] E.J. Weyuker and B. Jeng. Analyzing partition testing strategies. IEEE Trans. on
Software Engineering, 17(7):703–711, 1991.

[96] L.J. Morell. A theory of fault-based testing. IEEE Transactions on Software Engi-
neering, 16(8):844–857, 1990.

190

[97] Shin Yoo and Mark Harman. Regression testing minimization, selection and pri-
oritization: a survey. Software testing, verification and reliability, 22(2):67–120,
2012.

[98] Andrea Arcuri and Lionel C. Briand. Adaptive random testing: An illusion of effec-
tiveness? In ISSTA, 2011.

[99] Cagatay Catal. Software fault prediction: A literature review and current trends.
Expert systems with applications, 38(4):4626–4636, 2011.

[100] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan Hao,
and Lu Zhang. A survey of compiler testing. ACM Computing Surveys (CSUR),
53(1):1–36, 2020.

[101] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Lan-
guage Reference Manual. Object Technology Series. Addison-Wesley, 1998.

[102] Lee Copeland. A practitioner’s guide to software test design. Artech House, 2004.

[103] Gregg Rothermel and Mary Jean Harrold. Analyzing regression test selection tech-
niques. IEEE Transactions on software engineering, 22(8):529–551, 1996.

[104] Bestoun S Ahmed, Eduard Enoiu, Wasif Afzal, and Kamal Z Zamli. An evaluation
of monte carlo-based hyper-heuristic for interaction testing of industrial embedded
software applications. Soft Computing, 24(18):13929–13954, 2020.

[105] Daniel Jackson. Alloy: a language and tool for exploring software designs. Com-
munications of the ACM, 62(9):66–76, 2019.

[106] Andreas Zeller. Automated debugging: Are we close? Computer, 34(11):26–31,
2001.

[107] Tsong Yueh Chen, Fei-Ching Kuo, Robert G Merkel, and TH Tse. Adaptive random
testing: The art of test case diversity. Journal of Systems and Software, 83(1):60–66,
2010.

[108] Ting Su, Ke Wu, Weikai Miao, Geguang Pu, Jifeng He, Yuting Chen, and Zhendong
Su. A survey on data-flow testing. ACM Computing Surveys (CSUR), 50(1):1–35,
2017.

191

[109] RTCA/DO-178C. Software considerations in airborne systems and equipment cer-
tification.

[110] Shin Hong, Jaemin Ahn, Sangmin Park, Moonzoo Kim, and Mary Jean Harrold.
Testing concurrent programs to achieve high synchronization coverage. In Proceed-
ings of the 2012 International Symposium on Software Testing and Analysis, pages
210–220, 2012.

[111] Dominique Douglas-Smith, Takuya Iwanaga, Barry FW Croke, and Anthony J Jake-
man. Certain trends in uncertainty and sensitivity analysis: An overview of software
tools and techniques. Environmental Modelling & Software, 124:104588, 2020.

[112] Mustafa Bozkurt, Mark Harman, Youssef Hassoun, et al. Testing web services: A
survey. Department of Computer Science, King’s College London, Tech. Rep. TR-
10-01, 2010.

[113] Imran Ali Qureshi and Aamer Nadeem. Gui testing techniques: a survey. Interna-
tional Journal of Future computer and communication, 2(2):142, 2013.

[114] E. Murphy-Hill, C. Parnin, and A. P. Black. How we refactor, and how we know it.
IEEE Transactions on Software Engineering, 38(1):5–18, Jan 2012.

[115] Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and Martin
Monperrus. Automatic repair of real bugs in java: a large-scale experiment on the
defects4j dataset. Empirical Software Engineering, 22(4):1936–1964, Aug 2017.

[116] M. Helali Moghadam, M. Saadatmand, M. Borg, M. Bohlin, and B. Lisper. Ma-
chine learning to guide performance testing: An autonomous test framework. In
2019 IEEE International Conference on Software Testing, Verification and Valida-
tion Workshops (ICSTW), pages 164–167, 2019.

[117] M.W Whalen, A. Rajan, and M.P.E. Heimdahl. Coverage metrics for requirements-
based testing. In Proceedings of Int’l Symposium on Software Testing and Analysis,
pages 25–36. ACM, July 2006.

[118] A. Takanen, J. DeMott, and C. Miller. Fuzzing for Software Security Testing and
Quality Assurance. Artech House, Inc., 2008.

[119] A.P. Sistla E. M. Clarke, E.A. Emerson. Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Transactions on Program-
ming Languages and Systems, pages 244–263, April 1986.

192

[120] Nadia Alshahwan, Xinbo Gao, Mark Harman, Yue Jia, Ke Mao, Alexander Mols,
Taijin Tei, and Ilya Zorin. Deploying search based software engineering with sapienz
at facebook. In Search-Based Software Engineering, pages 3–45, Cham, 2018.
Springer International Publishing.

[121] R. France and B. Rumpe. Model-driven development of complex systems: A re-
search roadmap. In L. Briand and A. Wolf, editors, Future of Software Engineering
2007. IEEE-CS Press, 20007.

[122] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
Addison-Wesley, 1998.

[123] Afonso Fontes and Gregory Gay. Using machine learning to generate test oracles:
A systematic literature review. In Proceedings of the 1st International Workshop on
Test Oracles, TORACLE 2021, page 1–10, New York, NY, USA, 2021. Association
for Computing Machinery.

[124] Juan Pablo Galeotti, Gordon Fraser, and Andrea Arcuri. Improving search-based test
suite generation with dynamic symbolic execution. In 2013 IEEE 24th International
Symposium on Software Reliability Engineering (ISSRE), pages 360–369, 2013.

[125] Mike Thelwall and Pardeep Sud. Scopus 1900–2020: Growth in articles, abstracts,
countries, fields, and journals. Quantitative Science Studies, pages 1–14, 02 2022.

[126] Antonio Cavacini. What is the best database for computer science journal articles?
Scientometrics, 102(3):2059–2071, 2015.

[127] H.R. Jamali, C.C. Steel, and E. Mohammadi. Wine research and its relationship
with wine production: a scientometric analysis of global trends. Australian Journal
of Grape and Wine Research, 26(2):130–138, 2020.

[128] Huajiao Li, Haizhong An, Yue Wang, Jiachen Huang, and Xiangyun Gao. Evo-
lutionary features of academic articles co-keyword network and keywords co-
occurrence network: Based on two-mode affiliation network. Physica A: Statistical
Mechanics and its Applications, 450:657–669, 2016.

[129] Ingwer Borg and Patrick JF Groenen. Modern multidimensional scaling: Theory
and applications. Springer Science & Business Media, 2005.

[130] Mark EJ Newman. Fast algorithm for detecting community structure in networks.
Physical review E, 69(6):066133, 2004.

193

[131] Ludo Waltman and Nees Jan van Eck. A smart local moving algorithm for large-
scale modularity-based community detection. The European Physical Journal B,
86(11):471, 2013.

[132] Glenford J. Myers and Corey Sandler. The Art of Software Testing. John Wiley &
Sons, 2004.

[133] Akbar Siami Namin and James H Andrews. The influence of size and coverage on
test suite effectiveness. In Proceedings of the eighteenth international symposium
on Software testing and analysis, pages 57–68, 2009.

[134] A. Mockus, N. Nagappan, and T.T. Dinh-Trong. Test coverage and post-verification
defects: A multiple case study. In Empirical Software Engineering and Measure-
ment, 2009. ESEM 2009. 3rd International Symposium on, pages 291–301, Oct
2009.

[135] Laura Inozemtseva and Reid Holmes. Coverage is not strongly correlated with test
suite effectiveness. In Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, pages 435–445, New York, NY, USA, 2014. ACM.

[136] G. Fraser and A. Arcuri. Whole test suite generation. Software Engineering, IEEE
Transactions on, 39(2):276–291, Feb 2013.

[137] Gregory Gay. Generating effective test suites by combining coverage criteria. In
Proceedings of the Symposium on Search-Based Software Engineering, SSBSE
2017. Springer Verlag, 2017.

[138] Leonora Bianchi, Marco Dorigo, LucaMaria Gambardella, and WalterJ. Gutjahr. A
survey on metaheuristics for stochastic combinatorial optimization. Natural Com-
puting, 8(2):239–287, 2009.

[139] Marco Dorigo and Luca Maria Gambardella. Ant colony system: a cooperative
learning approach to the traveling salesman problem. Evolutionary Computation,
IEEE Transactions on, 1(1):53–66, 1997.

[140] John Henry Holland. Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. MIT press,
1992.

[141] Robert Feldt and Simon Poulding. Broadening the search in search-based software
testing: It need not be evolutionary. In Search-Based Software Testing (SBST), 2015
IEEE/ACM 8th International Workshop on, pages 1–7, May 2015.

194

[142] Jan Malburg and Gordon Fraser. Combining search-based and constraint-based test-
ing. In Proceedings of the 2011 26th IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE ’11, pages 436–439, Washington, DC, USA,
2011. IEEE Computer Society.

[143] Alex Groce, Mohammad Amin Alipour, and Rahul Gopinath. Coverage and its
discontents. In Proceedings of the 2014 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming & Software, Onward!’14,
pages 255–268, New York, NY, USA, 2014. ACM.

[144] S. Rayadurgam and M.P.E. Heimdahl. Coverage based test-case generation using
model checkers. In Proc. of the 8th IEEE Int’l. Conf. and Workshop on the Engi-
neering of Computer Based Systems, pages 83–91. IEEE Computer Society, April
2001.

[145] Andrea Arcuri. It really does matter how you normalize the branch distance
in search-based software testing. Software Testing, Verification and Reliability,
23(2):119–147, 2013.

[146] Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank Padberg. Does
automated white-box test generation really help software testers? In Proceedings of
the 2013 International Symposium on Software Testing and Analysis, ISSTA, pages
291–301, New York, NY, USA, 2013. ACM.

[147] Hussein Almulla, Alireza Salahirad, and Gregory Gay. Using search-based test gen-
eration to discover real faults in Guava. In Proceedings of the Symposium on Search-
Based Software Engineering, SSBSE 2017. Springer Verlag, 2017.

[148] K. Molokken and M. Jorgensen. A review of software surveys on software effort
estimation. In 2003 International Symposium on Empirical Software Engineering,
2003. ISESE 2003. Proceedings., pages 223–230, Sept 2003.

[149] Zoltán Tóth, Péter Gyimesi, and Rudolf Ferenc. A public bug database of github
projects and its application in bug prediction. In Osvaldo Gervasi, Beniamino Mur-
gante, Sanjay Misra, Ana Maria A.C. Rocha, Carmelo M. Torre, David Taniar,
Bernady O. Apduhan, Elena Stankova, and Shangguang Wang, editors, Computa-
tional Science and Its Applications – ICCSA 2016, pages 625–638, Cham, 2016.
Springer International Publishing.

[150] Chanchal Kumar Roy and James R Cordy. A survey on software clone detection
research. Queen’s School of Computing TR, 541(115):64–68, 2007.

195

[151] G. Gui and P. D. Scott. Coupling and cohesion measures for evaluation of component
reusability. In Proceedings of the 2006 International Workshop on Mining Software
Repositories, MSR ’06, pages 18–21, New York, NY, USA, 2006. ACM.

[152] Shyam R. Chidamber and Chris F. Kemerer. Towards a metrics suite for object ori-
ented design. In Conference Proceedings on Object-oriented Programming Systems,
Languages, and Applications, OOPSLA ’91, pages 197–211, New York, NY, USA,
1991. ACM.

[153] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-oriented de-
sign metrics as quality indicators. IEEE Transactions on Software Engineering,
22(10):751–761, Oct 1996.

[154] P. Edith Linda, V. Manju Bashini, and S. Gomathi. Metrics for component based
measurement tools. In International Journal of Scientific & Engineering Research
Volume 2, Issue 5, 2011.

[155] A. J. Albrecht and J. E. Gaffney. Software function, source lines of code, and de-
velopment effort prediction: A software science validation. IEEE Transactions on
Software Engineering, SE-9(6):639–648, Nov 1983.

[156] SourceMeter. Sourcemeter java documentation.
https://www.sourcemeter.com/resources/java/, 2014.

[157] Nadia Alshahwan and Mark Harman. Coverage and fault detection of the output-
uniqueness test selection criteria. In Proceedings of the 2014 International Sym-
posium on Software Testing and Analysis, ISSTA 2014, pages 181–192, New York,
NY, USA, 2014. ACM.

[158] Gordon Fraser and Andrea Arcuri. Achieving scalable mutation-based generation
of whole test suites. Empirical Software Engineering, 20(3):783–812, 2014.

[159] José Miguel Rojas, José Campos, Mattia Vivanti, Gordon Fraser, and Andrea Arcuri.
Combining multiple coverage criteria in search-based unit test generation. In Már-
cio Barros and Yvan Labiche, editors, Search-Based Software Engineering, volume
9275 of Lecture Notes in Computer Science, pages 93–108. Springer International
Publishing, 2015.

[160] Gregory Gay, Ajitha Rajan, Matt Staats, Michael Whalen, and Mats P. E. Heimdahl.
The effect of program and model structure on the effectiveness of mc/dc test ade-
quacy coverage. ACM Trans. Softw. Eng. Methodol., 25(3):25:1–25:34, July 2016.

196

[161] Milos Gligoric, Alex Groce, Chaoqiang Zhang, Rohan Sharma, Mohammad Amin
Alipour, and Darko Marinov. Comparing non-adequate test suites using coverage
criteria. In Proceedings of the 2013 International Symposium on Software Testing
and Analysis, ISSTA 2013, pages 302–313, New York, NY, USA, 2013. ACM.

[162] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning.
MIT Press, 2012.

[163] Tim Menzies and Ying Hu. Data mining for very busy people. Computer, 36(11):22–
29, November 2003.

[164] Gregory Gay, Tim Menzies, Misty Davies, and Karen Gundy-Burlet. Automatically
finding the control variables for complex system behavior. Automated Software En-
gineering, 17(4):439–468, December 2010.

[165] W.W. Daniel. Applied Nonparametric Statistics. Duxbury advanced series in statis-
tics and decision sciences. PWS-KENT, 1990.

[166] M. Whalen, G. Gay, D. You, M.P.E. Heimdahl, and M. Staats. Observable modified
condition/decision coverage. In Proceedings of the 2013 Int’l Conf. on Software
Engineering. ACM, May 2013.

[167] Xia Cai and Michael R. Lyu. The effect of code coverage on fault detection un-
der different testing profiles. In Proceedings of the 1st International Workshop on
Advances in Model-based Testing, A-MOST ’05, pages 1–7, New York, NY, USA,
2005. ACM.

[168] Phyllis G. Frankl and Stewart N. Weiss. An experimental comparison of the effec-
tiveness of the all-uses and all-edges adequacy criteria. In Proceedings of the Sym-
posium on Testing, Analysis, and Verification, TAV4, pages 154–164, New York,
NY, USA, 1991. ACM.

[169] P. G. Frankl and S. N. Weiss. An experimental comparison of the effectiveness of
branch testing and data flow testing. IEEE Transactions on Software Engineering,
19(8):774–787, Aug 1993.

[170] Phyllis G. Frankl and Oleg Iakounenko. Further empirical studies of test effec-
tiveness. In Proceedings of the 6th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, SIGSOFT ’98/FSE-6, pages 153–162, New
York, NY, USA, 1998. ACM.

197

[171] Phil McMinn, Mark Harman, Gordon Fraser, and Gregory M. Kapfhammer. Auto-
mated search for good coverage criteria: Moving from code coverage to fault cover-
age through search-based software engineering. In Proceedings of the 9th Interna-
tional Workshop on Search-Based Software Testing, SBST ’16, pages 43–44, New
York, NY, USA, 2016. ACM.

[172] Zhongxing Yu, Matias Martinez, Benjamin Danglot, Thomas Durieux, and Martin
Monperrus. Test case generation for program repair: A study of feasibility and
effectiveness. CoRR, abs/1703.00198, 2017.

[173] Gregory Gay. To call, or not to call: Contrasting direct and indirect branch coverage
in test generation. In Proceedings of the 11th International Workshop on Search-
Based Software Testing, SBST 2018, New York, NY, USA, 2018. ACM.

[174] Kiran Lakhotia, Mark Harman, and Phil McMinn. A multi-objective approach to
search-based test data generation. In Proceedings of the 9th Annual Conference on
Genetic and Evolutionary Computation, GECCO ’07, pages 1098–1105, New York,
NY, USA, 2007. ACM.

[175] Shin Yoo and Mark Harman. Using hybrid algorithm for pareto efficient multi-
objective test suite minimisation. Journal of Systems and Software, 83(4):689 –
701, 2010.

[176] D. Jeffrey and N. Gupta. Improving fault detection capability by selectively retaining
test cases during test suite reduction. IEEE Transactions on Software Engineering,
33(2):108–123, Feb 2007.

[177] José Campos, Yan Ge, Nasser Albunian, Gordon Fraser, Marcelo Eler, and Andrea
Arcuri. An empirical evaluation of evolutionary algorithms for unit test suite gener-
ation. Information and Software Technology, 2018.

[178] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Incremental
control dependency frontier exploration for many-criteria test case generation. In
Thelma Elita Colanzi and Phil McMinn, editors, Search-Based Software Engineer-
ing, pages 309–324, Cham, 2018. Springer International Publishing.

[179] Istehad Chowdhury and Mohammad Zulkernine. Using complexity, coupling, and
cohesion metrics as early indicators of vulnerabilities. Journal of Systems Architec-
ture, 57(3):294–313, 2011.

[180] Yogesh Singh, Arvinder Kaur, and Ruchika Malhotra. Empirical validation of

198

object-oriented metrics for predicting fault proneness models. Software quality jour-
nal, 18(1):3, 2010.

[181] Usman Mansoor, Marouane Kessentini, Bruce R Maxim, and Kalyanmoy Deb.
Multi-objective code-smells detection using good and bad design examples. Soft-
ware Quality Journal, 25(2):529–552, 2017.

[182] Mel Ó Cinnéide, Laurence Tratt, Mark Harman, Steve Counsell, and Iman
Hemati Moghadam. Experimental assessment of software metrics using automated
refactoring. In Proceedings of the ACM-IEEE international symposium on Empiri-
cal software engineering and measurement, pages 49–58. ACM, 2012.

[183] Ashish Tripathi and Kapil Sharma. Improving software quality based on relation-
ship among the change proneness and object oriented metrics. In Computing for
Sustainable Global Development (INDIACom), 2015 2nd International Conference
on, pages 1633–1636. IEEE, 2015.

[184] Zoltán Tóth, Péter Gyimesi, and Rudolf Ferenc. A public bug database of github
projects and its application in bug prediction. In Osvaldo Gervasi, Beniamino Mur-
gante, Sanjay Misra, Ana Maria A.C. Rocha, Carmelo M. Torre, David Taniar,
Bernady O. Apduhan, Elena Stankova, and Shangguang Wang, editors, Computa-
tional Science and Its Applications – ICCSA 2016, pages 625–638, Cham, 2016.
Springer International Publishing.

[185] Victor Sobreira, Thomas Durieux, Fernanda Madeiral, Martin Monperrus, and
Marcelo A Maia. Dissection of a bug dataset: Anatomy of 395 patches from de-
fects4j. arXiv preprint arXiv:1801.06393, 2018.

[186] Yue Jia and Mark Harman. Higher order mutation testing. Information and Software
Technology, 51(10):1379 – 1393, 2009. Source Code Analysis and Manipulation,
SCAM 2008.

[187] Mike Papadakis, Donghwan Shin, Shin Yoo, and Doo-Hwan Bae. Are mutation
scores correlated with real fault detection? a large scale empirical study on the rela-
tionship between mutants and real faults. In Proceedings of the 40th International
Conference on Software Engineering, ICSE ’18, page 537–548, New York, NY,
USA, 2018. Association for Computing Machinery.

[188] J.H. Andrews, L.C. Briand, and Y. Labiche. Is mutation an appropriate tool for
testing experiments? Proc of the 27th Int’l Conf on Software Engineering (ICSE),
pages 402–411, 2005.

199

[189] Allen T Acree, Timothy A Budd, Richard A DeMillo, Richard J Lipton, and Fred-
erick G Sayward. Mutation analysis. Technical report, GEORGIA INST OF TECH
ATLANTA SCHOOL OF INFORMATION AND COMPUTER SCIENCE, 1979.

[190] Richard A. De Millo and A. Jefferson Offutt. Constraint-based automatic test data
generation. IEEE Transactions on Software Engineering, 17(9):900–910, September
1991.

[191] Brian Marick. The weak mutation hypothesis. In Proceedings of the Symposium
on Testing, Analysis, and Verification, TAV4, pages 190–199, New York, NY, USA,
1991. ACM.

[192] A. Jefferson Offutt and Jie Pan. Automatically detecting equivalent mutants and
infeasible paths. Software Testing, Verification and Reliability, 7(3):165–192, 1997.

[193] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D.
Ernst, Deric Pang, and Benjamin Keller. Evaluating and improving fault localiza-
tion. In Proceedings of the 39th International Conference on Software Engineering,
ICSE ’17, pages 609–620, Piscataway, NJ, USA, 2017. IEEE Press.

[194] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and Anthony
Ventresque. Pit: A practical mutation testing tool for java (demo). In Proceedings of
the 25th International Symposium on Software Testing and Analysis, ISSTA 2016,
page 449–452, New York, NY, USA, 2016. Association for Computing Machinery.

[195] Yu-Seung Ma, Jeff Offutt, and Yong-Rae Kwon. MuJava: a mutation system for
java. In Proceedings of the 28th International Conference on Software Engineering,
pages 827–830, 2006.

[196] A. Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H. Untch, and Christian
Zapf. An experimental determination of sufficient mutant operators. ACM Transac-
tions on Software Engineering and Methodology, 5(2):99–118, 1996.

[197] Wei Ma, Thierry Titcheu Chekam, Mike Papadakis, and Mark Harman. Mudelta:
Delta-oriented mutation testing at commit time. 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), 2021.

[198] Murial Daran and Pascale Thévenod-Fosse. Software error analysis: A real case
study involving real faults and mutations. ACM SIGSOFT Software Engineering
Notes, 21(3):158–171, 1996.

200

[199] Thierry Titcheu Chekam, Mike Papadakis, Tegawendé F Bissyandé, Yves Le Traon,
and Koushik Sen. Selecting fault revealing mutants. Empirical Software Engineer-
ing, 25(1):434–487, 2020.

[200] Matthieu Jimenez, Thiery Titcheu Checkam, Maxime Cordy, Mike Papadakis, Mari-
nos Kintis, Yves Le Traon, and Mark Harman. Are mutants really natural? a study
on how "naturalness" helps mutant selection. In Proceedings of the 12th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement,
ESEM ’18, New York, NY, USA, 2018. Association for Computing Machinery.

[201] James H Andrews, Lionel C Briand, and Yvan Labiche. Is mutation an appropriate
tool for testing experiments? In Proceedings. 27th International Conference on
Software Engineering, pages 402–411, 2005.

[202] Mingwan Kim, Neunghoe Kim, and Hoh Peter In. Investigating the relationship
between mutants and real faults with respect to mutated code. International Journal
of Software Engineering and Knowledge Engineering, 30(08):1119–1137, 2020.

[203] Marinos Kintis, Mike Papadakis, Andreas Papadopoulos, Evangelos Valvis, Nicos
Malevris, and Yves Le Traon. How effective are mutation testing tools? an em-
pirical analysis of java mutation testing tools with manual analysis and real faults.
Empirical Software Engineering, 23(4):2426–2463, 2018.

[204] David Bingham Brown, Michael Vaughn, Ben Liblit, and Thomas Reps. The care
and feeding of wild-caught mutants. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, pages 511–522, 2017.

[205] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. Learning how to mutate source code from bug-fixes.
In 2019 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 301–312. IEEE, 2019.

[206] Michele Tufano, Jason Kimko, Shiya Wang, Cody Watson, Gabriele Bavota, Mas-
similiano Di Penta, and Denys Poshyvanyk. Deepmutation: a neural mutation tool.
In 2020 IEEE/ACM 42nd International Conference on Software Engineering: Com-
panion Proceedings (ICSE-Companion), pages 29–33. IEEE, 2020.

[207] Jibesh Patra and Michael Pradel. Semantic bug seeding: a learning-based approach
for creating realistic bugs. In Proceedings of the 29th ACM Joint Meeting on Eu-
ropean Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pages 906–918, 2021.

201

[208] Moritz Beller, Chu-Pan Wong, Johannes Bader, Andrew Scott, Mateusz Machalica,
Satish Chandra, and Erik Meijer. What it would take to use mutation testing in
industry—a study at facebook. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pages
268–277. IEEE, 2021.

[209] Milos Ojdanic, Aayush Garg, Ahmed Khanfir, Renzo Degiovanni, Mike Papadakis,
and Yves Le Traon. Syntactic vs. semantic similarity of artificial and real faults in
mutation testing studies. arXiv preprint arXiv:2112.14508, 2021.

202

	Empirical Studies on Automated Software Testing Practices
	Recommended Citation

	Acknowledgments
	Abstract
	List of Figures
	Introduction
	Statement of the Problem
	Purpose of the Dissertation
	Contributions of the Dissertation
	Publications Resulting from the Dissertation
	Structure of this Dissertation

	Background
	Software Testing
	Components of a Test Case
	Common Testing Approaches and Practices
	The Role of Software Testing in the Software Development Life Cycle

	Mapping the Structure and Evolution of Software Testing Research Over the Past Three Decades
	Introduction
	Background and Related Work
	Methodology
	Results and Discussion
	Further Analysis and Advice to Researchers
	Threats to Validity
	Conclusion
	VOSViewer Technical Details

	Choosing The Fitness Function for the Job: Automated Generation of Test Suites that Detect Real Faults
	Introduction
	Background
	Study
	Results and Discussion
	Related Work
	Threats to Validity
	Conclusions

	How Closely are Common Mutation Operators Coupled to Real Faults?
	Introduction
	Background
	Methodology
	Results and Discussion
	Threats to Validity
	Related Work
	Conclusions

	Conclusion
	Bibliography

