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Abstract

For each positive integer n, let Qn denote the Boolean lattice of dimension n. For

posets P, P ′, define the poset Ramsey number R(P, P ′) to be the least N such that for

any red/blue coloring of the elements of QN , there exists either a subposet isomorphic

to P with all elements red, or a subposet isomorphic to P ′ with all elements blue.

Axenovich and Walzer introduced this concept in Order (2017), where they proved

R(Q2, Qn) ≤ 2n + 2 and R(Qn, Qm) ≤ mn + n + m. They later proved 2n ≤

R(Qn, Qn) ≤ n2 + 2n. Walzer later proved R(Qn, Qn) ≤ n2 + 1. We provide some

improved bounds for R(Qn, Qm) for various n, m ∈ N. In particular, we prove that

R(Qn, Qn) ≤ n2 − n + 2, R(Q2, Qn) ≤ 5
3n + 2, and R(Q3, Qn) ≤ ⌈37

16n + 55
16⌉. We also

prove that R(Q2, Q3) = 5, and R(Qm, Qn) ≤
⌈(

m − 1 + 2
m+1

)
n + 1

3m + 2
⌉

for all

n > m ≥ 4.
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Chapter 1

Introduction

Ramsey theory roughly says that any 2-coloring of elements in a sufficiently large

discrete system contains a monochromatic system of given size. In the domain of

complete graphs, the classical Ramsey theorem states that for any two graphs G and

H there is a integer N0 such that if the edges of a complete graph KN with N ≥ N0

are colored in two colors then there exists either a red copy of G or a blue copy of H in

KN . The least such number N0 is called the Ramsey number R(G, H). This theorem

was proved by Ramsey [10] in 1930, but the problem of exactly determining Ramsey

numbers remains open and is the subject of continuing research. For examples, see

the dynamic survey by Radziszowski [9].

In this paper, we will consider the poset Ramsey number instead of the graph

Ramsey number. Given two posets (P, ≤) and (Q, ≤′), we say (P, ≤) is an induced

subposet of (Q, ≤′) if there is an injective mapping f : P → Q such that for any

x, y ∈ P , we have

x ≤ y if and only if f(x) ≤′ f(y).

We call f : P → Q an embedding of P into Q, and the image f(P ) is called a copy

of P in Q. A Boolean lattice of dimension n, denoted Qn, is the power set of an

n-element ground set X equipped with the inclusion relation.

For posets P and P ′, let the poset Ramsey number R(P, P ′) be the least integer

N such that whenever the elements of QN are colored red or blue, then QN contains

either a red copy of P or a blue copy of P ′. The focus of this paper is the case where

P and P ′ are Boolean lattices Qm and Qn for m, n ∈ N. Axenovich and Walzer [1]
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give upper bounds and lower bounds for R(Qm, Qn) for various values of m, n ∈ N.

In particular, they prove the following.

Theorem 1.1. (Thm. 1 in [1]) For any integers n, m ≥ 1,

(i) 2n ≤ R(Qn, Qn) ≤ n2 + 2n,

(ii) R(Q1, Qn) = n + 1,

(iii) R(Q2, Qn) ≤ 2n + 2,

(iv) n + m ≤ R(Qn, Qm) ≤ mn + n + m,

(v) R(Q2, Q2) = 4, R(Q3, Q3) ∈ {7, 8}.

Walzer, in his master’s thesis [11], improved the upper bound in Theorem 1.1,

part (i) to the following.

Theorem 1.2. (Thm. 64 in [11]) R(Qn, Qn) ≤ n2 + 1.

Given two posets (P, ≤) and (Q, ≤′), we say (P, ≤) is a weak subposet of (Q, ≤′)

if there is an injective mapping f : P → Q such that for any x, y ∈ P , we have

f(x) ≤′ f(y) whenever x ≤ y.

The image f(P ) is called a weak copy of P in Q. For posets P and P ′, let the weak

poset Ramsey number Rw(P, P ′) be the least integer N such that whenever the

elements of QN are colored red or blue, then QN contains either a weak red copy of

P or a weak blue copy of P ′. Observe that R(P, P ′) ≥ Rw(P, P ′) for all posets P and

P ′.

Cox and Stolee [4] showed that Rw(Qn, Qn) ≥ 2n + 1 for n ≥ 13 using a prob-

abilistic construction. Recently, in the induced case, Bohman and Peng [2] gave an

explicit construction showing the bound R(Qn, Qn) ≥ 2n + 1. Grósz, Methuku, and

Tompkins [5] gave an explicit construction which yields the following lower bound on

Rw(Qm, Qn) for all m and n ≥ 68, generalizing the results of Bohman and Peng to
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the weak poset case, and extending their results and those of Cox and Stolee to the

off-diagonal case.

Theorem 1.3. For any m ≥ 2 and n ≥ 68, we have Rw(Qm, Qn) ≥ m + n + 1.

This implies that for any m ≥ 2 and n ≥ 68, we have R(Qm, Qn) ≥ m + n + 1.

A chain of length k is a poset of k distinct, pairwise comparable elements and is

denoted by Ck. Cox and Stolee [4] showed that Rw(Ck, Qn) = n + k − 1. Since Qm

is a weak subposet of C2m , this implies that Rw(Qm, Qn) ≤ n + 2m − 1. Combining

this result with Theorem 1.3, we find that Rw(Q2, Qn) = n + 3.

Axenovich and Walzer also studied Ramsey numbers for Boolean algebras in [1].

A Boolean algebra Bn of dimension n is a set system {X0 ∪ ⋃
i∈I Xi : I ⊆ [n]}, where

X0, X1, . . . , Xn are pairwise disjoint sets and, for i = 1, . . . , n, Xi ̸= ∅. Boolean

algebras have a more restrictive structure than Boolean lattices. If a subset of QN

contains a Boolean algebra of dimension n, then it contains a copy of Qn. The con-

verse, however, is not always true. Consider, for example, {∅, {1, 2}, {2, 3}, {1, 2, 3}}.

Gunderson, Rödl, and Sidorenko [6] first considered the number RAlg(n), defined to

be the smallest N such that any red/blue coloring of subsets of [N ] contains a red or

a blue Boolean algebra of dimension n. Here, "contains" means subset containment

in 2[N ], not containment as a subposet. Axenovich and Walzer were the first to use

the notation RAlg(n) in [1].

Let Kn(s, . . . , s) be the complete n-uniform n-partite hypergraph with parts of size

s and Rh(Kn(2, . . . , 2)) be the smallest N ′ such that any 2-coloring of Kn(N ′, . . . , N ′)

contains a monochromatic Kn(2, . . . , 2). The following theorem states the best known

bounds on RAlg(n). The lower bound is given without proof by Brown, Erdős, Chung,

and Graham [3], and the upper bound was proved by Axenovich and Walzer [1].

Theorem 1.4. There is a positive constant c such that

2cn ≤ RAlg(n) ≤ min{22n+1n log n, nRh(Kn(2, . . . , 2))}.
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Gunderson, Rődl, and Sidorenko [6] also considered the number b(n, d), defined

to be the maximum cardinality of a Bd-free family contained in 2[n]. They proved the

following bounds:

n
− (1+o(1))d

2d+1−2 · 2n ≤ b(n, d) ≤ 10d2−21−d

dd−2−d

n−1/2d · 2n.

Johnston, Lu, and Milans [7] later used the Lubell function to improve the upper

bound to the following, where C is a constant independent of d and n:

b(n, d) ≤ Cn−1/2d · 2n.

In this paper, we improve the upper bounds on the poset Ramsey numbers

R(Qm, Qn) given by Axenovich and Walzer in [1]. In Sections 2.2-2.4, the follow-

ing theorems are proved.

Theorem 1.5. For any integer n ≥ 1, R(Q2, Qn) ≤ 5
3n + 2.

Theorem 1.6. For any integer n ≥ 1, R(Qn, Qn) ≤ n2 − n + 2.

Theorem 1.7. For any integer n ≥ 1, R(Q3, Qn) ≤ ⌈37
16n + 55

16⌉.

In Section 2.5, we also prove the following.

Theorem 1.8. For all n > m ≥ 4, R(Qm, Qn) ≤
⌈(

m − 1 + 2
m+1

)
n + 1

3m + 2
⌉
.

Additionally, we are now able to identify the following previously unknown poset

Ramsey number.

Theorem 1.9. R(Q2, Q3) = 5.

Later, Grósz, Methuku, and Tompkins [5] determined the value of R(Q2, Qn)

asymptotically by proving the following theorem.

Theorem 1.10. For every c > 2, there exists an integer n0 such that for all n ≥ n0,

we have R(Q2, Qn) ≤ n + c n
log2 n

.
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Combining Theorem 1.10 with the lower bound R(Q2, Qn) ≥ n + 2, we find that

R(Q2, Qn) is asymptotically equal to n.

In Section 2.1, we give more definitions and introduce notation. Also in Section

2.1, we state and prove Lemma 2.1, the key embedding lemma we use to prove

Theorems 1.5, 1.6, 1.7, and 1.8. We prove Theorems 1.5, 1.6, 1.7, 1.8, and 1.9 in

Sections 2.2, 2.3, 2.4, 2.5, and 3.1, respectively.
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Chapter 2

The Generalized Blob Lemma

2.1 Notation and Key Lemma

A partially ordered set, or poset, consists of a set S together with a partial order ≤,

which is a binary relation on S satisfying

Reflexive Property: x ≤ x, for any x ∈ S.

Transitive Property: If x ≤ y and y ≤ z then x ≤ z for any x, y, z ∈ S.

Antisymmetric Property: If x ≤ y and y ≤ x then x = y for any x, y ∈ S.

Let [n] denote the set {1, 2, . . . , n} and Qn = (2[n], ⊆) be the poset over the family

of all subsets of [n]. The k-th level of Qn, denoted by
(

[n]
k

)
, is the set of all k-element

subsets of the ground set [n], where 0 ≤ k ≤ n. For any two subsets (of [n]) S ⊂ T ,

let Q[S,T ] be the induced poset of Qn over all sets F such that S ⊆ F ⊆ T . Let

Q∗
n := Qn \ {∅, [n]}. Let R̂(Qm, Qn) denote the smallest N such that any red/blue

coloring of Q∗
N contains either a red copy of Q∗

m or a blue copy of Q∗
n. Equivalently,

R̂(Qm, Qn) is the least N such that if ∅ and [N ] are assumed to be both red and blue

while the rest of QN is colored either red or blue, then QN contains either a red copy

of Qm or a blue copy of Qn. For a subset S ⊆ N , let S̄ denote the complement set of

S in [N ]. When S = {x}, we simply write x̄ for {x}.

The following key lemma generalizes the blob lemma of Axenovich and Walzer

(see [1], Lemma 3). The special case a = b = 0 of the following lemma gives the blob

lemma.
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Lemma 2.1. For any nonnegative integers N , m, n, n′, a, b satisfying n′ ≥ n ≥ a+b

and N ≥ n′ +(n+1−a−b) ·m, suppose the Boolean lattice QN on the ground set [N ]

is colored in two colors red and blue, and there is an embedding I : Qn → Qn′ ⊂ QN

with the following properties.

1. I maps bottom a-levels of Qn (i.e. sets in ⋃a−1
i=0

(
[n]
i

)
) to blue sets,

2. For all sets S in the top b levels of Qn, I(S) ∪ ([N ] \ [n′]) is blue.

Then either a blue copy of Qn or a red copy of Qm exists in QN .

Proof of Lemma 2.1: Let QN be the Boolean lattice on the ground set [N ] colored

red and blue with the properties listed above.

Let k = n + 1 − (a + b). Since N ≥ n′ + (n + 1 − (a + b)) · m = n′ + k · m, partition

[N ] like so:

[N ] = [n′] ∪ X1 ∪ X2 ∪ · · · ∪ Xk,

where |Xi| ≥ m for all i ∈ [k]. With this partition in mind, create an embedding

f of Qn into the blue sets of QN . Consider the map f : Qn → QN defined by

f(S) =



I(S) if |S| ≤ a − 1,

I(S) ∪ X1 ∪ X2 ∪ · · · ∪ X∗
|S|−a+1 if a ≤ |S| ≤ n − b

I(S) ∪ X1 ∪ X2 ∪ · · · ∪ Xk if |S| ≥ n − b + 1.

Let j = |S| − a + 1. Here, I(S) ∪ X1 ∪ X2 ∪ · · · ∪ X∗
j denotes an arbitrarily chosen

blue element from the subposet with bottom element S ∪ X1 ∪ X2 ∪ . . . Xj−1 ∪ ∅ and

top element I(S) ∪ X1 ∪ X2 ∪ · · · ∪ Xj−1 ∪ Xj. If no such blue element exists, this

entire subposet is red and QN contains a red Qm.

If such a blue element always exists, this function is well-defined and preserves all

the subset relations found in Qn. Its image consists entirely of blue elements, so QN

contains a blue Qn.
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Many times when applying Lemma 2.1 with n′ = n, we omit the trivial identity

mapping I. However, we will explicitly define the mapping I if n′ > n. In some

applications, we will exchange the colors red and blue, resulting in an exchange of m

and n.

2.2 Upper bound for R(Q2, Qn)

Proof of Theorem 1.5: The result is known to hold for n = 1 and n = 2, so let

n ≥ 3. Let N ∈ N be such that there exists a red/blue coloring of QN containing no

red copy of Q2 and no blue copy of Qn. Consider such a red/blue coloring c of QN .

Let T be a red element such that min{N − |T |, |T |} ≤ min{N − |T ′|, |T ′|} for all red

elements T ′ ∈ QN . Without loss of generality, let N − |T | ≤ |T |. Let t := N − |T |.

Let S be a red element such that |S| ≤ |S ′| for all red elements S ′ ∈ Q[∅,T ]. Let

s := |S|.

Claim I: |T | − |S| ≤ n + 1.

Proof of Claim I: Otherwise, suppose |T | − |S| ≥ n + 2. Let u, v be two red

elements in Q[S,T ]. If u and v are incomparable, {S, u, v, T} form a red Q2. So every

red element in Q[S,T ] lies on the same maximal chain. With the exception of this

maximal chain, the rest of Q[S,T ] is blue. Suppose x, y ∈ T \ S are two elements such

that S ∪{x} and T \{y} are on the maximal chain. Then all elements in Q[S∪{y},T \{x}]

are blue. Since |T | − |S| − 2 ≥ n, we find a copy of blue Qn.

Claim II: N ≤ 3n + 1 − 2(s + t).

Proof of Claim II: Otherwise, assume N ≥ 3n + 2 − 2(s + t). We have N ≥

n + (n + 1 − (s + t)) · 2. There exists a copy Q′
n of Qn in Q[∅,T ] so that the bottom

s-levels of Qn are all colored blue. The top t-levels of QN are all colored blue. If we

let n′ = n, a = s, b = t, and the embedding I be the canonical mapping from Qn to

Q′
n, by Lemma 2.1, QN contains either a blue copy of Qn or a red copy of Q2.
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From Claim I, we have

s + t = N − (|T | − |S|) ≥ N − (n + 1). (2.1)

Combining (2.1) with Claim II, we have

N ≤ 3n + 1 − 2[N − (n + 1)] = 5n + 3 − 2N. (2.2)

We get

N ≤ 5n

3 + 1,

which gives us the desired result and concludes the proof of Theorem 1.5.

2.3 Upper bound for R(Qn, Qn)

Let n ∈ N. The result is known to hold for n = 1 and n = 2, so let n ≥ 3. Recall the

definition of R̂(Qm, Qn) from Section 2.1. To prove the theorem, we first prove the

following lemma.

Lemma 2.2. For all n ≥ 3, R̂(Qn, Qn) ≤ n2 − n.

Proof of Lemma 2.2: By way of contradiction, suppose there is a red/blue coloring

c of QN (with N = n2 −n) such that ∅ and [N ] are colored both red and blue while all

other elements of QN only receive one color. Since N = n2 − n, there are n2 − n ≥ 2n

singleton sets in the first row of QN . By the Pigeonhole Principle, there are n sets in

the first row of QN with the same color. Without loss of generality, suppose at least

n of these sets are blue. Then there is a copy of Q′
n in QN such that level 1 of Q′

n

consists of some subset of these blue sets.

Consider an embedding I : Qn → Q′
n ⊂ QN , which maps the bottom a = 2 levels

of Qn to blue sets. Also, consider the top b = 1 level of QN to be colored blue. By

Lemma 2.1, since N ≥ n2 − n = n + (n − 2) · n = n + (n + 1 − a − b) · n, either a blue

copy of Qn or a red copy of Qn exists in QN .

9



Having proved Lemma 2.2, we now prove Theorem 1.6.

Proof of Theorem 1.6: Let N = n2 − n + 2. Consider a QN , and let the elements

of QN be colored red or blue. Consider the following cases.

Case 1. Sets ∅ and [N ] are the same color. Without loss of generality, assume both

∅ and [N ] are colored in red. We have three subcases:

Subcase 1a: All level N − 1 sets are red.

Subcase 1b: There exists a blue set T at level N − 1 and a blue subset S (of T ) at

level 1.

Subcase 1c: There exists a blue set T at level N − 1 such that all subsets of T at

level 1 are red.

In Subcases 1a, apply Lemma 2.1 to QN with a = 1, b = 2, and n′ = n.

In Subcase 1b, we consider Q[S,T ]. Since |T | − |S| = N − 2 ≥ n2 − n, by Lemma

2.2, Q[S,T ] contains either a red or blue copy of Qn \ {∅, [n]}, which can be extended

to a red or blue copy of Qn.

In Subcase 1c, apply Lemma 2.1 to Q[∅,T ] with a = 2, b = 1, and n′ = n.

If there exist two blue sets S and T with |S| = 1, |T | = N − 1, and S ⊂ T , then

consider Q[S,T ]. Since |T | − |S| = N − 2 ≥ n2 − n, by Lemma 2.2, Q[S,T ] contains

either a red or blue copy of Qn \{∅, [n]}, which can be extended to a red or blue copy

of Qn.

If there do not exist such two blue sets S and T , there are only three subcases:

Subcase 1a: All level 1 sets are red.

Subcase 1b: All level N − 1 sets are red.

Subcase 1c: There exists an element x ∈ N such that {x} and [N ] \ {x} are blue, but

all other sets in level 1 and level N − 1 are red.
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In Subcases 1a and 1c, apply Lemma 2.1 with a = 2, b = 1, and n′ = n. In

Subcase 1b, apply Lemma 2.1 with a = 1, b = 2, and n′ = n.

Case 2. Sets ∅ and [N ] are not the same color. Without loss of generality, suppose

∅ is red and [N ] is blue. We have four subcases:

Subcase 2a: All level 1 sets are red.

Subcase 2b: All level N − 1 sets are blue.

Subcase 2c: There exist a blue set S at level 1 and a red set at N − 1 such that

S ⊂ T .

Subcase 2d: There exists an element x ∈ N such that all level 1 sets except {x}

are red and all level N − 1 sets except x̄ are blue.

In Subcase 2a, if there is a red set T at level N − 1 or N − 2, we apply Lemma

2.1 to Q[∅,T ] with colors exchanged and parameters n′ = n, a = 2, b = 1. Since

|T | ≥ N − 2 = n + (n + 1 − 2 − 1) · n, Q[∅,T ] contains either a red copy of Qn or

a blue copy of Qn, as does QN . Otherwise, all sets in the top 3 levels of QN are

blue. We apply Lemma 2.1 to QN with parameters n′ = n, a = 0, b = 3. Since

N ≥ n + (n + 1 − 0 − 3) · n, QN contains either a red copy of Qn or a blue copy of Qn.

Subcase 2b is symmetric to Subcase 2a.

In Subcase 2c, since ∅ is red and S is blue, and [N ] is red and T is blue, the poset

Q[S,T ] of dimension n2 − n can be viewed as having bottom and top elements colored

both red and blue. By Lemma 2.2, Q[S,T ] contains a red copy of Qn or a blue copy of

Qn.

In Subcase 2d, we apply Lemma 2.1 to Q[∅,x̄] with colors exchanged and parameters

n′ = n, a = 2, b = 1. Since |T | ≥ N − 1 > n + (n + 1 − 2 − 1) · n, Q[∅,x̄] contains either

a red copy of Qn or a blue copy of Qn, as does QN .

11



Suppose there is a pair S, T of comparable elements, where S is blue, T is red,

|S| = 1, and |T | = N − 1. Since ∅ is red and S is blue, and [N ] is red and T is

blue, the poset Q[S,T ] of dimension n2 − n can be viewed as having bottom and top

elements colored both red and blue. By Lemma 2.2, Q[S,T ] contains a red Qn or a

blue Qn.

Otherwise, there are only four subcases:

Subcase 2a: All level 1 sets are red and all level N − 1 sets are blue.

Subcase 2b: All level 1 sets are red, and there exists a red N − 1-set.

Subcase 2c: All level N − 1 sets are blue, and there exists a blue 1-set.

Subcase 2d: There exists an element x ∈ N such that all level 1 sets except {x} are

red and all level N − 1 sets except x̄ are blue.

A similar argument works for Subcases 2b, 2c, and 2d since there exists a Q[N−1]

so that there are three levels of one color.

In Subcase 2a, suppose there exists a blue set in level 2. Then there exists a blue

Q[N−2] and a similar argument works. If there does not exist such a blue set, the

bottom three levels of QN are red.

In this case, since

n2 − n + 2 ≥ n + (n − 2) · n,

partition [N ] = [n] ∪ X1 ∪ · · · ∪ Xn−2 so that |Xi| ≥ n. Map the first three levels of

Qn into QN to get a red copy of Qn. Applying Lemma 2.1 with a = 3 and b = 0, we

get the desired monochromatic copy of Qn.

In any case where N = n2 − n + 2, we have shown QN contains a red Qn or a blue

Qn. It follows that R(Qn, Qn) ≤ n2 − n + 2, the desired result.
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2.4 Upper bound for R(Q3, Qn)

Recall the definition of R̂(Qm, Qn) from Section 2.1. To prove the theorem, we first

prove the following lemma.

Lemma 2.3. For all integers n ≥ 1, R̂(Q3, Qn) ≤ ⌈7
4n + 9

4⌉.

Proof of Lemma 2.3: By way of contradiction, suppose there is a red/blue coloring

c of QN (with N = ⌈7
4n + 9

4⌉) such that ∅ and [N ] are colored both red and blue, all

other elements of QN receive one color, and QN contains neither a red copy of Q3 nor

a blue copy of Qn.

Let ℓ = ⌈3
8n + 5

8⌉ be a fixed integer. Consider the following cases.

Case 1. There exist red sets A1, A2, A3 in the bottom ℓ levels of QN with the

following property.

∀i ∈ [3], ∃xi ∈ [N ] such that xi ∈ Ai, but xi ̸∈ Aj ∀j ∈ [3]\i. (2.3)

Note that, for all i ∈ [3], |Ai| ≤ ℓ − 1, and for all {i, j} ⊂ [3], |Ai ∪ Aj| ≤ 2(ℓ − 1).

Let X∗
i,j denote an arbitrarily chosen red element from the subposet with bottom

element Ai ∪ Aj and top element x̄k, where {i, j, k} = [3]. Since

ℓ =
⌈3

8n + 5
8

⌉
=

⌈ 7
4n − n + 5

4
2

⌉
=

⌈
N − n − 1

2

⌉
≤ N − n + 1

2 ,

N + 1 ≥ 2ℓ + n,

and N + 1 ≥ ℓ + (ℓ − 1) + n + 1,

we are able to define the following embedding of Q3 into the red sets of QN . Consider

the map f : Q3 → QN defined by

13



f(∅) = ∅,

f({i}) = Ai for all i ∈ [3],

f({i, j}) = X∗
i,j for all {i, j} ⊂ [3],

f([3]) = [N ].

If no such red element X∗
i,j exists, the entire n-dimensional subposet with bottom

element Ai∪Aj and top element x̄k is blue and QN contains a blue Qn. If a red element

X∗
i,j exists, the function f is well-defined and preserves all the subset relations found

in Q3. The range of f consists entirely of red elements, so QN contains a red Q3, a

contradiction.

Case 2. There exist red sets B1, B2, B3 in the top ℓ levels of QN with the following

property.

∀i ∈ [3], ∃xi ∈ [N ] such that xi ̸∈ Bi, but xi ∈ Bj ∀j ∈ [3]\i. (2.4)

This case is the same is as Case 1, except everything is flipped over the middle

level(s) of QN . Using a similar argument, we show that QN contains a blue Qn or a

red Q3.

Case 3. There do not exist sets A1, A2, A3 with property (2.3) or sets B1, B2, B3

with property (2.4).

Since there do not exist sets A1, A2, A3 with property (2.3), we make the following

claim.

14



Claim I: There exists a set L with cardinality at most ℓ such that all subsets in

the family ⋃ℓ−1
i=1

(
[N ]\L

i

)
are blue.

We prove Claim I by contradiction. Assume Claim I does not hold.

Pick a nonempty red set A1 with minimum cardinality. We have |A1| ≤ ℓ − 1.

Otherwise, Claim I holds with L = ∅.

Pick an element x1 ∈ A1. Let A2 be a nonempty red subset of [N ]\{x1} of

minimum cardinality. We have |A2| ≤ ℓ−1. Otherwise, Claim I holds with L = {x1}.

Observe that A2 ̸⊂ A1 since A1 is a red set with minimum cardinality. Thus A2

must contain an element x2 such that x2 ̸∈ A1. Let A3 be a minimal red non-empty

subset in [N ]\(A1 ∪ {x2}). We have |A3| ≤ ℓ − 1. Otherwise, Claim I holds with

L = A1 ∪ {x2}. Observe that A3 ̸⊂ A2 since A2 red subset of [N ]\{x1} of minimum

cardinality. Thus, A3 must contain an element x3 such that x3 ̸∈ A2. The sets

A1, A2, A3, along with the elements x1, x2, x3, respectively, satisfy property (2.3), a

contradiction.

By symmetry, we prove the following claim since there do not exist exist B1, B2, B3

with property (2.4).

Claim II: There exists a set L′ with cardinality at most ℓ such that all subsets

in the family {S ∪ L′ : ∀S ∈ ⋃ℓ−1
i=1

(
[N ]\L′

N−|L′|−i

)
} are blue.

Apply Lemma 2.1 with n′ = n, m = 3, and a = b = ℓ. Since N > 2(ℓ − 1) + n,

we can find a set S of size n such that S ∩ (L ∪ L′) = ∅. Let I : Qn → QS be the

canonical mapping. By Claim I and II, both items 1 and 2 in Lemma 2.1 are satisfied.

The inequality n′ ≥ n ≥ a + b is trivially true. The other inequality can be verified

as follows:

n′ + (n + 1 − a − b)m = n + (n + 1 − 2ℓ) · m

≤ n +
(

n + 1 − 2
(3

8n + 5
8

)
+ 1

)
· 3

= 7
4n + 9

4

15



≤ N.

All conditions of Lemma 2.1 are verified. Thus, QN contains either a red copy of Q3

or a blue copy of Qn. The proof of Lemma 2.3 is finished.

Having proved Lemma 2.3, we now prove Theorem 1.7.

Proof of Theorem 1.7: Let N = ⌈37
16n + 55

16⌉. Suppose there exists a red/blue

coloring of QN containing no red copy of Q3 and no blue copy of Qn. Consider a

red/blue coloring c of QN . Let T be a red element such that min{N − |T |, |T |} ≤

min{N − |T ′|, |T ′|} for all red elements T ′ ∈ QN . Without loss of generality, let

N − |T | ≤ |T |. Let t := N − |T |. Let S be a red element such that |S| ≤ |S ′| for all

red elements S ′ ∈ Q[∅,T ]. Let s := |S|.

We consider the following cases.

Case 1. s ̸= 0 and t ̸= 0.

It follows that |T | − |S| + 1 ≤ ⌈7
4n + 9

4⌉ for all n ∈ N. We make the following

claim.

Claim I: N ≤ n + 3(n + 1 − (s + t)) − 1.

Proof of Claim I: Otherwise, assume N ≥ n + 3(n + 1 − (s + t)). Since |T | ≥ n,

we can find a subset R ⊂ T with cardinality |R| = n. Apply Lemma 2.1 to QN with

n′ = n, a = s, b = t and the canonical map I from Qn to QR. By Lemma 2.1, QN

contains either a blue copy of Qn or a red copy of Q3.

From Lemma 2.3, we have

s + t = N − (|T | − |S|) ≥ N −
⌈7

4n + 5
4

⌉
. (2.5)

Combining (2.5) with Claim I, we have

N ≤ n + 3(n + 1 − (s + t)) − 1 ≤ n + 3
(

n + 1 −
(

N −
⌈7

4n + 5
4

⌉))
− 1. (2.6)

16



We get

N ≤ 37
16n + 35

16 < N,

a contradiction.

Case 2. s = 0 and t = 0.

In this case, both ∅ and [N ] are necessarily red. Apply Lemma 2.1 with parameters
′m′ = n, ′n′ = 3, ′n′′ = 3, ′a′ = 1, and ′b′ = 1. Since

3 + (3 + 1 − 1 − 1)n = 2n + 3 <
37
16n + 55

16 ≤ N,

QN contains either a blue Qn or a red Q3, a contradiction.

Case 3. s ̸= 0 and t = 0.

In this case, ∅ is necessarily blue and [N ] is necessarily red. We have the following

subcases:

Subcase 3a: All level N − 1 sets are red,

Subcase 3b: There exists an blue element T at level N −1 and a red element S ⊂ T

with |S| ≤
⌊

9
16n − 13

16

⌋
.

Subcase 3c: There exists an blue element T at level N − 1 such that all subsets of

T at levels {0, 1, 2, . . . ,
⌊

9
16n − 13

16

⌋
} are all blue.

In Subcases 3a, apply Lemma 2.1 with parameters ′m′ = n, ′n′ = 3, ′n′′ = 3, ′a′ = 0,

and ′b′ = 2. Since

3 + (3 + 1 − 0 − 2)n = 2n + 3 <
37
16n + 55

16 ≤ N,

QN contains either a blue Qn or a red Q3, a contradiction.
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In subcases 3b, since ∅ is blue and S is red, and T is blue and [N ] is red, the poset

Q[S,T ] of dimension at least

N − |S| − 1 =
⌈37

16n + 55
16

⌉
−

⌊ 9
16n − 13

16

⌋
− 1 ≥

⌈7
4n + 9

4

⌉

can be viewed as having bottom and top elements colored both red and blue. By

Lemma 2.3, Q[S,T ] contains a red Q3 or a blue Qn.

In subcase 3c, apply Lemma 2.1 to Q[∅,T ] with parameters ′m′ = 3, ′n′ = n,
′n′′ = n, ′a′ = ⌊ 9

16n − 13
16⌋ + 1, and ′b′ = 1. Since

n +
(

n + 1 −
⌊ 9

16n − 13
16

⌋
− 1 − 1

)
· 3 ≤ 37

16n + 39
16 ≤ N − 1,

QN contains either a blue Qn or a red Q3, a contradiction. In all cases, we prove QN

contains either a blue copy of Qn or a red copy of Q3.

2.5 Upper bound for R(Qm, Qn)

Recall the definition of R̂(Qm, Qn) from Section 2.1. Before proving Theorem 1.8, we

first prove the following lemma.

Lemma 2.4. For all n > m ≥ 4, we have R̂(Qm, Qn) ≤ (m − 1) n +
⌊

1
3m

⌋
.

Proof of Lemma 2.4: By way of contradiction, suppose there is a red/blue coloring

c of QN (with N = (m − 1)n + ⌊1
3m⌋) such that ∅ and [N ] are colored both red and

blue, all other elements of QN receive one color, and QN contains neither a red copy

of Qm nor a blue copy of Qn.

Let ℓ = ⌈1
3 + n

m
⌉ be a fixed integer. Consider the following cases.

Case 1. There exist red sets A1, A2, . . . , Am in the bottom ℓ levels of QN with the

following property.

∀i ∈ [m], ∃xi ∈ [N ] such that xi ∈ Ai, but xi ̸∈ Aj ∀j ∈ [m]\i. (2.7)
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Apply Lemma 2.1 in an altered way so that the colors "red" and "blue" are ex-

changed. The parameters of Lemma 2.1 are set as follows: ′n′ = m, ′m′ = n, ′a′ = 2,
′b′ = 1, and ′n′′ = | ⋃m

i=1 Ai| ≤ m(ℓ − 1). Let Qn′ = Q[∅,
⋃m

i=1 Ai] be the sublattice of

QN with the minimum element ∅ and the maximum element ⋃m
i=1 Ai. The mapping

I : Qm → Qn′ is defined as I(S) = ⋃
j∈S Aj for any S ∈ Qn. By property (2.7), each

Ai has a private representative xi. Thus I is a poset embedding. Since Ai’s are red

while ∅ and [N ] are both red and blue, the two items in Lemma 2.1 are satisfied. It

is clear that n′ ≥ m ≥ a + b. We also have

n′ + (m + 1 − a − b)n ≤ m(ℓ − 1) + (m − 2)n

≤ m
(1

3 + n

m

)
+ (m − 2)n

≤ (m − 1)n + m

3 .

Note the left hand side is an integer. We have

n′ + (m + 1 − a − b)n ≤ (m − 1)n +
⌊

m

3

⌋
= N.

By Lemma 2.1, QN contains either a red copy of Qm or a blue copy of Qn.

Case 2. There exist red sets B1, B2, . . . , Bm in the top ℓ levels of QN with the

following property.

∀i ∈ [m], ∃xi ∈ [N ] such that xi ̸∈ Bi, but xi ∈ Bj ∀j ∈ [m]\i. (2.8)

This case is the same as Case 1, except everything is flipped over the middle

levels(s) of QN . Using a similar argument, we show that QN contains a blue Qn or a

red Qm.
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Case 3. There do not exist sets A1, A2, . . . , Am with property (2.7) or sets B1, B2, . . . , Bm

with property (2.8).

Since there do not exist sets A1, A2, . . . , Am with property (2.7), we make the

following claim.

Claim I: There exists a set L with cardinality at most (m − 2)(ℓ − 1) + 1 such

that all subsets in the family ⋃ℓ−1
i=1

(
[N ]\L

i

)
are blue.

We prove Claim I by contradiction. Assume Claim I does not hold.

Pick a nonempty red set A1 with minimum cardinality. We have |A1| ≤ ℓ − 1.

Otherwise, Claim I holds with L = ∅. Let x1 be any element in A1.

Now construct the pairs (Ai, xi) for i = 2, . . . , m by iterations. Suppose we have

already constructed the pairs (Aj, xj) for j = 1, . . . , i − 1. Pick a nonempty red set

Ai ⊂ [N ] \ (⋃i−2
j=1 Aj ∪ {xi−1}) of minimum cardinality. We must have |Ai| ≤ ℓ − 1.

Otherwise, Claim I holds with L = ⋃i−2
j=1 Aj ∪ {xi−1}. Since Ai−1 is minimal, Ai is not

a proper subset of Ai−1. Let xi be an element in Ai \ Ai−1.

By the construction, we have

Ai ∩ Aj = ∅ for all j = 1, . . . , i − 2,

xi−1 ̸∈ Ai and xi ̸∈ Ai−1.

This implies, for all j ̸= i, xi ∈ Ai, but xi ̸∈ Aj. The constructed sets A1, A2, . . . , Am,

along with the elements x1, x2, . . . , xm, respectively, satisfy property (2.7), a contra-

diction.

By symmetry, we prove the following claim since there do not exist sets B1, B2, . . . , Bm

with property (2.8).

Claim II: There exists a set L′ with cardinality at most (m − 2)(ℓ − 1) + 1 such

that all subsets of the family ⋃ℓ−1
i=1

(
[N ]\L′

N−|L′|−i

)
∪ L′ are blue.
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Apply Lemma 2.1 with n′ = n and a = b = ℓ. Since n < N−2 ((m − 2)(ℓ − 1) + 1)

for all m, n ≥ 4, we can find a set S of size n such that S ∩ (L ∪ L′) = ∅. Let

I : Qn → QS be the canonical mapping. By Claim I and II, both items 1 and 2 in

Lemma 2.1 are satisfied. The inequality n′ ≥ n ≥ a + b is trivially true. The other

inequality can be verified as follows:

n′ + (n + 1 − a − b)m = n + (n + 1 − 2ℓ)m

≤ n +
(

n + 1 − 2
(1

3 + n

m

))
m

= (m − 1)n + m

3 .

Note the left hand side is an integer. We have

n′ + (n + 1 − a − b)m ≤ (m − 1)n +
⌊

m

3

⌋
= N.

All conditions of Lemma 2.1 are verified. Thus, QN contains either a red copy of Qm

or a blue copy of Qn. The proof of Lemma 2.4 is finished.

Having proved Lemma 2.4, we now prove Theorem 1.8.

Proof of Theorem 1.8: For any integers m, n ∈ N with n > m ≥ 4, let N =⌈
(m − 1 + 2

m+1)n + 1
3m + 2

⌉
. Suppose there exists a red/blue coloring of QN con-

taining no red copy of Qm and no blue copy of Qn. Consider a red/blue coloring c

of QN . Let T be a red element such that min{N − |T |, |T |} ≤ min{N − |T ′|, |T ′|}

for all red elements T ′ ∈ QN . Without loss of generality, let N − |T | ≤ |T |. Let

t := N − |T |. Let S be a red element such that |S| ≤ |S ′| for all red elements

S ′ ∈ Q[∅,T ]. Let s := |S|. We consider the following cases.

Case 1. s ̸= 0 and t ̸= 0.

It follows from Lemma 2.4 that

N − (s + t) + 1 = |T | − |S| + 1 ≤ R̂(Qm, Qn) ≤ (m − 1)n + 1
3m. (2.9)

We make the following claim.
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Claim I: N ≤ n + m(n + 1 − (s + t)) − 1.

Proof of Claim I: Otherwise, assume N ≥ n + m(n + 1 − (s + t)). Let R be

any subset of T with cardinality n. Applying Lemma 2.1 on QN with n′ = n, a = s,

b = t, and the canonical mapping I from Qn to QR, we conclude that QN contains

either a blue copy of Qn or a red copy of Qm, a contradiction.

From Inequality (2.9), we have

s + t = N − (|T | − |S|) ≥ N −
(

(m − 1) n + 1
3m − 1

)
. (2.10)

Combining (2.10) with Claim I, we have

N ≤ n + m(n + 1 − (s + t)) − 1

≤ n + m
(

n + 1 −
(

N − (m − 1) n − 1
3m + 1

))
− 1.

Solving for N , we get

N ≤
(

m − 1 + 2
m + 1

)
n + 1

3m − 1
3 − 2

3m + 3 < N, (2.11)

a contradiction.

Case 2. s = 0 and t = 0.

In this case, both ∅ and [N ] are necessarily red. Consider levels 1, 2, N − 2, and

N − 1. We have three subcases:

Subcase 2a: There exist two comparable blue sets S and T with |S| = 1, |T | = N−1.

Subcase 2b: All sets in levels 1 are red.

Subcase 2c: There exists a blue set S at level 1, but no blue set containing S at

level N − 1.

In Subcase 2a, we consider Q[S,T ]. Since ∅ is red and S is blue, consider the bottom

element of Q[S,T ] to be both red and blue. Since [N ] is red and T is blue, consider
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the top element of Q[S,T ] to be both red and blue. By Lemma 2.4, we have

N ≤ R̂(Qm, Qn) + 2 ≤ (m − 1)n +
⌊1

3m
⌋

+ 2 <
(

m − 1 + 2
m + 1

)
n + 1

3m + 1 ≤ N,

a contradiction.

In Subcase 2b, we apply Lemma 2.1 with parameters ′m′ = n, ′n′ = m, ′n′′ = m,
′a′ = 2, and ′b′ = 1. Since N ≥ (m − 1 + 2

m+1)n + 1
3m + 2 > m + (m − 2) · n. By

Lemma 1, QN contains either a blue Qn or a red Qm.

In Subcase 2c, since ∅ is red, we can view S is both red and blue. We apply

Lemma 2.1 to Q[S,[N ]] with parameters ′m′ = n, ′n′ = m, ′n′′ = m, ′a′ = 1, and
′b′ = 2. Since N − 1 ≥ (m − 1 + 2

m+1)n + 1
3m + 2 − 1 > m + (m − 2) · n. By Lemma

1, Q[S,[N ]] contains either a blue Qn or a red Qm, as does QN .

Case 3. s ̸= 0 and t = 0.

In this case, ∅ is necessarily blue and [N ] is necessarily red. We have three

subcases:

Subcase 3a: There is a pair S, T of comparable elements, where S is red, T is blue,

1 ≤ |S| ≤
⌊

2n
m+1

⌋
− 1 and |T | = N − 1 or N − 2.

Subcase 3b: All sets in levels N − 1 and N − 2 are red.

Subcase 3c: There is a blue set T in level N − 1 or N − 2 such that all subsets of

T in levels {1, 2, . . . ,
⌊

2n
m+1

⌋
} are blue.

In Subcase 3a, since ∅ is blue and S is red, and T is blue and [N ] is red, consider

the top and bottom elements of Q[S,T ] to be both red and blue. By Lemma 2.4, we

have

N ≤ R̂(Qm, Qn) + |S| + N − |T | ≤ (m − 1)n +
⌊1

3m
⌋

+
⌊ 2n

m + 1 − 1
⌋

+ 2

<
(

m − 1 + 2
m + 1

)
n + 1

3m + 2 ≤ N,
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a contradiction.

In Subcase 3b, we apply Lemma 2.1 to QN with parameters ′m′ = n, ′n′ = m,
′n′′ = m, ′a′ = 0, and ′b′ = 3. Since N ≥ (m−1+ 2

m+1)n+ 1
3m+2 > m+(m+1−0−3)·n.

By Lemma 1, QN contains either a blue copy of Qn or a red copy of Qm.

In Subcase 3c, we apply Lemma 2.1 to Q[∅,T ] with parameters ′m′ = m, ′n′ = n,
′n′′ = m, ′b′ = 1, and ′a′ = 2n

m+1 . Since N − 2 ≥ (m − 1 + 2
m+1)n + 1

3m > n + (n + 1 −

1 − 2n
m+1) · m, by Lemma 1, Q[∅,T ] contains either a blue copy of Qn or a red copy of

Qm, as does QN .

In all cases, we prove QN contains either a blue copy of Qn or a red copy of

Qm.
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Chapter 3

Small Poset Ramsey Numbers

3.1 Determining the value R(Q2, Q3)

Proof of Theorem 1.9: Consider a coloring c of Q4 defined by

c(S) =


blue if |S| is even

red if |S| is odd

for all sets S in Q4. This coloring of Q4 contains no red copy of Q2 and no blue

copy of Q3. Thus, R(Q2, Q3) > 4. Now we need only show R(Q2, Q3) ≤ 5.

Consider a red/blue coloring of Q5 containing no red Q2 and no blue Q3. Consider

the following cases.

Case 1. Both ∅ and [5] are colored red.

Let u, v be two red elements in Q5. If u and v are incomparable, {∅, u, v, [5]} form

a red Q2. So every red elements in Q5 lies on the same maximal chain. With the

exception of this maximal chain, the rest of Q5 is blue, and we have a blue Q3, a

contradiction.

Case 2. One of ∅ and [5] is colored red, and the other is blue.

Without loss of generality, suppose ∅ is red and [5] is blue. Suppose there exists a

red set T with |T | = 4. Without loss of generality, let T be {1, 2, 3, 4}. Consider Q[∅,T ],

and let U, V be two red elements in Q[∅,T ]. If U and V are incomparable, {∅, U, V, T}

form a red Q2. So every red element in Q[∅,T ] lies on the same maximal chain. Without
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loss of generality, suppose this maximal chain is {∅, {1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}}.

Then the sets {4}, {1, 4}, {2, 4}, {3, 4}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4} are all blue. These

sets, along with [5], form a blue Q3. Thus, every set in level 4 of Q5 is blue.

Suppose there exist two red sets S1 and S2 with |S1| = |S2| = 1. Then S1 ∪ S2 are

blue. Moreover, every set in Q[S1∪S2,[5]] is blue. Then Q[S1∪S2,[5]] is a blue copy of Q3,

a contradiction. Thus, Q5 has at most one red level 1 set.

Without loss of generality, suppose {1} is the only red level 1 set in Q5. Note that

2̄, 3̄, and 4̄ are all blue. Consider Q[{5},2̄∩3̄]. If 2̄ ∩ 3̄ = {1, 4, 5} and {4, 5} are both

red, then {∅, {1}, {4, 5}, {1, 4, 5}} is a red copy of Q2. Thus, at least one of {4, 5}

and {1, 4, 5} is blue. Similarly, when we consider Q[{5},2̄∩4̄] and Q[{5},3̄∩4̄], we conclude

that at least one of {3, 5} and {1, 3, 5} is blue and at least one of {2, 5} and {1, 2, 5}

is blue. These blue sets, along with {5}, 2̄, 3̄, 4̄, and [5] form a blue copy of Q3. Thus,

Q5 has no red level 1 set.

Now, note that {1, 2}, {1, 3}, and {1, 4} cannot all be blue. Otherwise,

{{1}, {1, 2}, {1, 3}, {1, 4}, 2̄, 3̄, 4̄, [5]} is a blue copy of Q3. Suppose, without loss

of generality, that {1, 2} is red. Consider Q[{1},{1,2,3}]. If {2, 3} and {1, 2, 3} are both

red, then {∅, {1, 2}, {2, 3}, {1, 2, 3}} is a red copy of Q2. Thus, at least one of {2, 3}

and {1, 2, 3} is blue. Similarly, when we consider Q[{1},{1,2,4}] and Q[{1},{1,2,5}], we

conclude that at least one of {2, 4} and {1, 2, 4} is blue and at least one of {2, 5} and

{1, 2, 5} is blue. These blue sets, along with {1}, 3̄, 4̄, 5̄, and [5] form a blue copy of

Q3, a contradiction.

Case 3. Both ∅ and [5] are colored blue.

Suppose Q5 has at most 2 red level 1 sets. In other words, Q5 has at least 3

blue level 1 sets. Without loss of generality, suppose {1}, {2}, and {3} are all blue.

Consider Q[{1,2},3̄]. If every set in Q[{1,2},3̄] is red, Q[{1,2},3̄] is a red copy of Q2. Thus,

there is at least one blue set in Q[{1,2},3̄]. Similarly, there is at least one blue set in
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Q[{1,3},2̄] and at least one blue set in Q[{2,3},1̄]. These sets, along with ∅, {1}, {2}, {3},

and [5], form a blue copy of Q3. Thus, Q5 has at least 3 red level 1 sets. By a similar

argument, Q5 also has at least 3 red level 4 sets.

Let S1, S2, S3 be 3 red level 1 sets, and let T1, T2, T3 be 3 level 4 sets. Consider

the following subcases.

Subcase 3a. At least one of S1, S2, and S3 is a subset of T1, T2, and T3.

Without loss of generality, let S1 = {1} be red and a subset of T1 = 3̄ = {1, 2, 4, 5},

T2 = 4̄ = {1, 2, 3, 5}, and T3 = 5̄ = {1, 2, 3, 4}, all of which are red. Note that no two

of {1, 2, 3}, {1, 2, 4}, and {1, 2, 5} can be red without creating a red copy of Q2. Also,

no two of {1, 2}, {1, 3}, {1, 4}, and {1, 5} can be red without creating a red copy of

Q2.

Suppose {1, 2} is red, which means {1, 3}, {1, 4}, and {1, 5} are all blue, and

{1, 4, 5}, {1, 3, 5}, and {1, 3, 4} are all blue. These 6 sets, along with ∅ and [5], form

a blue copy of Q3, a contradiction.

Suppose exactly one of {1, 2, 3}, {1, 2, 4}, and {1, 2, 5} is red. Without loss of

generality, suppose {1, 2, 3} is red. Neither {1, 4} nor {1, 5} can be red without

creating a red copy of Q2 with {1}, {1, 2, 3}, and {1, 2, 3, 4}. Suppose {1, 3} is red,

which means {1, 2}, {1, 4}, and {1, 5} are all blue. Then {1, 4, 5} is red. If {1, 3, 4, 5}

is red, it forms a red copy of Q2 with {1}, {1, 3}, and {1, 4, 5}. If {1, 3, 4, 5} is blue,

it forms a blue copy of Q3 with ∅, {1, 2}, {1, 4}, {1, 5}, {1, 2, 4}, {1, 2, 5}, and [5].

Thus, Q5 contains a red copy of Q2 or a blue copy of Q3, a contradiction.

Suppose {1, 2, 3} is red and none of {1, 3}, {1, 4}, and {1, 5} are red. Then

{1, 4, 5} is red, and {1, 3, 4} and {1, 3, 5} are blue. Then {2, 4}, {2, 5}, {3, 4}, and

{3, 5} are blue, and {2, 4, 5} is red. Then {4}, {5}, and {4, 5} are blue. Then {4},

{5}, {1, 2}, {4, 5}, {1, 2, 4}, and {1, 2, 5}, along with ∅ and [5], form a blue copy of

Q3, a contradiction.
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Now suppose none of {1, 2, 3}, {1, 2, 4}, or {1, 2, 5} are red. Again, no two of

{1, 2}, {1, 3}, {1, 4} and {1, 5} are red. Suppose one of {1, 3}, {1, 4}, and {1, 5}

is red. Without loss of generality, suppose {1, 3} is red. Then {1, 4, 5} is red, and

{1, 3, 4, 5} is blue. Then {1, 2}, {1, 4}, {1, 5}, {1, 2, 3}, {1, 2, 5}, and {1, 3, 4, 5}, along

with ∅ and [5], form a blue copy of Q3, a contradiction.

Suppose none of {1, 2}, {1, 3}, {1, 4}, or {1, 5} are red. Then {1, 4, 5}, {1, 3, 4},

and {1, 3, 5} are all red, and {1, 3, 4, 5} is blue. Then {1, 2}, {1, 3}, {1, 4}, {1, 2, 3},

{1, 2, 4}, and {1, 3, 4, 5}, along with ∅ and [5], form a blue copy of Q3, a contradiction.

In any case where at least one of S1, S2, and S3 is a subset of T1, T2, and T3, Q5

contains a red copy of Q2 or a blue copy of Q3.

Subcase 3b. None of S1, S2, and S3 is a subset of T1, T2, and T3.

Without loss of generality, let S1 = {1}, S2 = {2}, S3 = {3}, T1 = 1̄ = {2, 3, 4, 5},

T2 = 2̄ = {1, 3, 4, 5}, and T3 = 3̄ = {1, 2, 4, 5} all be red. Certainly, if every level 2

set and every level 3 set is blue, or if one or both of {4, 5} and {1, 2, 3} are the only

red sets, then Q5 contains a blue copy of Q3.

Suppose one of {1, 2}, {1, 3} and {2, 3} is red. Without loss of generality, suppose

{1, 2} is red. Then {1, 4}, {1, 5}, {2, 4}, {2, 5}, {1, 4, 5}, and {2, 4, 5} are all blue.

Suppose either {1, 2, 3, 4} or {1, 2, 3, 5} is red. Without loss of generality, suppose

{1, 2, 3, 4} is red. Then {1, 3}, {2, 3}, {1, 3, 4}, and {2, 3, 4} are all blue, and {1, 2, 3, 5}

is red. Then {1, 3, 5} and {2, 3, 5} are blue. The sets {1, 4}, {1, 5}, {1, 3}, {1, 4, 5},

{1, 3, 4}, and {1, 3, 5}, along with ∅ and [5], form a blue copy of Q3, a contradiction.

Now suppose {1, 2} is red and {1, 2, 3, 4} and {1, 2, 3, 5} are both blue. Then

{1, 3} is red, and {1, 2, 3} is blue. Then {1, 4}, {1, 5}, {1, 2, 3}, {1, 4, 5}, {1, 2, 3, 4},

and {1, 2, 3, 5}, along with ∅ and [5], form a blue copy of Q3, a contradiction. The

argument is similar if any one of {1, 4, 5}, {2, 4, 5}, and {3, 4, 5} is red.

Suppose any level 2 set other than {1, 2}, {1, 3}, {2, 3}, or {4, 5} is red. Without
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loss of generality, suppose {1, 4} is red. Then {1, 2}, {1, 3}, {1, 5}, {1, 2, 5}, and

{1, 3, 5} are all blue. Then {1, 2, 3} is red, and {1, 2, 3, 4} is blue. Then {1, 2}, {1, 3},

{1, 5}, {1, 2, 5}, {1, 3, 5}, and {1, 2, 3, 4}, along with ∅ and [5], form a blue copy of

Q3, a contradiction. The argument is similar if any level 3 set other than {1, 4, 5},

{2, 4, 5}, {3, 4, 5}, or {1, 2, 3} is red.

In any case where none of S1, S2, and S3 is a subset of T1, T2, and T3, Q5 contains

a red copy of Q2 or a blue copy of Q3. This concludes the proof of Theorem 1.9.
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