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ABSTRACT

 Previous studies of reinforcement learning (RL) have established that 

choice outcomes are encoded in a context-dependent fashion. Several 

computational models have been proposed to explain context-dependent 

encoding, including reference point centering and range adaptation models. The 

former assumes that outcomes are centered around a running estimate of the 

average reward in each choice context, while the latter assumes that outcomes 

are compared to the minimum reward and then scaled by an estimate of the 

range of outcomes in each choice context. However, there are other 

computational mechanisms that can explain context dependence in RL. In the 

present study, a frequency encoding model is introduced that assumes outcomes 

are evaluated based on their proportional rank within a sample of recently 

experienced outcomes from the local context. A hybrid range-frequency model is 

also considered that combines the range adaptation and frequency encoding 

mechanisms. We conducted two fully incentivized behavioral experiments using 

choice tasks for which the candidate models make divergent predictions. The 

results were most consistent with models that incorporate frequency or rank-

based encoding. The findings from these experiments deepen our understanding 

of the underlying computational processes mediating context-dependent 

outcome encoding in human RL.
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CHAPTER 1 

INTRODUCTION

Normative theories of value-based decision-making assume that reward 

values are encoded in a context-independent fashion (Luce, 1959; von Neumann 

& Morgenstern, 1944). This means that the cognitive representation of a fixed 

reward should not depend on the values of other rewards in its environment. 

Context independence would seem to be a prerequisite for making rational, 

reward-maximizing decisions. However, there is ample behavioral and 

neuroscientific evidence for context-dependent valuation across a variety of 

species, including humans, primates, birds, and insects (e.g., Burke et al., 2016; 

Mullet & Tunney, 2013; Padoa-Schioppa, 2009; Palminteri et al., 2015; Pompilio 

& Kacelnik, 2010; Shafir et al., 2002; Tobler, Fiorillo, & Schultz, 2005; Tremblay 

& Schultz, 1999). These studies have shown that rewards are represented in a 

way that critically depends on other rewards in the choice environment, so that 

the same reward will be evaluated differently across different contexts. 

Why might the brain encode values on a context-dependent scale? 

Consider that the range of values that organisms might encounter in their 

environment is theoretically infinite, yet neurons have a finite range of firing rates 

for encoding these values. This biological constraint is problematic for theories 

that assume absolute value representations (Mullett & Tunney, 2013). A more 

efficient neural code could be implemented by adapting firing rates to the 
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distribution of rewards in the local context (Louie & Glimcher, 2012; Seymour & 

McClure, 2008). Although it can increase sensitivity to value differences within 

contexts, context dependence can also result in suboptimal choice behavior 

when values are extrapolated outside of their original encoding contexts (Bavard 

et al., 2018; Klein et al., 2017; Palminteri et al., 2015). However, there is 

evidence that the human brain encodes a combination of absolute and relative 

values, and that it can flexibly—and perhaps rationally—switch between coding 

schemes depending on features of the choice environment and task demands 

(Burke et al., 2016; Pischedda et al., 2020; for behavioral evidence, see 

Juechems et al., 2021).  

The present study focuses on context-dependent value encoding in 

reinforcement learning (RL). RL is the process through which organisms learn to 

predict the consequences of their actions and adjust their choice behavior to 

maximize rewards and minimize punishments (Dayan & Niv, 2008). Previous RL 

studies have shown that when choice options are encountered repeatedly in 

separate contexts, people learn the values of those options in a context-

dependent fashion (Bavard et al., 2018; 2021; Hayes & Wedell, in press; Klein et 

al., 2017; Palminteri et al., 2015). Context-induced biases are revealed when the 

options are transferred out of their original learning contexts and reencountered 

in novel contexts. Several RL models have been proposed to explain these 

effects, and the most prominent have relied on two different computational 

mechanisms: reference point centering (Palminteri et al., 2015) and range 

adaptation (Bavard et al., 2018; 2021). While these models offer a parsimonious 
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account of the context effects observed in prior studies (for a review, see 

Palminteri & Lebreton, 2021), there are other potential mechanisms that could 

produce the observed behavior but have not received as much attention in the 

literature. The purpose of the present study is to test a larger set of models using 

choice tasks that can dissociate several context-dependent mechanisms 

simultaneously. The following section introduces the models that will be 

considered. 

1.1 Model Descriptions  

RL models describe how decision-making agents learn from previous 

choice outcomes to select options that maximize expected rewards (Rangel et 

al., 2008; Sutton & Barto, 1998). In the present study, choice options are 

encountered in separate groupings, or contexts, and the goal is to learn which 

options are most rewarding within each context. After receiving complete 

feedback (factual and counterfactual outcomes) on trial t, the models update the 

reward expectations for the chosen and nonchosen options according to a delta 

rule (Rescorla & Wagner, 1972): 

 𝑄𝑡+1(𝑠, 𝑖) = 𝑄𝑡(𝑠, 𝑖) + 𝛼 ⋅ 𝛿𝑖,𝑡 

𝛿𝑖,𝑡 = 𝑣𝑖,𝑡 − 𝑄𝑡(𝑠, 𝑖) 

(1) 

(2) 

where 𝑄𝑡+1(𝑠, 𝑖) is the updated expectation for the ith option in context s on trial 

t+1, 𝑄𝑡(𝑠, 𝑖) is its previous expectation, and 𝛿𝑖,𝑡 is the reward prediction error, or 

the difference between experienced (𝑣𝑖,𝑡) and expected outcomes for the ith 

option on trial t. The models use separate learning rates for chosen (0 ≤ 𝛼𝑐 ≤ 1) 



4 

and unchosen (0 ≤ 𝛼𝑢 ≤ 1) options to account for asymmetries in learning from 

factual and counterfactual outcomes. Higher values of 𝛼𝑐 and 𝛼𝑢 result in faster 

learning from recent outcomes (i.e., greater recency effects), whereas lower 

values result in more gradual learning.   

Given the set of updated reward expectations for the K available options, 

all models use the softmax function to compute the probability of choosing the ith 

option on trial t+1: 

 𝑃𝑡+1(choose 𝑖th option) =
𝑒𝛽⋅𝑄𝑡+1(𝑠,𝑖)

∑ 𝑒𝛽⋅𝑄𝑡+1(𝑠,𝑘)𝐾
𝑘=1

 (3) 

where 𝛽 is an inverse temperature parameter that modulates the sensitivity of 

choice probabilities to expected reward (0 ≤ 𝛽 < ∞). Higher values of 𝛽 lead to 

greater exploitation of options with higher expected rewards, whereas lower 

values of 𝛽 result in more random choices.  

 The key difference between models is how they encode experienced 

outcomes (𝑣𝑖,𝑡 in Equation 2). The most basic model is a standard Q-learning 

algorithm, modified to allow for counterfactual learning, which assumes that 

outcomes are encoded in an absolute fashion: 

 𝑣𝑖,𝑡 = 𝑟𝑖,𝑡 (4) 

where 𝑟𝑖,𝑡 is the objective reward from the ith option on trial t. This model tracks 

context-independent expected rewards for each option and thus has no way of 

accounting for context effects in RL (Bavard et al., 2018; Klein et al., 2017; 
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Palminteri et al., 2015). In contrast, the models discussed below assume that 

outcomes are encoded in a relative fashion by comparing them to either a single 

contextual reference point (reference point centering), the endpoints of a 

contextual distribution (range adaptation), or to other outcomes in the immediate 

or recent context (frequency encoding). These models will be compared to the Q-

learning model, which serves as a common baseline, and to each other to 

determine which mechanism provides the best account of context effects in RL.  

Reference Point Centering 

Reference point theories assume that each reward is compared to a single 

value or reference point that summarizes the central tendency of previously 

experienced rewards within a particular context (Palminteri & Lebreton, 2021). 

This idea can be traced back to adaptation level theory (Helson, 1964), which 

posits that the perception of a target stimulus reflects the difference between the 

target and an adaptation level (AL), or a weighted average of multiple contextual 

stimuli. Adaptation level theory can account for why a person might judge a 4 oz 

fountain pen to be heavy and a 32 oz baseball bat to be light, despite the latter 

having a much greater objective weight (Helson, 1964): The average fountain 

pen weighs less than 4 oz and the average baseball bat weighs more than 32 oz. 

Similarly, an affectively neutral outcome like receiving zero reward can be 

disappointing in a context of gains and yet function as a reinforcer in the context 

of losses (Palminteri et al., 2015). This is because a zero outcome falls below the 

AL when all other outcomes are positive but above the AL when all other 

outcomes are negative. 
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In computational RL models, reference point-dependence can be 

accomplished by centering choice outcomes on a running estimate of the 

average reward in the current context. For example, the REFERENCE model 

(Palminteri et al., 2015; Palminteri & Lebreton, 2021) encodes outcomes as the 

difference between the objective reward, 𝑟𝑖,𝑡, and the mean reward for the current 

context, 𝑉𝑡(𝑠), which serves as the reference point:  

 𝑣𝑖,𝑡 = 𝑟𝑖,𝑡 − 𝑉𝑡(𝑠) (5) 

where the current choice context s is the specific combination of options present 

on trial t. The 𝑄 values for each option in the current context are updated using 

these mean-centered rewards. Thus, expected rewards are adjusted upward 

whenever outcomes are better-than-average and downward whenever outcomes 

are worse-than-average for the given context. The model updates the reference 

point on each trial with a separate learning rate, 𝛼𝑉 (0 ≤ 𝛼𝑉 ≤ 1): 

 𝑉𝑡+1(𝑠) = 𝑉𝑡(𝑠) + 𝛼𝑉 ⋅ 𝛿𝑉,𝑡 (6) 

where 𝛿𝑉,𝑡 is a prediction error calculated as: 

 𝛿𝑉,𝑡 =
1

𝐾
∑ 𝑟𝑘,𝑡

𝐾

𝑘=1

− 𝑉𝑡(𝑠) (7) 

Equation 7 shows that the average reward across the K available options on trial 

t is used to update 𝑉𝑡(𝑠), so that the update is independent of which option was 

chosen. In partial feedback contexts, counterfactual outcomes are unavailable 

and therefore 𝑟𝑘,𝑡 is replaced with 𝑄𝑡(𝑠, 𝑘) for all unchosen options in Equation 7 
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(see Palminteri et al., 2015 for tests of alternative specifications). The reference 

points 𝑉𝑡(𝑠) will gradually approximate the mean rewards in their corresponding 

contexts, with the speed of convergence determined by 𝛼𝑉. It is important to note 

that relative valuation effects in this model increase over time because they 

depend on learning the average reward in each context; thus, for a limited 

number of trials, the context dependence will only be partial. Higher (lower) 

values of 𝛼𝑉 result in faster (slower) development of relative encoding. If 𝛼𝑉 = 0, 

the model reduces to the standard Q-learning model. If 𝛼𝑉 > 0, the option-

specific 𝑄 values will gradually reflect the expected relative value of each option 

with respect to its local reference point. 

 Reference point-dependence has been used to explain a variety of 

behavioral effects in RL. Because avoided punishments carry a positive relative 

value in contexts where the average outcome is negative, the REFERENCE 

model provides a parsimonious account of avoidance learning that the standard 

Q-learning model fails to capture (Palminteri et al., 2015). It predicts patterns of 

irrational preferences that can arise when choice options whose values were 

learned in one context are reencountered in novel contexts (Bavard et al., 2018; 

Klein et al., 2017; Palminteri et al., 2015). At the same time, the REFERENCE 

model’s partial centering mechanism that evolves over time permits the 

differentiation between the best outcomes in good versus bad contexts (Burke et 

al., 2016; see also Palminteri & Lebreton, 2021). Further, the observation of 

slower decision times and lower confidence in punishment compared to reward 

contexts (despite similar levels of accuracy) has been explained by linking 
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response times and confidence ratings to the mean rewards tracked by the 

REFERENCE model (Fontanesi et al., 2019; Lebreton et al., 2019).  

Range Adaptation 

Range adaptation theories assume that rewards are evaluated based on 

their relative position with respect to the range of rewards within a particular 

context (Palminteri & Lebreton, 2021; see also Volkmann, 1951). This idea has 

its roots in range-frequency (RF) theory (Parducci, 1965; 1995), according to 

which the range value of target stimulus Si, denoted Ri, is computed as: 

 𝑅𝑖 =
𝑆𝑖 − 𝑆𝑚𝑖𝑛

𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛
 (8) 

where Si is the objective value of stimulus i, and Smin and Smax are the most 

extreme stimulus values in the judgment context. Thus, Ri can be interpreted as 

the proportion of the range of stimulus values that fall below the value of the 

target stimulus. Returning to an earlier example, a 4 oz fountain pen would have 

a range value close to 1 in the context of other fountain pens because 4 oz is 

near the top of the range; on the other hand, a 32 oz baseball bat would have a 

range value close to 0 in the context of other baseball bats because 32 oz is near 

the bottom of the range. We should then expect the pen to be judged heavy and 

the bat to be judged light. Similarly, zero reward would receive a range value of 0 

in the context of gains, making it the least attractive outcome, but a range value 

of 1 in the context of losses, making it the most attractive outcome. In these 
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cases, the predictions of range adaptation are consistent with the predictions of 

reference point centering.  

 Bavard et. al's (2021) RANGE model incorporates a dynamic range 

adaptation process into an RL framework. Range-normalized outcomes are 

computed by subtracting the subjective minimum reward from the objective 

outcome and dividing by the subjective range of rewards in the current context: 

 𝑣𝑖,𝑡 =
𝑟𝑖,𝑡 − 𝑅𝑀𝐼𝑁,𝑡(𝑠)

𝑅𝑀𝐴𝑋,𝑡(𝑠) − 𝑅𝑀𝐼𝑁,𝑡(𝑠)
 (9) 

where 𝑅𝑀𝐼𝑁,𝑡(𝑠) and 𝑅𝑀𝐴𝑋,𝑡(𝑠) are the current estimates of the minimum and 

maximum reward in context s. Option values are updated using the range-

normalized outcomes. The estimates of the maximum and minimum rewards in 

context s are updated separately: 

 
𝑅𝑀𝐴𝑋,𝑡+1(𝑠) = 𝑅𝑀𝐴𝑋,𝑡(𝑠) + 𝛼𝑅 ⋅ (𝑀𝑎𝑥𝑅𝑒𝑤𝑎𝑟𝑑𝑡(𝑠) −𝑅𝑀𝐴𝑋,𝑡(𝑠))

𝑅𝑀𝐼𝑁,𝑡+1(𝑠) = 𝑅𝑀𝐼𝑁,𝑡(𝑠) + 𝛼𝑅 ⋅ (𝑀𝑖𝑛𝑅𝑒𝑤𝑎𝑟𝑑𝑡(𝑠) −𝑅𝑀𝐼𝑁,𝑡(𝑠))
 (10) 

where 𝑀𝑎𝑥𝑅𝑒𝑤𝑎𝑟𝑑𝑡(𝑠) and 𝑀𝑖𝑛𝑅𝑒𝑤𝑎𝑟𝑑𝑡(𝑠) are the objective maximum and 

minimum reward values observed in context s through the first t trials and 𝛼𝑅 is a 

learning rate (0 ≤ 𝛼𝑅 ≤ 1). In the present application, 𝑅𝑀𝐼𝑁,𝑡(𝑠) and 𝑅𝑀𝐴𝑋,𝑡(𝑠) are 

initialized to the global minimum and maximum reward values across all choice 

contexts. Thus, if 𝛼𝑅 = 0, subjective values are adapted to the global range of 

rewards and the qualitative predictions of the RANGE model are consistent with 

the qualitative predictions of the standard Q-learning model. If 𝛼𝑅 > 0, 𝑅𝑀𝐼𝑁,𝑡(𝑠) 

and 𝑅𝑀𝐴𝑋,𝑡(𝑠) gradually converge to the local minimum and maximum rewards in 
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context s with increasing experience. In either case, the range-normalized 

outcomes 𝑣𝑖,𝑡 are bounded between 0 and 1 (Equation 9). As in the 

REFERENCE model, relative encoding strengthens over time as the subjective 

endpoints converge to the actual endpoints of the contextual distributions (see 

Palminteri & Lebreton, 2021).1  

 Range adaptation can account for similar learning performance in contexts 

with small and large magnitude outcomes (Bavard et al., 2018; 2021). The 

standard Q-learning model, in contrast, predicts stronger learning in response to 

larger rewards. Range adaptation facilitates learning by amplifying the gain on 

outcome differences in small magnitude contexts and reducing the gain in large 

magnitude contexts so that outcomes are experienced similarly in both. This is 

consistent with evidence that the firing rates of specific neurons adjust to match 

the range or variability of reward values within recent temporal context (e.g., 

Kobayashi et al., 2010; Padoa-Schioppa, 2009; Tobler et al., 2005). The RANGE 

model also predicts some of the irrational preferences that are observed when 

options are taken out of their original learning contexts: Options that were 

relatively better in small magnitude contexts may be preferred over options that 

                                                           
1 The updating scheme in Equation 10 is slightly different than the one proposed 
by Bavard et al. (2021). In that study, 𝑅MIN,𝑡(𝑠) and 𝑅MAX,𝑡(𝑠) are both initialized 

to zero and updated only if the minimum reward on trial t is lower than 𝑅MIN,𝑡(𝑠) 

or the maximum reward on trial t is greater than 𝑅MAX,𝑡(𝑠). In the present study, 

the reward values in certain contexts were all greater than zero and thus the 
subjective minimum would never be updated under that scheme. Equation 10 
ensures that the subjective minimum and maximum will both be updated. In any 
case, the asymptotic predictions of the model are very similar under both 
approaches. 
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were relatively worse in large magnitude contexts, even if the latter have a higher 

objective value (Bavard et al., 2018; 2021). Finally, the model’s assumption that 

RL agents track the minimum and maximum rewards in each context is 

consistent with the finding of enhanced memory for the most extreme outcomes 

in experience-based decision tasks (Madan et al., 2014). 

Frequency Encoding 

There is a third computational mechanism that can explain context effects 

in value-based decision making, but which has received less attention in the RL 

literature. Theories such as decision by sampling (DbS; Stewart et al., 2006) and 

the “frequency principle” of RF theory (Parducci, 1965; 1995) postulate that the 

subjective value of a stimulus is determined by its rank within the contextual 

distribution. More specifically, DbS proposes that individuals possess two basic 

operations for computing subjective values: binary ordinal comparison (i.e., 

greater than, less than, or equal to) and frequency accumulation. When 

evaluating a target stimulus Si, individuals are assumed to compare it to a 

sample of N stimuli that are present in the immediate context, retrieved from 

memory, or both. Comparisons are made by counting the number of stimuli in the 

sample that are less than the target. The subjective value of the target is equal to 

its proportional rank within the comparison sample (or, in the terminology of RF 

theory, its frequency value, Fi): 

 𝐹𝑖 =
rank(𝑆𝑖) − 1

𝑁 − 1
 (11) 
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where rank(𝑆𝑖) is the number of stimuli in the comparison sample that are less 

than 𝑆𝑖. Thus, according to the frequency principle, a target reward will have a 

high subjective value if it is larger than most of the other rewards in the 

immediate or recent context. Only the frequency of comparisons that favor the 

target will determine its subjective value; the magnitudes of the relative 

advantages and disadvantages are irrelevant.   

 Rank encoding is grounded in psychophysical evidence that people are 

better at discriminating between stimuli than estimating their absolute 

magnitudes (Stewart et al., 2005). Given that memories of exact stimulus values 

are often noisy and degraded, it may be easier to retrieve stimulus ranks (or 

comparative judgments) from the encoding context and use these ranks to 

reconstruct the stimulus values (Choplin & Hummel, 2002; Higgins & Lurie, 1983; 

Wedell, 1996). Some have argued that the need to store stimulus values in 

memory for later retrieval induces a shift to rank encoding to enhance the 

differences between individual stimuli (Pettibone & Wedell, 2007; Wedell, 1996). 

In support of this, prior research has demonstrated that when stimulus values are 

associated with name cues and retrieved from long-term memory using a cued 

recall procedure, reproduced estimates and category ratings exhibit biases that 

are consistent with rank encoding (Choplin & Wedell, 2014; Pettibone & Wedell, 

2007; Wedell et al., 2020). Further, frequency effects are well-documented in 

category rating tasks that manipulate the skewing of the category distributions 

while holding the endpoints of the distributions constant (e.g., Niedrich et al., 

2001; Parducci, 1995; Wedell, 1996; Wedell et al., 2020).  
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 Hayes and Wedell (2021) introduced a simple RL model that implements 

frequency encoding on a trial-by-trial basis. The original model relied on 

immediate ordinal comparisons among factual and counterfactual outcomes in 

choice tasks with complete feedback. Here, we introduce a more general 

version—the FREQUENCY model—which applies to both complete and partial 

feedback contexts. Importantly, the FREQUENCY model allows for ordinal 

comparisons with previous contextual outcomes held in memory, consistent with 

DbS and RF theory.  

Suppose that on trial t, an individual makes a choice between the options 

in context s. Let 𝐫(𝑠) denote a vector containing all rewards observed in context s 

from trial 1 up to and including trial t. This vector is essentially an exemplar-

based representation of the current reward context. Note that in complete 

feedback contexts with K choice options, 𝐫(𝑠) will contain K times as many 

outcomes as it would in partial feedback contexts. The outcomes in 𝐫(𝑠) 

constitute the contextual distribution for evaluating the target outcomes on trial t; 

however, due to limited working memory, only some of the outcomes in 𝐫(𝑠) are 

recruited to form the comparison sample. The result is a recency-biased estimate 

of the target outcome’s proportional rank within the contextual distribution. Let 𝑟[𝑗] 

denote the jth outcome in 𝐫(𝑠) and let 𝑡[𝑗] denote the trial on which it was 

observed. Then the frequency value of 𝑟𝑖,𝑡, the outcome from the ith option on the 

current trial, is computed by the FREQUENCY model as follows: 
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𝐹𝑖,𝑡 =

{∑ [
sign(𝑟𝑖,𝑡 − 𝑟[𝑗]) + 1

2 ] ⋅ (1 − 𝜙)𝑡−𝑡[𝑗]
𝑗 } − 0.5

{∑ (1 − 𝜙)𝑡−𝑡[𝑗]
𝑗 } − 1

 
(12) 

where [sign(𝑟𝑖,𝑡 − 𝑟[𝑗]) + 1]/2 is an ordinal comparison function that returns 1 if 

𝑟𝑖,𝑡 > 𝑟[𝑗], 0.5 if 𝑟𝑖,𝑡 = 𝑟[𝑗], or 0 if 𝑟𝑖,𝑡 < 𝑟[𝑗]. The term inside curly brackets in the 

numerator of Equation 12 is like the rank(⋅) function in Equation 11 that tallies 

the number of ordinal comparisons favoring 𝑟𝑖,𝑡. The difference is that here, the 

comparisons are weighted such that recent outcomes will have a greater impact 

on the evaluation of 𝑟𝑖,𝑡 than earlier outcomes. Note that the weights (1 − 𝜙)𝑡−𝑡[𝑗] 

are a decreasing function of the recency parameter 𝜙 and the number of trials 

since the corresponding contextual outcome 𝑟[𝑗] was observed.2 In essence, 

each weight can be interpreted as the activation value for the corresponding 

contextual outcome on trial t. The longer it has been since 𝑟[𝑗] was observed, the 

lower its activation and thus the smaller the impact of its comparison to the 

current trial outcomes will be. Note that in complete feedback contexts, all 

outcomes on the current trial have activation values of 1.0. The bracketed term in 

the denominator of Equation 12 serves to normalize the frequency values 

between 0 and 1, similar to N in Equation 11. Subtracting 0.5 in the numerator 

and 1 in the denominator factors out the comparison of 𝑟𝑖,𝑡 to itself. 

                                                           
2 Three different parameterizations of the model were tested: one with the 

constraint 𝜙 = (𝛼𝑐 + 𝛼𝑢) 2⁄ , another with the constraint 𝜙 = 𝛼𝑐, and a third with 𝜙 
as a free parameter. Model comparison indicated that the first parameterization 
was the most parsimonious. Thus, it was not necessary to include an extra 
parameter to account for recency effects in the computation of frequency values. 
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 Following RF theory, the overall subjective value of the ith outcome on trial 

t is then a weighted combination of its range and frequency values: 

 𝑣𝑖,𝑡 = (1 − 𝑤𝐹) ⋅
𝑟𝑖,𝑡 − 𝑟𝑚𝑖𝑛

𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛
+ 𝑤𝐹 ⋅ 𝐹𝑖,𝑡 (13) 

where 𝑤𝐹 controls the relative weighting of the frequency component (0 ≤ 𝑤𝐹 ≤

1). Higher values of 𝑤𝐹 result in rank-based information having a greater 

influence on outcome encoding. Importantly, the range values in Equation 13 are 

calculated using the global minimum and maximum rewards across all contexts, 

𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥. This constraint puts the range and frequency values on the same 

scale, aiding the interpretation of 𝑤𝐹, while also ensuring that any context effects 

predicted by the model are driven entirely by the frequency principle. In the 

special case that 𝑤𝐹 = 0, the FREQUENCY model makes the same qualitative 

predictions as the standard Q-learning model because the (global) range value 

term in Equation 13 is a linear function of the absolute outcome 𝑟𝑖,𝑡.   

 The FREQUENCY model is consistent with the observation that frequency 

information exerts a powerful influence on decisions from experience (e.g., Don 

& Worthy, 2021; Hayes & Wedell, 2021). For example, previous research has 

demonstrated a preference for options that produce the best outcomes on most 

occasions (Barron & Erev, 2003; Erev & Barron, 2005). Choosing these options 

minimizes the probability of experiencing immediate regret resulting from 

negative counterfactual comparisons (Ahn et al., 2012). While this type of 

behavior is predicted by the FREQUENCY model when 𝑤𝐹 > 0, it is not 



16 

necessarily predicted by the REFERENCE or RANGE models (see Experiment 

2). 

Range-Frequency Encoding 

The local range adaptation mechanism in the RANGE model can be 

combined with the frequency encoding mechanism in the FREQUENCY model 

by substituting 𝑅𝑀𝐼𝑁,𝑡(𝑠) and 𝑅𝑀𝐴𝑋,𝑡(𝑠) for 𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥 in Equation 13: 

 𝑣𝑖,𝑡 = (1 − 𝑤𝐹) ⋅
𝑟𝑖,𝑡 − 𝑅𝑀𝐼𝑁,𝑡(𝑠)

𝑅𝑀𝐴𝑋,𝑡(𝑠) − 𝑅𝑀𝐼𝑁,𝑡(𝑠)
+ 𝑤𝐹 ⋅ 𝐹𝑖,𝑡 (14) 

This RANGE-FREQUENCY model can account for context effects produced by 

either mechanism, with 𝑤𝐹 controlling the relative weighting of the frequency 

component. The context-level variables 𝑅𝑀𝐼𝑁,𝑡(𝑠) and 𝑅𝑀𝐴𝑋,𝑡(𝑠) are incrementally 

updated on each trial just as in the RANGE model (Equation 10).  Range-

frequency effects have been widely documented in psychophysical, social, and 

affective judgments, and many studies have reported empirical estimates of 𝑤𝐹 

close to 0.5, indicating nearly equal weighting of the range and frequency 

principles (e.g., Birnbaum, 1974; Choplin & Wedell, 2014; Niedrich et al., 2001; 

Parducci, 1968; Riskey et al., 1979; Smith et al., 1989; Tripp & Brown, 2016; 

Wedell & Parducci, 1988; Wedell et al., 1989). 

1.2 Distinguishing among Context-Dependent Encoding Models 

Previous studies have demonstrated that reference point and range 

adaptation RL models provide a more accurate characterization of individual 

choice behavior than the standard Q-learning algorithm (Bavard et al., 2018; 
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2021; Klein et al., 2017; Palminteri et al., 2015). However, the choice tasks that 

were employed in these studies were not designed to discriminate between these 

mechanisms and frequency or range-frequency encoding. It is therefore unclear 

which mechanism best describes how choice feedback is represented and 

integrated when option values are learned in separate contexts.   

For example, consider the task used in a recent study by Bavard et al. 

(2018). The purpose of this study was to test whether reference point centering, 

range adaptation, or a combination of both mechanisms best characterized 

choice behavior in a two-part instrumental learning task with an initial learning 

phase and subsequent transfer phase. In the learning phase, eight choice 

options were grouped into four pairs which served as stable contexts. A summary 

of the task design is shown in Table 1.1. 

Table 1.1 Summary of an Instrumental Learning Task from a Prior Study with 
Model Predictions 
 

 

Context 1 
 

Mean = 0.50 
Min = 0 

Max = 1.00 

Context 2 
 

Mean = 0.05 
Min = 0 

Max = 0.10 

Context 3 
 

Mean = −0.05 
Min = −0.10 

Max = 0 

Context 4 
 

Mean = −0.50 
Min = −1.00 

Max = 0 

Option 
Outcome 
Probability 

A 

1.00 
(.75) 

B 

1.00 
(.25) 

C 

0.10 
(.75) 

D 

0.10 
(.25) 

E 

−0.10 
(.25) 

F 

−0.10 
(.75) 

G 

−1.00 
(.25) 

H 

−1.00 
(.75) 

Absolute  0.75 0.25 0.075 0.025 −0.025 −0.075 −0.25 −0.75 

Reference  0.25 −0.25 0.025 −0.025 0.025 −0.025 0.25 −0.25 

Range   0.75 0.25 0.75 0.25 0.75 0.25 0.75 0.25 

Frequency  0.63 0.37 0.63 0.37 0.63 0.37 0.63 0.37 

Note. Outcomes were presented in euros (€). Options A-H produced a nonzero 
outcome (reward or loss) with a certain probability (.75 or .25), otherwise zero. 
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The last four rows schematize the subjective values for the eight options 
according to absolute encoding, reference point centering, range adaptation, and 
frequency encoding theories. The table is adapted from Figure 1 in Bavard et al. 
(2018).  
 

The four contexts instantiated a 2 × 2 factorial combination of outcome valence 

(reward or loss) and outcome magnitude (big/1.0 or small/0.1). One of the 

options in each context had a 75% probability of producing a nonzero outcome, 

while the other option had only a 25% probability of producing a nonzero 

outcome (0 otherwise). The eight options are ordered from highest (A) to lowest 

(H) expected value. The goal in the learning phase was to learn to choose the 

options that maximized rewards (Contexts 1 and 2) or minimized losses 

(Contexts 3 and 4). Each context was presented on 20 trials for a total of 80 trials 

in the learning phase. In the transfer phase, participants encountered all possible 

binary combinations of options, many of which had not been previously 

encountered, and were tasked with choosing the higher-valued option in each 

pair.  

 The last four rows of Table 1.1 schematize the subjective values of the 

eight options according to absolute encoding, reference point, range adaptation, 

and frequency encoding theories. These numbers are meant to approximate the 

subjective values of the options at the end of the learning phase, after acquiring 

sufficient experience with the task (complete feedback is assumed). Absolute 

encoding results in subjective values matching the context-independent expected 

values (EVs) of the eight options. For the theories that assume context 

dependence, the subjective values were calculated by substituting either mean-
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centered outcomes, range-normalized outcomes, or outcome ranks in place of 

absolute outcomes in the calculation of each option’s EV.3 According to 

reference point centering, the favorable (unfavorable) options in each context 

acquire a positive (negative) subjective value, regardless of whether the context 

involves rewards or losses. However, the option values in the small magnitude 

contexts are closer together than the option values in the large magnitude 

contexts. In contrast, the range adaptation and frequency encoding theories both 

predict that the subjective advantage of the favorable option is the same across 

contexts. The result is that all three context-dependent models can account for 

equal learning in reward and loss contexts, but the reference point model 

predicts stronger learning in the large magnitude contexts while the other two 

models predict no effect of outcome magnitude.   

 Bavard et al. (2018) found that EV-maximization in the learning phase was 

not affected by outcome valence but was higher in the large magnitude contexts, 

and transfer phase preferences were strongly influenced by the favorableness of 

the options within their original learning contexts. Participants’ choices were 

consistent with a hybrid RL model that incorporated reference point and range 

adaptation mechanisms, along with a partial weighting of absolute outcomes (see 

also Bavard et al., 2021, for a demonstration that the RANGE model provides a 

                                                           
3 For example, the subjective value of Option A was calculated under the 
reference point model as .75 × (1.00 – 0.50) + .25 × (0 – 0.50) = 0.25, under the 
range adaptation model as .75 × [(1.00 – 0) / (1.00 – 0)] + .25 × [(0 – 0) / (1.00 – 
0)] = 0.75, and under the frequency encoding model as .75 × [(rank(1.00) – 1) / 
(40 – 1)] + .25 × [(rank(0) – 1) / (40 – 1)] = 0.63, where the ranks were calculated 
with respect to all 40 outcomes in each context under the assumption of 
complete feedback (2 options × 20 trials per context = 40 outcomes per context).   
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parsimonious account of the data). However, the authors did not include a 

frequency encoding model in their set of candidate models. Our schematization 

of the model predictions shows that range adaptation and frequency encoding 

are confounded in this task (Table 1.1), and therefore it is not possible to 

distinguish between the two mechanisms (nor is it possible with the choice tasks 

used in other studies; e.g., Hayes & Wedell, in press; Klein et al., 2017; 

Palminteri et al., 2015). Additional work is needed to clarify which model provides 

a better description of context-dependent outcome encoding in human RL. 

 The aim of the current study was to measure human choice behavior in 

RL tasks that dissociate reference point, range adaptation, and frequency 

encoding models. This was accomplished in two separate experiments. 

Experiment 1 was primarily concerned with distinguishing between range 

adaptation and frequency encoding models, while Experiment 2 was designed to 

permit a more complete dissociation of all four candidate mechanisms at once 

(including reference point centering and range-frequency encoding). Thus, the 

current study sought to address the limitations of previous research and further 

elucidate the underlying computational processes that drive context dependence 

in human RL. 
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CHAPTER 2 

EXPERIMENT 1

The purpose of the first experiment was to test competing theories of 

context-dependent encoding using a single choice task. The task was derived 

from a study on context effects in price perception by Niedrich and colleagues 

(2001; Experiment 1). It is well known that consumers judge prices by comparing 

them to an internal reference point (e.g., Adaval & Monroe, 2002). The aim of 

Niedrich et al.’s (2001) study was to determine whether the internal reference 

point for prices is best described by adaptation-level theory, range theory, or 

range-frequency (RF) theory. Participants were exposed to a sequence of airline 

ticket prices and rated each one on its unattractiveness. The prices were drawn 

from three different contextual distributions that differed on the mean price and 

the shape of the distribution (positive or negative skew). Participants were 

randomly assigned to one of the three contextual distributions in a between-

subjects design. After rating the 20 prices in the distribution to which they were 

assigned, participants rated a set of five target prices that were common to all 

three distributions. Unattractiveness ratings for the target prices were higher 

when the targets were above the midpoint of the price range. Further, the 

empirical rating function was convex in the negatively skewed condition and 

concave in the positively skewed condition. Unattractiveness ratings were higher 

when there were many contextual prices below the targets. These results support 
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RF theory over adaptation-level and range theory and suggest that consumers 

judge prices by comparing them to several exemplars in recent context (Niedrich 

et al., 2001).  

The present experiment built on Niedrich et al.’s (2001) study in several 

important ways. First, instead of a judgment task, we used a repeated decision-

making task in which participants learned the values of several options through 

experience to make reward-maximizing choices. The price discounts that were 

used as stimuli in Niedrich et al.’s study were converted to rewards (points) in the 

present experiment. The rewards were produced by choice options grouped 

together in fixed contexts with different reward distributions. We expected to 

observe context dependence in the choices participants made when options 

were transferred out of their original learning contexts. While rating tasks can 

demonstrate context effects on perception, the choice task in the present study 

demonstrates the potential implications of these effects on economic behavior. 

Second, instead of assigning different participants to different contexts, we 

employed a within-subjects design in which participants were exposed to all three 

contexts. Each choice option belonged to one of the three contexts and the 

groupings were stable across the learning phase. Third, we tested competing 

theories of context dependence by fitting and comparing RL models instead of 

the regression-based models that were used to fit ratings in Niedrich et al. 

(2001).  

The choice task in Experiment 1 utilized three learning contexts comprised 

of four options each (Table 2.1).  
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Table 2.1 Summary of the Instrumental Learning Task in Experiment 1  

Context Option 1 Option 2 Option 3 Option 4 

NHM 
Negative Skew, High Mean 
 
Mean = 30 
Min = 0 
Max = 40 
Skew = −1.15 

NHM13 
0 (.20) 
5 (.20) 
10 (.20) 
15 (.20) 
35 (.20) 

 

NHM30 
20 (.20) 
25 (.20) 
30 (.20) 
35 (.20) 
40 (.20) 

 

NHM37 
35 (.60) 
40 (.40) 

 
 
 
 

NHM40 
40 (1.00) 

 
 
 
 
 

PHM 
Positive Skew, High Mean 
 
Mean = 30 
Min = 20 
Max = 60 
Skew = 1.15 

PHM20 
20 (1.00) 

 
 
 
 
 

PHM23 
20 (.40) 
25 (.60) 

 
 
 
 

PHM30 
20 (.20) 
25 (.20) 
30 (.20) 
35 (.20) 
40 (.20) 

 

PHM47 
25 (.20) 
45 (.20) 
50 (.20) 
55 (.20) 
60 (.20) 

 

PLM 
Positive Skew, Low Mean 
 
Mean = 10 
Min = 0 
Max = 40 
Skew = 1.15 

PLM0 
0 (1.00) 

 
 
 
 
 

PLM2 
0 (.60) 
5 (.40) 

 
 
 
 

PLM8 
5 (.60) 
10 (.20) 
15 (.20) 

 
 
 

PLM30 
20 (.20) 
25 (.20) 
30 (.20) 
35 (.20) 
40 (.20) 

 

Note. Each choice option is associated with one to five different outcomes, each 
occurring with a specific frequency (shown in parentheses as a relative 
frequency). The negative skew context contains mostly larger rewards and only a 
few smaller rewards. The two positive skew contexts contain mostly smaller 
rewards and only a few larger rewards. Expected values for the choice options 
are shown as subscripts. The target options are shown in boldface. 

 

On each trial of the learning phase, participants chose between two of the 

options in a particular context but received complete feedback from all four of the 

options in that context. One of the contexts (NHM) had a negatively skewed 

reward distribution, whereas the other two had positively skewed reward 

distributions with either a high (PHM) or low (PLM) mean reward. There were 

three “target” options that produced the same exact outcomes in each context 
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(NHM30, PHM30, and PLM30). Participants never encountered the target options 

together during the learning phase since they belonged to different contexts; 

however, the subsequent transfer phase included repeated choices between 

each pair of targets (NHM30 vs. PHM30, NHM30 vs. PLM30, and PHM30 vs. PLM30). 

If outcomes are encoded on an absolute scale, the subjective representations of 

the three targets should be the same by the end of the learning phase and thus 

participants should be indifferent between them in the transfer phase. However, if 

outcome encoding is context dependent, then the representations of target 

options in separate contexts should differ by the end of the learning phase. We 

will demonstrate below that the REFERENCE, RANGE, FREQUENCY, and 

RANGE-FREQUENCY models learn distinct representations of the three target 

options and predict different choice patterns in the transfer phase.  

2.1 Model Predictions 

 The REFERENCE, RANGE, FREQUENCY, and RANGE-FREQUENCY 

models were simulated ex-ante across a grid of parameter values in the task 

described above (REFERENCE: 𝛼𝑐, 𝛼𝑢, 𝛼𝑉 ∈ {. 10, .15, … , .50}, 𝛽 = .20; RANGE: 

𝛼𝑐, 𝛼𝑢, 𝛼𝑅 ∈ {. 10, .15, … , .50}, 𝛽 = 5; FREQUENCY: 𝛼𝑐 , 𝛼𝑢 ∈ {. 10, .15, … , .50}, 𝑤𝐹 ∈

{. 50, .55, … , .90}, 𝛽 = 5; RANGE-FREQUENCY: 𝛼𝑐, 𝛼𝑢, 𝛼𝑅 ∈ {. 1, .2, .3, .4, .5}, 𝑤𝐹 ∈

{. 3, .4, .5, .6, .7}, 𝛽 = 5).4 The parameter values were chosen primarily to magnify 

                                                           
4 Because the exploitation-exploration tradeoff is not as relevant in complete 

feedback tasks, we set the inverse temperature parameter (𝛽) to a single value in 

the simulations. The value of 𝛽 was higher for the RANGE, FREQUENCY, and 
RANGE-FREQUENCY models to compensate for the fact that 𝑄 values in these 
models are bounded between 0 and 1. 
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the differences between the models; for example, the 𝑤𝐹 parameter in the 

FREQUENCY model took values between .50 and .90 to emphasize the effects 

of frequency encoding. At the same time, we tried to approximate the parameter 

values reported in prior studies where possible (e.g., learning rates between .10 

and .50; Bavard et al., 2018, and Palminteri et al., 2015). Results were averaged 

across the various parameter combinations. 

Simulation results for the REFERENCE model are shown in Figure 2.1. 

The reference points 𝑉𝑡(𝑠) are initialized to 30, the midpoint of the global reward 

distribution, and converge across the learning phase to the mean reward in each 

context (Figure 2.1A). Because mean-centered rewards are linearly related to 

objective rewards within contexts, the model predicts that agents learn to choose 

the EV-maximizing options during the learning phase (Figure 2.1B). Figure 2.1C 

shows the evolution of the 𝑄 values for the target options across trials (for 

simplicity, the 𝑄 values for the other options are not shown). The average reward 

in the NHM and PHM contexts is 30, which is the expected payoff for NHM30 and 

PHM30, and thus their 𝑄 values remain stationary at 0. On the other hand, the 

average reward in the PLM context is 10, resulting in the 𝑄 value for PLM30 

increasing across trials before stabilizing at 20. The agents effectively learn that 

the target option’s expected reward value is 20 points greater than the mean for 

that context. Because the 𝑄 values for NHM30 and PHM30 converge to the same 

value, the model predicts indifference between these options in the transfer 

phase (Figure 2.1D). On the other hand, the higher 𝑄 value for PLM30 causes it to 
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be strongly preferred over the other targets in the transfer phase, despite the fact 

that they all share the same objective value. 

 

Figure 2.1 REFERENCE Model Simulations for Experiment 1. The REFERENCE 
model assumes that agents track a running estimate of the average reward in 
each context and evaluate options based on how their outcomes compare to the 
contextual average. (A) Learning of the reference points (i.e., average rewards) 
across the 30 learning phase trials for each context. (B) Predicted probability of 

EV-maximizing choice across the learning phase. (C) Evolution of the option 𝑄 
values for the three target options across the learning phase. (D) Pairwise 
preferences among the three target options in the transfer phase. The numbers 
in each cell represent the proportion of times the row option was selected over 
the column option. NHM = negative skew, high mean. PHM = positive skew, high 
mean. PLM = positive skew, low mean. 

 
Simulation results for the RANGE model are shown in Figure 2.2. The 

internal variables 𝑅𝑀𝐼𝑁,𝑡(𝑠) and 𝑅𝑀𝐴𝑋,𝑡(𝑠) are initialized to the global minimum (0) 
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and maximum (60) rewards. Consequently, the subjective range for each context 

starts at 60 and decreases across trials before stabilizing at 40, the actual range 

of outcomes in all three contexts (Figure 2.2A). 

 

Figure 2.2 RANGE Model Simulations for Experiment 1. The RANGE model 
assumes that agents learn the smallest and largest rewards in each context and 
evaluate options based on where their outcomes fall along the contextual range. 
(A) Learning of the range of rewards across the 30 learning phase trials for each 
context. (B) Predicted probability of EV-maximizing choice across the learning 

phase. (C) Evolution of the option 𝑄 values for the three target options across the 
learning phase. (D) Pairwise preferences among the three target options in the 
transfer phase. The numbers in each cell represent the proportion of times the 
row option was selected over the column option. NHM = negative skew, high 
mean. PHM = positive skew, high mean. PLM = positive skew, low mean. 
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Because range values are linearly related to objective rewards within contexts, 

simulated agents learn to make EV-maximizing choices in the learning phase 

(Figure 2.2B). The rewards range from 0 to 40 points in the NHM and PLM 

contexts and from 20 to 60 points in the PHM context, but the target options 

always produce rewards of 20, 25, 30, 35, and 40 points. Thus, the outcomes 

from NHM30 and PLM30 are at or above the midpoint of the distribution (average 

range value = .75) whereas the outcomes from PHM30 are at or below the 

midpoint (average range value = .25). This information is reflected in the final 𝑄 

values for the target options (Figure 2.2C). In the transfer phase, the result of 

range adaptation is an indifference between NHM30 and PLM30, but a strong 

preference for both options over PHM30 (Figure 2.2D). 

Simulation results for the FREQUENCY model are shown in Figure 2.3. 

There are only three panels in this figure because unlike the last two models, the 

FREQUENCY model does not track summary information about each context 

such as the mean, minimum, or maximum reward. Instead, the model maintains 

exemplar-based representations of each context and uses recently experienced 

outcomes to compute the proportional rank or frequency value of every new 

outcome it encounters. The weight given to frequency values during the encoding 

of choice feedback is determined by 𝑤𝐹. Like the previous models, it predicts that 

agents learn to make EV-maximizing choices in the learning phase (Figure 2.3A). 

However, the 𝑄 values exhibit a distinct progression across trials due to the 

reliance on frequency information (Figure 2.3B). PLM30 produces outcomes that 

are better than the outcomes of all other options in its context, and therefore its 
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outcomes have high frequency values. On the other hand, a substantial 

proportion of the outcomes in the PHM context are greater than or equal to the 

outcomes from PHM30 and an even larger proportion of the outcomes in the NHM 

context are greater than or equal to the outcomes from NHM30. The 𝑄 values in 

Figure 2.3B reflect these differences in outcome ranks for the three target 

options.  

 

Figure 2.3 FREQUENCY Model Simulations for Experiment 1. The FREQUENCY 
model assumes that agents maintain exemplar representations of each context 
and evaluate options based on the ranks of their outcomes within the contextual 
distribution. (A) Predicted probability of EV-maximizing choice across the 

learning phase. (B) Evolution of the option 𝑄 values for the three target options 
across the learning phase. (C) Pairwise preferences among the three target 
options in the transfer phase. The numbers in each cell represent the proportion 
of times the row option was selected over the column option. NHM = negative 
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skew, high mean. PHM = positive skew, high mean. PLM = positive skew, low 
mean. 

 

In the transfer phase, PLM30 is preferred over PHM30 and PHM30 is preferred 

over NHM30 (Figure 2.3C). Note that the FREQUENCY model’s predictions 

conflict with the RANGE model’s predictions for two of the three target pairs 

(NHM30 vs. PHM30 and NHM30 vs. PLM30), making this task particularly useful for 

dissociating range adaptation and frequency encoding. 

Finally, Figure 2.4 shows simulation results for the RANGE-FREQUENCY 

model. The model tracks the subjective range of outcomes in each context 

(Figure 2.4A) and predicts increasing maximization with increasing experience in 

the learning phase (Figure 2.4B). The final 𝑄 values reflect a compromise 

between the range and frequency components: The value for NHM30 is lower 

than the value for PLM30 due to the difference in outcome ranks, but higher than 

the value for PHM30 since the outcomes from NHM30 are above the midpoint of 

the contextual distribution (Figure 2.4C). Thus, the RANGE-FREQUENCY model 

predicts that PLM30 is preferred over NHM30 and that NHM30 is preferred over 

PHM30 in the transfer phase (Figure 2.4D). 

The simulations above demonstrate that the RL models differ in the 

pattern of preferences they predict for the target choice pairs in the transfer 

phase. These predictions are summarized in Table 2.2. The empirical choice 

proportions for each of the three target pairs can be compared against chance 

(.50) as a test of the various context-dependent mechanisms. 
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Figure 2.4 RANGE-FREQUENCY Model Simulations for Experiment 1. The 
RANGE-FREQUENCY model represents a compromise between range 
adaptation and frequency encoding models. (A) Learning of the range of rewards 
across the 30 learning phase trials for each context. (B) Predicted probability of 

EV-maximizing choice across the learning phase. (C) Evolution of the option 𝑄 
values for the three target options across the learning phase. (D) Pairwise 
preferences among the three target options in the transfer phase. The numbers 
in each cell represent the proportion of times the row option was selected over 
the column option. NHM = negative skew, high mean. PHM = positive skew, high 
mean. PLM = positive skew, low mean. 
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Table 2.2 Model Predictions for the Target Choice Pairs in Experiment 1 
 

Model NHM30 vs. PHM30 NHM30 vs. PLM30 PHM30 vs. PLM30 

Q-learning Indifference Indifference Indifference 

REFERENCE Indifference PLM30 PLM30 

RANGE NHM30 Indifference PLM30 

FREQUENCY PHM30 PLM30 PLM30 

RANGE-FREQ NHM30 PLM30 PLM30 

Note. The cells show the preferred option predicted by each model.  
 

2.2 Method 

Our recruitment methods, experimental design, procedures, and data 

analysis plans were preregistered on the Open Science Framework 

(https://osf.io/xpn5g). 

Participants  

We used the crowdsourcing platform Prolific to recruit 60 participants (21 

men, 36 women, 3 non-binary; ages 18 – 65, M = 35.55, SD = 12.15) for an 

online experiment that was administered via Qualtrics. Our inclusion criteria were 

age (18 – 65), nationality (US), and Prolific approval rating (at least 75%). The 

sample size was based on the planned analysis of the target pairs in the transfer 

phase (testing the null hypothesis that the choice proportions are equal to .50; 

see “Data Analysis and Modeling” section). To detect a medium-sized effect with 

.90 power, 44 participants would be required (one-sample t-test, two-tailed, d = 

.50, 𝛼 = .05). It took participants just over 27 minutes on average to complete the 

experiment. Participants were informed that the points they earned in the task 

would be converted proportionately to real money and added to their participation 

https://osf.io/xpn5g
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payment, although they were not informed of the conversion rate (100 points = 

$0.04; mean bonus = $1.90). Participants provided informed consent and all 

aspects of this study were approved by the Institutional Review Board at the 

University of South Carolina. 

Design  

 Learning Phase. The instrumental learning task in Experiment 1 

consisted of a learning phase and transfer phase. The learning phase included 

12 choice options organized into three groups of four, with the groups functioning 

as stable choice contexts (see Table 2.1). Three of the 12 options (the “targets”) 

produced the same outcomes and had the same EV but belonged to separate 

contexts (NHM30, PHM30, and PLM30). On each trial of the learning phase, the 

cues for the four options in a particular context appeared on screen but only two 

of the options were available to choose. For example, if the NHM context was 

active on a particular trial, the cues for all four of its options would have appeared 

but the participant may have been forced to choose between NHM13 and NHM30. 

This was done to encourage participants to learn the values of all four options in 

each context and not just the best option. With four options per context, there 

were (4
2
) = 6 possible choice pairs, and each pair was repeated five times. In 

total, the learning phase contained 92 trials (3 contexts × 6 choice pairs × 5 

repetitions, plus 2 attention check trials). Complete outcome feedback was 

provided from all four options on every trial to encourage context-dependent 

encoding (Bavard et al., 2018; Palminteri et al., 2015). The order of context 

presentations was randomly interleaved for each participant. The choice cues for 
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all four options in a context had the same color but different shapes, and the 

assignment of cues to the 12 options was randomized for each participant. Using 

the same color for all cues within a context should make the task structure more 

salient and consequently enhance context-dependent encoding (Bavard et al., 

2018).  

Transfer Phase. The transfer phase consisted of choices between six 

specific cross-context pairs of options without feedback. The most diagnostic 

choice pairs for distinguishing between models are those formed by the three 

target options: NHM30 vs. PHM30, NHM30 vs. PLM30, and PHM30 vs. PLM30. We 

will refer to these as the “target pairs.” In addition, three other choice pairs were 

included for which at least two of the models make divergent predictions: NHM13 

vs. PLM2, NHM30 vs. PLM8, and NHM37 vs. PLM30. We will refer to these as the 

“opposite skew pairs.” The opposite skew pairs are especially informative for 

distinguishing between the RANGE and FREQUENCY models: Range values 

tend to favor intermediate options from negatively skewed contexts, while 

frequency values tend to favor intermediate options from positively skewed 

contexts. The three target pairs and three opposite skew pairs were each 

repeated 15 times. In total, the transfer phase contained 92 trials (6 choice pairs 

× 15 repetitions, plus 2 attention check trials). Trial order was shuffled for each 

participant and options appeared an equal number of times on the left and right 

side of the screen.  
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Figure 2.5 Trial Timeline for Experiment 1. Choice options were represented by 
cues (random identicons) that were the same color (red, green, or blue) for all 
options within a context. In the learning phase, each trial began with a choice 
prompt in which all four options in a particular context were visible but only two 
were available to choose. The screen locations of the four options were 
randomized trial-to-trial. Following the participant’s choice and a 0.5 s fixation, 
complete feedback was presented from all four options (including those that were 
not selectable). The chosen option was indicated with a black border. Context 
presentations were randomly interleaved across trials. In the transfer phase, 
participants chose between specific pairs of options from different contexts 
without receiving feedback.  

 

Procedure 

 Learning Phase. The instructions for the learning phase informed 

participants that they would be making repeated choices with the goal of gaining 

as many points as possible. Each choice that they made would result in points, 

but some options are more rewarding than others. Participants were told that on 

each trial they would see four options, but only two would be available to choose. 

After making a choice, they would get to see the outcomes produced by all four 
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options. The points from the chosen option would be added to their total (the 

running total was not visible).5 They were told that the experiment contained two 

parts and that both parts must be completed in one sitting. Participants were not 

given any specific details about the transfer phase, nor were they explicitly told 

that there were three contexts—instead, they learned the contextual structure of 

the task through direct experience. 

Each trial began with a 0.5 s fixation followed by the presentation of four 

option cues in a 2-by-2 arrangement (Figure 2.5). The four cues had the same 

color but different shapes, and their locations were randomized on each 

presentation. Two response buttons appeared at the bottom of the display that 

contained the cues of the two options that were available to choose on that trial. 

Participants indicated their choice by clicking one of the two buttons with their 

cursor. Following another 0.5 s fixation, participants received complete feedback 

from all four options presented in the same 2-by-2 arrangement, with the chosen 

cue indicated by a black border. The number of points produced by each option 

appeared just below the cue. Choices and feedback viewing were self-paced. 

Transfer Phase. The transfer phase instructions informed participants 

that they would be making repeated choices between two options at a time 

without feedback, and that some of the pairs may not be ones that they had 

previously seen. They were told that the program would record the number of 

                                                           
5 Participants were shown an example trial in which the most extreme outcomes 
were 0 and 60 points (i.e., the global minimum and maximum rewards). This was 
done to justify our choice of initial values for the RL models. 
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points they won from the chosen options and that they should strive to finish with 

as many points as possible. 

Each trial began with a 0.5 s fixation followed by the presentation of two 

option cues arranged horizontally on screen with the message, “Please make a 

choice.” A reminder message stating that points are being recorded was visible 

at the top of the screen (Figure 2.5). Choices were self-paced.  

Attention Checks. There were four attention checks that occurred at 

random points during the task, two in the learning phase and two in the transfer 

phase. The attention checks presented two symbols with different colors that had 

not been previously encountered, along with the instructions, "Choose the option 

on the [RIGHT / LEFT]." If the participant's choice did not match the instructed 

choice, the trial was considered a failed attention check. Participants were 

excluded from the analyses if they failed more than one attention check. 

Post-Task Questions. After completing the transfer phase, participants 

answered a set of questions that further probed what they learned about the 

choice options. First, they were shown the 12 option cues in a randomized order 

and asked to rank them from highest to lowest value. Participants could 

rearrange the option cues using a drag and drop interface until they were 

satisfied that the cues were in the correct order. Second, participants were 

shown the four cues that belonged to each of the original learning contexts and 

asked to estimate the (1) average, (2) lowest, and (3) highest outcomes 

produced by the four options. The presentation order of the three contexts was 
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randomized, and participants responded using a slider ranging from 0 to 60 

points. These questions were included so that we could gauge the extent to 

which participants maintained accurate representations of the mean, minimum, 

and maximum reward values in each context. The estimation questions came 

after the ranking question to avoid context-level estimates biasing the ranking of 

the individual options.  

Data Analysis and Modeling 

 For the learning phase data, a repeated-measures analysis of variance 

(ANOVA) was used to analyze the proportion of EV-maximizing choices as a 

function of Context and Block (five blocks of six trials per context). In this task, 

the EV-maximizing choice on each trial was the option with a higher average 

payoff out of the two that were available to choose. Based on the ex-ante model 

simulations, we did not expect any effects of Context in the learning phase; 

however, we did expect a significant effect of Block that reflects increasing 

maximization with increasing experience. For the transfer phase data, we 

compared the choice proportions for the three target pairs (NHM30 vs. PHM30, 

NHM30 vs. PLM30, and PHM30 vs. PLM30) against chance (.50) using one-sample 

t-tests. Our ex-ante model simulations showed that the models predict distinct 

patterns of preference across these choice pairs (see Table 2.2).  

To elucidate the underlying computational mechanisms that may be 

guiding choice behavior in this task, we fit the Q-learning model and the four 

context-dependent RL models to each participant’s choice data using maximum 
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likelihood methods. The models were compared based on their out-of-sample 

predictive accuracy in the transfer phase (for a similar approach, see Bavard et 

al., 2021). This process involves fitting the model to a subset of the choices for a 

given individual (the training data) and using the best-fitting parameters to 

compute the log-likelihood of the remaining choices for that individual (the test 

data). The best model is the one that assigns the highest log-likelihood to the test 

data. For each participant, the out-of-sample prediction was performed in six 

iterations. Each iteration involved training the model on choices in the learning 

phase and five out of the six transfer pairs. Then, the out-of-sample log-likelihood 

was computed for the remaining transfer pair. This process was repeated for 

each of the six pairs and the log-likelihoods were summed across iterations. In 

addition to the relative model comparisons, we attempted to falsify specific 

models by demonstrating that they were unable to generate the observed choice 

patterns even after conditioning on the optimized parameters (Palminteri, Wyart, 

et al., 2017). Code for reproducing the analyses is available at 

https://osf.io/br3fq/. 

2.3 Results 

Learning Phase 

Figure 2.6A shows the proportion of EV-maximizing choices across the 30 

learning trials for each context. On any given trial, the EV-maximizing choice was 

the option with a higher expected payoff out of the two that were available to 

select. Participants chose the maximizing options with increasing frequency as 

https://osf.io/br3fq/


40 

they gained experience in the task, and the rate of learning did not appear to 

differ between contexts. 

 

Figure 2.6 Learning and Transfer Phase Results for Experiment 1. (A) Mean 
proportion of EV-maximizing choices across the 30 learning trials for each 
context. Choices were smoothed at the individual level using a 5-trial rolling 
average prior to averaging across individuals. Error bands represent +/− 1 
standard error. Panels B-D show the proportion of times PHM30 was chosen over 
NHM30 (B), PLM30 was chosen over NHM30 (C), and PLM30 was chosen over 
PHM30 (D) in the transfer phase. Each of these choice pairs was presented 15 
times total in the transfer phase. The points show individual choice proportions, 
and the solid black lines show the group means. The shaded boxes show 95% 
confidence intervals. 

 

To analyze the data, the 30 trials for each context were first divided into 

five equal-sized blocks of six trials and the proportion of maximizing choices 

within blocks was computed for each participant. The choice proportions were 

submitted to a 3 (Context) × 5 (Block) repeated-measures ANOVA. The main 

effect of Block was significant, F(4, 236) = 24.02, p < .001, ε = .84, 𝜂𝑝
2 = .29, 

confirming that the rate of maximizing choices increased over time. Follow-up 

polynomial contrasts revealed a significant positive linear trend across blocks 
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(contrast coefficient = 0.43), t(59) = 7.53, p < .001, as well as a negative 

quadratic trend (contrast coefficient = −0.10), t(59) = 2.24, p = .029. The main 

effect of Context, F(2, 118) = 2.34, p = .10, ε = .99, 𝜂𝑝
2 = .04, and the interaction, 

F(8, 472) = 1.04, p = .40, ε = .74, 𝜂𝑝
2 = .02, were both nonsignificant. Collapsing 

across blocks, the mean proportion of maximizing choices was significantly 

above chance in all three contexts (NHM: M = .69, 95% CI = [.64, .74]; PHM: M = 

.73, 95% CI = [.69, .77]; PLM: M = .72, 95% CI = [.68, .77]). Overall, the learning 

phase results were consistent with both absolute and context-dependent RL 

models. 

Transfer Phase 

The transfer phase was designed to distinguish between competing 

models of outcome encoding in RL. The most diagnostic choices were those that 

involved two of the target options (NHM30 vs. PHM30, NHM30 vs. PLM30, PHM30 

vs. PLM30). Absolute encoding models predict indifference for these choice pairs 

because all three target options produced the exact same absolute outcomes 

during the learning phase. In contrast, context-dependent models predict distinct 

preference relations among the target options, depending on how their outcomes 

compared to other outcomes in their respective encoding contexts (see Table 

2.2).  

The results for the three target choice pairs are shown in Figure 2.6B−D. 

Each point represents the proportion of times a single individual chose the option 

on the vertical axis over the option on the horizontal axis out of 15 opportunities. 
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The mean choice proportion (solid line) and 95% CI (shaded box) are 

superimposed in each panel. Although the individual preferences were somewhat 

noisy, the results were clearly more consistent with context-dependent encoding 

than with absolute encoding. First, PHM30 was significantly preferred over 

NHM30, as indicated by a one-sample t-test on the proportion of PHM30 selections 

compared to chance (M = .64), t(59) = 3.02, p = .004, d = 0.39, 95% CI = [.55, 

.74] (Figure 2.6B). This result was also observed at the individual level: 70% of 

participants (n = 42) chose PHM30 more often than they chose NHM30. 

Importantly, the FREQUENCY model was the only model that predicted a 

preference for PHM30 over NHM30 in our ex-ante simulations. Second, PLM30 

was also significantly preferred over NHM30 on average (M = .72), t(59) = 4.84, p 

< .001, d = 0.63, 95% CI = [.63, .81] (Figure 2.6C), and 73% of participants (n = 

44) chose PLM30 more times than they chose NHM30. This result is consistent 

with our ex-ante simulations of the REFERENCE, FREQUENCY, and RANGE-

FREQUENCY models, but inconsistent with the RANGE model. Third, PLM30 

was preferred over PHM30 on average (M = .59), but the effect was only 

marginally significant, t(59) = 1.76, p = .08, d = 0.23, 95% CI = [.49, .69] (Figure 

2.6D). A preference for PLM30 over PHM30 was observed for 60% of participants 

(n = 36). Note that all four of the context-dependent RL models predicted a 

preference for PLM30 in the ex-ante simulations. Taken together, the pattern of 

preferences that we observed for the target choice pairs most closely aligned 

with the predictions of the FREQUENCY model.  

Model Comparison  
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 We fit a Q-learning model, which assumes absolute outcome encoding, as 

well as the four context-dependent encoding models to each participant’s data 

using maximum likelihood methods. The models were compared on two metrics: 

out-of-sample prediction in the transfer phase and BIC (see Method). The results 

of the relative model comparison are shown in Table 2.3. 

Table 2.3 Model Comparison Results in Experiment 1 

Model Parameters 
Out-of-sample log-likelihood 

(Transfer phase only) 
BIC 

(Both phases) 

Q-learning  3 −70.61* 214.31*** 

REFERENCE 4 −71.89* 197.72 

RANGE 4 −70.29** 215.62*** 

FREQUENCY 4 −59.26 195.46 

RANGE-FREQ. 5 −61.32 196.38 

Note. Mean out-of-sample log-likelihood and Bayesian information criterion (BIC) 
values. The best model according to each metric is shown in bold. Significance 
tests reflect comparisons of each model to the best model using paired t-tests (df 
= 59). BIC = −2 × LL + k × ln(n), where LL is the maximized log-likelihood, k is 
the number of model parameters, and n is the number of observations. 
*p < .05, **p < .01., ***p < .001 
 

The FREQUENCY model had the highest mean out-of-sample log-

likelihood and lowest mean BIC across participants, indicating that it was the best 

model overall. Paired t-tests revealed that the FREQUENCY model was 

significantly better than the Q-learning and RANGE models according to both 

metrics, and significantly better than the REFERENCE model according to out-of-

sample prediction in the transfer phase. However, the mean estimate of the 

frequency weight (𝑤𝐹) in our sample was .40, which was lower than the range of 

values used in the ex-ante simulations (see Table 2.4 for a full summary of the 

parameter estimates). The RANGE-FREQUENCY model, which combines range 
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adaptation and frequency encoding mechanisms, did not lead to an improvement 

over the simpler FREQUENCY model and was likely disadvantaged by having an 

extra parameter. 

Table 2.4 Mean Parameter Estimates in Experiment 1 

Model 𝛽 𝛼𝑐 𝛼𝑢 𝛼𝑉 𝛼𝑅 𝑤𝐹 

Q-learning 
2.58 

(6.45) 
.40 

(.42) 
.37 

(.39) 
-- -- -- 

REFERENCE 
3.98 

(7.45) 
.31 

(.37) 
.29 

(.37) 
.22 

(.36) 
-- -- 

RANGE 
9.04 

(7.86) 
.41 

(.43) 
.35 

(.38) 
-- 

.17 
(.32) 

-- 

FREQUENCY 
11.48 
(8.09) 

.31 
(.36) 

.27 
(.37) 

-- -- 
.40 

(.37) 

RANGE-FREQUENCY 
12.10 
(8.01) 

.28 
(.36) 

.25 
(.35) 

-- 
.24 

(.35) 
.38 

(.36) 

Note. Standard deviations shown in parentheses. 𝛽 = inverse temperature, 𝛼𝑐 = 

chosen learning rate, 𝛼𝑢 = unchosen learning rate, 𝛼𝑉 = reference point learning 
rate, 𝛼𝑅 = range learning rate, 𝑤𝐹 = frequency value weighting. 
 

  The models were also assessed on their ability to reproduce the observed 

choice patterns using the parameter values obtained from model fitting. Each 

model was simulated 100 times in the task using each participant’s optimized 

parameters and the predicted choice probabilities were averaged over iterations. 

Note that the models were not provided with participants’ actual choice histories 

for the simulations, making this a test of generative performance (Palminteri, 

Wyart, et al., 2017; Steingroever et al., 2014). Because all the models predict 

similar behavior in the learning phase, we focused on their ability to reproduce 

the choice patterns in the transfer phase. The results are shown in Figure 2.7.  
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Figure 2.7 Transfer Phase Pairwise Choice Preferences in Experiment 1: 
Empirical Data vs. Model Simulations. Each panel shows the mean proportion of 
times the option on the vertical axis was chosen over the option on the horizontal 
axis, averaging across participants. Target pairs are shown in (A), opposite skew 
pairs in (B). The solid black lines and shaded boxes show the means and 95% 
confidence intervals for the observed data. The points and error bars show the 
means and 95% confidence intervals for the RL model simulations. Models were 
simulated using the fitted parameters for each participant and the results were 
averaged across 100 iterations. The models were not provided with participants’ 
actual choices for the simulations. Q-L = Q-learning. REF = REFERENCE. 
RANG = RANGE. FREQ = FREQUENCY. RF = RANGE-FREQUENCY. 
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The FREQUENCY model reproduced the pairwise preferences among the 

target options more accurately than the other models (Figure 2.7A). Critically, it 

was the only model that captured the significant preference for PHM30 over 

NHM30. The REFERENCE model could not account for this effect since both 

options had expected payoffs that were equal to the mean rewards in their 

respective encoding contexts. The RANGE model predicted a significant 

preference in the opposite direction because the outcomes from NHM30 had 

higher range values than the outcomes from PHM30. The only advantage for 

PHM30 over NHM30 is that its outcomes had higher frequency values. In addition, 

both the Q-learning model and the RANGE model greatly underestimated the 

observed preference for PLM30 over NHM30, whereas the other models 

reproduced this effect accurately. The FREQUENCY model was also capable of 

reproducing the transfer preferences for the opposite skew pairs (Figure 2.7B). In 

contrast, the Q-learning and RANGE models considerably overestimated 

selections of NHM30 over PLM8 and predicted a significant preference for NHM37 

over PLM30, even though the average participant did not exhibit a significant 

preference for either option. 

Overall, the relative model comparison and ex-post simulations falsify the 

basic Q-learning model and favor the FREQUENCY model as the best 

explanation of the context-dependent choice behavior that we observed. 

However, an alternative interpretation of our results is that individuals develop 

habits of choosing certain options more frequently than other options during the 

learning phase, and that differences in habit strengths might explain preferences 
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in the transfer phase. If this is the case, we would expect a positive association 

between the number of times an option was chosen during learning and during 

transfer. We calculated the number of times that each of the target options was 

chosen during the learning phase as an indicator of habit strength. Then, for 

each pair of target options, we correlated the difference in habit strengths with 

the proportion of times one option was chosen over the other in the transfer 

phase. It should be noted that finding a positive correlation would not rule out 

context-dependent value encoding as a contributing mechanism, but it would 

suggest a possible role of stimulus-response associations (i.e., habits) alongside 

stimulus-outcome associations (i.e., subjective values) in guiding choice 

behavior. There was a positive association between the relative habit strengths 

for PLM30 versus NHM30 and the proportion of times PLM30 was chosen over 

NHM30 in the transfer phase, r(58) = 0.43, p < .001. In other words, the more that 

PLM30 was chosen during the learning phase compared to NHM30, the more it 

was chosen over NHM30 during transfer. However, the correlations for the other 

two pairs of target options were nonsignificant [NHM30 vs. PHM30: r(58) = −0.04, 

p = .77; PHM30 vs. PLM30: r(58) = 0.15, p = .25]. These results suggest a minimal 

role of habitual processes in this paradigm, consistent with prior work (Bavard et 

al., 2021). Critically, habit strengths cannot account for the significant preference 

for PHM30 over NHM30 that was exclusively predicted by the FREQUENCY 

model.  

Post-Task Questions 
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After completing both phases of the choice task, participants were shown 

the 12 option cues in a randomized order and asked to rank them from highest 

(1) to lowest (12) value using a drag and drop interface. The mean reported 

ranks for each option are shown in Figure 2.8A. Participants’ rankings were 

somewhat sensitive to the absolute values of options, but contextual biases were 

still present. For example, the average ranks for the target options—which should 

be equal under absolute encoding—followed the pattern predicted by the 

FREQUENCY model (NHM30 < PHM30 < PLM30). Thus, the rank judgments were 

generally consistent with the pattern of choice preferences observed in the 

transfer phase.  
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Figure 2.8 Responses to the Post-Task Questions in Experiment 1. (A) Mean 
reported ranks for each choice option. Error bars show 95% confidence intervals. 
The box contains the mean ranks for the three target options. Panels B-D show 
the reported average (B), minimum (C), and maximum outcomes (D) for each 
context. Individual estimates are shown as points and the group means are 
shown as solid black lines. Shaded boxes represent 95% confidence intervals. 
The true average, minimum, and maximum outcomes are shown as dashed red 
lines. 

 

Participants were also asked to estimate the (1) average, (2) lowest, and 

(3) highest outcomes produced by the four options in each context considered as 

a group. They responded using a slider that ranged from 0 to 60 points. The 

individual-level estimates and group averages are shown in Figure 2.8B−D. 

Clearly, the individual estimates were quite noisy, and the aggregate estimates 

often deviated significantly from the actual values of the outcome statistics. 

Nevertheless, participants appeared to be somewhat sensitive to the relative 

differences between contexts. For example, most participants seemed to 

recognize that the lowest outcome in the PHM context (20) was higher than the 

lowest outcomes in the NHM and PLM contexts (0). Some of the extreme 

outcomes appeared to be recalled accurately by a considerable number of 

participants, especially when those outcomes were produced by one of the four 

options on every trial (e.g., PLM0 always produced 0 points).  

 Three separate ANOVAs were run on the estimation data—one for each 

outcome statistic (average, minimum, maximum)—with Context as a repeated 

measures factor. These analyses were not preregistered and should be 

considered exploratory. The effect of Context was significant in all three cases 

[average: F(2, 118) = 18.97, p < .001, ε = .98, 𝜂𝑝
2 = .24; minimum: F(2, 118) = 
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7.14, p = .001, ε = .92, 𝜂𝑝
2 = .11; maximum: F(2, 118) = 10.07, p < .001, ε = .94, 

𝜂𝑝
2 = .15]. Participants reported the highest average outcome for the PHM 

context, followed by the NHM and PLM contexts (Figure 2.8B). Pairwise 

comparisons (Tukey-corrected) indicated that the differences between the three 

context pairs were significant (all ps < .013), which does not match the actual 

pattern of average outcomes across contexts (i.e., the NHM and PHM contexts 

had the same average outcome). Participants reported the highest minimum 

outcome for the PHM context, followed by the NHM and PLM contexts (Figure 

2.8C). The differences between PHM and NHM (p = .003) and between PHM and 

PLM (p = .006) were both significant, but the difference between NHM and PLM 

was not (p = .82), matching the actual pattern of minimum outcomes across 

contexts. Finally, participants reported the highest maximum outcome for the 

PHM context, followed by the NHM and PLM contexts (Figure 2.8D). The 

differences between PHM and NHM (p = .032) and between PHM and PLM (p < 

.001) were both significant, but the difference between NHM and PLM was not (p 

= .08), matching the actual pattern of maximum outcomes across contexts.  

2.4 Discussion  

 Experiment 1 used a choice task which was adapted from a previous 

study on price perceptions to investigate the nature of context-dependent 

outcome encoding in RL. In that study (Niedrich et al., 2001), the authors 

demonstrated that RF theory provided a better explanation of context 

dependence in price judgments than adaptation-level and range theories. The 

results of the present study were generally consistent with Niedrich et al. and 
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extend their conclusions to the domain of experience-based choice. We showed 

that an RL model inspired by theories such as DbS (Stewart et al., 2006) and RF 

theory (Parducci, 1965, 1995) was the best description of participants’ choice 

behavior out of the models we considered (the FREQUENCY model). 

In the transfer phase, there was a significant preference for the target 

options from positively skewed reward contexts (PHM30 and PLM30) over the 

target option from a negatively skewed reward context (NHM30) even though all 

three options produced the same absolute outcomes during the learning phase. 

This result clearly falsifies RL models which assume absolute outcome encoding, 

such as the standard Q-learning model. Moreover, we demonstrated that the 

transfer preferences were inconsistent with RL models that implement context 

dependence using dynamic adaptation-level (REFERENCE model) or range 

adaptation mechanisms (RANGE model). The results were best explained by a 

frequency encoding mechanism which assumes that outcomes are compared to 

other outcomes in an ordinal fashion to determine their rank within the local 

contextual distribution. The FREQUENCY model outperformed the others both in 

terms of relative model comparison criteria (out-of-sample prediction and BIC) as 

well as generative performance (ex-post simulations). The RANGE-

FREQUENCY model, which combines the frequency encoding and dynamic 

range adaptation mechanisms, was a close second; however, the additional 

range adaptation parameter was not necessary to account for choice behavior in 

this experiment. Further, we showed that the observed choice behavior could not 

be adequately explained by the hypothesis that decision makers are guided 
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solely by stimulus-response associations (i.e., habits), as opposed to subjective 

values.  

Lastly, participants’ rankings of the options at the end of the task were 

mostly consistent with the aggregate choice preferences in the transfer phase. 

This shows that context dependence in RL is observable using other elicitation 

methods beyond choice (Soukupová et al., 2021). Participants were not very 

accurate when asked to recall the average, minimum, and maximum outcomes in 

each learning context at the end of the task. However, it is certainly possible that 

they may have forgotten this information gradually over the course of the transfer 

phase and that recall accuracy would have been higher if the probes had 

occurred immediately after the learning phase. Nevertheless, participants’ 

estimates of the highest and lowest outcomes in each context matched the 

structure of the task, even though the estimates significantly deviated from the 

actual values. This may be due to enhanced memory for outcomes at or near the 

edge of the contextual distribution (Madan et al., 2014). 
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CHAPTER 3 

EXPERIMENT 2

As in the first experiment, the purpose of Experiment 2 was to test 

competing theories of context-dependent RL using a single choice task for which 

the theories make distinct predictions. However, the choice task in the second 

experiment was designed to provide a more powerful test of the candidate 

models. During the learning phase, eight choice options were presented in fixed 

pairs to encourage context-dependent encoding: The same two options were 

always presented together and never with any of the other options. The goal was 

to learn which option in each pair had a higher reward value. Then, in the transfer 

phase, all possible combinations of options were presented, and participants 

were asked to pick the option that they recalled having the higher value on each 

trial. The unique feature of this task is its manipulation of risk and outcome skew 

to fully dissociate the reference point, range adaptation, frequency encoding, and 

range-frequency models. 

As shown in Table 3.1, the task manipulates Skew (negative or positive) 

and Maximizing Option (safe or risky) in a 2 × 2 within-subjects design. There are 

four learning contexts, each comprised of a safe option (x points with certainty) 

and a risky option (y points with p = .80; z points otherwise). The infrequent and 

relatively extreme outcomes from the risky option determine the skew of the 

contextual distribution. When the infrequent outcomes are low compared to the 
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most frequent outcomes, the distribution is negatively skewed (Contexts NR and 

NS). On the other hand, when the infrequent outcomes are high, the distribution 

is positively skewed (Contexts PR and PS). Importantly, the risky option 

produces a better outcome than the safe option 80% of the time in the negative 

skew contexts but only 20% of the time in the positive skew contexts. The 

second manipulated variable is the option that maximizes expected payoffs: In 

half of the contexts (NR and PR), the risky option has a higher EV while in the 

other half (NS and PS), the safe option has a higher EV. Note that the average 

point value of the four contexts increases from NR to NS to PR to PS, which 

serves to distinguish between absolute and context-dependent encoding.  

Table 3.1 Summary of the Instrumental Learning Task in Experiment 2 

Context Lower EV option Higher EV option 

NR 
Skew: negative 
Maximizing Option: risky  

NSL20 
20 (1.00) 

 

NRH22 

25 (.80) 
10 (.20) 

NS 
Skew: negative 
Maximizing Option: safe  

NRL24 
27 (.80) 
12 (.20) 

NSH26 

26 (1.00) 
 

PR 
Skew: positive 
Maximizing Option: risky  

PSL28 
28 (1.00) 

 

PRH30 
27 (.80) 
42 (.20) 

PS 
Skew: positive 
Maximizing Option: safe  

PRL32 
29 (.80) 
44 (.20) 

PSH34 
34 (1.00) 

 

Note. Each option is named according to whether its local context has a 
negatively (N) or positively (P) skewed outcome distribution, whether it is safe (S) 
or risky (R), and whether it has the lower (L) or higher (H) expected value within 
its local context (expected values appear as subscripts). Each option is 
associated with one (safe) or two (risky) different outcomes, each occurring with 
a specific frequency (shown in parentheses as a relative frequency). EV = 
expected value. 
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Participants chose between the pairs of options in Table 3.1 during the 

learning phase, with each pair presented multiple times in an interleaved trial 

sequence. The design of this task allows for the identification of several different 

choice strategies just from looking at the preferred options in each pair. For 

example, a strategy of selecting actions that frequently produce better outcomes 

would favor NRH22, NRL24, PSL28, and PSH34, the options that produce a better 

outcome 80% of the time. General risk-seeking would lead to a preference for the 

risky options, while general risk-aversion would favor the safe options. The next 

section explains why the reference point and range adaptation models predict 

similar, EV-maximizing choice patterns in the learning phase, while the frequency 

encoding and range-frequency models predict a preference for the options that 

usually yield the best outcomes. It also shows that all four models make very 

distinct predictions for the subsequent transfer phase.  

3.1 Model Predictions 

 The REFERENCE, RANGE, FREQUENCY, and RANGE-FREQUENCY 

models were simulated multiple times across a grid of parameter values in the 

task above. The parameter ranges were similar to those used in the simulations 

for Experiment 1 (REFERENCE: 𝛼𝑐, 𝛼𝑢, 𝛼𝑉 ∈ {. 10, .15, … , .50}, 𝛽 = .50; RANGE: 

𝛼𝑐, 𝛼𝑢, 𝛼𝑅 ∈ {. 10, .15, … , .50}, 𝛽 = 5; FREQUENCY: 𝛼𝑐 , 𝛼𝑢 ∈ {. 10, .15, … , .50}, 𝑤𝐹 ∈

{. 50, .55, … , .90}, 𝛽 = 5; RANGE-FREQUENCY: 𝛼𝑐, 𝛼𝑢, 𝛼𝑅 ∈ {. 1, .2, .3, .4, .5}, 𝑤𝐹 ∈

{. 3, .4, .5, .6, .7}, 𝛽 = 5). Results were averaged across the various parameter 

configurations.  



56 

 Simulation results for the REFERENCE model are shown in Figure 3.1. 

The reference points 𝑉𝑡(𝑠) are initialized to 27, the midpoint of the global reward 

distribution, and converge across the learning phase to the mean reward in each 

context (Figure 3.1A). Note that the rate of convergence could be increased or 

decreased by adjusting 𝛼𝑉. Simulated agents learn to prefer the EV-maximizing 

options in the learning phase (Figure 3.1B); however, the underlying 𝑄 values do 

not align with the objective values of the eight choice options. After the reference 

points stabilize at the mean of each context, the 𝑄 values of the higher-valued 

options in each context converge to 1.00, while the 𝑄 values of the lower-valued 

options converge to −1.00 (Figure 3.1C). In this task, there is a 2-point EV 

difference between the options in each context, which implies a 1-point difference 

between each option and the contextual average. The mean-centering 

mechanism leads to an overall preference in the transfer phase for options that 

are locally optimal during the learning phase, even when choosing these options 

violates EV-maximization (e.g., NRH22 is preferred over PRL32; Figure 3.1D). 

Choice rates are close to chance when both options are locally optimal or 

suboptimal (e.g., NRL22 and PSH34). It is important to note that the REFERENCE 

model predicts no effects of skew in either phase of the task. 

Simulation results for the RANGE model are shown in Figure 3.2. The 

context-level variables 𝑅𝑀𝐼𝑁,𝑡(𝑠) and 𝑅𝑀𝐴𝑋,𝑡(𝑠) are initialized to the global 

minimum (10) and maximum (44) rewards and gradually converge across 

learning trials to the local minimum and maximum in their corresponding 

contexts. As a result, the subjective ranges begin at 34 on the first trial and 
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eventually converge to 15, the range of outcomes in all four contexts (Figure 

3.2A). The rate of convergence could be modulated by adjusting 𝛼𝑅. Simulated 

agents learn to choose the EV-maximizing options in each choice pair with 

increasing experience (Figure 3.2B). 

 

Figure 3.1 REFERENCE Model Simulations for Experiment 2. The REFERENCE 
model assumes that agents track a running estimate of the average reward in 
each context and evaluate options based on how their outcomes compare to the 
contextual average. (A) Learning of the reference points (i.e., average rewards) 
across the 30 learning phase trials for each context. (B) Predicted probability of 

EV-maximizing choice across the learning phase. (C) Evolution of the option 𝑄 
values across the learning phase. (D) Pairwise preferences in the transfer phase. 
The numbers in each cell represent the proportion of times the EV-maximizing 
option (the row option) was selected. 
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In the first few trials of the learning phase, the 𝑄 values (initialized to 0.50) 

approximate the range values of the eight options with respect to the global 

reward distribution. This is because 𝑅𝑀𝐼𝑁,𝑡(𝑠) and 𝑅𝑀𝐴𝑋,𝑡(𝑠) are initialized to the 

global minimum and maximum rewards.  

 

Figure 3.2 RANGE Model Simulations for Experiment 2. The RANGE model 
assumes that agents learn the smallest and largest rewards in each context and 
evaluate options based on where their outcomes fall along the contextual range. 
(A) Learning of the range of rewards across the 30 learning phase trials for each 
context. (B) Predicted probability of EV-maximizing choice across the learning 

phase. (C) Evolution of the option 𝑄 values across the learning phase. (D) 
Pairwise preferences in the transfer phase. The numbers in each cell represent 
the proportion of times the EV-maximizing option (the row option) was selected. 
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As 𝑅𝑀𝐼𝑁,𝑡(𝑠) and 𝑅𝑀𝐴𝑋,𝑡(𝑠) converge toward the endpoints of the four contexts, 

the 𝑄 values gradually adapt to the range of values in the local reward 

distributions. A side effect of this process is that it causes options in the negative 

skew contexts, where most outcomes are above the midpoint of the range, to 

finish with higher 𝑄 values than options in the positive skew contexts, where 

most outcomes are below the midpoint (Figure 3.2C). In the transfer phase, this 

leads to irrational preferences for the negative skew options over the positive 

skew options even though the former have lower EVs (Figure 3.2D). In summary, 

although the RANGE and REFERENCE models make similar predictions in the 

learning phase, they predict very different patterns in the transfer phase. The 

RANGE model predicts an overall attraction to options that come from contexts 

with negatively skewed reward distributions, whereas the REFERENCE model 

predicts no effect of skew. 

Simulation results for the FREQUENCY model are shown in Figure 3.3. In 

this task, most of the outcomes in the negative skew contexts favor the risky 

option, whereas most of the outcomes in the positive skew contexts favor the 

safe option (see Table 3.1). Because frequency values are computed as a 

proportion of favorable outcome comparisons, the model predicts a preference 

for the risky options in the negative skew contexts but a reversed preference in 

the positive skew contexts. This leads to EV-maximizing behavior in Contexts NR 

and PS but suboptimal behavior in Contexts NS and PR (Figure 3.3A). The 

ordering of the 𝑄 values (initialized to 0.50) at the end of the learning phase 

reflects the influence of frequency information: Options that produce better 
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outcomes most of the time finish with higher 𝑄 values than their contextual 

counterparts (Figure 3.3B). In the transfer phase, violations of EV-maximization 

occur for choices between a lower-valued option that produced mostly high-

ranking outcomes in its local context and a higher-valued option that produced 

mostly low-ranking outcomes in its local context (e.g., NRH22 is preferred over 

PRH30; Figure 3.3C). Importantly, the FREQUENCY model predictions are very 

distinct from the predictions of the other two models in both the learning phase 

and transfer phase, allowing us to identify frequency encoding and distinguish it 

from reference-point centering and range adaptation. 

 

Figure 3.3 FREQUENCY Model Simulations for Experiment 2. The FREQUENCY 
model assumes that agents maintain exemplar representations of each context 
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and evaluate options based on the ranks of their outcomes within the contextual 
distribution. (A) Predicted probability of EV-maximizing choice across the 

learning phase. (B) Evolution of the option 𝑄 values across the learning phase. 
(C) Pairwise preferences in the transfer phase. The numbers in each cell 
represent the proportion of times the EV-maximizing option (the row option) was 
selected. 

 

Finally, Figure 3.4 shows simulation results for the RANGE-FREQUENCY 

model. Its predictions are a compromise between the predictions of the previous 

two models. Like the RANGE model, it assumes that agents learn the minimum 

and maximum rewards in each context and evaluate outcomes based on where 

they fall along the range (Figure 3.4A). The model also borrows from the 

FREQUENCY model in implementing ordinal comparisons between the 

outcomes on each trial and recently experienced outcomes that are brought to 

mind. The model’s simulated choice pattern in the learning phase resembles that 

of the FREQUENCY model (Figure 3.4B). However, the underlying 𝑄 values also 

reflect the range component, with options in negative skew contexts tending to 

have higher 𝑄 values than options in the positive skew contexts (Figure 3.4C). 

Although the range component has little to no effect in the learning phase, it has 

a noticeable effect in the transfer phase: Simulated agents show a robust 

preference for the options from negative skew contexts despite their lower 

objective values (Figure 3.4D). Other violations of EV-maximization in the 

transfer phase are driven by frequency information carried over from the learning 

phase (e.g., PSL28 is preferred over PRL32). 
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Figure 3.4 RANGE-FREQUENCY Model Simulations for Experiment 2. The 
RANGE-FREQUENCY model represents a compromise between range 
adaptation and frequency encoding models. (A) Learning of the range of rewards 
across the 30 learning phase trials for each context. (B) Predicted probability of 

EV-maximizing choice across the learning phase. (C) Evolution of the option 𝑄 
values across the learning phase. (D) Pairwise preferences in the transfer phase. 
The numbers in each cell represent the proportion of times the EV-maximizing 
option (the row option) was selected. 

 

3.2 Method 

Our recruitment methods, experimental design, procedures, and data 

analysis plans were preregistered on the Open Science Framework 

(https://osf.io/xpn5g).  

Participants  

https://osf.io/xpn5g
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 We used Prolific to recruit 50 participants (18 men, 29 women, 2 non-

binary, 1 unstated; ages 18 – 64, M = 29.90, SD = 10.55) for an online 

experiment that was administered via Qualtrics. The inclusion criteria were the 

same as in Experiment 1. Sample size was based on a previous study that used 

a similar task design (Hayes & Wedell, in press). For control group participants in 

that study, the average proportion of EV-maximizing choices for transfer pairs in 

which context favored the objectively lower-valued option was .28 (SD = 0.29). 

To detect an effect of this magnitude with .90 power, 21 participants would be 

required (one-sample t-test comparing against chance, two-tailed, d = .76, 𝛼 = 

.05). It took participants just over 33 minutes on average to complete the 

experiment. Participants were told that the points they earned in the task would 

be converted proportionately to real money and added to their participation 

payment, but they were not given the conversion rate (100 points = $0.04; mean 

bonus = $2.54). Participants provided informed consent and all aspects of this 

study were approved by the Institutional Review Board at the University of South 

Carolina. 

Design  

 Learning Phase. The choice task in Experiment 2 was a two-part 

instrumental learning task with a learning phase and transfer phase. The learning 

phase employed a 2 × 2 within-subjects design with factors Skew (negative or 

positive) and Maximizing Option (safe or risky) (Table 3.1). There were four 

choice contexts formed by the combination of these two factors, each containing 

two options. A key aspect of this design is that the average point value of the 
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negative skew contexts (NR and NS) was lower than the average point value of 

the positive skew contexts (PR and PS), so that a consistent preference for the 

negative skew options in the transfer phase would be a strong indicator of range 

adaptation (see Figure 3.2D).  

During the learning phase, the four contexts were each presented on 30 

trials. Trial order was shuffled for each participant so that the contexts were 

randomly interleaved. Each choice option was always presented along with the 

other option in its context and both options appeared an equal number of times 

on the left and right side of the screen. Randomly generated identicons were 

used as option cues, and the assignment of cues to the eight options was 

randomized for each participant. The cues for the two options in each context 

had the same color (red, orange, green, or blue). In total, the learning phase 

contained 122 trials (4 contexts × 30 repetitions, plus 2 attention check trials). 

Transfer Phase. The transfer phase consisted of choices between all 

possible pairs of options without feedback. With eight options, there were (8
2
) = 

28 possible choice pairs and each was repeated four times. In total, the transfer 

phase contained 114 trials (28 choice pairs × 4 repetitions, plus 2 attention check 

trials). Trial order was shuffled for each participant and options appeared an 

equal number of times on the left and right side of the screen.  

Procedure 

 Learning Phase. The instructions for the learning phase informed 

participants that they would be making repeated choices between two options at 
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a time to gain points. Each choice that they made would result in points, but 

participants were told that some options were more rewarding than others. The 

explicit goal was to gain as many points as possible. Participants were told that 

on each trial they would see the points produced by the chosen and nonchosen 

options, but only the chosen option’s points counted toward their total (the 

running total was not visible).6 They were also told that the experiment contained 

two parts and that both parts must be completed in one sitting. Participants were 

not given any specific details about the transfer phase, nor were they explicitly 

informed about the four contexts.  

Each trial began with a 0.5 s fixation followed by the presentation of two 

option cues arranged horizontally on screen with the message, “Please make a 

choice” (Figure 3.5). Participants indicated their choice by clicking on one of the 

option cues. Following another 0.5 s fixation, participants received complete 

feedback on the outcomes from the chosen and nonchosen option, with the 

chosen cue indicated by a black border. The number of points produced by each 

option appeared just below the cues. Trials were self-paced. 

Transfer Phase. The transfer phase instructions informed participants 

that they would once again be making binary choices, but some of the pairings 

may not be ones that they had previously seen. They were told that although 

                                                           
6 Participants were shown an example of the choice feedback display with two 
options producing outcomes of 10 and 44 points. Because these outcomes 
correspond to the global minimum and maximum rewards, exposing participants 
to these outcomes in the instructions justified our choice of initial values for the 
RL models. 
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they would not see any points, the program would record the number of points 

they won from the chosen options and add it to their total. Finally, they were 

reminded of the goal of finishing with as many points as possible. 

Each trial began with a 0.5 s fixation followed by the presentation of two 

option cues arranged horizontally on screen with the message, “Please make a 

choice” (Figure 3.5). A reminder message stating that points were being recorded 

appeared at the top of the screen. Trials were self-paced. 

 

Figure 3.5 Trial Timeline for Experiment 2. Choice options were represented by 
cues (random identicons) that were the same color (red, orange, green, blue) for 
both options within a context. In the learning phase, each trial began with a 
prompt to choose between two options belonging to the same context. Each 
option appeared an equal number of times in the left and right position across the 
30 trials. Following the participant’s choice and a 0.5 s fixation, complete 
feedback was presented from both options. The chosen option was indicated 
with a black border. Context presentations were randomly interleaved across 
trials. In the transfer phase, participants chose between all possible pairs of 
options without receiving feedback. 
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Attention Checks. There were four attention check trials at random points 

throughout the task, two in the learning phase and two in the transfer phase. The 

procedure for the attention checks was the same as in Experiment 1. Participants 

were excluded from the analysis if they failed more than one check.  

Post-Task Questions. After completing the transfer phase, participants 

answered the same post-task questions as in the first experiment. First, they 

were shown the eight option cues in a randomized order and asked to arrange 

them from highest to lowest value. Second, participants were shown the two 

cues that belonged to each of the original learning contexts and asked to 

estimate the (1) average, (2) lowest, and (3) highest outcomes produced by the 

two options. Participants responded using a slider that ranged from 5 to 50 

points. The order of context presentations was randomized.  

Data Analysis and Modeling 

 For the learning phase data, a repeated-measures analysis of variance 

(ANOVA) was used to analyze the proportion of EV-maximizing choices as a 

function of Skew, Maximizing Option, and Block (five blocks of six trials per 

context). Based on our ex-ante model simulations, we expected to find a 

significant three-way interaction if the FREQUENCY or RANGE-FREQUENCY 

models are correct (see Figures 3.3A and 3.4B), whereas only a main effect of 

Block would be expected if the REFERENCE or RANGE models are correct (see 

Figures 3.1B and 3.2B).  
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For the transfer phase data, we analyzed choice rates for the eight options 

(i.e., the number of times an option was chosen, divided by the number of times it 

was presented; see Bavard et al., 2018) using a repeated-measures ANOVA with 

Skew (0 = positive, 1 = negative), Risk (0 = safe, 1 = risky), and Local Optimality 

(0 = no, 1 = yes) as factors. Local Optimality refers to whether the option was the 

maximizing or non-maximizing option in its learning context. According to the 

REFERENCE model, we should expect a significant main effect of Local 

Optimality but no effects of Skew or Risk. On the other hand, the RANGE model 

would produce a significant main effect of Skew. More complex patterns of 

effects would be expected if the FREQUENCY or RANGE-FREQUENCY models 

are correct.   

For the model-based analysis, we fit the Q-learning model, the four 

context-dependent models, and two additional models to each participant’s 

choice data using maximum likelihood methods. The models were compared 

based on their out-of-sample predictive accuracy in the transfer phase and BIC 

values. Out-of-sample prediction was carried out as follows. First, for each 

participant, the transfer phase data was randomly partitioned into four folds, with 

each fold containing seven different choice pairs. The out-of-sample prediction 

was performed in four iterations. Each iteration involved training the model on 

choices in the learning phase and three of the four transfer folds.7 Then, the best-

                                                           
7 Our simulations revealed that training the models on at least a portion of the 
transfer choices was critical for ensuring that all parameters were identifiable. For 

example, the reference point learning rate (𝛼𝑉) in the REFERENCE model 
cannot be identified from the learning phase data alone, given the design of our 
task. 
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fitting parameters were used to compute the out-of-sample log-likelihood of the 

choices in the remaining fold. The results were summed across the four folds and 

the model with the highest average out-of-sample log-likelihood was selected as 

the best model. We also tested each model’s ability to generate the observed 

choice patterns when conditioned on the best-fitting parameters (Palminteri, 

Wyart, et al., 2017). Code for reproducing the analyses is available at 

https://osf.io/br3fq/. 

3.3 Results 

Learning Phase 

Figure 3.6A shows the proportion of EV-maximizing choices across the 30 

learning trials for each context. It is clear from the figure that the proportion of 

maximizing choices was highest overall in the NR and PS contexts—i.e., choice 

sets in which the maximizing option frequently produced better outcomes than 

the non-maximizing option. In addition, the rate of maximizing choices appeared 

to increase across trials in the positive skew contexts (PR and PS) while 

remaining relatively stable in the negative skew contexts (NR and NS).  

The 30 trials for each context were divided into five blocks of six trials and 

the proportion of maximizing choices within blocks was computed for each 

participant. The choice proportions were then submitted to a 2 (Skew) × 2 

(Maximizing Option) × 5 (Block) repeated-measures ANOVA. There was a main 

effect of Block, F(4, 196) = 2.49, p = .044, ε = .86, 𝜂𝑝
2 = .05, and a significant 

Skew × Block interaction, F(4, 196) = 5.18, p < .001, ε = .85, 𝜂𝑝
2 = .10. 

https://osf.io/br3fq/
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Maximization rates changed across blocks in the positive skew contexts with a 

significant positive linear trend (contrast coefficient = 0.29), t(49) = 4.24, p < .001, 

and negative quadratic trend (contrast coefficient = −0.24), t(49) = 2.93, p = .005. 

On the other hand, none of the trends were significant in the negative skew 

contexts (ps > .33). The most critical effect was the Skew × Maximizing Option 

interaction, F(1, 49) = 29.19, p < .001, 𝜂𝑝
2 = .37. In the negative skew contexts, 

maximization rates were higher when the maximizing option was risky compared 

to when it was safe, t(49) = 5.35, p < .001, while the reverse was true in the 

positive skew contexts, t(49) = 3.90, p < .001. Taken together, the rate of optimal 

choices was higher in those contexts where the maximizing option frequently 

produced the best outcomes (NR context: M = .63, 95% CI = [.59, .68]; PS 

context: M = .64, 95% CI = [.58, .70]) compared to those contexts where the non-

maximizing option frequently produced the best outcomes (NS context: M = .42, 

95% CI = [.37, .47]; PR context: M = .51, 95% CI = [.45, .56]). This result is 

consistent with the FREQUENCY and RANGE-FREQUENCY models. All other 

effects were nonsignificant (ps > .05). 

Transfer Phase 

 In the transfer phase, participants encountered all possible pairs of options 

and were tasked with choosing the higher valued option on each trial. Feedback 

was not presented, and each of the 28 choice pairs was repeated four times. 

Figure 3.6B shows the pattern of transfer preferences averaged across 

participants, with each cell showing the mean percentage of times that the option 

on the vertical axis (“Option 2”) was chosen over the option on the horizontal axis 
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(“Option 1”). Higher numbers represent greater payoff maximization since the EV 

of Option 2 is always greater than the EV of Option 1. 

 

Figure 3.6 Learning and Transfer Phase Results for Experiment 2. (A) Mean 
proportion of EV-maximizing choices across the 30 learning trials for each 
context. Choices were smoothed at the individual level using a 5-trial rolling 
average prior to averaging across individuals. Error bands represent +/− 1 
standard error. (B) Pairwise choice preferences in the transfer phase. Each cell 
shows the mean percentage of times the EV-maximizing option (Option 2) was 
selected, averaging across individuals. (C) Mean choice rates for each option in 
the transfer phase, defined as the number of times an option was selected 
divided by the number of times it was presented. Error bars represent 95% 
confidence intervals. 
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We correlated the pattern of pairwise preferences in Figure 3.6B with the 

patterns that were simulated ex-ante by the four context-dependent RL models 

(see Figures 3.1D, 3.2D, 3.3C, and 3.4D). Note that the simulations were 

generated using a range of different parameter values and prior to seeing the 

data. The correlation was strongest for the FREQUENCY model (r = 0.72), 

followed by the RANGE-FREQUENCY model (r = 0.24) and the REFERENCE 

model (r = 0.15). The correlation between the empirical data and the RANGE 

model was negative (r = −0.34). These results provide initial support for the 

FREQUENCY model, but the fact that most of the maximization rates in Figure 

3.6B are above 50% suggests that absolute encoding models may offer a viable 

account of the transfer phase data as well. Indeed, after simulating the Q-

learning model over a range of parameter values, we found a considerable 

correlation between its predicted pattern and the observed pattern (r = 0.56).  

To analyze the transfer phase, we computed choice rates for the eight 

options separately for each participant (i.e., the number of times an option was 

chosen, divided by the number of times it was presented; Bavard et al., 2018). 

The mean choice rates are shown in Figure 3.6C. Choice rates were submitted to 

a 2 (Skew) × 2 (Risk) × 2 (Local Optimality) repeated-measures ANOVA, where 

Risk refers to whether the option was safe or risky and Local Optimality refers to 

whether the option was locally optimal in its original encoding context. The 

results indicated a significant main effect of Skew, F(1, 49) = 25.47, p < .001, 𝜂𝑝
2 

= .34, with options from positive skew contexts (M = .57, 95% CI = [.55, .60]) 

chosen more often than options from negative skew contexts (M = .43, 95% CI = 
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[.40, .46]). This is consistent with absolute value encoding since the positive 

skew contexts had larger rewards in our choice task, but it is inconsistent with the 

RANGE model, which predicted an overall preference for the options from 

negative skew contexts in our ex-ante simulations (see Figure 3.2D). There was 

also a significant main effect of Risk, F(1, 49) = 4.12, p = .048, 𝜂𝑝
2 = .08, and a 

significant Skew × Risk interaction, F(1, 49) = 11.91, p = .001, 𝜂𝑝
2 = .20. The risky 

options from negative skew contexts (NRH22 and NRL24) were chosen more often 

than the safe options from negative skew contexts (NSL20 and NSH26), t(49) = 

3.99, p < .001, whereas the safe options from positive skew contexts (PSL28 and 

PSH34) were chosen more often than the risky options from positive skew 

contexts (PRH30 and PRL32), t(49) = 1.81, p = .08. This result represents a 

general preference for options that typically produced better outcomes in their 

local encoding contexts, which is the key behavioral signature of models that 

incorporate frequency encoding (FREQUENCY and RANGE-FREQUENCY). 

Finally, there was a significant main effect of Local Optimality, F(1, 49) = 5.08, p 

= .029, 𝜂𝑝
2 = .09, and a significant Risk × Local Optimality interaction, F(1, 49) = 

6.89, p = .012, 𝜂𝑝
2 = .12, due to the safe options (but not the risky options) being 

chosen significantly more often when they were locally optimal compared to 

when they were locally suboptimal in the learning phase. However, these effects 

are not of particular interest for distinguishing between models. The Skew × 

Local Optimality interaction (p = .06) and the three-way interaction (p = .55) were 

both nonsignificant.  

Model Comparison  
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 We fit the Q-learning model, the four context-dependent encoding models, 

and two additional models to each participant’s data using maximum likelihood 

methods. The two additional models both assume absolute value encoding but 

differ in how they update reward expectations in response to feedback (i.e., 

Equation 1). The first is a model that uses separate learning rates for positive 

and negative reward prediction errors (RPEs). When the learning rate for positive 

RPEs exceeds the learning rate for negative RPEs, decision makers become 

risk-seeking, whereas the opposite pattern leads to risk aversion (Niv et al., 

2012). Thus, the RISK-SENSITIVE model includes three parameters (𝛽, 𝛼+, 𝛼−). 

The second model uses separate learning rates for outcomes that confirm the 

decision maker’s choice (i.e., positive RPEs for the chosen option and negative 

RPEs for the unchosen option) and outcomes that disconfirm their choice (i.e., 

negative RPEs for the chosen option and positive RPEs for the unchosen 

option). When the learning rate for confirmatory outcomes exceeds the learning 

rate for disconfirmatory outcomes, decision makers tend to repeat previous 

choices regardless of their consequences (Palminteri, Lefebvre, et al., 2017). 

This CONFIRMATION BIAS model also includes three parameters (𝛽, 𝛼CON, 

𝛼DIS). The RISK-SENSITIVE model was relevant for our task given the 

manipulation of risk level; however, the CONFIRMATION BIAS model has been 

shown to provide a better account of choice behavior in similar tasks (Palminteri, 

Lefebvre, et al., 2017). 

The results of the relative model comparison are shown in Table 3.2. This 

time, the RANGE-FREQUENCY model had the highest mean out-of-sample log-
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likelihood and lowest mean BIC, indicating that it was the best model overall. 

Paired t-tests revealed that the RANGE-FREQUENCY model was significantly 

better than the Q-learning, REFERENCE, RANGE, and RISK-SENSITIVE 

models according to both metrics. However, it was not significantly better than 

the simpler FREQUENCY model, and it was only marginally favored over the 

CONFIRMATION BIAS model based on out-of-sample log-likelihoods. Overall, 

these results support the frequency encoding hypothesis, but further tests were 

needed to establish a clear advantage of the frequency encoding models over 

the CONFIRMATION BIAS model. Note that the mean estimates of 𝑤𝐹 from the 

FREQUENCY (.38) and RANGE-FREQUENCY models (.31) were lower than the 

values used in the ex-ante simulations (see Table 3.3 for a full summary of the 

parameter estimates). 

Table 3.2 Model Comparison Results in Experiment 2 

Model Parameters 
Out-of-sample log-likelihood 

(Transfer phase only) 
BIC 

(Both phases) 

Q-learning 3 −70.44* 309.03** 

REFERENCE 4 −70.58* 309.01** 

RANGE 4 −69.50* 307.61** 

FREQUENCY 4 −68.41 298.20 

RANGE-FREQ. 5 −66.71 297.22 

RISK-SENSITIVE 3 −70.90** 309.96** 

CONFIRM. BIAS 3 −70.53† 299.62 

Note. Mean out-of-sample log-likelihood and Bayesian information criterion (BIC) 
values. The best model according to each metric is shown in bold. Significance 
tests reflect comparisons of each model to the best model using paired t-tests (df 
= 49). BIC = −2 × LL + k × ln(n), where LL is the maximized log-likelihood, k is 
the number of model parameters, and n is the number of observations.  
†p < .10, *p < .05, **p < .01. 
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Table 3.3 Mean Parameter Estimates in Experiment 2 

Model 𝛽 𝛼𝑐 𝛼𝑢 𝛼𝑉 𝛼𝑅 𝑤𝐹 𝛼+ 𝛼− 𝛼CON 𝛼DIS 

Q-learning 
1.81 

(5.46) 
.37 

(.39) 
.36 

(.39) 
-- -- -- -- -- -- -- 

REFERENCE 
3.21 

(6.91) 
.26 

(.33) 
.26 

(.35) 
.27 

(.35) 
-- -- -- -- -- -- 

RANGE 
8.30 

(7.58) 
.32 

(.38) 
.27 

(.36) 
-- 

.21 
(.36) 

-- -- -- -- -- 

FREQUENCY 
7.39 

(7.32) 
.30 

(.34) 
.29 

(.32) 
-- -- 

.38 
(.37) 

-- -- -- -- 

RANGE- 
FREQ. 

9.24 
(7.99) 

.26 
(.33) 

.21 
(.29) 

-- 
.29 

(.40) 
.31 

(.31) 
-- -- -- -- 

RISK-
SENSITIVE 

1.84 
(5.34) 

-- -- -- -- -- 
.43 

(.40) 
.37 

(.38) 
-- -- 

CONFIRM. 
BIAS 

1.46 
(4.78) 

-- -- -- -- -- -- -- 
.40 

(.33) 
.23 

(.34) 

Note. Standard deviations shown in parentheses. 𝛽 = inverse temperature, 𝛼𝑐 = 

chosen learning rate, 𝛼𝑢 = unchosen learning rate, 𝛼𝑉 = reference point learning 
rate, 𝛼𝑅 = range learning rate, 𝑤𝐹 = frequency value weighting, 𝛼+ = learning rate 

for positive prediction errors, 𝛼− = learning rate for negative prediction errors, 
𝛼CON = learning rate for confirmatory outcomes, 𝛼DIS = learning rate for 
disconfirmatory outcomes. 

 

Generative performance was assessed by simulating each model 100 

times in the task using each participant’s optimized parameters and averaging 

the predicted choice probabilities over iterations. Importantly, the models were 

not provided with participants’ actual choice histories for the simulations. As 

shown in Figure 3.7, the simulated learning curves from the FREQUENCY and 

RANGE-FREQUENCY models most closely resembled the observed data. 

Indeed, the FREQUENCY and RANGE-FREQUENCY models were the only 

ones that accurately reproduced the critical Skew × Maximizing Option 

interaction in the learning phase, which we verified by conducting the same 
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ANOVA on the simulated datasets that was conducted on the empirical data. 

Both models favored the options that frequently produced the best outcomes in 

their local encoding contexts, resulting in significantly greater maximization rates 

in the NR and PS contexts compared to the NS and PR contexts. The 

REFERENCE and RANGE models failed to reproduce this interaction altogether, 

while the RISK-SENSITIVE and CONFIRMATION BIAS models produced 

significant Skew × Maximizing Option interactions but with an incorrect ordering 

of the mean choice proportions across contexts. In other words, none of the other 

models generated the key preference for options with higher frequency values.8 

 

                                                           
8 It should also be noted that none of the models—including the FREQUENCY 
and RANGE-FREQUENCY models—was able to reproduce the significant Skew 
× Block interaction that was observed in the empirical data (i.e., increasing 
maximization rates in the positive skew contexts, but not in the negative skew 
contexts). 
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Figure 3.7 Learning Phase Choice Behavior in Experiment 2: Empirical Data vs. 
Model Simulations. Mean proportion of EV-maximizing choices across the 30 
learning trials for each context. The top left panel shows the observed data, and 
the remaining panels show RL model simulations. Models were simulated using 
the fitted parameters for each participant and the results were averaged across 
100 iterations. The models were not provided with participants’ actual choices for 
the simulations. In all panels, choices were smoothed using a 5-trial rolling 
average prior to averaging across individuals. Error bands represent +/− 1 
standard error. 

 

Figure 3.8 shows the simulated patterns of pairwise choice preferences in 

the transfer phase. The observed data are shown in the upper left corner, and 

the correlations between the models and the observed data are displayed in the 

remaining panels. When conditioned on participants’ best-fitting parameters, the 

FREQUENCY (r = 0.86) and RANGE-FREQUENCY models (r = 0.78) generated 

transfer preferences that were more strongly correlated with the observed 

preferences compared to the other models. The next highest correlation was 

attributed to the Q-learning model (r = 0.62) and the weakest correlation was 

attributed to the RANGE model (r = 0.40). 

Figure 3.9 shows the observed and model-simulated choice rates for the 

eight options in the transfer phase. Most of the models generated patterns that 

were clearly inconsistent with the empirical data even after conditioning on the 

optimized parameters. For example, the Q-learning model generated choice 

rates that increased monotonically from the lowest- to the highest-valued option 

due to its reliance on absolute outcome encoding (the same was true for the 

RISK-SENSITIVE and CONFIRMATION BIAS models). The REFERENCE model 

generated a sawtooth-like pattern in which the locally optimal options in each 
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learning context were chosen more frequently than the locally suboptimal 

options. In contrast, participants chose the lower-valued option from the NS 

context (NRL24) more often than the higher-valued option (NSH26). 

 

Figure 3.8 Transfer Phase Pairwise Choice Preferences in Experiment 2: 
Empirical Data vs. Model Simulations. Each cell shows the mean percentage of 
times the EV-maximizing option (Option 2) was selected, averaging across 
individuals. The top left panel shows the observed data, and the remaining 
panels show RL model simulations. Models were simulated using the fitted 
parameters for each participant and the results were averaged across 100 
iterations. The models were not provided with participants’ actual choices for the 
simulations. Also shown are the correlations between the empirical choice 
pattern and the patterns for each model. 

 

The RANGE model predicted that the highest-valued option from the negative 

skew contexts (NSH26) would be chosen more often than the lowest-valued 

option from the positive skew contexts (PSL28), but participants exhibited the 
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opposite effect. Only the FREQUENCY and RANGE-FREQUENCY models were 

able to generate the critical Skew × Risk interaction, in which the options that 

frequently produced the best outcomes in their local encoding contexts (NRH22, 

NRL24, PSL28, and PSH34) were selected more often than the other options 

(tested using the same ANOVA that was conducted on the empirical choice 

rates). These results, when combined with the simulation results in the learning 

phase, demonstrate a clear advantage of the FREQUENCY and RANGE-

FREQUENCY models over the other candidate models. 

 

Figure 3.9 Transfer Phase Choice Rates in Experiment 2: Empirical Data vs. 
Model Simulations. Mean choice rates for each option in the transfer phase, 
averaged across individuals. Choice rate is defined as the number of times an 
option was selected divided by the number of times it was presented. The top left 
panel shows the observed data, and the remaining panels show RL model 
simulations. Models were simulated using the fitted parameters for each 
participant and the results were averaged across 100 iterations. The models 
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were not provided with participants’ actual choices for the simulations. Error bars 
represent 95% confidence intervals. 

 

Post-Task Questions 

At the end of the experiment, participants were shown the eight option 

cues in a randomized order and asked to rank them from highest (1) to lowest (8) 

value. The mean reported ranks for each option are shown in Figure 3.10A. 

There was an increasing trend in ranks across the eight options, suggesting that 

participants were somewhat sensitive to the absolute values of options. In the 

contexts where the maximizing option frequently produced better outcomes (NR 

and PS), the maximizing options were given higher ranks than the non-

maximizing options on average [NR: t(49) = 3.53, p < .001; PS: t(49) = 2.20, p = 

.032]. In contrast, there was no significant difference between reported ranks in 

the contexts where the non-maximizing option frequently produced better 

outcomes [NS: t(49) = 1.10, p = .28; PR: t(49) = 0, p = 1.00]. This suggests that 

the experienced frequency of favorable outcomes at least partially affected 

subjective judgments of the relative ranks of choice options. 

Participants were also asked to estimate the (1) average, (2) lowest, and 

(3) highest outcomes in each context. The individual-level estimates and group 

averages are shown in Figure 3.10B−D. As in the first experiment, the individual 

estimates were noisy and the aggregate estimates often deviated significantly 

from the actual values of the outcome statistics. Participants seemed to be less 

accurate when estimating the minimum and maximum outcomes compared to 

the average outcomes in this experiment. Overall, participants appeared to be 
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somewhat sensitive to the relative differences between the outcome statistics of 

the four contexts. 

 

Figure 3.10 Responses to the Post-Task Questions in Experiment 2. (A) Mean 
reported ranks for each choice option. Error bars show 95% confidence intervals. 
Panels B-D show the reported average (B), minimum (C), and maximum 
outcomes (D) for each context. Individual estimates are shown as points and the 
group means are shown as solid black lines. Shaded boxes represent 95% 
confidence intervals. The true average, minimum, and maximum outcomes are 
shown as dashed red lines. 

 

Separate ANOVAs were run on the estimated average, minimum, and 

maximum outcomes with Context as a repeated measures factor. These 

analyses were not preregistered and should be considered exploratory. The 
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effect of Context was significant in all three cases [average: F(3, 147) = 8.33, p < 

.001, ε = .92, 𝜂𝑝
2 = .15; minimum: F(3, 147) = 10.33, p < .001, ε = .95, 𝜂𝑝

2 = .17; 

maximum: F(3, 147) = 8.55, p < .001, ε = .97, 𝜂𝑝
2 = .15]. Estimates of the average 

outcomes showed a positive linear trend across contexts (contrast coefficient = 

18.28), t(49) = 4.29, p < .001, but the quadratic and cubic trends were 

nonsignificant (ps > .20) (Figure 3.10B). This matches the actual pattern of 

average outcomes, which increased in a linear fashion across the four contexts 

(NR: 21, NS: 25, PR: 29, PS: 33). Estimates of the minimum outcomes showed a 

positive linear trend across contexts (contrast coefficient = 19.86), t(49) = 4.84, p 

< .001, with nonsignificant quadratic and cubic trends (ps > .11) (Figure 3.10C). 

This does not match the actual set of minimum outcomes, as the difference 

between the negative skew and positive skew contexts was much larger than the 

differences within each of the skew conditions, creating a step-like pattern (NR: 

10, NS: 12, PR: 27, PS: 29). Similarly, estimates of the maximum outcomes 

increased linearly across contexts (contrast coefficient = 22.32), t(49) = 4.98, p < 

.001, but the quadratic and cubic trends were nonsignificant (ps > .72) (Figure 

3.10D). This pattern again fails to capture the step-like pattern in the actual set of 

maximum outcomes (NR: 25, NS: 27, PR: 42, PS: 44).  

3.4 Discussion 

The purpose of Experiment 2 was to test competing theories of context-

dependent RL using a choice task for which these theories make distinct 

predictions with regard to the effects of skewed outcome distributions. As in the 

first experiment, the results were most consistent with models that incorporate 
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frequency or rank-based encoding. A key behavioral signature of these models is 

a preference for options that frequently produce the best outcomes in their local 

encoding contexts. Model-free analyses confirmed the presence of this effect in 

both phases of the experiment. In the learning phase, the rate of payoff-

maximizing choices was higher in contexts where the locally optimal option 

frequently produced the best outcomes. In the transfer phase, there was still a 

significant, albeit weaker, tendency to select these same options.  

Model comparison indicated that the RANGE-FREQUENCY model 

provided the best overall explanation of the data. It was significantly favored over 

the Q-learning model, which assumes absolute encoding, as well as the 

REFERENCE and RANGE models, which implement context dependence via 

reference point centering or range adaptation, respectively. The RANGE-

FREQUENCY and FREQUENCY models were the only ones that generated the 

key behavioral signature discussed above, i.e., a significant preference for 

options that frequently produced the best outcomes in their local contexts. The 

other models were unable to reproduce this effect. Further, the results could not 

be adequately explained by absolute encoding models that use separate learning 

rates for positive versus negative prediction errors (RISK-SENSITIVE model) or 

for outcomes that confirm versus disconfirm the decision maker’s choice 

(CONFIRMATION BIAS model). The CONFIRMATION BIAS model was not 

significantly worse than the RANGE-FREQUENCY model according to the 

relative comparison criteria, but it failed to generate the key behavioral effects 

using participants’ fitted parameters alone. This shows that its ability to make 
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accurate one-step-ahead predictions derived heavily from capitalizing on the 

temporal autocorrelation detected in past choices (Palminteri, Wyart, et al., 

2017). Thus, the CONFIRMATION BIAS model is not well-suited as an 

explanatory model of the cognitive processes guiding context-dependent choice 

behavior. However, incorporating confirmation bias in the updating of expected 

rewards may further improve the performance of context-dependent RL models.9   

Participants’ subjective rankings of the options at the end of the 

experiment were mostly consistent with the aggregate choice rates in the transfer 

phase (cf. Figure 3.6C and 3.10A). Unlike in the first experiment, estimates of the 

lowest and highest outcomes in each context were less accurate than estimates 

of the average outcomes. In particular, participants were somewhat insensitive to 

the large difference between the endpoints of the negative skew contexts on the 

one hand, and the positive skew contexts on the other. However, the ordering of 

the most extreme outcomes across contexts was correct at the aggregate level. 

 

                                                           
9 For example, we found that by swapping out the learning rates for chosen (𝛼𝑐) 

and unchosen options (𝛼𝑢) with learning rates for confirmatory (𝛼CON) and 
disconfirmatory outcomes (𝛼DIS), we could further improve the fit of the winning 
RANGE-FREQUENCY model in Experiment 2 (results not reported here).  
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CHAPTER 4 

GENERAL DISCUSSION 

 There is ample evidence across multiple studies that subjective values are 

context dependent (for reviews, see Hunter & Daw, 2021; Rangel & Clithero, 

2012; Seymour & McClure, 2008). This means that a given reward will be 

evaluated differently depending on the values of other rewards in the relevant 

context. As an illustration, a medium-sized reward may have a higher subjective 

value in the context of smaller rewards, but a lower subjective value in the 

context of larger rewards. This type of relative valuation has also been 

demonstrated in reinforcement learning (RL) tasks, where decision makers learn 

from the outcomes of previous choices to make optimal future choices (for a 

review, see Palminteri & Lebreton, 2021). For example, relative valuation aids in 

learning to avoid options that are worse than other options in the local 

environment, such as an option that frequently produces neutral outcomes in a 

gain context, and learning to prefer similar options if they are better than other 

options in the local environment, such as an option that frequently produces 

neutral outcomes in loss context (Palminteri et al., 2015). At the same time, a 

potential consequence of relative valuation is that individuals may prefer a 

favorable option from a low-value context over an unfavorable option from a high-

value context, even if the latter has a higher expected payoff (Bavard et al., 2018; 
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Hayes & Wedell, in press). Thus, context-dependent valuation in RL can have 

both adaptive and maladaptive consequences (Bavard et al., 2021). 

The aim of this dissertation was to test between competing computational 

mechanisms responsible for these effects. There are many theories that could 

potentially explain context dependence in RL. One possibility is that decision 

makers compare the outcomes of each choice to a contextual reference point—

namely, the average outcome in the local context—so that options with better-

than-average payoffs acquire a positive subjective value and options with worse-

than-average payoffs acquire a negative subjective value. This mechanism was 

employed by the REFERENCE model, which dynamically tracks an estimate of 

the average outcome in each decision context (Palminteri et al., 2015; Palminteri 

& Lebreton, 2021). A second possibility is that decision makers encode where 

the outcomes of each choice fall with respect to the range of outcomes in the 

local context, so that options with payoffs near the top of the range acquire a 

higher subjective value than options with payoffs near the bottom of the range. 

This mechanism was employed by the RANGE model, which tracks a dynamic 

estimate of the minimum and maximum outcomes in each decision context 

(Bavard et al., 2021; Palminteri & Lebreton, 2021). A third possibility is that 

decision makers rank the outcomes of each choice within a sample of recently 

experienced outcomes from the local context (e.g., Stewart et al., 2006), so that 

options with high-ranking outcomes acquire a higher subjective value than 

options with low-ranking outcomes. This mechanism was implemented by the 

FREQUENCY model, which unlike the REFERENCE and RANGE models, 
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assumes an exemplar-based representation of the local context. Finally, a fourth 

possibility is that subjective values are based on a weighted combination of the 

range and frequency mechanisms (Parducci, 1965, 1995), which was the 

motivation behind the RANGE-FREQUENCY model. Previous studies have 

found support for the reference point (Palminteri et al., 2015) and range 

adaptation mechanisms (Bavard et al., 2018, 2021); however, to the best of our 

knowledge, no studies have directly tested RL models based on the frequency or 

range-frequency mechanisms. Further, range adaptation and frequency encoding 

were confounded in the choice tasks used in prior studies (see Table 1 for an 

example), making it difficult to determine which mechanism offered the best 

explanation of behavior. 

We conducted two fully incentivized online experiments to test the 

REFERENCE, RANGE, FREQUENCY, and RANGE-FREQUENCY models using 

choice tasks for which the models make distinct predictions. In Experiment 1, we 

modified a task that had been previously used to disentangle competing theories 

of context effects in price perception (Niedrich et al., 2001) so that it could be 

leveraged to study context effects in RL. There were three “target” options in our 

task that produced the same outcomes and had the same expected payoffs but 

belonged to separate choice sets (i.e., contexts). One of the target options 

belonged to a negatively skewed context in which its outcomes were near the top 

of the range but had lower ranks. The second target option belonged to a 

positively skewed context in which its outcomes were near the bottom of the 

range but had higher ranks. The expected payoffs of these target options were 
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equal to the average rewards in their respective contexts. Finally, the third target 

option belonged to a positively skewed context in which its outcomes were near 

the top of the range and had higher ranks. The expected payoff of this target was 

well above the average reward in its context. The task involved an initial learning 

phase, in which participants made repeated choices within the separate contexts 

(presented in random order) and received complete feedback, followed by a 

transfer phase, in which they chose between options from different contexts 

without receiving feedback. The most diagnostic transfer choices were those that 

involved two of the target options, as the models predicted different preference 

relations among the targets depending on how their outcomes compared to other 

outcomes in their respective contexts (see Table 3). The results showed a 

significant aggregate preference for the targets from the positive skew contexts 

over the target from the negative skew context. This finding strongly supports the 

frequency encoding mechanism, since the only advantage of the positive skew 

targets over the negative skew target is that their outcomes had higher ranks 

within the local contextual distribution. Quantitative model comparison confirmed 

that the FREQUENCY model was superior to the other models, and we 

demonstrated that it was able to reproduce the aggregate choice preferences in 

the transfer phase using the parameter estimates from our sample. The RANGE-

FREQUENCY model was also a viable candidate, but its extra parameter was 

not necessary to capture the empirical choice patterns.  

Experiment 2 introduced a choice task that manipulated both outcome 

skew and risk. There were four separate choice contexts during the learning 
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phase, each consisting of a safe option that produced a certain outcome, and a 

risky option that produced one outcome with 80% probability and another with 

20% probability. Whether the more probable outcome was high (negative skew) 

or low (positive skew) varied across contexts. We also varied which option (risky 

or safe) was locally optimal to avoid a confound between payoff maximization 

and risk preference. An important feature of the task is that the risky options 

produced better outcomes more often in the negative skew contexts, whereas 

the safe options produced better outcomes more often in the positive skew 

contexts. In the learning phase, participants exhibited a robust preference for the 

options that frequently produced the best outcomes in their local contexts. This 

tendency to select options with higher ranking outcomes was dissociable from 

risk preference and payoff maximization due to the structure of the task. Most 

importantly, it was a key behavioral signature of frequency encoding. In the 

subsequent transfer phase (choices between all possible pairs of options without 

feedback), participants continued to show a significant preference for the options 

that frequently produced better outcomes, although the effect was weaker. Model 

comparison indicated that the RANGE-FREQUENCY model provided the best fit 

to the data, and we once again showed that the FREQUENCY and RANGE-

FREQUENCY models were the only ones capable of reproducing the qualitative 

patterns of results using only the optimized parameters.  

Taken together, the choice results across both experiments strongly 

support RL models that incorporate frequency encoding. According to these 

models, the subjective value of an outcome is partially determined by its rank 
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within a sample of recently experienced outcomes from the same context 

(Stewart et al., 2006). A consequence of frequency or rank encoding is a general 

preference for options associated with better local outcomes. It is a well-

established finding in the experience-based choice literature that people are 

attracted to options that produce the best outcomes most of the time, even when 

those options have lower expected payoffs (e.g., Barron & Erev, 2003; Hayes & 

Wedell, 2021; Hertwig et al., 2004; Yechiam & Busemeyer, 2005). The most 

common explanation of this phenomenon is that people make decisions based 

on small samples of past experiences, which results in rare outcomes being 

underweighted relative to frequent outcomes (Erev et al., 2017; Erev & Barron, 

2005). However, most versions of this theory still assume a context-independent 

subjective value function. This means that the small samples theory would not be 

able to explain why participants in Experiment 1 developed strong preferences 

for certain target options over others, as all three target options produced the 

same exact outcomes should thus be associated with the same subjective 

values. An advantage of the FREQUENCY and RANGE-FREQUENCY models is 

that they can account for underweighting of rare events and context-dependent 

preferences using a single mechanism, giving them greater generalizability.  

In addition to demonstrating that the frequency encoding models 

outperformed the other context-dependent encoding models, we were able to 

rule out specific alternative theories in each experiment. First and foremost, our 

results clearly falsified the basic Q-learning model, which assumes absolute 

value representations. Participants in both experiments made choices that could 
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not be explained if they were encoding outcomes on an absolute scale, 

consistent with prior studies (Palminteri & Lebreton, 2021). Other theories have 

asserted that habits (i.e., stimulus-response associations) play a key role in 

guiding decisions from experience and that in certain situations, habits may exert 

greater control over choice than subjective values (i.e., stimulus-outcome 

associations) (Miller et al., 2019). While we would agree that habitual processes 

likely contribute to these types of repeated decisions (especially when they occur 

over longer timescales; Bavard et al., 2021), our results in Experiment 1 suggest 

that their influence in this case was minimal at best. Specifically, we showed that 

the difference in choice rates for two target options during the learning phase 

was not consistently associated with the preference for one option over the other 

in the transfer phase, and thus habits could not account for the full pattern of 

context-dependent preferences that we observed. In Experiment 2, we included 

models with separate learning rates for positive versus negative prediction errors 

(Niv et al., 2012) and for confirmatory versus disconfirmatory outcomes 

(Palminteri, Lefebvre, et al., 2017) to test whether our results could be explained 

by learning asymmetries in response to different types of feedback. Although the 

second model was only slightly worse than the winning RANGE-FREQUENCY 

model in terms of the relative comparison criteria, neither of the alternative 

models was able to generate the context-dependent choice behavior that we 

observed due to their reliance on absolute encoding. Thus, while learning 

asymmetries are certainly relevant in many RL tasks, they were not sufficient to 

explain our findings on their own. 
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Our model space included many plausible context-dependent encoding 

mechanisms, but other variants of some of the mechanisms exist. For example, a 

close relative of range adaptation is the divisive normalization mechanism, 

according to which the value of a single reward is normalized by dividing it by the 

sum, rather than the range, of other rewards in the local context (Louie & 

Glimcher, 2012). Divisive normalization is thought to be a canonical neural 

computation across multiple brain regions (Carandini & Heeger, 2012) and is 

commonly used to model context dependence in domains outside of RL, 

including preferential choice (Louie et al., 2013). To the best of our knowledge, 

there have been very few attempts to incorporate divisive normalization into an 

RL model (for examples, see Bavard & Palminteri, 2021; Louie, 2021). We 

devised two versions of a divisive normalization RL model, one in which the so-

called semisaturation parameter in the denominator of the value normalization 

function was constrained to be 1.0, and another in which this parameter was 

freely estimated (see Appendix A). The two versions were tested in both 

experiments and compared to the other models based on BIC values. The results 

showed that the divisive normalization models were outperformed by the winning 

models in the first (FREQUENCY) and second experiment (RANGE-

FREQUENCY) (Table A.1). For the transfer phase in Experiment 1, both models 

failed to generate a significant aggregate preference for the positive skew, high 

mean target option (PHM30) over the negative skew, high mean target option 

(NHM30), which the FREQUENCY model was able to capture due to the 

outcomes from PHM30 having higher local ranks (Figure A.1). In Experiment 2, 
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the divisive normalization models were unable to reproduce a significant 

preference for the options that frequently yielded better outcomes in the learning 

phase (Figure A.2), and their simulated transfer phase choice patterns were less 

aligned with the observed data than the patterns generated by the frequency 

encoding models (Figures A.3 and A.4). Thus, divisive normalization does not 

appear to be capable of accounting for the context-dependent choice behavior 

that we observed in this experiment.  

There are many interesting questions that remain open for future 

research. One question is whether decision makers might engage different 

context-dependent encoding mechanisms depending on features of the choice 

task. There is already some evidence that outcome encoding in RL can adapt to 

task demands and expectations (Juechems et al., 2021), and that it might 

depend on what participants are attending to during the learning phase (Hayes & 

Wedell, 2022). Based on this, it is possible that the RANGE model performed 

poorly in the present study in part because the ranges were held constant across 

contexts, making the range of outcomes less salient to participants. In contrast, 

studies that have found support for range adaptation models have manipulated 

the range so that certain contexts have a wider range of outcomes than others 

(Bavard et al., 2018, 2021). Future studies should search for ways of 

manipulating range and skew simultaneously while still allowing for a dissociation 

between models to determine whether this is a critical factor. Another interesting 

question concerns blocked versus interleaved presentation formats. In a blocked 

format, all trials for a given context are presented together during the learning 
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phase, whereas in an interleaved format, the trials for different contexts are 

randomly intermixed as they were in the present experiments. A previous study 

has shown that range adaptation effects in RL are enhanced when contexts are 

presented in a blocked format (Bavard et al., 2021). However, in a preliminary 

experiment using the choice task from Experiment 2, we found that frequency 

encoding effects were significantly more pronounced in the interleaved condition 

than in the blocked condition (results not presented here). This may be because 

the interleaved condition places a greater demand on memory, and prior 

research suggests that rank encoding is enhanced when memory demands 

make it harder to remember absolute stimulus values (Pettibone & Wedell, 2007; 

Wedell et al., 2020). This explanation is purely speculative and requires 

additional investigation. 

Finally, an important goal for future studies will be to test some of the 

auxiliary assumptions made by the FREQUENCY and RANGE-FREQUENCY 

models. Both models assume that the subjective value of an outcome is a 

weighted combination of its range and frequency values. The FREQUENCY 

model computes range values at the global level (i.e., using the global range), so 

that context-dependent preferences are entirely driven by the frequency principle. 

The RANGE-FREQUENCY model, in contrast, computes range values at the 

local level using a dynamic range adaptation process (Bavard et al., 2021). 

However, an alternative possibility is that there are no range computations, and 

that the subjective value of an outcome is fully determined by how it ranks within 

both local and global context (see Mullett & Tunney, 2013, for evidence of 
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hierarchical, rank-based value representations in the human brain). This could be 

accomplished by a model that computes two separate frequency values, one 

based on local context and another based on global context, or by a model that 

allows previously experienced outcomes from other contexts to have a nonzero 

probability of being recruited in the comparison sample. The degree of context 

dependence exhibited by such a model would depend on the relative weighting 

of local and global inputs. A second assumption of the FREQUENCY and 

RANGE-FREQUENCY models is that recent outcomes are given more weight 

than earlier outcomes in the computation of frequency values. While recency 

effects are well-established (Barron & Erev, 2003; Yechiam & Busemeyer, 2005), 

another finding is that people have better memory for the most extreme 

outcomes in a given context (Madan et al., 2014, 2021). It is very likely that 

extreme outcomes should be given greater weight than less extreme outcomes in 

the computation of frequency values, but this is something that our choice tasks 

were not designed to test. Future studies should consider additional ways of 

manipulating the outcome distributions within or between contexts to test 

different theories about the outcome retrieval process. Ultimately, determining 

what constitutes the effective context and how contextual features are 

subjectively evaluated will lead to a better understanding of how people make 

decisions from experience. 
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APPENDIX A 

ADDITIONAL MODELS 

Here, we describe a model that uses divisive normalization to encode 

outcomes on a context-dependent scale. Our formulation of the divisive 

normalization mechanism was based on Louie et al. (2013). The subjective value 

of the ith outcome on trial t is computed as follows: 

 𝑣𝑖,𝑡 =
𝑟𝑖,𝑡

𝜎2 + 𝜔 ⋅ ∑ 𝑟𝑘,𝑡
𝐾
𝑘=1

  

where 𝜎2 is called the semisaturation parameter and 𝜔 is the normalization 

weight. The normalization term in the denominator is simply the sum of the K 

outcomes presented on trial t. When 𝜔 equals 0, the normalization term vanishes 

and subjective values are a linear function of objective outcomes. When 𝜔 equals 

1, subjective values are a nonlinear function of objective outcomes. Because we 

were not sure what effect 𝜎2 would have in the present study, we tested two 

versions of the model, one in which 𝜎2 was fixed to 1.0 and another in which 𝜎2 

was freely estimated [Louie et al. (2013) reported that 𝜎2 was not necessary to 

account for context dependence in their study]. Both versions of the divisive 

normalization model used the delta learning rule to update reward expectations 

(Equation 1) and the softmax function to compute choice probabilities (Equation 

3).  



 

107 

The divisive normalization models were compared to the winning models 

in both experiments using BIC values (Table A.1). The constrained version with 

𝜎2 fixed to 1.0 was preferred over the full version in both cases, but both were 

outperformed by the FREQUENCY and RANGE-FREQUENCY models. Figures 

A1 through A4 show that the divisive normalization models failed to capture key 

behavioral signatures of frequency encoding in both experiments. 

Table A.1. Additional Model Comparison Results 

Model Parameters Experiment 1 Experiment 2 

FREQUENCY 4 195.46 298.20 

RANGE-FREQUENCY 5 196.38 297.22 

DIVISIVE NORM v1 4 199.29 311.26*** 

DIVISIVE NORM v2 5 203.96** 316.41*** 

Note. Mean Bayesian information criterion (BIC) values. The best model in each 
experiment is shown in bold. Significance tests reflect comparisons of each 
model to the best model using paired t-tests (df = 59 and 49 in Experiment 1 and 
2, respectively). BIC = −2 × LL + k × ln(n), where LL is the maximized log-
likelihood, k is the number of model parameters, and n is the number of 

observations. The semisaturation parameter 𝜎2 was fixed to 1.0 in the first 
version of the divisive normalization model (DIVISIVE NORM v1) and freely 
estimated in the second (DIVISIVE NORM v2). 
**p < .01., ***p < .001 
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Figure A.1 Additional Model Simulations in Experiment 1. Pairwise choice 
preferences for the target pairs (A) and opposite skew pairs (B). Each panel 
shows the mean proportion of times the option on the vertical axis was chosen 
over the option on the horizontal axis, averaging across participants. The solid 
black lines and shaded boxes show the means and 95% confidence intervals for 
the observed data. The points and error bars show the means and 95% 
confidence intervals for the RL model simulations. Models were simulated using 
the fitted parameters for each participant and the results were averaged across 
100 iterations. The models were not provided with participants’ actual choices for 
the simulations. FREQ = FREQUENCY. RF = RANGE-FREQUENCY. DN v1 = 

DIVISIVE NORM v1 (𝜎2 = 1.0), DN v2 = DIVISIVE NORM v2. 
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Figure A.2 Additional Model Simulations in Experiment 2: Learning Phase. Mean 
proportion of EV-maximizing choices across the 30 learning trials for each 
context. The top left panel shows the observed data, and the remaining panels 
show RL model simulations. Models were simulated using the fitted parameters 
for each participant and the results were averaged across 100 iterations. The 
models were not provided with participants’ actual choices for the simulations. In 
all panels, choices were smoothed using a 5-trial rolling average prior to 
averaging across individuals. Error bands represent +/− 1 standard error. 
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Figure A.3 Additional Model Simulations in Experiment 2: Transfer Patterns. 
Each cell shows the mean percentage of times the EV-maximizing option (Option 
2) was selected, averaging across individuals. The top left panel shows the 
observed data, and the remaining panels show RL model simulations. Models 
were simulated using the fitted parameters for each participant and the results 
were averaged across 100 iterations. The models were not provided with 
participants’ actual choices for the simulations. Also shown are the correlations 
between the empirical choice pattern and the patterns for each model. 
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Figure A.4 Additional Model Simulations in Experiment 2: Choice Rates. Mean 
choice rates for each option in the transfer phase, averaged across individuals. 
Choice rate is defined as the number of times an option was selected divided by 
the number of times it was presented. The top left panel shows the observed 
data, and the remaining panels show RL model simulations. Models were 
simulated using the fitted parameters for each participant and the results were 
averaged across 100 iterations. The models were not provided with participants’ 
actual choices for the simulations. Error bars represent 95% confidence intervals. 
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