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ABSTRACT

 The purpose of this study is to evaluate the performance of three commonly used 

model fit indices when measurement invariance is tested in the context of multiple-group 

CFA with categorical-ordered data. As applied researchers are increasingly aware of the 

importance of testing measurement invariance, as well as Likert-type scales are 

frequently used in the social and behavioral sciences, specific guidelines are in need for 

establishing measurement invariance using model fit indices.  

To achieve the study goal, two Monte Carlo simulation studies were conducted. 

Study 1 investigated the sampling variability of fit indices under different levels of 

invariance tests. Based on the sampling variability of fit indices, cutoff values for various 

levels of invariance were proposed. Study 2 investigated the influence of several 

conditions on the sensitivity of changes in fit indices to two commonly used non-

invariance levels: metric non-invariance and scalar non-invariance. Then, rejection rates 

based on cutoff values of proposed fit indices were examined in Study 2. 

Findings indicated that all three fit indices (CFI, RMSEA, and SRMR) appeared 

to be more sensitive to lack of invariance in thresholds than loadings. Different cutoff 

values may be applied under various conditions with categorial-ordered data. In addition, 

cutoff values should be used with caution as factors impacted changes in model fit 

indices differently. Recommendations for the use of model fit indices in the multiple-

group CFA invariance context were provided for applied researchers. 
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CHAPTER 1  

INTRODUCTION

In the social and behavioral sciences, researchers use various instruments (e.g., 

surveys, tests, questionnaires) to collect data for use in investigating characteristics of 

latent constructs. When researchers use these instruments, ensuring the validity 

associated with the factor scores is a major issue in psychometrics. More simply, the 

measures should produce precise measurements of the concepts they are supposed to be 

measuring (Bauer, 2017), and as such, provide evidence to assist in the interpretation of 

the underlying latent constructs. 

Validity evidence takes many forms including face validity, content validity, 

criterion validity, and construct validity (Rawls, 2009). Considering construct validity, 

one area which may be of importance to researchers is to examine the equivalence of a 

latent construct across different conditions (e.g., gender, ethnicity, or occasions of 

measurement). By assessing invariance, one can ensure that the focal construct is 

measured and interpreted in the same manner across groups. 

In the educational literature, the procedure of examining the equivalency of the 

construct of interest across groups is called measurement invariance (MI). If researchers 

are interested in making comparisons across groups or measurement occasions, 

measurement invariance must be satisfied. This will ensure that the indicator responses 

depend only on latent scores and not on the group membership. In this way, the 
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differences in the observed scores can accurately reflect the true (i.e., latent) differences 

of the construct being measured. When measurement invariance does not hold, the 

measure produces scores that differ among groups due to “other” factors rather than 

differences on the latent variable. For example, scores on a measure may be more 

strongly endorsed by one group than another after controlling for the latent construct of 

interest. Instead of measuring only individual differences on the focal construct, we are 

also measuring irrelevant factors (Meredith, 1993). As a result, the measure fails to 

accurately reflect true differences of the targeted construct and making group 

comparisons is questionable. Thus, the evaluation of measurement invariance is an 

essential step for researchers to be able to draw valid conclusions about latent construct 

differences across groups or measurement occasions.  

Researchers are becoming increasingly aware the importance of testing 

measurement invariance. The literature on this topic has rapidly increased since 1990 

(Bauer, 2016). Specifically, in a search of the APA PsycInfo database between 1974-

2020 with the exact phrase in the title and abstract- Measurement Invariance, only 14 

published articles related to measurement invariance were found before 1990 (see Figure 

1.1).  However, after 1990, the number of MI articles increased dramatically to 3,855, 

with over 85% of these studies (2,831) conducted in the last 10 years (2010- 2020). 

 Additionally, a substantial number of studies related to measurement invariance 

have been published across many applied disciplines such as education, psychology, 

developmental psychology, marketing, and organizational sciences (Vandenberg & 

Lance, 2000). This substantial increase in the use of measurement invariance relies upon 
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the rapid developments in statistics, which provided many new analytical tools for 

assessing measurement invariance in applied contexts. 

 
 

Figure 1.1 The trend of publications related to measurement invariance from 1974 to 

2020. Note:  Data are from APA PsycInfo database. 

Measurement invariance is often detected by using latent variable modeling 

techniques, such as structural equation modeling (SEM) or item response theory (IRT). 

Confirmatory factor analysis (CFA) is the most popular analytical strategy to explore the 

underlying latent structure among a set of observed variables and to provide evidence of 

construct validity in theory-based instrument construction (Li, 2016). CFA was originally 

developed for use with continuous indicators, and the maximum likelihood (ML) 

estimation method is often employed to estimate model parameters. When ML is used to 

estimate CFA model parameters, observed data need to follow the assumption of 

multivariate normality. Given multivariate normally distributed data, adequate sample 

size, and proper model specification, ML provides consistent, efficient, and unbiased 

parameter estimates and asymptotic standard errors (Bollen, 1989). 
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However, one major consideration of examining CFA models is that the 

indicators or survey items in the social and behavioral sciences are often ordinal (i.e., 

Likert-type scale items) and the observed data often present some degree of non-

normality (DiStefano & Morgan, 2014).  If a questionnaire uses a Likert scale to collect 

data, the use of the ML estimator is no longer appropriate, as the multivariate normality 

assumption does not hold.  Further, it is inappropriate to use the ML estimator when data 

only have a few response categories because the multivariate normality is severely 

violated, exhibiting high levels of skewness and/or kurtosis (DiStefano & Morgan, 2014; 

Lubke & Muthén, 2004).  

To accommodate the non-normal nature of ordinal data, several alternative 

estimation techniques have been developed to evaluating the hypothesized relations 

among ordinal variables, such as diagonally weighted least squares (DWLS), weighed 

least squares (WLS), or robust weighted least squares (WLSMV). Prior research has 

noted that these alternative estimators may perform better than the ML estimator when 

ordinal data are analyzed (e.g., Flora & Curran, 2004; Sass, 2011; Yuan & Bentler, 2000). 

For example, factor loading estimates by WLS and WLSMV were less biased than ML 

estimator (Beauducel & Herzberg, 2006); and comparing to ML-based chi-square values, 

WLSMV-based chi-square values exhibited a lower Type I error rate when categories 

were small (Beauducel & Herzberg, 2006). Flora and Curran (2004) concluded that 

overall performance of WLSMV was superior to the performance of WLS across almost 

all conditions. Generally, previous studies have documented that WLSMV estimator for 

categorical data performs better across many conditions often encountered in empirical 

work (DiStefano & Morgan; 2014; Schmitt, 2011). Given the benefits, WLSMV is 



5 

recommended for estimating CFA model parameters when data are ordered-categorical 

(Muthén & Muthén, 2010). 

Within the CFA framework, one common approach to assess measurement 

invariance is the multiple-group (MG) model. When using the multiple-group CFA (MG-

CFA) framework to evaluate across-group invariance, researchers often divide the data 

by groups, and different confirmatory factor models are compared to identify similarities 

and differences across groups by imposing equality constraints on model parameters 

(e.g., item loadings, intercepts, or residuals). Based on degrees of model parameter 

constraints, measurement invariance levels are often reported hierarchically. Vandenberg 

and Lance (2000) illustrated eight levels of measurement invariance: covariance matrices 

(invariance of covariance matrices across groups), configural (invariance of the model 

form), metric (invariance of item loadings), scalar (invariance of item intercepts), strict 

(residual invariance), as well as equivalence of factor variances, covariances, and means.  

To determine invariance level of CFA models across groups, most researchers 

rely on assessing model fit statistics. The likelihood ratio difference test (differences in 

chi-square) has been the most frequently used statistic for testing the difference between 

nested models (i.e., a baseline model vs. a more restricted model) (Chen, 2007; Putnick, 

2016). If the result of likelihood ratio difference test indicates non-significance, then the 

model with more restricted parameter constraints performs as well as the baseline model. 

Then, further constraints on parameters can be added to test a higher level of invariance.  

Likelihood ratio difference test, however, are with several limitations. First, it is 

sensitive to sample size (Chen, 2007). Specifically, studies have shown that both small 

and large sample sizes may impact chi-square results, which may lead to the false 
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rejection of models (Bergh, 2015), and induce bias of parameter or standard error 

estimates (Flora & Curran, 2004; Babyak & Green, 2010).  Second, although the 

likelihood ratio statistic can be estimated using various estimation methods, the 

maximum likelihood (ML) is the most popular estimator used by applied researchers (Hu 

& Bentler, 1999). Thus, it is important for researchers to make sure data follows the 

multivariate normality (Alavi et al., 2020). Third, instead of testing whether measurement 

invariance holds approximately, likelihood ratio test assesses whether measurement 

invariance holds exactly, which may be too stringent for practical purposes (Ene, 2020). 

In such cases, alternative model fit indices, such as the Comparative Fit Index 

(CFI), the Tucker-Lewis Index (TLI), the Root Mean Squared Error of Approximation 

(RMSEA), or the Standardized Root Mean Square Residual (SRMR) are recommended 

as a supplement to evaluate measurement invariance. Model fit is used to evaluate how 

well the proposed model fits a set of data. With invariance testing, configural invariance 

is tested by evaluating multiple fit indices using common benchmarks. To determine the 

rest levels of invariance, model fit indices of two nested models are compared. 

Researchers can decide whether the more restricted model, with more model parameters 

constraints imposed, fits less well than the less restricted model with fewer constraints on 

the model parameters (Vandenberg & Lance, 2000). For example, between the nested 

models of configural and metric models, the only difference between the two models is 

attributed to the imposed constraints on the factor loadings. By computing the difference 

between fit statistics for two models (e.g., ΔCFI, ΔRMSEA), researchers can decide 

whether metric invariance holds or not comparing to the configural invariance.  
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Rather than using “typical” cutoffs, several researchers have proposed criteria to 

evaluate changes in fit indices when testing measurement invariance with continuous 

data. For example, the commonly used criteria in applied studies are Cheung and 

Rensvold’s (2002) criterion of a -0.01 change in CFI between nested models, as well as 

Chen’s (2007) criterion of a -0.01 change in CFI, combined with changes in RMSEA of 

0.015 and SRMR of 0.03 (for metric invariance) or 0.015 (for scalar or residual 

invariance).  However, in the measurement invariance literature, only a few research 

studies have investigated criteria of differences in model fit indices (e.g., ΔRMSEA, Δ

CFI, ΔSRMR) (e.g., Chen, 2007; Cheun, & Rensvold, 2002; Rutkowski & Svetina, 2014; 

Rutkowski, & Svetina, 2017). The research is even more limited when considering how 

to evaluate changes in fit when analyzing ordered-categorical data. Although the use of 

measurement invariance with multiple-group CFA in applied research has rapidly 

increased, there are not generally criteria in MG-CFA for determining invariance based 

on changes in model fit indices when ordered-categorical data are analyzed.  

Given the importance of measurement invariance in the social and behavioral 

sciences, there is a gap in the literature concerning changes of model fit indices when 

ordered-categorical data are analyzed with MG-CFA. This study filled the existing gap by 

examining the performance of model fit indices under a broad range of conditions when 

ordinal data are analyzed. Specifically, the current study aimed to answer the following 

research questions:  

1) What criteria of changes in model fit indices should be recommended to evaluate 

measurement invariance of ordinal data? 
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2) Are proposed criteria of changes in model fit indices consistent with measurement 

invariance at the different levels: factor loadings, thresholds, residual variances, 

factor variance, covariance, and mean?  

3) What conditions impact the performance of changes in fit indices on detecting the 

measurement invariance?  

4) Are currently proposed standards for evaluating measurement invariance with 

continuous data suitable for the measurement invariance with ordinal data?  
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CHAPTER 2  

LITERATURE REVIEW

Measurement invariance is an important aspect of instrument validation, and the 

establishment of measurement invariance is considered a prerequisite to examining group 

differences (i.e., invariance of model parameter estimates). When group differences occur 

based on the constructs that instruments tend to measure, the conclusions drawn from a 

study may be inaccurate as the constructs may not reflect the same meanings across 

different groups. In other words, inferences about group differences may be due to 

measurement bias and not due to different positions on the latent variable(s). Although 

measurement invariance has been examined in many previous studies, the investigation 

of criteria to use when examining model fit is limited. Applications of fit indices with 

ordered categorical data under the measurement invariance topic are even more sparse. 

The purpose of this study was to examine model fit indices commonly used for 

evaluation of measurement invariance when ordered categorical data are analyzed.  

This chapter presented an overview of literature on measurement invariance 

testing in social sciences. I started with an introduction to the history and statistical 

modeling development of measurement invariance testing. Definitions on different types 

of measurement invariance were provided. A review of invariance testing using multiple-

group confirmatory factor analysis (MG-CFA) with both continuous and ordinal data was 

also given. After that, I focused on an overview of steps involved in conducting the 
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multiple-group CFA, including invariance constraints, estimation methods, and fit 

evaluation. The chapter ended up with a summary of the current gaps in the research.  

2.1 Measurement Invariance   

The idea of testing measurement invariance (MI) can be traced back 

approximately 60 years ago, when the public started to be concerned that cognitive ability 

tests were unfair to minority examinees (e.g., Angoff, 1993; Meredith, 1964; Walker, 

2011). Since that time, researchers have emphasized the importance of establishing 

measurement invariance for test validation, and considerable discussion has been devoted 

to whether the latent construct of an instrument (e.g., ability, depression) is measured in 

the same way when it is administered across groups such as gender, ethnicity, culture, or 

across time points. Without establishing measurement invariance, any observed 

differences (e.g., means, regression coefficients) across groups/time may not reflect the 

true differences in the constructs of interest (Shi, 2016). Under such situations, making 

group comparisons is questionable as violations of measurement invariance threaten the 

reliability and validity associated with construct scores. Much research has been done on 

this issue, and with the rapid development of new statistical techniques in recent decades, 

researchers in psychology and education are able to use advanced statistical approaches 

to investigate measurement invariance, especially within the latent variable modeling 

frameworks (e.g., Cheung & Rensvold, 2002; Mellenbergh, 1989; Millsap, 2011; 

Rensvold & Cheung, 1998; Widaman & Reise, 1997).  

Measurement invariance is a general term that can be applied to a variety of 

psychometric models. In psychological and educational research, measurement 

invariance is often studied within latent variable modeling frameworks such as SEM, 
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IRT, and some methodologists have even suggested integrating the two approaches (e.g., 

Reise, et al., 1993; Widaman & Grimm, 2014). Among these approaches, multiple-group 

confirmatory factor analysis (MG-CFA) (Jöreskog, 1971; Meredith, 1993) is the most 

widely used method in applied research. In general, this analytic approach tests whether 

the linear relationship between the latent factor and observed variables is consistent with 

the hypothesized model across multiple groups by imposing constraints on the model 

parameters of the nested CFA models. Researchers typically assess various levels of 

measurement equivalency by comparing a series of model fit statistics. Prior studies have 

shown that this modeling strategy is very adaptable to determine the equivalence of an 

instrument’s psychometric properties at both item and latent levels (Sass, 2011). In 

addition, it has many potential practical applications such as evaluation of psychometric 

scale development (Bagozzi & Edwards, 1998), detection of item bias (Woods & Grimm, 

2011), assessment of longitudinal change (Putnick & Bornstein, 2016), or cross-group 

comparisons (Brown, 2015).  

Statistical approaches to detect measurement invariance under the IRT framework 

are also popular in large-scale high-stakes educational testing programs. Within the IRT 

context, MI is evaluated by examining whether the multi-items related to the construct(s) 

perform the same for all individuals. If the relationships exhibit differences, then 

differential item functioning (DIF) is present. DIF is defined as “the circumstance in 

which two individuals of similar ability do not have the same probability of answering a 

question in a particular way” (VandenBos, 2014; p.93).  Since this study focused on 

measurement invariance using multiple-group confirmatory factor analysis, invariance 

testing approaches under the IRT framework are not described in detail. Readers 
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interested in measurement invariance under the IRT framework can refer to Tay, et al. 

(2015) and Millsap (2011) for an overview.  

2.1.1 Definition of Measurement Invariance 

Researchers have provided definitions of measurement invariance. According to 

Mellenbergh (1989) and Millsap (2011), measurement invariance can be expressed 

mathematically as:  

f1(Yi|T = t,  Vi =  vi) = f2(yj|T = t) 

Where Yi is a p × 1 vector containing the observed items for the person i, T is the 

latent construct that is measured by Yi, and Vi is a q × 1 vector of a set of conditions (e.g., 

gender, ethnicity, age, occasions, or test settings). The function f1 represents the 

conditional distribution function of Yi given t and v, and f2 is the conditional distribution 

function of Yi given t. This equation states that the conditions ( Vi) do not directly 

influence the distribution of observed scores (Yi) other than through the influence on the 

underlying latent variable, T (Bauer, 2016).  

 If f1≠ f2 , meaning conditional independence does not hold, then it is stated 

that an item lacks MI (or exhibits DIF) in relation to  Vi. In other words, the measurement 

of T by Yi is said to be biased with respect to Vi. If  f1= f2, this indicates that MI holds, 

and the distribution of the observed items only depends on the values of the latent traits 

or latent variables without bias.  

To better understand the above mathematical formula, several points should be 

noted. First, the above mathematical definition permits us to define measurement bias as 

a violation of measurement invariance (Millsap, 2011). Second, measurement bias/non-

invariance is referred to as systematic inaccuracy in measurement (Millsap, 2011). In 
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contrast to random errors of measurement, the inaccuracy in measurement is replicable. 

For example, a test item may demonstrate that male students have a higher mean score on 

an item than female students, and this finding is observed across multiple samples of 

male and female students. Then, we may conclude that the higher mean score on an item 

for males and females is not a result of random sampling errors. Third, according to 

Millsap, researchers should differentiate the concept of systematic inaccuracy from 

systematic group differences. Systematic inaccuracy only occurs if the item does not 

reflect the actual status of the construct being measured (Millsap, 2011). For example, if 

male students truly have a higher ability than female students, the test should produce 

different scores by gender. However, if male students and female students exhibit score 

differences by gender, we may have two kinds of ambiguous interpretations: the gender 

difference could reflect a real difference in the latent construct of ability, or the item is 

systematically inaccurate (or is biased) in relation to gender.  

Mellenbergh (1989) clarified the concept of measurement invariance by bringing 

a matching criterion into the definition. Specifically, the concept of measurement 

bias/non-invariance is based on differences between groups after controlling the level of 

the latent trait. In other words, systematic group differences only refer to differences in 

some statistical properties (e.g., mean scores) for a persons’ membership in a group. 

However, measurement bias/systematic inaccuracy indicates differences in some 

statistical properties (e.g., mean scores) for members of different groups after controlling 

for the latent construct of interest.   

Measurement invariance can also be conducted across time. Putnick and 

Bornstein (2016) pointed out that “Measurement invariance assesses the psychometric 
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equivalence of a construct across groups or measurement occasions and demonstrates that 

a construct has the same meaning to those groups or across repeated measurements.” 

(p.72). Here, Putnick and Bornstein pointed out that testing measurement invariance 

longitudinally is also vital. In this situation, researchers are interested in studying 

individual changes in a latent variable over time. In order to ensure that the repeatedly 

measured variable has the same meaning over all time points, longitudinal measurement 

invariance need to be held. If the longitudinal measurement invariance does not hold, 

then, “the observed changes may reflect changes in what is being measured rather than in 

the level of the construct of interest” (Liu et al., 2017, p.486). Therefore, the evaluation 

of longitudinal measurement invariance is of importance in order to draw a valid 

conclusion about growth and change in the level of latent constructs across time points 

(Liu et al., 2017).  

According to Raju, Laffitte, and Byrne (2002), "when measurement invariance is 

present, the relationship between the latent variable and the observed variable remains 

invariant across populations. In this case, the observed mean difference may be viewed as 

reflecting only the true difference between the populations" (p. 517). In other words, 

measurement invariance tests whether the equations used to create the latent factor scores 

are equal across groups (or across the continuous variables), ensuring that the constructs 

are operationalized similarly. Once an item, a set of items, or a latent construct is deemed 

invariant across groups, comparison of groups using parameter estimates (i.e., latent 

factor means or structural coefficients) is warranted. Generally, researchers could test 

“(a) the validity of the MI assumption, (b) the equality of latent factor means across 
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groups, and (c) whether the relationships between factors (structural coefficients) are 

equal across groups for a given theoretical model.” (Sass, 2011). 

2.1.2 Partial Invariance 

Measurement invariance can be assessed across several levels of a measure, such 

as a single item, a set of items, a latent construct, or an entire measure. Ideally, 

researchers expect that full measurement invariance holds when all items’ measurement 

parameters are the same across groups. In practice, however, this is rather difficult to 

achieve. When a subset of items in a measure is thought invariant, but the other small 

subset of items exhibits DIF, then partial invariance may be examined. Partial invariance 

is supported when at least two item parameters per construct are equal across populations 

(Cieciuch & Davidov, 2015). Although full invariance does not hold and group 

comparisons based on observed scores may yield misleading interpretation (Lai, et al., 

2019), it is still sufficient and meaningful to make valid cross-group comparisons (i.e., 

means, intercepts, loadings) under partial invariance if item-level DIF is appropriately 

identified and the degree of non-invariance is small enough (Bauer, 2017; Bryne, et al. 

1989; Lai, et al., 2019).  

Recent simulation work conducted by Shi et al. (2019) has found that if all 

noninvariant parameters are correctly freed for estimation in the partially invariant model, 

the estimates of latent means, variances, inter-factor correlations, and coefficients of 

regressing factors on external variables are relatively accurate and consistent. More 

interestingly, Shi and colleagues (2019) further tested a single (correct) reference 

indicator (RI) model, where equality constraints were only placed on a one truly invariant 

item, and all other parameters including truly invariant items were freely estimated. The 
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result was intriguing, indicating that even if there is only one correct invariant item in a 

model, researchers can still obtain consistent estimations across latent means, variances, 

inter-factor correlations, and coefficients of regressing factors on external variables as 

long as that correct invariant item is identified correctly.     

2.1.3 First-order Measurement Invariance  

As stated above, measurement invariance concerns the conditional response 

distribution of the items. However, other weaker forms of invariance would also be 

useful in practice, such as the less stringent condition of first-order measurement 

invariance (Millsap, 2011, pp. 49-51). First-order measurement invariance is defined in 

terms of the conditional mean of the item responses as opposed to the conditional 

response distributions. Mathematically, this is defined as:  

E(Yi|T = t,  Vi =  vi) = E(Yi|T = t). 

Under this form of invariance, the expected value is invariant across groups, but 

other statistical properties, such as the variance of response distribution may vary across 

groups. Comparing to the full measurement invariance,  first-order measurement 

invariance is less stringent because the equation of f1(Yi|T = t,  Vi =  vi) = f2(Yi|T = t) 

may be violated, but would not necessarily be violated for the expectation of the same 

equation, that is:  E(Yi|T = t,  Vi =  vi) = E(Yi|T = t). For example, if there is a great 

amount of variability in item responses of male and female students, then the expected 

values of math ability items may still be invariant across gender, but the response 

distribution for male students would differ from female students. 

In general, measurement invariance is an important aspect of construct validity. It 

aims to ensure the measures produce a valid and comparable measurement (i.e., 
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construct-level relationships) across all observations. Many theoretical and empirical 

research studies have been conducted on this topic within the context of the latent 

variable modeling framework. Scholars have established formal definitions of 

measurement invariance and depending on the presence of DIF or the satisfaction of full 

distribution of the item responses, different types of MI can be used in practical settings. 

The importance of assessing measurement invariance has increased rapidly since 1990 

(Bauer, 2016). In addition, through the continued development of statistical software, 

methods of invariance testing have become more accessible to applied researchers. Given 

the greater prominence of measurement invariance in the field of measurement, a review 

and reexamination of the procedures used to assess MI is justified.  

2.2 Testing Measurement Invariance Using the Multiple Groups CFA 

In the social and behavioral sciences, multiple-group confirmatory factor analysis 

(CFA) is a popular analytic tool to address questions of validity during the process of 

instrument development. When using CFA models to evaluate cross-group equivalence, 

all measurement and structural parameters need to be examined across multiple groups. 

The measurement model aims to examine the equivalence of indicators including factor 

loadings, intercepts/thresholds, and residual variance. The structural model consists of the 

evaluation of the latent variables including factor means, variances, covariances, and 

regression coefficients (Brown, 2015). Generally, a common way to use CFA for testing 

multiple-group invariance is first to fit CFA models separately based on multiple 

populations or groups (e.g., gender, ethnicity). If the model fit is adequate within groups, 

then, a researcher may feel comfortable proceeding to test similarities and differences of 

factor structures and parameter estimates (factor loadings, intercepts/thresholds, variance, 
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and covariance). This is done by imposing equality constraints on model parameters. For 

example, one can set equality constraints for factor loadings across groups to identify 

optimal noninvariant parameter values that provide the best fit to the data. Finally, to 

decide on levels of invariance (e.g., configural, metric, or scalar invariance) across 

groups, one can compare model fit statistics of a series of nested multiple group models. 

When two models are nested, it indicates the more restricted model includes more 

restrictions or fewer free parameters than the less restricted model (Savalei et al., 2021).  

In the step of comparison of nested models, researchers may use a Likelihood 

Ratio Test, also known as the chi-square difference test (Kline, 2011), or employ model 

fit indices to evaluate a change between a baseline model and a more restrictive model. 

While computing a chi-square difference test to compare nested models is popular in use 

in many applications, methodologists have found that when assessing differences in 

model fit, chi-square is too sensitive to sample size, and rejection of the null hypothesis is 

inaccurate when sample size is large (Chen, 2007; Savalei et al., 2021). In a recent 

review, Crede and Harms (2019) found that 90% of 112 reviewed articles conducting 

model comparisons used chi-square values but ignored the significance of chi-square 

values for the baseline model. Another problem of the chi-square difference test is that 

this approach is known as an exact fit, which aims to find a perfect fit or no discrepancies 

between the tested model and the model reproduced by the data (DiStefano, 2016), it may 

not be plausible to obtain exact fit in applied situations.  

Alternatively, researchers may assess invariance of nested models using 

difference of model fit indices. As an increasing number of studies have investigated 

criteria on fit differences for evaluation of measurement invariance, this approach has 
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gained popularity in recent years (Crede & Harms, 2019). Based on literature, the most 

popular fit indices used for invariance evaluation are changes in RMSEA, and CFI 

(Cheung & Rensvold, 2002; Chen, 2007). However, most investigations are under the 

continuous data situation, studies related to fit indices in the context of invariance testing 

with Likert-type ordinal data are still rare.  

CFA was originally developed for use with continuous outcome data, where 

model fit and parameters were usually estimated with the maximum likelihood (ML) 

estimation method. The ML estimation method requires the assumptions of independence 

and multivariate normality to produce accurate parameter estimates and standard errors 

(e.g., Bollen, 1989; Maydeu-Olivares, 2017). However, observed variables obtained in 

the social and behavioral sciences are often ordinal (i.e., Likert-type scale items) rather 

than continuous. As a result, significant problems may occur when ordinal scales are 

analyzed using ML estimation if the multivariate normality assumption does not hold 

(i.e., Muthén & Kaplan, 1985). While ML may be used in some situations when ordinal 

data are present, standard errors are no longer consistent if the assumption of multivariate 

normality is severely violated (Lubke & Muthén, 2004; Maydeu-Olivares, 2017). 

Therefore, alternative distribution-free estimation methods such as WLS, WLSM, or 

WLMV are needed to deal with this issue. 

In the next section, I described the traditional case when continuous variables are 

used with MG-CFA, then, the use of MG-CFA invariance models with ordered data (e.g., 

Likert-type or discrete data) was introduced. Following these sections, another important 

concept, invariance constraints, was discussed. Lastly, I ended by addressing common 

estimation methods including ML, WLSMV, and fit evaluation of multiple-group CFA.   
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2.2.1 Measurement Invariance in Multiple-group CFA using Continuous Variables  

The CFA model is a linear regression model where a large number of observed 

items are regressed on a small number of factors. When applied to multiple populations, 

the scores on the jth continuously observed variable yj in the kth population can be 

denoted as follows:  

yj = τjk + λjkξk + εjk 

Where τjk is an intercept (item mean) parameter for the jth measured variable in 

the kth population. λjk is the regression slope for the jth measured variable in the kth 

population and represents factor loading. ξ k is the latent factor score and εjk is the unique 

factor score or residual for the jth measured variable.   

Recall that measurement invariance can be interpreted as invariance of the 

conditional distribution of observed scores (yj) given the latent score (ξk) across groups. 

Thus, in the continuous CFA case, analysis of invariance should be based on the mean 

and covariance structures rather than correlation matrices. In addition, we also assume the 

following equations:  

Ek(ε, k) = 0, Covk (ε, k) =Θk 

Where Θk is p x p covariance matrix of the residual scores of the observed items 

for the kth population, Θk is assumed to be diagonal, including only the item residual 

variance parameters σ(11)k
2 , …, σ(pp)k

2 . The covariance between the latent score and error 

is zero (i. e. , Covk(ξ, ε) = 0) as is the covariance between error terms (i.e., Cov(εε) ).  

Using the assumption of multivariate normal distribution (MVN) underlying the 

observed scores (yj), we can write the multiple groups CFA analysis model in terms of 

two sets of equations. The first set of equations expresses the conditional mean and 
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covariance structure given the latent variables and group membership. The second set of 

equations expresses the expected values and covariance structure of the latent construct in 

each group. These equations can be written as:  

Ek(yj|ξ, k) = τk + Λk ξ,  Covk(yj|ξ, k) =  Θk 

Ek(ξ, k) = κk, Covk(ξ, k) = Φk 

Where τk is a vector of intercepts, Λk is the group-specific p x r matrix of factor 

loadings, Θk is a variance-covariance matrix among the residuals, and κk is the r x 1 

vector means for the latent factors. Φk is the covariance matrix of factor scores for the 

kth population. If measurement invariance across groups is satisfied, the conditional 

means and variance/covariance of observed scores given factor scores are independent of 

the group membership. Studies need to focus on investigating the invariance of 

parameters τk, Λk, and Θk across populations.  

 In addition to estimating the conditional mean and covariance structure of the 

observed variables (yj) given the latent variables (ξ ) in the kth population, unconditional 

equations for the observed variables (yj) can be expressed as:  

Ek(yj, k) = µk = τk + Λkκk, 

Covk(yj, k) = Σk =  Λk Φk Λk
′  + Θk 

Where Ek(yj, k) = µk is a vector of population means of the observed variables 

and Σk is the population variance-covariance matrix for the observed variables. 

2.2.2 Measurement Invariance in Multiple-Group Testing with Ordered-categorical data  

Thresholds of Ordered-categorical Data. The procedures used in the 

investigation of invariance in ordered-categorical measures is similar to the continuous 

data. For example, restrictive tests are employed to investigate different levels of 
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invariance. However, a major difference is that the threshold structure is embedded in the 

ordered-categorical CFA framework.  

If we assume the ordered-categorical variable (yj) is discrete, and there exists an 

underlying latent response variable (yj
∗) that is continuous and satisfies the assumption of 

underlying MVN (see Figure 2.1), then, the latent response variable (yj
∗) can be divided 

by a set number of categories (C), which is called threshold parameters (τj). The total 

number of thresholds is equal to the number of categories minus one (C-1) (Finney & 

DiStefano, 2013), and ordered-categorical responses (yj) can be assigned values of 0,1, 2, 

…, C across all the populations. When C >1, the association between the underlying 

continuous latent variables at the observed level is denoted a polychoric correlation; 

when C = 1, it is denoted a tetrachoric correlation (a special case in which both ordinal 

variables have two categories) (Xia & Yang, 2019). Besides, the C-1 number of threshold 

values (τjk = τjk0, τjk1, … , τjkC−1) is within the range of (τj0 = −∞, τjC−1 = +∞). To 

clearly express the relationships among yj,  yj
∗ and τjk, we can have the following 

equation when the observed variable is measured in multiple populations (Millsap, 2011):  

Pk (yj= C) = Pk (τjkC ≤ yj
∗ ≤ τjkC+1) 

Let us use the example as presented in Finney and DiStefano (2013) to illustrate 

the relationships among yj,  yj
∗ and τjk. Suppose that we have a five-point Likert scale 

item; thus, the observed level data (yj) can only be reported as values from 1, 2, … to 5 

(Figure 2.1). However, there exists an underlying continuous latent level response 

variable (yj
∗) that better represent the observed level data, (yj). The relationship between 

yj and yj
∗ is connected by four (C-1) threshold values (τjk). As a result, instead of using 
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observed level data, our focus is to compute thresholds to obtain latent level variables. 

One important aspect is that the latent level response variable is assumed to be 

continuous and meet assumption of MVN; Additionally, the corresponding observed 

level data can be symmetric or asymmetric (Kim, 2012; Rhemtulla et al., 2012).  

Non-normal Latent Response Distribution. Recent studies have extended their 

focus on investigating non-normal continuous latent level response distribution, in which 

the MVN assumption is violated (e.g., DiStefano, 2002; Liang, & Yang, 2014; Muthén & 

Muthén, 2002; Pavlov et al., 2020). For example, Flora and Curran (2004) examined the 

normal distribution and moderate non-normal distribution of latent responses with 

skewness of up to 1.25 and kurtosis of up to 3.75. Using both full WLS estimator and 

robust WLS estimator, they found that increasing levels of non-normality in latent 

response distributions were related to a greater positive bias in estimated polychoric 

correlations and parameter estimates. However, the level of bias remained low for the 

moderate non-normal latent response distribution.  

Rhemtulla et al. (2012) extended Flora and Curran’s study to examine the effect 

of nonnormality levels of continuous latent response distribution and threshold variability 

(i.e., symmetric or asymmetric) on the performance of ML and categorical least squares 

(cat-LS) estimation. They concluded that compared to the robust ML estimation, cat-LS 

estimation is more sensitive to the violations of non-normality of underlying continuous 

variables and was superior to ML with two to four categories with mild bias in 

underlying non-normal distribution, asymmetric thresholds, and small sample sizes.  
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Figure 2.1 Relation between 𝑦𝑗,  𝑦𝑗
∗ and thresholds. Adopted from (Finney and DiStefano, 

2013). 

Multiple-Group CFA with Ordered-categorical data. As shown in Figure 2.2, 

the confirmatory factor analysis model is no longer directly related to the observed 

response variables (yj) when ordinal data are used but associates with y through the 

underlying latent response variables (yj
∗). According to Kim and Yoon (2011), the 

expression for the conditional mean and covariance structure for the CFA model with 

continuous latent response variables yj
∗ and discrete observed scores yj in the kth 

population can be written as: 

Ek(yj
∗|ξ, k) = τk + Λk ξ,  Covk(yj

∗|ξ, k) =  Θk 

Where ξ is the r x 1 vector of latent factor scores, Θk is p x p diagonal matrix of residual 

variance for the kth population, τk is the p x 1 vector of latent intercept parameters for the 

kth population, and Λk is the p x r factor loadings matrix.  

Assuming MVN of the latent level responses (y*), the score-level expression for 

the observed variables (yj) in the kth population can be expressed as: 

yj
∗ = τjk + λjkξk + εjk 



25 

 

Where εjk is a p x 1 vector of the residual score, and we still assume that Ek(ε, k) = 0 

and Covk(ε, k) =Θk. For the common factor ξk , we still have the following equation that 

is identical to the continuous multiple-population CFA models: 

Ek(ξ, k) = κk, Covk(ξ, k) = Φk; 

Ek(yj
∗, k) = μk

∗ = τk + Λkκk; 

Covk(yj
∗, k) = Σk

∗ =  Λk Φk Λk
′  + Θk 

As the thresholds determine the distribution of responses on ordered-categorical 

variables, testing measurement invariance with multiple-group CFA for ordinal measures 

aims to estimate the invariance of thresholds (τjk0, τjk1, … , τjkC−1), and parameters of 

Λk, Θk , as with in MG-CFA with continuous data.  

 

Figure 2.2 Multiple-group categorical CFA models. 

2.2.3 Invariance Constraints 

To address whether any differences exist in the mean and covariance structures of 

the observed variables across populations, Meredith (1993) defined a hierarchical set of 
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invariance comparisons in the context of the CFA approach. According to Meredith 

(1993), the lowest level of invariance is configural invariance, which requires that the 

factor structure holds the same in each group, but no invariance constraints are placed on 

factor loadings, item intercepts/thresholds, and item residual variances. The model tested 

is:  

H01= Σk/ Σk
∗ = Λkc Φk Λkc

′  + Θk, µk/ μk
∗ = τk + Λkcκk 

for k = 1, …, Kth group, where Σk/Σk
∗  is the population covariance matrices for either 

continuous or ordered observed variables, µk/μk
∗  is the population mean vectors of 

observed variables, and Λkc refers to the factor loading matrices. This indicates that the 

loading matrices have the independent cluster structure, c, across the K groups. The 

model in H01 indicates that the number of factors is the same across groups/populations 

and the factors are related to the same number of items in each group/population. 

Rejection of H01 indicates that the factor structure is untenable for at least one or more 

groups/populations. For additional information, a technical discussion can be found in 

Meredith (1993).   

If H01 cannot be rejected, this implies that the same factor structure holds, the 

next level of invariance tested is weak factorial invariance or metric invariance (Horn & 

McArdle, 1992; Thurstone, 1947). In this step, only the factor loadings are constrained to 

be equal across groups (Λk = Λ), the intercepts/thresholds and residual variances are free 

to vary: 

H02= Σk/ Σk
∗ = Λ Φk Λ′+ Θk, µk/ μk

∗ = τk + Λ κk 

for k = 1, …, K. This implies that the factor loadings are the same over groups. In this 

level of invariance, the mean of the latent factor is fixed at zero in group one and 
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estimated in the other groups. Note that weak invariance satisfies neither the full 

invariance of the conditional distribution function nor the first order invariance. It does, 

however, permit comparisons of factor variances and covariances.  

Assuming that H02 cannot be rejected, the next question of interest would be to 

decide whether a more stringent invariance can be obtained. The next level of invariance 

then is called strong factorial invariance or scalar invariance, which requires that 

intercepts/thresholds and factor loadings are equal (τk = τ; Λk = Λ). The residual 

variances of the items, however, are free to differ (Steenkamp & Baumgartner, 1998): 

H03= Σk/ Σk
∗ = Λ ΦkΛ′+ Θk, µk/ μk

∗ = τ + Λ κk 

for k = 1, …, K. The model in H03 meets the first-order invariance condition, and places 

testable restrictions on the means of the observed variables. If H03 holds, the group 

membership has no impact on the expected values of the items conditioning on the latent 

variables. Under this condition, comparisons of factor means are possible across groups. 

If H03 does not hold, the factor loadings and/or intercepts (or thresholds) contribute 

differently to the means. As a result, it prevents valid and comparable factor score 

estimates (Sass, 2011). Strong invariance is often considered sufficient in most empirical 

research (Bauer, 2017).  

The highest level of invariance is strict factorial invariance, which requires that all 

item parameters (τk = τ; Λk = Λ; Θk = Θ) are equal across groups. Specifically, the 

model being tested is: 

H04= Σk/ Σk
∗ = Λ Φk Λ′+ Θ, µk/ μk

∗ = τ + Λ κk 

for k = 1, …, K. In this way, the response distributions are independent of group 

membership after conditioning on the values of the latent factors. Under strict invariance, 
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group differences in the means and covariance structure for the observed variables are 

due to differences in latent variable distributions, rather than measurement bias (Millsap, 

2011). Failure to reject H04 indicates no measurement bias is detected. Although strict 

factorial invariance is considered a necessary condition of measurement invariance, it is 

often too restrictive to be met in most empirical research situations.    

Measurement invariance can be tested at more advanced levels as well, such as 

factor variances and covariances, or factor means can be constrained across groups. 

However, the stricter levels of invariance are not often accomplished in practice. Turns 

out, configural, weak, and strong factorial invariance are the most commonly tested 

forms of invariance in applied research for both continuous and ordinal data (Widaman & 

Reise, 1997). 

2.2.4 Estimation Methods for MI 

In terms of SEM model estimation, when data are continuous, the Maximum 

Likelihood (ML) estimation is generally utilized. ML estimation is based on a large 

sample size and multivariate normality assumptions because ML depends on satisfying 

the distribution assumptions for observed variables to obtain adequate performance. To 

obtain estimated parameters (τk, Λk, Θk, κk, Φk) of CFA models, the goal is to minimize 

the differences between the true and observed scores, which is to minimize the 

discrepancy functions FML (X̅k, SXk, µXk,ΣXk,), where X̅k is the sample estimator of µyk, 

and Syk is the sample estimator of Σyk . The form of the discrepancy function varies 

depending on the method. Under the MVN assumption, the normal maximum likelihood 

discrepancy function for the multiple-group case is (Millsap, 2011):  
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FML =  ∑ (
Nk

N
)

k

k=1

FMLk 

Where FMLk is defined as:  

FMLk = (X̅k −  µyk)
′

∑ (X̅k −  µyk) + ln
|Σyk |

|Syk |

−1

yk
+ tr [∑ Syk 

−1

yk
] − p 

The discrepancy function ranges from zero to infinity, and larger values of FML 

indicate greater discrepancies between the observed and implied covariance matrices. 

When invariance constraints are imposed, software packages such as LISREL, EQS, R, 

or Mplus are used to estimate multiple-group analyses. The discrepancy function value at 

the minimum of FML is used for calculating a chi-square test for the null hypothesis that a 

specified model fits in the K groups (Millsap, 2011). Specifically, the chi-square test 

statistic is formed by:χ2 =  FML ∗ (N − 1), and this test statistic follows a central chi-

square distribution. When the null hypothesis fails, the discrepancy function can help to 

calculate the noncentrality parameter, which is an important component of a noncentral 

chi-square distribution and carries important information about the degree of model 

misspecification (Curran, 2002). The noncentral chi-square distribution helps to construct 

fit indices such as RMSEA, CFI, or TLI. 

When the data are ordered categorical, the threshold parameters (τk), means (μk
∗ ) 

and covariance matrices (Σk
∗) of the latent response variable (yj

∗) need to be estimated. 

Usually, we assume that the latent response variable yjk
∗  follows:  

yjk
∗ ~ MVN (μk

∗ , Σk
∗) 

Holding the MVN assumption and appropriate restrictions, estimates of 

(τk, μk
∗ , Σk

∗) can still be obtained by maximum likelihood.  
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However, to provide estimates of the factor model parameters (Λk, κk, Φk, Θk) in 

multiple groups under invariance constraints, many other estimation approaches (e.g., 

robust maximum likelihood; MLR, weighted least squares; WLS, or diagonally weighted 

least squares; DWLS) have been developed to consider the non-normality nature of 

ordinal data. While there are many choices, I focus on reviewing research that employs 

the weighted least squares mean and variance adjusted (WLSMV) estimator. This is the 

most popular estimator for ordered categorical data and has been recommended for 

estimating CFA model parameters when data is ordered categorical (Muthén & Muthén, 

2010). Researchers, who are interested in other estimation methods used with non-normal 

data can find details in many other articles such as Yuan and Bentler (2000), Finney and 

DiStefano (2013), Millsap (2011), Flora and Curran (2004). 

Weighted Least Squares Mean and Variance Adjusted (WLSMV) Estimator. 

WLSMV estimation, which is called weighted least squares mean and variance adjusted 

estimator, was originally from robust Diagonally WLS (DWLS) estimation and was first 

introduced by Muthén in 1993. The WLSMV estimator is designed specifically for 

noncontinuous data that multivariate normality assumption may be violated (DiStefano & 

Morgan, 2014). To analyze ordinal observed data, the WLSMV estimator first estimates 

thresholds and polychoric correlation (correlation between two ordinal variables) using 

ML estimation, and the parameter estimates are then calculated by minimizing the 

discrepancy function FWLSMV using the estimated asymptotic covariance matrix of the 

polychoric correlation, as well as the threshold estimates in a diagonal weight matrix (Li, 

2016). The multiple-group WLSMV discrepancy function can be written as:  

FWLSMV =  ∑ (
Nk

N
)k

k=1 FWLSMVk , 
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and the equation to minimize WLSMV function is: 

FWLSMVk = (rk − ρ̂k)(diagW−1)(rk − ρ̂k) 

Where rk represents a vector of unique elements in the sample covariance matrix (S) for 

the kth group including threshold and polychoric correlation estimates, ρ̂k represents a 

vector of the nonduplicated elements in the model-implied covariance matrix [∑(θ̂)] for 

the kth group, and rk − ρ̂k is a residual vector of the discrepancies between the sample 

values and model-implied values. diagW is the diagonal weight matrix, which utilized the 

asymptotic covariance matrix of the polychoric correlation estimates and thresholds 

(Finny & DiStefano, 2013).  

The diagW is a special weight matrix form used for the WLSMV estimator, and it 

adjusts the departure from normality and sampling variably in the formula. Since there 

are several practical problems in implementing WLS estimation (see Finney & 

DiStefano, 2013), WLSMV is developed to overcome the limitations of full WLS 

estimation. According to DiStefano and Morgan (2014), unlike the WLS estimator which 

inverts the full weight matrix, WLSMV only inverts the diagonal elements of the weight 

matrix, so the computational intensity is decreased to avoid using a large sample size.  

A mean- and variance-adjusted chi-square test statistic with the degrees of 

freedom is computed based on the formula (Muthén, 1993; Li, 2016):  

TDWLSMV = [df ′/ trace (ŨṼ)] TDWLS, 

Where Ṽ is the estimated asymptotic covariance matrix of the thresholds and polychoric 

correlations,  Ũ = diagW−1 − diagW−1Δ̃(Δ′̃diagW−1Δ̃)
−1

Δ′̃diagW−1, and Δ̃= ∂σ(θ̃ )/∂θ̃, 

 θ̃ is a vector of the estimated model parameters, df ′ is an integer closet to {[trace (ŨṼ)]2 
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/trace (ŨṼ)2}1, TDWLS is the standard (N-1) the minimum of the fit function (see details in 

Li, 2016). By adjusting mean and variance for test statistics using the WLSMV method, 

one can obtain an approximate chi-square distribution with associate degrees of freedom, 

which is used for fit evaluation.  

In general, many studies have been found that WLSMV provided fairly accurate 

parameter estimates (e.g., Flora & Curran, 2004; Bandalos & Webb, 2005) and works 

effectively in most situations when ordered categorical variables are used with CFA for 

sample sizes larger than 500 (Bandalos, 2008; Flora & Curran, 2004; Muthén & Muthén, 

2010). Comparing to the other estimators, studies have shown that with simulated data, 

WLSMV provided a less biased and more accurate estimation of factor loadings across 

almost every condition than robust ML (MLR) (Li, 2016). Flora and Curran (2004) found 

that WLSMV outperformed the WLS estimator in chi-square approximation of the test 

and having smaller estimation biases of the parameters when using complex CFA 

models. DiStefano and Morgan (2014) concluded that WLSMV produced better model 

data fit than WLSM. They also found that WLSMV (Mplus version) was a better choice 

than DWLS (LISREL version) with small sample sizes, few categories, and moderate 

sample distribution (skewness=1.5, and kurtosis =3). Overall, using the WLSMV 

estimator with ordinal data has been found to be superior over many estimators and has 

been found to produce adequate parameter estimates in many simulated conditions 

(DiStefano & Morgan, 2014; Schmitt, 2011).  

 
1 See Li (2016) for details of formulas and expressions. 
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2.2.5 Fit Evaluation for Measurement Invariance 

When conducting a multiple-group CFA invariance test, an important step is to 

examine the model fit for each group to make sure that the CFA model fits acceptably 

across groups (Sass, 2011). In general, an adequate CFA model for each group should be 

satisfied the first step. Then, a series of tests (i.e., likelihood ratio tests) can be conducted 

to compare parameters (e.g., factor loadings, intercepts) of a baseline model with more 

restrictive nested models based on different levels of invariance constraints. After that, a 

series of model fit statistics (i.e., chi-square statistics) need to be evaluated to determine 

the magnitude of model differences. For example, when a researcher examines weak 

invariance, one needs to constrain all factor loadings to be equal across groups and 

evaluate the significance of the chi-square difference between this model and baseline 

model. If the chi-square difference test result indicates non-significance, then the model 

with more restricted constraints performs as well as the baseline model. Thus, further 

constraints can be added to test a higher level of invariance (i.e., strong invariance). If the 

chi-square difference test is significant, researchers may set free constraints of non-

invariant factor loadings and carry out the partial invariance method.  

As stated, although the chi-square difference test is commonly used, it has several 

drawbacks. Instead of using the chi-square difference test, many fit indices such as 

RMSEA, CFI, SRMR have been proposed to evaluate measurement invariance. 

Unfortunately, studies of fit indices for invariance evaluation with ordered categorical 

data are unclear. This study aimed to fill the gap in the literature by examining commonly 

used model fit indices when to evaluate measurement invariance with ordered categorical 

data. I first reviewed several goodnesses of fit indices that are most used with multiple-
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group CFA invariance testing including both traditional and scaled χ2 tests, and other fit 

indices, such as RMSEA, CFI, and SRMR. Then, a limited number of articles that 

examined the sensitivity of goodness of fit indices to lack of measurement invariance for 

both continuous and ordered-categorical measures were discussed (e.g., Cheun & 

Rensvold, 2002; Chen, 2007; Rutkowski & Svetina, 2014; Rutkowski & Svetina, 2017).  

Chi-square (χ2). This exact fit test measures the entire model-data fit using 

statistical hypothesis tests across multiple populations. The chi-square goodness-of-fit is 

widely used for continuous CFA models with the maximum likelihood estimator, and its 

calculation is based on the discrepancy between the actual model’s covariance matrix 

(Σy), mean structure (µyk), the hypothesized model’s covariance (Σ0yk) and mean (µ0yk) 

structure in the kth group. The null hypothesis H0: Σyk=Σ0yk, µyk= µ0yk, for k=1,2, …, k 

will be tested. Then, the chi-square statistic is calculated: χ2= (N-1) F̂, where F̂ is the 

minimized sample discrepancy function value, N is the sample size, and the degrees of 

freedom are the differences between the number of residual variances, covariance, mean 

elements, and independent parameters (Millsap, 2011). Specifically, when testing 

measurement invariance with two models, A and B, a difference of the chi-square 

statistic between the two CFA models is calculated, by finding the difference between 

values for model B and model A, where model B is nested within model A. That is, 

model B is the more restrictive model with more degrees of freedom than the comparison 

model. Therefore, we can write the equation as:  

χD
2 =χA

2 -χB
2  with dfD = dfB − dfA 

Assuming both models fit well, then the difference in the chi-square can be used 

to detect whether model B is a lack of fit in comparison to model A. The significant 
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difference test can then examine whether or not the difference between model B and 

model A is statistically significant. As the chi-square difference test is obtained from F̂, 

which usually indicates the maximum likelihood discrepancy function value, the 

assumptions of multivariate normality are required when using this test statistic. When 

data are not normally distributed, the difference of fit statistics of two nested models does 

not result in a chi-square distribution. In such case, the Satorra-Bentler (SB) scaled chi-

square difference test (Bryant & Satorra, 2012; Satorra & Bentler, 2001, 2010) or more 

advanced chi-square correction difference tests for categorical non-normal data (i.e., 

Asparouhov & Muthén, 2006, 2010) may be used.  

 Second-order Chi-square (χ2) Correction. Asparouhov and Muthén (2010) 

proposed a new second-order correction statistic, the T3 method, to deal with multivariate 

nonnormality and to transform the fit difference between two nested models more similar 

to a chi-square distribution. This technique has been implemented in Mplus Version 6 

with estimators WLSMV and MLMV under the “DIFFTEST” command. The second-

order correction is designed to match both the mean and variance of the chi-square 

distribution with D degrees of freedom, where D is the difference between the number of 

parameters in the unrestrictive model and the estimated model. The form of the mean and 

variance adjustment takes T3 = aT + b, where a is a scaling correction, T is the chi-

square difference between two models, and b is a shifting parameter. Both a and b are 

chosen to meet E (T3) = D, Var (T3) = 2D. The second-order correction (Asparouhov & 

Muthén, 2010) is given by 

T3 = √
D

Tr(M2)
T + D − √

DTr(M2)

Tr(M2)
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Where M is a matrix and is given in formula (9) in Asparouhov & Muthén (2006)2. The 

mean and variance of T3 are the same with the chi-square distribution with D degrees of 

freedom.  

To apply T3 second-order correction for chi-square difference testing, we can use 

the “DIFFTEST” command in Mplus. Suppose two nested models A and B, where A is 

the more restricted model and B is the less restrictive model. The difference in fit 

between two nested models can be tested by subtracting the two fit statistics using T3: 

Td=TA-TB 

Since the distribution of Td is not a chi-square distribution, which we cannot use 

the P-value directly. To achieve T3 second-order correction difference test results, we can 

use Td to approximate a chi-square distribution with D degrees of freedom.  

According to Asparouhov and Muthén (2010), the new second-order correction is 

more advantageous to the old version second-order correction (Satterhwaite, 1941) 

because the degrees of freedom are not needed to estimate, and researchers can simply 

use the difference between the number of parameters in the two models to replace the 

usual degrees of freedom. For more technical information on the calculation of the new 

second-order correction for chi-square difference testing, readers can review Asparouhov 

and Muthén (2010).   

Overall, the global chi-square statistic is classified into exact fit indices that assess 

the degree to which the model-implied covariance matrix matches the observed 

covariance matrix. It provides one single index to summarize the fit of the entire model 

and gauge the discrepancy or “badness of fit”, therefore the smaller the number is, the 

 
2 See Asparouhov & Muthén (2006) for details of formulas and expressions. 
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better the model fit. Traditional chi-square statistic is useful when continuous data are 

employed in the research and when the normality assumption is met. The scaled chi-

square statistic and the new second-order correction difference test are more robust than 

the traditional chi-square approach for non-normal continuous data or ordered-categorical 

data. However, a difficulty is that all the chi-square tests are sensitive to sample size. As 

it turns out, rejection of the null hypothesis of the exact fit can be easily obtained when 

the sample size is large (e.g., Chen, 2007). Additionally, in most of the studies, we often 

are less interested in the models that fail to fit perfectly than the extent and location of the 

misfit (Millsap, 2011). Therefore, other model fit indices such as CFI, RMSEA, or 

SRMR can help us quantify the size of the misfit.  

Root mean squared error of approximation (RMSEA). The second type of 

absolute fit index is the root mean square error of approximation (RMSEA) (Steiger & 

Lind, 1980; Browne & Cudeck, 1993). This approach measures how far the hypothesized 

model is from the perfect fit to the data (McDonald & Ho, 2002). It considers both 

covariance and mean structures when the discrepancy function includes mean structures 

in the estimation. The RMSEA uses the information obtained from the discrepancy 

function F̂ to estimate a closeness between (Σ0Xk, µ0Xk) and (ΣXk, µXk). Mathematically, 

the RMSEA is defined in one single population as: 

RMSEA1 = √
F̃

df
 

Where F̃ is the minimized fit function of the hypothesized model at the population level, 

df is the model’s degrees of freedom. When WLSMV is used, the mean-and variance-
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adjusted chi-square is applied to compute RMSEA fit in software packages such as 

Mplus. Therefore, the scaled RMSEA is calculated as 

RMSEAss = √
â(N − 1)F̂ + b̂

df(N − 1)
−

1

N − 1
 

Where â and b̂ converge to a and b (the scaling parameter and shifting parameter; 

Asparouhov & Muthén, 2010); and F̂ converges to F̃ as N increases to infinity, which 

converges to (Xia & Yang, 2019) 

RMSEAs = √
aF̃

df
 

Note that the RMSEA evaluates F̃ relative to the degrees of freedom, which 

penalizes models that include unnecessary parameters (Hu & Bentler, 1998). However, 

RMSEA tends to over-reject a true model when the sample size is small and is not 

recommended when evaluating small sample size models with small degrees of freedom 

(Kenny et al., 2015). Steiger (1998) extended the single population RMSEA to multiple 

groups (K) RMSEA by using a correction parameter. Thus, the modified formula is 

denoted as:  

RMSEAK = √K√
F̃

df
 

When using RMSEA as an overall fit index for evaluation of SEM models with a 

single group or population, Browne and Cudeck (1993) suggested values below 0.05 are 

considered as a good fit, and values between 0.05 and 0.08 indicate a fair fit. Hu and 

Bentler (1999) recommended that adequately fitting models should have RMSEA values 

below 0.06. MacCallum et al. (1996) used 0.01, 0.05, and 0.08 to indicate excellent, 
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good, and mediocre fit. These authors also suggested using confidence intervals as a 

supplement to the point estimate of the RMSEA. A 95% confidence interval for the 

single group RMSEA can be written as:  

(ε̂.025, ε̂.975) = (√[
λ̂,.025

df(N−1)
], √[

λ̂.975

df(N−1)
] ) 

Where ε̂c is the estimated bound for the RMSEA at the (100 * c) percentile, and λ̂c is the 

estimated bound for the noncentrality parameter of the non-central χ2 distribution with 

degrees of freedom (df) and N-1. 

In terms of criteria used to evaluating measurement invariance with RMSEA, the 

above criteria are still applicable for configural invariance testing. However, 

investigations on changes in RMSEA for other invariance levels of nested models are 

insufficient. Only several researchers conducted simulation studies to propose criteria on 

changes of fit indices in cross-sectional CFA models in multiple-group cases (i.e., Chen, 

2007; Cheun, & Rensvold, 2002; Rutkowski & Svetina, 2014; 2017). Chen (2007) 

recommended for all three levels of invariance tests (loadings, intercepts, residual 

variances): a change in the RMSEA greater than or equal to 0.01 (when sample sizes are 

unequal in groups and the sample size is smaller than 300) or 0.015 (when the sample 

size is adequate, sample sizes are qual across the groups) indicates measurement 

invariance is violated. The finding also found that changes in RMSEA are more likely to 

be affected by sample size and model complexity.  

Rutkowski and Svetina’s (2014) recommendation is more liberal when the 

number of groups was relatively large, and the indicators were assumed to follow a 

multivariate normal distribution. Specifically, the authors recommended that a change of 

RMSEA is no larger than 0.03 for tests of metric invariance or equal loadings, and the 
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traditional cutoff of 0.01 still works well at identifying scalar invariance. Rutkowski and 

Svetina (2017) also provided criteria of non-invariance with categorical indicators for 

large numbers of groups and non-normal observed variables: a change in the RMSEA 

equal to or greater than 0.05 for testing loading non-invariance/ metric non-invariance, 

and 0.01 for threshold non-invariance/ scalar non-invariance. 

Comparative fit index (CFI). The third approach of global fit evaluation is the 

comparative fit index (CFI) that assesses the fit of the specified model relative to a more 

restricted baseline model. CFI fit index is classified as the incremental fit indices, which 

assess the degree to which the tested model is superior to a baseline model. Therefore, the 

larger the fit number is, the better the model fit. Larger values mean greater improvement 

of model fit comparing to the other model. Usually, the baseline model Σyk is equal to a 

diagonal matrix, Dyk. That is, the measured variables are mutually uncorrelated. In other 

words, a typical baseline model is the one in which only the variances of the observed 

variables are estimated, but no covariances are calculated. The Comparative Fit Index 

(CFI) is calculated as (Bentler, 1990):  

CFI= 1 −
F̃t

F̃b
= 1 − {

χt
2−dft

χb
2−dfb

} 

Where F̃t and F̃b are the minimized fit functions of the tested and baseline models, χt
2 is 

the chi-square for the tested model, χb
2 is the chi-square for the baseline model, and dft, 

dfb are the degrees of freedom for the tested model and baseline model, respectively. CFI 

ranges from 0 to 1, and it is relatively independent of sample size and performs well 

when the sample size is small (Hu & Bentler, 1998). According to Hu and Bentler (1995), 

values of the CFI above 0.95 were considered to be a good fit. Like the scaled RMSEA, 

the scaled CFI at the sample level is calculated with WLSMV as 
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CFIss = 1 −
ât(N − 1)F̂t + b̂t − dft

âb(N − 1)F̂b + b̂b − dfb

 

When the sample size increases to infinity, the equation converges to  

CFIs = 1 −
atF̃t

abF̃b

 

Although research interested in fit statistics is growing for the factorial model 

(e.g., Bandalos, 2008; Beauducel & Herzberg, 2006; Yu & Muthén, 2002), these studies 

have not resulted in the same attention being given to addressing criteria of CFI fit 

statistics used to evaluate measurement invariance. This is especially true when ordered-

categorical indicators are used. In research examining the performance of the CFI fit 

index for measurement invariance, Cheung and Rensvold (2002) examined the sampling 

variation of changes in the CFI index under various levels of measurement invariance. 

They suggested that a change in CFI (≥ -0.01) is sufficient for establishing weak or strong 

invariance. Similarly, French and Finch (2006) investigated measurement invariance with 

first-order models. Their simulation results recommend a ΔCFI value less than -0.01, 

indicating a lack of invariance. Chen (2007) conducted an extensive simulation study to 

examine the sensitivity of goodness of fit indices to lack of measurement invariance with 

continuous multiple-group CFA models at three common levels: factor loadings, 

intercepts, and residual variances. She found that CFI appeared to be equally sensitive to 

all three levels of lack of invariance and recommended that when the sample size is small 

(N≤ 300), sample sizes are unequal across groups, and the pattern of non-invariance is 

uniform, the cutoff criterion for a change of CFI at three levels of invariance tests is a 

change of ≤ -0.005 to indicate non-invariance. If the sample size is large enough (>300), 
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sample sizes are equal across the groups, and the lack of invariance is mixed, a change of 

≤ -0.010 in CFI is indicative of non-invariance.  

Rutkowski and Svetina (2014) recommended a change of less than -0.02 in CFI 

for metric invariance when the group sizes are large. In a follow-up study, Rutkowski and 

Svetina (2017) examined measurement invariance with categorical indicators. They 

found that in all conditions with non-invariant loadings, the changes of CFI values were 

not less than -0.012. However, a more stringent change in CFI of -0.004 is recommended 

for testing equal loadings. According to the results, they found that if using -0.012 as a 

criterion, ΔCFI could not detect poor-fitting models, but retained both well-fitting and 

poor-fitting models. In terms of tests of equal loadings and thresholds, they also 

suggested using the criteria of -0.004 to detect invariance for the same reason.  

Standardized root mean square residual (SRMR). Lastly, I reviewed studies 

employing the standardized root mean square residual (SRMR) fit statistic. The SRMR is 

an approximate fit index that is designed to compare a hypothesized model and a baseline 

model (i.e., a model assuming zero correlation between every pair of variables), and its 

definition varies across publications (i.e., Asparouhov & Muthén, 2018; Maydeu-

Olivares, 2017; Hu & Bentler,1999). According to Asparouhov and Muthén (2018), the 

SRMR fit index has been improved to use for more SEM models including models with 

categorical data estimated using WLS/ WLSM/WLSMV/ ULSMV in Mplus since 

version 8.1. As a residual-based fit index, SRMR computes the average differences of the 

standardized residuals between the observed and model-implied covariance matrices. The 

smaller the residuals, the better the model fit. The formula used to calculate SRMR with 

WLSMV estimator for categorical data is defined as:  
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SRMR = √
S

d
  

Where the detailed calculation of S and d can be found in formulas (13)-(16) in 

Asparouhov and Muthén (2018). In multiple group modeling, the SRMRg is computed for 

each group g =1, …, G where G is the total number of groups. Then, the SRMR for the 

full model is denoted as follows 

SRMR = ∑
ng

n

G

g=1

SRMRg 

Where ng is the sample size for group g, and n is the total sample size calculated by 

∑
ng

n

G
g=1 .  According to Asparouhov and Muthén (2018), the SRMR is not a test, but a 

value that measures the direct distance between the hypothesized model and the baseline 

model.  Therefore, it is easy to interpret and can be applied to identify model misfits.  

To evaluate an overall fit of the SEM model, the SRMR index and the chi-square 

test of fit are paired in use (Asparouhov & Muthén, 2018). At the first, researchers should 

look at the chi-square test of fit, and if the chi-square fit does not hold, then the SRMR 

index should be used. The acceptable range of a good fitting model for the SRMR index 

is between 0 and 0.08 (Hu & Bentler, 1999).  

When evaluating measurement invariance, Chen (2007)’s simulation study 

recommended that different values of the SRMR should be used based on different levels 

of invariance tests because SRMR is more sensitive to non-invariance in loadings than 

intercepts or residual variances. Specifically, a change of ≥ 0.025 in SRMR was proposed 

to indicate non-invariance for testing loading invariance; a change of ≥ 0.05 in SRMR 

would indicate non-invariance for testing intercept or residual invariance. All these cutoff 
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criteria are suggested with an unequal sample size less or equal to 300 and the pattern of 

non-invariance is uniform. When the sample size is over 300 and equally across the 

groups with mixed non-invariance items, Chen (2007) suggested using a change of ≤ 0.03 

in SRMR for testing loading invariance and a change of ≤ 0.01 for testing intercept or 

residual invariance.  

2.3 Current Research Gaps 

In summary, while substantial research has emphasized the importance of 

detecting measurement invariance to ensure the validity of a measure and many model fit 

indices have been discussed by researchers, I found that limited scholarly attention has 

been given to the examination of the performance of changes in fit statistics to 

measurement invariance or lack of measurement invariance. Further, to my knowledge, 

only one study has been investigated to examine the performance of change in SRMR fit 

index to measurement invariance, and the sensitivity of the change in SRMR fit index to 

a lack of measurement invariance with ordered-categorical data is unknown. Many 

questions about this topic need to be addressed, such as, 

1. What standards should be used to assess invariance using various fit indexes with 

ordered categorical data?;  

2. Can uniform standards be proposed for testing measurement invariance at all 

levels (thresholds, loadings, and residual variances) with ordered categorical 

data?;  

3. Are the fit invariance criteria proposed for both continuous and ordered data 

consistent?; and  
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4. Are there any factors such as the number of factors, magnitudes of factor 

loadings, and sample size impacting the fit invariance criteria? 

Currently, many applied researchers use likelihood ratio difference test to detect 

the non-invariance of nested models. However, as stated, the use of chi-square-based 

tests has been questioned. Studies are needed to evaluate the performance of other model 

fit indices when models are non-invariant. Although Cheung and Rensvold (2002) first 

provided guidelines for acceptable invariance model fit, they did not examine various 

levels of non-invariance. Chen (2007) extended Cheung and Rensold's (2002) research 

and found significant influence of the model fit results under different levels of lack of 

invariance. However, recommendations for the goodness of fit statistics provided by 

these studies are based on continuous data using the maximum likelihood (ML) 

estimator. It is difficult to ascertain the validity of these prescriptions when using the 

weighted least squares mean and variance (WLSMV) estimator for ordered categorical 

data. Rutkowski and Svetina (2014) and Rutkowski and Svetina (2017) did investigate 

the performance of fit statistics with categorical indicators, but they did not specify which 

estimator they used and did not report the change of SRMR fit statistics.  

To fill these gaps, this dissertation systematically investigated the sensitivity of 

changes in fit indices to the measurement invariance under various simulated conditions 

when ordered categorical data are used. Specifically, this study applied multiple-group 

CFA for ordered-categorical variables with a threshold structure. Two Monte Carlo 

studies were conducted to investigate three commonly used fit indices (CFI, RMSEA, 

SRMR) under conditions including different sample sizes, the number of indicators, 

source of non-invariance, levels of threshold symmetry, and proportion of non-invariant 
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items. Based on the simulation results, cutoff points were proposed for different levels of 

invariance. Rejection rates based on cutoff points of fit indices were discussed. Finally, 

the effects of a number of conditions were examined to determine the sensitivity of fit 

indices’ changes to non-invariance. Violations of invariance based on cutoff points of 

goodness were discussed.
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CHAPTER 3  

METHOD

The current study, inspired by Chen (2007)’s work, was designed to fill the gaps 

in the literature remaining for evaluation of measurement invariance when ordered 

categorical data are analyzed. The general goal of this study was to examine the 

sensitivity of changes on three model fit indices (ΔCFI, ΔRMSEA, and ΔSRMR). To 

achieve this goal, two Monte Carlo simulation studies were conducted. Study 1 

investigated the sampling variability of targeted fit indices under different levels of 

invariance including factor loadings, thresholds, residual variances, latent means, factor 

variances, and factor covariances. Based on the sampling variability of targeted fit 

indices, cutoff points for various non-invariance levels were preliminarily proposed. The 

goal of Study 2 was to investigate the influence of a number of conditions on the 

sensitivity of fit changes to two commonly used non-invariance levels encountered in 

empirical research: metric invariance where factor loadings are set to be equal across 

groups, and scalar invariance where thresholds are constrained to be equal across groups. 

Then, rejection rates based on the proposed cutoff points were examined in Study 2. All 

data were generated and analyzed using Mplus software package (v. 8.6; Muthén & 

Muthén, 1998-2017), and R software package (R Core Team, 2020). Examples of 

simulation codes to generate and analyze study data were presented in Appendix A. 
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3.1 Study Design   

3.1.1 Population Model 

 To achieve study goals, a two-group CFA model with ordered categorical 

indicators was designed for data generation in both Study 1 and Study 2. As shown in 

Figure 3.1, assuming simple structure, the number of factors in the population CFA 

model was fixed to two (Factor 1k and Factor 2k), and the number of groups (K) was 

restricted to two as well. The model included ten indicators, with an equal number of 

indicators (five) loaded on each factor. One group was treated as the reference group, and 

the other group served as the focal group. 

 
Figure 3.1 Population confirmatory factor analysis model 

 

The number of factors and groups was restricted to two for simplicity, as well as 

for remaining practical when conducting a large simulation study (Hu & Bentler, 1998). 

Five indicators were selected because recommendations from simulation studies suggest 

that a minimum of three observed variables is needed for estimation and model 

identification purposes (Raykov & Marcoulides, 2012). In addition, Wolf et al. (2013) 
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suggested researchers may include more indicators per factor than the minimum required 

in order to compensate for small sample size and preserve statistical power. Therefore, to 

meet these criteria and to reflect typical context using CFA models (e.g., DiStefano & 

Hess, 2005; DiStefano et al., 2018), the number of items per factor was fixed to five in 

this study. One group was treated as the reference group where the factor mean and factor 

variance were set to be zero and one, and the factor mean and variance in the other group, 

which was the focal group, were set to be zero and one as well.  

As shown in Table 3.1, all item loading values in both groups were held constant 

at a strong standardized loading size of 0.8 (Comrey & Lee, 2013; Wolf et al., 2013). 

Wolf et al. (2013) found that stronger factor loadings (e.g., 0.8) required smaller samples 

and had fewer problems with statistical power compared to the weaker factor loadings 

(e.g., 0.5). In addition, strong factor loadings without cross-loading may indicate good 

convergent validity (Cabrera-Nguyen, 2010). As a result, a loading size of 0.8 was 

selected in the population model, and a cross-loading condition was excluded from the 

population model. The population values for all residual variances were set to be 0.36. 

Finally, the factor correlation value was fixed to be 0.6 in the CFA model, which 

indicated a strong relationship between factors (r = 0.6).  

3.1.2 Data & Data Generation 

 A small and medium sample size of 150 and 300 per group was generated in 

Study 1, resulting in a total sample size of 300 and 600. Data were generated with five 

categories using thresholds to denote data arising from a severe asymmetric observed 

distribution for all items (Rhemtulla et al., 2012). The selection of five categories in the 
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first study was based on a review of a set of published simulation studies examining SEM 

models with ordinal data (e.g., DiStefano et al., 2018; Flora & Curran, 2004).  

The extreme asymmetric distribution was chosen because previous research has 

found that most methods performed worse when category thresholds were asymmetric 

(Rhemtulla et al., 2012). While the data were asymmetric at the observed level, the 

simulated data were assumed to come from an underlying normal distribution. The reason 

for using underlying normal distribution was that difference of observed data 

distributions was small when comparing an underlying normal distribution to an 

underlying nonnormal distribution (see supplemental document, Rhemtulla et al., 2012).  

In summary, the population threshold values in the present study were set to be -

1.34, -0.84, -0.44, and -0.05, resulting in 9%, 11%, 13%, 15%, and 52% of normally 

distributed data falling into each category (see details in Rhemtulla et al., 2012). Data 

properties of the population model were presented in Table 3.1.  

Table 3.1 Population parameters for simulation Study 1 

Parameter Controlled Population values 

Number of groups 2 

Sample size per group 150 & 300 

Number of factors 2 

Number of items per factor 5 

Number of ordered categories 5 

Magnitude of factor loadings 0.8 

Magnitude of item thresholds -1.34, -0.84, -0.44, and -0.05 

Factor means 0 and 0 

Factor variances 1 and 1 

Factor correlation 0.6 

Estimator WLSMV 

Threshold symmetry Extreme asymmetric 

Underlying distribution Normal 

 



51 
 

3.1.3 Estimation 

The weighted least squares mean and variance adjusted (WLSMV) estimation 

method was used for data analysis. WLSMV is termed a “robust technique” meaning that 

it applies a correction to the original diagonally weight least square (DWLS) formula 

(DiStefano & Morgan, 2014). This estimation method was selected because the superior 

performance of WLSMV in estimating non-normal ordinal data has been well-established 

in the literature (Beauducel & Herzberg, 2006).  

3.1.4 Study 1 

Once the population model was set and the data were generated, a baseline CFA 

invariance model was fitted to the generated data. After estimating the baseline model, 

more restricted invariance models with a sequence of imposed equality constraints were 

fit into the generated data. The adequacy of a series of restrictions was compared based 

on the differences of model fit results. Specifically, the sequence started with testing 

configural invariance as the baseline. Once the model fit was adequate, metric invariance 

(equality constraints for factor loading across groups), scalar invariance (equality 

constraints for threshold across groups), factor variances, factor covariances, and factor 

means invariance were evaluated by calculating the differences of model fit indices on 

CFI, RMSEA, and SRMR.  

Based on the differences of fit results among nested models, two outcomes were 

reported in Study 1: 1) sampling variability of changes in model fit across different levels 

of invariance; and 2) cutoff points for changes in model fit indices at different levels of 

invariance. A total of 1000 replications were conducted, resulting in a total of 2000 

population datasets.  
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Considering model identification issue, residual variances were fixed to one when 

using WLSMV estimator, factor variances and factor means were fixed to the values 

defined in the population models (see details in Hoffman, n.d.; Millsap & Yun-Tein, 

2004; Muthén &Asparouhov, 2002). In addition, to test for equal residual variances 

across groups, a backward invariance test procedure was proceeded in Study 1 (see detail 

steps in Hoffman, n.d), and theta parameterization was used for model specification.  

At the test of configural invariance level, the fit of CFI, RMSEA, and SRMR 

were assessed using criteria of no smaller than 0.95 for CFI, and no larger than 0.05 for 

RMSEA and SRMR. When assessing factor loadings, thresholds, residual variances, 

factor variances, factor covariances, and latent means, changes of fit indices (ΔCFI, 

ΔRMSEA, and ΔSRMR) were obtained by calculating difference between the more 

restricted model and the baseline model.  

3.1.5 Study 2 

 For Study 2, rejection rates for each change in model fit under a number of 

conditions were examined. An additional objective was to investigate the influence of the 

conditions on the sensitivity of changes on fit indices. Specifically, the same two-factor 

CFA population model was used when examining metric and scalar invariance, and five 

major conditions were manipulated: 1) sample size per group, 2) number of indicators, 3) 

source of non-invariance, 4) proportion of non-invariant items, and 5) threshold 

variability. These conditions were chosen based on prior simulation designs from 

methodological studies indicating their possibilities to affect model fit indices when 

measurement invariance is tested (Chen, 2007; Kim, 2012; Sass et al., 2014; Shi, 2016; 

Short, 2014). A summary of the studied conditions was presented in Table 3.2.  
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Table 3.2 Summary of conditions for simulation Study 2 

Parameter Controlled Condition Options 

N (per group) 100, 600 

Number of indicators 8, 16 

Indicator categories 4 

Source of non-invariance Factor loadings only or thresholds only 

Magnitude of invariant item loadings 0.8 

Magnitude of non-invariant item loadings 0.5 

Magnitude of invariant item thresholds -1.25, 0, 1.25 

Magnitude of non-invariant item thresholds -1.23, -0.71, -0.28 

Levels of threshold symmetry Symmetry or extreme asymmetry 

Proportion of non-invariant items 25% or 50% 

 

Sample size. To achieve accurate estimates and ensure that CFA models can 

converge successfully, the sample size needs to be considered. Studies have found that 

most of the psychological research has followed an ad hoc rule of thumb requiring an N:p 

ratio of 10:1 in setting a lower bound for the sample sizes (Nunnally, 1967). Other 

researchers argue that a minimum sample size of 100 or 200 cases is preferable for 

structural equation modeling (SEM) (Boomsma, 1985), or 5 or 10 observations per 

estimated parameter is recommended (Bollen, 1989). Based on the empirical review 

study conducted by DiStefano and Hess (2005), the median sample size for empirical 

research was 377 across 101 reviewed articles, and only 19% of studies using CFA 

models considered with a sample size of less than 200 cases. A similar conclusion was 

also found in Jackson et al.'s (2009) study, indicating that over 90% of reviewed studies 

used adequate sample sizes, with only 7.7% of studies used very small samples less than 

100. Overall, the rule of N:p ratio of 10:1 is still widely used and satisfied in a majority of 

applied research studies.  

Although most studies used a large sample size, many applied researchers and 

practitioners argued that sometimes they were unable to obtain adequate sample sizes due 
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to budget constraint or limited target population (Nevitt & Hancock, 2004; Westland, 

2010). Considering a small sample size condition in the simulation study may benefit 

applied researchers, as well as reflect a common dilemma in empirical research, two 

conditions were included in this study to emphasize possible limitations in applied 

research. Specifically, the sample sizes were set to be 100 (a small sample size), and 600 

(a large sample size) for each group with a N:p ratio of 10:1, and 60:1. A medium sample 

size (N= 300 per group) was not included in Study 2 because it had been considered in 

Study 1. The total sample sizes were 200, and 1200 with sample sizes equally distributed 

in both groups.  

Number of indicators. The number of indicators used in previous simulation 

studies with CFA models varied widely. For example, DiStefano and colleagues (2018) 

simulated a commonly applied three-factor CFA model including a total number of 15 

items with five items per factor. Flora and Curran (2004) tested four models with five to 

10 indicators per factor. Shi et al. (2019) examined the influence of model size on SEM 

fit indices by simulating a two-factor CFA model with a total number of observed 

variables ranging from 10 to 120. In addition, DiStefano et al. (2019) employed a three-

factor CFA model with five to 60 items per factor. Based on the review study, DiStefano 

and Hess (2005) noted that the medium model size used in applied research studies was 

found to be a four-factor model with 16 indicators, approximately 4-7 indicators per 

factor. Jackson et al. (2009) reviewed 194 published studies and found that the median 

number of observed variables in the models was 17, with 25% of the studies using 

models less than 12 variables and with 25% of the studies using models more than 24 

items. Therefore, based on existing literature, the number of indicators for each factor in 
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this study were set to be 5 and 8 yielding the total number of indicators of 10 (2 

factors/10 indicators) and 16 (2 factors/16 indicators). These two conditions covered a 

small and medium model size, which approximate conditions used in most previous CFA 

studies. A large model size (i.e., 8 factors/40 indicators) was not considered as it appears 

to be less common in applied research.  

Indicator categories. This condition specified how many categories were 

included for each indicator. As documented in many empirical studies, variables 

characterized by an ordinal scale of measurement (i.e., Likert-type items) are common 

within social and behavioral sciences (Flora & Curran, 2004). Based on a set of previous 

articles, categories less than five are typically used in empirical studies to investigate 

issues related to ordered categorical data (i.e., DiStefano et al., 2018; Flora & Curran, 

2004; Sass et al., 2014). Commonly, five-category is used as a cutoff for defining ordered 

data as items with more than five categories are often treated as continuous variables, 

thus, can be estimated using maximum likelihood (ML) estimation (Kim, 2012). In Study 

2, four categories were selected for comparison with Study 1 results with five categories. 

Further, four-category scale is the most ideal in many real-world situations when 

researchers want to exclude participants’ neutral answer (Chyung et al., 2017).  

Usually, ordered categorical variables are generated by categorizing continuous 

variables, where the underlying distribution is unknown, but is assumed to be normally 

distributed (DiStefano et al., 2018; Rhemtulla, et al., 2012). Lubke and Muthén (2004) 

noted that while ordered categorical data with non-normal distributions have been 

extensively investigated in single-group models, studies on the performance of model fit 

indices using MLR or WLSMV estimators with ordered categorical data for multiple-
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group models are rare. To be consistent with previous simulation designs and to add 

novel findings in the literature, this study chose an underlying normal distribution as a 

simulated condition.  

Source of non-invariance. The source of non-invariance can vary at different 

places for parameters under consideration with invariance testing. For example, Sass et 

al. (2014) designed three non-invariant locations in their Monto Carlo simulation study: 

factor loadings only, thresholds only, and both factor loadings and thresholds, to evaluate 

the performance of metric, scalar, and cumulative non-invariance. Their findings 

indicated that the source of non-invariance can substantially impact the power of Δ chi-

square when using different estimators, including ML, MLR, and WLSMV (Sass et al., 

2014). Both Kim (2011) and Shi (2016) varied the locations of non-invariance at either 

factor loadings or intercepts/thresholds to examine the influence of sources of non-

invariances on the targeted models. According to Kim (2011), different measurement 

invariance testing techniques (e.g., multiple-group CFA) may be employed depending on 

the source of non-invariance.  

As many investigators have found the source of non-invariance may potentially 

impact research results, adding this factor into a simulation study is necessary. In this 

study, the location of non-invariance was manipulated either on factor loadings or 

thresholds without simulating both at the same time. These two conditions were used to 

evaluate the performance of metric and scalar measurement non-invariance.  

When testing lack of loading invariance (metric measurement non-invariance), a 

weaker loading size was used for the non-invariant items in Study 2. Specifically, the 

standardized factor loading size for the invariant items were fixed to 0.8, and the 
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standardized factor loading size for the non-invariant items was designed to be 0.5 (a 

moderate loading size) (e.g., DiStefano et al., 2018; Sass et al. 2014; Shi, 2016).  

When testing lack of thresholds invariance (scalar measurement non-invariance), 

the invariant item threshold values were set to be 1.25, 0, 1.25, which indicated a 

symmetric threshold condition, and non-invariant item threshold values were fixed to be 

1.23, -0.71, and -0.28, representing an extreme asymmetric threshold condition.  

Levels of threshold symmetry. With respect to thresholds, two conditions were 

included in the simulation study: 1) symmetry condition; and 2) extreme asymmetry 

condition. Threshold symmetry values were adapted based on suggestions from previous 

literature (Rhemtulla, et al., 2012). In the symmetry condition, the underlying normal 

distribution is evenly discretized through a set of threshold values that are represented by 

Z-scores. Specifically, for four categories, threshold values were set to be -1.25, 0, 1.25, 

resulting in 11%, 39%, 39%, and 11% of normally distributed data falling into each 

category. In the extreme asymmetry condition, category threshold values were created so 

that the peak of the distribution fell to the right of the center. Specifically, the category 

threshold values were -1.23, -0.71, and -0.28 for four-category, which resulted in 11%, 

13%, 15%, and 61% of normally distributed fata falling into four categories. A summary 

of threshold values used in the study 2 was shown in Table 3.3.  

Table 3.3 Threshold conditions 

Threshold 

condition 

No. cat Threshold values Proportion of cases in each 

category 

Symmetry 4 -1.25, 0, 1.25 11 39 39 11 

Ext. Asym 4 -1.23, -0.71, -0.28 11 13 15 61 
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Proportion of non-invariant items. Finally, the proportion of non-invariant 

items was considered, as prior research has found that this factor affected the changes in 

model fit indices to lack of measurement invariance when ML estimation with continuous 

data was used (Cheng, 2007). Two conditions were considered in this study: 25% of the 

non-invariant items, and 50% of the non-invariant items. The 25% of the non-invariant 

items indicated the low contamination situation (Shi, 2016), where only 25% of item 

loadings were different across the two groups. Similarly, 50% of the non-invariant items 

represented a high contamination condition (Shi, 2016), where 50% of item loadings 

were different across the two groups. These proportions were selected based on previous 

simulation research studies for testing measurement invariance (Shi, 2016; French & 

Finch, 2008). 

In total, this simulation study consisted of 32 fully crossed conditions: 2 levels of 

sample sizes (100, and 600 per group) * 2 level of the number of indicators (4, 8 per 

factor) * 1 level of category condition (four-category) * 2 levels of source of non-

invariance (factor loadings or thresholds ) * 1 level of magnitude of item loadings (item 

loadings of 0.8 for invariant items and item loadings of 0.5 for non-invariant items) * 2 

levels of threshold variability (symmetry, and extreme asymmetry) * 2 levels of the 

proportion of non-invariance on items (25%, and 50%). All data were generated and 

analyzed using a multiple-group CFA model. For each designed simulation condition, 

one thousand replications were run. Replications that exhibited non-convergence or 

improper solutions were removed and only results converging to a proper solution was 

included in the analyses.  
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3.2 Procedures and Analyses  

All the data generation, estimation and analyses were conducted using Mplus 

version 8.6 (Muthén & Muthén, 2017) and R (R Core Team, 2020). In Study 1, the 

sampling variability of model fit indices under different levels of invariance was 

summarized by tables across conditions and invariance levels. Descriptive results were 

given including the means, standard deviations, 1st and 5th percentiles of changes in CFI, 

as well as the means, standard deviations, 95th and 99th percentiles of changes in RMSEA 

and SRMR. Based on the results of Study 1, cutoff values were given for testing 

measurement invariance at levels of factor loadings, thresholds, residual variances, factor 

variances, factor covariances, and factor means. The proposed cutoff points were based 

on the average value of the means, 1st/95th or 5th/99th percentiles in fit differences.  

In Study 2, five major factors were considered: sample size, number of indicators, 

source of non-invariance, levels of threshold symmetry, and proportion of non-invariant 

items. Results of rejection rates based on cutoff points of changes in fit indices were 

examined across studied conditions. 

In summary, this dissertation included two Monto Carlo simulation studies to 

investigate the performance of changes in three model fit indices with ordered categorical 

data in the context of measurement invariance testing with multiple-group CFA under 

various conditions commonly founded in both applied and methodological studies. The 

findings may contribute to previous research and provide both applied and simulation 

researchers with a baseline reference as to how changes in model fit perform under the 

simulated modeling conditions.  
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Chapter 4 presented the results of these two studies. In chapter 4, model 

convergence and performance of all ad-hoc model fit indices under all simulated 

conditions were examined. Cutoff guidelines for the changes in model fit indices to the 

multiple-group CFA invariance testing were discussed. Rejection rates throughout all 

conditions were investigated. Finally, the impact of model characteristics was described 

throughout this chapter.
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CHAPTER 4  

RESULTS 

This study investigated the performance of model fit indices when testing 

measurement invariance in the context of multiple-group CFA. The study used ordinal 

data with the analyses and the research design included simulated conditions commonly 

encountered in practice. Two Monte Carlo studies were designed to answer four research 

questions. 

Study 1 was designed to examine sampling variability of fit indices under 

population conditions, assuming invariance across test levels. Two research questions 

were addressed with this study. Research Question 1 examined the sampling variability 

of three fit indices under various invariance levels including factor loadings, thresholds, 

residual variances, latent means, factor variances, and factor covariances, with a goal of 

providing applied researchers assistance when evaluating measurement invariance with 

ordinal data. Research Question 2 examined whether the proposed criteria of changes in 

model fit indices were consistent with each level of invariance including successively 

restricting factor loadings, thresholds, residual variances, latent means, factor variances, 

and factor covariances. 

Study 2 aimed to examine the performance of fit indices across different 

conditions when testing two common non-invariance levels: metric non-invariance and 

scalar non-invariance. This study addressed Research Questions 3 and 4. Research 

Question 3 aimed to investigate the influence of various simulated conditions on the 
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performance of changes in fit indices under two commonly used non-invariance levels: 

metric non-invariance and scalar non-invariance. Then, rejection rates based on cutoff 

points of fit indices proposed in Study 1 were examined in Study 2. Last, Research 

Question 4 compared the proposed standards of ordinal data with fit criteria commonly 

used with invariance evaluation when continuous data are analyzed. 

4.1 Performance of Model Fit Indices for Study 1.  

The first study followed the earlier work of Cheung and Rensvold (2002) as well 

as Chen (2007). Overall, data were simulated across various conditions, assuming the 

null hypothesis of invariance. Convergence rates in Study 1 were examined to assess the 

percentage of successfully converged replications for each simulated condition. All 

models successfully converged one thousand times.   

Table 4.1 displayed the means, standard deviations, and the 1st and 5th percentiles 

of CFI, and 95th and 99th percentiles of RMSEA and SRMR for sample sizes of 300 and 

600, respectively.  Table 4.2 presented the means, standard deviations, and 1st and 5th 

percentiles of ΔCFI, and 95th and 99th percentiles of ΔRMSEA, and ΔSRMR for both 

sample size conditions. The percentiles shown in the tables indicated various critical 

values to use for rejecting the null hypothesis of invariance. The results were discussed 

by two types of tests: measurement invariance tests including invariance of model form 

(configural invariance), factor loadings (metric invariance), thresholds (scalar 

invariance), and residual variances (strict invariance), and structural invariance tests 

including tests of factor variances, factor covariances, and factor means invariance.  

First, as the sample increased, the performance of fit results improved and the 

sampling variation in fit indices decreased. For example, when testing factor loading 
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invariance, as the sample increased from 300 to 600, the means of RMSEA decreased 

from 0.016 to 0.011, and the associated standard deviations decreased from 0.017 to 

0.012. The 95th percentiles for RMSEA decreased from 0.046 to 0.033. A similar pattern 

was detected for the CFI and SRMR in terms of the means, percentiles, and standard 

deviations.  

Second, when testing configural invariance, as expected, all three fit indices 

supported the hypothesis of equal form across groups at both sample sizes 300 and 600. 

For example, mean values of CFI were 0.998, and 1.000 for sample sizes 300 and 600, 

respectively, and the 5th percentiles of CFI were 0.991, and 0.995. The mean values of 

RMSEA were 0.015, and 0.010, and the 95th percentiles of RMSEA were 0.046, and 

0.033 for both conditions. Mean values of SRMR were 0.035, and 0.024, and the 95th 

percentiles of SRMR were 0.042, and 0.029 with sample sizes of 300 and 600.  Overall, 

all simulated results were consistent with the population models for testing equal model 

form.  

Third, when testing measurement invariance in loadings, thresholds, and residual 

variances with both sample sizes 300 and 600, all three fit indices (CFI, RMSEA, and 

SRMR) were more sensitive to random variation in factor thresholds and residual 

variances than in factor loadings, while changes in SRMR were relatively smaller across 

thresholds and residual variances. For example, given a model with a sample size of 600, 

the 95th percentiles of ΔRMSEA were 0.00, 0.043, and 0.048 for invariance tests of 

loadings, thresholds, and residual variances, respectively. For ΔCFI, the 5th percentiles 

were -0.001, -0.037, and -0.037; For ΔSRMR, the 95th percentiles were 0.004, 0.10, 0.12 

for invariance tests of loadings, thresholds, and residual variances, respectively. 
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Figures 4.1 and 4.2 reported the fit differences of 5th/95th percentiles based on 

loadings, thresholds, and residual variances invariance tests for sample size 300 and 600. 

CFI is an incremental fit index that compares a hypothesized model fit with a model with 

the worst fit. Therefore, larger values demonstrate “better” model fit. On the contrary, 

RMSEA and SRMR indicate the “badness” of model fit that assesses how far a 

hypothesized model is from a perfectly fitting model. As a result, smaller values are used 

to show how much “better” the model fits as compared to the true value.  Note that the 

pattern for CFI is, by definition, opposite to the patterns of RMSEA and SRMR.  

Figures 4.1 and 4.2 showed that among the three fit indices, SRMR was slightly 

more sensitive to random variation in factor loadings than CFI and RMSEA for both 

sample sizes 300 and 600, as the changes in SRMR was found to be larger than the 

changes in CFI and RMSEA. However, when sample size increased to 600, the 

sensitivity of SRMR to random variation in factor loadings was not obvious, as change in 

SRMR decreased slightly.  

Last, instead of producing all positive ΔRMSEA values, the study also identified 

a negative 99th percentile value (-0.001) in the 300-sample size condition when testing 

loading invariance. Although this result was not expected, as the more constrained model 

should perform less well than the less constrained model, previous invariance research 

studies have yielded similar findings (e.g., Rutkowski & Svetina, 2014; 2017).  

Fourth, when testing structural invariance in factor variances, covariances, and 

means for sample size 300, all fit indices were more sensitive to random variation in 

factor variances than covariances and latent mean values. For example, for CFA, the 5th 

percentiles were -0.033, 0.000, and 0.020 for invariance tests of factor variances, 
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covariances, and the latent means, respectively (see Figures 4.3 and 4.4 for 5th/95th 

percentiles). For RMSEA, the 95th percentiles were 0.027, 0.000, and -0.020; For SRMR, 

the 95th percentiles were 0.028, 0.018, and -0.020. A similar pattern was also detected in 

percentiles when the sample size increased to 600. Additionally, compared to ΔCFI and 

ΔRMSEA with sample size 300, ΔSRMR was the least sensitive to random variation in 

latent means. 

 

Figure 4.1 The 5th/95th percentile of differences in fit indices based on different levels of 

measurement invariance tests for sample size 300. Note: the pattern of CFI was opposite 

to the patterns of RMSEA and SRMR. 
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Figure 4.2  The 5th/95th percentile of differences in fit indices based on different levels of 

measurement invariance tests for sample size 600. Note: the pattern of CFI was opposite 

to the patterns of RMSEA and SRMR. 

 

Figure 4.3 The 5th/95th percentile of differences in fit indices based on different levels of 

structural invariance tests for sample size 300. 
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Figure 4.4 The 5th/95th percentile of differences in fit indices based on different levels of 

structural invariance tests for sample size 600. 
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Table 4.1 Goodness of fit indices under different levels of invariance 

 CFI RMSEA SRMR 

N M SD 5% 1% M SD 95% 99% M SD 95% 99% 
     Configural Invariance     

300 0.998 0.003 0.991 0.988 0.015 0.017 0.046 0.055 0.035 0.004 0.042 0.045 

600 1.000 0.002 0.995 0.993 0.010 0.012 0.033 0.039 0.024 0.003 0.029 0.031 
     Metric Invariance     

300 0.998 0.003 0.990 0.987 0.016 0.017 0.046 0.053 0.039 0.005 0.047 0.051 

600 0.999 0.002 0.995 0.992 0.011 0.012 0.033 0.040 0.028 0.003 0.033 0.035 
     Scalar Invariance     

300 0.971 0.009 0.956 0.947 0.064 0.009 0.078 0.085 0.049 0.004 0.056 0.059 

600 0.968 0.006 0.957 0.952 0.067 0.006 0.076 0.080 0.039 0.003 0.043 0.045 
     Strict Invariance (Model A)     

300 0.998 0.004 0.990 0.985 0.013 0.015 0.039 0.048 0.038 0.004 0.045 0.048 

600 0.999 0.002 0.995 0.992 0.009 0.010 0.028 0.035 0.027 0.003 0.032 0.033 
     Strict Invariance (Model B)     

300 0.971 0.009 0.956 0.947 0.064 0.009 0.078 0.850 0.049 0.004 0.056 0.059 

600 0.968 0.006 0.957 0.952 0.067 0.006 0.076 0.080 0.039 0.003 0.043 0.045 
     Factor Variance Invariance     

300 0.953 0.017 0.923 0.907 0.081 0.014 0.105 0.113 0.068 0.009 0.084 0.091 

600 0.948 0.013 0.927 0.914 0.084 0.010 0.100 0.107 0.060 0.007 0.071 0.078 
     Factor Covariance Invariance     

300 0.958 0.018 0.923 0.905 0.076 0.017 0.105 0.120 0.078 0.013 0.101 0.113 

600 0.956 0.013 0.932 0.921 0.077 0.011 0.095 0.103 0.069 0.010 0.087 0.094 
     Factor Mean Invariance     

300 0.967 0.013 0.944 0.930 0.068 0.012 0.087 0.096 0.069 0.009 0.084 0.091 

600 0.964 0.009 0.948 0.939 0.069 0.008 0.082 0.089 0.061 0.007 0.072 0.079 

Note. Comparison of equal residual variances was conducted backward, meaning that strict invariance (Model A) with all residual 

variances freely estimated in the second group was fitted first, and then compared with strict invariance (Model B) with all residual 

variances fixed to the population value (0.36) in the second group.
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Table 4.2 Sampling variability of goodness of fit indices under different levels of invariance  

 ΔCFI ΔRMSEA ΔSRMR 

N M SD 5% 1% M SD 95% 99% M SD 95% 99% 

Loading Invariance (Baseline: Configural) 

300 0.000 0.002 -0.005 -0.006 0.001 0.012 0.000 -0.001 0.005 0.002 0.005 0.006 

600 0.000 0.001 -0.001 -0.001 0.001 0.008 0.000 0.000 0.003 0.002 0.004 0.004 

Threshold Invariance (Baseline: Metric) 

300 -0.026 0.008 -0.035 -0.040 0.048 0.014 0.032 0.032 0.010 0.002 0.009 0.008 

600 -0.031 0.006 -0.037 -0.041 0.056 0.011 0.043 0.040 0.011 0.002 0.010 0.010 

Residual Invariance (Baseline: StrictA) 

300 -0.026 0.008 -0.034 -0.039 0.051 0.012 0.039 0.037 0.011 0.002 0.011 0.010 

600 -0.031 0.006 -0.037 -0.041 0.058 0.010 0.048 0.045 0.012 0.002 0.012 0.012 

Factor Variance Invariance (Baseline: StrictB) 

300 -0.019 0.014 -0.033 -0.040 0.017 0.013 0.027 0.028 0.019 0.008 0.028 0.032 

600 -0.020 0.011 -0.031 -0.037 0.017 0.009 0.024 0.027 0.012 0.002 0.012 0.012 

Factor Covariance Invariance (Baseline: Factor Variance) 

300 0.005 0.008 0.000 -0.002 -0.006 0.007 0.000 0.007 0.009 0.008 0.018 0.023 

600 0.008 0.006 0.005 0.006 -0.007 0.005 -0.004 -0.005 0.008 0.006 0.016 0.015 

Factor Mean Invariance (Baseline: Factor Covariance) 

300 0.010 0.010 0.020 0.030 -0.010 0.010 -0.020 -0.020 -0.010 0.010 -0.020 -0.020 

600 0.010 0.010 0.020 0.020 -0.010 0.010 -0.010 -0.010 -0.010 0.010 -0.020 -0.010 

Note. Comparison of equal residual variances was conducted backward, meaning that strict invariance (Model A) with all residual 

variances freely estimated in the second group was fitted first, and then compared with strict invariance (Model B) with all residual 

variances fixed to the population value (0.36) in the second group.
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Based on the results of Study 1, cutoff criteria were proposed for testing 

measurement invariance at metric invariance (factor loadings), scalar invariance 

(thresholds), and strict invariance (residual variances) levels. These levels were chosen to 

align with the commonly evaluated tests for measurement invariance in practice. 

Following Chen’s (2007) guideline, the proposed cutoff points are roughly based on the 

mean values in changes at the 1st/95th or 5th/99th percentiles of fit under the null 

hypothesis that a given level of invariance holds across two sample size conditions. 

Tables 4.1 and 4.2 showed that sample size impacts sampling variation in changes of fit 

indices, where sampling variation increases as the sample size decreases. Meanwhile, 

according to Chen’s study (2007), it is easier to commit Type I errors (i.e., the probability 

of rejecting the null hypothesis when it is true) when the sample size is small and to 

commit Type II errors (the probability of accepting the null hypothesis when it is false) 

when the sample size is large. Therefore, an adequate cutoff criterion should minimize 

both Type I and II errors at the same time (Hu & Bentler, 1999). Overall, cutoff criteria in 

this study are proposed considering the influence of sample size. 

When comparing the configural model with the metric model, and the metric 

model with the scalar model, the results indicated an increasing sensitivity to random 

variation in factor thresholds and residuals rather than factor loadings. Thus, different 

cutoff points were recommended for different levels of invariance tests: when testing 

loading invariance, a change of ≤ |±0.003| is proposed because the average value of 

ΔCFIs across means, 1st and 5th percentiles of ΔCFIs was around |±0.003|. However, 

when testing threshold and residual variance invariance levels, a change of ≤ |±0.03| is 

recommended considering that the average value of ΔCFIs across means, 1st and 5th 
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percentiles of ΔCFIs was around |±0.03|. It is noted that absolute cutoff values are 

recommended because positive ΔCFIs were found in many conditions. For example, 

when testing item thresholds (scalar) invariance, 32.2% ΔCFIs across 1000 replications 

were positive in condition with a model sample size of 100 per group, 8 indicators, 

extreme asymmetric, and 50% non-invariant item thresholds. Another reason for using 

absolute cutoff values is that this study only focused on investigating magnitude of fit 

changes across different levels of invariance rather than fit improvement. 

Similar to CFA, RMSEA was also more sensitive to random variation in factor 

thresholds and residuals than factor loadings. Therefore, two cutoff points were proposed: 

when testing factor loading invariance, a change of ≤ |±0.001| can be used, especially 

when the sample size is smaller than 300; when testing threshold and residual variance 

invariance, a change of ≤ |±0.02| is recommended.  

Last, for SRMR, the same value is suggested for all three levels of invariance 

given that SRMR was almost equally sensitive to all three levels of invariance especially 

when the sample size is small (e.g., 300): a change of ≤ 0.007 is proposed. These 

proposed cutoff values are applied to the next study to examine the rejection rates under 

various degrees of invariance. 

4.2 Performance of Model Fit Indices for Study 2 

Study 2 was conducted to investigate the effect of various simulated conditions on 

the performance of changes in fit indices under two commonly used invariance levels: 

metric invariance and scalar invariance. The second goal was to examine the rejection 

rates on cutoff points of fit indices proposed in Study 1. Last, the proposed standards for 
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invariance evaluation with ordinal data were compared with standards commonly applied 

with continuous data. 

The data generation procedure was similar to the procedure used in Study 1, but 

five factors that might impact the changes of fit indices to invariance testing were 

considered: sample size in each group, number of indicators, source of non-invariance, 

levels of threshold symmetry, and proportion of non-invariance (see details in Chapter 3).  

A total of 32 fully crossed conditions were simulated, and one thousand replications were 

generated for each simulation condition. Any non-convergence or improper solutions 

were removed from the study, and the number of convergences was increased until 

reached to 1000 successful iterations.  

To determine the effect of the simulated conditions on the model fit indices, 

descriptive information including means, standard deviations, 5th/95th, and 1st/ 99th 

percentiles of the three model fit indices were examined across all cells of the study. 

Then, average values were compared with the cutoff points proposed in Study 1. 

Specifically, when testing loading invariance, ΔCFI is equal or less than |±0.003|; 

ΔRMSEA is equal or less than |±0.001|; and ΔSRMR is equal or less than 0.007; when 

testing threshold and residual variance invariance levels, ΔCFI is equal or less than 

|±0.03|; ΔRMSEA is equal or less than |±0.02|, and ΔSRMR is equal or less than 0.007.  

Overall convergence rates were high across all the simulated conditions (see 

Table 4.3). Convergence problems only occurred when invariance tests were examined at 

the lowest sample size data and with 50% non-invariant item thresholds. The lowest 

convergence rate was 94.6% across three levels of invariance tests. Two main reasons of 

non-convergence were noted: a non- positive definite latent variable covariance matrix 
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and a computation issue related to standard errors of the model parameter estimates. In 

summary, the high convergence rates indicated an adequate estimation of the model 

parameters.   

4.2.1 CFI 

 Descriptive results of CFI differences were shown in Tables 4.4 and 4.5, Figures 

4.5, 4.6, 4.7 and 4.8. Over all study conditions, there was very little variability observed 

within ΔCFI values across the metric and scalar invariance conditions. Thus, the ΔCFI 

was sensitive to the lack of invariance for both metric and scalar invariance tests.  

Sample size. There was a slight increase in ΔCFIs when the sample size increased 

from 200 to 1200. Also, the sample size impacted standard deviation of changes in CFI 

significantly. For example, when testing factor loading invariance, given the 8-indicator 

model with symmetric thresholds and 25% non-invariant item loadings, the mean of 

ΔCFI values varied from -0.007 to -0.010 for sample sizes 200 and 1200. However, the 

standard deviations decreased from 0.010 to 0.003 across the span of sample sizes tested 

(200 to 1200). A similar pattern was also observed across study conditions when testing 

factor threshold invariance. Interestingly, however, when the non-invariant item loadings 

increased to 50% of total items or when the non-invariant thresholds were simulated in 

the models, changes slightly decreased for factor loading invariance. For example, given 

the 8-indicator model with symmetric thresholds and 50% non-invariant items, mean 

changes in CFI were -0.001 vs. 0.000 for both item loadings and thresholds between 

sample size 200 and sample size 1200. This pattern was not observed for item threshold 

invariance testing.  
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Number of indicators. The changes in CFI were larger for the 8-indicator models 

than in 16-indicator models when testing item threshold non-invariance; however, the 

pattern was opposite when factor loading non-invariance was examined. For example, 

given a model with symmetric thresholds, 25% non-invariant item loadings, and sample 

size 200, the mean values of ΔCFI changes were -0.008 with 8-indicator models (vs. -

0.005 with 16-indicator models) for factor threshold invariance testing, whereas the 

means of ΔCFI were -0.007 vs. -0.011 for factor loading invariance testing. The standard 

deviations were higher in the 8-indicator conditions than the 16-indicator conditions.  

Source of non-invariance. Two locations of non-invariant items were examined 

in this study: 1) non-invariant item loadings only, and 2) non-invariant item thresholds 

only. The changes in CFI were larger when testing factor threshold non-invariance than 

when testing factor loading non-invariance (see Tables 4.4 and 4.5). The results indicated 

that ΔCFI is more sensitive to the tests of factor thresholds than factor loadings across the 

study conditions. For example, given an 8-indicator model with symmetric thresholds, 

and sample size of 200, the means of CFI changes were -0.007 and -0.001 with 25% of 

non-invariant item loadings and 25 % of non-invariant item thresholds respectively when 

testing factor loading non-invariance (vs.-0.008 and -0.033 when testing factor threshold 

non-invariance), and the means of CFI changes were -0.001 and -0.001 with 50% of non-

invariant item loadings and 50% of non-invariant item thresholds respectively when 

testing factor loading non-invariance (vs. -0.017 and -0.004 when testing factor threshold 

non-invariance). 

Levels of threshold symmetry. The levels of threshold symmetry did not have an 

appreciable impact on changes in CFI when factor loading non-invariance was assessed. 
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However, the changes in CFI were larger in the symmetric threshold model than the 

extreme asymmetric threshold model when factor threshold non-invariance was tested, 

except for models with 50% non-invariant thresholds. These findings indicated that ΔCFI 

is more sensitive to detecting symmetric threshold non-invariance than extreme 

asymmetric threshold non-invariance. For example, given a 16-indicator model with 

sample size of 200 and 25% non-invariant item loadings, the means of CFI change were -

0.011 for both symmetric and extreme asymmetric threshold conditions when testing 

factor loading non-invariance. However, the means of CFI changes were -0.005 for 

symmetric threshold condition vs. -0.002 for extreme asymmetric threshold condition 

when testing factor threshold invariance.  

Proportion of non-invariant items. Concerning the proportion of non-invariant 

item loadings, changes in CFI were bigger with 25% non-invariant item loadings were 

included than when 50% non-invariant item loadings were present. The pattern was 

opposite for lack of threshold invariance. For example, given a 16-indicator model with 

sample size of 1200 and extreme asymmetric thresholds, the changes in CFI were -0.013 

when there were 25% non-invariant item loadings (vs. 0.000 when the non-invariant item 

loadings were 50%). For lack of loading invariance, however, the changes in CFI were -

0.002 vs. -0.004 for lack of threshold invariance with the same simulated condition. 

Considering the proportion of non-invariant item thresholds, changes in CFI were 

small and consistent across the 32 study conditions when testing item loading invariance. 

This finding was expected, as no non-invariant item thresholds were simulated in the 

population models. The pattern of changes in CFI was inconsistent across different 

proportion conditions, but changes in CFI did increase when item threshold values were 
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not invariant. For example, given an 8-indicator model with symmetric item thresholds 

and sample size of 200, the changes in CFI were -0.033 when the non-invariant item 

thresholds were 25% vs. -0.004 when the non-invariant item thresholds were 50%. 

However, given the 8-indicator model with extreme asymmetric item thresholds and 

sample size of 200, the changes in CFI were -0.021 with 25% non-invariant item 

thresholds vs. -0.032 with the 50% non-invariant item thresholds.  

Rejection Rates. Rejection rates for changes in CFI across sample sizes and 

levels of invariance are shown in Tables 4.10 and 4.11.  Based on the review of literature 

with both continuous data and ordered data, as well as based on the results of Study 1, 

several cutoff values were examined: 1) |± 0.002| (Mead et al, 2008); 2) |± 0.003| from 

Study 1; 3) |± 0.03| from Study 1; and 4) -0.005 and -0.01 (Chen, 2007).  

First, considering the impact of sample size, the results indicated that rejection 

rates based on ΔCFI appeared to vary across study conditions with different sample sizes. 

Specifically, when testing both factor loading and threshold non-invariance, rejection 

rates of ΔCFI tended to increase across 25% non-invariant item loading conditions as 

sample size increased. However, rejection rates of ΔCFI decreased substantially for 

sample size of 1200 when factor loading non-invariance was examined, especially when 

the models included 25% non-invariant item thresholds, as well as 50% non-invariant 

item loadings or thresholds. For example, using |± 0.002| as the cutoff value, given a 16-

indicator model with symmetric items and 50% non-invariant item loadings, the rejection 

rates were 41.4% when the sample size was 200 vs. 0.7% when the sample size was 

1200.  



 

77 
 

Second, for the number of indicators, it seems that rejection rates did not change 

significantly between 8-indicator models and 16-indicator models. For example, given a 

model with symmetric item thresholds, sample size of 200, and 25% non-invariant item 

thresholds for lack of threshold invariance, the rejection rates in CFI were 99.9% for the 

8-indicator model vs. 99.4% for the 16-indicator model using a cutoff value of 0.002. 

Third, in terms of source of non-invariance, as expected, the rejection rates were 

higher when the source of non-invariance was from item loadings than thresholds for lack 

of loading invariance; however, the rejections rates were inconsistent when the source of 

non-invariance was from item thresholds for lack of threshold invariance. For example, 

given an 8-indicator model with symmetric threshold, and sample size of 200 for lack of 

loading invariance, the rejection rates in CFI were 77.5% with 25% non-invariant 

loadings vs. 51.0% with 25% non-invariant item thresholds when testing factor loading 

non-invariance using 0.002 as a cutoff value. The rejection rates in CFI, which performed 

inconsistently, were 86.4% and 95.7% with 25% and 50% of non-invariant item loadings 

vs. 99.9% and 58.9% with 25 % and 50% of non-invariant item thresholds when testing 

threshold non-invariance using 0.002 as a cutoff value. 

Fourth, the levels of threshold symmetry were not an impactful factor on the 

rejection rates for ΔCFI. For example, given a 16-indicator model with sample size of 

200 and 25% non-invariant item loadings for lack of loading invariance, the rejection 

rates in CFI change were 95.2% vs. 89.5% for symmetric and extreme asymmetric 

threshold conditions when testing factor loading non-invariance using 0.002 as a cutoff 

value.  
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Last, considering the proportion of non-invariant items with both item loadings 

and item thresholds, 25% of non-invariant items had higher rejection rates than 50% non-

invariant items in most study conditions. For example, given a 16-indicator model with 

sample size of 1200 and extreme asymmetric threshold for lack of item loading 

invariance, the rejection rates in CFI were 100.0% when there were 25% non-invariant 

item loadings vs. 2.7% when the non-invariant item loadings were 50% using 0.002 as a 

cutoff value. 

Overall, on average, the CFI was more effective at identifying threshold non-

invariance (scalar non-invariance) across 32 study conditions than loading non-invariance 

(metric non-invariance). The average CFI difference across the conditions and across two 

levels of non-invariance ranged from 0.00 to |± 0.033|. CFI differences smaller than |± 

0.005| may be recommended when testing the metric invariance with ordinal data, and 

CFI differences smaller than |± 0.01| may be recommended when testing the scalar 

invariance with ordinal data. 

Specifically, cutoff values examined in this study including |± 0.002|, |± 0.003| or 

|± 0.005| may be used by applied researchers when testing metric invariance (see Table 

4.10), and -0.01 may be recommended when testing the scalar invariance (see Table 

4.11). It should be noted that the performance of these cutoff values was not equal across 

studied conditions. In several conditions, these cutoff values failed, and thus, should not 

be relied upon by applied researchers. For example, even though using the smallest cutoff 

value |±0.002|, rejection rates were extremely low given both 8-indicator and 16-indicator 

models with sample size of 1200, 50% non-invariant items, and with symmetric 
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thresholds for lack of item loading invariance. In such circumstances, all proposed cutoff 

values are not recommended to be used. 

4.2.2 RMSEA  

Sample size. Descriptive results of RMSEA differences are shown in Tables 4.6 

and 4.7, Figures 4.5, 4.6, 4.7 and 4.8. The sample size did not have a large impact on 

changes in RMSEA, although there was a slight increase in ΔRMSEA across several 

conditions. However, similar to CFI, the sample size impacted standard deviation of 

changes in RMSEA significantly. For example, when testing factor threshold invariance, 

given an 8-indicator model with symmetric thresholds and 25% non-invariant item 

loadings, the means of RMSEA changes varied from 0.009 to -0.080 between sample size 

200 and sample size 1200. However, the standard deviation decreased from 0.031 with a 

sample size of 200 to 0.005 with a sample size of 1200.  

Number of indicators. The number of indicators did not have an appreciable 

impact on change in the RMSEA index across successive tests. The results of ΔRMSEA 

were inconsistent across study conditions in the context of both lack of metric invariance 

and scalar invariance. For example, changes in RMSEA were larger in the 8-indicator 

models than in 16-indicator models with sample size of 200 when testing item threshold 

invariance, while the pattern was the opposite when factor loading invariance was 

examined. The standard deviations were higher in the 8-indicator conditions than the 16-

indicator conditions.  

Source of non-invariance. When the location of non-invariant items is on item 

loadings only, as expected, the changes in RMSEA were bigger when testing for factor 

loading non-invariance than testing factor threshold non-invariance. In contrast, when the 
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location of non-invariant items is on item thresholds only, the changes in RMSEA were 

smaller when testing factor loading non-invariance than when testing factor threshold 

non-invariance. Also, the results indicated that ΔRMSEAs were larger and more sensitive 

to test factor thresholds than factor loadings across the study conditions. For example, 

given the 8-indicator model with symmetric threshold, and sample size 200, the means of 

ΔRMSEA were 0.026 and 0.002 when testing factor loading invariance (vs.0.009 and 

0.059 when testing factor threshold invariance) with 25% non-invariant item loadings and 

thresholds. 

Levels of threshold symmetry. Overall, the changes in RMSEA were larger in 

the symmetric threshold model than the extreme asymmetric threshold model for both 

lack of factor loading invariance and lack of factor threshold invariance. This result 

indicated that ΔRMSEA is more sensitive to test symmetric threshold non-invariance 

than extreme asymmetric threshold non-invariance. For example, given a 16-indicator 

model with a sample size of 200 and 25% non-invariant item loadings, the means of 

ΔRMSEA were 0.030 for symmetric threshold vs. 0.021 for extreme asymmetric 

threshold conditions when testing factor loading invariance. When testing factor 

threshold invariance, the means of ΔRMSEA were 0.036 for symmetric threshold 

condition vs. 0.022 for extreme asymmetric threshold condition given a 16-indicator 

model with a sample size of 200 and 25% non-invariant item loadings.  

Proportion of non-invariant items. In regard to the proportion of non-invariant 

item loadings, similar with CFI, changes in RMSEA were bigger with the 25% non-

invariant item loading condition than when 50% of non-invariant items were present. 

However, the pattern of changes in RMSEA was opposite under a lack of threshold 
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invariance. For example, given a 16-indicator model with sample size of 1200 and 

extreme asymmetric data, the change in RMSEA were 0.033 when the non-invariant item 

loadings were 25% (vs. <0.001 when the non-invariant item loadings were 50%). 

However, the changes in RMSEA were -0.001 when the non-invariant item loadings were 

25% vs. 0.014 when the non-invariant item loadings were 50% for lack of threshold 

invariance under the same conditions.  

In terms of proportion of non-invariant item thresholds, changes in RMSEA were 

small and consistent across the 32 study conditions when testing item loading invariance. 

This was not unexpected as non-invariant item thresholds were not simulated in the 

population models. The change in RMSEA were bigger with 25% non-invariant item 

threshold conditions than with 50% non-invariant item threshold conditions, except for 

the 16-indicator models with extreme asymmetric thresholds. For example, given the 16-

indicator model with symmetric item thresholds and sample size 1200, the changes in 

RMSEA were 0.054 when the non-invariant item thresholds were 25% vs. 0.020 when 

the non-invariant item thresholds were 50%. However, given the same model but with 

extreme asymmetric item thresholds, the changes in RMSEA were 0.038 with the 25% 

non-invariant item thresholds vs. 0.053 with the 50% non-invariant item thresholds.  

Rejection Rates. Rejection rates for changes in RMSEA across sample sizes and 

levels of invariance are shown in Tables 4.10 and 4.11.  Based on literature review and 

results of Study 1, six cutoff values were examined: 1) |±0.001| from Study 1; 2) 0.007 

(Mead et al, 2008); 3) 0.01 (Chen, 2007); 4) 0.015 (Chen, 2007); 5) |± 0.02| from Study 

1; 6) 0.05 (Rutkowski & Svetina, 2017).  
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First, considering the impact of sample size, the rejection rates of ΔRMSEA are 

consistent with ΔCFI, indicating that there was a large variation across study conditions 

with different sample sizes. Specifically, rejection rates of ΔRMSEA tended to increase 

in many study conditions when sample size increased for testing factor threshold 

invariance. However, rejection rates of ΔRMSEA decreased dramatically for sample size 

1200 when factor loading invariance was examined. For example, given the 16-indicator 

model with symmetric and 50% non-invariant item loadings, the rejection rates were 

45.9% when the sample size was 200 (vs. 19.8% when the sample size was 1200) using 

0.007 as the cutoff value.  

Second, the number of indicators did not impact rejection rates across study 

conditions. For example, given a model with sample size of 1200, symmetric and 25% 

non-invariant item thresholds for lack of threshold invariance, the rejection rates in 

RMSEA were 100.0% for the 8-indicator model vs. 100.0% for the 16-indicator model 

using a cutoff value of 0.007.  

Third, concerning the source of non-invariance, similar to CFI, the rejection rates 

were higher when the source of non-invariance was from item loadings than item 

thresholds for lack of loading invariance, whereas the rejections rates were inconsistent 

when the source of non-invariance was from item thresholds for lack of threshold 

invariance. For example, given an 8-indicator model with symmetric thresholds, and 

sample size of 200, the rejection rates in CFI were 83.2% with 25% of non-invariant item 

loadings vs. 62.5% with 25% of non-invariant item thresholds when testing factor loading 

non-invariance using 0.007 as a cutoff value. The rejection rates, which performed 

inconsistently, were 76.8% and 92.9% with 25 % and 50% of non-invariant item loadings 
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vs. 99.5% and 62.2% with 25 % and 50% of non-invariant item thresholds when testing 

factor threshold non-invariance using 0.007 as a cutoff value. 

Fourth, the impact of levels of threshold symmetry on the rejection rates for 

ΔRMSEA was not appreciable. For example, given a 16-indicator model with sample 

size of 200 and 25% non-invariant item loadings, the rejection rates in ΔRMSEA were 

94.6% vs. 86.8% for symmetric and extreme asymmetric threshold conditions when 

testing factor loading non-invariance using 0.007 as a cutoff value. However, when 

sample size increased to 1200, rejection rates were 100% vs. 100% using 0.007 as the 

cutoff value. 

Last, considering the proportion of non-invariant items with both item loadings 

and item thresholds, 25% of non-invariant items had higher rejection rates than 50% non-

invariant items in many study conditions. For example, given a 16-indicator model with 

sample size of 1200 and extreme asymmetric threshold when testing lack of loading 

invariance, the rejection rates in RMSEA were 100.0% when there were 25% non-

invariant item loadings vs. 17.9% when the non-invariant item loadings were 50% using 

0.007 as a cutoff value. 

Overall, on average, the RMSEA was more sensitive to detect threshold non-

invariance (scalar non-invariance) than loading non-invariance (metric non-invariance), 

especially when the sample size was 1200. The average RMSEA difference across the 

conditions and across two levels of non-invariance ranged from |-0.001| to 0.087. 

Therefore, RMSEA differences smaller than |± 0.01| may be recommended when testing 

metric invariance with ordinal data, and RMSEA differences smaller than |± 0.02| may be 

recommended when testing scalar invariance.  
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Specifically, cutoff values examined in this study including |±0.001|, |± 0.007|, or 

|± 0.01| may be used by applied researchers based on different model conditions when 

testing metric invariance (see Table 4.10), and |±0.015| or |±0.02| may be suggested when 

testing scalar invariance (see Table 4.11). Similar to CFI, the proposed cutoff values in 

ΔRMSEA did not perform equally well across studied conditions. The cutoff values 

might fail in some conditions, and therefore should not be used. For example, using 

cutoff value of 0.007 recommended by Mead et al (2008), rejection rates were low given 

both 8-indicator and 16-indicator models with both sample size 200 and 1200, 50% non-

invariant items, and with both symmetric and extreme asymmetric thresholds for lack of 

item loading invariance. In such circumstances, this study suggested |±0.001| as the 

criterion. 

4.2.3 SRMR  

Sample size. Descriptive results of SRMR differences are shown in Tables 4.8 

and 4.9, Figures 4.5, 4.6, 4.7 and 4.8. The impact of sample size on ΔSRMRs was not 

appreciable.  However, standard deviation of changes in SRMR decreased substantially 

when the sample size increased from 200 to 1200.  

For example, given the 8-indicator model with symmetric thresholds and 25% 

non-invariant item loadings, the means of changes in SRMR were 0.012 and 0.014 for 

sample size 200 and sample size of 1200 when testing factor loading invariance. 

However, the means of changes in SRMR were 0.008 and 0.007 when testing item 

threshold invariance. Standard deviations decreased from 0.009 to 0.003 compared to 

samples of 200 and 1200 with the same study condition when testing factor loading 

invariance.  



 

85 
 

Number of indicators. The number of indicators did not have a large impact on 

the change in SRMR under factor loading invariance and threshold invariance. For 

example, given a model with symmetric thresholds, 25% non-invariant item loadings and 

sample size 200, the means of SRMR changes were 0.008 with the 8-indicator model (vs. 

0.004 with the 16-indicator model) for factor threshold invariance testing, whereas the 

means of ΔSRMR were 0.012 vs. 0.014 for factor loading invariance testing. The 

standard deviations were higher in the 8-indicator conditions than the 16-indicator 

conditions.  

Source of non-invariance. When non-invariant items are located on item 

loadings only, as expected, the changes in SRMR were bigger than non-invariant items 

on thresholds when testing factor loading non-invariance than testing factor threshold 

non-invariance. For example, given the 16-indicator model with sample size 200 and 

extreme asymmetric loadings, the change in SRMR was 0.015 for 25% non-invariant 

loadings vs. 0.007 for 25% non-invariant thresholds. In contrast, when the non-invariant 

items were on thresholds only, the changes in SRMR were bigger than non-invariant 

items on loadings when testing threshold non-invariance than testing loading non-

invariance. However, unlike ΔCFI and ΔRMSEA, ΔSRMR was equally sensitive to tests 

of factor loading and factor threshold invariance across the study conditions.  

Levels of threshold symmetry. The levels of threshold symmetry did not have an 

appreciable impact on changes in SRMR for both factor loading and threshold invariance 

testing. For example, given a 16-indicator model with sample size of 200 and 25% non-

invariant item loadings, the means of SRMR changes were 0.014 for symmetric threshold 

condition and 0.015 for extreme asymmetric threshold condition when testing factor 
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loading invariance. However, the means of SRMR changes were 0.004 for symmetric 

threshold condition compared to 0.002 for extreme asymmetric condition.  

Proportion of non-invariant items. Considering the proportion of non-invariant 

item loadings, changes in SRMR were bigger with 25% non-invariant item loading 

condition than with 50% non-invariant item loading condition when testing for lack of 

loading invariance, whereas the pattern was inconsistent for lack of threshold invariance. 

For example, given the 16-indicator model with sample size of 1200 and extreme 

asymmetric threshold, the change in SRMR averaged 0.016 when 25% of the items were 

non-invariant (vs. 0.003 when the non-invariant item loadings were 50%) for lack of 

loading invariance; however, the changes in SRMR were 0.001 vs. 0.002 for lack of 

threshold invariance with the same simulated condition. In terms of the proportion of 

non-invariant item thresholds, changes in SRMR were small and consistent across the 32 

study conditions when testing item loading invariance. The pattern of changes in SRMR 

was inconsistent across the different proportion conditions tested.  

Rejection Rates. Rejection rates for changes in SRMR across sample sizes and 

levels of invariance are shown in Tables 4.10 and 4.11.  Based on literature review and 

results of Study 1, four cutoff values were examined: 1) 0.002 from Study 1; 2) 0.007 

from Study 1; 3) 0.01 (Chen, 2007); and 4) 0.025 (Chen, 2007).  

First, considering the impact of sample size, the results indicated that rejection 

rates based on ΔSRMR appeared to vary across study conditions with different sample 

sizes and with different cutoff values. The rejection rates of ΔSRMR decreased 

substantially for sample size 1200 when factor loading invariance was examined.  
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Second, for the number of indicators, the rejection rates did not change 

significantly between 8-indicator models and 16-indicator models. For example, given a 

model with symmetric item loadings, sample size of 200 for lack of loading invariance, 

and 25% non-invariant item loadings, the rejection rates in SRMR were 93.6% for the 8-

indicator model vs. 100.0% for the 16-indicator model using a cutoff value of 0.002. 

Third, the rejection rates were higher and more consistent across study conditions 

when the source of non-invariance was from item thresholds than item loadings, and 

when sample size was 200 than 1200. For example, given an 8-indicator model with 

symmetric thresholds, and sample size of 1200 testing loading invariance, the rejection 

rates in SRMR were 100.0% with 25 % of non-invariant item loadings vs. 50.2% with 25 

% of non-invariant item thresholds when testing factor loading non-invariance using 

0.002 as a cutoff value. However, given an 8-indicator model with symmetric threshold, 

and sample size of 200 for lack of threshold invariance, the rejection rates in SRMR were 

91.7% with 25 % of non-invariant item loadings vs. 100.0% with 25 % of non-invariant 

item thresholds when testing factor threshold non-invariance using 0.002 as a cutoff 

value. 

Fourth, the levels of threshold symmetry were not an impactful factor on the 

rejection rates for ΔSRMR. For example, given a 16-indicator model with sample size of 

200 and 50% non-invariant item loadings for lack of loading invariance, the rejection 

rates in SRMR change were 99.3% vs. 99.8% for symmetric and extreme asymmetric 

threshold conditions when testing factor loading non-invariance using 0.002 as a cutoff 

value. 
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Last, regarding the proportion of non-invariant items with both item loadings and 

item thresholds, 25% of non-invariant items had higher rejection rates than 50% non-

invariant items in the majority of study conditions. For example, given a 16-indicator 

model with sample size of 1200 and extreme asymmetric threshold for lack of item 

loading invariance, the rejection rates in SRMR were 100.0% when there were 25% non-

invariant item loadings vs. 85.0% when the non-invariant item loadings were 50% using 

0.002 as a cutoff value. 

Overall, on average, the SRMR was more sensitive to identify threshold non-

invariance (scalar non-invariance) in most study conditions than loading non-invariance 

(metric non-invariance). The average SRMR difference across the conditions and two 

levels of non-invariance ranged from 0.001 to 0.018. After examining the above cutoff 

values of SRMR differences, 0.002 or 0.007 are recommended when testing the metric 

invariance and scalar invariance given the high rejection rates in most studied conditions 

for both lack of loading invariance and threshold invariance. However, it is worth noting 

that applied researchers may use different cutoff values based on different model 

conditions. For example, when testing lack of loading invariance, given both 8-indicator 

and 16-indicator models with both sample size 200 and 1200, 50% non-invariant items, 

and with both symmetric and extreme asymmetric thresholds, cutoff value of 0.002 is 

recommended to use than cutoff value of 0.007. 

Chapter 5 presented the discussion of findings, conclusions, and implications 

based on the results. Summaries were conducted to compare results with previous 

research on changes in the three fit indices within the framework of multiple group CFA 

invariance testing. Implications and recommendations of cutoff values on the model fit 
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changes across study conditions were discussed in this context. Last, limitations and 

future research were included in this chapter. 
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Table 4.3 Convergence rates across study conditions 

    Convergence Rate (%) 

# Indicators, threshold symmetry, % non-invariance Sample size 200 Sample size 1200 
    Configural Metric Scalar Configural Metric Scalar 

8 Indicators 

Symmetry 

25% loadings 99.6 99.8 100.0 100.0 100.0 100.0 

25% thresholds 99.8 100.0 100.0 100.0 100.0 100.0 

50% loadings 99.9 100.0 100.0 100.0 100.0 100.0 

50% thresholds 97.1 97.2 97.2 100.0 100.0 100.0 

Extreme Asymmetry 

25% loadings 98.7 99.8 100.0 100.0 100.0 100.0 

25% thresholds 98.5 98.5 98.5 100.0 100.0 100.0 

50% loadings 99.6 100.0 100.0 100.0 100.0 100.0 

50% thresholds 97.0 97.2 97.2 100.0 100.0 100.0 

16 Indicators 

Symmetry 

25% loadings 100.0 100.0 100.0 100.0 100.0 100.0 

25% thresholds 97.5 97.5 97.5 100.0 100.0 100.0 

50% loadings 100.0 100.0 100.0 100.0 100.0 100.0 

50% thresholds 94.6 94.6 94.6 100.0 100.0 100.0 

Extreme Asymmetry 

25% loadings 100.0 100.0 100.0 100.0 100.0 100.0 

25% thresholds 97.5 97.5 97.5 100.0 100.0 100.0 

50% loadings 100.0 100.0 100.0 100.0 100.0 100.0 

50% thresholds 94.6 94.6 94.6 100.0 100.0 100.0 

Note. The lowest convergence rates indicated by bold text. 
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Table 4.4 Mean, standard deviation and the 1st and 5th percentiles of CFI difference for testing loading invariance by study conditions 

# Indicators, threshold symmetry, % non-invariance 
Sample size 200  Sample size 1200 

M SD 5th 1st M SD 5th 1st 

8 

Indicators 

Symmetry 

25% loadings -0.007 0.010 -0.014 -0.020 -0.010 0.003 -0.014 -0.016 

25% thresholds -0.001 0.006 -0.002 -0.004 0.000 0.000 0.000 0.000 

50% loadings -0.001 0.006 -0.002 -0.003 0.000 0.001 0.000 0.000 

50% thresholds -0.001 0.004 -0.003 -0.001 0.000 0.000 0.000 0.000 

Extreme 

Asymmetry 

25% loadings -0.007 0.014 -0.014 -0.021 -0.010 0.004 -0.015 -0.017 

25% thresholds -0.001 0.004 -0.001 -0.002 0.000 0.001 0.000 0.000 

50% loadings -0.001 0.012 -0.003 -0.006 0.000 0.001 0.000 0.000 

50% thresholds -0.001 0.007 -0.003 -0.002 0.000 0.001 0.000 -0.001 

16 

Indicators 

Symmetry 

25% loadings -0.011 0.006 -0.016 -0.021 -0.014 0.003 -0.017 -0.018 

25% thresholds -0.001 0.002 -0.002 -0.002 0.000 0.000 0.000 0.000 

50% loadings -0.001 0.003 -0.002 -0.003 0.000 0.001 0.000 0.000 

50% thresholds -0.001 0.002 -0.001 -0.001 0.000 0.000 0.000 0.000 

Extreme 

Asymmetry 

25% loadings -0.011 0.007 -0.017 -0.020 -0.013 0.003 -0.017 -0.019 

25% thresholds -0.001 0.003 -0.002 0.000 0.000 0.001 0.000 0.000 

50% loadings -0.001 0.004 -0.001 -0.003 0.000 0.001 0.000 0.000 

50% thresholds -0.001 0.003 -0.002 0.000 0.000 0.001 0.000 0.000 

Note. Largest difference in each column indicated by bold text.
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Table 4.5 Mean, standard deviation and the 1st and 5th percentiles of CFI difference for testing loading and threshold invariance by 

study conditions 

# Indicators, threshold symmetry, % non-invariance 
Sample size 200  Sample size 1200 

M SD 5th 1st M SD 5th 1st 

8 

Indicators 

Symmetry 

25% loadings -0.008 0.013 -0.013 -0.018 -0.010 0.003 -0.012 -0.013 

25% thresholds -0.033 0.013 -0.048 -0.058 -0.044 0.006 -0.052 -0.054 

50% loadings -0.017 0.009 -0.028 -0.030 -0.022 0.004 -0.027 -0.028 

50% thresholds -0.004 0.005 -0.008 -0.009 -0.006 0.002 -0.009 -0.010 

Extreme 

Asymmetry 

25% loadings -0.003 0.013 -0.007 -0.009 -0.004 0.002 -0.005 -0.005 

25% thresholds -0.021 0.010 -0.030 -0.035 -0.030 0.005 -0.036 -0.039 

50% loadings -0.006 0.007 -0.012 -0.016 -0.014 0.004 -0.018 -0.019 

50% thresholds -0.032 0.013 -0.046 -0.051 -0.017 0.003 -0.021 -0.022 

16 

Indicators 

Symmetry 

25% loadings -0.005 0.003 -0.006 -0.008 -0.007 0.001 -0.007 -0.008 

25% thresholds -0.016 0.005 -0.019 -0.024 -0.024 0.003 -0.028 -0.029 

50% loadings -0.010 0.004 -0.013 -0.015 -0.014 0.002 -0.016 -0.017 

50% thresholds -0.002 0.002 -0.004 -0.005 -0.004 0.001 -0.005 -0.006 

Extreme 

Asymmetry 

25% loadings -0.002 0.002 -0.002 -0.002 -0.002 0.001 -0.003 -0.003 

25% thresholds -0.011 0.004 -0.014 -0.016 -0.018 0.002 -0.021 -0.022 

50% loadings -0.003 0.003 -0.004 -0.006 -0.004 0.001 -0.005 -0.005 

50% thresholds -0.019 0.006 -0.024 -0.025 -0.031 0.003 -0.035 -0.037 

Note. Largest difference in each column indicated by bold text.
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Table 4.6 Mean, standard deviation and the 1st and 5th percentiles of RMSEA difference for testing loading invariance by study 

conditions 

# Indicators, threshold symmetry, % non-invariance 
Sample size 200  Sample size 1200 

M SD 95th 99th M SD 95th 99th 

8 Indicators 

Symmetry 

25% loadings 0.026 0.036 0.022 0.022 0.044 0.011 0.040 0.038 

25% thresholds 0.002 0.029 0.000 0.000 0.000 0.007 0.000 -0.001 

50% loadings 0.002 0.025 -0.001 -0.001 -0.001 0.007 -0.001 -0.002 

50% thresholds 0.002 0.024 0.002 -0.001 0.000 0.006 -0.002 -0.001 

Extreme 

Asymmetry 

25% loadings 0.019 0.036 0.015 0.020 0.035 0.011 0.032 0.032 

25% thresholds 0.001 0.016 0.000 0.000 0.000 0.006 0.000 -0.002 

50% loadings 0.001 0.033 -0.001 0.004 0.000 0.007 -0.002 -0.001 

50% thresholds 0.002 0.029 0.001 0.001 0.000 0.006 0.000 0.000 

16 

Indicators 

Symmetry 

25% loadings 0.030 0.015 0.024 0.026 0.041 0.007 0.038 0.037 

25% thresholds 0.003 0.010 0.002 0.003 0.000 0.004 -0.001 -0.001 

50% loadings 0.002 0.011 0.002 0.001 0.000 0.005 0.000 0.000 

50% thresholds 0.003 0.010 0.002 0.003 0.000 0.004 0.000 0.000 

Extreme 

Asymmetry 

25% loadings 0.021 0.013 0.018 0.018 0.033 0.007 0.029 0.028 

25% thresholds 0.002 0.010 0.002 0.001 0.000 0.005 0.000 0.000 

50% loadings 0.001 0.011 0.001 0.001 0.000 0.005 0.000 -0.001 

50% thresholds 0.002 0.010 0.002 -0.001 0.000 0.004 0.000 0.001 

Note. Largest difference in each column indicated by bold text.
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Table 4.7 Mean, standard deviation and the 1st and 5th percentiles of RMSEA difference for testing loading and threshold invariance 

by study conditions 

# Indicators, threshold symmetry, % non-invariance 
Sample size 200  Sample size 1200 

M SD 95th 99th M SD 95th 99th 

8 Indicators 

Symmetry 

25% loadings 0.009 0.031 0.000 -0.003 0.008 0.005 0.006 0.006 

25% thresholds 0.059 0.022 0.040 0.031 0.087 0.009 0.077 0.076 

50% loadings 0.037 0.020 0.019 0.016 0.054 0.009 0.045 0.044 

50% thresholds 0.012 0.018 0.002 -0.005 0.028 0.009 0.022 0.021 

Extreme Asymmetry 

25% loadings -0.001 0.028 -0.008 -0.013 -0.001 0.004 -0.005 -0.005 

25% thresholds 0.040 0.019 0.021 0.015 0.060 0.010 0.049 0.046 

50% loadings 0.008 0.016 0.000 -0.002 0.033 0.008 0.024 0.022 

50% thresholds 0.054 0.020 0.032 0.027 0.044 0.009 0.033 0.030 

16 Indicators 

Symmetry 

25% loadings 0.003 0.005 0.001 -0.001 0.005 0.002 0.004 0.004 

25% thresholds 0.036 0.011 0.023 0.020 0.054 0.006 0.047 0.045 

50% loadings 0.023 0.010 0.013 0.012 0.037 0.005 0.030 0.029 

50% thresholds 0.007 0.008 0.003 0.001 0.020 0.005 0.014 0.013 

Extreme Asymmetry 

25% loadings -0.001 0.004 -0.003 -0.006 -0.001 0.001 -0.001 -0.001 

25% thresholds 0.022 0.010 0.012 0.009 0.038 0.005 0.031 0.029 

50% loadings 0.004 0.007 0.000 0.000 0.014 0.004 0.008 0.008 

50% thresholds 0.033 0.011 0.020 0.019 0.053 0.006 0.045 0.043 

Note. Largest difference in each column indicated by bold text.
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Table 4.8 Mean, standard deviation and the 1st and 5th percentiles of SRMR difference for testing loading invariance by study 

conditions 

# Indicators, threshold symmetry, % non-invariance 
Sample size 200  Sample size 1200 

M SD 95th 99th M SD 95th 99th 

8 Indicators 

Symmetry 

25% loadings 0.012 0.009 0.015 0.016 0.014 0.003 0.016 0.017 

25% thresholds 0.006 0.007 0.008 0.010 0.002 0.001 0.003 0.003 

50% loadings 0.007 0.006 0.008 0.009 0.003 0.001 0.003 0.003 

50% thresholds 0.006 0.005 0.007 0.007 0.002 0.001 0.003 0.003 

Extreme Asymmetry 

25% loadings 0.012 0.011 0.015 0.017 0.013 0.004 0.016 0.017 

25% thresholds 0.007 0.004 0.007 0.007 0.003 0.001 0.003 0.003 

50% loadings 0.008 0.011 0.011 0.010 0.003 0.002 0.004 0.004 

50% thresholds 0.007 0.009 0.008 0.009 0.003 0.001 0.003 0.004 

16 Indicators 

Symmetry 

25% loadings 0.014 0.004 0.017 0.018 0.018 0.003 0.020 0.020 

25% thresholds 0.006 0.002 0.006 0.007 0.002 0.001 0.003 0.003 

50% loadings 0.007 0.003 0.008 0.009 0.003 0.001 0.004 0.004 

50% thresholds 0.006 0.002 0.006 0.007 0.002 0.001 0.003 0.003 

Extreme Asymmetry 

25% loadings 0.015 0.005 0.017 0.018 0.016 0.003 0.019 0.019 

25% thresholds 0.007 0.003 0.008 0.009 0.003 0.001 0.003 0.004 

50% loadings 0.009 0.003 0.009 0.012 0.003 0.001 0.004 0.004 

50% thresholds 0.007 0.003 0.008 0.007 0.003 0.001 0.003 0.004 

Note. Largest difference in each column indicated by bold text.
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Table 4.9 Mean, standard deviation and the 1st and 5th percentiles of SRMR difference for testing loading and threshold invariance by 

study conditions 

# Indicators, threshold symmetry, % non-invariance 
Sample size 200  Sample size 1200 

M SD 95th 99th M SD 95th 99th 

8 Indicators 

Symmetry 

25% loadings 0.008 0.009 0.008 0.008 0.007 0.002 0.008 0.008 

25% thresholds 0.009 0.002 0.008 0.007 0.013 0.002 0.013 0.013 

50% loadings 0.011 0.003 0.010 0.010 0.014 0.002 0.013 0.013 

50% thresholds 0.006 0.002 0.005 0.006 0.006 0.001 0.005 0.005 

Extreme Asymmetry 

25% loadings 0.004 0.009 0.003 0.005 0.003 0.001 0.002 0.003 

25% thresholds 0.010 0.003 0.010 0.009 0.016 0.002 0.015 0.014 

50% loadings 0.004 0.002 0.004 0.003 0.007 0.001 0.006 0.006 

50% thresholds 0.016 0.004 0.016 0.014 0.011 0.002 0.013 0.009 

16 Indicators 

Symmetry 

25% loadings 0.004 0.001 0.004 0.005 0.004 0.001 0.004 0.004 

25% thresholds 0.005 0.001 0.005 0.005 0.008 0.001 0.007 0.007 

50% loadings 0.005 0.001 0.006 0.005 0.008 0.001 0.007 0.007 

50% thresholds 0.003 0.001 0.003 0.003 0.003 0.001 0.003 0.002 

Extreme Asymmetry 

25% loadings 0.002 0.001 0.002 0.002 0.001 0.000 0.001 0.001 

25% thresholds 0.006 0.001 0.005 0.004 0.010 0.001 0.009 0.009 

50% loadings 0.002 0.001 0.002 0.002 0.002 0.000 0.002 0.002 

50% thresholds 0.009 0.002 0.008 0.008 0.016 0.001 0.015 0.014 

Note. Largest difference in each column indicated by bold text
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Table 4.10 Rejection rates based on changes in fit indices between metric and configural models 

  
Symmetr

y levels 

% non-

invariant 
Sample size 200 

# 

indicators   
ΔCFI (%) ΔRMSEA (%) ΔSRMR (%) 

  |± 0.002|  |± 0.003| -0.005 |±0.001|  0.007 0.01 0.015 0.05 0.002 0.007 0.01 0.025 

8 

Indicators 

Symmetry 

25% loadings 77.5 72.3 61.9 90.0 83.2 79.0 74.2 31.9 93.6 72.6 59.1 6.4 

25% thresholds 51.0 41.2 28.6 70.1 62.5 57.4 47.8 9.8 88.1 46.7 25.9 1.0 

50% loadings 47.0 39.4 26.0 66.2 56.1 51.5 42.8 7.6 91.8 44.9 25.0 1.2 

50% thresholds 39.0 29.5 16.8 63.6 52.7 47.4 40.1 6.2 88.1 35.4 16.7 0.4 

Extreme 

Asymmetry 

25% loadings 78.1 73.5 64.1 89.5 80.6 77.1 70.7 26.0 92.4 70.7 57.4 12.3 

25% thresholds 38.6 28.8 14.8 58.0 46.5 39.2 29.0 0.5 91.9 38.3 17.3 0.0 

50% loadings 63.9 56.8 45.5 78.4 70.5 65.8 59.8 14.5 89.2 60.5 47.5 6.4 

50% thresholds 54.5 45.8 31.5 71.9 62.9 58.1 51.6 11.1 89.7 50.1 33.3 2.7 

16 

Indicators 

  

Symmetry 

25% loadings 95.2 92.1 82.9 98.5 94.6 91.5 84.8 10.0 100.0 96.5 85.3 1.7 

25% thresholds 27.3 14.4 4.4 65.3 37.0 27.2 15.7 0.0 98.6 29.8 5.3 0.0 

50% loadings 41.4 27.8 11.2 73.3 45.9 33.7 19.4 0.0 99.3 49.3 15.9 0.0 

50% thresholds 27.5 14.3 4.2 66.9 37.9 27.6 13.8 0.0 98.9 29.8 5.0 0.0 

Extreme 

Asymmetry 

25% loadings 89.5 86.4 77.0 95.8 86.8 78.3 65.7 1.8 100.0 96.7 84.1 2.6 

25% thresholds 37.9 24.0 9.1 73.7 38.5 28.1 15.1 0.0 99.0 43.8 12.8 0.0 

50% loadings 51.7 38.6 19.7 76.9 43.1 29.8 14.9 0.0 99.8 63.6 31.2 1.0 

50% thresholds 35.4 22.0 8.5 71.0 37.8 26.2 13.9 0.0 99.0 43.5 12.5 0.0 
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# indicators 

  

Symmetry 

levels 
% non-invariant 

Sample size 1200 

ΔCFI ΔRMSEA ΔSRMR 

|±0.002|  |±0.003| -0.005 |±0.001|  0.007 0.01 0.015 0.05 0.002 0.007 0.01 0.025 

8 Indicators 

Symmetry 

25% loadings 99.4 98.5 94.8 100.0 99.9 99.6 99.0 32.9 100.0 98.2 88.6 0.1 

25% thresholds 0.7 0.0 0.0 52.6 25.9 15.8 5.0 0.0 50.2 0.2 0.0 0.0 

50% loadings 1.8 0.2 0.0 54.3 30.7 19.9 6.1 0.0 63.2 1.1 0.0 0.0 

50% thresholds 0.6 0.0 0.0 53.7 25.0 12.9 3.7 0.0 51.3 0.1 0.0 0.0 

Extreme 

Asymmetry 

25% loadings 98.8 96.8 88.8 99.6 99.2 98.6 96.0 7.9 100.0 96.2 78.5 0.1 

25% thresholds 2.2 0.4 0.0 51.1 23.7 13.3 4.9 0.0 59.5 0.7 0.0 0.0 

50% loadings 6.0 1.4 0.2 54.4 28.5 17.0 5.2 0.0 70.3 2.9 0.2 0.0 

50% thresholds 2.1 0.4 0.0 52.1 24.2 12.7 4.7 0.0 58.6 0.4 0.0 0.0 

16 

Indicators 

Symmetry 

25% loadings 100.0 100.0 100.0 100.0 100.0 100.0 100.0 9.5 100.0 100.0 99.9 0.5 

25% thresholds 0.1 0.0 0.0 53.0 13.8 5.1 0.3 0.0 61.0 0.0 0.0 0.0 

50% loadings 0.7 0.1 0.0 57.4 19.8 6.8 0.9 0.0 79.8 0.2 0.0 0.0 

50% thresholds 0.1 0.0 0.0 51.4 12.5 4.5 0.7 0.0 60.8 0.0 0.0 0.0 

Extreme 

Asymmetry 

25% loadings 100.0 100.0 99.9 100.0 100.0 100.0 99.7 0.0 100.0 100.0 98.9 0.1 

25% thresholds 1.1 0.3 0.0 58.8 14.2 4.5 0.2 0.0 69.5 0.3 0.0 0.0 

50% loadings 2.7 0.7 0.0 59.0 17.9 7.4 0.8 0.0 85.0 1.6 0.0 0.0 

50% thresholds 0.9 0.1 0.0 55.7 13.6 3.8 0.3 0.0 69.0 0.1 0.0 0.0 
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Table 4.11 Rejection Rates based on changes in fit indices between scalar and metric models 

# 

indictrs 

Symtry 

levels 

%  

non-

invariant 

Sample size 200 

ΔCFI (%) ΔRMSEA (%) ΔSRMR (%) 

|±0.002| |±0.003| -0.005 0.01 0.03 0.007 0.01 0.015 |±0.02| 0.05 0.002 0.007 0.01 0.025 

8 

Indictrs 

Symtry 

25% ldngs 86.4 82.4 71.2 47.3 5.3 76.8 67.3 54.8 46.1 13.2 91.7 58.0 37.3 3.3 

25% tshds 99.9 99.9 99.7 97.9 54.9 99.5 98.9 98.1 96.0 65.7 100.0 85.2 36.9 0.0 

50% ldngs 95.7 94.8 91.9 77.6 9.1 92.9 89.5 83.0 76.6 27.5 100.0 89.8 55.4 0.0 

50% tshds 58.9 50.6 36.7 14.3 0.0 62.2 54.4 42.8 32.6 2.9 99.5 27.0 3.8 0.0 

Extrm 

Asymtry 

25% ldngs 79.2 70.3 56.5 34.0 4.5 74.8 63.7 51.1 38.9 11.5 89.1 32.5 21.9 2.8 

25% tshds 98.1 97.1 94.4 85.1 17.0 96.0 93.8 89.4 83.7 33.6 100.0 89.7 52.8 0.3 

50% ldngs 63.5 56.3 45.8 23.9 1.0 54.6 45.9 32.5 24.4 0.8 96.9 5.1 0.2 0.0 

50% tshds 100.0 100.0 100.0 98.2 51.5 99.4 99.2 97.6 95.7 56.9 100.0 99.6 93.8 2.0 

16 

Indictrs 

Symtry 

25% ldngs 96.2 74.4 42.2 2.9 0.0 21.0 8.1 2.4 0.9 0.0 99.2 1.8 4.6 0.0 

25% tshds 100.0 100.0 99.4 90.3 0.9 100.0 100.0 98.7 94.4 11.3 100.0 2.4 0.0 0.0 

50% ldngs 97.7 96.6 91.5 50.6 0.0 95.8 91.3 74.8 53.3 0.1 100.0 7.3 98.5 0.0 

50% tshds 52.8 35.1 13.5 0.4 0.0 45.9 33.8 17.9 8.7 0.0 91.3 0.0 0.0 0.0 

Extrm 

Asymtry 

25% ldngs 43.6 25.6 8.2 0.1 0.0 7.5 2.2 1.1 0.4 0.0 35.0 0.0 0.0 0.0 

25% tshds 99.4 98.8 94.5 59.2 0.0 96.5 90.7 72.2 52.5 0.2 100.0 13.5 0.2 0.0 

50% ldngs 58.6 45.2 22.2 1.8 0.0 28.9 18.6 8.9 3.5 0.0 55.9 0.0 1.7 0.0 

50% tshds 100.0 100.0 99.9 96.5 3.1 100.0 99.7 96.4 87.4 7.0 100.0 88.8 23.7 0.0 
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# 

indict

rs 

Symtr

y 

levels 

% non-

invariant 

Sample size 1200 

ΔCFI ΔRMSEA ΔSRMR 

|±0.002|  |±0.003| -0.005 0.01 0.03 0.007 0.01 0.015 |± 0.02| 0.05 0.002 0.007 0.01 0.025 

8 

Indict

rs 

Symtr

y 

25% ldngs 100.0 100.0 97.4 44.9 0.0 52.7 30.8 9.5 20.0 0.0 100.0 55.4 4.6 0.0 

25% tshds 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.4 0.0 

50% ldngs 100.0 100.0 100.0 99.9 2.1 100.0 100.0 100.0 100.0 66.1 100.0 100.0 98.5 0.0 

50% tshds 97.5 92.2 68.1 5.4 0.0 99.5 98.7 93.3 81.5 0.1 100.0 15.0 0.1 0.0 

Extrm 

Asym

try 

25% ldngs 85.0 64.3 26.0 0.5 0.0 9.5 1.6 0.4 0.0 0.0 84.8 0.0 0.0 0.0 

25% tshds 100.0 100.0 100.0 100.0 51.9 100.0 100.0 100.0 100.0 81.3 100.0 100.0 99.9 0.1 

50% ldngs 100.0 100.0 99.8 87.6 0.0 100.0 99.8 98.7 93.5 0.8 100.0 44.8 1.7 0.0 

50% tshds 100.0 100.0 100.0 99.1 0.0 100.0 100.0 100.0 99.8 30.2 100.0 98.7 63.4 0.0 

16 

Indict

rs 

Symtr

y 

25% ldngs 100.0 100.0 90.8 0.7 0.0 11.4 0.2 0.0 0.0 0.0 100.0 0.0 0.0 0.0 

25% tshds 100.0 100.0 100.0 100.0 1.6 100.0 100.0 100.0 100.0 11.3 100.0 86.4 0.5 0.0 

50% ldngs 100.0 100.0 100.0 98.5 0.0 100.0 100.0 100.0 100.0 0.0 100.0 81.5 0.4 0.0 

50% tshds 97.3 84.9 24.6 0.0 0.0 99.8 97.2 80.7 52.2 0.0 97.0 0.0 0.0 0.0 

Extrm 

Asym

try 

25% ldngs 61.7 15.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.0 0.0 0.0 

25% tshds 100.0 100.0 100.0 100.0 0.0 100.0 100.0 100.0 100.0 0.0 100.0 100.0 43.5 0.0 

50% ldngs 94.1 80.3 19.5 0.0 0.0 94.8 77.7 42.7 7.8 0.0 68.2 0.0 0.0 0.0 

50% tshds 100.0 100.0 100.0 100.0 60.0 100.0 100.0 100.0 100.0 66.9 100.0 100.0 100.0 0.0 
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Figure 4.5 Mean changes in fit indices based on studied conditions of 8 indicators, sample size of 200 and 1200, symmetry and 

extreme symmetry, and across 25% and 50% of non-invariant loadings for factor loading non-invariance. 
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Figure 4.6 Mean changes in fit indices based on studied conditions of 16 indicators, sample size of 200 and 1200, symmetry and 

extreme symmetry, and across 25% and 50% of non-invariant loadings for factor loading non-invariance.
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Figure 4.7 Mean changes in fit indices based on studied conditions of 16 indicators, sample size of 200 and 1200, symmetry and 

extreme symmetry, and across 25% and 50% of non-invariant loadings for factor threshold non-invariance
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Figure 4.8 Mean changes in fit indices based on studied conditions of 16 indicators, sample size of 200 and 1200, symmetry and 

extreme symmetry, and across 25% and 50% of non-invariant loadings for factor threshold non-invariance 
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CHAPTER 5  

DISCUSSION

This study examined the performance of three model fit indices commonly used 

with multiple-group CFA invariance testing. As many measurement instruments use 

ordinal data, the goal here was to examine performance of the indices when categorical 

data are analyzed. As increasing numbers of applied researchers are aware of the 

importance of measurement invariance prior to conducting group comparisons, it is 

critical to provide recommendations and guidelines when relying upon model fit indices 

to evaluate measurement invariance.  However, very few studies have investigated this 

issue in the context of categorical-ordered data. To fill this gap, two Monte Carlo studies 

were conducted. Study 1 examined random variations of three model fit indices available 

in Mplus: CFI, RMSEA and SRMR under six levels of invariance including factor 

loadings, thresholds, residual variances, latent means, factor variances, and factor 

covariances. Based on Study 1 results, cutoff values were proposed for assisting 

researchers when using such indices to evaluate the presence of measurement invariance 

when testing a more constrained model and a less restricted model. 

 Study 2 examined the impact of five factors on the sensitivity of fit indices’ 

changes to identify two levels of non-invariance which are commonly tested: metric non-

invariance, and scalar non-invariance. In addition, rejection rates based on proposed and 

frequently used cutoff values in previous studies were tested in Study 2. 
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5.1 Performance of Model Fit Indices 

First, in contrast to Chen’s study (2007), which concluded that SRMR is more 

sensitive to random variation in factor loadings than in intercepts or residual variances, 

this study found SRMR to be equally sensitive to all three levels of invariance, especially 

when the sample size was at the lower level (i.e., 300). Therefore, unlike Chen’s result 

(2007), which suggested two cutoff values for all three levels of invariance tests, only one 

cutoff value of SRMR was recommended for different levels of invariance tests. This 

inconsistency may be due to the two different data types and estimators examined across 

the two studies. Chen’s study focused on assessing normally distributed continuous data 

with Maximum Likelihood estimation method. However, this study concentrated on 

examining non-normal categorical-ordered data using WLSMV estimator.  

In addition, the findings from this study indicated that both CFI and RMSEA 

appear to be more sensitive to detecting non-invariance in thresholds than loading values. 

This result was not consistent with Chen’s results (2007) and Cheung and Rensvold’s 

results (2002), which concluded that CFI and RMSEA were equally sensitive to 

invariance in loadings, intercepts, and residual variances. However, it is noted that 

intercept values which are tested with continuous data are not equivalent to threshold 

values estimated when ordinal data are present. The finding of this study, however, was 

an echo of Sokolov’ conclusions (2019), indicating that the CFI, RMSEA, and TLI are 

largely effective at identifying scalar non-invariance with categorical data using the 

WLSMV estimation method.  

Overall, based on the above conclusions, different cutoff values were 

recommended for use with CFI and RMSEA across three invariance levels, but the same 
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cutoff value was recommended for SRMR across three levels of invariance tests. 

Specifically, when testing loading invariance and looking to support equality of groups, a 

change of ≤ |±0.003| is proposed for CFI, and a change of ≤ |±0.001| is recommended for 

RMSEA; When testing threshold and residual variance invariance levels, a change of ≤ 

|±0.03| is recommended for CFI, and a change of ≤ |±0.02| can be used for RMSEA. With 

respect to SRMR, a change of ≤ 0.007 is proposed across invariance levels of loadings, 

thresholds and residual variances.  

Second, the finding of this study on the effect of group-level sample size is 

consistent with previous studies (Chen; 2007; Mead et al., 2008; Sokolov, 2019), 

indicating that the group-level sample size only slightly impacts the changes in all three 

model fit indices, and the impact is highly inconsistent across studied conditions.  

However, the group-level sample size substantially impacts standard deviations of the 

difference (i.e., changes in fit) for the three model fit indices across studied conditions. 

These results illustrated that as sample size increases, model estimation becomes more 

precise. As a result, changes in fit indices become small as sample size increases (Cheung 

& Rensvold, 2002). For this reason, a more conservative cutoff value (e.g., 0.002 in 

ΔCFI) may be used when the sample size is small (e.g., < 300) and a more liberal value 

(e.g., 0.005 in ΔCFI) may be reported when sample size is large (e.g., > 1,000). 

Additionally, the findings are similar to Chen’s (2007) study, which concluded that the 

means, standard deviations, and percentiles of SRMR were larger in small samples as 

compared to the values produced by CFI and RMSEA. Last, among the three fit indices, 

ΔSRMR was the least sensitive to sample size. This finding is consistent with previous 

results that SRMR was relatively independent of sample size (e.g., Chen, 2007).  
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In terms of rejection rates, the current study found that changes in the three model 

fit indices appear to vary across studied conditions. Generally, as sample size increased, 

rejection rates based on fit indices tended to increase in most studied conditions. An 

exception was noted for conditions with sample size of 1200 and with 50% non-invariant 

item loadings when testing loading non-invariance. The low rejection rates may be 

caused by multiple factors manipulated in this study, such as proportion of non-invariant 

items, source of non-invariance, levels of threshold symmetry or the interactive effect 

among these factors. 

Third, Chen (2007) found that changes in fit statistics were influenced by an 

interaction between the proportion of invariance and the pattern of invariance (whether 

lack of invariance was uniform or mixed). Specifically, when non-invariance was 

uniform, the relation between the proportion of invariance and changes in fit indices was 

non-monotonic. For example, when 0% and 75% of the items were invariant, the changes 

in CFI, RMSEA and SRMR were small, whereas when 50% of the items were invariant, 

the average change in fit indices was largest for testing lack of loading invariance. In 

contrast, when lack of loading invariance was mixed, the change in fit statistics was 

monotonic. For example, the results of this study noted that changes in the respective fit 

indices were larger when 50% of the items were invariant than when 75% of the items 

were invariant. In the present study, both changes in fit indices and rejection rates 

decreased as the proportion of non-invariant items increased from 25% (75% invariant 

items) to 50% (50% invariant items). In other words, the changes in fit statistics were 

bigger with 25% (75% invariant items) non-invariant items than 50% non-invariant 

items. These findings are opposite to Chen’s findings for lack of loading non-invariance. 
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Regarding the lack of threshold invariance, the performance of fit indices was 

mixed across conditions. The difference between two studies may be due to the impact of 

pattern of invariance involved in Chen’s study; however, this condition was not included 

in the current study design. As a result, the interactive effect between the proportion of 

invariance and pattern of invariance could not be detected. Additionally, this finding may 

also be influence by other factors used in the current design including threshold 

symmetry, number of indicators, and sample size. Future research may include these 

factors for further investigation.  

Overall, although this study reached an opposite conclusion as compared to 

Chen’s study, both findings implicated that when the proportion of non-invariant items is 

large, invariance tests may hardly detect a non-invariant instrument. Consequently, 

invalid group comparison results may be obtained by researchers as the invariance tests 

fail to detect non-invariance.  

Fourth, the number of indicators did not have an appreciable impact on the 

changes in CFI, RMSEA, and SRMR for lack of both loading non-invariance and 

threshold non-invariance. This result is in line with previous studies (e.g., Chen, 2007), 

and it implicates that when applied researchers plan to collect data to conduct 

measurement invariance testing with multiple-group CFA analysis with ordinal data, it 

may be not necessary to worry about the size of an instrument contributing to lack of 

invariance as the number of items did not impact the performance of model fit indices 

substantially when testing measurement invariance.  

Fifth, this study examined two locations of source of non-invariance: item 

loadings only (metric non-invariance) and item thresholds only (scalar non-invariance). 
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In tests of loading non-invariance, all three model fit indices were sensitive to 25% 

loading non-invariance than 50% loading non-invariance. Among the three fit statistics, 

changes in RMSEA were the biggest for lack of 25% loading invariance, and changes in 

SRMR were the biggest for lack of 50% loading non-invariance. These findings indicated 

that RMSEA and SRMR were more sensitive to item loading non-invariance than CFI. 

The results for RMSEA concurs with Chen’s (2007) and Rutkowski and Svetina (2017)’s 

results, which indicated that ΔRMSEA was able to correctly identify loading non-

invariant hypotheses in most conditions. Second, in tests of threshold non-invariance, 

changes in CFI and RMSEA performed better and were more reliable to identify non-

invariance than changes in SRMR. However, considering that unusual negative values of 

ΔRMSEA were detected for lack of threshold non-invariance, CFI is recommended for 

use when testing threshold non-invariance (scalar non-invariance).  

It is noted that although there were no non-invariant item loadings, rejection rates 

of all three fit indices for loading non-invariance (metric non-invariance) were high when 

testing a lack of threshold invariance (scalar invariance) across studied conditions. 

Results demonstrated that a Type I error (i.e., rejecting invariance falsely) may occur 

when detecting testing threshold non-invariance. Simply put, applied researchers may 

make an incorrect conclusion and conclude that the source of the non-invariance is due to 

loading differences when it is truly from threshold discrepancies. 

Sixth, this study examined the relation between levels of threshold symmetry and 

the performance of fit indices. The finding found that the performance of the fit indices 

was mixed across levels of invariance and across conditions. Generally, non-invariant 

symmetric thresholds can be more easily detected by CFI and RMSEA than non-invariant 
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extreme asymmetric thresholds when threshold non-invariance was examined. This 

pattern was not observed in SRMR. For lack of loading invariance, the levels of threshold 

symmetry did not have an appreciable impact on changes in CFI and SRMR. Overall, the 

performance of RMSEA was more consistent than CFI and SRMR.  

5.2 Recommendations for Practice 

In conclusion, the results of this study demonstrated that when conducting 

measurement invariance tests, it is helpful for applied researcher to report changes in 

CFI, RMSEA, and SRMR instead of only reporting Chi-square difference tests. The 

findings of this dissertation also found that all three fit indices performed relatively well 

to detect threshold non-invariance (i.e., scalar non-invariance with ordinal data) across 

various studied conditions. Among the three fit indices, compared to CFI and RMSEA, 

SRMR tended to perform sub-optimally under some situations examined here, especially 

when sample size is small (e.g., 200). For example, as shown in Table 4.10, although 

there were no non-invariant item thresholds, rejection rates of SRMR for threshold non-

invariance (scalar non-invariance) were high using suggested cutoff values for lack of 

loading invariance (metric invariance) across studied conditions with sample size 200. 

The high rejection rates of SRMR indicated the high Type I error rates (incorrectly 

rejecting a true null hypothesis) when applied researchers use SRMR to evaluate 

measurement invariance.  

Regarding changes in RMSEA, negative values were identified in some studied 

conditions when testing both lack of loading invariance and lack of threshold invariance. 

For example, the mean difference of RMSEA was -0.002 when testing factor loading 

non-invariance, given the 8-indicator model with extreme asymmetric thresholds, 50% 
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non-invariant loadings, and with sample size 1200 (see Table 4.7). The negative results 

were not common as the more constrained model should perform less well than the less 

constrained model. Although prior research also found negative ΔRMSEAs in their 

simulation studies (Rutkowski & Svetina, 2014, 2017), RMSEA is not recommended to 

use as an evaluation of measurement invariance testing in such cases. 

In general, CFI tends to show the best and most stable performance for detecting 

both lack of loading invariance as well as lack of threshold invariance. Although RMSEA 

and SRMR have some advantageous properties as fit indices for structural equation 

modeling, the present studies agree with Chen’s (2007) recommendations that using CFI 

for invariance evaluation first, supplemented by RMSEA and SRMR afterward due to the 

inconsistent performance of RMSEA and SRMR on several studied conditions.  

In addition, previous studies have shown that the magnitude of changes in fit 

indices is complex as it may be influenced by many factors (Chen, 2007; Mead et al., 

2008). The current studies also found that cutoff values in model fit indices need to be 

used with caution since factors such as sample size per group, proportion of non-

invariance, threshold symmetry and source of non-invariance may impact the 

performance of these model fit indices.  

Furthermore, it should be noted that one of interesting findings of the studies is 

that the rejection rates of all three fit indices for lack of loading invariance were 

substantially low for models with sample size of 1200, 50% non-invariant loading items, 

and with both 8 and 16 indicators, as well as both symmetric and extreme asymmetric 

conditions. These results indicate that it is difficult to detect non-invariance under the 

above combined conditions when testing metric invariance (loading invariance). Applied 
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researchers may make a wrong conclusion if their data or models match these studied 

conditions. More simulation studies are needed to investigate the individual effect or the 

interactive effect of these studied conditions on performance and rejection rates of CFI, 

RMSEA and SRMR. 

Although it is difficult to propose standards for testing measurement invariance 

when analyzing ordinal data, it is still useful to provide guidelines derived from these two 

studies to assist applied researchers for their own research. Table 5.1 reports 

recommendations regarding the model fit changes assuming metric and scalar invariance. 

Cutoff values proposed in this study are based on the mean, 5th and 1st average values for 

CFI or 95th and 99th for RMSEA and SRMR across all study conditions. As CFI and 

RMSEA are more sensitive to non-invariance in thresholds than loadings, and SRMR is 

almost equally sensitive to invariance in both loadings and thresholds. Two different 

cutoff values are recommended for CFI and RMSEA, and one cutoff value is 

recommended for SRMR.   

Specifically, for testing loading invariance (metric invariance) under the 

conditions studied here, a change of ≤ |± 0.003| in CFI, supplemented by a change of ≤ |± 

0.001| in RMSEA or a change of ≤ 0.007 in SRMR would indicate metric invariance; for 

testing threshold invariance (scalar invariance), a change of ≤ |± 0.03| in CFI, 

supplemented by a change of ≤ |± 0.02| in RMSEA or ≤ 0.007 in SRMR would indicate 

scalar invariance. It is worth noting that all recommended cutoff values reflect the 

average performance of the three model fit changes across studied conditions. None of 

the cutoff values perform equally well across all the conditions studied here. In many 
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conditions present in empirical research situations, it is not known how the criteria 

perform, and applied researchers should use the indices with caution. 

Table 5.1 Recommended model fit cutoff values for different fit measures and invariance 

levels 

Fit Indices Metric Invariance Scalar Invariance 

CFI ≤ |± 0.003| ≤ |± 0.03| 

RMSEA ≤ |± 0.001| ≤ |± 0.02| 

SRMR ≤ 0.007 ≤ 0.007 

 

5.3 Limitations and Future Studies 

 As all simulation studies can only manipulate a limited number of conditions, the 

current studies have several limitations. First, although conditions in present studies 

reflected the real-world situation and are simulated based on recommendations from prior 

research, only a small number of conditions were selected for the two studies. Other 

potential factors such as unequal sample size per group, model misspecification, model 

complexity, pattern of invariance, number of groups may be worthwhile to be considered 

by researchers in their future studies. For example, a study conducted by Rutkowski and 

Svetina (2017) evaluated the performance of fit indices including Chi-square difference 

tests, CFI and RMSEA in a large number of groups and varied sample size context using 

a simulation study. Future studies should continue this line of research, by designing 

other conditions that may impact the performance of model fit indices.  

In addition, the present studies only considered two types of proportion of non-

invariance: 25% and 50%. Concerning that the finding of Study 2 is in contrast to Chen’s 

(2007) results, researchers are encouraged to add more proportion levels in their future 

studies for investigation. For example, a total of five proportion levels of invariance (0%, 

25%, 50%, 75% or 100%) were examined in Chen’s study (2007), and three proportion 
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levels of non-invariance (0%, 40% or 60% in 5-item conditions, 0%, 33% or 50% in 6-

item conditions) were examined in Rutkowski and Svetina (2017).  

A second limitation is that results of second-order chi-square difference test, 

which is termed as DIFFTEST in Mplus, are not included in this dissertation. While 

studies have shown that chi-square different test has several limitations (e.g., Chen, 2007; 

Flora & Curran, 2004; Babyak & Green, 2010), the Chi-square difference test (or 

DIFFTEST in Mplus with robust estimation) is still widely used by researchers and 

practitioners. Thus, it is meaningful to understand how non-normal ordered data 

estimated by WLSMV estimator influences the performance of DIFFTEST. One major 

difficulty to examine the performance of DIFFTEST is that Mplus Monto Carlo 

simulation does not support saving DIFFTEST results. As a result, it is time-consuming 

to save all DIFFTEST results based on various levels of invariance and across studied 

conditions with many (e.g., 1000) replications when conducting Monte Carlo simulation 

studies. Although saving DIFFTEST results is tedious, it is still applicable with the 

assistance of other software packages such as MplusAutomation package in R. In general, 

it is imperative that future studies may be conducted to guide researchers about the 

performance of DIFFTEST with ordered categorical data.  

Third, model identification was not discussed in the studies. Model specification 

and identification is a complex issue for multiple-CFA analysis. Invariance testing in the 

ordered-categorical data is different from in the continuous data as the threshold 

parameters are involved as a new source of non-invariance, and the factor model is not 

directly connected to the measured variables anymore (Millsap & Yun-Tein, 2004). 

However, literature on multiple-CFA analysis with ordered-categorical data is rare 
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(Millsap & Yun-Tein, 2004). When using Mplus software program, two 

parameterizations are offered with WLS estimator family: Delta parameterization and 

Theta parameterization. The two parameterization methods require constraining 

invariance differently. Therefore, the performance of fit indices may be influenced by 

various invariance constraint methods when examining measurement invariance with 

ordered data. Applied researchers will be beneficial from future studies that aim to 

examine the relation between model identification and model fit indices with invariance 

testing using ordered data. 

Another limitation of this study is that all results in this dissertation are based on 

simulated data, empirical data is more likely to reflect the real-world situation and is 

more complex. Thus, future studies may simulate data based on empirical results or 

directly use empirical data to validate the study findings.  

5.4 Summary and Significance of the Study 

In summary, the present studies were an initial step in evaluating the performance 

of model fit indices (CFI, RMSEA, and SRMR) when measurement invariance is tested 

in the context of multiple-group CFA analysis with categorical-ordered data. As applied 

researchers are increasingly aware of the importance of testing measurement invariance, 

and the prevalence of Likert scales for collecting data, specific recommended guidelines 

can assist in the evaluation of model fit.  

Although some of the findings are in contrast to previous research (e.g., changes 

in SRMR performance in Chen, 2007), the findings of current dissertation are informative 

and add to the body of research in the measurement invariance testing literature in a 

number of ways. It is hoped that the findings of the studies provided here at least may be 
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a reference for applied researchers and provide useful information to help them conduct 

their own research. To my knowledge, this is the first study that investigated the 

performance of fit statistics when data are non-normal and categorical ordered with 

WLSMV estimator. Additional studies and conditions are needed to examine the 

performance of fit indices in such settings. 
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APPENDIX A

SAMPLE MPLUS DATA GENERATION AND DATA ANALYSIS CODE 

Montecarlo: 

    names = u1-u10; !Define the names of the variables. 

    generate = u1-u10(4); !Define how many thresholds are needed (k-1) 

    categorical = u1-u10;  !Designate variables as ordinal (i.e., ordered categories).                     

    nrep = 1000; !Specify how many replications per cell. 

    seed = 72521; !Seed  

    nobs = 150 150; !Specify number of observations. 

    ngroups=2; 

   results=configural_results_300.dat;  

ANALYSIS: 

    estimator = wlsmv; 

    PARAMETERIZATION=THETA; 

MODEL POPULATION:                   !Specify the population model 

    f1 BY u1-u5@.8;  

    f2 BY u6-u10@.8;  

    f1@1; f2@1; !Specify factor variances. 

    [f1@0]; !Specify factor means 

    [f2@0]; 

    f1 WITH f2@.6; !Specify covariance (correlation) between F1 and F2. 
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! thresholds   !These are for extreme asymmetric threshold condition  

    [u1$1-u10$1*-1.34  

    u1$2-u10$2*-0.84 

    u1$3-u10$3*-0.44 

    u1$4-u10$4*-0.05]; 

    u1-u10*0.36  !Specify the uniqueness terms   

model population-g2: 

MODEL:                             

f1 BY u1-u5* ; ! Factor loadings all freely estimated, just labeled                     

f2 BY u6-u10* ; 

[u1$1-u10$1*] ; 

[u1$2-u10$2*] ;  ! Item thresholds all freely estimated, just labeled  

[u1$3-u10$3*] ; 

[u1$4-u10$4*] ; 

u1-u10@0.36; !  

f1@1 f2@1; ! Factor variance fixed to 1 for identification 

[f1@0 f2@0]; ! Factor mean fixed to 0 for identification (Mplus forces) 

f1 WITH f2* ; ! Factor correlation is freely estimated, just labeled 

MODEL g2: 

f1 BY u1-u5*; 

f2 BY u6-u10*; 

[u1$1-u10$1*]; 

[u1$2-u10$2*]; 
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[u1$3-u10$3*]; 

[u1$4-u10$4*]; 

u1-u10@0.36; 

f1@1; 

f2@1; 

[f1@0 f2@0]; 

f1 WITH f2; 
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