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Abstract

A covering system or a covering is a set of linear congruences such that every

integer satisfies at least one of these congruences. In 1950, Erdős posed a problem

regarding the existence of a finite covering with distinct moduli and an arbitrarily

large minimum modulus. This remained unanswered until 2015 when Robert Hough

proved an explicit bound of 1016 for the minimum modulus of any such covering. In

this thesis, we examine the use of covering systems in number theory results, expand

upon the proof of the existence of an upper bound on the minimum modulus in the

case of distinct square-free moduli, and give a sharper bound of 118 for the minimum

modulus of a finite covering with distinct square-free moduli.
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Chapter 1

Covering Systems
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1.1 Background

Let k ≥ 2 be an integer. We define a covering system to be a set of linear congruences

x ≡ aj (mod mj) with 1 ≤ j ≤ k such that every integer satisfies at least one of these

congruences. We begin with a historic background on covering systems.

For example, the congruences x ≡ 0 (mod 2) and x ≡ 1 (mod 2) cover the inte-

gers. We define a covering system to be exact if every integer satisfies exactly one

congruence in the system.

Theorem 1.1.1. If a finite covering system is exact and the minimum modulus is

greater than one, then the maximum modulus is the modulus for at least two congru-

ences in the system.

Proof. Let x ≡ aj (mod mj) with 1 ≤ j ≤ r be an exact finite covering system.

Without loss of generality, we take 0 ≤ aj < mj. For the sake of contradiction,

suppose the maximum modulus is the modulus for exactly one congruence in the

system. We have 1/(1 − z) = 1 + z + z2 + . . .. Expressing the exponents using our

covering system, we have

1
1 − z

=
r∑

j=1
(zaj + zaj+mj + zaj+2mj + . . .) =

r∑
j=1

zaj

1 − zmj
.

If we let z approach ζmax{mj}, the left-hand side converges while the right-hand side

diverges. Thus, we have a contradiction. Therefore, the maximum modulus is the

modulus for at least two congruences in the system.

In 1950, Paul Erdős [3] proved that a positive proportion of odd positive integers

cannot be expressed in the form p + 2n where p is prime and n is a nonnegative

integer. In this proof he used the following covering system:

n ≡ 0 (mod 2)

n ≡ 0 (mod 3)

n ≡ 1 (mod 4)

n ≡ 3 (mod 8)

n ≡ 7 (mod 12)

n ≡ 23 (mod 24).
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Taking k to be an integer satisfying

k ≡ 1 (mod 2)

k ≡ 1 (mod 3)

k ≡ 1 (mod 7)

k ≡ 2 (mod 5)

k ≡ 8 (mod 17)

k ≡ 11 (mod 13)

k ≡ 121 (mod 241),

he showed that k−2n must be divisible by at least on element of S = {3, 5, 7, 13, 17, 241},

but also k − 2n ̸∈ S for every nonnegative integer n.

We define a Sierpiński number to be an odd integer k > 0 such that k · 2n + 1

is composite for all positive integers n. In 1960, Wacław Sierpiński proved that a

positive proportion of integers k > 0 are Sierpiński numbers [12]. He also used the

following covering system:

n ≡ 1 (mod 2)

n ≡ 2 (mod 4)

n ≡ 4 (mod 8)

n ≡ 8 (mod 16)

n ≡ 16 (mod 32)

n ≡ 32 (mod 64)

n ≡ 0 (mod 64).

Similarly, he took k to be an integer satisfying

k ≡ 1 (mod 3)

k ≡ 1 (mod 5)

k ≡ 1 (mod 17)

k ≡ 1 (mod 257)

k ≡ 1 (mod 65537)

k ≡ 1 (mod 641)

k ≡ −1 (mod 6700417).

John Selfridge found the smallest known Sierpiński number, 78557, in 1962. Andrzej

Schinzel deduced that the existence of Sierpiński numbers follows from the result of

Erdős.

Similarly, using covering arguments it has been proven that there are infinitely

many Riesel numbers, odd positive integers satisfying k · 2n − 1 is composite for

3



all positive integers n [9], and infinitely many Brier numbers, odd positive integers

satisfying k · 2n ± 1 is composite for all positive integers n.

Additionally, there exist infinitely many primes p such that if any one digit of

p, including any one of its infinitely many leading 0 digits, is replaced by any other

digit, then the resulting number is composite [5]; and for every r ∈ Z+, there exist r

consecutive primes like the above each of which is also a Brier number [4].

Ron Graham showed using a covering argument that there exist infinitely many

relatively prime pairs of positive integers a and b such that the recursive Fibonacci-

like sequence u0 = a, u1 = b, and un+1 = un + un−1 for all n ≥ 1, consists entirely of

composite numbers [6].

Another application of covering systems, by Lenny Jones [8], is that there are in-

finitely many positive integers d with d ̸≡ 0 (mod 3) and d ̸≡ 3 (mod 10) such that d ·

10n+∑n
i=1 3·10i−1 for n ≥ 1 consists entirely of composite numbers. For example, d =

410 has the above property. Each term in the sequence {410, 4103, 41033, 410333, . . .}

is composite.

Problem 1.1.2. For every positive integer c, does there exist a finite covering with

distinct moduli and minimum modulus ≥ c?

First posed by Erdős [3], Robert Hough [7] showed to the contrary that the mini-

mum modulus must be ≤ 1016. This bound has been reduced to 616000 by P. Balister,

B. Bollobás, R. Morris, J. Sahasrabudhe, and M. Tiba [2].

Problem 1.1.3. Does there exist an odd covering of the integers, that is a finite

covering with distinct odd moduli > 1?

While no answer has been shown, P. Balister, B. Bollobás, R. Morris, J. Sa-

hasrabudhe, and M. Tiba [2] proved that every covering with distinct odd moduli

> 1 has a modulus divisible by one of 2, 9, and 15.
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Problem 1.1.4. Does there exist a finite covering with distinct moduli > 1 and where

no modulus divides another?

Schinzel [11] showed that if such coverings exist, then there is an odd covering of

the integers. This questions has been resolved by P. Balister, B. Bollobás, R. Morris,

J. Sahasrabudhe, and M. Tiba [2]. Specfically, they showed that every finite covering

system with distinct moduli > 1 has some modulus which divides a different modulus.

We define a Sierpiński polynomial to be a polynomial f(x) ∈ Z[x] with f(1) ̸= −1

and f(x)xn + 1 reducible over the rationals for all positive integers n. It is not

currently known whether a Sierpiński polynomial exists. Although for f(x) = 5x9 +

6x8 +3x6 +8x5 +9x3 +6x2 +8x+3, Schinzel showed f(x)xn +12 is reducible over the

rationals for all positive integers n, which can be proven using the following covering:

n ≡ 0 (mod 2)

n ≡ 2 (mod 3)

n ≡ 1 (mod 4)

n ≡ 1 (mod 6)

n ≡ 3 (mod 12).

Theorem 1.1.5. The following are almost equivalent:

1. There exists a Sierpiński polynomial.

2. There is a polynomial g(x) ∈ Z[x] such that f(x) = fn(x) = xn + g(x) satisfies

f(0) ̸= 0, f(1) ̸= 0, and f(x) is reducible for every nonnegative integer n.

3. There is a finite covering of the integers with each modulus > 1 and where no

modulus divides another.

In order to have equivalence, a statement stronger than item 3 but weaker than

the odd covering problem is needed. An exact statement of equivalent conditions can

be found in Schinzel [11].
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1.2 Answering the Minimum Modulus Problem

In this section, we discuss our main goal and give some preliminary results. As

a simple result, we make use of the following to more efficiently check a covering

system’s validity.

Lemma 1.2.1. Let C be a system of congruences consisting of moduli m1, . . . , mr,

and set L = lcm(m1, . . . , mr). Then, C is a covering system if and only if every

integer in [1, L] is satisfied by a congruence in C.

For example, consider the covering:

n ≡ 0 (mod 2)

n ≡ 0 (mod 3)

n ≡ 1 (mod 4)

n ≡ 3 (mod 8)

n ≡ 7 (mod 12)

n ≡ 23 (mod 24).

Here L = 24. We need only check that each integer from 1 to 24 satisfies at least one

congruences to verify that the above is a covering system.

Proof of Lemma 1.1. Let C be a system of congruences with the least common mul-

tiple of the moduli equal to L. If C is a covering system, then every integer in [1, L]

satisfies a congruence in C. Now, suppose every integer in [1, L] satisfies a congruence

in C. Let n be an integer. Let a ≡ n (mod L) where 1 ≤ a ≤ L. Then, there exists

a congruence x ≡ b (mod m) in C such that a ≡ b (mod m). Since a ≡ n (mod L)

and m divides L, we have n ≡ a ≡ b (mod m). Therefore, n satisfies the congruence

x ≡ b (mod m) in C. Thus, C is a covering system.

We will now be considering finite covering systems with distinct square-free moduli
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> 1. For example, the following is such a covering system:

n ≡ 0 (mod 2)

n ≡ 0 (mod 3)

n ≡ 0 (mod 5)

n ≡ 1 (mod 6)

n ≡ 0 (mod 7)

n ≡ 1 (mod 10)

n ≡ 1 (mod 14)

n ≡ 2 (mod 15)

n ≡ 2 (mod 21)

n ≡ 23 (mod 30)

n ≡ 4 (mod 35)

n ≡ 5 (mod 42)

n ≡ 59 (mod 70)

n ≡ 104 (mod 105)

Here, we have L = 210 = 2 · 3 · 5 · 7. We can also think of covering the associated

elements of Q = S1×S2×S3×S4 where S1 = {1, 2}, S2 = {1, 2, 3}, S3 = {1, 2, 3, 4, 5},

and S4 = {1, 2, 3, 4, 5, 6, 7}. With this approach each congruence covers a portion of

Q. For example, the congruence n ≡ 0 (mod 2) covers {2} × S2 × S3 × S4 ⊆ Q. By

the Chinese Remainder Theorem, each integer in [1, L] uniquely corresponds to an

element of Q. For example, the integer 77 corresponds to (1, 2, 2, 7) in Q since 77 ≡ 1

(mod 2), 77 ≡ 2 (mod 3), 77 ≡ 2 (mod 5), and 77 ≡ 7 (mod 7).

In general, we let S1, . . . , Sn be finite sets. We define a hyperplane to be A =

Y1 × . . .×Yn where Yj ⊆ Sj and |Yj| ∈ {1, |Sj|} for j ∈ {1, . . . , n}. We also define two

hyperplanes A and A′ to be parallel if F (A) = F (A′) where F (A) = {j : |Yj| = 1}.

We call F (A) the set of fixed coordinates of A. We consider the set of natural numbers

N to be the set of positive integers.

Theorem 1.2.2. For every sequence of finite sets S1, S2, . . . , each of size at least 2,

satisfying lim infk→∞ |Sk|/k > 3, there is a positive integer C such that the following

holds. Let A be a collection of hyperplanes that cover Q = S1×. . .×Sn for some n ∈ N,

(that is, every element of Q is on some hyperplane in A). Suppose no two hyperplanes

in A are parallel. Then, there exists a hyperplane A ∈ A with F (A) ⊆ {1, . . . , C}.

One goal of this thesis is to prove the above theorem following the arguments of

P. Balister, B. Bollobás, R. Morris, J. Sahasrabudhe, and M. Tiba in [1]. Our interest
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here is in the following corollary that they obtain, which proves a negative answer to

Problem 1.1.2 for finite coverings with square-free moduli.

Corollary 1.2.3. There is an absolute constant Cmin such that every covering system

with distinct square-free moduli has a minimum modulus which is at most Cmin.

Proof. Let C be a covering system with distinct square-free moduli. Let pj denote

the jth prime, and set Sj = {1, ..., pj}. Observe that each Sj is of size at least 2 and

satisfies lim infk→∞ |Sk|/k = limk→∞ pk/k = ∞ > 3. Let C be as in Theorem 1.2.2.

Let pn be the largest prime dividing a modulus in C. Set Q = S1 × . . . × Sn. Each

congruence x ≡ a (mod m) corresponds to a hyperplane Am = Y1 × . . . × Yn ⊆ Q

where (i) if pj divides m, then Yj = {b} with b ≡ a (mod pj) and b ∈ Sj, and (ii) if

pj does not divides m, then Yj = Sj. Then, the covering C corresponds to a finite

collection of hyperplanes A which covers Q. Note that the moduli of C are distinct,

so the hyperplanes in A are pairwise non-parallel. Thus, by Theorem 1.2.2, there

exists an Am ∈ A with F (Am) ⊆ {1, . . . , C}. Observe that this m divides p1 · · · pC .

Therefore, we can take Cmin = p1 · · · pC .

A second goal of this thesis is to modify the arguments by P. Balister, B. Bollobás,

R. Morris, J. Sahasrabudhe, and M. Tiba in [1] to show the following.

Theorem 1.2.4. Every covering system with distinct square-free moduli has a min-

imum modulus which is ≤ 118.

As illustrated earlier in this section, there is a covering system with distinct square-

free moduli and minimum modulus equal to 2. However, it is an open question as to

whether there is such a covering with minimum modulus equal to 3. So a reasonable

conjecture is that the bound 118 above can be replaced by 2.
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Chapter 2

The Distortion Method

2.1 The Set-Up

We will prove Theorem 1.2.2 by expanding upon the method outlined in [1]. Let

S1, S2, . . . be an infinite sequence of finite sets. For a positive integer k, define Qk =

S1 × . . . × Sk. Fix a positive integer n. Let A be a collection of hyperplanes, pairwise

non-parallel, that cover Qn. We define a weight on a set X = {x1, . . . , xk} to be a

function mapping each xi to qi ≥ 0 for 1 ≤ i ≤ k such that q1 + . . . + qk = 1.

Let Q = Qn. We define weights wn(x) on the elements x of Q. From the previous

section, for covering systems, these weights correspond to weights on the integers in

the interval [1, L] where L = p1 · · · pn. The weight of a subset T ⊆ Q is defined as

the sum of the weights of the elements in T , so wn(T ) = ∑
x∈T wn(x). We interpret

this to mean wn(∅) = 0. If x = (a1, . . . , ak−1) ∈ S1 × . . . × Sk−1 and y ∈ Sk, then we

write wk(x, y) = wk((a1, . . . , ak−1, y)) = wn(A) where A is the hyperplane

A = {a1} × {a2} × . . . × {ak−1} × {y} × Sk+1 × . . . × Sn (2.1)

In general, if X ⊆ S1 × . . .×Sk, then we identify wk(X) with wk(X ×Sk+1 × . . .×Sn).

The fiber Fx associated to x = (a1, . . . , ak−1) ∈ S1 × . . . × Sk−1 is the set of tuples

(a1, . . . , ak−1, y) ∈ S1 ×. . .×Sk. At the kth stage, we will determine the weights of the

hyperplanes in the form of (1). We define Ak = {A ∈ A : max(F (A)) = k}. In the

languages of congruences, A1 corresponds to the set of congruences modulo p1 = 2,

A2 corresponds to the set of congruences modulo p2 = 3 and p1p2, and so on. We

also define Bk = ⋃
A∈Ak

A. With regard to coverings, Bk corresponds to the elements
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of Qn which are covered by a congruence with a modulus whose largest prime divisor

is pk. Note that if A ∈ Ak, then F (A) ⊆ {1, . . . , k}, so Bk can also be thought of as

a subset of Qk = S1 × . . . × Sk.

In our proof of Theorem 1.2.2, by assigning weights to elements of Q in the manner

below and supposing F (A) ̸⊆ {1, . . . , C} for every hyperplane A ∈ A, we prove that

the collection of hyperplanes A does not cover Q to obtain our result by contradiction.

Let 1 ≤ k ≤ n. Pick δ ∈ [0, 1/2]. We define the weights wk inductively. When

k = 1, if y ∈ S1 and |B1|/|S1| ≤ δ, we set

w1(y) =


0 if y ∈ B1

1
|S1| − |B1|

if y ̸∈ B1.

If y ∈ S1 and |B1|/|S1| > δ, we set

w1(y) =


(|B1|/|S1|) − δ

(|B1|/|S1|)(1 − δ) · 1
|S1|

if y ∈ B1

1
1 − δ

· 1
|S1|

if y ̸∈ B1.

Observe that in both cases, we have ∑y∈S1 w1(y) = 1 (see a similar argument below).

The above weights correspond to setting k = 1 and replacing α1(x) with |B1|/|S1|

and w0(x) with 1 in the discussion below. Suppose k ≥ 2 and wk−1 is defined on

Qk−1. Since Qk = Qk−1 × Sk, each element of Qk can be written in the form (x, y)

where x ∈ Qk−1 and y ∈ Sk. For each x ∈ Qk−1, we define

αk(x) = |{y ∈ Sk : (x, y) ∈ Bk}|
|Sk|

= |Fx ∩ Bk|
|Sk|

,

which is the proportion of the fiber Fx = {(x, y) : y ∈ Sk} that is covered by one or

more hyperplanes in Ak. If αk(x) ≤ δ, we set

wk(x, y) =


0 if (x, y) ∈ Bk

1
1 − αk(x) · wk−1(x)

|Sk|
if (x, y) ̸∈ Bk.
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If αk(x) > δ, we set

wk(x, y) =


αk(x) − δ

αk(x)(1 − δ) · wk−1(x)
|Sk|

if (x, y) ∈ Bk

1
1 − δ

· wk−1(x)
|Sk|

if (x, y) ̸∈ Bk.

Observe that if x is an element of Qk−1 and αk(x) ≤ δ, we have

∑
y∈Sk

wk(x, y) =
∑

y∈Sk
(x,y)∈Bk

wk(x, y) +
∑

y∈Sk
(x,y) ̸∈Bk

wk(x, y)

=
∑

y∈Sk
(x,y)∈Bk

0 +
∑

y∈Sk
(x,y) ̸∈Bk

1
1 − αk(x) · wk−1(x)

|Sk|

= 1
1 − αk(x) · wk−1(x)

|Sk|
∑

y∈Sk
(x,y)̸∈Bk

1

= 1
1 − αk(x) · wk−1(x)

|Sk|
· (|Sk| − |Sk|αk(x))

= wk−1(x).

Also, if x is an element of Qk−1 and αk(x) > δ, we then have

∑
y∈Sk

wk(x, y) =
∑

y∈Sk
(x,y)∈Bk

wk(x, y) +
∑

y∈Sk
(x,y)̸∈Bk

wk(x, y)

=
∑

y∈Sk
(x,y)∈Bk

αk(x) − δ

αk(x)(1 − δ) · wk−1(x)
|Sk|

+
∑

y∈Sk
(x,y)̸∈Bk

wk−1(x)
|Sk|(1 − δ)

= αk(x) − δ

αk(x)(1 − δ) · wk−1(x)
|Sk|

∑
y∈Sk

(x,y)∈Bk

1 + wk−1(x)
|Sk|(1 − δ)

∑
y∈Sk

(x,y)̸∈Bk

1

= αk(x) − δ

αk(x)(1 − δ) · wk−1(x)
|Sk|

· αk(x)|Sk| + wk−1(x)
|Sk|(1 − δ)(|Sk| − |Sk|αk(x))

= (αk(x) − δ)wk−1(x)
1 − δ

+ (1 − αk(x))wk−1(x)
1 − δ

= wk−1(x).

In both cases, we have ∑y∈Sk
wk(x, y) = wk−1(x), so weight is preserved at each stage.

Thus, if αk(x) ≤ δ, then we have set wk(x, y) = 0 if (x, y) ∈ Bk and increased the
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weight wk(x, y) proportionally on the rest of Fx. If αk(x) > δ, then we have increased

the weight of each element in Fx \Bk by a distortion factor of 1/(1−δ) and decreased

the weight of Fx ∩ Bk.

For example, consider the covering:

n ≡ 0 (mod 2)

n ≡ 0 (mod 3)

n ≡ 0 (mod 5)

n ≡ 1 (mod 6)

n ≡ 0 (mod 7)

n ≡ 1 (mod 10)

n ≡ 1 (mod 14)

n ≡ 2 (mod 15)

n ≡ 2 (mod 21)

n ≡ 23 (mod 30)

n ≡ 4 (mod 35)

n ≡ 5 (mod 42)

n ≡ 59 (mod 70)

n ≡ 104 (mod 105)

Observe that the least common multiple of the moduli is L = 210 = 2·3·5·7. Suppose

δ = 1/2. Then, when k = 1, we consider residues modulo 2 and the congruence n ≡ 0

(mod 2). We have two residue classes: 1 (mod 2) and 2 (mod 2). Note that the

congruence n ≡ 0 (mod 2) covers 2 (mod 2) but does not cover 1 (mod 2). We have

1/|S1| = 1/2. Then, w1((1)) = 1 and w1((2)) = 0, so all k-tuples beginning with

2 will have weight 0. Now, consider k = 2. We have three residue classes modulo

3: 1 (mod 3), 2 (mod 3), 3 (mod 3); and we consider the congruences n ≡ 0 (mod 3)

and n ≡ 1 (mod 6). Of the integers n which satisfy n ≡ 1 (mod 2), those which are

3 (mod 3) are covered by the congruence n ≡ 0 (mod 3). Those that are 1 (mod 3)

are covered by the congruence n ≡ 1 (mod 6). However, those that are 2 (mod 3) are

not covered by either congruence. Hence, α2((1)) = 2/3. We have w1((1, 1)) = 1/6,

w1((1, 2)) = 2/3, and w1((1, 3)) = 1/6. For k = 3, the weights are given in Figure 2.1.

We see that the k-tuples covered least frequently by the congruences have a higher

weight, and those covered frequently have lower weight.
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Figure 2.1 Weights for δ = 1/2

2.2 Further Preliminaries

We begin with some preliminary lemmas. We define the weighted sum

Ek−1[αk(x)2] =


∑

x∈Qk−1

αk(x)2wk−1(x) if k ≥ 2

(|B1|/|S1|)2 if k = 1.

Here, we have maintained the notation used in [1], where they viewed wk−1(x) as a

probability function and Ek−1[αk(x)2] to be the expected value of αk(x)2.

Lemma 2.2.1. Let A be a collection of hyperplanes in Q = S1 × . . . × Sn. Let k ≥ 1.

We have

wk(Bk) ≤ 1
4δ(1 − δ)Ek−1[αk(x)2].

13



Proof. First, consider wk(Bk) with k ≥ 2. We have

wk(Bk) =
∑

x∈Qk−1

∑
y∈Sk

(x,y)∈Bk

wk(x, y)

≤
∑

x∈Qk−1

|Fx ∩ Bk| · max
{

0,
αk(x) − δ

αk(x)(1 − δ)

}
· wk−1(x)

|Sk|
.

Since αk(x) = |Fx ∩ Bk|/|Sk|, then we have

wk(Bk) ≤ 1
1 − δ

∑
x∈Qk−1

max{0, αk(x) − δ} · wk−1(x).

Observe that 4δ2 − 4δαk(x) + αk(x)2 = (2δ − αk(x))2 ≥ 0, so αx(x)2/4δ ≥ αk(x) − δ.

Thus,

wk(Bk) ≤ 1
1 − δ

∑
x∈Qk−1

αk(x)2

4δ
· wk−1(x)

= 1
4δ(1 − δ)

∑
x∈Qk−1

αk(x)2 · wk−1(x)

= 1
4δ(1 − δ)Ek−1[αk(x)2].

In the case that k = 1, we have

w1(B1) =
∑

y∈B1

w1(y) ≤ |B1| · max
{

0,
(|B1|/|S1|) − δ

(|B1|/|S1|)(1 − δ)

}
· 1

|S1|
.

Following the arguments above, we obtain

w1(B1) ≤ 1
4δ(1 − δ)

(
|B1|
|S1|

)2

= 1
4δ(1 − δ)E0[α1(x)2].

The lemma follows.

Lemma 2.2.2. Let A be a collection of hyperplanes in Q = S1 × . . . × Sn. If

1
4δ(1 − δ)

n∑
k=1

Ek−1[αk(x)2] < 1,

then A does not cover Q.

14



Proof. Suppose the above inequality holds. By Lemma 2.2.1, for k ≥ 1, we know

wk(Bk) ≤ 1
4δ(1 − δ)Ek−1[αk(x)2].

Since 1/(4δ(1 − δ)) ·∑n
k=1 Ek−1[αk(x)2] < 1, the total weight of all the elements of Q

covered by the hyperplanes in A is at most

n∑
k=1

wn(Bk) =
n∑

k=1
wk(Bk) ≤ 1

4δ(1 − δ) ·
n∑

k=1
Ek−1[αk(x)2] < 1.

Since the total weight of all the elements in Q is 1, we deduce that A does not cover

Q.

Lemma 2.2.3. Let A be a collection of hyperplanes, pairwise non-parallel, in Q.

Then, for 1 ≤ k ≤ n, we have

Ek−1[αk(x)2] ≤ 1
|Sk|2

k−1∏
j=1

(
1 + 3

(1 − δ)|Sj|

)
.

In order to prove Lemma 2.2.3, we make use of the following two lemmas. First,

recall that for any set X ⊆ Qk−1, weight is preserved from k − 1 to k, so we have

wk−1(X) = ∑
y∈Sk

wk(X, y) = wk(X, Sk). To reduce notation, we set wk(X) =∑
y∈Sk

wk(X, y) = wk(X, Sk) where X ⊆ Qk−1. For any element x ∈ Qk−1 and

any element y ∈ Sk, we justify that

wk(x, y) ≤ 1
1 − δ

· wk−1(x)
|Sk|

.

If k ≥ 2 and αk(x) ≤ δ, we have

wk(x, y) ≤ 1
1 − αk(x) · wk−1(x)

|Sk|
≤ 1

1 − δ
· wk−1(x)

|Sk|
.

If k ≥ 2 and αk(x) > δ and (x, y) ̸∈ Bk, our result holds by the definition of wk(x, y).

If k ≥ 2 and αk(x) > δ and (x, y) ∈ Bk, then we obtain

wk(x, y) ≤ αk(x) − δ

αk(x)(1 − δ) · wk−1(x)
|Sk|
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≤
(

1
1 − δ

− δ

αk(x)(1 − δ)

)
· wk−1(x)

|Sk|

≤ 1
1 − δ

· wk−1(x)
|Sk|

.

Also, if k = 1, then one can similarly check that for y ∈ S1, we have

w1(y) ≤ 1
1 − δ

· 1
|S1|

.

For each J ⊆ {1, . . . , n}, we define ν(J) = ∏
j∈J 1/((1 − δ)|Sj|). Also, for a

hyperplane A = Y1×. . .×Yn and a set U ⊆ {1, . . . , n}, we define AU = Y U
1 ×. . .×Y U

n to

be a hyperplane with Y U
i = Yi if i ∈ U and Y U

i = Si if i ̸∈ U . We set A′ = A{1,...,k−1}.

Lemma 2.2.4. Let A be a hyperplane. Let 1 ≤ k ≤ n. If F (A) ⊆ {1, . . . , k}, then

wk(A) ≤ ν
(
F (A)

)
=

∏
j∈F (A)

1
(1 − δ)|Sj|

.

Proof. We will induct on k. For our base case, consider k = 1. Let F (A) ⊆ {1}. If

F (A) = ∅, then ν(F (A)) = ν(∅) = 1. Here, we deduce

w1(A) = w1(S1) =
∑

y∈S1

w1(y) = 1 = ν(∅).

If F (A) = {1}, then A = {y} for some y ∈ S1, so

w1(A) = w1(y) ≤ 1
1 − δ

· 1
|S1|

= ν({1}).

Thus, if F (A) ⊆ {1}, we see that w1(A) ≤ ν(F (A)).

For our inductive step, assume our result holds for wk−1 with 2 ≤ k ≤ n. We

consider the following two cases. In case one, suppose k ̸∈ F (A). Then F (A) ⊆

{1, . . . , k − 1}. We have wk(A) = wk−1(A) ≤ ν(F (A)) by our inductive hypothesis.

In case two, suppose k ∈ F (A). With A′ = A{1,...,k−1}, we see that

wk(A) ≤ 1
1 − δ

· wk−1(A′)
|Sk|

= 1
(1 − δ)|Sk|

· wk−1(A′).
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Since A′ ⊆ {1, . . . , k − 1} and F (A′) = F (A) \ {k}, then by our inductive hypothesis,

we have wk−1(A′) ≤ ν(F (A) \ {k}). Thus,

wk(A) ≤ 1
(1 − δ)|Sk|

· wk−1(A′)

≤ 1
(1 − δ)|Sk|

· ν(F (A) \ {k})

= ν(F (A)),

finishing the proof.

Lemma 2.2.5. Let A be a collection of hyperplanes, pairwise non-parallel, in Q.

Then, for 2 ≤ k ≤ n, we have

Ek−1[αk(x)2] ≤ 1
|Sk|2

∑
F1,F2⊆{1,...,k−1}

ν(F1 ∪ F2).

Proof. We know

αk(x) = 1
|Sk|

∑
y∈Sk

(x,y)∈Bk

1 ≤ 1
|Sk|

∑
y∈Sk

∑
A∈Ak

(x,y)∈A

1 = 1
|Sk|

∑
A∈Ak

∑
y∈Sk

(x,y)∈A

1.

Since for each x ∈ Qk−1 and A ∈ Ak, there exists a unique y ∈ Sk with (x, y) ∈ A if

and only if x ∈ A′, then we have

αk(x) ≤ 1
|Sk|

∑
A∈Ak
x∈A′

1.

We then deduce

αk(x)2 ≤ 1
|Sk|2

∑
A1,A2∈Ak

x∈A′
1∩A′

2

1,

so that

∑
x∈Qk−1

wk−1(x)αk(x)2 ≤ 1
|Sk|2

∑
A1,A2∈Ak

∑
x∈Qk−1

x∈A′
1∩A′

2

wk−1(x).
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Thus, we conclude

Ek−1(αk(x)2) ≤ 1
|Sk|2

∑
A1,A2∈Ak

wk−1(A′
1 ∩ A′

2).

If the intersection of A′
1 and A′

2 is empty, then wk−1(A′
1 ∩ A′

2) = 0. If the in-

tersection of A′
1 and A′

2 is non-empty, then the intersection is a hyperplane with

(F (A1) \ {k}) ∪ (F (A2) \ {k}) as its set of fixed coordinates. Let F1 = F (A1) \ {k}

and F2 = F (A2) \ {k}. Note that F1 and F2 uniquely determine A1 and A2 in Ak,

respectively, since no two hyperplanes in A are parallel. Therefore, by Lemma 2.2.4,

we conclude

Ek−1(αk(x)2) ≤ 1
|Sk|2

∑
A1,A2∈Ak

ν(F (A′
1 ∩ A′

2))

≤ 1
|Sk|2

∑
F1,F2⊆{1,...,k−1}

ν(F1 ∪ F2).

This completes the proof.

With these two lemmas, we can now prove Lemma 2.2.3.

Proof of Lemma 2.2.3. We know
∑

F1,F2⊆{1,...,k−1}
ν(F1 ∪ F2) =

∑
F1,F2⊆{1,...,k−1}

∏
j∈F1∪F2

(
1

(1 − δ)|Sj|

)

=
∑

J⊆{1,...,k−1}

∑
F1,F2⊆{1,...,k−1}

F1∪F2=J

∏
j∈J

(
1

(1 − δ)|Sj|

)
.

Rearranging the order of our sum and product, we have
∑

J⊆{1,...,k−1}

∑
F1,F2⊆{1,...,k−1}

F1∪F2=J

∏
j∈J

(
1

(1 − δ)|Sj|

)

=
∑

J⊆{1,...,k−1}

∏
j∈J

(
1

(1 − δ)|Sj|

) ∑
F1,F2⊆{1,...,k−1}

F1∪F2=J

1.

Since each element of J with F1 ∪ F2 = J is either in F1 and not F2, in F2 and not

F1, or in both F1 and F2, we deduce
∑

F1,F2⊆{1,...,k−1}
F1∪F2=J

1 = 3|J |.
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Substituting, we have
∑

J⊆{1,...,k−1}
3|J | ∏

j∈J

(
1

(1 − δ)|Sj|

)
=

∑
J⊆{1,...,k−1}

∏
j∈J

(
3

(1 − δ)|Sj|

)
.

This last sum of a product can be rewritten as
∑

J⊆{1,...,k−1}

∏
j∈J

(
3

(1 − δ)|Sj|

)
=

k−1∏
j=1

(
1 + 3

(1 − δ)|Sj|

)
.

Thus, by Lemma 2.2.5, we conclude

Ek−1[αk(x)2] ≤ 1
|Sk|2

∑
F1,F2⊆{1,...,k−1}

ν(F1 ∪ F2)

= 1
|Sk|2

k−1∏
j=1

(
1 + 3

(1 − δ)|Sj|

)
,

completing the proof.

2.3 Proof of Theorem 1.2.2

Using the above lemmas, we now can prove Theorem 1.2.2.

Proof of Theorem 1.2.2. Let S1, S2, . . . be a sequence of finite sets, each of size at

least 2, satisfying lim infk→∞ |Sk|/k > 3. Then, there exist N ∈ N, say with N ≥ 2,

and ε ∈ (0, 1] such that |Sk| ≥ (3 + ε)k for all k ≥ N . Observe that we can take

C as large as we want and in particular C ≥ N in the statement of Theorem 1.2.2,

so we do so. Let A be a collection of hyperplanes, pairwise non-parallel, that cover

Q = S1 × . . . × Sn for some n ∈ N.

We proceed by contradiction. Assume F (A) ̸⊆ {1, . . . , C} for every A ∈ A. Then,

Bk = ∅ for 1 ≤ k ≤ C. Therefore, αk(x) = |{y ∈ Sk : (x, y) ∈ Bk}|/|Sk| = 0 for

k ≤ C and x ∈ Qk−1. In particular, since C ≥ 1, we see that

Ek−1[αk(x)2] = 0 for 1 ≤ k ≤ C.

We consider now k > C ≥ N . Set δ = ε/6 ∈ (0, 1/6]. Then, (1 − δ)|Sj| ≥ 5/3 for

all j, and (1 − δ)|Sj| ≥ (1 − ε/6)(3 + ε)j for all j ≥ N . Then, we have
N−1∏
j=1

(
1 + 3

(1 − δ)|Sj|

)
≤

N−1∏
j=1

(
1 + 3

5/3

)
≤
(14

5

)N−1
.
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Since 1 + x < ex for all x > 0, we deduce that

k−1∏
j=N

(
1 + 3

(1 − δ)|Sj|

)
<

k−1∏
j=N

exp
(

3
(1 − δ)|Sj|

)

= exp
k−1∑

j=N

3
(1 − δ)|Sj|


≤ exp

k−1∑
j=N

3
(1 − ε/6)(3 + ε)j

 .

Thus, we obtain

k−1∏
j=1

(
1 + 3

(1 − δ)|Sj|

)
≤
(14

5

)N−1
exp

 3
(1 − ε/6)(3 + ε)

k−1∑
j=N

1
j

 .

Note that

k−1∑
j=N

1
j

≤
∫ k−1

N−1

1
x

dx = log
(

k − 1
N − 1

)
.

Then, we see that

k−1∏
j=1

(
1 + 3

(1 − δ)|Sj|

)
≤
(14

5

)N−1 ( k − 1
N − 1

)3/((1−ε/6)(3+ε))

.

One can check that(
1 − ε

6

)
(3 + ε)

(
1 − ε

10

)
= 3 + ε(1 − ε)(12 − ε)

60 ≥ 3,

where the inequality follows since ε ∈ (0, 1]. Thus, we have

k−1∏
j=1

(
1 + 3

(1 − δ)|Sj|

)
≤
(14

5

)N−1 ( k − 1
N − 1

)1−ε/10

.

Recall that |Sk| > 3k for k > C ≥ N . By Lemma 2.2.3, for C < k ≤ n, we deduce

Ek−1[αk(x)2] ≤ 1
|Sk|2

k−1∏
j=1

(
1 + 3

(1 − δ)|Sj|

)

<
1

9 k2

(14
5

)N−1 ( k − 1
N − 1

)1−ε/10

≤ 3N−1 · k1−ε/10

9 k2

≤ 3N

9 k1+ε/10 .
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Since ε ∈ (0, 1], we obtain

1
4δ(1 − δ)

n∑
k=1

Ek−1[αk(x)2] ≤ 9
ε(6 − ε)

n∑
k=C

3N

9 k1+ε/10

≤ 3N

ε

n∑
k=C

1
k1+ε/10 .

The ∑∞
k=1 1/k1+ε/10 is convergent. Therefore, for C = C(N, ε) sufficiently large, we

have

1
4δ(1 − δ)

n∑
k=1

Ek−1[αk(x)2] < 1.

Thus, by Lemma 2.2.2, we see that A does not cover Q, which is a contradiction.

Since N only depends on ε and the sets S1, S2, . . . and since we can take ε = 1,

we see that our choice of C can be made to only depend on the sets S1, S2, . . .. This

finishes the proof.

Recall that by Corollary 1.2.3 which follows from the above result, we have proven

the existence of a bound on the minimum modulus of finite coverings with distinct

square-free moduli.
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Chapter 3

Square-free Moduli

3.1 Preliminaries

In this chapter, we find an explicit bound for the minimum modulus of finite coverings

with distinct square-free moduli. We first redefine weights with δ now depending on k.

Let 1 ≤ k ≤ n. For each k, pick δk ∈ [0, 1/2]. We define the weights wk inductively.

As before, we use the same definition of Ak = {A ∈ A : max(F (A)) = k} and

Bk = ⋃
A∈Ak

A. When k = 1, if y ∈ S1 and |B1|/|S1| ≤ δ1, we set

w1(y) =


0 if y ∈ B1

1
|S1| − |B1|

if y ̸∈ B1.

If y ∈ S1 and |B1|/|S1| > δ1, we set

w1(y) =


(|B1|/|S1|) − δ1

(|B1|/|S1|)(1 − δ1)
· 1

|S1|
if y ∈ B1

1
1 − δ1

· 1
|S1|

if y ̸∈ B1.

Observe that in both cases, we have ∑y∈S1 w1(y) = 1 (just as before). The above

weights correspond to setting k = 1 and replacing α1(x) with |B1|/|S1| and w0(x)

with 1 in the discussion below. Suppose k ≥ 2 and wk−1 is defined on Qk−1. For each

x ∈ Qk−1, we define as before

αk(x) = |{y ∈ Sk : (x, y) ∈ Bk}|
|Sk|

= |Fx ∩ Bk|
|Sk|

,
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which is the proportion of the fiber Fx = {(x, y) : y ∈ Sk} that is covered by one or

more hyperplanes in Ak. If αk(x) ≤ δk, we set

wk(x, y) =


0 if (x, y) ∈ Bk

1
1 − αk(x) · wk−1(x)

|Sk|
if (x, y) ̸∈ Bk.

If αk(x) > δk, we set

wk(x, y) =


αk(x) − δk

αk(x)(1 − δk) · wk−1(x)
|Sk|

if (x, y) ∈ Bk

1
1 − δk

· wk−1(x)
|Sk|

if (x, y) ̸∈ Bk.

As in Section 2.1, we have∑y∈Sk
wk(x, y) = wk−1(x), so weight is preserved at each

stage. In other words, the sum of the weights of all the elements of S1 ×S2 ×· · ·×Sk−1

is 1.

In the above, if αk(x) ≤ δk, then we have set wk(x, y) = 0 if (x, y) ∈ Bk and

increased the weight wk(x, y) proportionally on the rest of Fx. If αk(x) > δk, then

we have increased the weight of each element in Fx \ Bk by a distortion factor of

1/(1 − δk) and decreased the weight of Fx ∩ Bk.

For any element x ∈ Qk−1 and any element y ∈ Sk, we justify that

wk(x, y) ≤ 1
1 − δk

· wk−1(x)
|Sk|

.

If k ≥ 2 and αk(x) ≤ δk, we have

wk(x, y) ≤ 1
1 − αk(x) · wk−1(x)

|Sk|
≤ 1

1 − δk

· wk−1(x)
|Sk|

.

If k ≥ 2 and αk(x) > δk and (x, y) ̸∈ Bk, our result holds by the definition of wk(x, y).

If k ≥ 2 and αk(x) > δk and (x, y) ∈ Bk, then we obtain

wk(x, y) ≤ αk(x) − δk

αk(x)(1 − δk) · wk−1(x)
|Sk|

≤
(

1
1 − δk

− δk

αk(x)(1 − δk)

)
· wk−1(x)

|Sk|
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≤ 1
1 − δk

· wk−1(x)
|Sk|

.

Also, if k = 1, then one can similarly check that for y ∈ S1, we have

w1(y) ≤ 1
|S1|

≤ 1
1 − δ1

· 1
|S1|

.

For a hyperplane A = Y1 × . . . × Yn and a set U ⊆ {1, . . . , n}, we define AU =

Y U
1 ×. . .×Y U

n to be a hyperplane with Y U
i = Yi if i ∈ U and Y U

i = Si if i ̸∈ U . We again

set A′ = A{1,...,k−1}. For each J ⊆ {1, . . . , n}, we redefine ν(J) = ∏
j∈J 1/((1−δj)|Sj|),

and we define

∥J∥ =
∏
j∈J

|Sj|.

Observe that although we have changed the definition of ν(J) from previous sections,

the definition is the same when each δj is equal to some common value δ.

As we extend our definition of the weights to include Sk, we still maintain that

the sum of the weights of all the elements of S1 × S2 × · · · × Sk is 1. With this in

mind, corresponding to Lemma 2.2.2, we can make use of the following.

Lemma 3.1.1. Let A be a collection of hyperplanes in Q = S1 × . . . × Sn. If

n∑
k=1

wk(Bk) < 1,

then A does not cover Q.

Also, if A is a hyperplane corresponding to some congruence with square-free

modulus m in a covering system, then ∥F (A)∥ = m. We are interested in showing

that the modulus of some congruence is bounded above by some number which we

denote by C0. Hence, we will want to assume

∥F (A)∥ > C0 for all A ∈ A, (3.1)

with a goal of obtaining a contradiction.
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3.2 Upper bounds on wk(Bk) for bounded k

We begin with the following result which will help us formulate a bound on wk(Bk)

which we will use when k is small.

Lemma 3.2.1. Let A be a collection of hyperplanes, pairwise non-parallel. Then,

for k ≥ 1, we have

wk(Bk) ≤
∑

A∈Ak

wk(A) ≤
∑

A∈Ak

ν(F (A)) =
∑

A∈Ak

∏
j∈F (A)

1
(1 − δj)|Sj|

.

Proof. Since Bk = ⋃
A∈Ak

A, we have wk(Bk) ≤ ∑
A∈Ak

wk(A). We will induct on

k to prove wk(A) ≤ ν(F (A)) for A ∈ Ak. For our base case, consider k = 1. Let

F (A) ⊆ {1}. Since k = 1 and A ∈ Ak, we see that F (A) = {1}. Since F (A) = {1},

we obtain A = {y} for some y ∈ S1, so

w1(A) = w1(y) ≤ 1
1 − δ1

· 1
|S1|

= ν({1}).

Thus, if F (A) ⊆ {1}, we see that w1(A) ≤ ν(F (A)).

For our inductive step, assume our result holds for wk−1 with 2 ≤ k ≤ n. As

before, we have k ∈ F (A). With A′ = A{1,...,k−1}, we see that

wk(A) ≤ 1
1 − δk

· wk−1(A′)
|Sk|

= 1
(1 − δk)|Sk|

· wk−1(A′).

Since A′ ⊆ {1, . . . , k − 1} and F (A′) = F (A) \ {k}, then by our inductive hypothesis,

we have wk−1(A′) ≤ ν(F (A) \ {k}). Thus, for k ≥ 1, we have

wk(A) ≤ 1
(1 − δk)|Sk|

· wk−1(A′)

≤ 1
(1 − δk)|Sk|

· ν(F (A) \ {k})

= ν(F (A)).

Therefore, we conclude

wk(Bk) ≤
∑

A∈Ak

wk(A) ≤
∑

A∈Ak

ν(F (A)) =
∑

A∈Ak

∏
j∈F (A)

1
(1 − δj)|Sj|

,

which completes our proof.
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Corollary 3.2.2. Let A be a collection of hyperplanes, pairwise non-parallel, satis-

fying (3.1). Then

wk(Bk) ≤ 1
(1 − δk)|Sk|

∑
J⊆{1,...,k−1}
∥J∥>C0/|Sk|

ν(J)

= 1
(1 − δk)|Sk|

∑
J⊆{1,...,k−1}
∥J∥>C0/|Sk|

∏
j∈J

1
(1 − δj)|Sj|

.

Proof. With A ∈ Ak satisfying (3.1), we see that

F (A) = J ∪ {k}

for some J ⊆ {1, . . . , k − 1}. For such A and J , we have

∥F (A)∥ = ∥J∥ · |Sk|.

In particular, ∥F (A)∥ > C0 is equivalent to ∥J∥ > C0/|Sk|. Also, since the hy-

perplanes in A are pairwise non-parallel, different A ∈ Ak correspond to different

J ⊆ {1, . . . , k − 1}. Since every A ∈ Ak satisfies (3.1), we see that the result follows

from the inequality

wk(Bk) ≤
∑

A∈Ak

∏
j∈F (A)

1
(1 − δj)|Sj|

in Lemma 3.2.1.

Lemma 3.2.3. Let A be a collection of hyperplanes in Q = S1 × . . . × Sn. Let k ≥ 1.

We have

wk(Bk) ≤ 1
4δk(1 − δk)Ek−1[αk(x)2].

Proof. First, consider wk(Bk) with k ≥ 2. We have

wk(Bk) =
∑

x∈Qk−1

∑
y∈Sk

(x,y)∈Bk

wk(x, y)

≤
∑

x∈Qk−1

|Fx ∩ Bk| · max
{

0,
αk(x) − δk

αk(x)(1 − δk)

}
· wk−1(x)

|Sk|
.
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Since αk(x) = |Fx ∩ Bk|/|Sk|, then we obtain

wk(Bk) ≤ 1
1 − δk

∑
x∈Qk−1

max{0, αk(x) − δk} · wk−1(x).

Observe that 4δ2
k−4δkαk(x)+αk(x)2 = (2δk−αk(x))2 ≥ 0, so αx(x)2/4δk ≥ αk(x)−δk.

Thus,

wk(Bk) ≤ 1
1 − δk

∑
x∈Qk−1

αk(x)2

4δk

· wk−1(x)

= 1
4δk(1 − δk)

∑
x∈Qk−1

αk(x)2 · wk−1(x)

= 1
4δk(1 − δk)Ek−1[αk(x)2].

In the case that k = 1, we have

w1(B1) =
∑

y∈B1

w1(y) ≤ |B1| · max
{

0,
(|B1|/|S1|) − δ1

(|B1|/|S1|)(1 − δ1)

}
· 1

|S1|
.

Following the arguments above, we obtain

w1(B1) ≤ 1
4δ1(1 − δ1)

(
|B1|
|S1|

)2

= 1
4δ1(1 − δ1)

E0[α1(x)2].

The lemma follows.

We now generalize Lemma 2.2.5.

Lemma 3.2.4. Fix a constant C0 ≥ 0. Let A be a collection of hyperplanes, pairwise

non-parallel, in Q satisfying (3.1). Then, for each integer k ∈ [1, n], we have

Ek−1[αk(x)2] ≤ 1
|Sk|2

∑
F1,F2⊆{1,...,k−1}

∥F1∥>C0/|Sk|, ∥F2∥>C0/|Sk|

∏
j∈F1∪F2

1
(1 − δj)|Sj|

.

Proof. Similar to the proof of Corollary 3.2.2, for A1 and A2 in Ak with ∥F (A1)∥ > C0

and ∥F (A2)∥ > C0, we write

F (A1) = F1 ∪ {k} and F (A2) = F2 ∪ {k}
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for some F1 and F2 in {1, . . . , k − 1}. Then

∥F (A1)∥ = ∥F1∥ · |Sk| and ∥F (A2)∥ = ∥F2∥ · |Sk|.

Note that ∥F (Ai)∥ > C0 is equivalent to ∥Fi∥ > C0/|Sk| for i ∈ {1, 2}. The proof

of Lemma 2.2.5 carries through here word for word, but now we have the added

condition ∥Fi∥ > C0/|Sk| for i ∈ {1, 2}. Hence,

Ek−1[αk(x)2] ≤ 1
|Sk|2

∑
F1,F2⊆{1,...,k−1}

∥F1∥>C0/|Sk|, ∥F2∥>C0/|Sk|

ν(F1 ∪ F2)

= 1
|Sk|2

∑
F1,F2⊆{1,...,k−1}

∥F1∥>C0/|Sk|, ∥F2∥>C0/|Sk|

∏
j∈F1∪F2

1
(1 − δj)|Sj|

.

This finishes the proof.

As a consequence of Lemma 3.2.3 and Lemma 3.2.4, we immediately obtain the

following.

Corollary 3.2.5. Fix a constant C0 ≥ 0. Let A be a collection of hyperplanes,

pairwise non-parallel, in Q = S1 × . . . × Sn satisfying (3.1). Then, for each integer

k ∈ {1, 2, . . . , n}, we have

wk(Bk) ≤ 1
4δk(1 − δk)|Sk|2

∑
F1,F2⊆{1,...,k−1}

∥F1∥>C0/|Sk|, ∥F2∥>C0/|Sk|

∏
j∈F1∪F2

1
(1 − δj)|Sj|

.

We also indicate a different way to express the same bound on wk(Bk) which leads

however to easier computations. For this, for r a positive integer, we denote the rth

prime by pr.

Corollary 3.2.6. Fix a constant C0 ≥ 0. Let A be a collection of hyperplanes,

pairwise non-parallel, in Q = S1 × · · · × Sn such that for every hyperplane A ∈ A we

have ∥F (A)∥ > C0. Fix k ∈ {1, 2, . . . , n}. Let r be minimal such that |St| > C0/|Sk|

for all t ≥ r. Define

U =
∑

F1⊆{1,...,r−1}
∥F1∥≤C0/|Sk|

∑
F2⊆{1,...,r−1}
∥F2∥≤C0/|Sk|

∏
j∈F1∪F2

1
(1 − δj)|Sj|
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and

V =
∑

F1⊆{1,...,r−1}
∥F1∥≤C0/|Sk|

∑
F2⊆{1,...,r−1}
∥F2∥>C0/|Sk|

∏
j∈F1∪F2

1
(1 − δj)|Sj|

.

Then

wk(Bk) ≤ 1
4δk(1 − δk)|Sk|2

 k−1∏
j=1

(
1 + 3

(1 − δj)|Sj|

)

− 2 (U + V )
k−1∏
j=r

(
1 + 1

(1 − δj)|Sj|

)
+ U

.

Proof. From Corollary 3.2.5, we obtain

(4δk(1 − δk)|Sk|2)wk(Bk) ≤
∑

F1,F2⊆{1,...,k−1}
∥F1∥>C0/|Sk|, ∥F2∥>C0/|Sk|

∏
j∈F1∪F2

1
(1 − δj)|Sj|

≤
∑

J⊆{1,...,k−1}

∑
F1,F2⊆{1,...,k−1}

F1∪F2=J

∏
j∈J

1
(1 − δj)|Sj|

−
∑

F1⊆{1,...,k−1}
∥F1∥≤C0/|Sk|

∑
F2⊆{1,...,k−1}

∏
j∈F1∪F2

1
(1 − δj)|Sj|

−
∑

F2⊆{1,...,k−1}
∥F2∥≤C0/|Sk|

∑
F1⊆{1,...,k−1}

∏
j∈F1∪F2

1
(1 − δj)|Sj|

+
∑

F1⊆{1,...,k−1}
∥F1∥≤C0/|Sk|

∑
F2⊆{1,...,k−1}
∥F2∥≤C0/|Sk|

∏
j∈F1∪F2

1
(1 − δj)|Sj|

.

For i ∈ {1, 2}, if ∥Fi∥ ≤ C0/|Sk|, then Fi ⊆ {1, 2, . . . , r − 1}, which we obtain from

the definition of r. Hence, we deduce

(4δk(1 − δk)|Sk|2)wk(Bk) ≤
∑

J⊆{1,...,k−1}

∑
F1,F2⊆{1,...,k−1}

F1∪F2=J

∏
j∈J

1
(1 − δj)|Sj|

−
∑

F1⊆{1,...,r−1}
∥F1∥≤C0/|Sk|

∑
F2⊆{1,...,k−1}

∏
j∈F1∪F2

1
(1 − δj)|Sj|

−
∑

F2⊆{1,...,r−1}
∥F2∥≤C0/|Sk|

∑
F1⊆{1,...,k−1}

∏
j∈F1∪F2

1
(1 − δj)|Sj|
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+
∑

F1⊆{1,...,r−1}
∥F1∥≤C0/|Sk|

∑
F2⊆{1,...,r−1}
∥F2∥≤C0/|Sk|

∏
j∈F1∪F2

1
(1 − δj)|Sj|

.

The last double sum of a product above is equal to U . Considering the second double

sum of a product on the right-hand side of the above inequality, we can express F2

as A ∪ B where A ⊆ {1, . . . , r − 1} and B ⊆ {r, . . . , k − 1}, so we obtain
∑

F1⊆{1,...,r−1}
∥F1∥≤C0/|Sk|

∑
F2⊆{1,...,k−1}

∏
j∈F1∪F2

1
(1 − δj)|Sj|

=
∑

F1⊆{1,...,r−1}
∥F1∥≤C0/|Sk|

∑
A⊆{1,...,r−1}

∑
B⊆{r,...,k−1}

∏
j∈F1∪(A∪B)

1
(1 − δj)|Sj|

=
∑

F1⊆{1,...,r−1}
∥F1∥≤C0/|Sk|

∑
A⊆{1,...,r−1}

∑
B⊆{r,...,k−1}

∏
j∈F1∪A

1
(1 − δj)|Sj|

∏
j∈B

1
(1 − δj)|Sj|

=
∑

F1⊆{1,...,r−1}
∥F1∥≤C0/|Sk|

∑
A⊆{1,...,r−1}

∏
j∈F1∪A

1
(1 − δj)|Sj|

∑
B⊆{r,...,k−1}

∏
j∈B

1
(1 − δj)|Sj|

,

where the second to last equality holds since (F1 ∪ A) ∩ B = ∅. Observe that
∑

B⊆{r,...,k−1}

∏
j∈B

1
(1 − δj)|Sj|

=
k−1∏
j=r

(
1 + 1

(1 − δj)|Sj|

)
.

We also have
∑

F1⊆{1,...,r−1}
∥F1∥≤C0/|Sk|

∑
A⊆{1,...,r−1}

∏
j∈F1∪A

1
(1 − δj)|Sj|

=
∑

F1⊆{1,...,r−1}
∥F1∥≤C0/|Sk|

∑
A⊆{1,...,r−1}
∥A∥>C0/|Sk|

∏
j∈F1∪A

1
(1 − δj)|Sj|

+
∑

F1⊆{1,...,r−1}
∥F1∥≤C0/|Sk|

∑
A⊆{1,...,r−1}
∥A∥≤C0/|Sk|

∏
j∈F1∪A

1
(1 − δj)|Sj|

= U + V.

Thus, we deduce
∑

F1⊆{1,...,r−1}
∥F1∥≤C0/|Sk|

∑
F2⊆{1,...,k−1}

∏
j∈F1∪F2

1
(1 − δj)|Sj|

= (U + V )
k−1∏
j=r

(
1 + 1

(1 − δj)|Sj|

)
.
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Similarly, we also obtain

∑
F2⊆{1,...,r−1}
∥F2∥≤C0/|Sk|

∑
F1⊆{1,...,k−1}

∏
j∈F1∪F2

1
(1 − δj)|Sj|

= (U + V )
k−1∏
j=r

(
1 + 1

(1 − δj)|Sj|

)
.

As demonstrated in the proof of Lemma 2.2.3, we have

∑
J⊆{1,...,k−1}

∑
F1,F2⊆{1,...,k−1}

F1∪F2=J

∏
j∈J

1
(1 − δj)|Sj|

=
k−1∏
j=1

(
1 + 3

(1 − δj)|Sj|

)
.

Therefore, we conclude that

wk(Bk) ≤ 1
4δk(1 − δk)|Sk|2

 k−1∏
j=1

(
1 + 3

(1 − δj)|Sj|

)

− 2 (U + V )
k−1∏
j=r

(
1 + 1

(1 − δj)|Sj|

)
+ U

,

which completes the proof.

3.3 Upper bounds on wk(Bk) for large k

The idea is to apply the prior upper bounds for wk(Bk) to estimate the value of

wk(Bk) for k ≤ N , where we will take N = 106. In this section, we show how to find

an upper bound for wk(Bk) for k > N and then find an upper bound for

∑
k>N

wk(Bk).

We require below N ≥ 61 and k > N . Note that we view N as fixed, so we will allow

constants below to depend on N . We set δj = 1/2 for all j > N . As we will be using

Corollary 3.2.6 to compute wk(Bk) for k = N , we will have already calculated the

value of

M0 =
N∏

j=1

(
1 + 3

(1 − δj)|Sj|

)
,

and also make use of it. Finally, we denote the jth prime by pj and the number of

primes ≤ x by π(x).
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Lemma 3.3.1. With the above notation, we set

c1 = − log log pN + 1
log2 pN

and c2 = 1 + 3
2 log pN

.

If |Sj| = pj for every j > N , then

∑
k>N

wk(Bk) ≤ 2c2M0e
6c1

pN

·
(

log5 pN + 5 log4 pN + 20 log3 pN

+ 60 log2 pN + 120 log pN + 120
)

.

Proof. From δk = 1/2 and Corollary 3.2.6, we see that

wk(Bk) ≤ 1
4δk(1 − δk)|Sk|2

k−1∏
j=1

(
1 + 3

(1 − δj)|Sj|

)
= 1

|Sk|2
k−1∏
j=1

(
1 + 3

(1 − δj)|Sj|

)
.

(3.2)

Since k > N and δj = 1/2 for all j > N , we obtain

k−1∏
j=1

(
1 + 3

(1 − δj)|Sj|

)
= M0

k−1∏
j=N+1

(
1 + 6

|Sj|

)
≤ M0 exp

(
6

k−1∑
j=N+1

1
|Sj|

)
. (3.3)

where we have used that 1 + x ≤ ex for all real numbers x (the function ex is convex

up and y = 1 + x is a tangent line to its graph at x = 0).

We are now ready to make use of the specification that |Sj| = pj for every j > N .

From the work of J. B. Rosser and L. Schoenfeld [10, Theorem 5], we have the

estimates

log log x + B − 1
2 log2 x

≤
∑
p≤x

1
p

< log log x + B + 1
2 log2 x

, for x ≥ 286,

for some constant B ≈ 0.2614972128. As N +1 ≥ 62 and p62 = 293 > 286, we deduce

that

k−1∑
j=N+1

1
|Sj|

=
k−1∑

j=N+1

1
pj

=
∑

p≤pk−1

1
p

−
∑

p≤pN

1
p

<

(
log log pk−1 + B + 1

2 log2 pk−1

)
−
(

log log pN + B − 1
2 log2 pN

)
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= log log pk−1 − log log pN + 1
2 log2 pk−1

+ 1
2 log2 pN

≤ log log pk−1 − log log pN + 1
2 log2 pN

+ 1
2 log2 pN

= log log pk−1 + c1.

From (3.3), we now see that
k−1∏
j=1

(
1 + 3

(1 − δj)|Sj|

)
≤ M0 exp

(
6 log log pk−1 + 6c1

)
= M0e

6c1 log6 pk−1.

From (3.2), we obtain the estimate for wk(Bk) for k > N that we want, namely

wk(Bk) ≤ M0e
6c1

log6 pk

p2
k

.

Next, we want an estimate of the sum over k > N of this bound for wk(Bk). We

make use of a Riemann-Stieltjes integral to obtain
∞∑

k=N+1

log6 pk

p2
k

≤
∫ ∞

pN

log6 t

t2 d π(t)

= π(t) log6 t

t2

∣∣∣∣∣
∞

pN

−
∫ ∞

pN

π(t) d

(
log6 t

t2

)

≤ 2
∫ ∞

pN

π(t) log6 t

t3 dt,

where we have used that

d

(
log6 t

t2

)
=
(

6 log5 t

t3 − 2 log6 t

t3

)
dt

and ignored negative quantities. From J. B. Rosser and L. Schoenfeld [10, Theorem 1],

we have

π(x) <
x

log x

(
1 + 3

2 log x

)
for all x > 1.

Thus, for t ≥ pN , we obtain π(t) ≤ c2 t/ log t. Thus,
∞∑

k=N+1

log6 pk

p2
k

≤ 2c2

∫ ∞

pN

log5 t

t2 dt.

The latter integral can be computed exactly to obtain
∞∑

k=N+1

log6 pk

p2
k

≤ 2c2

pN

(
log5 pN + 5 log4 pN + 20 log3 pN
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+ 60 log2 pN + 120 log pN + 120
)

.

Combining the above, the lemma follows.

3.4 Proof of Theorem 1.2.4

We will now prove Theorem 1.2.4, which states that every covering system with

distinct square-free moduli has a minimum modulus which is ≤ 118.

Proof. Let A be a collection of hyperplanes covering Q = S1×. . .×Sn corresponding to

a covering system with distinct square-free moduli (see the proof of Corollary 1.2.3).

Recall that pk = |Sk| and if A is a hyperplane corresponding to some congruence

with square-free modulus m in a covering system, then ∥F (A)∥ = m. For the sake of

contradiction, assume that ∥F (A)∥ > C0 = 118 for all A ∈ A. For our computations,

we use Maple 2019.

We choose δj as below:

δ1 = · · · = δ7 = 0, δ8 = 0.171, δ9 = 0.190, δ10 = 0.199,

δ11 = 0.210, δ12 = 0.210, δ13 = 0.224, δ14 = 0.233,

δ15 = 0.237, δ16 = 0.237, δ17 = 0.237, δ18 = 0.252,

δ19 = 0.252, δ20 = 0.255, δ21 = 0.260, δ22 = 0.261,

δ23 = 0.263, δ24 = 0.264, δ25 = 0.262, δ26 = 0.265, δ27 = 0.269,

δj = 0.279 (for 28 ≤ j ≤ 35), δj = 0.289 (for 36 ≤ j ≤ 45),

δj = 0.297 (for 46 ≤ j ≤ 60), δj = 0.307 (for 61 ≤ j ≤ 99),

δj = 0.331 (for 100 ≤ j ≤ 1000), δj = 0.372 (for 1001 ≤ j ≤ 10000),

δj = 0.418 (for 10001 ≤ j ≤ 1000000), δj = 0.5 (for j ≥ 1000001).

34



Using Corollary 3.2.2, we compute that w1(B1) = w2(B2) = w3(B3) = 0, w4(B4) =

1/210, w5(B5) = 3/110, w6(B6) = 50/1001, and w7(B7) = 43/715, so we have

7∑
k=1

wk(Bk) = 194
1365 = 0.142124542124542124542124542124 . . . . (3.4)

Using Corollary 3.2.6, we calculate

106∑
k=8

wk(Bk) = 0.856857558639508798126627002701 . . . . (3.5)

Using Lemma 3.3.1, we compute

∑
k>106

wk(Bk) ≤ 0.0004029606850947856655172105492230 . . . . (3.6)

Combining (3.4), (3.5), and (3.6), we obtain

∞∑
k=1

wk(Bk) ≤ 0.999385061449145708334268755375 . . . < 1. (3.7)

Thus, by Lemma 3.1.1, A does not cover Q, which is a contradiction. Therefore, every

covering system with distinct square-free moduli has a minimum modulus which is

≤ 118.
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