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Abstract

In this dissertation, we present a collection of new planning algorithms that enable

robots to achieve complex goals, beyond simple point-to-point path planning, using

automata-theoretic methods, and we consider the filter minimization (FM) problem

and a variant of it, filter partitioning minimization (FPM) problem, which aims to

minimize combinatorial filters, used for filtering and automata-theoretic planning in

systems with discrete sensor data. We introduce a new variant of bisimulation, com-

patibility, and using this notion we identify several classes of filters for which FM

or FPM is solvable in polynomial time, and propose several integer linear program-

ming (ILP) formulations of FM and FPM. Then, we consider a problem, planning

to chronicle, in which a robot is tasked with observing an uncertain time-extended

process to produce a ‘chronicle’ of occurrent events that meets a given specification.

This problem is useful in applications where we deploy robots to autonomously make

structured videos or documentaries from events occurring in an unpredictable environ-

ment. Next, we study two variants of temporal logic planning in which the objective

is to synthesize a trajectory that satisfies an optimal selection of soft constraints while

nevertheless satisfying a hard constraint expressed in linear temporal logic (LTL). We

also extend planning to chronicle with the idea of this problem. Then, we consider

the problem of planning where to observe the behavior of an agent to ensure that the

agent’s execution within the environment fits a pre-disclosed itinerary. This problem

arises in a range of contexts including in validating safety claims about robot behav-

ior, applications in security and surveillance, and for both the conception and the

(physical) design and logistics of scientific experiments.
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Chapter 1

Introduction

Robots have taken part in many aspects of our lives from education and personal

assistance to industry and space exploration, and with each passing year they are be-

coming more advanced and their role in human life is broadening. As such roboticists

face new planning problems, beyond the classical motion planning problem. Mo-

tion planning is perhaps the most known planning problem in robotics and, in fact,

many may still think of planning in robotics as only motion planning. The aim of

this problem is to choose a sequence of suitable actions that moves a robot from a

source location to a goal location without hitting the obstacles such that an objective

function such as the path length is optimized.

In this dissertation we present several such problems. The first problem stud-

ies state space minimization of discrete structures used for planning and filtering in

robotics. This problem is useful for robots with limited physical and computational

resources and it may help to convey salient information about robotic tasks those

structures are used for. The second problem addresses using autonomous robots to

make structured videos from events occurring in unpredictable environments. This

problem is also important because it helps us to use autonomous robots instead of

humans for making a video or a documentary that might be laborious for a human

to do or it must be taken in places that might be dangerous for humans to go. The

third problem studies temporal logic planning given both hard specifications of the

mission and soft constraints or specifications to accomplish the mission. Temporal

logic planning is important because it helps humans to use a user-friendly, high-level
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language to specify complex tasks for a robot while ensuring that the specification

language is unambiguous and algorithmically manipulable. Planning with soft speci-

fications is helpful in situations where not all of the specifications can be satisfied as

a whole. In such cases, one needs to decompose the specifications into several parts

and impose a priority over the parts. It is also helpful in situations where a robot is

asked by several recipients to do a task within an execution or where there are several

ways to do a task and the user has preferences on how to accomplish the task. The

fourth problem applies the ideas of temporal logic planning with soft constraints on

the problem of using robots to record structured videos. The fifth problem considers

the problem of optimal sensor selection for detecting whether an agent’s movement

in the environment has deviated from a promised itinerary or not. This problem is

useful in security and surveillance applications, and can be used to check a hypothe-

sis about a system behavior, and thus, it is important. We show how to solve all of

these problems using a general form of automata-theoretic approach. This approach

provides a unified technique to tackle new planning problems.

In this chapter, we first introduce the general approach of automata-theoretic for

planning, and then briefly introduce the problems we consider in this dissertation.

1.1 Automata-theoretic approach for planning

Figure 1.1 shows the general theme of an automata-theoretic approach to planning.

In our problems we consider robotic systems with discrete models. In those kinds of

systems, the behavior of the system is assumed to be a discrete sequence of states.

Depending on application, that sequence could be finite or infinite. The set of all

possible behaviors of the system is modeled using a discrete structure, such as a tran-

sition system, a hidden Markov model, and a multi-graph, and the set of all desirable

behaviors for planning is specified using an automaton, such as a deterministic finite
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Figure 1.1: a) A discrete sequence of states showing the behavior of the system b)
A discrete structure modeling the set of all possible behaviors of the system c) An
automaton that specifies the set of all desirable behaviors of the system d) A product
automaton made from the system model and the finite automaton. The solution to
the planning problem is found on the product automaton.

automaton (DFA), a Büchi automaton, and a deterministic Rabin automaton. The

solution to the planning problem is then found on a product automaton made from

the system model and the automaton.

Combinatorial filters are discrete structures that can be used for any part of an

automata-theoretic approach for planning. They can be used to model the system,

to specify the set of all desirable behaviors, or they can be a plan that are obtained

as a solution to a planning problem. All the other problems we consider in this

dissertation are solved using an instance of the general automata-theoretic approach

to planning. We first consider the problem of state space reduction of combinatorial

filters.
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1.2 Combinatorial filter minimization

The ability of robots to perceive and maintain salient information about their envi-

ronments —and their own place within those environments— is rightly considered

to be an essential ingredient for many forms of autonomy. As a result, a central

thread in modern robotics research is an effort to design and understand filtering and

estimation methods.

A number of robotics researchers in recent years have considered these kinds of

problems from the perspective of combinatorial filters, which model those processes as

discrete transition systems. Combinatorial filters, first proposed by LaValle [77, 78],

are a general class of models for reasoning about systems that process discrete (rather

than continuous) sensor data. Variations on the combinatorial filtering approach

have, under various names, been used for a wide spectrum of tasks including localiza-

tion [2], navigation [83, 145, 149], exploration [74], manipulation [73], mapping [139],

target tracking [10, 38, 169], and story validation [168]. The essence of the approach

can be understood as describing filtering processes as directed graphs, in which the

vertices represent the distinct states of the information maintained by the filter,

the directed edges are labeled with sensor readings that induce transitions between

states, and the vertex labels indicate the output of the filtering process at each state.

The combinatorial filters considered in this dissertation are closely related to well-

known probabilistic filtering methods such as recursive Bayesian estimation [58, 88]

and Kalman filtering [63]. Each of these types of filters are used to estimate a system’s

internal state over time using the most recent data (observations) received from the

sensors. Note in particular that probabilistic filters, when implemented with finite

precision, can in principle be expressed as combinatorial filters, in which each state

of the filter corresponds to a tuple of concrete values of the variables being estimated

and each transition encodes the updates made to that internal state in response to

new sensor data. In addition, combinatorial filters are also suitable for other forms of
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Figure 1.2: a) An environment with four landmarks 1-4, in which a mobile robot
(not pictured) moves along a continuous path. The robot can sense at any time the
cyclic order of landmarks as observed from its current position, but it does not know
the positions of the landmarks and it does not have a compass nor odometers. The
environment is (virtually) divided into 10 regions a-j, where at all points within a
region, the same cyclic order of landmarks is perceptible. The task of the robot is to
provably tell at any time whether it is in region f or not. b) A naïve filter the robot
can use to accomplish its task. Notice that each state of the filter except state a− j
has also a loop labelled by the same cyclic order perceptible by the regions of that
state, but we have avoided drawing those loops for simplicity. c) The smallest filter
equivalent to the naïve filter.

filtering that rely upon combinatorial, rather than probabilistic reasoning. For more

details about Bayesian filtering and the Kalman filter, see [23].

Central to much of the research on combinatorial filters is the notion ofminimality.

Specifically, questions are asked about the minimal state information required to be

maintained in the filter, in order to accurately express the desired behavior. This
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concern naturally leads to questions about equivalences between states in the filter:

If we can construct a filter for a given task in which no pair of distinct states is

equivalent, in the (thus far informal) sense that the distinction between them is

irrelevant to the filter’s outward behavior, then the states utilized by that filter may

illuminate the information requirements of the task. Thus, for a given combinatorial

filter, we are interested in the filter minimization problem (FM) of finding the smallest

equivalent filter. This problem was addressed by O’Kane and Shell [98, 100] who

proved that it is NP-hard. They proposed a heuristic algorithm to solve FM, which

forms the reduced filter by merging pairs of states, who are identified to be mergeable

using iteratively forming and coloring conflict graphs. This algorithm can also be used

for a variant of FM, called the filter partitioning minimization problem (FPM), which

requires the reduced filter to partition the state space of the original filter.

Overview of results

This dissertation studies FM and FPM by considering several distinct state-equivalence

relations in the context of those problems. Specifically, we show that the well-known

state-equivalence concept of bisimulation —which is used widely for the minimization

of other discrete transition structures [127]— does not, as intuition might suggest,

correctly capture the notion of equivalence between states necessary to minimize a

filter optimally. Nonetheless, using bisimulation we identify, in Section 3.9, classes of

filters for which FPM or FM is solvable in polynomial time. The notion of bisimula-

tion also provided inspiration for the correct notions of compatibility and mergeability

for FM and FPM, which we introduce in this dissertation.

For the naïve filter in Figure 1.2, which has 15 states, applying the technique of

bisimulation minimization does not reduce the state space of the filter at all, while

the minimal equivalent filter has only 3 states. In Theorem 3, we describe a class of

combinatorial filters on which bisimulation minimization does not reduce the state
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space of the original filter at all, whereas the optimally reduced filter has only two

states.

We also establish a connection between FM and the notion of simulation. We

show that the FM problem is equivalent to the problem of finding for a given filter,

a state-minimal filter that simulates the given filter. We also introduce two new

relations over states called compatibility and mergeability and establish their relevance

to the FM and FPM. By analyzing where those two relations become an equivalence

relation, we identify several classes of filters for which FM or FPM is solvable in

a time polynomial to the size of the input filter. We propose three integer linear

programming (ILP) formulations of FPM and show, via experiments, that those ILP

formulations outperform the algorithm of O’Kane and Shell. We also consider an

integer linear programming formulation of FM.

1.3 Planning to chronicle

Imagine that the next wedding you attend features an autonomous robot camera

operator capable of roaming about the event and shooting film footage of the reception

party. Afterwards, the robot automatically assembles the raw clips into a series of

videos, each customized to its recipient, that are distributed to the happy couple and

guests. These videos might help preserve special memories worth cherishing, they

might summarize aspects of the evening and show the event from particular points

of view, and they might, most tenderly, foretell the future wedding of a pair who

just met for the first time that evening. Then again, they might serve as evidence in

a court case brought against wedding crashers documenting the fracas that ensues.

As different videos highlight different aspects of the evening, no single compilation of

clips will serve all these purposes effectively. Given the myriad of stories to tell—each

being a fairly complex, temporally extended series of events, some of which may unfold
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on the day, others which do not on this particular night—how does the robot best

strategize its movements to collect this raw footage? For this kind of problem we

are interested in robotic planning in which the goals are expressed as time-extended

sequences of discrete events whose occurrence the robot cannot causally influence.

Many applications can be cast as the problem of producing a finite-length sensor-

based recording of the evolution of some process. As the wedding example emphasizes,

one might be interested in recordings that meet rich specifications of the event se-

quences that are of interest. When the evolution of the event-generating process is

uncertain/non-deterministic and sensing is local (necessitating its active direction),

then one encounters an instance from this class of problem. The broad class encom-

passes many monitoring and surveillance scenarios. An important characteristic of

such settings is that the robot has influence over what it captures via its sensors, but

cannot control the process of interest.

Overview of results

Our incursion into this class of problem involves two lines of attack. The first is a

wide-embracing formulation in which we pose a general stochastic model, including

aspects of hidden/latent state, simultaneity of event occurrence, and various assump-

tions on the form of observability. Secondly, we specify the sequences of interest via

a deterministic finite automaton (DFA), and we define several language mutators,

which permit composition and refinement of specification DFAs, allowing for rich de-

scriptions of desirable event sequences. The two parts are brought together via our

approach to planning: we show how to compute an optimal policy (to satisfy the

specifications as quickly as possible) via a form of product automaton.

Our solution to this problem fits the general automata-theoretic approach. It

models the system and the occurrences of events using a variant of hidden Markov

model, and specifies the set of all desirable event sequences using a DFA. The product
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automaton made from the hidden Markov model and the DFA is treated as a partially

observable Markov decision process (POMDP) or a Markov decision process (MDP),

depending on observability of the current state of the hidden Markov chain.

Beyond the pragmatics of planning, a theoretical contribution of dissertation is to

prove a result on representation independence of the specifications. That is, though

multiple distinct DFAs may express the same regular language and despite the DFA

being involved directly in constructing the product automaton used to solve the

planning problem, we show that it is merely the language expressed that affects

the resulting optimal solution. Returning to mutators that transform DFAs, enabling

easy expression of sophisticated requirements, we distinguish when mutators preserve

representational independence too.

1.4 Temporal logic planning with soft constraints

and specifications

As techniques to solve traditional problems in motion and path planning —those

concerned with constructing a finite trajectory that starts from an initial state and

ends in a goal state while avoiding obstacles [77]— have matured, the community’s

focus has expanded to include richer classes of problems, including those grounded

in temporal logic. Temporal logic planning problems [9, 40, 136] extend the clas-

sical conception of motion planning in several ways, most notably by generalizing

the constraint of merely avoiding obstacles to any user-specified temporal or spatial

constraints, and by allowing the trajectory to be infinite. Progress on these prob-

lems has been achievable thanks, first, to the maturity of temporal logics, primarily

Linear Temporal Logic (LTL), which allow the user to use simple, high-level logical

formulas to express complex missions; and second, to the maturity of model check-

ing techniques that enable the robot to automatically make plans for those missions.
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Figure 1.3: a) An environment in which a mobile robot patrols the bathroom and
the kitchen such that each must be visited infinitely often. b) A transition system
model of this environment.

Temporal logics, including linear temporal logic (LTL) specifically, offer high-level,

user-friendly languages for specifying complex missions and tasks. In fact, as simple

and intuitive as temporal logic is for humans to understand, it is also precise and

rigorous for robot algorithms to manipulate.

In this dissertation, we consider a temporal logic planning problem in which a

robot is tasked to accomplish a mission specified by an LTL formula while optimally

satisfying a set of additional, possibly conflicting, logical formulas. These extra con-

straints could be user preferences, safety rules, soft goals, or other constraints.

We illustrate the idea using an example in which the soft logical formulas are used

for specifying user preferences. Consider the environment in Figure 1.3a, in which

a mobile robot in a home is tasked to patrol the kitchen (k) and bathroom (h) to

detect water leakage. This environment is modeled as a transition system, as shown

in Figure 1.3. The patrolling mission for this robot can be characterized as “visit the

bathroom and the kitchen, each one infinitely often,” expressed in the LTL formula

�♦k ∧�♦h.

Such a mission can, in general, be satisfied by many plans. But the user may

prefer, if possible, some additional properties to hold on the robot’s plan. Therefore,
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he or she may, in advance, guide the planner by specifying their preferences. The

planner must generate a plan that satisfies these preferences, if it is possible to do so.

For example, the user of the robot in Fig. 1.3 might have preferences such as:

(a) “The robot should not go into room d1.”

(b) “The robot should not go into room d2.”

(c) “If the robot enters a bedroom d1 or d2, it should first put in the slippers from

the closet c.

In general, it will not be possible for the robot to satisfy all of the specified preferences

at once. We assume, therefore, that the user has specified the preferences in order of

importance, from most important to least important.

We are interested in planning algorithms that allow the robot to complete its mis-

sion while satisfying as many of the preferences as possible, subject to the stipulation

that a higher priority preference should not be sacrificed in order to satisfy lower-

priority preferences. In our example, an optimal trajectory would, starting from l,

travel to c, then alternate between k and h, traveling via d2. This infinite trajectory

would satisfy preferences (a) and (c), but not (b). Note that no trajectory can satisfy

all three of the given preferences.

Overview of results

In this dissertation, we present two general formulations of this type of problem, in

both of which the overall mission is specified as an LTL formula but in one of them the

soft specifications are expressed as an ordered list of formulas in linear dynamic logic

for finite traces (LDLf ), while in the other one, the soft specifications are expressed

as an ordered list of LTL formulas. Because by LDLf we are able to specify only

finite traces but not infinite traces, we use LDLf to impose constraints on the finite
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prefixes of the infinite trace that satisfies the LTL formula. In this case, the LDLf

can be used for specifying safety rules or user preferences on how the mission must

be completed.

A limitation of the first problem is that the LDLf soft constraints cannot express

soft goals that are satisfied only by infinite (rather than finite) trajectories. As an

example, a task that requires the robot to infinitely often check the first bedroom

cannot be expressed by an LDLf formula.

The second problem also can be used for situations where an LTL task cannot be

accomplished by a robot because the specifications are conflicting or merely because

of physical limitations. The idea is to decompose the LTL task into smaller tasks,

and let the user to prioritize the smaller tasks so that the robot follows a trajectory

that satisfies an optimal selection of those tasks.

The difference in the language used to express the soft constraints not only im-

proves the expressivity of the approach, but it leads to significant (and new, compared

to the LDLf case) algorithmic challenges.

Again we use an automata-theoretic approach to solve these two variants of tem-

poral logic planning. In both, the system is modeled using a transition system. LTL

formulas are converted into Büchi automata while LDLf formulas are converted into

DFAs. In both cases, the product automaton made from the automata and the transi-

tion system is treated a Büchi automaton, on which we compute a lasso for a solution

of our problem.

1.5 Planning to chronicle with soft constraints

One limitation of our initial formulation of the planning to chronicle problem is that

the user specifies only the temporal aspect of desirable event sequences and it does

not specify spatial constraints on how an event sequence must be captured. As an
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example, for an event that can take place in several locations in an environment, the

user might want the robot to record that event only in some of those locations. Also,

the user might want the robot to avoid visiting certain locations in the environment or

impose more complex, temporal and spatial constraints on the movement of the robot

in the environment, and some of those constraints might be conflicting. The aim of

this problem is to allow the user to specify not only the desirable event sequences

but also the robot’s motion in the environment and that there might be preferences

or conflicting soft constraints on how to record a desirable event sequence.

Overview of results

To illustrate, consider a wildlife reserve shown in Figure 1.4. This wildlife reserve has

four main locations, a veld, v; a command post, c; a jungle, j; and a riverside, r. In

this wildlife reserve, a pride of lions, a troop of baboons, a flamboyance of flamingos,

and a gang of buffaloes live. Events of interest in this example are lions-hunting-

a-buffalo, lo; lions-eating-an-impala, li; lions-eating-a-baboon, lb; baboons-hunting-

an-impala, bi; an-alligator-eating-a-baboon, ab; an-alligator-eating-an-impala, ai; and

two-flamingos-mating, fm. The story along with the hard spatial-temporal constraints

are specified using an LDLf formula. An example is a story in which first either an

alligator eating an impala or a lion eating an impala and then a lion is eating a buffalo

in the veld and the story also contains either two flamingos mating or an alligator

eating a baboon and the the robot does not stay in the jungle for more than two hours.

This story is specified using the LDLf formula ϕ1 = 〈true∗〉((ai|li)∧〈true∗〉(lb∧v))∧

〈true∗〉(fm ∧ ab) ∧ [true∗]((j ∧ 〈true〉j)→ ¬〈true; true〉j). This formula specifies not

only the story but also how the story is captured. It also imposes a constraint on the

movement of the robot.

Apart from the LDLf formula, a list of ordered soft constraints is given. Some of

those soft constraints might be conflicting. This extension of our planning to chronicle
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problem has two objectives. One objective is to minimize the expected number of

steps to record a desired story and the other objective is to minimize the expected

cost of violation of the soft constraints, that is, the robot must synthesize a policy

that guarantees to violate the soft constraints with lower priorities if it has to violate

some of the constraints.

Solving this problem needs to compute a set of Pareto optimal polices rather than

a single optimal policy, and computing that set is a challenge problem considering

that even for very small instances of the problem it might not be feasible to compute

the set of all those policies.

1.6 Sensor selection for detecting deviations

from a planned itinerary

Suppose an agent asserts that it will move through an environment in some way.

When the agent executes its motion, how does one verify the claim? The problem

arises in a range of contexts including validating safety claims about robot behavior,

applications in security and surveillance, and for both the conception and the (phys-
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ical) design and logistics of scientific experiments. Given a set of feasible sensors

to select from, we ask how to choose sensors optimally in order to ensure that the

agent’s execution does indeed fit its pre-disclosed itinerary.

Determining how agents within an environment are behaving and understanding

that behavior, for instance by recognizing whether it fits some pattern, is crucial to

the problem of situational awareness, which broadly encompasses agent detection and

tracking, activity modeling, general sense-making, and semantically-informed surveil-

lance. It forms an important capability for intelligent systems and is a topic of interest

for the robotics community for at least three reasons. First, as information consumers:

such information could enhance the ability of a robot to act within context, improving

the responsiveness and appropriateness of robot actions to other events. Secondly, as

information producers: we may wish to task a robot with providing raw sensor infor-

mation to enable coverage and facilitate such situational awareness. The third reason

is one shared of technical interest: the methods and algorithms that enable such sit-

uational awareness have substantial overlap with those used for estimation on-board

robots and, historically, cross-pollination between the two has been fruitful. This

problem fits within the vein of work concerned with guarding an environment [99],

though is closer to the minimalist spirit of [144] both in terms of sensors—we adopt

a simple model well suited to information-impoverished sensors such as occupancy

and beam sensors—but also in the use of combinatorial filters—for fusing sequential

observations and estimating state.

Overview of results

This problem was inspired by Yu and LaValle [167], who consider the question of

validating a story: given a polygonal environment, a claimant provides a sequence

of locations which they assert to have visited and the system is tasked with deter-

mining whether a given sequence of sensor readings is consistent with that claim.
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a) b) c)
Figure 1.5: Three quite distinct settings but which can be treated via the formulation
described in this chapter. a) Wishing to ensure that claims made about a particular
robot’s behavior will hold, an engineer chooses to instrument her laboratory’s testing
environment (in this case, with a set of motion tracking cameras) so she can subject
it to adequate scrutiny. b) An ornithologist would like to test a new hypothesis
concerning the migration patterns of a species of bird, so assesses the cost of acquiring
tracking capabilities with adequate power of discernment. c) Rather than purchasing
sensors to maximize coverage, if benign activities can be precisely characterized, then
negating that description permits surveillance which is sufficient to identify anomalous
activities but with far fewer sensors.

That is, does the sensor history contain any evidence that the given sequence of lo-

cations was in fact not visited? First in [167], and then, with several refinements

and under weaker assumptions, in the follow-up [168], Yu and LaValle provide an

efficient method for this problem. Their approach is sound and complete in that it

identifies inconsistencies between the story and the sensed history if and only if such

inconsistencies exist. However, the strength of the validation (or, more correctly,

the method’s inability to invalidate) must be understood modulo sensor data. The

faculty to detect contradictions depends critically on sensor history, on the evidence

that the sensors provide. The more limited the sensing, the fewer fibs you can catch.

A natural concern, then, is how to choose sensors. Suppose that the given story

describes a pre-declared itinerary, a future path or structured collection of possible

paths through an environment. Now, given a set of possible sensors one could deploy,

when some path has been executed, which ones suffice to detect deviations from the

itinerary? The present work considers an optimization variant where we ask for a

minimal set of sensors that can accomplish this. Fig. 1.5 illustrates the breadth of use
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cases for this scenario, in which the goal is to ensure detection of all deviations. It is

important to note that with a given environment, given itinerary, and set of sensors,

this may be impossible—the whole set of sensors may be inadequate. A concrete sort

of application, based on selection of a suite of beam and occupancy sensors in an

indoor environment, appears in Fig. 9.1.

1.7 Dissertation organization

This dissertation contains results from previous work by Rahmani and O’Kane [106–

110]; Rahmani, Shell, and O’Kane [111–113]; Zhang, Rahmani, Shell, and O’Kane [171];

The organization of this dissertation is as follows. Chapter 2 reviews related

work. Chapter 3 studies FM and FPM through covering and equivalence relations

identifying mergeable states. Chapter 4 presents four integer linear programming

formulations of FM and FPM. Chapter 5 concerns the problem of using autonomous

robots to capture a structured video from the events occurring in an unpredictable

environment. Chapter 6 addresses temporal logic planning with LTL hard specifi-

cations and LDLf soft constraints. Chapter 7 studies temporal logic planning with

LTL hard specifications and LTL soft constraints. Chapter 8 combines ideas from

Chapter 5 and Chapter 6. Chapter 9 studies optimal sensor selection for detecting

deviations from a planned itinerary. Chapter 10 concludes remarks and draws several

future directions.
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Chapter 2

Related work

2.1 Filter minimization problem

Building on a foundation of prior work on minimalism in robotics [37, 50, 87], com-

binatorial filters were originally formulated by LaValle [77, 78]. The key idea is to

make, from the data accessible to the robot, a smallest abstraction still adequate to

solve a given task.

Interest in forming combinatorial filters that are minimal, in the sense of minimiz-

ing the number of states, is motivated not only by the reduction in resources needed to

execute such filters, but also by the insight into the nature of the underlying problems

that arises from identifying the information required to solve those problems. The

problem of performing this reduction automatically was first studied by O’Kane and

Shell [98, 100], who proved via a reduction from the graph 3-coloring problem that

the filter minimization problem is NP-hard. Saberifar et al. [125] showed that several

special cases of filters, including tree and planar filters, remain hard to minimize,

and that the filter minimization problem is NP-hard even to approximate. Recently,

Zhang and Shell [172] proved that FM can be solved by finding a covering of the

filter’s state space and then presented an algorithm that uses a SAT formulation to

compute an exact solution to FM. In that work, the number of constraints of the SAT

formula was exponential in the size of the input filter in the worst case. Our own

prior work [108] proposed three different integer linear programming formulations of

the filter partitioning minimization (FPM) problem, a variant of FM in which it is
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required the reduced filter to partition the state space of the original filter. Recent

work by Zhang, Rahmani, Shell, and O’Kane [171] proposed a SAT and an integer

linear programming formulation of FM with only a polynomial number of constraints,

which improves upon the previous formulation in [172]. The SAT formulation is im-

proved even further by letting the constraints to be added to the formula lazily, only

when the current solution is not a deterministic combinatorial filter.

In this work we also study the connection between filter minimization and the

well-known notion of bisimulation, which is widely used in many fields for minimiza-

tion other discrete structures. Bisimulation was discovered independently in at least

three different fields: in modal logic, by van Benthem [153]; in process theory, by

Milner [94] and Park [102]; and in set theory, by Forti and Honsell [44] (See the

elaboration of Sangiorgi [127] upon the origins of bisimulation and simulation.) It is

currently used across many fields, including automata and language theory [121,123],

coalgebra and coinduction [43, 124], and dynamical and control systems [54, 154].

Generally speaking, bisimulation can be used for at least two purposes: either to

prove that two objects are behaviorally equivalent, or to minimize the size of a struc-

ture by forming the quotient under the coarsest bisimulation equivalence relation

between elements of the original structure. This dissertation focuses on the latter

application. Computing this coarsest bisimulation equivalence relation is generally

performed using partition refinement algorithms [64,101]. Details about bisimulation

quotient algorithms appear in the survey by Cleaveland and Sokolsky [27].

We also establish a connection between filter minimization and the notion of sim-

ulation. The original notion of simulation was introduced by Milner [91–93], and later

refined by Park [102]. This notion—which unlike bisimulation, is “uni-directed”—is

used to prove that an object (for example, a state or a transition system) mimics an-

other object; to show that a system is a correct implementation of a smaller, abstract

system; and to make a smaller structure who with the original structure mutually
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simulate each other. In the latter case, the smaller structure is obtained by making

the quotient of the original structure under the simulation equivalence relation—the

equivalence kernel of the largest simulation relation over the state space of the origi-

nal structure. Various algorithms for simulation-based minimization and computing

the largest simulation relation have been suggested by Cleaveland et al. [26], Hen-

zinger et al. [57], Tan and Cleaveland [141], Ranzato and Tapparo [116], Bustan and

Grumberg [13], Ranzato [115], and Gentilini et al. [47]. The algorithm of the latter

was later corrected by van Glabbeek and Ploeger [155].

In the context of transition systems, apart from simulation equivalence and bisim-

ulation equivalence, a variety of other kind of notions of equivalence on the state space

of transition systems, including trace equivalence, failure equivalence, and readiness

equivalence, among many others, have been introduced. For surveys, see [32, 52, 134,

156,157].

The idea of using (bi)simulation-based equivalences for state space reduction have

been used for a variety of other structures than transition systems, including tree

automata [1,1,59], Markov chains [4], Markov decision processes [49], fuzzy transition

systems [165], and timed systems [103].

2.2 Planning to chronicle

Our interest in understanding robot behavior in terms of the robots’ observations of

a sequence of discrete events is, of course, not unique. One of the related problems

is the story validation problem [167, 168], which can be viewed as an inverse of our

problem. The aim there is to determine whether a given story is consistent with

a sequence of events captured by a network of sensors in the environment. In our

problem, it is the robot that needs to capture a sequence of events that constitute a

desired story.
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Video summarization is the problem of making a ‘good’ summary of a given video

by prioritizing sequences of frames based on some selection criterion (importance, rep-

resentativeness, diversity, etc.). Various approaches include identifying important ob-

jects [79], finding interesting events [53], selection using supervised learning [51], and

finding inter-frame connections [84]. For a survey on video summarization see [150],

which one might augment with the more recent results of [61, 85,104,170]. Girdhar

and Dudek [48] considered the related vacation snapshot problem, in which the goal

is to retain a diverse subset from data observed by a mobile robot. However, in such

summarization techniques, the problem is essentially to post-process a collection of

images already recorded. This dissertation, by contrast, addresses the problem of

deciding which video segments the robot should attempt to capture in the first place.

For text-based and interactive narratives, a variety of methods are known for

narrative planning and generating natural language stories [117,118].

Closely related research is [133], which introduces the idea of using a team of au-

tonomous robots, coordinated by a planner, to capture a sequence of events specifying

a given narrative structure. That work raised (but did not answer) several questions,

among which is how the robot can formulate effective plans to capture events rel-

evant to the story specification. Here we build upon that prior effort showing how

such plans can be formed in a principled way.

Related to our problem are also the theories of Markov decision processes (MDPs)

and partially observable Markov decision processes (POMDPs), which are surveyed

in [12,77,120,131]. Our problems for planning to capture events in an unpredictable

environment reduce to planning on product automata that are constructed from the

inputs of the problems, and each of those product automata is either an MDP or a

POMDP, depending on the amount of information available to the robot.
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2.3 Temporal logic planning with conflicting

soft specifications

A vibrant community of researchers has been investigating the use of formal methods

to plan the motions of robots for some time. Such techniques play an established and

growing role in robotics for specifying the robots’ goals, verifying correctness of parts

of systems, and synthesizing controllers with desired properties [24, 28, 33, 41, 42, 56,

67,95,114,135]. A recent survey by Kress-Gazit, Lahijanian, and Raman reviews the

current status of the field [72].

Our temporal logic planning is related to, but distinct from, several threads of

prior work, which consider temporal logic planning in situations where no plan satis-

fying a given temporal logic formula can be synthesized. Fainekos [39] introduced an

LTL revision problem, which, upon failures to plan a trajectory for an LTL formula,

provides information about why that failure occurred, and how the LTL formula can

be revised so that the transition system has a satisfiable trajectory for the revised

formula. Kim et al. [67, 68] consider the minimal revision problem (MRP), which

aims to find for a given specification (Büchi) automaton, a “closest” specification

automaton for which the system has a trajectory. They prove that MRP is NP-hard,

and then provide a SAT-based encoding and a heuristic algorithm for solving MRP.

Lahijanian et al. [75] propose, based on a user-defined priority over atomic proposi-

tions, which they assumed to be low level tasks, an approach to measure how “close”

is a trajectory to satisfy a given formula, and accordingly, propose an algorithm that

generates a trajectory that has the minimum distance to the satisfaction of that given

formula. Lahijanian and Kwiatkowska [76] later extended that idea for probabilistic

environments modeled by MDPs.

Two recent results by Dimitrova et al. [35] and Tomita et al. [143] consider a

problem, called maximum realizability problem, which is a synthesis problem from a
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hard constraint and a set of soft constraints in the form of LTL formulas. The aim

of this problem is to synthesize a reactive transition system (rather than a trajectory

within a transition system). They consider the case where the soft constraints are

of a specific kind of LTL formulas, those who assert that something globally holds.

Their ideas are based on optimally refining or relaxing the soft specifications such

that the resulting soft specifications along with the hard specification are realizable

by a reactive transition system.

The closest work to our LTL planning with soft LTL constraints is by Tumova

et al. [151], who address a similar problem but without the hard constraint; they

consider the problem of making a trajectory that maximizes the sum of rewards

from satisfying a set of conflicting LTL formulas. Their algorithm first makes a

generalized Büchi automaton for each LTL formula, and then from those automata,

using the idea of converting a generalized Büchi automaton to a Büchi automaton [5],

it makes a transition-weighted Büchi automaton, in which the Cartesian product of

the state spaces of the automata are copied into different layers, a layer for each of

the original automata, to keep track of the set of LTL formulas for which a run over

the automaton is satisfying. From this transition-weighted Büchi automaton and the

transition system, a product automaton is constructed, on which an accepting lasso

is synthesized using a modified version of nested-DFS [29]. Our algorithm, which

is simpler, constructs a state-weighted (rather than a transition-weighted) product

automaton, and then uses a greedy approach to synthesize on this product automaton,

a short accepting lasso with minimum weight; we prove that an accepting lasso with

minimum length and weight is computationally hard to find.

Our synthesis process over this product automaton is performed in two passes,

first is the one-pass DFS of Tarjan’s algorithm [142] to compute the set of strongly

connected components (SCCs) of the product automaton, and second is a pass that

synthesizes the prefix of the lasso as a simple path from the initial state to a leader
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of a SCC with minimum weight and the suffix of the lasso as a cycle within that SCC

using BFS iteratively. The work of Tumova et al. [151] does not consider synthesis

of a shortest accepting lasso. Two other results from the same authors [20, 152]

consider for the classical setting of path planning, generating a finite trajectory that

minimizes the amount of time the robot deviates only the less important ones of a

set of conflicting safety rules. This problem is for finite trajectories and is treated

differently.

Smith et al. [136] consider synthesizing an optimal trajectory satisfying an LTL

formula. The generated plans are optimal in the sense of minimizing the maximum

time delay between visiting states of a certain property. Our approach uses a different

optimality criterion, based on user-specified preferences.

Finally, recent work by Wilde et al. [163] and by Nardi and Stachniss [97] shows

how to elicit and exploit users’ preferences about the robot’s movements through its

environment.

2.4 Planning to chronicle with soft constraints

There are several related work to this extension of our problem. Fu [45] consid-

ered preference planning over temporal goals in stochastic environments modeled

by MDPs. She first proposes a general model, using a finite automaton, to specify

preferences over temporal goals and then uses a mixed integer linear programming

formulation to solve the problem of maximally satisfying the preferences within a

finite-time execution. This problem, unlike our problem, does not require computing

the set of Pareto optimal polices.

Cai et al. [16] consider an LTL planning problem in probabilistic environments,

modeled by probabilistic MDPs, with two objectives where one objective is to max-

imize the probability of satisfying an LTL formula and the other objective is to
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minimize the execution cost of the policy. They also consider a similar problem [15]

where the transition probabilities of the MDP are unknown to the robot. For this

problem, they provide a learning-based strategy.

The settings of these two problems are different from the setting of our problem

in several respects: the tools used to model the environment, the languages used to

specify the mission, and the objectives to optimize. In addition, these two problems,

unlike our problem, do not involve satisfying an ordered list of soft specifications.

They also consider in [14], temporal logic planning in deterministic environments

with time-varying rewards that are only locally observable to the robot. The aim of

this problem is to synthesize a trajectory that minimizes the violation of an LTL soft

formula and maximizes accumulated reward during operation while nonetheless sat-

isfying an LTL hard formula. This problem was treated differently than our problem

and a single trajectory rather than a set of Pareto optimal trajectories was computed

for it.

The problem of computing a policy that maximizes the probability of satisfying

an LTLf formula on a given MDP by Wells et al. [162] is also related. They compare

the scalability of two approaches. This problem is not a multi-objective minimization

problem and is reduced to the problem of synthesizing a policy that maximizes the

probability of reaching the goal states of a product automaton treated as an MDP.

Related are also the problems of computing optimal policies for multi-objective

MDPs (MOMDPs), MDPs with multiple reward functions, with lexicographic pref-

erences over the rewards. For an example, see the work of Wray et al. [164]. Those

problems usually do not require to compute a set of Pareto optimal polices but only

an optimal policy.

Li et al. [81] considers planning with preferences over multiple LTL goals, and this

problem also does not require computing a set of Pareto optimal polices.

Our problem reduces to the problem of computing the set of Pareto optimal
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polices for a given multi-objective Markov decision process (MOMDP), and there are

a variety of methods for computing such polices. See [119] for a survey. We chose

the convex hull value iteration algorithm, by Barrett and Narayanan [6], among those

methods for our implementation and combine this method with the idea of Mandow

et al. [86].

2.5 Sensor selection for detecting deviations

from a planned itinerary

The problem of reducing the sensor readings needed to establish some property has

been the subject of extensive study in the discrete event systems literature (see the

survey by Sears and Rudie [129]). That literature distinguishes sensor selection

(e.g., [55]) from sensor activation (e.g., [19, 161]). The former considers, as stud-

ied in this dissertation, a one-shot decision at initialization of whether to adopt a

sensor or not; the latter is an online variant that switches sensors on/off across time.

This dissertation aims to fill the niche between such sensor-oriented work and the

problem of story validation (as exemplified by Yu and LaValle [167,168]).

The NP-completeness of minimal sensor selection for the properties of observability

and diagnosability [126] was established by Yoo and Lafortune [140]. Recently, Yin

and Lafortune [166] proposed a general approach to optimizing sensor selection that

applies to a very wide set of problems and subsumes several previous methods. Their

approach is capable of enforcing what they term ‘information state-based properties,’

essentially arbitrary predicates defined on states, which allow one treat a variety of

fault detection and diagnosis tasks (including observability and diagnosability). Our

itinerary validation problem, however, doesn’t fall within this class as it is not enough

to ask whether a state is visited or not; specific transitions between states matter too.

The characteristic that differentiates itinerary validation is that the basic mathe-

26



matical objects under consideration are trajectories. This emphasizes an important

distinction between language- and automata-based properties (cf. our [111, 113]),

with fairly subtle implications for our model and approach. Itineraries will be taken

to describe sequences of edges and in order to relate the world’s structure to those

sequences, we will form a product. That product may partially unroll or unfold the

world, so that the choice of a sensor can affect elements less ‘locally’ than one might

naturally expect. One implication for the model is that we directly treat situations

where multiple sensors may be selected as a single logical unit as this occurs in the

product anyway. Thence, the further implication is that our computational complex-

ity (hardness) result utilizes a cover selection problem directly.
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Chapter 3

Notions of equivalence for state space

minimization of combinatorial filters

In this chapter, we study the filter minimization (FM) problem and the filter par-

titioning minimization (FPM) problem through the lens of relations on the state

space of the original filter that specify pairs of mergeable states. We address FM

and FPM by considering several distinct state-equivalence relations in the context of

those problems. Figure 3.1 shows the connection between all those relations we study

here. A detailed diagram of our contributions in this chapter appears in Figure 3.2.

The material of this chapter is based on the results of our work Rahmani and

O’Kane [106,110].

The organization of this chapter is as follows. In Section 3.1, we present the use

of combinatorial filters for several robotic tasks. In Section 3.2, we present the formal

definitions of the problems we study; In Section 3.3, we characterize exact solutions

to FM and FPM; In Section 3.4, we show that for some filters, the difference between

the sizes of the optimal solutions to FM and FPM can be in the order of the size

of filter. In Section 3.5, we show that, though the bisimilarity relation always yields

feasible solutions to both FM and FPM, it fails to produce optimal solutions for

some filters. In Section 3.6, we introduce a variant of our problem that is solvable

using the notion of bisimulation. In Section 3.7, we establish a connection between

simulation and filter minimization. In Section 3.8, we introduce two relations, the

union of all compatibility relations and the mergeability relation, that are useful for
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Figure 3.1: a) A Venn diagram showing the connection between the bisimilarity
relation ∼F , the union of all compatibility relations fF , and the mergeability relation
./F for a typical filter F with state space V . Note that it is possible that two or all
these three relations coincide for some filters. b) A Venn diagram, over the space
of state-state relations, showing the relationships between the set of all bisimulation
relations (B), the set of all compatibility relations (C), and the set of all compatibility
equivalence relations (M) for a typical filter F with state space V .

identifying some classes of filters for which FPM or FM is solvable in polynomial

time. In Section 3.9, we describe several classes of filters for which FM or FPM is

solvable in polynomial time.

3.1 Combinatorial filters for robotic tasks

In this section, we present several examples.

A minimal motivating example

Before previewing our technical results, let us examine a simple example that illus-

trates the idea of state space minimization of combinatorial filters. Figure 1.2 shows

the setting, inspired by the work of Tovar et al. [148], where the aim is to construct a
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Figure 3.2: The connections between problems we study in this chapter and notions
we provide to solve those problems. The main problem we study is FM, but we also
study two stronger variants of it, FPM and SFM. FM and FPM are NP-hard, while
SFM is in P. To solve FM and FPM, we introduce the notion of compatibility, which
is a relaxed variant of bisimulation. The diagram shows the connection between this
notion and optimal solutions to FM and FPM. In addition, it shows the connection
between the notion of bisimulation to those three problems, while establishing a
connection between the notion of simulation and those problems. It also shows three
special relations, the bisimilarity relation, the union of all compatibility relations,
and the mergeability relation.

combinatorial map of the environment and perform various tasks such as patrolling

and navigation using robots with extremely simple sensors.

Suppose a mobile robot moves in an environment in which there are four land-

marks 1-4. The robot does not know its location and it does not have a compass

nor any odometer, but it does have a sensor by which it can sense the cyclic order

of landmarks as observed from its current position. That is, the sensor reports the

order in which the landmarks would be observed in a counterclockwise scan starting

(without loss of generality) at the landmark with the smallest number. To illustrate,

suppose the robot is located as shown in Figure 1.2a, at a location in region a. From

that position, the sensor reads 1243 as the cyclic order of landmarks.

Figure 1.2 shows a (virtual) decomposition of the environment into ten regions

a-j, where each region is a set of positions from which the robot sees the same cyclic
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order of the landmarks. Notice that such a decomposition is obtained by a set of half

lines, in which each half line is created for two landmarks whose order is swapped in

the cyclic order observed by the robot if the robot crosses that half line.

The task of the robot in this example is to determine at any time, based on the

information it receives through sensing the cyclic order of landmarks, whether it is

located in region f or not.

A naïve combinatorial filter for this task appears in Figure 1.2b. Each of the

fifteen states in this filter corresponds to a set of possible regions that might contain

the agent. Edges indicate changes to that set that result from changes of the robot’s

perception of the landmarks’ cyclic order. Colors on the states indicate the filter’s

output, with the darker node corresponding to certainty that the agent is in region f

and the lighter nodes indicating otherwise.

For the original filter in Figure 1.2b, FM has only one optimal solution, with

3 states. This optimally-reduced filter, which is shown in Figure 1.2c, is also an

optimal solution to FPM; note that the state space of the reduced filter partitions

the state space of the original filter in the sense that each state in the original filter

is mimicked by only a single state (rather than several states) in the reduced filter.

In regard with FM, it is possible that several states in the reduced filter together

play the role of a state in the original filter. This optimal solution in Figure 1.2c

is not only preferred to the naïve filter for the robot to keep but it also reveals the

fact that perhaps surprisingly the sensor reading ’1423’ corresponding to region d,

which is not adjacent to the target region f , is a crucial one for the robot to achieve

its task. In contrast, applying the technique of bisimulation minimization does not

reduce the state space of the original filter at all. In Theorem 3, we describe a class

of combinatorial filters on which bisimulation minimization does not reduce the state

space of the original filter at all, whereas the optimally reduced filter has only two

states.
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Figure 3.3: a) A map of the third floor of ACES building of University of Texas
at Austin [7, 8, 96]. The map is overlaid with the generalized Voronoi graph (GVG)
of the environment in red. b) A simple environment and its GVG for illustration
purposes. c) A naïvely-constructed combinatorial filter, which the robot can use
to navigate through the environment in part b) to reach point 3, starting from full
location uncertainty.

An example of a combinatorial filter as a plan

In the specific example we consider here, a combinatorial filter is used to navigate

in an environment, using an approximated generalized Voronoi graph (GVG) of the
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environment to reach a goal location, starting from full location uncertainty. For

an example, see in Figure 3.3 a map of a typical university building [7, 8], which we

have augmented with its GVG in red. We have also shown a simpler environment

with its GVG in Figure 3.3b for illustration. Figure 3.3c shows a naïvely-constructed

combinatorial filter, which the robot can use to navigate through that environment

to reach point 4, starting from full location uncertainty. Each state of this filter

represents a set of possible locations in which the robot can be. Each location is

written in the form AB to mean that the robot has arrived at junction A from junction

B. Each state is labeled with an angle (0, π/2, π, etc), which is, in fact, the output

or the color of the state, and tells the robot which corridor to follow. For example,

angle 0 tells the robot to go straight, while angle π tells the robot to turn around

and follow the corridor from which it has entered the junction. Each transition of the

filter shows how the state changes in response to those movements. Each transition is

labeled with an observation which consists of a list of directions the robot can observe

to leave the next junction. For example, the label of the transition from state ’all’

to state 21 is {0, π, π/2}, which means that when the robot is entering junction 2

from junction 1, the set of all possible directions it observes to leave junction 2 are

{0, π, π/2}. The robot executes the plan represented by a filter by repeatedly doing

the movement associated with the current state, observing the set of all possible

directions in the junction using its sensor, and transitioning in the graph from the

current state using a transition labeled by the perceived observation.

Given a GVG and a goal location, there is a simple algorithm by which one can

make a naïve combinatorial filter the robot can use to navigate, starting from total

location uncertainty, to reach that goal location. Unfortunately, those naïvely con-

structed combinatorial filters can be big for real-world applications, but fortunately

filter reduction assists reduce resource consumption.
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Motivation for minimization

We now consider in Figure 3.4, a simple example, introduced by Tovar et. al. [147],

that shows a family of filters for which the minimal filter is much smaller than the

original filter. In this example two agents are located in a donut-shaped environment

divided into n regions by n sensor beams. The task of the system is to determine at

any time whether the two agents are in the same region or not. When an agent crosses

a beam, the system knows which beam it was, but it does not know which agent it

was, nor does it know if the crossing was clockwise or otherwise. We also assume

that at no time, the two agent simultaneously cross a single or two separate beams.

Let R = {1, 2, · · · , n} be the set of all regions and let (r, r′) be a tuple showing that

the first agent is in region r and the second agent is in region r′. Accordingly, the

set of all such tuples, i.e., the set of all possible region assignments, is A = R × R

and the set of all subsets of possible region assignments is I = pow(R × R). Each

element of I is a configuration the environment could be in, and accordingly, each

element of I represents a state of the naïve filter used for accomplishing the task of

the system. Subsequently, for each n, the naïve filter for a donut-shaped environment

with n regions has 2n2 − 1 states in the worst case (including some states that may

be unreachable). A minimal filter for accomplishing the same task of the naïve filter

has many fewer states. As an example, for an environment of 3 regions, the naïve

filter has 511 states while the minimal filter, as shown in the right side of Figure 3.4,

has only 4 states.

Note that although there is a process by which we can make a naïve filter for any

instance of this problem with any n, it is not known how we can make the minimal

filter for that instance. Subsequently, we need to make the naïve filter, but because

that filter is very big, we need to minimize it.

In the next section we formally define the problems we consider in this chapter.
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Figure 3.4: (left) A region divided by n sensor beams, in which two agents are
located. When an agent crosses a beam, the system knows which beam sensor it
was, but it does not know which agent it was, nor does it know the direction of
crossing. The agents do not simultaneously cross beams. The task of the system is to
determine at each time weather the agents are in the same region or not. (right)
The smallest filter the system can use for accomplishing its task for an environment
of 3 sensor beams.

3.2 Definitions

This section presents basic definitions used in this chapter and the next chapter.

We are interested in filters that model the behavior of a robot in response to a

discrete, finite sequence of observations. The following definitions are equivalent to

those introduced by O’Kane and Shell [100].

Definition 1. A filter is a 6-tuple (V, Y, C, δ, c, v0) in which:

• V is a finite set of states,

• Y is a set of possible observations, representing the input space of the filter,

• C is a set of outputs, sometimes called colors, representing the outputs produced

by the filter,

• δ : V × Y → V ∪ {⊥} is the transition function of filter,

• c : V → C is a function assigning to each state v ∈ V a color, and

• v0 ∈ V is the initial state.
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The set of all possible observation sequences is denoted Y ∗. Given an observation

sequence s = s1s2 · · · sn, we use si..j to denote the subsequence sisi+1 · · · sj. For each

i, the subsequence si..i of s represents the observation si. Filters are readily shown

as directed graphs, in which the states are vertices and edges are determined by the

transition function. Recall the examples in Figure 1.2b–c.

In this definition, we use symbol ⊥ to mean null, and if for a state-observation

pair (v, y) it holds that δ(v, y) = ⊥, then we mean that state v does not have any

outgoing transition labeled y. We interpret this to mean that we can be sure that

observation y will not, because of some structure in the robot’s environment, occur

when the filter is in state v. In the graph view, there would simply be no outgoing

edge from v labeled y.

Note that Definition 1 ensures that from any state, for any observation, at most

one transition can happen. The next definition makes this idea more precise.

Definition 2. Let F = (V, Y, C, δ, c, v0) be a filter, v ∈ V be a state, and s =

s1s2 · · · sn ∈ Y ∗ be an observation sequence where each si is a member of Y . We say

that s is trackable from v if there is a sequence of states q0, q1, ..., qn such that:

• q0 = v, and

• δ(qi, si+1) = qi+1 for all 0 ≤ i < n.

Notice in particular that if s is trackable from some state v, then the corresponding

state sequence q0, q1, ..., qn is unique. Given a state v ∈ V and an observation sequence

s ∈ Y ∗ trackable from v, we write δ∗(v, s) to denote the state reached by tracing s

starting from v. If s is not trackable from v, we write δ∗(v, s) = ⊥. For the empty

string ε, we define δ∗(v, ε) = v for all states v, and define that ε is trackable for all

states v. For a state v ∈ V , we use Sv to denote the set of all observation sequences

that end in v when traced from the initial state. i.e., Sv = {s ∈ Y ∗ | δ∗(v0, s) = v}
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We can now define the language of a filter, which plays a crucial role in filter

reduction.

Definition 3. The language of a state v, denoted L(v), is the set of all observation

sequences trackable from v. The language of a filter F , denoted L(F ), is the language

of its initial state: L(F ) = L(v0).

Before we can speak meaningfully about reduction of filters, we need a definition

of filter equivalence with respect to a language.

Definition 4. Let F1 = (V1, Y, C, δ1, c1, v0) and F2 = (V2, Y, C, δ2, c2, w0) be two

filters with the same observation space Y and the same color space C. Let L ⊆ Y ∗

denote a language of observation sequences. We say that F1 is equivalent to F2 with

respect to L, denoted F1
L== F2, if for any observation sequence s ∈ L:

• δ∗1(v0, s) 6= ⊥,

• δ∗2(w0, s) 6= ⊥, and

• c1(δ∗1(v0, s)) = c2(δ∗2(w0, s)).

This definition says that any observation sequence that is in L is trackable by

both F1 and F2, and that both of them produce the same output while tracing that

sequence. However, for observation sequences that are not in L, it does not say

anything about the outputs generated by the two filters, nor does it require that the

observation languages of F1 and F2 should be the same. The central problem this

work studies is called the filter minimization problem.

Problem: Filter minimization (FM) [100]

Input: A filter F .

Output: A filter F ∗ such that F L(F )==== F ∗ and the number of states in F ∗ is minimal.
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Notice that this problem allows the language L(F ∗) of the optimally reduced filter

to be a proper superset of the language L(F ) of the original filter. This is reasonable

because observation sequences in L(F ∗)−L(F ) will not occur, as we assumed above.

We also study a variant of FM in which we require the reduced filter to have a

special property which we define as follows.

Definition 5. Let F1 = (V1, Y, C, δ1, c1, v0) and F2 = (V2, Y, C, δ2, c2, w0) be two

filters. Denoted F1 $ F2, we say that F2 partitions the state space of F1 if for each

v ∈ V1, there is a single state w ∈ V2 such that for any observation sequence s ∈ Y ∗,

if δ∗1(v0, s) = v, then δ∗2(w0, s) = w.

We call this variant the filter partitioning minimization problem.

Problem: Filter partitioning minimization (FPM)

Input: A filter F .

Output: A filter F ∗ such that F L(F )==== F ∗, F $ F ∗, and the number of states in F ∗

is minimal.

FPM requires not only the reduced filter to produce for each observation sequence

trackable by the original filter, the same output produced for that observation se-

quence by the original filter but it also enforces that for each state s of the original

filter, only a single state in the reduced filter to play the role of s.

Because much of what follows deals with relations over the set of a filter’s states,

we will rely on some elements of standard notation for such relations.

For a given filter F , we use IF to denote the identity relation on the state set V

of F , i.e. IF = {(v, v) | v ∈ V }. If R ⊆ V × V is an equivalence relation on V , then

it partitions V into a set of equivalence classes. For any v ∈ V , the equivalence class

of v in R is denoted [v]R, so that [v]R = {w ∈ V | (v, w) ∈ R}. In particular, for any

v, w ∈ V , if (v, w) ∈ R, then [v]R = [w]R. Finally, the set of all equivalence classes of

R is called the quotient of V under R, denoted V/R.
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Figure 3.5: a) A sample filter F3. b) A minimal filter F4 such that F3
L(F3)==== F4 and

L(F3) = L(F4). c) A minimal filter F5 such that F3
L(F3)==== F5.

3.3 Filter minimization via quotient operations

In this section, we show how the process of filter reduction can be understood as a

quotient operation with respect to certain kinds of relations over the states of the

input filter.

Exact solution to FPM

Therefore, we must establish conditions on the relation that guarantee that this

merging operation makes sense.

The following definition establishes those conditions.
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Definition 6. Let F = (V, Y, C, δ, c, v) be a filter and let R ⊆ V × V denote a

relation over the states of F . We say that R is a compatibility relation for F , if for

any (v, w) ∈ R:

1. c(v) = c(w), and

2. for any y ∈ Y , if δ(v, y) 6= ⊥ and δ(w, y) 6= ⊥, then (δ(v, y), δ(w, y)) ∈ R.

Accordingly, two states are said to be compatible if they are related by a compat-

ibility relation. To illustrate the notion of compatibility, consider filter F3, depicted

in Figure 3.5. Some compatibility relations for F3 are R1 = ∅, R2 = {(v0, v1)}, and

R3 = {(v3, v2), (v5, v4), (v5, v5), (v2, v3), (v4, v5)}. 1

Now we can define the notion of a quotient filter with respect to a compatibility

equivalence relation.

Definition 7. For a filter F = (V, Y, C, δ, c, v0), and a relation R ⊆ V × V that is

both a compatibility relation and an equivalence relation (henceforth, a compatibility

equivalence relation), the quotient of F under R is the filter F/R = (V/R, Y, C, δ′, c′, [v0]R),

in which

δ′([v]R, y) =


[δ(w, y)]R if ∃w ∈ [v]R with δ(w, y) 6= ⊥

⊥ otherwise

and c′([v]R) = c(v).

Note that Definition 6 ensures that every transition in a quotient filter is well-

defined. Because R must be a compatibility relation, if two states v and w that share

some outgoing observation y are merged, then the resulting states δ(v, y) and δ(w, y)

must be merged as well. Consider filter F3 depicted in Figure 3.5. A compatibility

1Note that the notion of compatibility relation is different from the usual notion of simulation,
in that its second condition is weaker than is required of a simulation relation. In fact, two states
can be compatible (can exist in a compatibility relation) while neither of them simulates another.
We discuss simulation in more detail in Section 3.7.
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equivalence relation for this filter is R = IF3 ∪{(v3, v2), (v5, v4), (v2, v3), (v4, v5)}. The

quotient of F3 under this relation, F3/R, is filter F4, depicted in Figure 3.5.

The next lemmas establish that, though this quotient operation may increase the

language of the filter, it does not change the behavior, in the sense of Definition 4.

Lemma 1. For any filter F = (V, Y, C, δ, c, v0) and any compatibility equivalence

relation R for F , L(F ) ⊆ L(F/R).

Lemma 2. For any filter F = (V, Y, C, δ, c, v0) and any compatibility equivalence

relation R for F , F L(F )==== F/R.

Lemma 3. For any filter F = (V, Y, C, δ, c, v0) and any compatibility equivalence

relation R for F , F $ F/R.

Proof. Let us prove Lemmas 1, 2 and 3 all together. Assume F/R is defined according

to Definition 7. By induction on the length of observation sequences s ∈ Y ∗ we show

that if s ∈ L(F ) and δ∗(v0, s) = v for a v ∈ V , then δ′∗([v0]R, s) = [v]R. This

means that for each state v ∈ V , there is a single state w = [v]R in F/R such that

for each s ∈ L(F ), if δ∗(v0, s) = v, then δ′∗([v0]R, s) = w, which by Definition 5

means that F $ F/R, proving Lemma 3. It also implies that if s ∈ L(F ), then

s ∈ L(F/R), meaning that L(F ) ⊆ L(F/R), proving Lemma 1.Furthermore, the

conclusion that δ′∗([v0]R, s) = [v]R will imply that c(δ∗(v0, s)) = c′(δ′∗([v0]R, s)) given

that c(v) = c′([v]R) by Definition 7. This, coupled with Lemma 1 and Definition 4,

proves Lemma 2.

Now, we turn to the induction, which is illustrated in Figure 3.6. The statement

holds for the base case, i.e., s = ε, since by definition it holds that ε ∈ L(F ),

δ∗(v0, ε) = v0, and δ′∗([v0]R, ε) = [v0]R. Assume that the statement holds for all

observation sequences s with length k, and let s′ be any observation sequence with
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Figure 3.6: It illustrates the induction in the proof of Lemma 1, Lemma 2, and
Lemma 3. The induction is on the lengths of observation sequences and it states that
for each observation sequence s, if filter F reaches state v by tracing s from its initial
state, then filter F/R, the quotient of F under a compatibility equivalence relation
R, reaches state [v]R by tracing the same observation sequence from its own initial
state.

length k+1. If s′ ∈ L(F ), then s′ = sy for an observation sequence s with length k and

an observation y ∈ Y . Let δ∗(v0, s) = v for a state v. By the induction assumption, it

holds that δ′∗([v0]R, s) = [v]R. Now, we have that δ∗(v0, s
′) = δ(δ∗(v0, s), y) = δ(v, y),

and that δ′∗([v0]R, s′) = δ′(δ′∗([v0]R, s), y)) = δ′([v]R, y). Given that s′ ∈ L(F ), it

holds that δ(v, y) 6= ⊥. This by the definition of δ′ in Definition 7 implies that

δ′([v]R, y) = [δ(v, y)]R. Now, the inductive step is proved since and .

Next we prove that the state space of any can be seen as the quotient of the state

space of the original filter under some compatibility equivalence relation. Let the

input to FPM be a filter F1 = (V1, Y, C, δ1, c1, v0) and let F2 = (V2, Y, C, δ2, c2, w0) be

on optimal solution of FPM with input F1. Given that F1 $ F2, for each v ∈ V1 there

exists a single state w ∈ V2 such that for any observation sequence s, if δ∗1(v0, s) = v,

then δ∗2(w0, s) = w. Let f : V1 → V2 denote that one-to-one mapping, i.e., for every

observation sequence s ∈ L(F1), δ∗2(w0, s) = f(δ∗1(v0, s)). We consider the following

results.

42



Lemma 4. Function f is surjective.

Proof. We prove that each state in F2 is mapped to by at least one state in F1 via

f . For the sake of contradiction, suppose that there exists a state z in F2 that is not

mapped to by f from any state in F1. There are two cases.

1. If no observation sequence that ends or passes through z is in L(F1), then we

can construct a new filter F3 from F2 by removing state z. Clearly, F1
L(F1)==== F3

and F3 has fewer states than F2. This contradicts the construction that F2 is

minimal.

2. If there exists an observation sequence s ∈ L(F1) that ends or passes through z

when traced in F2, then let k ≤ |s| be an integer such that δ∗2(w0, s1...k) = z. By

the structure of filters, and given that s ∈ L(F1), we conclude that s1...|s|−1 ∈

L(F1), s1...|s|−2 ∈ L(F1), . . . , and ultimately s1...k ∈ L(F1). This means that

z = f(δ∗1(v0, s1...k)), which is a contradiction.

Given such a function f , we define an equivalence relation Rf ⊆ V × V so that

(v, w) ∈ Rf if and only if f(v) = f(w). Note that there is a one-to-one correspondence

between the equivalence classes [v]Rf
of Rf and the states of F2.

Lemma 5. For any filter F1 and any with input filter F1, the equivalence relation

Rf they induce is a compatibility relation.

Proof. First observe that by the construction of Rf , for any v, w ∈ V , if (v, w) ∈ Rf ,

then v and w are mapped to a single state in F2. Let [v]Rf
be such a state. To

show that Rf is a compatibility relation, we prove that conditions (1) and (2) of

Definition 6 hold for any v and w for which (v, w) ∈ Rf . Suppose that condition (1)
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Figure 3.7: An illustration of the proof of Lemma 5. Filter F2 is a minimal filter for
which F1

L(F1)==== F2 holds. The state space of F2 corresponds to the quotient of the
state space of F1 under the equivalence relation Rf . The assumption for this relation
is (v, w) ∈ Rf but (r, t) /∈ Rf .

does not hold, that is, c1(v) 6= c1(w), which means c2([v]R) is different from c1(v) or

c1(w). Without loss of generality assume that c1(v) 6= c2([v]Rf
). Let s ∈ L(F1) be

an observation sequence such that δ∗1(v0, s) = v. By definition of f , we have that

δ∗2(w0, s) = [v]Rf
. But, c1(δ∗1(v0, s)) = c1(v) 6= c2([v]Rf

) = c2(δ∗2(w0, s)), which by

Definition 4 contradicts that F1
L(F1)==== F3.

Now suppose that condition (2) does not hold, which means that there exists

y ∈ Y , such that δ1(v, y) 6= ⊥ and δ1(w, y) 6= ⊥ but (δ1(v, y), δ1(w, y)) /∈ Rf . Let

r = δ1(v, y) and t = δ1(w, y). We argue that if this is the case, then F2 is not a

filter, which is a contradiction. Figure 3.7 illustrates this proof. Let s1 and s2 be two

observation sequences that end in v and w, respectively, when traced by F1. This

means that states v and w are in the same equivalence class of Rf , and thus, they

are mapped to a single state, such as [v]Rf
, in F2; hence, both s1 and s2 end in [v]Rf

when traced by F2. Consider also that observation sequences s1y and s2y end in r

and t, respectively, when traced by F1. Observe that from state [v]Rf
there should

be two outgoing edges with the same label y, one of which goes to [r]Rf
and another

goes to [t]Rf
. Because F2 is a filter, the only way to reach r by tracing s1y from the

initial state is to have an edge labeled by y, that goes from [v]Rf
to [r]Rf

. We can

use the same argument to prove that there should be an outgoing edge labeled by y
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that connects [v]Rf
to [t]Rf

. This implies that F2 has two edges labeled y from [v]Rf
,

a contradiction.

In particular, since Rf is both an equivalence relation and a compatibility relation

for F1, it is meaningful to consider the quotient filter F1/Rf . Moreover, F1/Rf is

structurally identical to the minimal filter F2. Of course, in the context of filter

partitioning minimization, F2 is unknown, so we cannot expect to compute F1/Rf

directly.

Nevertheless, the impact of Lemma 5 is that we can view the problem of filter

minimization as equivalent to the problem of identifying a suitable compatibility

equivalence relation with which to construct a quotient filter —there always exists

some such relation for which the quotient leads to the minimal filter. This directly

implies the following result.

Theorem 1. Let F be a filter and let R be a compatibility equivalence relation for

F with minimum number of partitions. The filter F ∗ = F/R is a minimal filter for

which F L(F )==== F ∗ and F $ F ∗ holds.

Proof. By Lemma 2 and that R is a compatibility equivalence relation, F L(F )==== F ∗.

If F/R is not minimal, that is if there is another filter F2 with fewer number of states

than F/R, then by Lemma 5, the relation R would not be a compatibility equivalence

relation with minimum number of equivalence classes.

Exact solution to FM

Zhang and Shell [172] proposed an algorithm for computing an exact solution to

FM. Their algorithm first constructs the compatibility graph of filter, which is an

undirected graph whose vertices are the states of filter and its edges connect pairs

of distinct compatible states. Then, it forms a SAT formulation that aims to find

45



Figure 3.8: a) A sample filter F . b) A minimal solution of FPM for filter F . c) The
minimal solution of FM for filter F .

a clique covering of the graph with minimum number of classes subject to a list of

zipper constraints where each constraint enforces that if a set of states are merged,

then the set of states they go by an observation must also be merged. An exact

solution to FPM is computed by finding over the same graph, a clique partitioning

rather than a clique covering. The difference between a partitioning and a covering

is that a state is assigned to one and only one class of the partitioning while a state

can be shared between two or several classes of the covering.

To see how this differentiates between an optimal solution to FM and an optimal
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solution to FPM, we use a filter similar to that Zhang and Shell [172] used to demon-

strate an optimal solution to FM. This filter, named F , is shown in Figure 3.8a. In

this filter, those states that are compatible are connected by dashed lines. In this

filter, states v1 and v2 are compatible, v3 and v4 are compatible, and v6 is compatible

with both v5 and v7. Note that v5 and v7 are not compatible with each other. FPM

with input F has two optimal solutions, in one of which, v6 is merged with v5, and in

the other one, v6 is merged with v7. Figure 3.8b shows the one in which v6 is merged

with v5.

FM for the same filter has a single optimal solution, which is shown in Figure 3.8c.

Note that because an optimal solution to FPM is computed by finding a partitioning

rather than a covering, in a solution to FPM state v6 is merged either with v5 or with

v7, while because an optimal solution to FM is computed by finding a covering, in the

optimal solution to FM, state v6 is split between two compatibility classes {v5, v6}

and {v6, v7}.

We now formalize an exact solution of FM via the notions of relation and covering,

but before that we first consider the following definitions.

Given a filter F = (V, Y, C, δ, c, v0), a compatibility class over V is a non-empty

set L ⊆ V in which each pair of states are compatible. A set of compatibility classes

M = {L1, L2, · · · , Lk} over V is closed if for every y ∈ Y and i ∈ {1, · · · , k}, there

exists a j ∈ {1, · · · , k} such that ⋃
v∈Li:δ(v,y) 6=⊥

δ(v, y) ⊆ Lj. We use ∆M(Li, y) to

represent one of such compatibility classes Lj. A closed covering for V is a closed set

of compatibility classes M = {L1, L2, · · · , Lk} such that for each v ∈ V , there exists

at least an integer i ∈ {1, · · · , k} such that v ∈ Li. Note that a closed covering for V

always forms a tolerance relation, a reflexive and symmetric relation, which is formed

by relating for each compatibility class of the covering, all pairs of states within that

class and also relating each state with itself.

Given a closed covering of the state space of the filter, we can form a quotient
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filter as follows.

Definition 8. For a filter F = (V, Y, C, δ, c, v0), and a closed covering M = {L1, L2, · · · , Lk}

of V , the quotient of F under M is the filter F/M = (M, Y, C, δ′, c′, L0), in which L0

is a compatibility class such that v0 ∈ L0, and for each L ∈M, δ′(L, y) = ∆M(L, y)

if ∆M(L, y) 6= ∅ and otherwise δ′(L, y) = ⊥, and c′(L) = c(v), where v is a state

within L.

Accordingly, an optimal solution to FM is obtained by computing a closed covering

with minimum number of classes.

Lemma 6. Let F be a filter with state space V and let M be a closed covering of V

with minimum number of compatibility classes. The filter F ∗ = F/M is a minimal

filter for which F L(F )==== F ∗ holds.

Proof. The proof, which we omit, combines similar results and proofs of Lemma 1,

Lemma 2, and Lemma 5.

Consider that any compatibility equivalence relation over the state space of the

filter is a closed covering of the state space, and therefore, any feasible solution to

FPM is also a feasible solution to FM. As result, any heuristic or greedy algorithm

for FPM can be used to compute a feasible solution to FM. The next section studies

how big the difference between the sizes of optimal solutions to FPM and FM can

be.
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3.4 Maximum difference between the sizes of

optimal solutions to FM and FPM

In this section, we show that there exist filters for which the difference between the

sizes of optimal solutions to FM and FPM can be in the order of the size of the filter.

Theorem 2. For any n ≥ 10, there exists a filter F with n states such that the

difference between the sizes of an optimal solution to FPM with input F and an

optimal solution to FM with input F is bn−6
4 c.

Proof. Let n be an integer such that n ≥ 10. We first consider the case where n− 6

is divisible by 4, that is, where n is one of the numbers 10, 14, 18, 22, 26, . . . . For that

n, we construct the filter F , which has n states, as shown in Figure 3.9a. This filter

generalizes the filter we used in Figure 3.8a. In fact, the number 10 in this theorem

comes from the fact that the filter in Figure 3.8a has 10 states and that the filter in

Figure 3.8a is the smallest filter within the family of filters described by Figure 3.9a.

To color the states of F , we have used n−6
2 +4 distinct colors: 1 color for v0; 1 color for

vn−1; 1 color for vn−2; 1 color for vn−5, vn−4, and vn−3; and the remaining n−6
2 colors

for v1 through vn−6. Note that the states in the second column, states v1 through

vn−6, appeared in pairs such that the two states of each pair have the same color.

Observe that in filter F , for each color, except color blue, all states with that color

are compatible.

The states that have color blue are vn−3, vn−4, and vn−5. States vn−3 and vn−5 are

not compatible with each other, but state vn−4 is compatible with each of them.

Each pair of the states that appear in the second column have the same color and

the two states within each of those pairs are compatible only with themselves, that

is, for each i ∈ {1, 3, 5, · · · , n− 7}, vi is compatible with vi+1 and only with vi+1.
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Figure 3.9: An illustration of the proof of Theorem 2. a) A sample filter F with n
states. b) An optimal solution of FPM with input filter F . c) An optimal solution
of FM with input filter F .
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Half of those pairs have outgoing edges to state vn−4 and vn−5, and the other half

have outgoing edges to vn−3 and vn−5. In an optimal solution to FPM, state vn−4 can

be merged with either vn−3 or vn−5. Part b of Figure 3.9 shows an optimal solution

to FPM. In that solution, state vn−4 is merged with vn−5, and as a result, of the

pairs in the middle column, only those who have outgoing edges to vn−4 and vn−5 are

merged. Accordingly, only half of the pairs in the middle column, or more precisely,
n−6

4 states, are merged in the optimal solution to FPM. The FM with input filter F

in this figure has only one optimal solution, which is shown in part c of this figure.

Consider that since an optimal solution of FM is obtained by finding a covering of the

state space rather than a partitioning of it, the states with color blue are split into

two compatibility classes {vn−4, vn−5} and {vn−4, vn−3}. State vn−4 is shared between

the two classes. Because of this, all pairs in the middle column are merged, and thus,

the optimal solution to FPM has n−6
4 states more than the optimal solution to FM.

Now consider the case where n ≥ 10 but n− 6 is not divisible by 4. In this case,

we can always choose integers n1 and j such that n = n1 + j, n1 ≥ 10, n1 − 6 is

divisible by 4, and j ∈ {1, 2, 3}. For example, if n = 13, then n1 = 10 and j = 3.

As another example, if n = 28, then n1 = 26 and j = 2. For this case, we make a

filter F1 with n1 states such that F1 has n1 states exactly in the form of filter F in

Figure 3.9a and j extra states to each of which there is one and only one transition

labeled yn1−6+j from state v0 to that state. We opt that none of those states to have

outgoing transitions. Additionally, we color those j extra states with j distinct colors

that are not used to color other states. None of these extra j states are compatible

with any other state. Accordingly, neither in the optimal solution to FM nor in an

optimal solution to FPM, those states are merged. Accordingly, for each filter F1,

the difference between the optimal solutions to FPM and FM is n1−6
4 . For this case,

it holds that bn−6
4 c = n1−6

4 , and as a result, the theorem is proved.

According to this theorem, a feasible solution to FPM, even an optimal one, does
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not necessarily give a good solution for FM. An impact of this is that FM, which

because of being an NP-hard problem we can hope to find in a reasonable amount of

time only feasible solutions of it for large filters, requires to be treated by heuristic

and greedy algorithms or other kind of techniques that are designed specifically for

FM, and those who are proposed for FPM may not compute high-quality solutions

for FM.

3.5 Bisimulation and filter reduction

In this section, we show that the well-known notion of bisimulation does not always

yield optimal solutions to FM and FPM.

In fact, one apparently reasonable hypothesis is that the notion of bisimulation

may be useful for We show that although the bisimilarity relation is indeed a compat-

ibility equivalence relation, and hence, can be used to compute feasible solutions to

FM and FPM; it does not, in general, induce minimal filters. We begin by adapting

the standard notion of bisimulation to filters.

Definition 9. Let F1 = (V1, Y, C, δ1, c1, v0) and F2 = (V2, Y, C, δ2, c2, w0) be two (not

necessarily distinct) filters. A relation R ⊆ V1×V2 is said to be a bisimulation relation

for (F1, F2) if for any (v, w) ∈ R:

1. c1(v) = c2(w),

2. for any y ∈ Y , if δ1(v, y) 6= ⊥, then δ2(w, y) 6= ⊥ and (δ1(v, y), δ2(w, y)) ∈ R

3. for any y ∈ Y , if δ2(w, y) 6= ⊥, then δ1(v, y) 6= ⊥ and (δ1(v, y), δ2(w, y)) ∈ R

We say that state v in filter F1 is bisimilar to state w in filter F2 if there exists a

bisimulation relation R for (F1, F2) such that (v, w) ∈ R or equivalently if v ∼(F1,F2) w,

where relation ∼(F1,F2), which itself is a bisimulation relation for (F1, F2), is the union
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of all bisimulation relations for (F1, F2). The notion of bisimulation can also be lifted

to the filters themselves, according to which F1 and F2 are bisimilar, denoted by

F1 ' F2, if there exists a bisimulation relation R for (F1, F2) such that (v0, w0) ∈ R.

We use bisimulation between two filters in the next section; in this section, we

are concerned only about bisimulation relations that relate states within a single

filter, that is, where in Definition 9, F1 = F2 = F = (V, Y, C, δ, c, v0). Observe

that any union of bisimulation relations for a filter is itself a bisimulation relation.

The union of all bisimulation relations for F , denoted ∼F , is called the bisimilarity

relation for F . Recall filter F3, depicted in Figure 3.5. For this filter, ∼F3= IF3 ∪

{(v2, v3), (v3, v2), (v4, v5), (v5, v4)}.

Such bisimilarity relations are of interest in part because they are suitable for

constructing quotient filters.

Lemma 7. The bisimilarity relation of every filter is both a compatibility relation

and an equivalence relation.

Proof. It is well known that the bisimilarity is an equivalence relation (see, for exam-

ple, Lemma 7.8 of Baier, Katoen, and Larsen [5] for a proof). Also, by Definition 9,

any bisimulation relation —including the bisimilarity relation— is a compatibility

relation in the sense of Definition 6.

Because the bisimilarity relation of a given filter represents, in a certain sense, a

coarsest partitioning of the states into ‘mergeable’ subsets, intuition might suggest

that a quotient with the bisimilarity relation might perhaps produce an optimally

reduced filter, in the sense of the FM or the FPM problem. The next result debunks

this misconception.
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Figure 3.10: a) The construction of filter Fn, mentioned in Theorem 3. The quotient
of this filter under ∼Fn does not reduce its size. b) Filters F ∗n and F ∗∗n , which are
identical, are respectively the optimal solutions to FM and FPM with input Fn. State
vn+2 in filter Fn and state {vn+2} in filters F ∗n and F ∗∗n have color 2; all other states
in both filters have color 1.

Theorem 3. For any integer n ≥ 1, there exists a filter Fn with n + 2 states, such

that Fn/ ∼Fn is larger than the optimal solution F ∗n to FM by n states. The same

filter Fn/ ∼Fn is larger than the optimal solution F ∗∗n to FPM by n states.

Proof. For a given n, we construct a filter Fn with n+2 states, for which Fn/ ∼Fn also

has n+2 states. Figure 3.10a shows the construction. In particular, note that for any

pair of distinct states (v, w), we have v �Fn w; this is because if v ∼Fn w, then they

must have the same color, meaning that there must exist 1 ≤ i 6= j ≤ n+ 1 such that

v = vi and w = vj, and if this is the case then by the definition of bisimulation relation,

we must have that vi+1 ∼Fn vj+1, vi+2 ∼Fn vj+2, ..., and ultimately vi+k ∼Fn vn+2,

which is a contradiction. Therefore ∼Fn= IFn , and Fn/ ∼Fn is structurally identical

to Fn — no two states will be merged. In contrast, for any n, each of the optimally

reduced F ∗n has exactly two states, as shown in Figure 3.10b.

In particular, Theorem 3 implies that bisimulation-quotienting does not always

induce optimal , and in fact, that the difference in size between the optimally reduced

and the bisimilarity-quotient filter cannot be bounded.
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Note that by Definition 9, for two states to be bisimilar, not only they must

agree on their outputs but also for each observation, either both of them must have

an outgoing transition labeled with that observation or none of them must have an

outgoing transition for that observation. Accordingly, bisimulation imposes a strong

condition for two states to be merged, and this, results to the fact that bisimulation

does not yield enough reduction for some filters. Yet, we can still use bisimulation

to make an extent of reduction, but for real-world applications in robotics, we may

not be satisfied with the amount of reduction we achieve with bisimulation. Both the

examples in this theorem and Figure 1.2 show that for some filters, bisimulation does

not reduce the size of the filter at all while the minimal filter is much smaller than

the original filter. Intuitively, if the underlying system or the problem of interest does

not enjoy a big deal of symmetry and indistinguishability, then bisimulation does not

offer much reduction. To illustrate these notions of symmetry and indistinguishability,

consider an environment similar to that in Figure 1.2 but in which the four landmarks

are on the four corners of a square and the robot could not distinguish between some

landmarks. It is usually for the filters of this kind of situations happens that some

states become bisimilar, and thus, bisimulation can help to reduce the size of the

filter. These notions also arise in problems similar to that in Figure 3.4, where the

shape of the environment is symmetric and in which when a robot crosses a beam,

the system knows which beam sensor it was except that it cannot distinguish between

some beams.

3.6 Strong filter minimization

In this section, we introduce a variant of filter minimization problem for which the

bisimilarity relation always produces an optimal solution.

Section 3.5 showed that, although quotient with the bisimilarity relation produces
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an equivalent filter, that filter may not necessarily be minimal. In this section, we

provide some insight into why that happens, by showing that this kind of bisimilarity

quotient instead solves a variant of the filter minimization problem, in which the

language of the reduced filter must be identical to the language of the original filter,

rather than merely a superset of it. Specifically, this section shows that bisimilarity-

quotienting solves the following problem.

Problem: Strong Filter Minimization (SFM)

Input: A filter F .

Output: A filter F ∗ such that F L(F )==== F ∗, L(F ) = L(F ∗), and the number of states

in F ∗ is minimal.

Now we can state the main result of this section.

Theorem 4. For any filter F , the bisimilarity quotient F/ ∼F is a solution to the

SFM problem for F .

Proof. It suffices to prove only that SFM is equivalent to the problem of finding a

minimal filter F ∗ such that F ' F ∗. The rest is due to the well-known fact about

bisimulation minimization, that the quotient of a structure under its bisimilarity

relation is a smallest structure that is bisimilar to the original structure. For a proof

of this result in the context of transition systems, see [5]. The only difference here is

that filters are concerned with observation sequences with finite-length rather than

observation sequences with infinite-length.

Therefore, we need to prove that F ' F ∗ if and only if F L(F )==== F ∗ and L(F ) =

L(F ∗). Let F = (V, Y, C, δ, c, v0) and F ∗ = (V ′, Y, C, δ′, c′, v′0). For the direction

⇒, assume by contradiction that F ' F ∗, that is, v0 ∼(F,F ∗) v
′
0, but either L(F ) 6=

L(F ∗) or for an observation sequence s ∈ L(F ) ∩ L(F ∗), c(δ∗(v0, s)) 6= c′(δ′∗(v′0, s)).

Figure 3.11 shows the proof.
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Figure 3.11: Part of the proof of Theorem 4, which shows by contradiction that if
F ' F ∗ then F

L(F )==== F ∗ and L(F ) = L(F ∗). a) The contradiction assumption
that L(F ) 6= L(F ∗). Without loss of generality, we assume s to be an observation
sequence in L(F ) but not in L(F ∗). Integer k is assumed to be the smallest inte-
ger such that s1..k /∈ L(F ∗) but s1..k−1 ∈ L(F ∗). Given that state δ∗(v0, s1..k−1) has
a transition for observation sk but state δ′∗(v′0, s1..k−1) does not have a transition
for that observation, by the second condition of Definition 9, those two states are
not bisimilar, i.e., δ∗(v0, s1..k−1) 6∼(F,F ∗) δ

′∗(v′0, s1..k−1), and this, via a series of impli-
cations (δ∗(v0, s1..k−2) 6∼(F,F ∗) δ

′∗(v′0, s1..k−2), δ∗(v0, s1..k−3) 6∼(F,F ∗) δ
′∗(v′0, s1..k−3), ...)

implies that v0 is not bisimilar with v′0, meaning that F and F ∗ are not bisim-
ilar, which is a contradiction. A similar argument applies for when we assume
that there is an observation sequence s such that s ∈ L(F ∗) but s /∈ L(F ). b)
The contradiction assumption that for an observation sequence s ∈ L(F ) ∩ L(F ∗),
c(δ∗(v0, s)) 6= c′(δ′∗(v′0, s)). Given that those two states δ∗(v0, s) and δ′∗(v′0, s) do not
have the same color, by the first condition of Definition 9, they are not bisimilar, i.e.,
δ∗(v0, s) 6∼(F,F ∗) δ

′∗(v′0, s) and this, via a series of implications (δ∗(v0, s1..|s|−1) 6∼(F,F ∗)
δ′∗(v′0, s1..|s|−1), δ∗(v0, s1..|s|−2) 6∼(F,F ∗) δ

′∗(v′0, s1..|s|−2), ...), implies that v0 6∼(F,F ∗) v
′
0,

meaning that F is not bisimilar to F ∗, which is a contradiction.

For the former case, assume, without loss of generality, that s be an observa-

tion sequence such that s ∈ L(F ) but s /∈ L(F ∗). Let integer k, where 1 ≤ k <

|s|, be the smallest index such that δ′∗(v′0, s1..k) = ⊥ and let y = sk..k. Clearly,

δ(δ∗(v0, s1..k−1), y) 6= ⊥ but δ′(δ′∗(v′0, s1..k−1), y) = ⊥. This by the second condition
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of Definition 9 implies that δ∗(v0, s1..k−1) 6∼(F,F ∗) δ
′∗(v′0, s1..k−1), which, in turn, by

the same condition of that definition implies that δ∗1(v0, s1..k−2) 6∼(F,F ∗) δ
∗
2(v′0, s1..k−2).

Applying the same condition k−3 more times implies that v0 6∼(F,F ∗) v
′
0, which means

that F 6' F ∗, another contradiction.

For the later case, given that c(δ∗(v0, s)) 6= c′(δ′∗(v′0, s)), by the first condition

of Definition 9 it holds that δ∗(v0, s) 6∼(F,F ∗) δ
′∗(v′0, s), which by the second condi-

tion of the same definition implies that δ∗(v0, s1..|s|−1) 6∼(F,F ∗) δ
′∗(v′0, s1..|s|−1), which

in turn implies that δ∗(v0, s1..|s|−2) 6∼(F,F ∗) δ′∗(w0, s1..|s|−2), δ∗(v0, s1..|s|−3) 6∼(F,F ∗)

δ′∗(w0, s1..|s|−3), ..., and finally v0 6∼(F,F ∗) v
′
0, which means that F 6' F ∗ and is a

contradiction.

For the direction ⇐, we need to prove that if F L(F )==== F ∗ and L(F ) = L(F ∗),

then F ' F ∗. Consider that from L(F ) = L(F ∗) and F
L(F )==== F ∗, it is implied

that for all s ∈ L(F ), c(δ∗(v0, s)) = c′(δ′∗(v′0, s)). Accordingly, we consider the

relation R = ⋃
s∈L(F ){(δ∗(v0, s), δ′∗(v′0, s))}. Each tuple of states δ∗(v0, s) and δ′∗(v′0, s)

related by this relation have the same color, thereby satisfying the first condition of

Definition 9. Also because F L(F )==== F ∗ and L(F ) = L(F ∗), for each observation y, if

one of these two states has an outgoing transition labeled y, then the other one also has

an outgoing transition labeled y. Then the states δ(δ∗(v0, s), y) and δ′(δ′∗(v′0, s)), y)

are likewise related byR, satisfying the second and the third conditions of Definition 9.

Hence, R is a bisimulation relation for (F, F ∗) in sense of Definition 9. Also, given

that (v0, v
′
0) ∈ R, it holds that v0 ∼(F,F ∗) v

′
0, which means that F ' F ∗.

Consider also that since the bisimilarity relation is a compatibility equivalence

relation, by Lemma 3 the optimal solution to SFM always partitions the state space

of the original filter, that is, F $ F/ ∼F .

Corollary 1. SFM can be solved in polynomial time.
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Proof. Beyond Theorem 4, we need only to show that given a filter F = (V, Y, C, δ, c, v0)

both (a) the bisimilarity relation ∼F and (b) the quotient of a filter and a relation,

can be computed in polynomial time.

A simple efficient algorithm for constructing the bisimilarity relation starts with

assigning the set {(v, w) ∈ V × V | c(v) = c(w) ∧ ∀y ∈ Y, (δ(v, y) = δ(w, y) =

⊥∨c(δ(v, y)) = c(δ(w, y)))} as the initial value to a variable R. Then, in each iteration

of a loop, all members of R that fail to satisfy all three conditions of Definition 9

are removed from R. This loop continues until no additional members of R can

be removed; at that time, we have R =∼F . Clearly, the time complexity of this

algorithm is O(|V |4× |Y |). This relation has at most |V |2 members, hence, the filter

F/ ∼F is constructed in O(|V |4 × |Y |) time.

As an example of this theorem, consider again filter F3 from in Figure 3.5. The

quotient of this filter under ∼F3 is filter F4, depicted in the same figure. The language

of F3 is equal to the language of F4. Filter F5, depicted in the same figure, represents

the smallest filter who is equivalent to F3 with respect to the language of F3. In this

case, we have L(F3) ⊂ L(F5).

Knowing now that making the quotient of a filter under bisimilarity relation does

not always optimally reduce the size of that filter, in the next section, we are in-

terested in realizing the connection between filter reduction and a weaker notion of

bisimulation called simulation.

3.7 Simulation and filter reduction

In this section, we prove that the FM problem is equivalent to the problem of finding

a minimal filter that simulates the original filter.

To do so, we introduce a definition of simulation relation between states of two

filters, adapting the standard notion for transition systems.
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Definition 10. Let F1 = (V1, Y, C, δ1, c1, v0) and F2 = (V2, Y, C, δ2, c2, w0) be two

filters. A relation R ⊆ V1 × V2 is said to be a simulation relation for (F1, F2) if for

any (v, w) ∈ R:

1. c1(v) = c2(w), and

2. for all y ∈ Y , if δ1(v, y) 6= ⊥, then δ2(w, y) 6= ⊥ and (δ1(v, y), δ2(w, y)) ∈ R

We say that state w simulates state v if there exists a simulation relation R for

(F1, F2) such that (v, w) ∈ R. The union of all simulation relations for (F1, F2),

which is called the similarity relation for (F1, F2) and denoted ≺(F1,F2), is itself is a

simulation relation. It also can be computed in time polynomial to the size of F1 and

F2.

Just as with bisimulation, the notion of simulation, which is defined thus far

between states of two filters, can be lifted to filters themselves. We write F1 � F2,

indicating that filter F2 simulates filter F1, if there exists a simulation relation R for

(F1, F2) such that (v0, w0) ∈ R. Equivalently, F1 � F2 if v0 ≺(F1,F2) w0.

To illustrate this notion of simulation, consider filters F6 and F7, depicted in

Figure 3.12. Some simulation relations for (F6, F7) are:

• R1 = {(v1, w0)},

• R2 = {(v1, w0), (v3, w3)},

• R3 = {(v1, w0), (v3, w3), (v2, w2), (v5, w4), (v4, w4)}, and

• R4 = R3 ∪ {(v0, w0)}.

Note that ≺(F6,F7)= R4.

The following theorem establishes a strong connection between simulation (in the

sense of Definition 10) and filter equivalence (in the sense of Definition 4).
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Figure 3.12: a) A sample filter F6 b) An example of a filter that simulates F6. For
both filters, states in the left column have color 1, states in the middle column have
color 2, and states in the right column have color 3. The similarity relation for (F6, F7)
has been depicted by dashed lines.

Theorem 5. For any filters F1 and F2, F1 � F2 if and only if F1
L(F1)==== F2.

Proof. We first prove that if F1 � F2 then F1
L(F1)==== F2. Assume for a contradiction

that the statement F1 � F2 holds but the statement F1
L(F1)==== F2 does not hold. By

Definition 4, the statement F1
L(F1)==== F2 does not hold in two cases: either (1) where

L(F1) * L(F2) or (2) where there exists an observation sequence s ∈ L(F1) ∩ L(F2)

such that c1(δ∗1(v0, s)) 6= c2(δ∗2(w0, s)).

For the former case, assume that s be an observation sequence such that s ∈

L(F1) but s /∈ L(F2). Let integer k, where 1 ≤ k < |s|, be the smallest index

such that δ∗2(w0, s1..k) = ⊥ and let y = sk..k. Clearly, δ1(δ∗1(v0, s1..k−1), y) 6= ⊥ but

δ2(δ∗2(w0, s1..k−1), y) = ⊥. This by the second condition of Definition 10 implies

that δ∗1(v0, s1..k−1) ⊀(F1,F2) δ
∗
2(w0, s1..k−1). This by the same condition implies that
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δ∗1(v0, s1..k−2) ⊀(F1,F2) δ
∗
2(w0, s1..k−2). Again by applying the same condition k − 3

more times, we conclude that v0 ⊀(F1,F2) w0. And, this contradicts that F1 � F2.

For the later case, given that c1(δ∗1(v0, s)) 6= c2(δ∗2(w0, s)), by the first condition of

Definition 10 it holds that δ∗1(v0, s) ⊀(F1,F2) δ
∗
2(w0, s). This by the second condition of

the same definition implies that δ∗1(v0, s1..|s|−1) ⊀(F1,F2) δ
∗
2(w0, s1..|s|−1). Again by ap-

plying the second condition, we concludes that δ∗1(v0, s1..|s|−2) ⊀(F1,F2) δ
∗
2(w0, s1..|s|−2),

δ∗1(v0, s1..|s|−3) ⊀(F1,F2) δ
∗
2(w0, s1..|s|−3), ..., and finally v0 ⊀(F1,F2) w0, which contradicts

that F1 � F2.

We now prove that if F1
L(F1)==== F2 then F1 � F2. For the sake of contradiction

assume that F1
L(F1)==== F2 but F1 �(F1,F2) F2, that is, v0 ⊀(F1,F2) w0. It is easy to observe

that since v0 ⊀(F1,F2) w0, there must exist an observation sequence s ∈ L(v0)∩L(w0)

such that δ∗1(v0, s) ⊀(F1,F2) δ
∗
2(w0, s). This by Definition 10 means that either (1)

c1(δ∗1(v0, s)) 6= c2(δ∗2(w0, s)) or (2) for an observation y ∈ Y , δ1(δ∗1(v0, s), y) 6= ⊥ while

δ2(δ∗2(w0, s), y) = ⊥, which means that sy ∈ L(F1) while sy /∈ L(F2). If any of these

two cases holds, then it means that the statement F1
L(F1)==== F2 does not hold, which

is a contradiction.

To see an impact of Theorem 5, we first consider the following .
Problem:

Input: A filter F .

Output: A filter F ∗ such that F � F ∗ and the number of states in F ∗ is minimum.

Problem: Minimal partitioning simulation filter (MPSF)

Input: A filter F .

Output: A filter F ∗ such that F � F ∗, F $ F ∗ and the number of states in F ∗ is

minimum.

Next we establish the following result.
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Corollary 2. Given a filter F , any optimal (feasible) solution to FM with input F

is an optimal (feasible) solution to MSF with the same input, and vice versa. Also,

any optimal (feasible) solution to FPM with input F is an optimal (feasible) solution

to MPSF with the same input, and vice versa.

Proof. The result follows from Theorem 5 and the of the filter minimization problem

and the filter partitioning minimization problem.

As a result, the filter minimization problem can be thought of finding a minimal

filter simulating the original filter.

In the context of transition systems, the problem of computing a minimal transi-

tion system that simulates a given transition system is a trivial problem since transi-

tion systems are, in general, “nondeterministic” and, therefore, the minimal solution

has always |C| states—one state for each “color”—between any pair of which there

is a transition labeled y for any “nondeterministic” (action) y. That approach, how-

ever, cannot be used here since combinatorial filters are “deterministic” while the

constructed structure (the one with |C| states) is “nondeterministic”; in other words,

the final structure does not fit into Definition 1.

3.8 The union of all compatibility relations and

the mergeability relation

In this section, we introduce two special compatibility relations which are used to

identify a taxonomy of filters that are minimizable in polynomial time.

By the discussions of the Section 3.3, to solve FPM for given filter F —one

without any unreachable states, of course— one can make the quotient filter under

some compatibility equivalence relation, and to solve FM for F , one need to make a

quotient filter under a closed covering of the state space of F . Section 3.5 proved that
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Algorithm 1: UnionOfAllCompRelations

Input : A filter F = (V, Y, C, δ, c, v0)
Output: The union of all compatibility relations for (F1, F2)

1 R← ∅
2 forall (v, w) ∈ V × V do
3 if c(v) 6= c(w) then
4 continue
5 add← true
6 forall y ∈ Y do
7 if δ(v, y) 6= ⊥ and δ(w, y) 6= ⊥ then
8 if c(δ(v, y)) 6= c(δ(w, y) then
9 add← false

10 if add = true then
11 R← R ∪ {(v, w)}
12 updated← true
13 while updated = true do
14 updated← false
15 forall (v, w) ∈ R do
16 forall y ∈ Y do
17 if δ(v, y) 6= ⊥ and δ(w, y) 6= ⊥ then
18 if (δ(v, y), δ(w, y)) /∈ R then
19 R = R/{(v, w)}
20 updated← true

21 return R

the bisimilarity relation ∼F is not always the appropriate relation for this job, and

Section 3.7 showed that any minimal filter equivalent to the original filter is always

a minimal filter that simulates the original filter.

Another intuitive possibility would be to use the union of all compatibility re-

lations, analogous to the definition of the bisimilarity relation as the union of all

bisimulation relations. As an example, this relation for filter F3 depicted in Fig-

ure 3.5, is IF3 ∪ {(v0, v1), (v1, v0), (v2, v3), (v3, v2), (v4, v5), (v5, v4)}. For a given filter

F , we write fF to denote this the union of all compatibility relations for F . Trivially,

fF is itself a compatibility relation for F .

In addition, we can compute fF in time polynomial in the size of F . See Algo-

rithm 1 for a simple approach to doing so. The intuition is to begin with a relation
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containing state pairs that are compatible for observation strings of length at most

one, and then to iteratively delete state pairs that violate Definition 6 for successively

longer strings. The time complexity of this algorithm is O(|V |4|Y |), where V and Y

are, respectively, the state space and the observation space of the input filter.

The next lemma shows that, unfortunately, fF may not be suitable for solving ,

because for some filters it is not an equivalence relation. (Recall Definition 7, under

which quotient filters are well-defined only for compatibility equivalence relations.)

Lemma 8. For any filter F = (V, Y, C, δ, c, v), the relation fF is reflexive and sym-

metric. However, there exist filters F for which fF is not transitive.

Proof. For the first claim, consider that in sense of Definition 6, the identity relation

IF = {(v, v) | v ∈ V } is a compatibility relation for F . By definition of fF , it is

a superset of IF , and therefore fF is reflexive. To prove that fF is symmetric, one

need to show that if vfF w, then wfF v. Suppose that vfF w. This means that there

exists a compatibility relation R for F such that (v, w) ∈ R. By the symmetry of

conditions (1) and (2) of Definition 6 with respect to v and w, if R is a compatibility

relation for F , then so is R−1. The relation R−1 contains (w, v), and so does fF given

the definition of fF .

For the second claim, to observe that fF may not be transitive, let F be the filter

depicted in Figure 3.13. For this filter, we havefF = IF∪{(v1, v2), (v2, v1), (v2, v3), (v3, v2)}.

This relation is not transitive since v1fF v2 and v2fF v3 hold but v1fF v3 does not.

In an important sense, Lemma 8 should not be a surprise. Since the is NP-

hard [100, 125], and F/fF can be computed in polynomial time, if Lemma 8 were

false, that would imply that P = NP .

However, any filter F with state space V for which fF is indeed an equivalence

relation, then F/fF is guaranteed to be an optimal solution to FPM with input F ,
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Figure 3.13: A filter for which the union of all compatibility relations is not an
equivalence relation. State v0 has color 1, states in the middle column have color 2,
state v4 has color 3, and state v5 has color 4.

and because in this case fF is a minimal closed covering of V , we conclude that F/fF

is an optimal solution for FM too. Moreover, given any filter F , it takes polynomial

time to check whether fF is an equivalence relation or not. This implies that solving

FM and FPM for any filter for which fF is an equivalence relation takes polynomial

time in size of F . This fact gives a roadmap to recognize some classes of filters

for which the filter minimization problem and the filter partitioning minimization

problem are in P , specifically by looking for classes of filters for which the union of

all compatibility relations can be proven to be an equivalence relation. Section 3.9

uses this fact to identify a several of these kind of classes.

A question here is does there exist any other efficiently computable relation other

than the union of all compatibility relations, that if it has a special property, then

FM or FPM for the given input filter is solvable in polynomial time.

In the sequel, we answer that question, but first consider the following definition.

Definition 11. Let v and w be two states in a filter F . We say that v is mergeable

with w if there exists a compatibility equivalence relation for F such that (v, w) ∈ R,

and we say that v is not mergeable with w otherwise.

The idea of this definition is that by Definition 7, making quotient filters is well-

defined only under compatibility equivalence relations. Accordingly, if v and w cannot
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be related by any compatibility equivalence relation F , then they are not collapsed

into a single state in any correctly reduced filter.

Clearly, any pair of mergeable states are compatible, but the reverse does not

necessarily hold. For an example of a filter in which a pair of compatible states are not

mergeable, consider Figure 3.14. The union of all compatibility equivalence relations

for the filter F8 in this figure is fF8 = IF8 ∪ {(2, 3), (3, 2), (0, 1), (1, 0), (3, 4), (4, 3)},

which has been depicted in part (b) of that figure by the graph CGF8 . Notice that

the mentioned graph does not need to have loops and it does not need to be a

directed graph given that we implicitly know that the union of all compatibility

relations for any filter is reflexive and symmetric. Although states 2 and 3 in this

filter are compatible, we argue that they are not mergeable. To do so, we need to

show that no compatibility relation containing (2, 3) is an equivalence relation. Let

R be any compatibility relation that contains (2, 3). Due to the assumption that R is

a compatibility relation and contains (2, 3), by the second condition of Definition 6,

relation R must contain (0, 1). Given the same condition and that R contains (0, 1),

it must contain (3, 4) too. But, relation R cannot be transitive since it has (2, 3) and

(3, 4) but cannot contain (2, 4) duo to that 2 6fF84. Thus, R is not an equivalence

relation.

This example shows that in the quest for an optimal solution to via a compati-

bility equivalence relation with minimum number of partitions we can immediately

throw away unmergeable pairs since we know that such pairs cannot be related by

any compatibility equivalence relation. As a result, to find a compatibility equiva-

lence relation with minimum number of partitions, we can search among subsets of a

relation stronger than fF . That relation is defined as follows:

Definition 12. The mergeability relation for filter F , denoted ./F , is the union of all

compatibility equivalence relations for F .
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Figure 3.14: a) A filter for which the union of all compatibility relations does not
coincide with its mergeability relation b) The graph of the union of all compatibility
relations for filter F8 c) The helper graph created for filter F8 by Algorithm 2. d)
The graph of the mergeability relation for filter F8. In this example, states 2 and 3
are compatible, but they are not mergeable. States 0 and 1 have color white. States
in the middle column have color blue. State 5 has color light-green, and state 6 has
color red.

Equivalently, relation ./F contains all state pairs (v, w) such that v is mergeable

with w. Given this, v is mergeable with w in the sense of Definition 11 if and only if

v ./F w.

A point worth mentioning about Definition 12 is that ./F is a superset of what

we are looking for—a compatibility equivalence relation with minimum number of

partitions—to solve FPM. Moreover, relation ./F is a compatibility relation given

that it is the union of some compatibility relations. Unfortunately, for some filters, it

is not an equivalence relation, and hence, may not be always used for making quotient

filters.
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Lemma 9. For any given filter F , relation ./F is reflexive and symmetric. However,

there exist filters F for which ./F is not transitive.

Proof. For reflexivity, observe that for any filter F , relation IF = {(v, v) | v ∈ V }

is an equivalence relation and is also a compatibility relation for F in the sense of

Definition 6. Thus, by definition of ./F , it holds that IF ⊆./F . For symmetricity,

observe that by the definition of ./F , for any v and w such that v ./F w, there exists

a compatibility equivalence relation R for F such that (v, w) ∈ R. Given that R is

an equivalence relation, we have that (w, v) ∈ R. Now, since R ⊆./F , it holds that

w ./F v.

With respect to the second claim, observe that the mergeability relation of the

filter F in Figure 3.13 is ./F= IF ∪{(v1, v2), (v2, v1), (v2, v3), (v3, v2)}, which is clearly

not transitive.

An important point about the mergeability relation is that if for a filter F the

relation ./F is an equivalence relation, then F/ ./F is a minimal filter that is equivalent

to F and also partitions the state space of F . This is due to the fact that in this

case, the relation ./F is the coarsest compatibility equivalence relation for F . More

importantly, there exist filters F for which fF is not an equivalence relation while

./F is an equivalence relation. An example of this kind of filters is filter F8, depicted

in Figure 3.14.

A question remaining here is whether we can compute the mergeability relation,

which is the union of all compatibility equivalence relations, in time polynomial in

the size of the filter. The question is relevant because if the answer is yes, then is

solvable in polynomial time for the class of filters F for which ./F is an equivalence

relation. Note that an algorithm that constructs the mergeability relation by con-

structing and unioning all compatibility equivalence relations seems likely to require

superpolynomial time, since otherwise one could solve in polynomial time merely by
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making the quotient operation under one of those constructed compatibility equiva-

lence relations—one with the minimum number of equivalence classes.

We answer this question in positive by providing Algorithm 2. This algorithm

computes the mergeability relation by removing all unmergeable pairs from fF , i.e.,

it sets ./F= fF −NF , where NF is the set all unmergeable pairs that are compatible.

To computeNF , we check any pair of compatible states (v, w)—only those in which

v 6= w, of course—to see if they can be related by a compatibility equivalence relation

for F or not. Specifically, we try to construct a compatibility equivalence relation

with minimum number of members that contains (v, w). If we fail in constructing

such a relation, then it means that v 6./F w, and thus, we put (v, w) in NF . Lines 2-12

of this algorithm construct as a helper, a directed graph G = (V ′, E ′), used for the

construction of those compatibility equivalence relations. Each vertex of this graph is

a pair of states (v, w) ∈ V 2 such that vfF w and v 6= w. Each edge ((v, w), (x, z)) of

this graph indicates that any relation R containing (v, w) needs to contain (x, z) too in

order to be a symmetric compatibility relation. Lines 6-8 of the algorithm add those

edges that enforce the second condition of compatibility relation (See Definition 6).

Lines 9-11 add edges enforcing the symmetricity of the constructed relation. The

reader can check why for no v ∈ V we need to add a vertex (v, v) to that graph, and

that why the enforcement of condition 2 of Definition 6 is made only between nodes

(v, w) and (x, z) where (v, w) 6= (x, z).

To illustrate this kind of graph, see filter F8 in Figure 3.14, the helper graph for

which has been drawn in part c of the same figure.

Lines 17-24 of this algorithm use this graph to check for each pair of distinct

compatible states (v, w) if v is mergeable with w or not. This is done by constructing

relation Rv,w, whose initial value is the union set of I and DFS(G, (v, w)), where the

procedure call DFS(G, (v, w)) performs the standard depth first search algorithm

and returns as a relation, the union of all vertices in G that are reachable from vertex
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Algorithm 2: MergeabilityRelation

Input : A filter F = (V, Y, C, δ, c, v0)
Output: The mergeability relation for F

1 f← UnionOfAllCompRelations(F )
2 V ′ ← ∅, E ′ ← ∅
3 forall (v, w) ∈ f do
4 if v 6= w then
5 V ′ ← V ′ ∪ {(v, w)}
6 forall distinct vertices (v, w), (x, z) ∈ V ′ do
7 if δ(v, y) = x and δ(w, y) = z for a y ∈ Y then
8 E ′ ← E ′ ∪ {((v, w), (x, z))}
9 forall (v, w) ∈ V ′ do

10 if ((v, w), (w, v)) /∈ E ′ then
11 E ′ ← E ′ ∪ {((v, w), (w, v))}
12 Create a helper graph G := (V ′, E ′)
13 I ← ∅
14 forall v ∈ V do
15 I ← I ∪ {(v, v)}
16 N ← ∅
17 forall (v, w) ∈ V ′ do
18 Rv,w ← DFS(G, (v, w)) ∪ I
19 while Rv,w contains some tuples (a, b) and (b, c) such that (a, c) /∈ Rv,w

do
20 if (a, c) /∈ f then
21 N ← N ∪ {(v, w)}
22 break
23 else
24 Rv,w ← Rv,w ∪DFS(G, (a, c))
25 ./← f−N
26 return ./

(v, w). Notice that the procedure call DFS(G, (v, w)) returns all tuples (x, z) ∈ V ′

that must be contained in any symmetric compatibility relation that relates v to w.

Lines 19-24 of this algorithm check if Rv,w is an equivalence relation or not, and if not,

check if it can be extended to an equivalence relation being a compatibility relation

too. If the while loop broke in line 22, it means that we could not add a tuple (a, c)

to Rv,w to resolve the intransitivity of (a, b) and (b, c) and thus Rv,w cannot be a

compatibility equivalence relation. But, if the while loop did not break in that line,
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it means that when the while loop is exited, relation Rv,w, which by that time is

transitive, is the smallest compatibility equivalence relation that relates v to w. At

line 25, the relation ./F is computed by performing a set subtraction.

The time complexity of this algorithm is O(|V |4|Y |+|V |8). Notice that computing

f and G each takes O(|V |4|Y |). At any time of the algorithm, relation Rv,w has a size

of O(|V |2). The for-loop in line 17 is performed O(|V |2), in each iteration of which it

takes O(|V |2) to compute Rv,w in line 18 and it takes O(|V |6) time to run lines 19-24.

Note that Algorithm 2 is presented in a simple form for clarity. The time complexity

can be improved by using some simple optimizations. For example, if the algorithm

did not break in line 22, then we can mark all pairs in Rv,w as mergeable and we do

not need to do the while-loop of line 17 on them, and if the algorithm did break in

line 22, then we mark all pairs in Rv,w as unmergeable and again we do not run the

while-loop in line 17 for any pair in Rv,w.

Notice that for filters F for which fF is an equivalence relation, it holds that

./F= fF . This is because for this kind of filters, we have that (1) fF ⊆./F , which

is due to the definition of ./F and that fF is a compatibility equivalence relation for

F , and (2) ./F⊆ fF , which holds for any filter given the definition of fF and that

./F is a compatibility relation.

In the next section, we identify several classes of filters for which filter minimiza-

tion or filter partitioning minimization is solvable in polynomial time.

3.9 Special classes of filters

In this section, we identify several classes of filters for which FM can be solved in

polynomial time. To do so, we identify where the union of all compatibility relations

or the mergeability relation becomes an equivalence relation.

One such special class of filters consists of filters is one we call observation-at-
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most-once-in-a-color filters. An observation-at-most-once-in-a-color filter is a filter

in which for any observation, from all states with the same color, there is at most

one outgoing edge labeled by that observation. Such filters are a generalization of

the class that Saberifar et al. [125] called once-appearing-observations filters. The dif-

ference between once-appearing-observations and observation-at-most-once-in-a-color

filter is that in the former each observation appears only once while in the latter an

observation can appear more than one time in the filter, but only once from the states

of each color. This kind of filters might arise in applications where the observations

are produced by distinct and identifiable sensors, and for each group of “related”

situations or locations, a distinct sensory data is observable from at most a single

situation or location of that group. In particular, this can happen in environments

similar to those in Figure 3.4 but with different shapes. The following theorem proves

that solving the filter minimization problem and the filter partitioning minimization

problem for this class takes polynomial time in size of the input filter.
Problem: Observation-at-most-once-in-a-color Filter Minimization

(OBS-AT-MOST-ONCE-IN-A-COL-FM)

Input: An observation-at-most-once-in-a-color filter F .

Output: A filter F ∗ such that F L(F )==== F ∗, and the number of states in F ∗ is minimal.

Theorem 6. OBS-AT-MOST-ONCE-IN-A-COL-FM ∈ P .

Proof. According to the discussion above, if we prove that for any observation-at-

most-once-in-a-color filter F = (V, Y, C, δ, c, v0) the relation fF is an equivalence

relation, then the proof is complete. It is easy to observe that since in F no distinct

states with the same color shares an outgoing edge labeled with the same observation,

we have fF = {(v, w) | c(v) = c(w)}. This relation is clearly an equivalence relation.
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A similar result holds for filter partitioning minimization of the same family of

filters.
Problem: Observation-at-most-once-in-a-color Filter Partitioning Mini-

mization (OBS-AT-MOST-ONCE-IN-A-COL-FPM)

Input: An observation-at-most-once-in-a-color filter F .

Output: A filter F ∗ such that F L(F )==== F ∗, F $ F ∗, and the number of states in F ∗

is minimal.

Theorem 7. OBS-AT-MOST-ONCE-IN-A-COL-FPM ∈ P .

Proof. It follows from the fact that FM and FPM share the same optimal solution for

a filter for which the union of all compatibility relations is an equivalence relation.

The second class consists of filters which we call at-most-two-comp-states-in-a-

col—a filter that for each color, at most two states with that color are compatible.

An example of filters that fall into this class are the class of filters in which for each

color, at most two states with that color exist.

Problem: At-most-two-comp-states-in-a-col Filter Minimization (AT-

MOST-TWO-COMP-STATES-IN-A-COL-FM)

Input: An at-most-two-comp-states-in-a-col filter F .

Output: A filter F ∗ such that F L(F )==== F ∗, and the number of states in F ∗ is minimal.

Theorem 8. AT-MOST-TWO-COMP-STATES-IN-A-COL-FM ∈ P .

Proof. It follows from the fact that the union of all compatibility relations for any

at-most-two-comp-states-in-a-col filter F is always transitive, and that for any filter

F , that relation is reflexive and symmetric by Lemma 8.

The same result holds for filter partitioning minimization of the same family of

filters.
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Problem: At-most-two-comp-states-in-a-col Filter Partitioning Mini-

mization (AT-MOST-TWO-COMP-STATES-IN-A-COL-FPM)

Input: An at-most-two-comp-states-in-a-col filter F .

Output: A filter F ∗ such that F L(F )==== F ∗, F $ F ∗, and the number of states in F ∗

is minimal.

Theorem 9. AT-MOST-TWO-COMP-STATES-IN-A-COL-FPM ∈ P

A similar class consists of filters which we call at-most-two-merg-states-in-a-col—

a filter that for each color, at most two states with that color are mergeable. Note

that this class is different than at-most-two-comp-states-in-a-col filters because a filter

that has more than two compatible states per color may not be a at-most-two-comp-

states-in-a-col, but it could be an at-most-two-merg-states-in-a-col filter.
Problem: At-most-two-merg-states-in-a-col Filter Partitioning Mini-

mization (AT-MOST-TWO-MERG-STATES-IN-A-COL-FPM)

Input: An at-most-two-merg-states-in-a-col filter F .

Output: A filter F ∗ such that F L(F )==== F ∗, F $ F ∗, and the number of states in F ∗

is minimal.

Theorem 10. AT-MOST-TWO-MERG-STATES-IN-A-COL-FPM ∈ P .

Proof. It follows from the fact that the mergeability relation for any at-most-two-

merg-states-in-a-col filter F is always transitive, and that for any filter F , that relation

is reflexive and symmetric by Lemma 9.

At-most-two-comp-states-in-a-col and at-most-two-merg-states-in-a-col filters arise,

for example, in applications where the task of interest might need a filter with a high

number of colors (outputs) and each color is assigned to only a few states. This usu-

ally happens in localization and state estimate settings, where each state of the filter
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represents en estimation of the robot’s position and only those states who estimate

close positions are assigned the same color.

Another class consists of filters which we call mergeability-is-bisimilarity— a filter

for which the mergeability relation coincides with the bisimilarity relation.
Problem: Mergeability-is-bisimilarity Filter Partitioning Minimization

(MERG-IS-BISIM-FPM)

Input: A mergeability-is-bisimilarity filter F .

Output: A filter F ∗ such that F L(F )==== F ∗, F $ F ∗, and the number of states in F ∗

is minimal.

Theorem 11. MERG-IS-BISIM-FPM ∈ P .

Proof. For any filter F in this class, ./F=∼F . By Lemma 7, the relation ∼F is an

equivalence relation.

A subclass of class mergeability-is-bisimilarity filters consists of filters largest-

compatibility-is-bisimilarity— a filter for which the union of all compatibility relations

coincides with the bisimilarity relation. In fact, this subclass consists of filters F for

which, ./F= fF =∼F .

Both FM and FPM for this class of filters are solvable in time polynomial to the

size of the filter.

These two kinds of filters, mergeability-is-bisimilarity and largest-compatibility-

is-bisimilarity filters, arise in applications where the only feature of the system that

can help reduce the size of the filter is due to some symmetry or indistinguishability

in the environment or the underlying problem. This usually happens in tracking

problems.

A subclass of largest-compatibility-is-bisimilarity filters are filters Saberifar et

al. [125] called no-missing-edges– filters for which, from any state, for any observa-

tion, there is an outgoing edge labeled by that observation. This kind of filters can
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be generalized to a class we call color-no-missing-edges filters. A filter is color-no-

missing-edges if for any two states v and w for which c(v) = c(w), for any observation

y, if δ(v, y) 6= ⊥ then δ(w, y) 6= ⊥. An application in which color-no-missing-edges

arise is navigation in grid environments, where from all cells of a row or column,

the same set of observations are observable, and from each of them, the same set of

actions are available.
Problem: Color-no-missing-edges Filter Minimization (COL-NO-MIS-

EDG-FM)

Input: A color-no-missing-edges filter F .

Output: A filter F ∗ such that F L(F )==== F ∗, and the number of states in F ∗ is minimal.

Theorem 12. COL-NO-MIS-EDG-FM ∈ P .

Proof. By the definition of color-no-missing-edges for each observation y, and for any

two states v and w that share the same color, we have that either δ(v, y) = δ(w, y) = ⊥

or (δ(v, y) 6= ⊥) ∧ (δ(w, y) 6= ⊥). In this case, the three conditions of Definition 9,

taking F1 = F2 = F , are identical to the conditions of Definition 6. Therefore,

fF =∼F , which by Lemma 7, relation fF is an equivalence relation.

A similar result holds for filter partitioning minimization of that kind of filters.
Problem: Color-no-missing-edges Filter Partitioning Minimization

(COL-NO-MIS-EDG-FPM)

Input: A color-no-missing-edges filter F .

Output: A filter F ∗ such that F L(F )==== F ∗, F $ F ∗, and the number of states in F ∗

is minimal.

Theorem 13. COL-NO-MIS-EDG-FPM ∈ P .
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Chapter 4

Integer linear programming formulations of

FM and FPM problems

In this chapter, we offer an alternative approach to filter minimization that improves

upon the heuristic proposed by O’Kane and Shell. The basic approach is to reduce FM

and FPM to integer linear programming (ILP). We consider three different integer

linear programming formulations for the filter partitioning minimization problem.

None of these three formulations is fully superior to one another, and each might be

useful for minimizing certain types of filters. We also consider an ILP formulation of

the filter minimization problem.

The material in this chapter is based on our work Rahmani and O’Kane [108].

The organization of this chapter is as follows. In Section 4.1, we present the three

ILP formulations for FPM. In Section 4.2, we present experimental results, which

show that the ILP formulation outperforms the algorithm of O’Kane and Shell [100],

for both optimal and feasible solutions of the filter partitioning minimization problem.

In Section 4.3, we discuss an ILP formulation of FM.

4.1 ILP formulations of the FPM problem

The idea of the ILP formulations we propose in this chapter stems from Chapter 3,

in which we proved that an optimal filter can formed by taking the quotient of the

original filter under some equivalence relation over the state space of the original

filter. Assuming that one has the correct relation, for each equivalence class of that
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relation, all of the states in that class are merged to form a single state in the reduced

filter.

In Chapter 3, we provide conditions on the relation under which the quotient op-

eration produces a well-defined filter. Specifically, the relation must be a compatibility

relation. See Definition 6.

To illustrate the notion of compatibility again, consider filter F1 in Figure 4.1.

Some compatibility relations for this filter are R1 = ∅, R2 = IF1 , R3 = {(4, 5), (7, 7)},

R4 = {(2, 3), (0, 1), (3, 4)}, andR5 = IF1∪{(2, 3), (3, 2), (0, 1), (1, 0), (3, 4), (4, 3), (4, 5),

(5, 4)}, where IF1 denotes the identity relation on the state space of F1. Observe that

fF1 = R5.

According to Definition 7, given a relation that is both a compatibility relation

and an equivalence relation, we can form a quotient filter, which merges equivalent

states. Notice that Definition 6 ensures that if two states v and w, both of which have

an outgoing edge labeled by an observation y, are merged then their ‘y-successors’

—δ(v, y) and δ(w, y)— must also be merged.

According to Lemma 1 and Lemma 3 in Chapter 3, for any filter F = (V, Y, C, δ, c, v0),

and any compatibility equivalence relation R for F , we have F L(F )==== F/R and that

F $ F/R. As a result, if the relation R in Lemma 2 has the minimum number of

equivalence classes, then it is guaranteed that F/R is a minimal filter equivalent to

F . Therefore, the FPM problem is reduced to the following problem:
Problem: Minimum-partition compatibility equivalence relation

(MPCER)

Input: A filter F .

Output: A compatibility equivalence relation for F with a minimum number of

equivalence classes.

Note that, due to Lemma 2, any feasible solution to the MPCER problem identifies

a feasible solution to the FPM problem. Thus, even if we can find only a feasible
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Figure 4.1: a) Filter F1. States in the left column have color 1, states in the middle
column have color 2, state 6 has color 3, and state 7 has color 4. b) The compatibility
enforcement graph of filter F1. c) A minimal filter equivalent to F1.

(rather than optimal) solution to MPCER, we can still use that feasible solution

to find a feasible solution to the corresponding FPM instance. The ILP models

introduced below are constructed by leveraging this connection between FPM and

MPCER.

Assignment-based ILP

Our first formulation of FPM as an ILP is inspired by the classical ILP for the graph

coloring problem [60, 89]. To describe this formulation, we first describe how to cast

the problem as a mathematical program that happens to contain some nonlinear

constraints. Then we show how to linearize those constraints to form an ILP and

describe some simple optimizations that reduce the complexity of the program.

Nonlinear optimization formulation

In this approach, each state of F is assigned to a label from a set of n = |V | labels

1, . . . , n. These labels form an equivalence relation on V by relating pair of states that

are assigned to the same label. Considering this, in the formulation, for any state v

and an integer 1 ≤ j ≤ n, a binary variable xvj is introduced. This variable receives

value 1 if state v is assigned to label j, and it receives 0 otherwise. Furthermore,
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n binary variables p1, p2, . . . , pn are introduced, where for each integer 1 ≤ j ≤ n,

variable pj receives value 1 if label j is used for some state in the assignment, or it

receives 0 otherwise. Accordingly, the MPCER problem with input F can be solved

via the following (nonlinear) mathematical programming model.

Minimize:
n∑
j=1

pj (4.1)

Subject to:

• For all v ∈ V ,
n∑
j=1

xvj = 1. (4.2)

• For all j ∈ {1, . . . n} and all v, w ∈ V such that v 6fFw,

xvj + xwj ≤ pj. (4.3)

• For all v, w ∈ V and all y ∈ Y such that δ(v, y) 6= ⊥ and δ(w, y) 6= ⊥,

n∑
j=1

xvjxwj ≤
n∑
k=1

xδ(v,y)kxδ(w,y)k. (4.4)

• For all v ∈ V and all j ∈ {1, . . . , n},

pj ∈ {0, 1} and xvj ∈ {0, 1}. (4.5)

The objective function of this model minimizes the number of labels that are used.

That is, it minimizes the size of the partition specified by the assignment. Observe

that constraints of type (4.2) ensure that each state of the filter is assigned to one

and only one label.

Thus, to see that an optimal solution to this program would yield an optimally

reduced filter, we need only to verify that the relation induced by the xvi variables

is indeed a compatibility equivalence relation. We write R to denote this relation,
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defined as

R = {(v, w) | xv,j = xw,j = 1 for some 1 ≤ j ≤ n}. (4.6)

The fact that R is an equivalence relation follows directly from this definition.

Constraints of types (4.3) and (4.4) together guarantee that R must be a compat-

ibility relation in the sense of Definition 6:

• By the constraints of type (4.3), if two states v and w are not compatible,

then to any label j, at most one of the states v or w is assigned. Therefore, it

prevents states x and y from being related by R. Thus, R ⊆ fF . But, relation

fF does not relate states of different colors, and thus, relation R satisfies the

first part of Definition 6.

• The constraints of type (4.4) ensure that if xvjxwj = 1 for a j —that is, if both

xvj = 1 and xwj = 1— then xδ(v,y)kxδ(w,y)k = 1 for some k. This means that if v

and w are merged (related by R), then δ(v, y) and δ(w, y) must also be merged.

Thus, relation R satisfies the second part of Definition 6.

We conclude that a solution to this mathematical program does indeed induce a

compatibility equivalence relation R with a minimal number of equivalence classes.

Therefore, that relation can be used to solve MPCER, and therefore, FPM.

Linearizing the constraints

This model has all the properties to be an integer linear program except that con-

straints of type (4.4) are not linear. To linearize these constraints, we introduce for

each pair of states v, w ∈ V , two binary variables αvw and βvw, the values of which

are constrained as follows:
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• For all v, w ∈ V and all j ∈ {1, . . . , n},

αvw ≥ xvj + xwj − 1, (4.7)

βvw ≥ xvj − xwj, (4.8)

αvw + βvw = 1, and (4.9)

αvw, βvw ∈ {0, 1}. (4.10)

According to these constraints, the variable αvw becomes 1 only when xvj =

xwj = 1 for a j. In this case, βvw receives 0. Consider that if for no j it holds that

xvj = xwj = 1, then no constraint of type (4.7) enforces αvw to receive value 0 since

in this case the only restrictions on αvw are αvw ≥ 0 and αvw ≥ −1, not preventing

αvw from receiving 1. In this case, however, it is guaranteed that βvw gets value 1

by a constraint of type (4.8) because for a j it holds that xvj = 1 and xwj = 0.

Subsequently, constraint (4.9) makes αvw receive 0.

Knowing that for each state pair v, w, the variable αvw takes value 1 when and only

when v and w are chosen to be merged, we can replace the inequality ∑n
j=1 xvjxwj ≤∑n

k=1 xδ(v,y)kxδ(w,y)k with the following inequality:

αvw ≤ αδ(v,y)δ(w,y) (4.11)

After these changes, the original formulation becomes an ILP.

Optimizing the ILP

Though we now have a correct ILP for FPM, there are several straightforward changes

that can make that program more efficiently solvable.

First, observe that the current formulation introduces two variables αvw and βvw

for each pair of states v and w, whether v and w can be merged or not. However, if

we know that two states can never be merged, or even if merged, they do not enforce
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via the second condition of Definition 6 any other pairs to be merged, then we do not

need to introduce this kind of extra variables for them, and by doing so, we may help

the solver to eliminate a considerable amount of computations.

To identify pairs (v, w) for which we require variables αvw and βvw, we first con-

struct an auxiliary graph, denoted byG′ = (V ′, E ′), which we call the compatibility en-

forcement graph for F . To construct that graph, we set V ′ = {vw | v 6= w and vfFw}.

Then, for each pair of distinct vertices vw, rz ∈ V ′, if for some y ∈ Y it holds that

δ(v, y) = r and δ(w, y) = z, then we add edge (vw, rz) to V ′. Finally, we remove the

isolated vertices from V ′.

The vertices of this graph, V ′, are the pairs (v, w) for which we require variables

αvw and βvw. An edge (vw, rz) of this graph means that in making a smaller filter,

if states v is merged with state w, then state r must also be merged with z. More

precisely, if (v, w) ∈ R, then it must hold that (r, z) ∈ R.

To illustrate, consider again filter F1 in Figure 4.1. The compatibility enforcement

graph of this filter is shown in Figure 4.1b. Notice that although states 4 and 5 are

compatible, the graph does not have a vertex 45 since even if they are merged they

do not enforce any other pair of states to be merged through the second condition of

Definition 6.

Second, we add two additional types of constraints (4.21 and 4.22 below) are

intended to reduce symmetry, as suggested by Méndez-Díaz and Zabala [60]. The

final assignment-based ILP, combining each of these elements appears below.

Minimize:
n∑
j=1

pj (4.12)

Subject to:

• For all v ∈ V ,
n∑
j=1

xvj = 1 (4.13)
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• For all v, w ∈ V such that u 6fFw and for all j ∈ {1, . . . , n},

xvj + xwj ≤ pj. (4.14)

• For all v, w ∈ V such that vw ∈ V ′ and for all j ∈ {1, . . . , n},

αvw ≥ xvj + xwj − 1, (4.15)

βvw ≥ xvj − xwj. (4.16)

• For all v, w ∈ V such that vw ∈ V ′,

αvw + βvw = 1. (4.17)

• For all v, w, r, z ∈ V such that (vw, rz) ∈ E ′,

αvw ≤ αrz. (4.18)

• For all v ∈ V and for all j ∈ {1, . . . , n},

xvj, pj ∈ {0, 1} (4.19)

• For all v, w ∈ V such that vw ∈ V ′

αvw, βvw ∈ {0, 1} (4.20)

• For all j ∈ {1, . . . , n}

pj ≤
∑
v∈V

xvj. (4.21)

• For all j ∈ {2, . . . , n}

pj ≤ pj−1. (4.22)

This formulation has |V |2 + |V |+2|V ′| variables— |V |2 variables for x’s, |V | variables

for p’s, |V ′| variables for α’s, and |V ′| variables for β’s.
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Representative ILP

Our second approach uses ideas based on those of Campêlo et al. [17, 18]. Observe

that to make an equivalence relation on the state space of a filter F , we can choose

among the states, a set of distinct representatives so that each equivalence class be

represented by a representative and then assign each state of the filter to a single

representative (in the case that a state is chosen to be a representative, then it

can be assigned only to itself). Also consider that one necessary condition for that

equivalence relation to be a compatibility relation is that a state cannot be assigned

to a representative with which is not compatible. More precisely, any state v ∈ V can

be represented only by those states that are in S(v) where S(v) = {u | (u, v) ∈ fF}.

Observe that v itself is in S(v). Given these, in the representative ILP formulation

of FPM problem, for any state v and any state u ∈ S(v), a binary variable xuv is

defined. This variable receives 1 if v is represented by u, and receives 0 otherwise.

Moreover, similar to the assignment-based formulation, for each state pair v, w ∈ V

such that vw ∈ V ′, two binary variables αvw and βvw are introduced. If v and w

are assigned to the same representative, then variable αvw receives value 1, while βvw

receives value 0. Otherwise, αvw receives value 0 and βvw receives value 1.

These three kinds of variables participate in the representative ILP formulation

of the MPCER problem as follows:

Minimize: ∑
u∈V

xuu (4.23)

Subject to:

• For all v ∈ V , ∑
u∈V

xuv = 1. (4.24)
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• For all v, w ∈ V such that u 6fFw and for all u ∈ S(v) ∩ S(w),

xuv + xuw ≤ xuu. (4.25)

• For all v, w ∈ V such that vw ∈ V ′ and for all u ∈ S(v) ∩ S(w),

αvw ≥ xuv + xuw − 1, (4.26)

βvw ≥ xuv − xuw. (4.27)

• For all v, w ∈ V such that vw ∈ V ′,

αvw + βvw = 1. (4.28)

• For all v, w, r, z ∈ V such that (vw, rz) ∈ E ′,

αvw ≤ αrz. (4.29)

• For all v ∈ V and for all u ∈ S(v),

xuv ∈ {0, 1} (4.30)

• For all v, w ∈ V such that vw ∈ V ′

αvw, βvw ∈ {0, 1} (4.31)

The objective function of this formulation minimizes the number of representa-

tives and thus the number of equivalence classes induced by the solution. While

constraints of type (4.24) all together ensure all states are assigned to representatives

and that any state is assigned to exactly on representative, any two incompatible

states are prevented to be assigned to a single representative by a constraint of type

(4.25). The constraints involving αvw and βvw have a similar meaning they had in

their corresponding constraints of the assignment-based ILP. Given the x’s part of a
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solution to this problem, the equivalence relation R induced by x is as follows:

R = {(v, w) | ∃u ∈ S(v) ∩ S(w) s.t. xuv=xuw=1}. (4.32)

Partial-ordering based ILP

Our third formulation is similar to the approach of Jabrayilov and Mutzel [60], who

proposed a partial-ordering based ILP formulation of the graph coloring problem.

This approach is similar to the assignment-based approach in that an equivalence re-

lation over V is constructed by relating pairs of states that are assigned the same label

among a set of n labels 1, . . . , n. The difference, however, is that in this approach,

states are assigned labels indirectly (rather than directly) via making a partial order

on a set containing all states and all labels. It is assumed that the sequence of labels

is linearly ordered, and accordingly, to make that said partial order, one can specify

for each given state v ∈ V and label j ∈ {1, . . . , n} that if v is greater than j, denoted

v � j, or v is smaller than j, denoted v ≺ j. Subsequently, for each state v and label

j ∈ {1, . . . , n}, two variables gjv and lvj are introduced. Variable gjv receives value

1 if it is assumed that v � j, and receives value 0 otherwise. In contrast, variable

lvj receives value 1 if it is assumed that v ≺ j, and otherwise it receives 0. Based on

these two kind of variables, state v is assigned label j if and only if gj,v = lv,j = 0,

that is, when v is neither greater nor smaller than j. To see the connection between

these two kinds of variables and the variables of assignment-based approach, one can

think of xvj = 1 − (gj,v + lv,j). Also, in this formulation an arbitrary state q ∈ V is

chosen to assign the largest label used in the assignment.

Finally, the partial-ordering base ILP for the MPCER problem is as follows:

Minimize:
1 +

n∑
j=1

gj,q (4.33)

Subject to:
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• For all v ∈ V ,

lv,1 = 0, (4.34)

gn,v = 0. (4.35)

• For all v ∈ V and j ∈ {1, . . . , n− 1},

gj,v − gj+1,v ≥ 0, (4.36)

gj,v + lv,j+1 = 1, (4.37)

gj,q − gj,v ≥ 0. (4.38)

• For all v, w ∈ V such that v 6fw and for all j ∈ {1, . . . , n},

gj,v + lv,j + gj,w + lw,j ≥ 1. (4.39)

• For all v, w ∈ V such that vw ∈ V ′ and for all j ∈ {1, . . . , n},

αvw ≥ 1− gj,v − lv,j − gj,w − lw,j, (4.40)

βvw ≥ −gj,v − lv,j + gj,w + lw,j. (4.41)

• For all v, w ∈ V such that vw ∈ V ′,

αvw + βvw = 1. (4.42)

• For all v, w, r, z ∈ V such that (vw, rz) ∈ E ′,

αvw ≤ αrz. (4.43)

• For all v ∈ V and for all j ∈ {1, . . . , n},

gv,j, lj,v ∈ {0, 1} (4.44)
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• For all v, w ∈ V such that vw ∈ V ′,

αvw, βvw ∈ {0, 1} (4.45)

Types (4.34) and (4.35) of constraints ensure that no state is less than label 1 and

that no state is greater than label n, respectively. Constraints of type (4.36)) and

(4.37) all together make sure that each state is assigned a label.

Due to constraints of type (4.36), if a state v is greater than a label j + 1, then

it must also be greater than label j. By constraint of type (4.37) it is not possible

for a state to be greater than a label j and at the same time to be smaller than label

j + 1. Constraints of type (4.39) prevent incompatible states from being assigned a

single label. Those constraints that involve αvw and βvw play the same role as in the

previous two ILP formulation. The relation induced by a solution to this 0-1 model

is as follows:

R = {(v, w) | ∃j s.t. gj,v = lv,j = gj,w = lv,j = 0}. (4.46)

4.2 Experimental results for the FPM problem

Next, we present some experimental results evaluating the performance of these three

formulations. The implementation is in Java, using Cplex to solve ILPs, executed on

an Ubuntu 16.04 computer with a 3.6GHz processor.

Experimental filters

We conducted tests using three kinds of filters. For comparison purposes, we choose

two of them to be ones on which previous work performed experiments.

The first kind consists of naïve filters for a family of the single-agent-donut problem

(Figure 4.2) by varying the number n of regions. This family of filters was originally

studied in [98].
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Figure 4.2: a) A donut-shaped environment, in which an agent moves within n regions
separated by n beam sensors. When the robot crosses a beam, the system knows
which sensor it was, but it does not know the direction of that crossing. The task of
the system is to determine at any time whether the agent is definitely in region 1 or
not. b) A naïve filter which is used to accomplish the task for an instance problem
with n = 5 regions. c) The smallest filter the system can use to accomplish its task.

The first part of this figure shows n beam sensors, numbered 1, . . . , n, that parti-

tion a donut-shaped environment into n regions. In this environment, an agent moves

in an unpredictable but continuous path. When the agent passes a beam sensor, the

system can identify which one of the n beam sensors it was, but cannot detect if

the crossing was clockwise or otherwise. The task is to make an alarm when it is

completely sure that the agent is in region 1. For this problem, the system can use a

naïve filter, each state of which indicates a set of possible regions in which the agent

can be. Accordingly, the initial state is the set of all regions 1, 2, . . . , n. For each

state, we can draw an outgoing edge whose label is a beam the system senses, and

that edge goes to another state whose set of regions are obtained by filtering in the

source state, the set of regions the robot can be.

For any n ≥ 3, the naïve filter that solves an instance of the single-agent-donut

problem with n regions has 2n+ 1 states. To illustrate, see Figure 4.2b, which shows

the naïve filter for the case of n = 5. For any n ≥ 3, the optimal filter has only 5

states, regardless of n. Figure 4.2c shows this optimal filter.

We also consider a family of two-agent-donut problems, which are similar to single-
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agent-donut problems, but instead of a single agent, there are two agents in the

environment. This kind of problem was introduced by Tovar et al. [146]. The goal is

to determine, at any time, if the two agents are in the same region or not. When an

agent crosses a beam, the system can only detect which beam sensors it was, but it

can detect neither the direction of crossing nor the identity of that agent.

The third family consists of randomly generated filters.

Algorithms to be compared

We compare 6 algorithms. Notice that in the assignment-based ILP and the partial-

ordering based ILP we set n = |V |. In those two ILPs, the value of |V | is an upper

bound for the number of labels used, or more precisely, for the number of states in

the reduced filter. Clearly, that upper bound works for any filter. However, for input

filters for which we know an upper bound h < |V | on the number of states in the

optimally reduced filter, then we can use that upper bound and set n = h. By so

doing, the number of variables and constraints in the model may be considerably

reduced. One way to obtain this sort of h is to compute a feasible solution for the

FPM problem using a heuristic, efficient algorithm and then set h to the number of

states of the reduced filter. Clearly, the number of states of an optimally reduced

filter will be less than or equal to the number of states of a reduced filter computed

by that heuristic algorithm. In our experiments, we consider whether applying this

kind of bound helps or not.

We considered the following algorithms:

1. BFC: the heuristic algorithm of O’Kane and Shell [100] where conflict graphs

are colored by a brute force algorithm.

2. ASGB ILP: the assignment-based ILP (with n = |V |).
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3. ASGB ILP+H: the assignment-based ILP with n = h, where h is a value ob-

tained by the heuristic algorithm of O’Kane and Shell, with conflicts colored

greedily.

4. PORB ILP: the partial-ordering based ILP (with n = |V |).

5. PORB ILP+H: a variation on PORB ILP using the n = h bound, analogous to

ASGB ILP+H.

6. REP ILP: The representative ILP.

Computing optimal solutions

In this section, we compare the performance of the six algorithms in computing

optimally reduced filters.

Naïve filters of single-agent-donut instances

The chart in Figure 4.3-top depicts the result of this experiment, which was performed

on the naïve filters of instances of single-agent-donut problem where the number of

regions varied from 3 to 50 regions. BFC outperforms the ILP based algorithms in

computing optimal filters for very small filters, but is rapidly outperformed by the

ILP-based algorithms as the original filter sizes grow. We also observed in this ex-

periment that the use of a value obtained by a heuristic algorithm as an upper bound

helped ASGB ILP+H and PORB ILP+H to perform better than their corresponding

versions without seeds. REP ILP did not perform well for this kind of filters.

Naïve filters of two-agents-donut instances

Figure 4.3-bottom shows the results of this experiment. In a time limit of eight

hours, BFC could compute optimal filters only for instances with up to seven regions.

In the same time limit, ILP based algorithms could make optimal filters for one
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Figure 4.3: The performance of the algorithms in computing optimal filters for: (top)
naïve filters of single-agent-donut instances, (bottom) naïve filters of two-agent-
donut instances. Notice that the vertical axis in both charts is in logarithmic scale.
For each filter size, the experiment was performed for only one filter of that size.

more instance—an instance with eight regions. Consider that although ILP based

algorithm could solve only one more instance, the naïve filter for the instance with

8 regions (which has 37 states) has 8 states more than the naïve filter for 7 regions

(which has 29 states).

Random filters with linear number of compatible pairs

In this experiment, we generated filters for which the number of distinct compatible

pairs was less than 3|V |, and the compatibility enforcement graph had both number
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Figure 4.4: The performance of the algorithms in computing optimal filters for ran-
dom filters for which the number of compatible pairs was linear to the number of
states of the filter. For each of the filter sizes, the plotted time is the average time
to minimize the filter over 10 randomly generated filters of that size. If an algorithm
could not find an optimal solution for a filter on a given size in half an hour, then
it was considered as a failure, and as a result, the average time is not plotted. Note
again that the vertical axis of the chart is in logarithmic scale.

of vertices and edges around |V |. The observation space and color space upon which

the filters are constructed has sizes of five and three, respectively. For each state v

and an observation y, on the basis of a probability of 1/2 it was chosen if v must have

an outgoing edge labeled y or not, and if yes, then the destination of that outgoing

edge was chosen randomly among the states of the filter. Figure 4.4 compares the

performance of the algorithms for this kind of filters. One notable result about

this experiment is that the representative ILP considerably outperformed the other

algorithms. This is because the REP ILP introduces a variables xuv only when u and

v are compatible. More precisely, the number of variables in the REP ILP model was

linear to the number of states of the filter, while the number of variables of the other

ILPs was quadratic to the number of states of the filter.
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Computing smaller filters

This section considers experiments that use ILP models for finding smaller (rather

than optimal) filters where optimal filters cannot be computed due to lack of time.

Especially, we are interested in trade-off between the time a solver spends and the

quality of a solution returned. Figure 4.5 presents the results of our experiments

on naïve filters of two instances of two-agents-donut problem, which are considered

difficult to minimize. Notice that each algorithm had 10 minutes to find best solutions

it could. The heuristic algorithm with greedy-random coloring was performed as many

times as it could during 10 minutes. As an example, this algorithm was performed

34749 rounds to find its best solution on the naïve filter of two-agent-donut with 15

regions. Results shows that although the heuristic algorithm can find good feasible

solutions very quickly, we can wait a fairly small amount of time for the ILPs to

obtain better solutions than those obtained by the heuristic algorithm.

Discussion

In this section, we discuss a few observations we made. Our experiments show that

none of the three proposed ILP formulations is fully superior to one another and that

each one is useful for certain kind of filters. In particular, we observed,

1. from the experiment on random filters (Section 4.2 and Figure 4.4), that the

representative ILP formulation is superior to the assignment-based ILP and

partial-ordering ILP for filters whose union of all compatibility relations is not

dense;

2. from the experiment on optimal filters for single-agent-donut problems (Sec-

tion 4.2 and Figure 4.3), that the assignment-based ILP and partial-ordering

ILP are superior to the representative ILP formulation for filters whose union

of all compatibility relations is dense;
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Figure 4.5: The trade-off chart of running time vs quality of solution of reduced filters
found by the algorithms on (top) the naïve filter of two-agents-donut problem with
13 regions (bottom) the naïve filter of two-agents-donut problem with 15 regions.
The former filter has 92 states, and the later has 121 states.

3. from the experiment on random filters (Section 4.2 and Figure 4.4), that the

assignment-based ILP is superior to the partial-ordering ILP for filters whose

union of all compatibility relations is not dense; and

4. from the experiment on computing feasible solutions (Section 4.2 and Fig-

ure 4.5), that for filters that are hard to minimize, the partial-ordering ILP

finds feasible solutions faster than the assignment-based ILP.

The first two observations are supported by the fact that the number of variables in

the representative ILP model is linear to the number of compatible pairs of states,

while the number of variables in the other two ILP models are always quadratic to
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the number of states of the filter, regardless of the number of compatible pairs of

states.

To summarize, our results suggest several general rules of thumb for selecting the

most appropriate ILP model.

• For filters that have a large number of colors relative to the number of states, the

representative ILP model is likely to outperform the other two ILP models. Such

filters might arise, for example, in state estimate settings, where the filter should

produce different outputs for each of its internal states. Likewise, if the number

of observations is large relative to the number of states, the representative ILP

model also seems to outperform the other models. This would be the case, for

example, in robotic perception applications in which large amounts of partially

redundant data are available.

• For filters whose number of colors and observations are relatively small com-

pared to the number of states of the filter —notably, in cases where the system is

using sparse information to reason about long-term dynamics of its environment,

such as in some tracking problems— the assignment-based and partial-ordering

ILP models tend to fare better. In such cases, our results suggest to use the

assignment-based ILP if the number of states of the filters is small, otherwise

use the partial-ordering ILP.

4.3 ILP formulation of the FM problem

In this section, we present an ILP formulation of FM. The material presented in this

section resulted from a recent study [171] co-authored with Zhang, O’Kane, and Shell.

Consider Lemma 6 in Chapter 3 again. According to this formula, if M is a closed

covering for F , then F/M is guaranteed to be a feasible to FM. Also, any optimal
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solution to FM can be computed by making the quotient of the original filter under a

closed covering with minimum number of compatibility classes. As a result, the filter

minimization problem is reduced to the following problem:

Problem: Minimal closed covering problem (MCCP)

Input: A filter F .

Output: A closed covering for F with a minimum number of compatibility classes.

The ILP formulation we provide solves MCCP. Note also because any feasible

solution to MCCP yields a feasible solution to FM, this ILP formulation is used not

only for finding optimal solutions of FM but also for sub-optimal solutions.

The formulation we present is very similar to the Assignment-based formulation

of FPM. We again first cast FM as mathematical problem, which contains nonlinear

constraints, and then linearize those nonlinear constraints.

Nonlinear optimization formulation

In this approach we assign the states of F into n = |V | compatibility classes, and

the objective becomes to minimize the number of nonempty compatibility classes. To

indicate whether each compatibility classes is empty or not, we use n binary variables

p1, p2, . . . , pn, where for each integer 1 ≤ j ≤ n, variable pj receives value 1 if at least a

state of F is assigned to compatibility class Lj, or it receives 0 otherwise. For any state

v and an integer 1 ≤ j ≤ n, a binary variable xvj is introduced. This variable receives

value 1 if state v is assigned to class j, and it receives 0 otherwise. Also, for each

state v ∈ V and observation y ∈ Y , a binary variable tvy is introduced, which receives

value 1 if v has an outgoing transition for y, and it receives 0 otherwise. Note that

in this formulation, unlike the assignment-based formulation for FPM, a state can be

assigned more than one label (compatibility class). Accordingly, the MCCP problem

with input F can be solved via the following (nonlinear) mathematical programming

model.
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Minimize:
n∑
j=1

pj (4.47)

Subject to:
n∑
j=1

xjv0 ≥ 1 (4.48)

• For all j ∈ {1, . . . n} and all v, w ∈ V such that v 6fFw,

xvj + xwj ≤ pj. (4.49)

• For all j ∈ {1, . . . n} and all y ∈ Y ,

n∑
i=1

∏
v∈V

(2− xvj − tvy + xδ(v,y)i) ≥ 1 (4.50)

• For all v ∈ V and all j ∈ {1, . . . , n},

pj ∈ {0, 1} and xvj ∈ {0, 1}. (4.51)

The objective (4.47) is to minimize the number of non-empty compatibility classes

in M. Constraint (4.48) requires that the initial state of F be contained in at least

one compatibility class. This constraint with constraints of type (4.50) all together

guarantee that every state of F that are reachable from F are covered by the covering.

Constraints (4.50) ensure that the covering is closed. Formally for each compati-

bility class ∀j ∈ {1, 2, . . . , |V |} and observation y ∈ Y :

∃i ∈ {1, 2, . . . , |V |}, s.t.,∀v ∈ V,
(
(xvjtvy = 1) =⇒ (xδ(v,y)i = 1)

)
︸ ︷︷ ︸

all y-children of Lj are contained in Li

.

Intuitively, for any compatibility class Lj and observation y, there must exist a

compatibility class Li that contains all state that are reachable by y from a state

within Lj. Once a solution to the ILP is computed, for each j for which pj = 1,

we form a compatibility class and assign to that class, all the states v’s for which

xvj = 1. Those compatibility classes form a closed covering of the filter. Then,
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we make a reduced filter by quotienting the original filter under the obtained closed

covering.

Linearizing the constraints

To convert the programming model into an integer linear programming, one need to

linearize constraints of type (4.50).

To linearize them for each i, j ∈ {1, 2, . . . , n} and y ∈ Y , a binary variable ayij is

introduced. The value of this variable determines whether in the output filter there

is a transition labeled y from state made for Li to state made for Lj.

If ayij = 1, then the value of term ∏
v∈V (1−xvj+1−tvy+xδ(v,y)i) must be a positive

integer. Otherwise, we choose not to build such a transition in the output filter,

regardless of the value of the corresponding term. Formally, for all i, j ∈ {1, · · · , n},

v ∈ V , and y ∈ Y ,

ayij + xvj + tvy − xδ(v,y)i ≤ 2.

Then to express constraints (4.50), we need for all i ∈ {1, · · · , n} and y ∈ Y ,

|V |∑
j=1

ayij ≥ 1.

Accordingly, the programming model becomes the following integer linear pro-

gramming model, to which constraints (4.57) are added to reduce symmetry as sug-

gested by Méndez-Díaz and Paula [89].

Minimize:
n∑
j=1

pj (4.52)

Subject to:
n∑
j=1

xv0j ≥ 1 (4.53)

• For all j ∈ {1, . . . n} and all v, w ∈ V such that v 6fFw,

xvj + xwj ≤ pj. (4.54)
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• For all i, j ∈ {1, · · · , n}, v ∈ V , and y ∈ Y ,

ayij + xvj + tvy − xδ(v,y)i ≤ 2 (4.55)

• For all i ∈ {1, · · · , n} and y ∈ Y ,

n∑
j=1

ayij ≥ 1 (4.56)

• For all j ∈ {2, . . . n},

pj ≤ pj−1 (4.57)

• For all v ∈ V and all j ∈ {1, . . . , n},

pj ∈ {0, 1} and xvj ∈ {0, 1}. (4.58)

Note that compared to the assignment-based ILP formulation of FPM, this ILP

formulation is more difficult to solve because it has more constraints and each con-

straints of types (4.56) and (4.55) have more terms comparing to those constraints in

the assignment-based ILP formulation of FPM that ensured if two states are merged,

then the states to which they go by an observation are also merged.
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Chapter 5

Planning to chronicle

In this chapter we study the problem of using autonomous robots to record a sequence

of events that happen unpredictably in an environment. The material of this chapter

is based of our work Rahmani, Shell, and O’Kane [111], which appeared in WAFR

2020, and its extension [113], accepted to appear in the International Journal of

Robotics Research.

The organization of this chapter is as follows: In Section 5.1, we introduce our

modeling and present our problem statement, in Section 5.2, we present our algo-

rithm, in Section 5.3, we present a theoretical result, in Section 5.4, we present two

algorithms that are more efficient than the general algorithm for two special inputs

of the problem, in Section 5.5, we present a greedy algorithm which we use later

to compare the quality of solutions computed by our algorithm, in Section 5.6, we

present several language ‘mutators’, and in Section 5.7, we present our case studies.

5.1 The problem

To begin, we introduce the problem formalization, starting with the most basic ele-

ments of the model.

Events and observations

The essential objects of interest are events, that is, atomic occurrences situated at

specific times and places. We treat each event as a letter drawn from a finite alphabet
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E, a set which contains all possible events. Any finite sequence of events, in particular

a story ξ the robot wants to record from the events that occur in the system, is a

word in E∗. (The set of finite sequences is written here using the Kleene star.)

We model the occurrence of events using a structure defined as follows.

Definition 13. [event model] An event modelM = (S,P, s0, E, g) is a tuple in which

• S, a nonempty finite set, is the state space of the model;

• P : S × S → [0, 1] is the transition probability function of the model, such that

for each state s ∈ S, ∑s′∈S P(s, s′) = 1;

• s0 ∈ S is the initial state;

• E is the set of all possible events;

• g : S × E → [0, 1] is an event ‘going-on’ function defined so that for state s

and event e, value g(s, e) is the probability that event e happens at state s. We

assume that for each e ∈ E, g(s0, e) = 0.

An execution of the model starts from the initial state s0 and then, at each time

step k, the system makes a transition from state sk to state sk+1, the latter being

chosen randomly based on P from those states for which P(sk, ·) > 0. This execution

specifies a path s0s1 · · · . For every time step k, when the system enters state sk, some

(possibly empty) set of events occurs simultaneously, each event e ∈ E occurring with

probability g(sk, e), independently from other events.

We are interested in scenarios in which a robot is tasked with recording certain

sequences of events. We model the state of the event model as only partially observ-

able to the robot. That is, the current state sk of the event model is hidden from the

robot, but the system instead emits an output observable to the robot at each time

step. The next definition formalizes the idea.

104



Definition 14. [observation model] For a given event model M = (S,P, s0, E, g),

an observation model B = (Y, h) is a pair in which

• Y is a nonempty set of observations or outputs;

• h : S × Y → [0, 1] is the emission probability function of the model, such that

for each state s ∈ S, ∑y∈Y h(s, y) = 1.

At each time step, when the system enters a state sk, it emits an output yk, drawn

according to h(sk, ·). The emitted output yk is observable to the robot. We consider,

as important special cases, two particular types of observation models.

Definition 15. Given an event modelM = (S,P, s0, E, g) with observation model

B = (Y, h), we say that B makesM fully observable if (1) Y = S, and (2) h(s, y) = 1

if and only if s = y.

At the other extreme, another special event model is one in which the emitted

outputs do not help at all to reduce uncertainty.

Definition 16. Given an event modelM = (S,P, s0, E, g) with observation model

B = (Y, h), then B causes the event model to be fully hidden if the observation space

Y is a .

Story specifications, belief states, and policies

As the system evolves along a path s0s1s2 · · · , the robot attempts to record some of

the events that actually occur in the world to form a story ξ ∈ E∗. We specify the

desired story using a deterministic finite automaton (DFA)D = (Q,E, δ, q0, F ), where

Q is its state space, E is its alphabet, δ : Q×E → Q is its transition function, q0 its

initial state, and F ⊆ Q is the set of all final (accepting) states of the automaton. In

other words, we want the robot to make a story ξ in the language of D, denoted L(D),
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which is the set of all strings in E∗ that when are tracked from q0, the automaton

reaches an accepting state.

The semantics of event capture are as follows. At each step k ≥ 0, the robot

chooses one event e from E to attempt to record in the next step, k + 1. If any of

the actual events that do happen at step k+ 1 (an event e can happen at sk+1 only if

g(sk+1, e) > 0) match the robot’s prediction, then the robot successfully records this

event; otherwise, it records nothing. The robot is aware of the success or failure of

each of its attempts. The robot stops making guesses and observations once it has

recorded a desired story—a story in L(D).

To estimate the current state, the robot maintains, at each time step k, a belief

state bk : S → [0, 1], in which ∑s∈S bk(s) = 1.

The robot’s predictions are governed by a policy π : ∆(S)×Q→ E that depends

on the belief state and the state of the DFA. At time step k+1, the robot may append

a recorded event to ξk via the following formula:

ξk+1 =


ξkπ(bk, qk) π(bk, qk) happened at sk+1

ξk π(bk, qk) did not happen at sk+1.

(5.1)

The initial condition is that ξ0 = ε, in which ε is the empty string. The robot changes

the value of variable qk only when the guessed event actually happened:

qk+1 =


δ(qk, π(bk, qk)) π(bk, qk) happened at sk+1

qk π(bk, qk) did not happen at sk+1.

(5.2)

The robot stops when qk ∈ F .

Optimal recording problems

The robot’s goal is to record a story (or video) as quickly as possible. We consider this

problem in three different settings: a general setting without any restriction on the
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observation model, a setting in which the observation model makes the event model

fully observable, and a final one in which the event model becomes fully hidden.

Definition 17. [correct policy] For a given event set E, event modelM = (S,P, s0, E,

g) with observation model B = (Y, h), DFA D = (Q,E, δ, q0, F ), and policy π :

∆(S) × Q → E, we say π is a correct policy if it ensures, with probability 1, that a

story within L(D) will eventually be captured.

First, the general setting.

Problem: Recording Time Minimization (RTM)

Input: An event set E, an event model M = (S,P, s0, E, g) with observation

model B = (Y, h), and a DFA D = (Q,E, δ, q0, F ).

Output: A correct policy that minimizes the expected number of steps k until

ξk ∈ L(D); or ‘No Solution’ if no correct policy exists.

Note that k is not necessarily the length of the resulting story ξk, but rather is

the number of steps the system runs to capture that story. In fact, since the robot

captures at most one event in each time step, |ξk| ≤ k.

The second setting constrains the system to be fully observable.

Problem: RTM with Fully Observable Model (RTM/FOM)

Input: An event set E, an event model M = (S,P, s0, E, g), and a DFA D =

(Q,E, δ, q0, F ).

Output: A correct policy that, under observation model Bobs(M), minimizes the

expected number of steps k until ξk ∈ L(D); or ‘No Solution’ if no

correct policy exists.

The third setting assumes a fully hidden event model state.
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Problem: RTM with Fully Hidden Model (RTM/FHM)

Input: An event set E, an event model M = (S,P, s0, E, g), and a DFA D =

(Q,E, δ, q0, F ).

Output: A correct policy that, under observation model Bhid(M), minimizes the

expected number of steps k until ξk ∈ L(D); or ‘No Solution’ if no

correct policy exists.

5.2 Algorithm description

Next we give an algorithm for RTM, which also solves RTM/FOM and RTM/FHM,

essentially special cases of RTM.

The Goal POMDP

The first step of the algorithm constructs a specific partially observable Markov de-

cision process (POMDP), which we term the Goal POMDP, as follows:

Definition 18. [Goal POMDP] For an event model M = (S,P, s0, E, g) with ob-

servation model B = (Y, h), and a DFA D = (Q,E, δ, q0, F ), the associated Goal

POMDP is a tuple P(M,B;D) = (X,A, b0,T, XG, Z,O, c), in which

1. X = S ×Q is the state space;

2. A = E is the action space;

3. b0 ∈ ∆(X) is the initial belief state, in which b0(x) = 1 if and only if x = (s0, q0);

4. T : X×A×X → [0, 1] is the transition probability function such that, assuming

1{A}(·) to be set A’s indicator function, for each e ∈ E and (s, q), (s′, q′) ∈ X,
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T((s, q), e, (s′, q′)) =



P(s, s′) · g(s′, e) if q /∈ F, q′ = δ(q, e),

and q′ 6= q (4.a)

P(s, s′) · g(s′, e)·

1{q′}(δ(q, e))+ if q /∈ F,

P(s, s′) · (1− g(s′, e)) and q′ = q (4.b)

1 if q ∈ F, q′ = q,

and s = s′ (4.d)

0 otherwise;

5. XG = S × F is the set of goal states;

6. Z = ({True,False} × Y ) ∪ {⊥} , in which ⊥ is used for the observation that

the robot has completed recording a desired story, is the set of observations;

7. O : A × X × Z → [0, 1] is the observation probability function such that for

each e ∈ E, s ∈ S, q ∈ Q, and y ∈ Y :

(a) O(e, (s, q), (True, y)) = h(s, y) · g(s, e) if q /∈ F ,

(b) O(e, (s, q), (False, y)) = h(s, y) · (1− g(s, e)) if q /∈ F ,

(c) O(e, (s, q),⊥) = 1 if q ∈ F ;

8. c : X × A → R≥0 is the cost function such that for each x ∈ X and a ∈ A,

c(x, a) = 1 if x /∈ XG, and c(x, a) = 0 otherwise.
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Figure 5.1 illustrates this construction for an elementary example. Each state of this

POMDP is a pair (s, q) indicating the situation where, under an execution of the

system, the current state of the event model is s and the current state of the DFA

is q. For each x, x′ ∈ X and a ∈ A, T(x, a, x′) gives the probability of transitioning

from state x to state x′ under performance of action a. In the context of our event

model, each transition corresponds to a situation where the robot chooses an event e

to observe and the event model makes a transition from a state s to s′. If e happens

at s′ and δ(q, e) 6= q, then the robot records e and then changes the current state

of the DFA to δ(q, e); otherwise, it does nothing and the DFA remains in state q.

These correspond to cases (4.a) and (4.b) above, respectively. Note that the term

P(s, s′)·g(s′, e)·1{q′}(δ(q, e)) in case (4.b) corresponds to the situation where δ(q, e) =

q and the predicted event e happens at s′, while term P(s, s′)·(1−g(s′, e)) corresponds

to the situation where the predicted event e, regardless of whether δ(q, e) = q or not,

does not happen at s′. Case (4.c) makes all the goal states of the POMDP absorbing

states. The goal states of the POMDP are those in which the robot has recorded a

story, i.e., the current state of the specification DFA is accepting.

For each a ∈ A, x ∈ X, and z ∈ Z, the function O(a, x, z) is an observation model,

its value being the probability of observing z given that the system has entered state x

via action a. The POMDP has a special observation, ⊥, which is observed only when

a goal state is reached. Any other observation is a pair (r, y) where r ∈ {True,False}

discloses whether the robot’s prediction was correct—the event did happen—or not,

and y indicates the sensed observation the robot made (as per B). Rules 7a–7b ensure

that the first element of the observation pair informs the robot whether its prediction

was correct. To see this, if the robot has predicted e to occur, the event model has

entered state s such that e has happened at s, and the robot has made an observation

y, then the probability of observing (True, y) by entering to state (s, q) via action e

is equal h(s, y)g(s, e) (case 7a). If event e has not happened at s, then the robot’s
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Figure 5.1: a) An event model M with its observation model B. b) A DFA D,
specifying event sequences that contain at least one event. c) The Goal POMDP
P(M,B;D), constructed by Definition 18. (Self-loop transitions of the goal states have
been omitted to try reduce visual clutter.)

prediction has to be wrong, and thus, the probability of observing (False, y) in state

(s, q) when it is reached via action e is h(s, y)(1 − g(s, a)) (expressed in case 7b).

Case 7c indicates the observation that the robot has completed recording of a story

in L(D).

After making the product automaton in Definition 18, our algorithm first checks

whether or not there is a policy that assures a desired story will be captured. Then,

if there exists such a policy, it computes a policy minimizing the expected number of

steps to record such a policy. We first focus on computing such a policy, assuming

such a policy exists, in Section 5.2 (and Section 5.2 as well for special inputs of the
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problem), and then we discuss how our algorithm can check if such a policy exists or

not in Section 5.2.

Solving the Goal POMDP

baz(x) = Pr(x|z, a, b) = O(a, x, z)∑x′∈X T(x′, a, x)b(x′)
Pr(z|a, b) , (5.3)

in which

Pr(z|a, b) =
∑
x∈X

O(a, x, z)
∑
x′∈X

T(x′, a, x)b(x′). (5.4)

For this belief MDP, the cost of each action a at belief state b is

c′(b, a) =
∑
x∈X

b(x)c(x, a).

In our case, c′(b, a) = 1 if b is a not a goal belief state, and otherwise c′(b, a) = 0. An

optimal policy π′∗ : X → A for this MDP is formulated as a solution to the Bellman

recurrences

V ′
∗(b) = min

a∈A

(
c′(b, a) +

∑
z∈Z

Pr(z|a, b)V ′∗(baz)
)
, (5.5)

π′
∗(b) = arg min

a∈A

(
c′(b, a) +

∑
z∈Z

Pr(z|a, b)V ′∗(baz)
)
. (5.6)

Any standard technique may be used to solve these recurrences. For surveys on meth-

ods, see [12, 120, 131]. Note that, in general, solutions to POMDPs are approximate

solutions because it is intractable to provide exact solutions for POMDPs. An opti-

mal policy computed via these recurrences prescribes, for any belief state reachable

from b0, an optimal action to execute. Hence, the robot executes, at each step, the

action given by the optimal policy, and then updates its belief state via (5.3). One

can show, via induction, that at each step i, there is a unique qi ∈ Q such that belief

state bi has outcomes only for (but probably not all) xj = (sj, qi) ∈ X, j = 1, 2, · · · |S|.

As such, function β : ∆(X)→ ∆(S)×Q maps each bi of those belief states to a tuple

(d, qi), where for each s ∈ S, d(s) = b((s, qi)). Subsequently, the optimal policy π′∗

computed for P(M,B;D) can be mapped to an optimal solution π∗ : ∆(S)×Q→ A to

RTM, by interpreting π∗(β(bi)) = π′∗(bi), for each reachable belief state bi ∈ ∆(X).
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Solving RTM/FOM via a Goal MDP

The previous construction can be used to solve RTM/FOM instances too. But,

since the event model fed into a RTM/FOM is fully observable, it seems rather

more sensible, especially in terms of solution tractability, to construct a Goal MDP.

To do so, for the event model and the DFA in Definition 18, the Goal MDP M =

(X,A, b0,T, XG, c) embedded in the POMDP P in that definition is extracted and

then an optimal policy for M is solved. An optimal policy π′′∗ for the MDP is a

function over X = S ×Q, which is computed via the Bellman equations

V ′′
∗(x) = min

a∈A

(
c(x, a) +

∑
x′∈X

V ′′
∗(x′)T(x, a, x′)

)
, (5.7)

π′′
∗(x) = arg min

a∈A

(
c(x, a) +

∑
x′∈X

V ′′
∗(x′)T(x, a, x′)

)
. (5.8)

This section provided an algorithm to solve RTM and the two variants of it,

RTM/FOM and RTM/FHM, assuming that there exists a policy that can guaran-

tee that a desired story will be captured. However, for some input DFAs and event

models to the problem, no such policy exists. Therefore, before using the algorithm

in this section, one might want to check whether such a policy exists or not. The

next section discusses how to answer that decision problem.

Deciding if a Policy Exists

In this section, we discuss how to check if there exists a policy that guarantees, for

any execution of the event model, a story within the language of the DFA will be

captured.

We first consider the RTM/FOM problem, recalling that we can compute a

policy for the Goal MDP underlying the Goal POMDP in Definition 18 rather than

the Goal POMDP itself. To provide an answer to the decision question, we can check
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whether or not there exists a policy for the MDP that guarantees that the goal states

are reachable with probability 1. To find one, we check if there exists any policy that

avoids the MDP’s dead-end states, namely those states from which no goal state is

reachable. If no policy can avoid these dead-ends, then no policy will ensure that a

desired story will be captured.

To illustrate, consider Figure 5.2a, which shows a simple DFA specifying all stories

that start with e1. Figure 5.2b shows a simple event model in which e1 happens at s1

and e2 occurs at s2. Figure 5.2c shows the Goal MDP obtained from the product of

this DFA and event model. In this example, no policy guarantees that a desired story

will be captured with probability 1 because no policy assures that the goal states of

the MDP are almost surely reachable. Should a policy choose event e1 to capture

in the first time step, then the probability that a desired story will be captured by

this policy is 0.6, which happens when the event model enters state s1 in the next

time step. Similarly, if a policy chooses event e2 in the same configuration, then the

probability that a desired story is captured is again 0.6 if the policy chooses event

e1 when the DFA is in state q0 and the event model is in state s1. Observe that the

Goal MDP constructed for this DFA and event model, which is shown in Figure 5.2c,

has dead-end states (q0, s2) and (q2, s2) that are unavoidable.

Where there exists no policy that can guarantee a story will be captured, several

strategies can be used to compute a reasonable policy that, nevertheless, may still be

useful in practice. Generally, these maintain some balance between maximizing the

probability of reaching a goal state and minimizing the expected number of steps to

reach these goal states. See the discussion of [69] for several such options.

An alternative strategy, and one specific to our context, would be to alter the

specification by expanding the language described by the DFA. One seeks to modify

the DFA to obtain a language which will ensure the existence of some policy guar-

anteeing a story be captured almost surely. One desires, naturally, that the altered

114



b)
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Figure 5.2: a) A DFA specifying all stories that contain at least an event over the
event set {e1, e2}. b) A sample event model, in which event e1 happens at s1 and
event e2 happens at s2. c) The Goal MDP obtained from the product of the DFA
and the event model in parts (a) and (b). component.

DFA be “close” to the original in terms of some metric for the distance between two

DFAs. In Section 5.6, we examine one such metric, the Levenshtein distance, and

discuss how, given a DFA, to construct another that is within a desired Levenshtein

distance.

Note, however, that the existence of dead-ends does not mean that no policy

ensures that the robot is able to capture a desired story under any execution of the

event model. If all the dead-ends are avoidable and some goal states are almost surely

reachable, then there will exist such a policy. For illustration consider the example

in Figure 5.3. In this example, the MDP, part (c) of the figure, has only a single

dead-end state (q2, s1). But this dead-end is avoidable because the policy can avoid

taking action b in state (q0, s0). Doing so, the probability of reaching this dead-end

becomes zero, ensuring that all executions under this policy always end in goals. For
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Figure 5.3: a) A DFA specifying all stories that contain at least an event over the
event set {e1, e2}. b) A sample event model, in which event e1 happens at s1 and s2
while event e2 happens at s1. c) The Goal MDP obtained from the product of the
DFA and the event model in parts (a) and (b). component.

the standard value iteration method to work, we first prepossess the MDP to identify

dead-end states. The value of each dead-end is infinite as no goal state from that

dead-end is reachable. For more discussions about MDPs with dead-ends, including

algorithms to detect dead-ends and strategies to deal with them, we refer the reader

to [11, 66, 69, 70, 82]. In our breadth-first-like implementation, we search backward

from the goal states, finding all states that are reachable from those states, avoiding

dead-ends found so-far.

For RTM and RTM/FOM, to determine whether there exists any policy guar-

anteeing that a desired story will be captured, we need to ascertain, for the Goal

POMDP in Definition 18, whether there exists a policy whose execution ends in the

goal states with probability 1 or not. One must checked whether any belief state in

the reachable part of the (infinite) belief MDP has an unavoidable dead-end belief
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state. In this case, we treat a belief state to be a dead-end if it arises from a dead-end

state. This belief MDP has an infinite state space and we cannot deal with it di-

rectly, but instead one forms the finite support-belief MDP [62], whose states are the

support for belief states. Note that, in general, the size of this support-belief MDP

is exponential in the size of the MDP underlying the POMDP.

5.3 Representation-invariance of expected time

The event selected by the policy π∗ at each step depends, in part, on the current

state of the specification DFA. Because a single regular language may be represented

with a variety of distinct DFAs with different sets of states—and thus, their optimal

policies cannot be identical—one might wonder whether the expected execution time

achieved by their computed policies depends on the specific DFA, rather than on the

language. The question is particularly relevant in light of the language mutators we

examine in Section 5.6. Here, we show that the expected number of steps required to

capture a story within a given event model does indeed depend only on the language

specified by the DFA, and not on the particular representation of that language.

For a DFA D = (Q,E, δ, q0, F ), we define a function f : Q→ {0, 1} such that for

each q ∈ Q, f(q) = 1 if q ∈ F , and otherwise, f(q) = 0. Now consider the well-known

notion of bisimulation, defined as follows:

Definition 19. [bisimulation] Given DFAsD = (Q,E, δ, q0, F ) andD′ = (Q′, E, δ′, q′0,

F ′), a relation R ⊆ Q×Q′ is a bisimulation relation for (D,D′) if for any (q, q′) ∈ R:

(1) f(q) = f ′(q′); (2) for any e ∈ E, (δ(q, e), δ′(q′, e)) ∈ R.

Bisimulation implies language equivalence and vice versa.

Proposition 1. [122] For two DFAs D = (Q,E, δ, q0, F ), D′ = (Q′, E, δ′, q′0, F ′), we

have L(D) = L(D′) iff (q0, q
′
0) ∈ R for a bisimulation relation R for (D,D′).
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Bisimulation is preserved for any reachable pairs.

Proposition 2. If (q, q′) are related by a bisimulation relation R for (D,D′), then

for any r ∈ E∗, (δ∗(q, r), δ′∗(q′, r)) ∈ R.

We now define a notion of equivalence for a pair of belief states.

Definition 20. [equivalence of belief states] Given an event modelM = (S,P, s0, E,

g), an observation model B = (Y, h) for M, DFAs D = (Q,E, δ, q0, F ) and D′ =

(Q′, E, δ′, q′0, F ′) such that L(D) = L(D′), let P(M,B;D) = (X,A, b0,T, XG, Z,O, c)

and P ′(M,B;D′) = (X ′, A, b′0,T′, X ′G, Z,O′, c′). For two reachable belief states b ∈ ∆(X)

and b′ ∈ ∆(X ′), with β(b) = (d, q) and β′(b′) = (d′, q′), we say that b′ is equivalent to

b, denoted b ≡ b′, if (1) (q, q′) are related by a bisimulation relation for (D,D′) and

that (2) d = d′, i.e. for each s ∈ S, d(s) = d′(s).

Equivalence is preserved for updated belief states.

Lemma 10. Given the structures in Definition 20, let b ∈ ∆(X) and b′ ∈ ∆(X ′) be

two reachable belief states such that b ≡ b′. For any action a ∈ A and observation

z ∈ Z, it holds that baz ≡ b′az and that Pr(z|a, b) = Pr(z|a, b′).

Proof. Let b2 = baz and b′2 = b′az , and assume β(b2) = (d2, q2) and β′(b′2) = (d′2, q′2).

The case where b and b′ are both goal belief states, that is, where f(q) = f ′(q′) = 1

is immediately implied from the fact that the goal states of the POMDPs from in

Definition 18 are absorbing, i.g., b2 = b and b′2 = b′. Therefore, we consider the case

where f(q) = f ′(q′) = 0. Let ba and b′a be respectively the belief states resulted from

doing action a (but before any observation) at belief states b and b′. These belief

states are computed by the following formulas:

ba(t) =
∑
x∈X

T(x, a, t)b(x), (5.9)
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and

b′a(t′) =
∑
x′∈X′

T′(x′, a, t′)b′(x′). (5.10)

Given that β(b) = (d, q), belief state b can have outcomes only for those states

that are among x1 = (s1, q), x2 = (s2, q), · · · , xn = (sn, q), and similarly, b′ can have

outcomes only for states that are among x′1 = (s1, q
′), x′2 = (s2, q

′), · · · , x′n = (sn, q′),

where n = |S|. Also, because it is assumed that d = d′, for each integer 1 ≤ j ≤ n,

b((sj, q)) = b′((sj, q′)), or in other words, b(xj) = b′(x′j). Now, with (5.9) and given the

construction of the transition probability function T in Definition 18, the only states

for which ba can have outcomes are among t1 = (s1, q), t2 = (s2, q) · · · , tn = (sn, q)

and tn+1 = (s1, δ(q, a)), tn+2 = (s2, δ(q, a)), · · · , t2n = (sn, δ(q, a)). Similarly, the only

states for which b′a can have outcomes are among t′1 = (s1, q
′), t′2 = (s2, q

′) · · · , t′n =

(sn, q′) and t′n+1 = (s1, δ
′(q′, a)), t′n+2 = (s2, δ

′(q′, a)), · · · , t′2n = (sn, δ′(q′, a)).

Now, we claim that for each integer 1 ≤ k ≤ 2n, ba(tk) = b′a(t′k). To prove this,

consider that by assumption, q and q′ are related by a bisimulation relation for (D,D′),

and this, by Definition 9, means that q ∈ F iff q′ ∈ F ′. As a result, by the construction

of the transition probability function in Definition 18, for each pair of integers 1 ≤

i, j ≤ n, T((sj, q), a, (si, q)) = T′((sj, q′), a, (si, q′)) and T((sj, q), a, (si, δ(q, a))) =

T′((sj, q′), a, (si, δ′(q′, a))), which together mean that for integers 1 ≤ j ≤ n and 1 ≤

k ≤ 2n, T(xj, a, tk) = T′(x′j, a, t′k). We use this, the assumption that b(xj) = b′(x′j)

for all 1 ≤ j ≤ n, (5.9) and (5.10) to prove our claim as follows:

ba(tk) =
∑

1≤j≤n
T(xj, a, tk)b(xj)

=
∑

1≤j≤n
T′(x′j, a, t′k)b′(x′j) = b′a(t′k). (5.11)

119



To prove that Pr(z|a, b) = Pr(z|a, b′), consider the following formulas:

Pr(z|a, b) =
∑
t∈X

O(a, t, z)ba(t), (5.12)

and

Pr(z|a, b′) =
∑
t′∈X′

O′(a, t′, z)b′a(t′). (5.13)

By the construction of the observation function in Definition 18 and that q ∈ F ⇐⇒

q′ ∈ F ′, it follows that for each integer 1 ≤ j ≤ n, O(a, (sj, q), z) = O′(a, (sj, q′), z).

Similarly, for each integer 1 ≤ j ≤ n, O(a, (sj, δ(q, a)), z) = O′(a, (s′j, δ′(q′, a), z).

Together, these two mean that for each integer 1 ≤ k ≤ 2n, O(a, tk, z) = O′(a, t′k, z).

This, combined with (5.11), proves a part of the lemma as follows:

Pr(z|a, b) =
∑
t∈X

O(a, t, z)ba(t)

=
∑

1≤k≤2n
O(a, tk, z)ba(tk)

=
∑

1≤k≤2n
O′(a, t′k, z)b′a(t′k)

=
∑
t′∈X′

O′(a, t′, z)b′a(t′)

= Pr(z|a, b′). (5.14)

To prove that b2 ≡ b′2, consider that for each x ∈ X and x ∈ X ′, b2(x) and b′2(x′) are

computed as follows:

b2(x) = O(a, x, z)ba(x)/Pr(z|a, b), (5.15)

and

b′2(x′) = O′(a, x′, z)b′a(x′)/Pr(z|a, b′). (5.16)

These two formulas combined with (5.11) and (5.14), and the fact that O(a, tk, z) =

O′(a, t′k, z) for all 1 ≤ k ≤ 2n, imply that b2(tk) = b′2(t′k) for all 1 ≤ k ≤ 2n. There-

fore, d2 = d′2. We now only need to prove that q2 and q′2 are related by a bisimulation
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relation for (D,D′). Observe that if the robot’s prediction of occurring event a was

wrong, then q2 = q and q′2 = q′, and otherwise, q2 = δ(q, a) and q′2 = δ′(q′, a). In

the former case, by definition, q2 and q′2 are related by a bisimulation relation R for

(D,D′), and in the later case, by Proposition 2, q2 and q′2 are related by the same

bisimulation relation q and q′ were related by. Thus, we conclude baz ≡ b′az .

Note that for a Goal POMDP P with initial belief state b0, V ∗(b0) is the expected

cost of reaching a goal belief state via an optimal policy for P . We now present our

result.

Theorem 14. For the structures in Definition 20, it holds that V ∗(b0) = V ′∗(b′0).

Proof. For a belief MDPM, let Tree(M) to be its tree-unravelling—the tree whose

paths from the root to the leaf nodes are all possible paths inM that start from the

initial belief state. A policy π forM chooses a fixed set of paths over Tree(M), and

the expected cost of reaching a goal belief state under π is equal to

∑
p∈GoalPaths(π,Tree(M))

C(p)W (p),

where GoalPaths(π,Tree(M)) is the set of all paths that are chosen by π and reach a

goal belief state from the root of Tree(M), C(p) is the sum of costs of all transitions

in path p, and W (p) is the product of the probability values of all transitions in p.

The idea is that if we can overlap the tree-unravellings of the belief MDPs P(M,B;D)

and P ′(M,B;D′) in such a way that each pair of overlapped belief states are equivalent

in the sense of Definition 20 and that each pair of overlapped transitions have the

same probability and the same cost, then for each pair of overlapped belief states

b ∈ ∆(X) and b′ ∈ ∆(X ′), if we use π∗(b) as the decision at the belief state b′ then,

because those fixed paths are overlapped, we know V ∗(b0) ≥ V ′∗(b′0). And, in a similar

fashion, V ∗(b0) ≤ V ′∗(b′0), and thus, V ∗(b0) = V ′∗(b′0). The following construction

makes those trees and shows how they can be overlapped.
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For an integer n ≥ 1, we can make two trees Tn and T ′n as follows: (1) Set b0 as

the root of Tn and set b′0 as the root of T ′n; make a relation R and set R← {(b0, b
′
0)}.

(2) While |Tn| < n, extract a pair (b, b′) from R that has not been checked yet and in

which b and b′ are not goal belief states; for each action a and observation z, compute

baz and b′az , add node baz and edge (b, baz) to T , and add node b′az and edge (b′, b′az) to

T ′; label both edges (a, z). Also assign to edge (b, baz), Pr(z|a, b) as its probability

value, and set the probability value of (b′, b′za), Pr(z|a, b′); the cost of each edge is set

1. Finally, add (baz , b′
a
z) to R.

Given that L(D) = L(D′), by Proposition 1, states q0 and q′0 are related by a

bisimulation relation for (D,D′), which (by Definition 20 and the construction in

Definition 18) implies that b0 ≡ b′0. This combined with Lemma 10 implies that for

each pair (b, b′) ∈ R, b ≡ b′. We now match Tn and T ′n so that each pair (b, b′) that

are related by R overlap. By Lemma 10, each pair of overlapped edges have the same

probability value and the same cost value. Since for any integer n ≥ 0 we can overlap

trees Tn and T ′n in the desired way, we can overlap the tree-unravellings of the belief

MDPs of P(M,B;D) and P ′(M,B;D′) in the desired way too; this completes the proof.

The upshot of this analysis is that we need attend only to the story specification

language (given indirectly via D), the specific presentation of that language does not

impact the expected number of steps to capture an event sequence satisfying that

specification.

5.4 Faster algorithms for special structures

In this section, we consider several special cases of event models and DFAs for which

new algorithms are feasible. Though less general than the approaches introduced in

the prior sections, these new algorithms exploit the structure of the special cases to

run significantly faster.
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The DFA is loop-omitted acyclic

The first case is when the DFA adheres to the following requirement.

Definition 21. A DFA D = (Q,E, δ, q0, F ) is called a loop-omitted acyclic DFA if

for every state q ∈ Q and string η ∈ E∗ for which δ∗(q, η) = q, it holds for every

prefix η′ of η that δ∗(q, η′) = q.

Intuitively, a DFA is a loop-omitted acyclic DFA if it does not have any cycle

except self-loops on the states. We speculate that many DFAs of interest for this sort

of problem will have this property. In fact, all the DFAs in this chapter’s case studies

are loop-omitted acyclic DFAs; likewise for the case studies in our other extensions

to this work [21,22]

For this kind of DFA, regardless of the form of the event model, the graph un-

derlying the Goal POMDP in Definition 18 will be a layered directed acyclic graph

where each layer is, in fact, a strongly connected component (SCC). Note that all

states x = (q, s) within a single SCC share a single DFA state q and all those states

represent a situation where either the event predicted by the robot does not happen

in the next time step, making the DFA stay in the same state q, or the predicted

event did happen but state q transitions back to itself with that predicted event.

For an example, see the DFA in Figure 5.4a and the event model in Figure 5.4b.

The set of possible events consists of e1 and e2. Event e1 happens with probability 1

at state s1, while event e2 happens with probability 1 at state s2, and at each state of

the event model no more than one event happens. Figure 5.4c shows the state space

and the transition function of the Goal POMDP constructed from the product of the

DFA and the event model based on Definition 18. This product, which is decomposed

into its set of SCCs in Figure 5.4d, has five SCCs C0, C1, C2, C3, and C4. There is

only a single topological ordering of these SCCs, namely (C0, C1, C3, C2, C4).
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Now, we consider solving the RTM/FOM problem where the input DFA is loop-

omitted acyclic. Recall that to solve that problem we need to compute a policy that

minimizes the expected number of steps to reach a goal state, and observe that, in

this case, the Goal MDP underlying the Goal POMDP in Definition 18 is a layered

DAG. Thus, to compute an optimal policy for such a Goal MDP, we can use the

topological value iteration algorithm of [30].

Their algorithm considers each SCC as a metastate and then computes an optimal

policy for those metastates based on a reverse ordering of a topological ordering of

the metastates. The optimal action for states within each metastate is computed

using value iteration. In Dai and Goldsmith’s algorithm, each metastate is solved

only once because the graph connecting the metastates is acyclic. Note that when a

metastate (SCC) is solved, only the values of states within that metastate are backed

up, whereas in the classical value iteration, at each step, the values of all states are

backed up until their values converge. To illustrate their algorithm, consider again

the Goal MDP in Figure 5.4c. Recall that there was only one topological ordering,

(C0, C1, C3, C2, C4), between the SCCs of the MDP. Accordingly, their algorithm first

computes an optimal action for the single state in C4, then for the states in C2, then

for the states in C3, then for the states in C1, and finally for the only state of C0.

For solving the RTM and the RTM/FHM problems with input DFAs which

are loop-omitted acyclic, we need to solve a Goal POMDP that has a layered DAG

structure, and for solving those Goal POMDPs, one can use the algorithm of [34],

which computes a policy using a point-based method. Their algorithm constructs the

layered acyclic graph for the belief points by utilizing the layered acyclic structure of

the POMDP.
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a) b)

c)

d)

Figure 5.4: a) A loop-omitted acyclic DFA. b) A sample event model. c) The Goal
MDP obtained from the product of the DFA and the event model in parts (a) and
(b). d) It shows the strongly connected components of graph underlying the MDP
in part c. Each blue circle is a strongly connected component. The self-loops and the
edges between states of different SCCs have been omitted to reduce visual clutter.

The Goal MDP is a directed acyclic graph

Another special case is where the graph underlying the Goal MDP is a DAG if all

the self-loops are removed from it.
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We clarify this special case in the following definition.

Definition 22. For a given Goal MDPM = (X,A, b0,T, XG, c), let G(M) = (V,E)

be the graph underlying M, in which V = X and E = {(x, t) ∈ X2 | T(x, t) > 0},

and let Loop−(G(M)) = (V,E ′) be the graph obtained from G(M) by removing the

self-loops from it, that is, E ′ = E \{(x, x) | x ∈ X}. We say thatM is a loop-omitted

directed acyclic graph, or loop-omitted DAG for short, if Loop−(G(M)) is a directed

acyclic graph.

Note that this is stronger than the previous case, as it corresponds to the cir-

cumstance where each SCC is a single vertex. Nevertheless, it is possible for a Goal

MDP to be a loop-omitted DAG, while its underlying graph has self-loops. Figure 5.5

provides one such example. This kind of MDPs arises, in particular, in applications

where the DFA specifying all desired stories is a loop-omitted acyclic DFA and the

graph underlying the event model is also a DAG if the self-loops removed from that

graph. A special case of that kind of event model is where the event model has only

a single state, which might be created by collapsing all the states of an original event

model in order to make an approximation of the original event model.

In the rest of this section, we only consider RTM/FOM problems for this kind

of MDP. Observe that because any Goal MDP that is a loop-omitted DAG is a

layered DAG where each strongly connected component of the graph underlying the

Goal MDP has only one state, we can use the algorithm of the previous section, the

topological value iteration algorithm for MDPs, to compute an optimal policy for

the MDP. This requires iteration to update the value of a state using the Bellman

equation until the value of the state converges. Though this algorithm is faster than

the original value iteration algorithm for MDPs, for solving large MDPs, it still may

require a considerable amount of time for the state values to converge, and therefore,

we propose a faster algorithm that does not require value iteration at all, and the
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Bellman equation for each state is solved by solving several simple, single-variable

equations.

In this algorithm we first choose a topological ordering of the non-goal states

(state values of all the goal states are zero) of the MDP. Then, at each step, we take

a state from the MDP based on the reverse of the topological ordering to compute

an optimal action for that state and the value of that state. To do so, for each state

x and action a ∈ A, we introduce a variable tx,a to denote the expected number of

steps from x to reach a goal state of the MDP if the policy assigns action a to state

x. Also, for each state x, we introduce a variable tx to denote the expected number of

steps to reach a goal state from x under an optimal policy. To compute the optimal

action for each state x, if x is a goal state, then tx = 0, meaning that the expected

number of steps to reach a goal state from x under an optimal policy is zero. If state

x is not a goal state, then for each action a ∈ A, we solve the following equation

tx,a = T(x, a, x)(1 + tx,a) +
∑
x′∈X
x′ 6= x

T(x, a, x′)(1 + tx′). (5.17)

Then, we compute tx simply as tx = mina∈A{tx,a}. For each x ∈ X \ XG, we set

π∗(x) = arg mina∈A{tx,a}. By doing so, we compute an optimal policy π∗.

We end this section by illustrating this algorithm via an example for the MDP in

Figure 5.5. There is a single topological ordering of the non-goal states: x0 → x1 →

x2. To compute an optimal policy, we pick this (the sole) choice of ordering. Next,

we compute the optimal action for x2. For this purpose, for actions a and b, we need

to solve the following equations,

tx2,a = 0.2(1 + tx2,a) + 0.8(1 + tx4) (5.18)

and

tx2,b = 0.4(1 + tx2,a) + 0.6(1 + tx4). (5.19)
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Figure 5.5: A sample of an MDP that is a directed acyclic graph when all the self-
loops are removed.

Based on these two equations, we have tx2,a = 1.25 and tx2,b = 1.67. So, tx2 = 1.25,

and thus, we set π∗(x2) = a. Then, we solve the following equations for x1.

tx1,a = 0.3(1 + tx1,a) + 0.7(1 + tx3) = 1 + 0.3tx1,a (5.20)

and

tx1,b = 0.1(1 + tx2) + 0.9(1 + tx4) = 1.125. (5.21)

So, tx1 = 1.125, and hence, we set π∗(x1) = b. To compute the optimal action for

x0, we solve the following equations,

tx0,a = 0.5(1 + tx2) + 0.5(1 + tx1) (5.22)

and

tx0,b = 0.4(1 + tx2) + 0.6(1 + tx1). (5.23)

As such, tx0 = 2.175, and therefore, we let π∗(x0) = b.
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5.5 Greedy algorithm

In this section, we consider a greedy algorithm for solving RTM and RTM/FHM,

which we also specially adapt for RTM/FOM. This greedy algorithm will serve as a

baseline for comparison for the case studies in Section 5.7.

The idea is, at each time step, simply to choose an event to capture that has the

highest probability of occurring in the next time step. To do so, the robot first uses

the event modelM = (S,P, s0, E, g) and the DFA D = (Q,E, δ, q0, F ), to construct

the Goal POMDP P(M,B;D) = (X,A, b0,T, XG, Z,O, c) based on the construction in

Definition 18. Then, at each time step, it uses this POMDP to compute an event

that has the highest probability to be chosen in the next time step. Importantly, in

this greedy approach, the robot considers only a single step, and does not compute

a policy that minimizes the expected number of steps to reach a goal state for this

POMDP.

For each time step k, the robot maintains the current belief state bk ∈ ∆(X) of

the POMDP and the current state qk of the DFA. Then, for all events e for which

δ(qk, e) 6= qk and from δ(qk, e) at least one accepting state is reachable, we compute

the probability that e happens in the next time step given bk as follows:

Pr(e happens in the next time step | bk) =∑
x=(s,q)∈X

bk[x] ·
∑
s′∈S

P(s, s′)g(s′, e). (5.24)

Hence, the robot hopes to record in the next time step, an event that has the greatest

probability computed by this equation. In the case that several such events exist, the

robot chooses one of them arbitrarily.

Given that RTM/FOM is a special form of RTM, the process described so

far in this section applies for RTM/FOM too, but for RTM/FOM we can avoid

constructing the product of the event model and the DFA. For RTM, the robot

maintains, at each time step k, the current state sk of the event model and the
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current state qk of the DFA. Then, at step k, it computes for all events e for which

δ(qk, e) 6= qk and from δ(qk, e) an accepting state is reachable, the following probability

Pr(e happens in the next time step | sk) =∑
s′∈S

P(sk, s′)g(s′, e), (5.25)

which is essentially the probability that e happens in the next time step. Then, from

among all events that obtain the highest value in this equation, the robot chooses

one to attempt to record in the next time step.

We compare this greedy algorithm with our general algorithm in Section 5.7 to

assess their relative solution quality.

5.6 Construction of specification languages

This section describes how one might construct, in a partially automated way, speci-

fications for a variety of interesting scenarios. The idea is to use a variety of mutators

to construct specification DFAs.

Multiple recipients

Suppose we would like to capture several videos, one for each of several recipients,

within a single execution. Given language specifications D1, . . . ,Dn ∈ D , where

D denotes the set of all DFAs over a fixed event set E, how can we form a single

specification that directs the robot to capture events that can be post-processed into

the individual output sequences? One way is via two relatively simple operations on

DFAs:

(MS) A supersequence operation MS : D → D , where

L(MS(D)) = {w′ ∈ E∗ |w′ is supersequence of a w ∈ L(D)}.
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This operation is produced by first treating D as a nondeterministic finite au-

tomaton (NFA) and then, for each event and state, adding a transition labeled by

that event from that state to itself, and converting result back into a DFA [105].

(MI) An intersection operation MI : D ×D → D , under which

L(MI(D1,D2)) = L(D1) ∩ L(D2).

Based on these two operations, we can form a specification that asks the robot to

capture an event sequence that satisfies all n recipients as follows:

D = MI(MI(MS(D1),MS(D2)) . . . ,MS(Dn))

Then from any ξ ∈ L(D), we can produce a ξi ∈ L(Di) by discarding (as a post-

production step) some events from ξ.

Mistakes were made

What should the robot do if it simply cannot capture an event sequence that fits

its specification D, either because some necessary events did not occur, or because

the robot failed to capture them when they did occur? One possibility is to accept

some limited deviation between the desired specification and what the robot actually

captures.

Let d : E∗ × E∗ → Z+ denote the Levenshtein distance [80], that is, a distance

metric that measures the minimum number of insert, delete, and substitute operations

needed to transform one string into another. A mutator that allows a bounded amount

of such distance might be:

(ML) A Levenshtein mutator ML : D ×Z+ → D that transforms a DFA D into one

that accepts strings within a given distance from some string in L(D).

L(ML(D, k)) = {ξ | ∃ξ′ ∈ L(D), d(ξ, ξ′) ≤ k}.
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This mutation can be achieved using a Levenshtein automaton construction [71,

128]. Then, if the robot captures a sequence in L(ML(D, k)), it can be converted to

a sequence in L(D) by at most k edits. For example, an insertion edit would perhaps

require the undesirable use of alternative ‘stock footage’, rendering of appropriate

footage synthetically, or simply a leap of faith on the part of the viewer. By assigning

the costs associated with each edit appropriately in the construction, we can model

the relative costs of these kinds of repairs.

At least one good shot

In some scenarios, there are multiple distinct views available of the same basic event.

We may consider, therefore, scenarios in which this kind of good/better correspon-

dence is known between two events, and in which the robot should endeavor to cap-

ture, say, at least one better shot from that class. We define a mutator that produces

such a DFA:

(MG) An at-least-k-good-shots mutator MG : D × E × E × Z+ → D , in which

MG(D, e, e′, k) produces a DFA in which e′ is considered to be a superior version of

event e, and the resulting DFA accepts strings similar to those in L(D), but with at

least k occurrences of e replaced with e′.

The construction makes a DFA in which D has been copied k + 1 times, each

called a level, with the initial state at level 1 and the accepting states at level k + 1.

Most edges remain unchanged, but each edge labeled e, at all levels less than k + 1,

is augmented by a corresponding edge labeled e′ that moves to the next level. This

guarantees that e′ has replaced e at least k times, before any accepting state can be

reached.
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5.7 Case studies

We also compare our general algorithm with a the greedy algorithm of Section 5.5,

which, at each time step, attempts to capture an event that has the highest probability

of occurrence at the next time step.

Turisti Oulussa

In pre-covid 2019, William is a tourist visiting Oulu as shown in Figure 5.6a.

William’s family has privately contracted a robotic videography company to record

him seeing the sights, specifically the Kauppahalli (k), the Hupisaaret park (h), and

either Tietomaa museum (t) or the Oulu Cathedral (c). The robot does not know

William’s specific plans, but it does know, through some statistics, that a typical

tourist moves among those districts according to the event model in Figure 5.6b.

The desired video is specified using the DFA in Figure 5.6c. The robot is given

other tasks to do aside from recording William, and thus, cannot merely follow

William; it must form a strategy that predicts which events to try to capture.

We considered three settings: (1) RTM/FOM: the robot always knows the cur-

rent district in which William is located, perhaps by the help of some static sensors;

(2) RTM: the robot does not know at which district William is currently located

but there is a single useful observation, a message sent from a security guard in dis-

trict s1, that informs the robot that William is in district s1 whenever he is there;

(3) RTM/FHM: the robot receives no direct knowledge about William’s location.

We computed the optimal policy for RTM/FOM, case (1), using the Goal MDP ap-

proach in Section 5.2. According to this policy, the expected number of steps to record

under an optimal policy with full observability, a story satisfying the specification, is

approximately 35.39.

The computed optimal policy for this case is shown in Figure 5.6d. Each oval in
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Figure 5.6: a) Districts of Oulu that William is touring. b) An event model that describes
how a tourist visits those districts. c) A DFA specifying that the captured story must
contain events k and h and at least one of c or t. d) The optimal policy for the RTM/FOM
problem for Oulu. Subfigures e–j consist of a histogram showing, for 5,000 simulations, the
distribution of the number of hours (steps) William (system) circulated (ran) until the robot
recorded a story specified by the DFA, and a pie chart showing the distribution of recorded
sequences in these simulations. Pairs e) and f) are for the RTM/FOM problem, g) and h)
for the RTM problem, and i) and j) are for the RTM/FHM problem. In the left column
the robot uses the general algorithm, while in the right column it uses the greedy approach.
Moving down the column, the average number of steps to record a story increases as the
robot’s perception of the world’s state diminishes. While the distribution of the recorded
sequences by the general algorithm differs from the distribution of the recorded sequences
by the greedy algorithm, for each of the greedy algorithm and the general algorithm, the
distributions of the recorded sequences under different levels observability were similar.
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this figure is a state of the DFA and inside each of those ovals, all the states of the

event model are drawn as boxes. The event labeled inside a box is the event chosen

by the optimal policy when the DFA is in the state represented by that oval and

the event model is in the state represented by that box. Each empty box is assigned

an arbitrary event by the policy and those events assigned to those empty boxes are

irrelevant to recording a desired story.

To verify the correctness of the algorithm, we simulated the execution of this policy

5,000 times. In each simulation, William followed a random path through the city

according to the event model in Figure 5.6b, and the robot executed the computed

policy to capture an event sequence satisfying the specification. The average number

of steps to record a satisfactory sequence for those 5,000 simulations using our general

algorithm was 35.59, quite close to the expected number of steps. Figure 5.6e shows

results of those simulations in form of a histogram and a pie chart. We also made 5,000

simulations of the same RTM/FOM problem and in each simulation we let the robot

to use the greedy algorithm to record a desired story. The average number of steps for

this experiment was 43.52, which is substantially longer than the expected number

of steps to record a desired event sequence with the optimal policy for RTM/FOM,

35.59. This is justified, in particular, by the fact that when the robot is in state s0

and it has captured neither h nor k, the greedy algorithm does not consider the fact

that the best event to predict at that time to decrease the average number of steps

is h because, if William enters s2 in the next time step, then it is possible than he

enters s3 from s2 and, thus, the robot could capture both events h and k during a

single circuit of the environment. See Figure 5.6f for additional details regarding this

experiment.

For cases (2) and (3), our algorithm constructed a Goal POMDP, as described by

Definition 18, which is then supplied to APPL Online to perform 5,000 simulations.

Also, for each of the two cases, we generated 5,000 simulations in our program and
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let the greedy algorithm decide which event to try to capture. In case (2), RTM with

a useful observation, the average number of steps to record a desired story using our

general algorithm and the greedy algorithm were 37.28 and 44.73, respectively. In

case (3), RTM/FHM, the general algorithm and the greedy algorithm had the robot

record a desired story in 43.77 and 56.98 steps, respectively, on average.

The histograms and the pie charts for these four experiments are shown in Fig-

ures 5.6g–5.6j. In these figures, notice how a single observation of whether William

is in s1 helps the robot to record a story considerably faster than when it hasn’t got

access to that state information. To such a robot, even a stream of quite limited

information, if aptly chosen, can be very useful.

A further qualitative remark: note how the histogram changes as the level of

observability increases, from RTM/FOM to RTM/FHM: the robot is able to uti-

lize the additional information to capture stories more rapidly. Also, across each

of the three settings RTM/FOM, RTM, and RTM/FHM, the average number of

steps needed via the greedy algorithm is considerably greater than via the general

algorithm.

Wedding reception

Suppose a videographer robot is asked to produce videos that convey different stories,

assembled from unpredictable events at a wedding reception. Each guest has their

own sense of the events they would like to see captured: Alice is mainly interested

in seeing Chris drinking or smoking, but also has plans to share the last dance with

Bob; Bob cares for nothing but seeing his own dancing through the evening, but

hopes to share the last dance with Alice; Chris does not care to see any events at

all, but Chris’s children are concerned about his unhealthy habits, and so if Chris is

drinking too much coffee or smoking too much, they would like to know. The robot in

that scenario is given three parallel objectives. We can formalize those as languages,
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Figure 5.7: a) The event model for the behavior of a person attending a wedding
reception, which has six states: Ii, the state of arriving; Ei, the state of being enter-
taining; Ci, for consuming coffee; Bi, for drinking other beverages; Di, for dancing;
and Si, for smoking. Each histogram shows the average number of steps to record
a desired story for 5,000 simulations of the wedding reception scenario. The left
column, parts b, d, f, h, and j, is for the cases where the robot uses the general
algorithm, while the right column, parts c, e, g, i, and k are for the cases where the
robot uses the greedy algorithm. Parts d and e are for when there is a smoke de-
tector, providing the observation of whether someone is smoking, and a microphone,
capable of detecting that someone is dancing or being entertained. For parts f and
h, there is only a smoke detector, while for parts h and i there is only a microphone.
It seems, at first, that the RTM problem with a smoke detector might be incompa-
rable with RTM using a microphone, but the single useful observation in the former
guarantees that at least one guest is in the state of smoking, while the single useful
observation in the later case guarantees that at least one guest is either in state of
dancing or in state of being entertained, which is less informative. This experiment
also shows that increasing observability will decrease the time to capture a desired
story. Furthermore, it shows that although the general algorithm often outperformed
the greedy algorithm in terms of average number of steps, here the greedy algorithm
gives a reasonable approximation to the optimal solutions.
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shown here for compactness as regular expressions: for Alice, r1 = (s3 + c3)+d12; for

Bob, r2 = (d2 + d12 + d23)+d12; and for Chris, r3 = (s3 + c3)(s3 + c3)(s3 + c3)+. These

three requests—where subscript labels 1, 2, and 3, respectively represent Alice, Bob,

and Chris—are encoded using DFAs D1, D2, and D3, respectively.

The joint behavior of the three guests is modeled by an event modelM obtained

as the Cartesian product of the models for the individuals, which has 63 states in this

example. The joint event model is further enhanced with joint events created from

single events. To form a DFA D from the given specification DFAs, the robot uses

D = MI(MI(MS(D1),MS(D2)),MS(D3)).

Our implementation for this case study considers five settings: (1) RTM/FOM:

the current state of the event model is always observable to the robot, that is, the

robot always knows what each of the guests are doing, (2) RTM with a smoke detector

device and a microphone: the robot is not aware what each of the guests are doing,

but there is a smoke detector that if at each time step tells if somebody is smoking

or not but without telling who is exactly smoking, and there is a microphone whose

being turned on means that someone is dancing or being entertained; (3) RTM with

a smoke detector device: the robot does not know what each of the guests are doing,

but using the smoke detector can detect if right now somebody is smoking or not;

(4) RTM with a microphone: the robot is not aware about the current status of the

guests but if the microphone is turned on, then it means that someone is dancing or

being entertained; (5) RTM/FHM: the robot receives no direct information about

the current behavior of the guests.

For each of these five settings, we conducted two experiments, each consisting

of 5,000 simulations. In one experiment we let the robot use the general algorithm

to record a desired story, while in the other one we let the robot use the greedy

algorithm.

The expected number of steps for an optimal policy for RTM/FOM is 35.38, and
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over the 5,000, simulations, the average number of steps to record a story using the

general algorithm was 35.58; both numbers are very close. The average number of

steps over 5,000 simulation using the greedy algorithm was 37.54, which shows that

the greedy algorithm was also outperformed by the general algorithm in minimizing

the number of steps to record for this case study.

The average number for RTM with a smoke detector and microphone using the

general algorithm and the the greedy algorithm were 37.64 and 38.25, respectively.

For RTM with a smoke detector, the average number was 37.95 when the general

algorithm was used, and it was 38.06 when the greedy algorithm was used. The

general algorithm and the greedy algorithm for RTM with a microphone respectively

yielded 38.53 and 38.75. Finally, the average number of steps using the general

algorithm for RTM/FHM was 39.20, while the average number using the greedy

algorithm was 38.99.

Again we observed that increasing the robot’s ability to perceive the world will

help reduce the average number of steps to record a desirable event sequence. Also,

for four out of the five considered settings, the general algorithm yielded a fewer

average number of steps compared to the greedy algorithm, but for RTM/FHM,

the greedy algorithm produced a slightly superior average number of steps. In this

experiment, except for RTM/FOM, which we solve using an MDP rather than a

POMDP, the expected number of steps for the greedy algorithm and for the general

algorithm were close. This is perhaps because APPL Online, the tool we used for

solving the POMDP, is an online POMDP solver and the solution is provide is an

approximate solution rather than an exact solution, which is in general intractable to

provide for POMDPs. This suggests this particular case study is an example where

the greedy algorithm is able to closely approximate the optimal solutions.
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Running a race

John and James are two runners that running a race against one another. A videog-

rapher robot is asked to record a video whose events involve John and James. The

events of interest are: r1, John is running; h1, John is crossing the flag located the

middle of the race field; f1, John is crossing the finish line; p12, John is passing James;

r2, James is running; h2, James is crossing the flag located the middle of the race

course; f2, James is crossing the finish line; p21, James is passing John.

To make an event model for this problem, we divide the racetrack into several

sections of the identical length. Figure 5.8a shows an example in which the race is

divided into 8 sections, s0 through s7. To make an event model for a single runner, we

represent each of those sections using a single state of the event model. The transition

probability function is based on the distance a runner can travel in a single time step,

and as the sections form a sequence, their neighbor-to-neighbor connections.

Figure 5.8b shows the event model for a runner i where the track is in sections

s0–s7. In this example, when the runner is in state sj then, at the next time step,

based on his speed, he could be in any of states sj, sj+1, sj+2, and sj+3. The event

model for the joint behavior of John and James is formed from the product of their

individual event models. Each state of this event model represents a tuple of sections

of the field in which John and James could be. Events p12 and p21 both happen with

probability 0.5 at each state representing a situation where both John and James are

in one section of the track. The current state of the event model is observable by the

robot: perhaps, at specific locations along the course, there are stationary cameras

that tell the robot the sections the runners currently occupy. The robot does not,

however, know the sections which John and James will be in in the next time step

because it does not know how their speed will change in the future. Thus, to find an

optimal policy for capturing events, we need to solve the RTM/FOM problem.

The desired story is specified by the DFA in Figure 5.8c. To solve this problem,
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we form the Goal MDP and we can use the (classical) value iteration to compute an

optimal policy for the MDP. However, because the given DFA is loop-omitted acyclic,

a better option would be to use the topological value iteration algorithm, introduced

in Section 5.4, to compute an optimal policy for the MDP. Closer observation suggests

that we can even use the algorithm introduced in Section 5.4 for loop-omitted DAG

MDPs. This is because not only the DFA is loop-omitted acyclic, but the graph

underlying the event model also does not have any cycles other than self-loops; these

facts together make the Goal MDP a loop-omitted DAG MDP. We designate the

algorithm that we introduced for solving loop-omitted MDPs, single value iteration,

owing to the fact that only one iteration for each state is required to solve the Bellman

equation for this kind of MDP, and the optimal action for each state is computed by

solving several single variable equations.

In this experiment, we compare the running times of classic value iteration, topo-

logical value iteration, and the single value iteration algorithms to compute an op-

timal policy for the MDP. To do so, we consider 10 racetracks, varying the number

of sections from 30 to 120. For each of these 10 problem sizes {30, 40, . . . , 120}, we

construct a Goal MDP from the DFA and the event model, and then compute an op-

timal policy for that MDP using each of the three algorithms. Figures 5.8d and 5.8e

give a sense of the sizes of those MDPs; the former shows for each of those MDPs,

the number of states of the MDP, while the latter shows the number of edges of the

graph underlying the MDP.

For each of those 10 problem sizes, we conducted 10 trials for each of the three

algorithms. Figure 5.8f shows, for each of those 10 problem sizes, the average com-

putation time of each of the algorithms. The computation time for the topological

value iteration in this diagram includes the computation for forming the SCCs of the

graph and the time needed to find a topological ordering. Figure 5.8g shows how

much time these steps contribute to the overall computation time of the topological
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value iteration algorithm. Likewise, Figure 5.8h shows the contributions for the two

phases that make up the single value iteration, namely, finding a topological ordering

of the MDP states, and solving the single value equations to find optimal actions for

states.

In this experiment, we observe that the topological value iteration outperforms the

classical value iteration and the single value iteration outperforms both of them. For

the last MDP, which has approximately 57,000 states and approximately 7,000,000

nonzero entries within its transition function, it took 174 seconds on average for the

classical value iteration to compute an optimal policy. In contrast, the single value

iteration on average took less than 3 seconds to compute an optimal policy. This

experiment justifies the use of the algorithms we introduced in Section 5.4 for special

inputs of our problem.
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Figure 5.8: a) An example of a race source, which we have divided into 8 sections
s0 through s7 form an event model for the race. b) The event model for a single
runner i ∈ {1, 2}, including events ri, runner i is running; hi, runner i is crossing
the race flag at the middle of the race field; fi, runner i is crossing the finish line.
The event model for the two runners John and James is made by the product of
the event models for each of them. Two more events, p12 and p21, are introduced
to the joint event model. Event p12 denotes that John is overtaking James, while
p21 means that James is overtaking John. Each of these two events happens with
probability 0.5 at each state that represents the runners are in the same section. c)
The DFA specifying the set of all desirable videos for the race example. d) A diagram
showing the number of states of the MDP created by the product of the event model
and the DFA in this race example. e) A diagram showing the number of edges of
the graph underlying the MDP. Parts d and e together show how the size of the
MDP increases as the size of the problem increases. They show as the problem’s size
doubles, the MDP’s size approximately quadruplicates. f) A diagram showing the
computation time for classical value iteration, which we use in our general algorithm,
the computation time of the topological value iteration algorithm, which use to solve
our problem where the DFA is loop-omitted acyclic, and the computation time of
the topological value iteration, which we use to solve our problem when Goal MDP
is a loop-omitted DAG. For this experiment, the topological single iteration was on
average 6.5 faster than the topological value iteration and also the latter on average
was 6 times faster than the general, classical value iteration algorithm. g) A diagram
showing, for topological single value iteration, the breakdown of its computation time
into the three phases of the algorithm: decomposing the MDP into its SCCs, finding
a topological ordering of the SCCs, and performing the value iteration. h) A diagram
showing, for the topological single value iteration algorithm, how much each of the
two phases of the algorithm, namely, finding a topological ordering of the states of the
MDP, and computing an optimal action for each state via solving the single variable
equations, contribute to the computation time of the algorithm. The results for each
of the section sizes 30-120 in the diagrams in parts (f), (g), and (h) are the average
computation times across 10 trials.
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Chapter 6

Optimal LTL planning with LDLf soft

constraints

In this chapter, we consider linear temporal logic planning with LDLf soft specifica-

tions. The material in this chapter is based on our work Rahmani and O’Kane [107],

which appeared in IROS 2019.

The organization of this chapter is as follows. In Section 6.1, we present prelimi-

nary definitions, in Section 6.2, we present our problem statement, in Section 6.3, we

present our algorithm, and in Section 6.4, we present our case studies.

6.1 Preliminary definitions: Words, transition

systems, LTL, Büchi automata, and LDLf

In this section, we review the definitions of several formal tools that we utilize to

define and solve the preference-guided temporal planning problem. We present these

standard definitions here to help ensure that this chapter remains self-contained;

readers already familiar with these tools may wish to skip ahead to Section 6.2.

Words, finite and infinite

The set of all finite words over an alphabet Σ is denoted Σ∗; the set of all infinite words

on the same alphabet is denoted Σω. For any integer j ≥ 0 and infinite word w =

a0a1a2 · · · ∈ Σω, we use w[..j] and w[j..] to denote respectively the prefix a0a1 . . . aj
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and the postfix ajaj+1 . . . of w. We write w[i..j] and w[i] to denote aiai+1 · · · aj and ai,

respectively. For finite words, these same four notations apply. The infinite repetition

of a finite word r ∈ Σ∗, which is an infinite word in Σω, is denoted rω. A lasso is

formed when such an infinite repetition is concatenated to a finite word, that is, a

lasso is an infinite word of the form r1(r2)ω, in which r1 ∈ Σ∗ and r2 ∈ Σ+.

Transition systems

Next we consider a structure to model the environment.

Definition 23. [transition system] A transition system is a tuple T = (S,R, s0, AP, L),

in which S is a finite set of states; R ⊆ S × S is a transition relation; s0 ∈ S is the

initial state; AP is a set of atomic propositions; and L : S → 2AP is a function

associating atomic propositions to each state.

A transition system may perhaps be most readily understood as a directed graph;

see Figure 1.3. An infinite path on the transition system is a sequence of states

s0s1s2 · · · ∈ Sω, starting from the initial state s0, and for which (si, si+1) ∈ R for all

i ≥ 0. Since we are interested in infinite paths, we assume that the transition system

does not have any blocking states, that is, states without any outgoing edges.

To each state s, the labeling function L assigns a (possibly empty) set of atomic

propositions L(s), describing the properties of interest that hold at that state. For

any infinite path π = s0s1 · · · ∈ Sω, we define its trace as trace(π) = L(s0)L(s1) · · · ∈

(2AP )ω. The trace of a finite path is defined similarly.

Linear temporal logic

The overall mission for our robot is expressed as a formula expressed in LTL over the

atomic propositions in the transition system.
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Definition 24. [LTL syntax] Given a set of atomic propositions AP , an LTL formula

ϕ over AP is a word generated by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ©ϕ | ♦ϕ | �ϕ | ϕ Uϕ,

in which p ∈ AP ; ¬ (negation), ∧ (conjunction), and ∨ (disjunction) are Boolean

operators;© (next), ♦ (eventually), � (always), and U (until) are temporal operators.

Such a formula is interpreted as follows.

Definition 25. [LTL semantics] Let σ = A0A1A2 · · · ∈ (2AP )ω be a trace, and ϕ

be an LTL formula. We say that σ satisfies ϕ, denoted σ � ϕ, if the tuple (σ, ϕ) is

related by the satisfaction relation �, defined recursively as follows:

• σ � p iff p ∈ A0;

• σ � ¬ϕ iff σ 2 ϕ;

• σ � ϕ1 ∧ ϕ2 iff σ � ϕ1 and σ � ϕ2;

• σ � ϕ1 ∨ ϕ2 iff σ � ϕ1 or σ � ϕ2;

• σ �©ϕ iff σ[1..] � ϕ;

• σ � ♦ϕ iff ∃k ≥ 0, σ[k..] � ϕ;

• σ � �ϕ iff ∀k ≥ 0, σ[k..] � ϕ;

• σ � ϕ1Uϕ2 iff ∃j ≥ 0, σ[j..] � ϕ2 and ∀0 ≤ i < j, σ[i..] � ϕ1;

As an example, recall the mission of the robot in Figure 1.3, ϕ = �♦k ∧ �♦h,

which describes trajectories that always eventually visit the kitchen (that is, visit the

kitchen infinitely often), and also always eventually visit the bathroom. The formula

ϕ2 = ♦(k∧♦(c∧♦�h)) specifies all trajectories in which the robot visits the kitchen,

the closet, and the bathroom, in that order at least once, and then ultimately stays
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Figure 6.1: A Büchi automaton Aϕ for LTL formula ϕ = �♦k ∧ �♦h. For the
transition system in Figure 1.3, both the formula and the corresponding automaton
shown here specify trajectories that infinitely often visit both the kitchen and the
bathroom.

in the bathroom forever. The LTL formula ϕ3 = ϕ2 ∧ �(¬k ∨©�¬k) imposes the

restriction of “not allowing the kitchen to be visited more than once” onto ϕ2.

Note that one could define ♦ (‘eventually’) as ♦ϕ := > Uϕ, and � (‘globally’) as

�ϕ := ¬♦¬ϕ, are also used.

Büchi automata

Though our approach accepts the mission specification as an LTL formula, the opera-

tion of our algorithm constructs and utilizes a different representation of the mission,

called a Büchi automaton, defined as follows.

Definition 26. [Büchi automaton] A Büchi automaton is a tuple A = (Q,Σ, δ, q0, F ),

in which Q is a finite set of states; Σ is an alphabet; δ ⊆ Q × Σ × Q is a transition

relation; q0 ∈ Q is the initial state; and F ⊆ Q is a set of accepting states.

Büchi automata may readily be visualized as directed graphs. See Figure 6.1.

Note the structural similarities to nondeterministic finite automata.
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An infinite run r over a Büchi automaton is an infinite sequence of states r =

q0q1q2 · · · ∈ Qω starting at the initial state q0, such that for all i ≥ 0, there exists an

a ∈ Σ such that (qi, a, qi+1) ∈ δ. A sequence r = q0q1q2 · · · ∈ Qω is a run for a word

w = a0a1 · · · ∈ Σω if (qi, ai, qi+1) ∈ δ for each i ≥ 0. We use inf(r) to denote the set

of states that appear infinitely many times in an infinite run r = q0q1q2 . . ., that is,

inf(r) = {q ∈ Q | ∀i ≥ 0,∃j ≥ i, qj = q}. Run r is accepting if inf(r) ∩ F 6= ∅. The

language of a Büchi automaton A, denoted Lω(A), is defined as follows:

Lω(A) = {w ∈ Σω | there exists an accepting run r for w}.

Büchi automata are of interest to us because they can encode our robot’s LTL

mission in a form more amenable to algorithmic analysis. Specifically, for any LTL

formula ϕ over a set of atomic propositions AP , there exists a Büchi automaton

Aϕ with alphabet Σ = 2AP such that Lω(Aϕ) = {σ ∈ (2AP )ω | σ � ϕ}, that is,

automaton Aϕ accepts exactly all traces satisfying ϕ. Algorithms to perform this

kind of construction of a Büchi automaton from an LTL formula are well-known [3,

46,137,160].

Linear dynamic logic over finite traces

Finally, we review the formal language, namely Linear Dynamic Logic Over Finite

Traces (LDLf ), used to specify preferences as part of the problem input. The syntax

of LDLf is defined below.

Definition 27. [LDLf syntax] Given a set of atomic propositions AP , an LDLf

formula ψ over AP is a word generated by the following grammar, with start symbol

ψ:

ψ ::= p | ¬ψ | ψ ∧ ψ | ψ ∨ ψ | 〈ρ〉ψ | [ρ]ψ

ρ ::= φ | ψ? | ρ; ρ | ρ+ ρ | ρ∗
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in which p is an atomic proposition in AP and φ is a propositional formula over the

atomic propositions in AP .

Notice that LDLf formulas can combine two types of constructions, realized in

the symbols ψ and ρ. The first type, denoted ψ, is similar to an LTL formula except

that it has modal operators (〈〉 and []) instead of temporal operators. The second

type, denoted ρ, is called a path expression, in which operators ‘;’(concatenation),

‘+’(union), and ‘*’(Kleene star) are exactly the operators used within regular expres-

sions. To make a path expression, we can use test constructs in the form ψ? too,

which allow for checking of LDLf formulas’ satisfaction.

As an example path expression, consider ρ = k; (true)∗;h over AP = {l, k, d, h, c},

the set of automatic propositions used for the example in Figure 1.3. This formula

specifies all finite traces that start from the kitchen and end in the bathroom.

LDLf uses the operators 〈〉 and [] to encapsulate an REf expression ρ to create

formulas of the form 〈ρ〉ψ and [ρ]ψ. Informally, the former means that from the

current time instance (the current position), with a trace satisfying ρ we can reach a

time satisfying formula ψ; while the later means that from the current time instance,

all traces satisfying ρ end in a time instance satisfying ψ.

Each LDLf formula ψ over AP specifies a set of finite traces traces(ψ) ⊆ (2AP )∗

such that each finite trace σ̂ ∈ traces(ψ) satisfies ψ, which is denoted σ̂, 0 � ψ. The

semantics of LDLf is defined as follows.

Definition 28. Given a set of atomic propositions AP and a finite trace σ̂ ∈ (2AP )∗,

it is inductively defined whether formula ψ is true at an instant 0 ≤ i ≤ |σ̂| − 1 of

σ̂—denoted σ̂, i � ψ—as follows:

• σ̂, i � p iff p ∈ σ̂[i]

• σ̂, i � ¬ψ iff σ̂, i 2 ψ
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• σ̂, i � ψ1 ∧ ψ2 iff σ̂, i � ψ1 and σ̂, i � ψ2

• σ̂, i � ψ1 ∨ ψ2 iff σ̂, i � ψ1 or σ̂, i ∨ ψ2

• σ̂, i � 〈ρ〉ψ iff for some i ≤ j ≤ |σ̂|−1, it holds that (i, j) ∈ R(ρ, σ̂) and σ̂, j � ψ

• σ̂, i � [ρ]ψ iff for all i ≤ j ≤ |σ̂| − 1 such that (i, j) ∈ R(ρ, σ̂), it holds that

σ̂, j � ψ

where the relation R(ρ, s) is defined recursively as follows:

• R(φ, s) = {(i, i+ 1) | s, i � φ}

• R(ψ?, s) = {(i, i) | s, i � ψ}

• R(ρ1; ρ2, s) = {(i, j) | exists k such that (i, k) ∈ R(ρ1, s) and (k, j) ∈ R(ρ2, s)}

• R(ρ1 + ρ2, s) = R(ρ1, s) ∪R(ρ2, s)

• R(ρ∗, s) = {(i, i)} ∪ {(i, j) | exists k such that (i, k) ∈ R(ρ, s) and (k, j) ∈

R(ρ∗, s)}.

To illustrate the idea of LDLf , recall the example preferences from Section 1.4.

Preference (a), which states that the robot should ideally not go into d1, can be

expressed by ψ1 = [true∗]¬d1, or by the formula ψ′1 = ¬〈true∗〉d1, which is obtained

via the duality rule between the operators 〈〉 and [], according to which [ρ]¬ψ ⇔

¬〈ρ〉ψ for any ψ and ρ. Similarly, preference (b) can be expressed in LDLf as ψ2 =

[true∗]¬d2 and preference (c) as ψ3 = ([true∗]¬(d1 ∨ d2)) ∨ (〈(¬(d1 ∨ d2))∗〉c). The

first part of ψ3 says that the robot does not go into any of d1 and d2, and the second

part says that the robot should go to c before going to d1 or d2.
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6.2 Optimal preference planning

This section presents the definition of our optimal preference planning problem. An

instance of this problem is defined by three elements: (1) a transition system T ,

describing the connectivity of the environment in which the robot moves; (2) a goal

specification, an LTL formula ϕ; and (3) an ordered list of n preferences, expressed

as LDLf formulas ψ1, ψ2, . . . , ψn that the user would prefer to be satisfied.

We focus on preferences specified in LDLf , rather than some other specification

language, because of its balance of human legibility, expressivity, and efficiency of

computation. One alternative would be Linear Temporal Logic for Finite Traces

(LTLf ). However, De Giacomo and Vardi [31] showed that this language is not as

powerful as it was traditionally assumed, and hence, they proposed LDLf as a strictly

more expressive language with similar computational complexity to LTLf .

Based on these preferences, we define for the traces of finite trajectories, a cost

function f : (2AP )∗ → {0, 1, · · · , nn} as follows:

f(σ̂) = Σσ̂ /∈traces(ψi)n
n−i. (6.1)

Notice that a trajectory that violates higher ranked preferences receives a higher

cost compared to one who violates lower ranked preferences. Accordingly, among two

finite trajectories, the one with lower cost is preferred.

Our plans, however, will be infinite trajectories, for the traces of which we define

a new cost function fω : (2AP )ω → {0, 1, · · · , nn}, such that for any σ ∈ (2AP )ω,

fω(σ) = max
i≥0

f(σ[..i]). (6.2)

We combine these elements to form the OPP problem.

151



Algorithm 3: OptimalPreferencePlanning
1 Input: A transition system T , an LTL formula ϕ, and a sequence of n LDLf

formulas ψ1, ψ2, . . . , ψn Output: An infinite path π = s0s1s2 · · · on T such
that trace(π) � ϕ and fω(trace(π)) is minimized.

2 for i = 1 to n do
3 Di ← LDLf2DFA(ψi)
4 F ← IntegrateDFAs2Filter(D1, D2, . . . , Dn)
5 Aϕ ← LTL2BüchiAutomaton(ϕ)
6 P ← Aϕ × T × F
7 if not HasAcceptingRun(P) then
8 return nil
9 (r1, qf , r2)←MiniMaxAcceptingRun(P)

10 π = Convert2PathOnTS(r1, qf , r2)
11 return π

Problem: Optimal Preference Planning (OPP)

Input: A transition system T , an LTL formula ϕ, and n LDLf formulas

ψ1, ψ2, · · · , ψn.

Output: An infinite path π over T such that trace(π) � ϕ and fω(trace(π)) is

minimized.

6.3 Algorithm description

This section describes an algorithm for the OPP problem. The algorithm operates

in three phases. First, we construct a representation of the given preferences in

the form of a combinatorial filter whose outputs are the costs as determined by

Equations 6.1 and 6.2. Then, the algorithm forms a product graph of this filter with

a Büchi automaton for the LTL goal specification, forming a certain type of state-

weighted Büchi automaton the accounts for both the goal and the costs arising from

violated preferences. Finally, we can generate the optimal solution trajectory on this

automaton. Algorithm 3 summarizes the process.
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Cost filters

The first step in Algorithm 3 is to construct a representation that integrates the effects

of all of the LDLf formulas. This representation is a filter F = (V, Y, C, τ, v0, c) in

which C = Z≥0 and τ is a complete transition function. Note that this filter can

be viewed as a slight generalization of the standard deterministic finite automaton,

in which, rather than a single distinction between accepting or non-accepting states,

the filter can produce many different output values. Also, for any word w ∈ Y ∗,

τ ∗(v0, w) is the state to which the automaton reaches by reading word w. The filter

partitions the set of all finite words in Y ∗ such that all words w for whom c(τ ∗(v0, w))

are equal fall into a single equivalence class. We leverage the filter to represent the

cost function f (Equation 6.1), as implied by the following result.

Lemma 11. Let ψ1, ψ2, . . . , ψn be n LDLf formulas over a set of automatic propo-

sition AP , and let f be the function in Equation 6.1 defined for these formulas.

Then there exists a filter F = (V, 2AP , τ, v0, c) such that, for each σ̂ ∈ (2AP )∗,

c(τ ∗(v0, σ̂)) = f(σ̂).

Proof. The algorithm of De Giacomo and Vardi [31] ensures that, for any LDLf

formula ψi, we can construct a DFA Di = (Vi, 2AP , τi, v0,i, Fi), for which L(Di) =

traces(ψi). From these DFAs, construct F = (V, 2AP , τ, v0, c) such that

• V = V1 × V2 × · · · × Vn,

• v0 = (v0,1, v0,2, . . . , v0,n),

• for any state (v1, v2, . . . , vn) ∈ V and any A ∈ 2AP ,

τ((v1, v2, . . . , vn), A) = (τ1(v1, A), τ2(v2, A), . . . , τn(vn, A)),

and
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Figure 6.2: (a) A DFA D1 accepting traces satisfying LDLf formula ψ1 = [true∗]¬d1
(b) A DFA D2 accepting all the traces satisfying LDLf formula ψ2 = [true∗]¬d2 (c)
Filter F constructed by Lemma 11 for D1 and D2.

• for each state (v1, v2, . . . , vn) ∈ V ,

c((v1, v2, . . . , vn)) = Σvi /∈Fi
nn−i.

From the construction, it is easy to observe that f(σ̂) = c(τ ∗(v0, σ̂)) for any σ̂ ∈

(2AP )∗.

In Algorithm 3, lines 2–4 utilize Lemma 11 to construct a cost filter F . Figure 6.2

shows an example. The interpretation of this F is that the value assigned in F to

the state reached by some finite trajectory in T is equal to the cost determined by

the given preferences for that finite trajectory.

The product automaton

The next portion of Algorithm 3 (lines 5 and 6) forms data structure that integrates

both the preferences and the goal specification. To do so, a specific product of

automata is constructed according to the following definition.
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Definition 29. Given a transition system T = (S,R, s0, AP, L), a Büchi automaton

A = (Q, 2AP , δ, q0, F ), and a filter F = (V, 2AP , τ, v0, c), the product automaton P =

A× T × F is a tuple P = (QP , δP , q0,P , FP , wP) in which

1. QP = Q× S × V is a finite set of states;

2. q0,P = (q0, s0, v0) is the initial state;

3. δP ⊆ QP×QP is a transition relation, such that ((q, s, v), (q′, s′, v′)) ∈ δP if and

only if (s, s′) ∈ R, (q, L(s), q′) ∈ δ, and τ(v, L(s)) = v′;

4. FP = F × S × V is a set of accepting states;

5. wP : QP → {0}∪Z+ is a state-weighting function, such that wP((q, s, v)) = c(v)

for each (q, s, v) ∈ QP .

Notice that this product automaton P is itself a Büchi automaton with the trivial

alphabet, but to each state of it a weight has been assigned.

The purpose of the product automaton is to encapsulate the effects of both the goal

mission and the preferences. To demonstrate how, the following lemma establishes

the relationship between P and the Büchi automaton A derived from the goal ϕ.

Lemma 12. Let T , A, F , and P be the structures in Definition 29. It holds that

for any accepting run rP = (q0, s0, v0)(q1, s1, v1)(q2, s2, v2) · · · over P , the sequence

π = s0s1s2 · · · is a path for T such that trace(π) ∈ Lω(A). Moreover, for any

path π = s0s1s2 · · · in T such that trace(π) ∈ Lω(A), there exists an accepting run

rP = (q0, s0, v0)(q1, s1, v1)(q2, s2, v2) · · · over P .

Proof. For the first claim, given the definitions of QP , Q0,P , and δP , the sequence

π = s0s1s2 · · · is a path over T , and that the sequence r = q0q1q2 · · · is a run for

trace(π) = L(s0)L(s1)L(s2) · · · over A. Given the definition of FP and that rP is an
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accepting run for P , sequence r, which is a run for π, is an accepting run over A.

Thus, trace(π) ∈ Lω(A).

For the second claim, given that π ∈ Lω(A), there exists an accepting run r =

q0q1q2 · · · ∈ Qω for trace(π) over A. Also duo to that τ is a complete function, there

exists a unique run v0v1v2 · · · for trace(π) on F . Considering the way the components

of P are constructed, it is easy to observe that rP = (q0, s0, v0)(q1, s1, v1)(q2, s2, v2) · · ·

is a run over P . Having the definition of FP and that the sequence r = q0q1q2 · · ·

is an accepting run over A, it holds that inf(r) ∩ F 6= ∅, which implies that for

infinitely many i’s, (qi, si, vi) ∈ FP . Thus, run rP is accepting over P .

Lemma 12 establishes that, for any accepting run over the product automaton,

there is a feasible solution for the OPP problem, and likewise for any feasible solution

of OPP, there is an accepting run over the product automaton.

The key remaining question is when that solution is optimal, in the sense of

minimizing the cost of preference violations. To answer that question, we first define

a function fP over the infinite runs of P . Specifically, for any infinite run rP =

p0p1p2 · · · ∈ Qω
P , we let

fP(rP) = max
i≥0

wP(pi). (6.3)

Between function fP and fω there is a special connection, revealed by the following

lemma.

Lemma 13. Given the structures T , A, F , and P from Definition 29, let π =

s0s1s2 · · · be an infinite path over T such that trace(π) ∈ Lω(A) and rP = (q0, s0, v0)

(q1, s1, v1)(q2, s2, v2) · · · be any run over P . Then fP(rP) = fω(trace(π)).

Proof. Due to the construction of P , the sequence r = q0q1q2 · · · is a run for trace(π)

overA, and t = v0v1v2 · · · is a run for trace(π) over F . For any i ≥ 0, wP((qi, si, vi)) =
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c(vi). Therefore, maxi≥0 wP((qi, si, vi)) = maxi≥0c(vi), which implies that fP(rP) =

fω(trace(π)).

An impact of Lemma 12 combined with Lemma 13 is that to solve OPP, we can

compute the state-weighted Büchi automaton P , and then find on P an accepting

run rP that minimizes fP(rP). Subsequently, the projection of rP on T will be a

solution to OPP.

Trajectory generation

The final phase of Algorithm 3, shown in lines 7–10, is to find an optimal accepting

run over P . As a first step, using standard algorithms for checking emptiness of the

language of a Büchi automaton, one can decide in O(|QP |) time whether the input

P has a feasible solution or not. If not, Algorithm 3 reports an error and terminates.

However, if there is a feasible solution, then there may be many —even infinitely

many— optimal solutions. Fortunately, we need to find only a single solution. The

following result establishes that we need only search for solutions with a specific

structure.

Lemma 14. If the OPP instance with product automaton P has a feasible solution,

then it has an optimal solution of the form rP = r1(qfr2)ω where r1, r2 ∈ Q∗P , qf ∈ FP ,

r1[i] 6= qf for any 0 ≤ i < |r1|, and r2[j] 6= qf for any 0 ≤ j < |r2|.

Proof. The idea is that from any optimal solution r′P , we can construct an optimal

solution of the form rP = r1(qfr2)ω such that fP(r′P) = fP(rP). Given that r′P is

accepting—going through an accepting state infinitely many times—we have that

r′P = r1qfr2qfr3 · · · for a qf ∈ FP such that ri ∈ Q∗P for any i ≥ 1, and qf does not

appear in any of the ri’s. Now, from r′P , we construct rP = r1qfr2qfr2 · · · = r1(qfr2)ω.

Clearly, run rP is defined over the automaton given that r1qfr2qf was a prefix of r′P ,
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and that rP is accepting given that qf ∈ inf(rP). To show that fP(r′P) = fP(rP),

observe that it holds that fP(r′P) ≤ fP(rP) given that r′P is optimal, and it holds that

fP(r′P) ≥ fP(rP) given the definition of fP (Equation 6.3) and that r′P contains all

the states of rP .

The upshot of Lemma 14 is that we can restrict our attention to solutions com-

posed of a prefix that reaches some accepting state qf , followed by repetitions of a

cycle including qf . The following lemma restricts this form of run further.

Lemma 15. There exists a run rP = r1(qfr2)ω for Lemma 14 in which both r1 and

r2 are simple; that is, r1[i] 6= r1[j] for any 0 ≤ i 6= j < |r1|, and r2[i] 6= r2[j] for any

0 ≤ i 6= j < |r2|.

Proof. The idea is to remove duplicate states from r1 and r2 until they become simple.

Then, we need to show that the new run is mapped by function fP to the same value

to which the original run was mapped. Assume that r2 is not simple, that is, it

passes through a state q at least twice. Let r2 = q0q1 · · · qi · · · qjqj+1 · · · q|r2|−1 such

that qi = qj = q where i and j are respectively the first and the last positions

at which q appears. There are two cases: the first one where j < |r2| − 1, and

the second one where j = |r2| − 1. In the former case, we replace r2 by a new

sequence q0q1 · · · qiqj+1 · · · q|r2|−1, and in the later case, we replace r2 by a new sequence

q0q1 · · · qi. In both cases, the new sequence, which is clearly a run for the automaton,

passes through q exactly once. This process of removing duplicate states is continued

until r2 becomes a simple cycle. The same process applicable on r1. Let assume that

the new run is r′P . Run rP was optimal, so it holds that fP(rP) ≤ fP(r′P). Given

the definition of fP and that rP contains all states appeared in r′P , it holds that

fP(rP) ≥ fP(r′P). Therefore, fP(rP) = fP(r′P).
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The combined impact of Lemma 14 and Lemma 15 is that we can use some graph

algorithms to synthesize an optimal run. Specifically, if we think of P as a directed

graph with QP as its vertex set and with δP as its edge set, there is an optimal run

rP = r1(qfr2)ω for which r1 and r2 are simple paths on this graph and, moreover,

1. path r1qf is a simple path from q0 to qf such that the maximum weight of its

vertices (states) is minimum among all simple paths starting from q0 and ending

at qf , and

2. cycle qfr2qf is a simple cycle starting at qf such that the maximum weight of

its vertices (states) is minimum among all simple cycles starting from qf .

Accordingly, for each qf ∈ FP , we can synthesize a run rP,qf
= r1(qfr2)ω by finding

a path r1qf and a cycle qfr2qf with those properties. Subsequently, we synthesize

a solution by choosing an optimal run among those runs synthesized for all vertices

(states) qf ∈ FP .

With these conditions in mind, the only thing remains is to find, from a given

source vertex to a given destination vertex, a path that minimizes the maximum

weight of its vertices. Notice that for path r1qf , the source vertex is the initial state

and the destination vertex is qf , while for the cycle qfr2qf , both the vertex and

destination vertex are qf . Finding this kind of path is the concern of the problem

minimax path for vertex-weighted graphs, which can be solved in several different

ways.

Path extraction via Dijkstra’s algorithm One option is to find the paths by a

modified version of one of the well-known algorithms for the shortest path problem,

including Dijkstra’s algorithm.Dijkstra’s algorithm.

We run this algorithm for each state qf ∈ FP twice, one to find a minimax

path from the initial state to qf (path r1qf ), and the other to find minimax path
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from qf to qf (qfr2qf ). By combining these two parts, for each accepting state

qf , we synthesize a run of the form rP = r1(qfr2) as described in Lemma 14 and

Lemma 15. Among the synthesized runs for all accepting states, we choose the one

with the minimum weight as the optimal solution. Hence, the total running time is

O(|FP |(|QP | log |QP |+ |δP |)), as the time complexity of Dijkstra’s algorithm to com-

pute a minimax path is O(|QP | log |QP | + |δP |). For sparse automata, this descends

to O(|FP |(|QP | log |QP |)), and even to O(|QP | log |QP |) for sparse automata whose

numbers of accepting states are constant. However, this complexity is O(|QP |3) for

dense automata with many accepting states. Therefore, for dense automata we use

the second algorithm, described below.

Path extraction via Shapira-Yuster-Zwick Alternatively, one can solve the

minimax path problem using any algorithm for the maximum bottleneck path problem

(also called the maximum capacity path or widest path problem), which is concerned

with finding a path maximizing the minimum weight of vertices in the path. For

example, one might use the algorithm of Shapira et al. [132]. For this purpose, the

weight of each vertex p is replaced by (maxp′∈QP wP(p′)) − wP(p). By doing so, any

bottleneck path in the converted graph becomes a minimax path from that source to

that destination in the original graph. Finding the all-pairs bottleneck paths using

this approach takes O(|QP |2.575) time.

Combining these options gives the following analysis of the process of generating

the optimal path in P .

Lemma 16. For any state-weighted Büchi automaton P = (QP , δP , Q0,P , FP , cP), an

optimal trajectory can be generated in timeO(min(|FP |(|QP | log |QP |+|δP |), |QP |2.575)).

Thus, our algorithm for synthesizing an optimal accepting run on P is based

on this lemma. This algorithm decides based on the sizes of δP and FP—or more
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Figure 6.3: An environment consisting of a corridor, an office, a kitchen, two rooms,
a conference hall, and a security room.

Scenario dept race
Illustration Figure 6.3 Figure 6.5
Goal ϕ = (¬(d1∨d2∨r1∨r2∨k)Uo)

∧♦(c∧©♦(r1∧©♦(r2∧
©♦�k)))
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ψ4 = ¬〈true∗〉d3 ψ4 = [true∗]((r2 ∨ r4)→ f))
ψ5 = ¬〈(¬u)∗〉r1.

Solution slsuslsoslsd2scsd3slsr1slsr2 rm1 r
f
2r

m
3 r

f
4r

m
1 p

s(rm3 r
f
4r

m
1 r

f
2r

m
3 r

f
4

sl(sk)ω rm1 p
s)ω

Satisfied Prefs. ψ2, ψ3, ψ5 ψ1, ψ2, ψ3, ψ4
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Figure 6.4: Formulation and results for two instances of the OPP problem.
precisely, whether |FP |(|QP | log |QP | + |δP |) < |QP |2.575)—one of the two algorithms

mentioned above.

6.4 Implementation and computed examples

We have implemented Algorithm 3 in Java. In this section, we present example

instances, to illustrate its operation in solving OPP problems. The computed results

were executed on an Ubuntu 16.04 computer with a 3.6GHz processor.

For the first example, called dept, we use the environment in Figure 6.3, in which

a mobile robots moves within a university department consisting of a corridor, an
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office, a kitchen, two rooms, a security section, and a conference hall. Blue rectangles

show regions of interest to the robot, consisting of c in the conference hall, d1 the

first entrance of the conference hall, d2 the second door of the conference hall, d3 the

third door of the conference hall, r1 in the first room, r2 in the second room, u in the

security room, k in the kitchen, and o in the office.

Suppose the robot is tasked with this non-trivial goal:

Take the keys from office o but before that do not go to any of d1, d2, r1,

r2, or k. Additionally, visit c, r1, r2, and k in that order. After completing

these tasks, stay in k.

In completing this goal, the user prefers the robot to maintain several behaviors,

modeled as preferences, if possible:

1. Do not go to the office.

2. Do not use door d1.

3. Do not exit through door d2 from the conference hall.

4. Do not use door d3.

5. Check the security room before going to room r1.

Details of the encoding into an instance of OPP and a solution trajectory, as computed

by our implementation, and shown in the left column of Figure 6.4. Notice that due to

the goal specification, the first preference cannot be satisfied. Also, since preferences

2, 3, and 4 cannot be satisfied together, the planner satisfies preferences 2 and 3,

which have higher priority. In addition, preference 5 is also satisfied.

Figure 6.5 illustrates a second example, called race, in which an autonomous race

car travels around a cyclic track. Its goal is to circle the track repeatedly, visiting

the pit (p) infinitely often to refuel. States in the transition system model both the
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r1 r3

r2

r4

p

Figure 6.5: A race car traveling around a circular track.

region in which the race car is moving (r1, r2, r3, r4, p) and its current speed (‘f’ast,

‘m’edium, or ‘s’low). Several preferences are associated with this robot’s motion.

1. Do not accelerate or decelerate abruptly. That is, do not change speed from

fast directly to slow, nor from slow directly to fast.

2. Drive slowly in the pit.

3. Do not drive fast on the curves.

4. Do drive fast on the straight parts.

An encoding and solution are shown in Figure 6.4.
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Chapter 7

LTL planning with soft LTL specifications

The previous chapter considered a related problem in which the soft constraints were

expressed in linear dynamic logic for finite traces (LDLf ) [31]. Such formulas can

express constraints only on finite prefixes of the trajectory, rather than on the entire

trajectory as a whole. A limitation of that work is that LDLf soft constraints cannot

express soft goals that are satisfied only by infinite (rather than finite) trajectories.

As an example, a task that requires a social enrichment robot to infinitely often

perform the act of juggling is a simple soft goal that cannot be expressed by LDLf .

The difference in the language used to express the soft constraints not only improves

the expressivity of the approach, but it leads to significant (and new, compared to

the LDLf case) algorithmic challenges.

The material of this chapter is based of our work [109], which appeared in IROS

2020.

The organization of this chapter is as follows. We first present our problem state-

ment in Section 7.1. In Section 7.2, we propose our algorithm, and in Section 7.3, we

present two case studies.

7.1 Definitions and problem statement

In this section, we review some preliminary tools and introduce the main problem we

address.
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Preliminaries

In the algorithm of this chapter, we need to be sure that each Büchi automaton

created for a soft constraint is nonblocking, that is, for any state q in the automaton

and every letter a ∈ Σ, there is at least one state q′ such that (q, a, q′) ∈ δ. Any Büchi

automaton is converted to a nonblocking Büchi automaton by adding a trapping

state, to which all missing transitions are added. We also consider a variant of Büchi

automaton called generalized Büchi automaton, which has the same syntax of Büchi

automaton except that it has a set F ⊆ 2Q rather than a set F ⊆ Q as its acceptance

set. More precisely, the acceptance set of the automaton is a set F consisting of sets

F1, F2, . . . Fk with Fi ⊆ Q for each i ∈ {1, . · · · , k}. Accordingly, an infinite run r

over a generalized Büchi automaton G is accepting if for each F ∈ F , it holds that

inf(r) ∩ F 6= ∅. The language of G, Lω(G), is the set of all infinite words for each of

which there is an accepting run.

LTL planning with soft constraints

Our goal in this problem is to find, in a transition system modeling the environment,

an infinite path whose trace satisfies a goal mission expressed as an LTL formula ϕ

while optimally satisfying a prioritized list of soft constraints ψ1, ψ2, · · · , ψn, where

each ψi is an LTL formula, given in order of decreasing importance. For this purpose,

we define a cost function fω : (2AP )ω → Z≥0, such that for any σ ∈ (2AP )ω,

fω(σ) =
∑

i:σ/∈Words(ψi)
nn−i. (7.1)

Note that this cost function guarantees to impose the standard lexicographic ordering

between all Boolean vectors, where each vector has an entry for each LTL constraint

showing whether that LTL constraint is satisfied or not. As a result, a constraint with

a higher priority (smaller number) is never sacrificed to satisfy a constraint with a
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lower priority. Accordingly, we want a trajectory whose trace minimizes this function.

With this in mind, our problem is defined as:

Problem: Optimal LTL Planning with Soft Constraints (OLPSC)

Input: A transition system T , an LTL formula ϕ, and a prioritized list of n LTL

formulas ψ1, ψ2, · · · , ψn.

Output: An infinite path π over T such that trace(π) � ϕ and fω(trace(π)) is

minimized.

7.2 Algorithm description

This section presents an algorithm for solving the OLPSC problem. See Algorithm 4.

The two main steps of this algorithm are constructing a product automaton (line 5),

and computing a lasso with minimum cost on the product automaton (line 6). In the

sequel, we explain those steps.

The product automaton

The first step of the algorithm is, following an established pattern in the literature [20,

75, 151, 152], to construct a form of product automaton [159]. To that end, the

algorithm first makes the Büchi automata representations of the LTL formulas —an

automaton A for ϕ, and an automaton Bi for each ψi. It then ensures that Bi’s are

nonblocking and uses all those automata along with the transition system to construct

a product automaton based on the following definition.

Definition 30. For a Büchi automaton A = (Q, 2AP , δ, q0, F ), a transition sys-

tem T = (S,R, s0, AP, L), and a prioritized list of n nonblocking Büchi automata

Bi = (Qi, 2AP , δi, q0,i, Fi) for i ∈ {1, . . . , n}, the product automaton is a tuple P =

(QP , δP , q0,P , FP ,w) in which

1. QP = Q× S ×Q1 × . . .×Qn is a finite set of states;
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2. q0,P = (q0, s0, q0,1, . . . , q0,n) is the initial state;

3. δP ⊆ QP×QP is a transition relation, s.t. ((q, s, q1, . . . , qn), (q′, s′, q′1, . . . , q′n)) ∈

δP if and only if (s, s′) ∈ R, (q, L(s), q′) ∈ δ, and (qi, L(s), q′i) ∈ δi for each

i ∈ {1, . . . , n};

4. FP=F × S ×Q1 × . . .×Qn is the set of accepting states;

5. w : QP → {T,F}n is a state-weighting function that assigns to each state

(q, s, q1, . . . , qn) ∈ QP , a Boolean vector v such that for any 1 ≤ i ≤ n, it holds

that v[i] = T if and only if qi ∈ Fi.

This product automaton can be thought of as a Büchi automaton with a trivial

alphabet, and thus, all definitions related to Büchi automata are applicable on it.

For a state (q, s, q1, . . . , qn) ∈ QP , w((q, s, q1, . . . , qn)) indicates which of the qi’s

were accepting in their original Büchi automata. Accordingly, for any 1 ≤ i ≤ n, we

use Fi,P to denote in P , the set of all states that are accepting for automaton Bi,

i.e., Fi,P = {p ∈ QP | w(p)[i] = T}. For a run rP = q0q1q2 . . . ∈ Qω
P , we use inf(rP)

to denote a vector v ∈ {T,F}n in which for each 1 ≤ i ≤ n, v[i] = T if and only if

there are infinitely many j ≥ 0 such that w(qj)[i] = T. Subsequently, by having a

cost function fw : {T,F}n → Z≥0, in which for any v ∈ {T,F}n,

fw(v) =
∑

i:v[i]=F
nn−i, (7.2)

the cost of rP will be fw(inf(rP)). The purpose of constructing P is to synthesize

a run rP that has the minimum cost. To see why, we first consider the following

lemmas.

Lemma 17. Given the structures in Definition 30,

let rP = (q0, s0, q0,1, . . . , q0,n)(q1, s1, q1,1, . . . , q1,n) · · · be a run over P . It holds

that:
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Algorithm 4: OptimalLTLPlanningWSoftConsts
Data: T , ϕ, ψ1, ψ2, . . . , ψn
Result: A path π = s0s1s2 · · · on T s.t π � ϕ and fω(trace(π)) is minimum

1 for i = 1 to n do
2 Bi ← LTL2BüchiAutomaton(ψi)
3 Bi ←MakeNonblocking(Bi)
4 A ← LTL2BüchiAutomaton(ϕ)
5 P ← A× T × B1 × B2 · · · Bn
6 r ←MinimumCostAcceptingLasso(P)
7 if r = nil then return nil
8 return Convert2PathOnTS(r)

1. If rP is accepting for P , then the sequence π = s0s1s2 · · · is a path for T such

that trace(π) ∈ Lω(A).

2. For any i ∈ {1, . . . , n}, if inf(rP)[i] = T, then the sequence π = s0s1s2 · · · is a

path for T such that trace(π) ∈ Lω(Bi).

Proof. (1) From the construction of P , it follows that the sequence π = s0s1s2 · · ·

—the projection of rP onto T— is a path over T , and that the sequence r = q0q1q2 · · ·

is a run for trace(π) = L(s0)L(s1)L(s2) · · · over A. Given that rP is an accepting run

for P , there are infinitely many i’s for r = q0q1q2 · · · such that qi ∈ F , implying that

r is accepting, and thus, trace(π) ∈ Lω(A). (2) The proof is similar to the proof of

(1) with the consideration that in this case, for each i, sequence ri = q0,iq1,iq2,i · · · is

a run for trace(π) = L(s0)L(s1)L(s2) · · · over Bi.

Lemma 18. Assuming the structures in Definition 30, for any I ⊆ {1, . . . , n} and for

any path π = s0s1s2 · · · in T such that trace(π) ∈ Lω(A) and trace(π) ∈ ⋂i∈I Lω(Bi),

there exists an accepting run rP = (q0, s0, q0,1, . . . , q0,n)(q1, s1, q1,1, . . . , q1,n) · · · over

P such that inf(rP)[i] = T for all i ∈ I.
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Proof. Let r be an accepting run for π overA, and let for each i ∈ I, ri be an accepting

run for π over Bi. Given that all Büchi automata created for the soft constraints are

nonblocking, for each j ∈ {1, 2, · · ·n} such that j /∈ I, there exists an infinite run rj

for π over Bj. Now we choose one such r, one such ri for each i, and one such rj for

each j. Then we combine π, the chosen r, all the chosen ri’s, and all the chosen rj’s

to form an rP . This constructed rP has the properties claimed in this lemma.

The impact of these lemmas is that for any optimal solution of the OLPSC prob-

lem, there is an accepting run rP over P for which fw(inf(rP)) is minimum, and that

from any accepting run rP that minimizes fw(inf(rP)), one can create an optimal

solution to the OLPSC problem via projecting rP into T . Accordingly, one can solve

the OLPSC problem by computing over P , a run rP with minimum cost.

Trajectory generation

A run rP with minimum cost is constructed in Line 6 of Algorithm 4. The product

automaton may have many, or even infinitely many optimal runs; in fact, there could

exist an optimal run whose sequence of states cannot be specified by any pattern;

however, we are interested in only one kind, which is revealed by the following result.

Lemma 19. If Lω(P) 6= ∅, then P has an accepting lasso rP = r1(r2)ω such that

r1 ∈ Q∗P , r2 ∈ Q+
P , and that fw(inf(rP)) is minimum.

Proof. We show that from any accepting run r′P = p0p1p2 . . . minimizing fw(inf(r′P)),

we can construct an accepting lasso rP such that fw(inf(r′P)) = fw(inf(rP)). Given

that r′P has an infinite length while QP has only a finite number of states, there exists

an integer k ≥ 0 such inf(r′P) = {pj ∈ r′P | j ≥ k}. We choose l to be the smallest

such k.
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Algorithm 5: MinimumCostAcceptingLasso
Data: Product automaton P = (QP , δP , q0,P , FP ,w)
Result: An accepting lasso for P minimizing fw

1 SCCs = StronglyConnectedComponents(P);
2 O ← nil;
3 minW ←∞;
4 forall C ∈ SCCs do
5 if C.accepting = True then
6 if fw(C.w) < minW then
7 O ← C;
8 minW ← fw(C.w);
9 if O = nil then return nil

10 r1 = BFSShortestPath(q0,P , O.leader);
11 r2 = MinCostAcceptingCycle(O);
12 return (r1, r2);

Let I = {1 ≤ i ≤ n | inf(r′P)[i] = T}. We choose an integer j ≥ l such

that r′P [l..j] contains at least one state p ∈ FP and it contains at least a state

qi ∈ Fi,P for each i ∈ I. We choose u to be the smallest such integer j. We now set

r2 = r′P [l..u] = plpl+1 . . . pu and set r1 = r′P [0..l − 1] = p0p1 . . . pl−1. Clearly, lasso rP

is accepting. Moreover, fw(inf(r′P)) = fw(inf(rP)).

The punchline is that to synthesize an optimal run, it is sufficient to consider

those runs who are lassos. We are also interested in finding a shortest such lasso

—a lasso rP = r1(r2)w for which |r1|+ |r2| is minimum. Unfortunately, the following

result reveals that finding a shortest such lasso is not easy.

Lemma 20. Given a product automaton P , the problem of finding over P , a shortest

lasso rP = r1(r2)ω that minimizes fω(rP) is NP-hard.

Proof. We prove by reduction from the problem of finding a shortest accepting lasso

for a generalized Büchi automaton, which is known to be NP-hard [25, 36]. For each

generalized Büchi automaton G = (Q,Σ, δ, q0,F := {F1, F2, · · · , Fn}), we make a

product automaton P = (QP , δP , q0,P , FP ,w) such that QP = Q; q0,P = q0; FP = Q;
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for each q, q′ ∈ Q, (q, q′) ∈ δP iff (q, a, q′) ∈ δ for an a ∈ Σ; and for each state q ∈ QP ,

function w assigns a vector v ∈ {T,F}n such that for each j ∈ {1, 2, · · · , n}, v[j] = T

if q ∈ Fj, and otherwise, v[j] = F. Consider that any run over P is accepting, and

that fw(inf(rP)) = 0 for any optimal lasso rP in P . Any shortest lasso rP over P

for which fw(inf(rP)) = 0 is a shortest accepting lasso for G. This completes the

proof.

As a result of this lemma, unless P=NP we cannot compute in a time polynomial

to the size of P , a shortest lasso that is accepting for P and for which fw(rP) is

minimum. Unfortunately, it is also NP-hard to approximate within any constant

factor, the length of such a lasso (the proof would utilize the same reduction in

Lemma 20 along with the fact due to Ehlers [36], according to which it is NP-hard to

approximate within any constant factor the length of a shortest accepting lasso for a

generalized Büchi automaton). Consequently, we utilize a greedy algorithm to find a

shortest such lasso which has the minimum cost.

Our algorithm uses graph algorithms to minimize |r1| and |r2| separately. Algo-

rithm 5 shows the process. Consider that P can be thought of as a directed graph

with vertex set QP and edge set δP . Additionally, all vertices (states) in r2 are in a

strongly connected component (SCC) of the graph given that they are contained in

a cycle, r2.r2[0]. With these in mind, our algorithm first decomposes the graph into

its strongly connected components, (Line 1); then finds a SCC that contains |r2| of a

lasso rP = r1(r2)ω with minimum fw(rP) (Lines 2–8); and then construct r1 and r2

(Lines 10 and Line 11 respectively). See Figure 7.1.

To find the set of SCCs of the graph, we use the well-known algorithm of Tar-

jan [142]. This algorithm uses depth first search (DFS) to traverse all the vertices

(states) of the graph in one pass. During this traversal, each vertex p is assigned a

unique integer p.number, which is, in fact, the traversal’s step number at which p is

reached. Each vertex is assigned another integer p.lowlink, whose value is set to the
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Figure 7.1: Showing our algorithm for finding an optimal lasso rP = r1(r2)ω over
product automaton P . Each Ci is a strongly connected component of the graph
underlying P . Component C5 contains the suffix of an optimal lasso. Set FC5,P
contains those state in C5 that are accepting for P , i.e., FC5,P = FP ∩ C5. For each
i ∈ {1, 3, 4, 7}, set Fi,C5 are those states in C5 that are accepting for Büchi automaton
Bi—the one who represents preference ψi.

smallest index of any node reachable from p, including p itself. During this algorithm,

all vertices that are assigned the same value of lowlink will be in the same SCC of

the graph, and among those vertices, the one whose number is equal to its lowlink

is the leader (representative) of the SCC.
As Tarjan’s algorithm executes, we also compute for each SCC C, the value of

C.accepting, which gets True only when C contains an accepting state of P and that

C is not a singleton vertex who does not have a loop. We also compute the value of

Boolean vector C.w, whose value is set to C.w = ∑
q∈C w(q). Notice that during the

same pass of the Tarjan’s algorithm, one can keep for each vertex, a link to its parent

in the DFS search. Accordingly, later, the algorithm can use those links to find, for

each state, a path from the initial state to that state. These paths can be used in

Line 10 to compute r1, which is, in fact, a path from the initial state to the leader

of the component which we choose to construct r2 from. However, a path r1 that is

constructed in that way may not have minimum length. Accordingly, we use BFS to

find a shortest simple path from q0,P to C.leader.

The final phase of finding an accepting lasso is to synthesize the suffix r2 of it,
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Line 11 of Algorithm 5. This suffix is synthesized inside an optimal SCC O using the

following greedy algorithm. Let r′P ∈ Qω
P be any run that minimizes fω(r′P), and let

I = {1 ≤ i ≤ n | w(r′P)[i] = T}. Let for each i ∈ I, Fi,O be the set of states in O that

are accepting for Büchi automaton Bi, i.e., Fi,O = O ∩ {q ∈ Q | w(q)[i] = T}, and let

FO,P be the set of accepting states in O, i.e., FO,P = FP ∩ O. Our greedy algorithm

synthesizes r2 as the vertices (states) of a cycle starting from O.leader such that the

cycle contains at least a state of FO,P and at least a state in Fi,P for each i ∈ I. To do

so, it uses variable U with initial value FO,P
⋃{Fi,O|i ∈ I}. It starts from O.leader,

and performs breadth first search (BFS) until it finds a state s for which there is a

set M ∈ U such that s ∈ M . Using the parent links set during BFS, the algorithm

records the shortest path from O.leader to s as a first portion of r2, and removes

from U all those sets M for which s ∈M . It then does a similar task, BFS traversal,

starting from s, and then records the path traversed from s to the new found state.

It repeatedly does this process until U becomes ∅. At this time, it does a BFS to

find the shortest path back to O.leader. By this time, it has made r2 as the vertices

of a cycle. Figure 7.1 illustrates how inside SCC C5, the algorithm constructs r2.

Given this discussion, we now analyze the time complexity of our algorithm.

Lemma 21. For any automaton P = (QP , δP , Q0,P , FP ,w), a lasso with minimum

cost can be generated in time O(n(|δP |+ |QP |)).

Proof. It takes O(|δP |+ |QP |) time to find the set of strongly connected components.

BFS is called at most n+ 1 times, each of which takes O(|δP |+ |QP |) time.

This bound simplifies to O(|δP | + |QP |) if the number of soft constraints n is

treated as a constant.

We can slightly improve the quality of solution by letting instead of the leader,

the first state to which BFS reaches from the leader and who is either a final state or

173



it corresponds to a final state of the Büchi automata for a soft constraint, to be the

midpoint of the lasso.

Though Algorithm 5 generates a lasso of minimum cost, it is not guaranteed to

produce the shortest such lasso. In the next section, we compare our algorithm with

an optimal brute-force algorithm, which finds the shortest lasso by letting any state

within an optimal SCC to be the midpoint of the lasso, and synthesizes the suffix

of the lasso by searching from the shortest ones, all cycles, simple or otherwise, that

start from the midpoint until it finds a satisfactory cycle or the length will be longer

than the length of a shortest lasso computed for other midpoints.

7.3 Case studies and experiments

We have implemented Algorithms 4 and 5 in Java. The computed results were exe-

cuted on an Ubuntu 16.04 computer with a 3.6GHz processor.

Case study: Hospital deliveries

Figure 7.2 shows a hospital which has an emergency department (e), a primary care

department (p), a maintenance department (n), a pharmacy (h), and a warehouse

(w). In this hospital, a robot delivers first aid items (f) and medicine (m) from the

warehouse to the other departments. Each state of the transition system for this case

study has an atomic proposition indicating a unit within the hospital, along with

other propositions indicating which items the robot is caring at that unit. Those

states are connected according to the connectivity of the units within the hospital

and the items the robot can take or leave at a unit. The robot’s primary tasks are to

deliver first aid items to the emergency department, deliver first aid items to primary

care, deliver medicine to the pharmacy, and report for maintenance, each infinitely

often. In addition, suppose the robot is given these soft specifications, ordered from
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Figure 7.2: A hospital, in which a delivery robot is tasked to deliver first aid items
to emergency and primary care departments, deliver medicine to pharmacy, and visit
the maintenance section. The robot’s task is expressed by LTL formula ϕ = �♦(p ∧
f) ∧�♦(e ∧ f) ∧�♦(h ∧m) ∧�♦n

most to least important:

1. If first aid items are delivered to the primary care department, then do not

deliver additional first aid items there until first aid items have been delivered

to the emergency department, and vice versa.

2. If the first aid items are picked from the warehouse, then they must not be de-

livered to the primary care department until the emergency department receives

the first aid items.

3. Do not carry first aid items and medicine together.

4. Always pick both first aid items and medicine when leaving warehouse.

Notice that, in particular, the first two constraints cannot be expressed in LDLf .

Thus, the algorithm from our prior work [107] cannot generate a plan for this instance.

The box below shows how to formulate these constraints into an instance of OLPSC,

along with the solution computed by our implementation.
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Goal: �♦(p ∧ f) ∧�♦(e ∧ f) ∧�♦(h ∧m) ∧�♦n

Soft constraints:

1) �((p ∧ f)→©(¬p U(e ∧ f)))

∧�((e ∧ f)→©(¬e U(p ∧ f)))

2) �((c ∧ f)→ (¬p Ue))

3) �(¬w → ¬(f ∧m))

4) �((w ∧©c)→©(f ∧m))

Solution:

wcp(cecwfcfpfcwfcfefcwmcmhmhmhcnncpc)ω

Satisfied constraints: 1, 3

Computation time: 201.50s

In the sequence shown for the solution, a letter is the location of the robot, and

the subscript of the letter, if any, is what the robot is carrying. Not that this optimal

solution satisfies only the first and third soft constraints.

For comparison purposes, we also executed on this example, the brute-force al-

gorithm to compute a shortest accepting lasso that minimizes the cost function fω.

That algorithm failed to compute such a lasso in 15 hours.

Case study: Retirement home

In this section, we consider a social enrichment robot, capable of making animal

balloons and juggling, visits the residents of a retirement home. See Figure 7.3. The

robot’s basic mission is to visit the two common rooms, each infinitely often. In

addition to this basic mission, however, the robot is also charged with satisfying a

collection of soft constraints, given in order of their relative importance. For example,

we might prefer to maintain fairness by ensuring, if possible, that after making animal

balloons in room 1, it should also do the same act in room 2. Or perhaps the manager
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Figure 7.3: a) A retirement home in which a social enrichment robot visits each of
the common rooms to perform juggling and to make animal balloons. Its primary
mission is expressed by the LTL formula ϕ = �♦r1 ∧ �♦r2 ∧ �♦t. b) A transition
system that models the robot’s state within this environment.

wants the robot to eventually perform juggling in room 2, if its current act in that

room is making animal balloons. The residents of room 2 might even prefer not to

see the balloon animal act at all. The essence of our problem is to determine how

the robot can act, to satisfy its primary mission, along with some optimal subset of

these kinds of soft constraints.

The transition system in that example has atomic propositions for locations —r1

for common room 1, r2 for common room 2, and t for toy room— and also for the

robot acts —g for juggling, and b for making animal balloons. The robot is tasked to

visit r1, r2, and t, each one infinitely often. The robot’s specification also includes 6

soft constraints:

1. After making animal balloons in room 1, the robot should immediately do the

same act in room 2.

2. The robot should perform each of the acts in room 1 infinitely often.

3. The robot should not perform the act of making animal balloons in room 2.
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4. If the current act in room 2 is making animal balloons, then the robot should

eventually make animal balloons in that room.

5. The robot should not stay in a common room once it performed an act.

6. The robot should perform at least two acts in each common room once it has

entered that room. Those two acts can be different or not.

We can formalize this scenario as an instance of OLPSC:

Goal: �♦r1 ∧�♦r2 ∧�♦t

Soft constraints:

1) �((r1 ∧ b)→©((¬b ∧ ¬g) U(r2 ∧ b)))

2) �♦(r1 ∧ g) ∧�♦(r1 ∧ b)

3) �(r2 → ¬b)

4) �((r2 ∧ b)→ ♦(r2 ∧ g))

5) �(r1 →©¬r1) ∧�(r2 →©¬r2)

6) �((¬r1 ∧©r1)→ (©© r1))

Solution:

slsr1,gslsr2,b(slsr2,bslsr2,gslsr2,bslsr1gslsr1,bslsr2,bslsr1,bslsr2,bslststslsr2,bsl)ω

Satisfied constraints: 1, 2, 4, 5

Computation time: 21.91s

For comparison, the brute-force algorithm computed r∗P = slsr1,gsr1,bslsr2,bsr2,gslstsl

(sr1,gsr1,bslsr2,bsr2,gslstsl)ω as a shortest accepting lasso minimizing fω in 3,254 sec-

onds. The shortest accepting lasso has length 16, while the lasso generated by our

algorithm has length 26.

Now suppose there is a change in the relative ordering of the soft constraints, in

which the last two are swapped. This induces a change to the set of constraints that

can be satisfied, but not to the basic structure of the product automaton.
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Goal: �♦r1 ∧�♦r2 ∧�♦t

Soft constraints:

1) – 4) Same as above.

5) �((¬r1 ∧©r1)→©© r1))

6) �(r1 →©¬r1) ∧�(r2 →©¬r2)

Solution:

slsr2,b(sr2,gsr2,bsr2,gslsr1,gsr1,bslsr2,bsr2,gslsr1,gsr1,bslsr2,bsr2,gslststslsr2,bsr2,g)ω

Satisfied constraints: 1, 2, 4, 5

Computation time: 0.02s (excluding product automaton construction)

In fact, if we have already computed the product automaton for the instance

above, we need only to synthesize an accepting lasso, without any need to reconstruct

the product automaton again. To synthesize the new lasso, for each state of the

product automaton, we swap the elements of vector w according to the new order of

constraints, and then synthesize the lasso.

It took only 20 milliseconds to synthesize an optimal run on the constructed au-

tomaton, while for the first one it took 21.91 seconds, much of which was spent to form

the product automaton. We also use the brute-force algorithm to compute the short-

est accepting lasso r∗P that minimizes the fω(r∗P). It took 110 seconds, excluding the

time of product automaton construction, for the brute-force algorithm to compute the

shortest accepting lasso, which was slsr1,gsr1,bslsr2,bsr2,gslstsl(sr1,gsr1,bslsr2,bsr2,gslst)ω,

with length 16. Observe that the length of the lasso generated by our greedy algo-

rithm was 23 while the length of the shortest accepting lasso was 16. The product

automaton for this problem had 1440 states.
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States Our algorithm Brute-force algorithm Approximation ratio

#Success Avg Time Avg lasso size #Success Avg Time Avg lasso size Min Max Avg

100 100 0.0001 17.86 100 12.404 9.27 1 4.33 2.08
200 100 0.0002 21.88 100 53.91 10.39 1 4.33 2.24
300 100 0.0001 23.68 96 170.151 10.93 1 4.4 2.26
500 00 0.0001 28.14 62 504.799 11.63 1 4.14 2.35

Figure 7.4: Results of our experiment comparing our algorithm with the brute-force
algorithm. The average times are in seconds.

Experiments

In this section, we present results of our experiment comparing our (greedy) algorithm

with the brute-force algorithm. We performed all those experiments on the same

machine on which we executed our case studies. In this experiment, we execute

both the greedy algorithm and the brute-force algorithm on a large number of graphs

(product automata) of different sizes that we generated randomly by the Erdős-Rényi

model of G(n, p), according to which each edge will be included in the graph with

probability p independent from any other edge.

Figure 7.4 shows results of our experiment. For each graph size —100, 200, 300,

and 500— we generated 100 random graphs. The number of edges for each graph was

approximately five times the number of vertices, and for each graph, approximately

20 percent of the states were final states. The number of soft constraints, the size of

the Boolean vectors assigned to a state by w, for each graph was 10. We report for

each graph size, the average time to compute an accepting lasso with minimum cost

by our algorithm, and also the average size of the generated lassos. For each test, the

greedy algorithm had 20 minutes to find a shortest lasso. Figure 7.4 shows also for

each graph size, the number of times the brute-force algorithm was able to compute

a shortest lasso within the 20 minutes time window. Notice that for graph size 300,

the brute-force algorithm failed four times to compute a minimal lasso within that

time window, and for graph size 500, it was able to compute a shortest lasso only
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Figure 7.5: The distribution of approximation ratios of the lasso sizes generated by
our greedy algorithm for 100 generated random graphs with 100 states.

for 62 tests. Accordingly, we considered in computing all those averages shown for

the brute-force algorithm in that figure, only those tests for which the algorithm was

able to compute a solution in 20 minutes. This means that the actual time averages

for graph size 300 and 500 are higher, and probably much higher, than those shown

in that figure. The average number of constraints satisfied were ranged from 6.30 to

6.81. f

For each test, we also computed approximation ratio, defined as the size of the

lasso generated by the greedy algorithm over the size of the lasso generated by the

brute-force algorithm. The minimum, maximum, and the average of those ratios

for each graph size is shown in Figure 7.4. We observe from this experiment that

the greedy algorithm generates a solution significantly faster than the brute-force

algorithm while the quality of solution is still acceptable. For graph size 100, the

distribution of the approximation ratios of the 100 tests we performed is shown in

Figure 7.5.

We also executed a variant of our algorithm, in which we let any final state within

an optimal SCC to be the midpoint and then chose a shortest one among all lassos

generated for those midpoints. This algorithm increases the running time by the

magnitude of the number of final states. We observed that the quality of solution is
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slightly improved. For the graph sizes of 100, the average of approximation ratio was

2.01 for this new variant, compared to 2.08 to original algorithm. Because product

automata are generally quite large, we may not need sacrifice computation time in

favor of slightly improved quality.
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Chapter 8

Planning to chronicle with soft constraints

In this chapter, we consider a problem in which a robot is tasked with recording a

structured video from the events occurring in an unpredictable environment while it

should optimally satisfy an ordered list of soft constraints on the movement of the

robot and the story. This problems combines the problem settings in Chapter 5 and

Chapter 6.

The organization of this chapter is as follows. In Section 8.1, we present pre-

liminaries and problem definition. In Section 8.2, we present our algorithm. In

Section 8.3, we present a case study.

8.1 Preliminaries and Problem Definition

We first introduce preliminary tools.

We again assume that the set of all possible events is a finite alphabet E. We

model the environment using a transition system T = (W,R,w0, AP, L) in which

W is the state space, R ⊆ W ×W is the transition relation, w0 is the initial state,

AP is a set of atomic propositions, and L : W → 2AP is the labeling function. See

Definition 23, in Chapter 6, for details about transition systems.

Each state of the transition system represents a physical location (region) in the

world and the relation R is formed based on the connectivity of those locations

(regions).

We extend Definition 13, the definition of event model in Chapter 5, as follows to
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model the physical world along with the occurrences of events.

Definition 31. [Event-Location Model] An event-location model is a tuple M =

(S, P, s0, E, g) in which

• S, which is a nonempty finite set, is the state space of the model;

• P : S × S → [0, 1] is the transition probability function of the model, such that

for each state s ∈ S, ∑s′∈S P (s, s′) = 1;

• s0 ∈ S is the initial state;

• E is the set of all possible events;

• g : S × E ×W → [0, 1] is the event-location occurrence function such that for

each state s ∈ S, event e ∈ E, and location w ∈ W , g(s, e, w) is the probability

that event e happens at state s and location w. We assume that g(s0, e, w) = 0

for any event e and state w ∈ W , meaning that no event happens at state s0.

In this chapter, we consider only the case where the current state of the event

model is observable to the robot, that is, at each time step, the robot knows in

which state the event model is, but it does not know to which state the event model

transitions in the next time step.

We specify the story and the constraints on how to record a story using LDLf .

See Definition 27 and Definition 28 for syntax and semantics of LDLf . Each LDLf

formula is defined over the extended set of atomic propositions AP ′ = AP ∪E ∪W .

To illustrate the idea of LDLf for specifying a story, consider again the environment

in Figure 1.4. An example of LDLf formula is ϕ1 = 〈true∗〉(bi ∧ 〈true∗〉(lb ∧ f)) ∧

〈true∗〉(li ∧ j). Formula ϕ1 specifies that the robot must capture a story that is a

supersequence for both sequences bilb and li and that the event lb is taken in the grass

field while the event li is taken in the jungle. This formula specifies not only the story

but also how the story is captured.
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For another example, consider ϕ2 = [true∗]¬(j∧ li). This formula does not specify

the story but it imposes the constraint that the robot must not record any event lion-

eating-impala in the jungle. We use LDLf for specifying the soft constraints as well.

The system evolves along a path s0s1s2 · · · and for each k > 0, when the system

enters sk, for each event e ∈ E and location w ∈ W , event e happens with probability

g(s, e, w) at location w. The robot attempts to record some of the occurring events

to form a story. At each time step k ≥ 0, the robot chooses a location w, reachable

from its current location in one step, to go to the next time step; it also either chooses

an event e ∈ E to record at w in the next step or decides to recording nothing at

that time step. The former case applies, for example, to a situation where the robot

needs to go through several locations without attempting to record anything at those

locations to reach a desired location to record an event of interest at there. With these

in mind, the robot action at each step is a tuple (u,w) ∈ (E ∪{ε})×W , where w is a

location and u is an event and the robot wants to record u at w in the next time step.

If at step k + 1 event e happens at location w, then the robot successfully records e;

otherwise, it records nothing. In this chapter we again assume that the robot is aware

of the success or failure of each of its attempts. If u = ε, then it means the robot does

not want to record any event at k + 1. The story and the hard constraints on how

to record that story is specified by an LDLf formula ϕ. The robot is given, apart

from ϕ, a list of soft constraints ψ1, ψ2, · · · , ψn ordered from the highest priority to

the lowest priority. The aim of our problem is to compute a policy that guarantees to

always satisfy the constraints with higher priorities, or equivalently, violates the soft

constraints with lower priorities, if it has to violate any soft constraint. Note that

by results of De Giacomo and Vardi [31], for the LDLf formula ϕ, which is defined

over the set of atomic propositions AP ′, there is a DFA D = (Q, 2AP ′ , q0, δ, F ) such

that L(D) = traces(ϕ). As such, the robot computes the DFA D from the formula

specifying the story and maintains it. In a similar manner, it computes for each
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soft constraint ψi for i ∈ {1, 2, · · · , n}, a DFA Di = (Qi, 2AP
′
, qi,0, δi, Fi) such that

L(Di) = traces(ψi), and maintains Di as well.

The robot stops its execution once it has completed its mission by recording a

desirable story. For each time step k, the robot maintains several pieces of informa-

tion: sk, the current state of the event model; wk, the location at which the robot is;

ηk ∈ E∗, the story that has captured until time step k; and ξk ∈ ((E∪{ε})×W )k, the

recorded story-location up to time step k. Note that ξk = (d0, w0)(d1, w1) · · · (dk, wk)

and for each 0 ≤ j ≤ k, dj is an event the robot has recorded at location wj. Again,

if the robot recorded nothing at location wj, then dj = ε.

For each time step k ≥ 0 and story-location ξk = (d0, w0)(d1, w1) · · · (dk, wk) ∈

((E ∪ {ε}) ×W )k, we let trace(ξk) ∈ (AP ′)∗ to be the trace of the story-location ξk

such that trace(ξk) = t0t1 · · · tk and for each for each 0 ≤ j ≤ k, tj = L(wj) ∪ {wj}

if dj = ε, and otherwise tj = L(wj) ∪ {wj, dj}. Intuitively, for each location-event

sequence, this function produces a trace where each element of the trace is a set of

atomic propositions associated with the location and the event of that element.

Additionally, each story-location ξk is mapped to a unique state qk ∈ Q, which

is, in fact, the state to which the DFA D reaches by tracking trace(ξk) from the

initial state q0. Also, for each DFA Di = (Qi, 2AP
′
, qi,0, δi, Fi) for i ∈ {1, 2, · · · , n},

the story-location ξk is mapped to a unique state qi,k ∈ Qi, which is again the state

to which Di reaches by tracking trace(ξk) from the initial state qi,0. As such,

the robot maintains for each time step k, apart from the data mentioned above, the

current state qk of the DFA D, and the current state qi,k of the DFA Di for each

i ∈ {1, 2, · · · , n} as well.

The robot uses a policy π : S×Q×W×Q1×· · ·Qn to choose which event-location

to try at each time step.

Assuming π(sk, qk, wk, q1,k, · · · , qn,k) = (wk+1, uk+1), the robot updates ξk+1 from

ξk based on the following formula:
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ξk+1 =



ξk · π(sk, qk, wk+1, q1,k, · · · , qn,k) uk 6= ε and

g(sk+1, uk+1, wk+1) > 0 and

uk happened at wk+1

ξk · (wk+1, ε) otherwise

(8.1)

It computes ηk+1 in a similar fashion.

Initially, ξ0 = ε and η0 = ε. The robot changes the value of variable qk only when

the guessed event actually happened:

qk+1 =



δ(qk, L(wk+1) ∪ {wk+1, uk}) uk 6= ε and

g(sk+1, uk+1, wk+1) > 0 and

uk happened at wk+1

δ(qk, L(wk+1) ∪ {wk+1}) otherwise

(8.2)

It uses a similar formula to compute qi,k+1 from qi,k and result of its attempt for

each i ∈ {1, 2, · · · , n}.

The robot stops when qk ∈ F , i.e., when the robot has accomplished its task.

Let Π be the set of all policies. For each policy π ∈ Π and soft constraint ψ, we

use Prπ(ψ) to denote the probability that a recorded story-location under policy π

satisfies ψ. Accordingly, 1− Prπ(ψ) is the probability that π violates ψ.

We define J : Π → [0, 1]n such that for each policy π, J(π) = [1 − Prπ(ψ1), 1 −

Prπ(ψ2), · · · , 1−Prπ(ψn)], represents for each soft constraint ψi, the probability that

ψi is violated by π. One purpose of our problem is to compute a policy that minimizes

this function. To be able to tell when this function is minimized, one need to define a

pre-order on the co-domain of this function. That pre-order can be simply defined as

the lexicographical order over the co-domain. To see an example, that pre-order gives

a higher priority to [0.3, 0.9] over [0.4, 0.1]. Of course, one can define a pre-order
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in which the probabilities that are smaller than a given threshold λ are converted to

zero in certain situations. For example, if λ = 0.05, then [0.04, 0.4, 0.9] has the better

cost of violation over [0, 0.6, 0.1], even though the later comes before the former in the

standard lexicographical order. In this work, we define the pre-order by linearizing

the values within the co-domain of J using a function f : [0, 1]n → R≥0 such that for

each policy π,

f(J(π)) = J(π) · [mn−1,mn−2, · · · ,m0] =
n∑
i=1

(1− Prπ(ψi))mn−i, (8.3)

in which m is chosen suitably based on to what extent we want to discard small

probabilities. Accordingly, a policy that minimizes this function is assumed to have

the smallest cost of violation of the soft constraints.

Additionally, we are interested only in a correct policy, a policy that guarantees,

with probability 1.0, a story-location that satisfies ϕ is captured.

We now define our problem.

Problem: Optimal Preference Planning to Chronicle (OPP2C)

Input: A transition system T modeling the environment, an event model M

modeling the occurrences of events in the environment, an LDLf formula

ϕ specifying the story and hard constraints, and an ordered list of n LDLf

formulas ψ1, ψ2, · · · , ψn that specify the soft constrains.

Output: The set of correct Pareto optimal policies for minimizing the expected

number of steps k to record a story-location ξk that satisfies ϕ while mini-

mizing the expected cost of violation of the soft constraints, defined by f ,

if a desired story-location can be captured almost-surely, NOPOLICYEX-

ISTS otherwise.

8.2 Algorithm Description

This section presents our algorithm.
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Converting the LDLf formulas into DFAs

The first step of the algorithm uses the algorithm of De Giacomo and Vardi [31] to

construct for the LDLf formula ϕ, a DFA D = (Q, 2AP ′ , δ, q0, F ) such that L(D) =

traces(ϕ), and for each of the LDLf formulas ψi for i ∈ {1, 2, · · · , n}, a DFA Di =

(Qi, 2AP
′
, δi, vi,0, Fi) such that L(Di) = traces(ψi).

The following sections discuss how to use these DFAs to solve the problem.

Cost filters

From the DFAs of the soft constraints, the algorithm constructs a filter F = (V, Y, C, τ,

v0, c) in which C = {F,T}n that is used to check which ones of the soft constraints,

a story-location is violating (satisfying). Note that for each state v, c(v) is a Boolean

vector of size n.

The following result shows how to construct the filter from the DFAs representing

the soft constraints.

Definition 32. From the DFAs Di = (Qi, 2AP
′
, δi, qi,0, Fi) for i ∈ {1, 2, · · · , n}, we

construct filter F = (Q, 2AP ′ , C, τ, v0, c) in which

• V = Q1 ×Q2 × · · · ×Qn,

• q0 = (q1,0, q2,0, . . . , qn,0),

• for any state (q1, q2, . . . , qn) ∈ V and any A ∈ 2AP ′ ,

τ((q1, q2, . . . , qn), A) = (τ1(q1, A), τ2(q2, A), . . . , τn(qn, A)),

and

• c : V 7→ {F,T}n is an output function that assigns to each state (q1, q2, . . . , qn) ∈

V , a Boolean vector v ∈ {F,T}n such that for each i ∈ {1, 2, · · · , n}, v[i] = T

if qi ∈ Fi and v[i] = F otherwise.
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The output function tells a recorded story-location satisfies which ones of the soft

constraints.

The next section uses this filter to make a product automaton.

Goal MDP

Now the algorithm constructs a Goal MDP as follows.

Definition 33. [Goal MDP] For the transition system T = (W,R,w0, AP, L), the

event model M = (S, P, s0, E, g), the DFA D = (Q,E, δ, q0, F ), and the filter

F = (V, Y, C, τ, v0, c), the associated Goal MDP is a tuple P(T ,D,M,F) = (X,A, x0,T,

XG, f), in which

1. X = S ×Q×W × V is the state space;

2. A = (E ∪ {ε})×W is the action space;

3. x0 = (s0, q0, w0, v0) is the initial state;

4. ν : X → A is the doable-actions function that for each state x ∈ X, ν(x) is the

set of actions the robot can do at state x, and for each x = (s, q, w, v) ∈ X,

ν(x) =
⋃

w′:(w,w′)∈R

(⋃
e∈E
{(w′, e)} ∪ {(w′, ε)}

)
,

5. T : X ×A×X → [0, 1] is the transition probability function such that for each

x = (s, q, w, v), x′ = (s′, q′, w′, v′) ∈ X and A = (u,w′′) ∈ ν(x),
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T(x, a, x′) =



P(s, s′) · g(s′, u, w′) if u 6= ε, q /∈ F,w′′ = w′, (w,w′) ∈ R,

q′ = δ(q, L(w′) ∪ {w′, u}),

v′ = τ(v, L(w′) ∪ {w′, u}) (5.a)

P(s, s′) · (1− g(s′, u, w′)) if u 6= ε, q /∈ F,w′′ = w′, (w,w′) ∈ R,

q′ = δ(q, L(w′) ∪ {w′}),

v′ = τ(v, L(w′) ∪ {w′}) (5.b)

P(s, s′) if u = ε, q /∈ F,w′′ = w′, (w,w′) ∈ R,

q′ = δ(q, L(w′) ∪ {w′}),

v′ = τ(v, L(w′) ∪ {w′}) (5.c)

1 if q ∈ F, q′ = q, w′′ = w′, (w,w′) ∈ R (5.d)

0 otherwise.

6. XG = S × F ×W × V is the set of goal states;

7. f : XG → {F,T}n is a goal-state-weighting function such that for each goal

state x = (s, q, w, v) ∈ XG, f(x) = c(v).

Each state of this MDP is a tuple (s, q, w, v) and when the MDP enters this state,

the event model enters state s, the robot enters location w, the DFA enters state q, and

the filter enters state v. For each pair of states x = (s, q, w, v), x′ = (s′, q′, w′, v′) ∈ X

and action a = (u,w′′) ∈ ν(A), T(x, a, x′) is the probability that the MDP transitions

from x to x′ by doing action a. This transition corresponds to a situation where

the robot chooses to record event u at location w′′ = w′, the event model makes a

transitions from s to s′, and then based on the result of success or failure of recording

event u, the DFA transitions from q to q′, and the filter transitions from v to v′.

If u 6= ε and the robot successfully records u in location w′′ = w′, then it changes

the current state of the DFA to δ(q, L(w′)∪{w′, u}) and the current state of the filter
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to v′ = τ(v, L(w′) ∪ {w′, u}), otherwise, it changes the current state of the DFA to

δ(q, L(w′)∪{w′}) and the current state of the filter to v′ = τ(v, L(w′)∪{w′}). Cases

(4.a) and (4.b) above respectively show these two situations. Case (4.c), makes all

the goal states of the MDP into absorbing states.

We treat this MDP as a multi-objective MDP, where one objective is the number

of steps to reach a goal state and the other objective is the violation cost, determined

by function f , when the MDP reaches the goal states.

After constructing the MDP, one needs to check if a correct policy exists or not.

This can be done using the same discussions of Section 5.2 of Chapter 5. Based on

those discussions, if the MDP has no unavoidable dead-end, then a correct policy

exists. Otherwise, no correct policy exists.

The following section discusses how to solve the MDP if it has a correct policy.

Solving the Goal MDP

Recall that our problem concerning this multi-objective Goal MDP has two objectives;

one is minimizing the expected number of steps to reach the goal states and the other

is minimizing the expected cost of violation when ending in the goal states.

Given a policy π : X → A, the value function of π is a function Vπ : X →

R≥0 × [0, 1]n such that for each state x ∈ X, Vπ(x) is a two-dimensional vector

(V π
1 (x),Vπ

2 (x)) where V π
1 (x) is the expected number of steps to reach the goal states

and Vπ
2 is a n-dimensional vector such that for each i ∈ {1, 2, · · · , n}, Vπ

2 [i] is the

probability that soft constraints ψi is violated by the policy π. To compute the value

function of a policy, if x ∈ XG, then we set V π
1 (x) = 0, and for each i ∈ {1, 2, · · · , n},

Vπ
2 (x)[i] = 1 if f(x)[i] = F, and otherwise Vπ

2 (x)[i] = 0. For x ∈ X \XG, we compute

Vπ(x) via the following recurrence

Vπ(x) = [1,0n] +
∑
x′∈X

Vπ(x′)T(x, π(x), x′), (8.4)
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in which 0n is a zero vector of size n and [1,0n] is also a vector.

Note that each Vπ(x′) is a vector, and thus, the summation produces a single

vector, which when summed with [1,0n] produces a single vector.

Let Vπ1(x) = (V π1
1 (x),Vπ1

2 (x)) and Vπ2(x) = (V π2
1 (x),Vπ2

2 (x)) be respectively

the values of polices π1 and π2 at state x. Denoted Vπ1(x) � Vπ2(x), it is said that

Vπ1(x) dominates Vπ2(x) if

(
V π1

1 (x) < V π2
1 (x) ∧ f(V2

π1(x)) ≤ f(V2
π2(x))

)
∨
(
V π1

1 (x) ≤ V π2
1 (x) ∧ f(V2

π1(x)) < f(V2
π2(x))

)
, (8.5)

and otherwise it is said that Vπ1(x) does not dominate Vπ2(x), denoted Vπ1(x) 6�

Vπ2(x). Intuitively, π dominates π2 if it improves at least one of the objectives of

expected number of steps or the expected cost of violation without loosing the quality

of any of those two objectives.

The set of all policies that cannot be dominated by any policy at state x is called

the set of all Pareto optimal policies at state x, which is denoted Πo
x, and is formally

defined,

Πo
x = {π1 ∈ Π | ∀π2 ∈ Π : Vπ2(x) 6� Vπ1(x)}.

The purpose of our problem is to compute Πo
x0 , also denoted Πo, the set of all

Pareto optimal polices for the MDP. One can use a variety of methods to compute Πo.

For a survey, see [119]. In this work, we use the convex hull value iteration method [6].

This method computes a subset of Πo, denoted CH(Πo), that contains the set of

Pareto optimal polices that are optimal for a linear scalarization, which projects the

multi-value vector Vπ(x) into a scalar value using a weight vector w = (w1, w2)

that specifies the relative importance of each of the objectives. All the elements

of the weight vector are non-negative real numbers and they sum to 1. Formally,

given a weight vector w = (w1, w2) and a value vector Vπ, the linear scalarization of
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Vπ = (V π
1 ,Vπ

2 ) under w is

Vπ
w = w1V

π
1 + w2Vπ

2 .

The CH(Πo) contains all the Pareto optimal polices the linear scalarization of

each of which is optimal for at least a weight vector. Formally,

CH(Πo) = {π1 ∈ Πo | ∃w : ∀π2 ∈ Πo : Vπ1
w ≤ Vπ2

w }.

Note that computing CH(Πo) is useful when we know that our final decision to

pick a Pareto optimal policy imposes a linear weight vector over the importance of the

objectives, but we do not know priory which weight vector we will pick. Otherwise, if

we initially know what will be our weight vector, then we need to compute only one

policy, which is computable using the standard Bellman equation for single MDPs, in

which the elements of weight vector has already applied to the terms of the equation

as magnifiers.

To compute CH(Πo), the convex hull value iteration method uses the following

recurrence

Qo(x, a) = Ex′|x,a

[1,0n] + hull
⋃

a′∈ν(x′)
Qo(x′, a′)

 , (8.6)

in which each Qo is a set (rather than a single value) of non-dominated value vectors

and the operation hull takes the convex hull of a set of value vectors. To implement

this equation one needs to use a translation-and-scaling operation

r + bQo = {r + bt | t ∈ Qo},

and a summing-convex-hulls operation

Qo + U o = hull{r + t | r ∈ Qo, t ∈ U o}.

Then, once the equations are solved and a weight vector w is given, we extract the

best Q−values as follows,

Qw=(w1,w2)(x, a) = max
r=(r1,r2)∈Qo(x,a)

w1r1 + w2f(r2).
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Note that multi-objective MDPs usually have many Pareto optimal polices, whose

number in the worst case isO(|X||A|). As such it is not feasible to compute all of them.

Additionally, when we compute the Qo’s, there might be many vectors whose values

are very close. Mandow et al. [86] propose an approximation approach in which each

element of those vectors are rounded upto a limited precision. Using this approach,

many of the vectors project to the same vector, reducing the sizes of the convex

hulls. This significantly reduces the computation time, because computation time

of the algorithm grows exponentially with the sizes of the convex hulls. Using this

approach, however, may come at the cost of losing optimally. In our implementations,

we round the values to the nearest 0.01.

Moreover, to reduce the number of times the equation is backed up for the states

of the MDP, we use the idea of topological value iteration, presented in Section 5.4.

Based on this idea, we choose a reverse order of the topological order of the set of

strongly connected components of the MDP, and then we pick a strongly connected

component (SCC) at a time, compute the Qo-values for all the states within that

SCC, and then proceed to the next SCC.

The next section shows how this algorithm performs on a small case study.

8.3 Case study

In this section, we present a case study, for which we implemented our algorithm in

Python. We performed all the trials on an Ubuntu 16.04 computer with a 3.6 GHz

processor.
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A student life in University of South Carolina

The University of South Carolina wants to make a documentary introducing student

life in their university. To do this, they want a student to volunteer to record her while

she is in different buildings and doing different activities. Madelyn has volunteered

to be the student in the documentary. The university has a multi-task robot that is

capable of capturing videos, and they want the robot to do the task of recording such

a documentary while it should also do other tasks as well.

Figure 8.1a shows locations of interest, including Madeline’s office, wo; the Univer-

sity’s gym; wg; the University’s dining hall, wd; and the University’s library, wl. The

transitions of the transition system are based on whether the robot is able to move

from one location to another location in 10 minutes or not. For example, because

the robot cannot reach the library from the gym in one time step, equivalent to 10

minutes, there is no transition from wg to wl.

The student’s activities in which the university is interested to make a docu-

mentary from include exercising, e; working, r; eating food, f ; and drinking coffee,

c. Each activity is an event in our formulation and the occurrences of those events

within the environment is modeled in the event-location model in Figure 8.1b. The

university wants the documentary to contain Madelyn working, and then later either

Madelyn eating food or Madelyn drinking coffee. They also want the documen-

tary to contain Madelyn exercising, after which no activity of Madelyn eating food

should appear in the video. This documentary is specified by the LDLf formula

〈true∗〉(r ∧ 〈true∗〉(f |c)) ∧ 〈true∗〉e ∧ [true∗](e → ¬〈true∗〉f). There are three soft

constraints, ordered from most to least important:

1. After going to the dining hall, the robot should not go to office. This constraint

is specified by:

[true∗](d→ ¬〈true∗〉o)
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Home

Gym

Dining hall

LibraryOffice

a) b)

Figure 8.1: a) A transition system showing the locations of interest from the Uni-
versity of South Carolina. The transitions of this structures is based on the motion
capabilities of the robot, that is, a transition from a location w1 to location w2 in this
transition system exists only if the robot can move from w1 to w2 in 10 minutes. b)
The event-location model that represents the occurrences of the events of interest in
this environment. Those events include exercising, e; working, r; eating food, f ; and
drinking coffee c.

2. If the robot enters the library, then in the next time step it should go to the

office. This constraint is specified by:

[true∗](l→ 〈true〉o)

3. The robot should not stay two consecutive time steps in the dining hall. This

constraint is specified by:

¬〈true∗〉(d→ 〈true〉d)

Note that if the robot wants to reduce the number of steps to record a desired

sorty, then these soft constraints are conflicting because the robot enters dining hall

and the current time step is not the last step of its execution, then at least one of

these three constraints has to be violated.

We now present our results. We computed the Qo values using the algorithm of

the previous section with at most 120 iterations for states within a strongly connected

component, and once those values are computed, we extracted 11 different policies
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using 11 different weight vectors w1 = [1.0, 0],w2 = [0.9, 0.1], · · · ,w11 = [0, 1.0], for

each of which we computed its value function using Equation 8.4. For each policy, we

generated 1000 simulations where in each simulation, Madelyn took a random path

in the environment and did some of the activities drawn by the probabilities in the

event-location model, and we let the robot to use the computed policy to record a

story. For each of those 11 experiments, we computed the average number of steps

to record a desirable story-location and the average number of times each of the soft

constraints was violated.

Table 8.1 shows results of our experiment. Based on this table, when the im-

portance of the expected number of steps increases over the importance of expected

cost of violation (from the bottom of table to the top of it), the expected number of

steps to record a desired story-location reduces. In contrast, when the importance of

expected cost of violation over the importance of expected number of steps increases

(from the top part of the table to the bottom of it), the expected cost of violation of

soft constraints reduces.

We also compute a policy on the MDP for only minimizing the expected number

of steps and based on this policy the expected number of step under the optimal

policy was 27.67, which matches the first row of the table. We also compute a policy

on the MDP but this time for only minimizing the expect cost of violation of the soft

constrains, and based on that, the expected cost of violation of the soft constraints

under an optimal policy was [0.00, 0.00, 0.00], which matches the last row of the

table. As for computation time, it took 7460 seconds for our algorithm to compute

the polices.
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Weight Vec. Expc. #Steps Expc. Violation Avg. #Steps Avg. Violation

[1, 0] 27.67 [0.89, 0.00, 0.00] 27.61 [0.90, 0, 0]
[0.9, 0.1] 28.13 [0.74, 0.18, 0.00] 28.41 [0.73, 0.19, 0]
[0.8, 0.2] 41.29 [0.00, 0.79, 0.00] 40.04 [0, 0.76, 0]
[0.7, 0.3] 41.30 [0.00, 0.79, 0.00] 41.08 [0, 0.77, 0]
[0.6, 0.4] 41.30 [0.00, 0.79, 0.00] 40.97 [0, 0.79, 0]
[0.5, 0.5] 41.30 [0.00, 0.79, 0.00] 42.45 [0, 0.80, 0]
[0.4, 0.6] 41.30 [0.00, 0.79, 0.00] 40.00 [0, 0.77, 0]
[0.3, 0.7] 41.47 [0.00, 0.79, 0.00] 41.74 [0, 0.79, 0]
[0.2, 0.8] 46.20 [0.00, 0.79, 0.00] 44.64 [0, 0.78, 0]
[0.1, 0.9] 62.79 [0.00, 0.56, 0.00] 62.00 [0, 0.57, 0]

[0, 1] 130.78 [0.00, 0.00, 0.00] 128.21 [0, 0, 0]

Table 8.1: Results of our experiment for computing the set of Pareto optimal polices
for the case study of a student’s life in the University of South Carolina. We first
computed the Qo values using our version of the convex hull value iteration and then
we extracted 11 optimal polices for 11 different weight vectors from those computed
Qo values. The first element of the vectors indicates the importance of number of
steps and the second element indicates the importance of the cost of violation of
soft constraints. The second column is the theoretical prediction for the number of
steps to record a story-location and the third column is the theoretical prediction of
cost of violation of the soft constraints. The fourth column represents the average
number of steps to record a desired story-location using the computed policy for 1000
simulations, and the last column shows the average cost of violation over those 1000
simulations.
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Chapter 9

Sensor selection for detecting deviations from

a planned itinerary

In this chapter, we consider the problem of choosing a minimum number of sensors

to turn on so that using the sequence of observations produced by those sensors the

system could tell whether an agent deviated from its claimed itinerary or not.

The material in this chapter is based on our work Rahmani, Shell, and O’Kane

[112], which appeared in IROS 2021.

The organization of this chapter is as follows. In Section 9.1, we formalize the

problem of optimal sensor selection to detect deviations from a disclosed itinerary; in

Section 9.3, we establish the computational hardness of the problem; in Section 9.4,

we show how it may be treated via integer linear programming; and in Section 6.4,

we present experimental results.

9.1 Definitions and problem statement

This section formalizes our sensor selection problem.

Modeling the environment

In our approach, the environment is modeled using a discrete structure, called a world

graph, defined as follows.
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a) b)a) b)a) b)
Figure 9.1: a) An example of an environment, which shows the floor map of a depart-
ment. This environment is guarded by beam sensors b1, b2, and b3, and by occupancy
sensors o1, o2, o3, and o4. b) A multigraph representing the environment. Each edge
e is labeled by a world-observation, a set of events received when an agent moves
from the region represented by the source vertex of e to the region represented by the
target vertex of e.
Definition 34. [World graph] A world graph is an edge-labeled directed multigraph

G = (V,E, src, tgt, v0, S,Y, λ) in which

• V is a nonempty vertex set,

• E is a set of edges,

• src : E → V and tgt : E → V are source and target functions, respectively,

which identify the source vertex and target vertex of each edge,

• v0 ∈ V is an initial vertex,

• S = {s1, s2, . . . , sk} is a nonempty finite set of sensors,

• Y = {Ys1 , Ys2 , . . . , Ysk
} is a collection of mutually disjoint event sets associated

to each sensor, and

• λ : E → ℘(Ys1 ∪ Ys2 ∪ · · · ∪ Ysk
) is a labeling function, which assigns to each

edge, a world-observation—a set of events.

(Here ℘(X) denotes the set of all subsets of X.)
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The intuition is that a world graph describes an environment through which agent

might move, along with the available sensors in the environment and also the sensor

events that agent may trigger along its motion, provided those sensors are active.

Vertices in the graph represent regions within the environment of interest. Edges

represent feasible transitions between regions, each labeled with a set of sensor events

that happen simultaneously when the system makes the transition corresponding to

that edge.

In this model, for each sensor si ∈ S, Ysi
is the set of all events produced by si.

Notice that Definition 34 stipulates that distinct sensors produce disjoint events, that

is, for each si, sj ∈ S, if si 6= sj, then Ysi
∩ Ysj

= ∅. The labeling function λ is used

to indicate for each edge, the set of events produced by the sensors when the agent

makes a transition corresponding to that edge in the environment.

Example: Beam and occupancy sensors

Though the technical results to follow apply for any world graph that satisfies Defi-

nition 34, to keep the description reasonably concrete, we present examples focused

upon occupancy sensors (which detect the presence of the agent in a region) and

beam sensors (which detect the passage of an agent between adjacent regions).

To illustrate, consider the simple environment in Fig. 9.1a, which is guarded by

four occupancy sensors o1, o2, o3, and o4 and three beam sensors b1, b2, and b3.

Fig. 9.1b shows the world graph corresponding to this environment, as constructed

via the algorithm of Yu and LaValle [167]. Each state of this graph represents a room

or a region within the environment guarded by the same set of sensors. Each edge

shows a transition between two neighboring regions.

Notice that, in the example, some pairs of rooms are connected by multiple doors,

each of which are guarded by different sensors. This explains why Definition 34 uses a

multigraph structure for world graphs. Also note that in this environment, an agent
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cannot directly move between rooms C and D because those two rooms are separated

by a window rather than a door.

In this example, an occupancy sensor o, which detects the presence of an agent in

a region X, is activated when the agent enters X and is deactivated once the agent

exits X. Accordingly, each occupancy sensor o in this example produces two events,

o+, which occurs when o is activated, and o−, which happens when o is deactivated.

A beam sensor is activated when a mobile agent physically crosses (or breaks) the

beam and then instantly deactivated. Because the agent is mobile and a beam sensor

is deactivated immediately after it was activated, we model each beam sensor b with

a single event b in Yb. When beam b is broken, the system knows that the physical

line segment was crossed, but not the direction of crossing. For the environment in

Fig. 9.1: for each of the occupancy sensors oi, i ∈ {1, 2, 3, 4}, Yoi
= {o+

i , o
−
i }; for each

of the beam sensors bj, j ∈ {1, 2, 3}, Ybj
= {bj}.

When an agent makes a transition between two regions, it is possible that several

events happen simultaneously, and in fact, the system observes all those events at the

same time. For example, when an agent makes a transition from room A to room B

from the left door, two events o−1 and b1 happen simultaneously, and thus, edge e3 in

the world graph is labeled with the world-observation {b1, o
−
1 }.

Finally, notice that a world graph can readily represent scenarios in which a single

sensor guards multiple transitions. In the example, B has four doors, three of which

are guarded. The beams that guard those doors are assumed to be a single beam

sensor b1 ∈ S. When an agent crosses any of those beams, the system knows that one

of them is crossed but it does not know which one it was. Likewise, rooms C and D

are guarded by a single occupancy sensor o2, which is located on the window between

those two rooms. Thus, if an agent enters any of those two rooms, o2 is activated,

but by observing o+
2 , the system cannot tell if the agent entered room C or room D.
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Itinerary DFA

In our story validation problem, an agent takes a tour in the environment along a

continuous path. This path is represented over the world graph G by a walk, which

is defined as a finite sequence of edges e1e2 · · · en ∈ E∗ in which src(e1) = v0 and

for each i ∈ {1, 2, . . . , n − 1}, tgt(ei) = src(ei+1). The set of all walks over G —that

is, the set of all not-necessarily-simple paths one can take in the environment— is

denoted Walks(G).

The agent claims that its tour will be one of those words specified by a determin-

istic finite automaton (DFA):

Definition 35. [Itinerary DFA] An itinerary DFA over a world graph G = (V,E, src,

tgt, v0, S,Y, λ) is a DFA I = (Q,E, δ, q0, F ) in which Q is a finite set of states; E is

the alphabet; δ : Q× E → Q is the transition function; q0 is the initial state; and F

is the set of all accepting (final) states.

For each finite word r = e1e2 · · · en ∈ E∗, there is a unique sequence of states

q0q1 · · · qn for which q0 is the initial state and for each i ∈ {0, 1, . . . , n− 1}, δ(qi, ei) =

qi+1. Word r is accepted by the DFA if qn ∈ F . The language of I, denoted L(I), is the

set of all finite words accepted by I, i.e., L(I) = {r ∈ E∗ | r is accepted by I}. The

robot claims its tour will be one of the words r ∈ L(I). Note that each word accepted

by this DFA is a walk over the world graph, and accordingly, the robot’s itinerary

not only specifies the sequence of locations the agent visits but it also identifies the

specific transitions (i.e. the doors between the rooms) through which the agent moves.

Itinerary validation

We seek to enable a minimal subset M ⊆ S of sensors such that, when the agent

finishes its tour within the environment, the system can determine with full certainty

whether the agent followed its itinerary or not. At the completion of the agent’s tour,
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the system does not know the exact tour the agent took in the environment, instead

receiving only a sequence of world-observations. Each item in the sequence is gener-

ated by the system when a set of sensors were activated or deactivated simultaneously

as a result of the agent’s moving in the environment.

Let us mildly abuse notation and use YM to denote the set of all events produced

by sensors in some M ⊆ S, i.e., YM = ⋃
s∈M Ys. If, from all sensors S, only the

sensors inM are turned on, then when the agent transitions across e in G, the system

receives world-observation λ(e) ∩ YM . That is, when transitioning across an edge,

the system observes precisely those events that are both associated with that edge

and enabled by one of set M ’s selected sensors. Where λ(e) ∩ YM = ∅, this must be

handled slightly differently: in this case, the system produces no symbol at all (not a

symbol reporting that some un-sensed event occurred—which would itself be a tacit

sort of information). We make this precise next.

The agent’s walk over the world graph generates a sequence of non-empty world-

observations. For a world graph G = (V,E, src, tgt, v0, S,Y, λ), we define function

βG : Walks(G)×℘(S)→ (℘(YS) \∅)∗ in which for each r ∈Walks(G) and subset of

sensorsM ⊆ S, βG(r,M) gives the sequence of world-observations the system receives

when the agent takes walk r and precisely the sensors in M are turned on. Formally,

for each r = e1e2 · · · en ∈ Walks(G), βG(r,M) = z1z2 · · · zn in which for each i ∈

{1, . . . , n}, zi = λ(ei) ∩ YM if (λ(ei) ∩ YM) 6= ∅, and zi = ε otherwise, where ε is the

(standard) empty symbol.

Based on this function, we make a definition that formulates conditions under

which a set of sensors are able to tell whether the agent adhered to its claimed

itinerary or not.

Definition 36. [Certifying Sensor Selection] Let M ⊆ S be a subset of sensors. We

say M certifies itinerary I on world graph G if there exist no r ∈ L(I) ∩Walks(G)

and t ∈Walks(G) \ L(I) such that βG(r,M) = βG(t,M).
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Intuitively, ifM is a certifying sensor selection for I, then based on the sequence of

world-observations βG(r,M) the system perceives from the environment, the system

can tell whether r was within the claimed itinerary or not, that is, whether r ∈ L(I)

or not. In fact, if for each r ∈ L(I) ∩Walks(G), there is no t ∈ (Walks(G) \ L(I))

such that βG(t,M) = βG(r,M), then the system can tell with full certainty if r was

within the claimed itinerary or not. Thus, the system must choose a sensor set M to

turn on that is certifying for I on G.

We formalize our minimization problem as follows.

Problem: Minimal sensor selection to validate an itinerary (MSSVI)

Input: A world graph G = (V,E, src, tgt, v0, S,Y, λ) and an itinerary DFA I =

(Q, V, δ, q, F ).

Output: A minimum size certifying sensor selection M ⊆ S for I on G, or

‘Infeasible’ if no such certifying sensor selection exists.

Before showing this problem to be NP-hard, we describe a construction that turns

out to be useful in what follows.

9.2 World graph-itinerary product automata

In this section, we describe how to use the inputs of the MSSVI problem to construct

a product automaton that captures the interactions between a world graph and an

itinerary DFA. We use this construction for both a hardness result about MSSVI (in

Section 9.3) and a practical solution of MSSVI via integer linear programming (in

Section 9.4). This product automaton is defined as follows.

Definition 37. [Product automaton] Let G = (V,E, src, tgt, v0, S,Y, λ) be a world

graph and I = (Q,E, δ, q0, F ) be an itinerary DFA. The product automaton PG,I is

a partial DFA PG,I = (QP , E, δP , qP0 , FP) with

• QP = Q× V ,
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• δP : QP×E 9 QP is a partial function such that for each (q, v) ∈ QP and e ∈ E,

δP((q, v), e) is undefined if src(e) 6= v, otherwise, δP((q, v), e) = (δ(q, e), tgt(e)),

• qP0 = (q0, v0), and

• FP = F × V .

Note that the transition function of this DFA is partial. We will write δP(p, e) =

⊥ to mean that δP is undefined for (p, e). The extended transition function δ∗P :

QP × E∗ 9 QP—which for each q ∈ QP and r ∈ E∗, δ∗P(q, r) denotes the state

to which the DFA reaches by tracing r from state q—is also partial. For a word

r = e1e2 · · · en ∈ E∗, we use δ∗P(qP0 , r) = ⊥ to mean that this DFA crashes when it

traces r from the initial state, that is, there is a unique state sequence q0q1 · · · qk for

some k < n such that δP(qi−1, ei) = qi for all i ∈ {1, 2, . . . , k− 1} but δP(qk, ek) = ⊥.

A word r ∈ E∗ is trackable by this DFA if δ∗P(qP0 , r) 6= ⊥.

Our purpose in constructing this product automaton is revealed by the following

result.

Lemma 22. Let G, I, and PG,I be the structures in Definition 37. A subset M ⊆ S

of sensors is a certifying sensor selection for I if and only if for each r, r′ ∈ E∗ such

that δ∗P(qP0 , r) ∈ FP and δ∗P(qP0 , r′) ∈ QP \ FP , it holds that βG(r,M) 6= βG(r′,M).

Proof. The construction yields two direct observations:

(1) Every word trackable by P is a walk over G and vice versa, i.e., {r ∈ E∗ |

δ∗P(qP0 , r) 6= ⊥} = Walks(G).

(2) The accepting states of P correspond to the accepting states of the itinerary

DFA, so L(PG,I) = L(I).

Taken together, (1) and (2) imply that Walks(G)\L(I) = {r ∈ E∗ | δ∗P(qP0 , r) ∈ QP \

FP}. This means that each walk over the world graph that is not within the language
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of the itinerary DFA, reaches a non-accepting state in this DFA. But, because every

word in the the language of the itinerary DFA reaches to an accepting state in this

DFA, if there are two words r and r′ such that r reaches to an accepting state, r′

reaches to a non-accepting state, and r and r′ both yield the same sequence of world-

observations by βG under M , i.e., βG(r,M) = βG(r′,M), then M is not a certifying

sensor selection for I. Contrariwise, if there are no such words r and r′, then M is a

certifying sensor selection. This completes the proof.

As a result, given a sensor selectionM as a feasible solution to MSSVI with inputs

G and I, one can use the product automaton PG,I to check if M is a certifying sensor

selection for I or not by testing whether such r and r′ described in the proof of this

lemma can be found or not. The next section makes this idea clear.

9.3 Hardness of MSSVI

Next, we present a hardness result for minimal sensor selection, starting by casting

MSSVI as a decision problem.
Decision Problem: Minimal sensor selection to validate an itinerary

(MSSVI-DEC)

Input: A world graph G = (V,E, src, tgt, v0, S,Y, λ), an itinerary DFA I =

(Q, V, δ, q0, F ), and integer k.

Output: Yes if there is a certifying sensor selection M ⊆ S such that |M | ≤ k; No

otherwise.

We prove that MSSVI-DEC is NP-complete, by showing that it is both in NP and

NP-hard. First, we show that MSSVI-DEC can be verified in polynomial time.

Lemma 23. MSSVI-DEC ∈ NP.
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Proof. We need to show that, using a given sensor selection M ⊆ S as a certificate,

we can verify in polynomial time both (1) whether |M | ≤ k and (2) whether M is

a certifying sensor selection in the sense of Definition 36 or not. As (1) is trivially

verifiable, we turn to (2).

Recall that by Lemma 22, if for any words r, r′ ∈ E∗ for which δ∗P(v0, r) ∈ FP

and δ∗P(v0, r
′) ∈ QP \ FP , it holds that βG(r,M) 6= βG(r′,M), then M is a certifying

sensor selection for the given itinerary DFA I, otherwise M is not a certifying sensor

selection for I. Thus, to check if M is certifying, we compute, using a fixed point

algorithm described presently, a relation R that relates all pairs of states q and p

that are reachable from the initial state by two words (walks) that yield the same

sequence of world-observations by βG under M . Then we check whether R relates

any pairs of states q and p such that one of them is accepting while the other is

non-accepting. If R relates such a pair, then M is not a certifying sensor selection for

I. Otherwise, M is certifying for I. To construct R, begin with R initially assigned

to {(qP0 , qP0 )}. Then iteratively update R according to the following equation until

the iteration reaches a fixed point, with no additional tuples added to R.

R← R ∪
⋃

(q,p)∈R


⋃

e,d∈E:
(λ(e)∩YM )=
(λ(d)∩YM )

and δP (q,e)6=⊥
and δP (p,d) 6=⊥

(δP(q, e), δP(p, d))


∪
⋃

(q,p)∈R


⋃
e∈E:

(λ(e)∩YM )=ε
and δP (q,e)6=⊥

(δP(q, e), p)
.

To expand R, this equation uses two rules, one in the first line and the other in

the second line. Fig. 9.2 illustrates those two rules. The first rule states that if

(q, p) ∈ R, then for any edges e, d ∈ E such that q has an outgoing transition for e

and p has an outgoing transition for d, if e and d yield the same world-observation

under M , then we must add (δP(q), δP(p)) to R as well, which means that states

δP(q, e) and δP(p, d) are reachable from the initial state of PG,I by two words (walks)

that yield the same world observation by βG under M . The second rule enforces that
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a) b)

Figure 9.2: Two cases in the construction of the relation R in the proof of Lemma 23.
In each case, R is expanded, given that states q and p are already related by R. a)
In this case, pair δP(q, e) and δP(p, d) are added to R. b) In this case, pair δP(q, e)
and p are added to R.

if (q, p) ∈ R, then for any edge e ∈ E such that q has an outgoing transition for e,

if e yields the empty world-observation under M (that is, if e yields ε by βG under

M), then (δP(q, e), p) must be added to R too. This is because here both states

δP(q, e) and p are reachable from the initial state, respectively, by a pair of words

(walks) r and r′ that, respectively, reached q and p, while yielding a single sequence

of world-observations. Using an appropriate implementation, this algorithm takes

time which is polynomial in the size of P because there are O(|QP |2) pairs in R and

thus O(|QP |2) stages of updates, each checking at most |E| edges. This shows that

MSSVI-DEC ∈ NP.

The practical import of this lemma is that, in polynomial time, we can decide

whether a sensor set is certifying for a given itinerary or not.

Next, we prove that MSSVI-DEC is computationally hard. To do so, we shall

reduce from a well-known problem.
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Decision Problem: Set cover (SETCOVER-DEC)

Input: A finite set U , called the universe, a collection of subsets O =

{O1, O2, . . . , Om} in which, for each i ∈ {1, 2, . . . ,m}, Oi ⊆ U and⋃
i∈{1,2,...,m}Oi = U , and an integer k.

Output: Yes if there is a sub-collection N ⊆ O such that ⋃O∈N O = U and |N| ≤ k,

and No otherwise.

This problem is known to be NP-complete [65]. We reduce from SETCOVER-

DEC to prove the following result.

Theorem 15. MSSVI-DEC is NP-hard.

Proof. We prove this result by a polynomial reduction from SETCOVER-DEC to

MSSVI-DEC. Given a SETCOVER-DEC instance

x = 〈U = {u1, u2, . . . , un},O = {O1, O2, . . . , Om}, k〉,

construct an MSSVI-DEC instance

f(x) = 〈G = (V,E, src, tgt, v0, S,Y, λ), I, k′〉,

as illustrated in Fig. 9.3 and detailed below.

– For the vertices of the world graph, create 2n+2 states, denoted V = {C0, . . . , Cn+1}∪

{u1, . . . , un}. Note that the ui elements correspond directly to the elements of the

universe in the SETCOVER-DEC instance. The idea is that the ui’s represent

rooms arranged in sequence, each accessible from a shared corridor composed of the

Ci’s.

– For the edges of the world graph, create 4n+2 edges, denoted E = {e0, e1, . . . , en}∪

{e′0, e′1, . . . , e′n} ∪ {d1, d2, . . . , dn} ∪ {d′1, d′2, . . . , d′n}. The src and tgt functions are

defined so that each ei connects Ci to Ci+1, each e′i connects Ci+1 to Ci, each di

connects Ci to ui, and each d′i connects ui to Ci.
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–Create a set of n + m + 1 sensors, S = {b1, b2, . . . , bn+1} ∪ {O1, O2, . . . , Om}, in

which the bi’s are beam sensors and the Oi’s are occupancy sensors. The event

set corresponds to these sensors in the usual way, with one event for each beam

sensor and two events for each occupancy sensor, so for each j ∈ {1, 2, . . . , n +

1}, Ybj
= {bj}, and for each i ∈ {1, 2, . . . ,m}, YOi

= {O+
i , O

−
i }, and then, Y =

{Yb0 , Yb1 , . . . , Ydn+1 , YO1 , YO2 , . . . , YOm}.

– For the events labeling each edge, define λ(ei) = λ(e′i) = bi+1 for the ei and e′i edges,

λ(di) = {O+
j | ui ∈ Oj} for the di edges, λ(d′i) = {O−j | ui ∈ Oj} for the d′i edges.

This models one or more occupancy sensors in each of the ui rooms, according to the

subsets within the SETCOVER-DEC instance, and beam sensors along the corridor

between each room.

–For the itinerary DFA I, construct a DFA accepting the singleton language L(I) =

{e0d1d
′
1e1d2d

′
2e2 . . . dnd

′
nen} as a linear chain of states.

– For the bound on the number of sensors allowed, choose k′ = k + n+ 1.

In the MSSVI-DEC instance constructed in this way, notice that, for each subset

O ∈ O, the construction makes a corresponding occupancy sensor O and puts that

sensor in all rooms u for which u ∈ O. Moreover, the itinerary specifies a single

walk e0d1d
′
1e1d2d

′
2e2 · · · dnd′nen, which indicates that the sequence of regions the agent

intends to visit is C0C1u1C1C2u2C2 · · ·Cn+1. That is, the itinerary calls for the agent

to travel down the corridor, visiting each room exactly once in the specific order

u1, u2, . . . , un, without backtracking within the corridor. For the system to be able

to tell that the agent has visited a room, at least one occupancy sensor in each room

must be turned on. Also, each of the beam sensors must be turned on so that the

system can assure that the agent did not vacillate back-and-forth between cells in the

corridor.

The construction clearly takes polynomial time, so it remains only to show that
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a)
b)

c)

Figure 9.3: a) An instance of the set cover problem. b) The instance of the MSSVI
problem for this set cover instance. c) A physical environment representing the
MSSVI instance.

the reduction is correct, i.e. that the original SETCOVER-DEC instance has a set

cover of size at most k if and only if the constructed MSSVI-DEC has a valid sensor

set of size k′.

(⇒) Suppose there exists a set cover N ⊆ O such that |N| ≤ k and ∑O∈N O = U .

In this case, based on our discussion, the sensor selectionM = N∪{b1, b2, . . . , bn+1} is

for itinerary I, a certifying sensor selection of size |M | = |N|+n+1 ≤ k+n+1 = k′.

(⇐) Conversely, suppose there exists for I, a certifying sensor selectionM ⊆ S for

which |M | ≤ k′. As argued above, becauseM is certifying, it must contain each of the

n+1 beam sensors. Thus, there are at most k′− (n+1) = k occupancy sensors inM .

Recall, however, that for this construction, every certifying sensor selection includes

at least one occupancy sensor within each room. Thus, the occupancy sensors in M

form a set cover of size at most k for the original SETCOVER-DEC instance.

Finally, the following results follow immediately from Theorem 15 and Lemma 23.

Theorem 16. MSSVI-DEC is NP-complete.
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Corollary 3. MSSVI is NP-hard.

As a result, assuming P 6= NP, one cannot find a certifying sensor selection with

minimum size in polynomial time.

9.4 MSSVI via integer linear programming

In this section, we present an exact solution to MSSVI using an Integer Linear Pro-

gramming formulation of the problem. First, we cast the MSSVI problem into math-

ematical programming form, and then linearize its constraints.

Mathematical programming formulation of MSSVI

For each sensor s ∈ S, we introduce a binary variable us, which receives value 1 if

sensor s is chosen to be turned on, and receives 0 otherwise. For each tuple of states

(q, p) ∈ QP × QP , we introduce a binary variable aq,p, which receives value 1 if and

only if there exist two finite words r, r′ ∈ E∗, such that δ∗P(qP0 , r) = q, δ∗P(qP0 , r′) = p,

and and βG(r,M) = βG(r′,M). For each edge e ∈ E and event e ∈ Y , we introduce a

binary variable be,y which is assigned a value 1 if and only if the label of e contains y

and the sensor that produces y is chosen to be turned on. More precisely, if y ∈ λ(e)

and uη(y) = 1, then be,y receives value 1, otherwise it receives value 0, where η(y) is

the sensor that produces event y, i.e., η(y) = s such that y ∈ Ys. In terms of these

variables, an MSSVI instance can be expressed as follows.

Minimize: ∑
s∈S

us (9.1)

Subject to:

aqP0 ,qP0
= 1 (9.2)
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For each q ∈ FP , p ∈ QP \ FP ,

aq,p = 0 (9.3)

For each q ∈ QP \ FP , p ∈ FP ,

aq,p = 0 (9.4)

For each e ∈ E and y ∈ Y s.t. y /∈ λ(e),

be,y = 0 (9.5)

For each e ∈ E and y ∈ Y s.t. y ∈ λ(e),

be,y = uη(y) (9.6)

For each q, p ∈ QP and e, d ∈ E such that δP(q, e) 6= ⊥ and δP(p, d) 6= ⊥,

aq,p = 1 ∧ (∀y ∈ Y, be,y = bd,y)⇒ aδP (q,e),δP (p,d) = 1 (9.7)

For each q, p ∈ QP and e ∈ E such that δP(q, e) 6= ⊥,

aq,p = 1 and (∀y ∈ Y, be,y = 0)⇒ aδP (q,e),p = 1 (9.8)

For each q, p ∈ QP and e ∈ E such that δP(p, e) 6= ⊥,

aq,p = 1 and (∀y ∈ Y, be,y = 0)⇒ aq,δP (p,e) = 1 (9.9)

The objective (9.1) is to minimize the number of sensors turned on. Constraint (9.2)

asserts that there exists a world-observation sequence, (the empty string, ε) by which

both states of the tuple (qP0 , qP0 ) are reachable from the initial state. Constraint

Sets (9.3) and (9.4) ensure that the sensor selection is certifying. Constraint Sets (9.5)

and (9.6) encode which sensors affect the label of each edge. Constraint Set (9.7) as-

serts that if two states q and p are both reachable by a world-observation sequence,

then for any edges e and d, if those two edges receive the same world-observation

under the chosen sensors, then it means states δP(q, e) and δP(p, d) are also reachable
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by at least one sequence of world-observations under the chosen sensors. In fact, these

constraints implement the case shown in Fig. 9.2a. Similarly, Constraint Sets (9.8)

and (9.9) implement the case in Fig. 9.2b.

This formulation would be a 0–1 integer linear programming model if Constraint

Sets (9.7), (9.8), and (9.9) were linear. Thus, the next section shows how to linearize

them.

Integer linear programming formulation of MSSVI

To linearize Constraint Set (9.7), first we introduce a binary variable je,d,y for each

e, d ∈ E and y ∈ Y , which receives its value from the following constraints.

For all e, d ∈ E and all y ∈ Y ,

be,y − bd,y ≤ je,d,y, (9.10)

bd,y − be,y ≤ je,d,y, (9.11)

je,d,y ≤ be,y + bd,y, and (9.12)

je,d,y ≤ 2− be,y − bd,y. (9.13)

These linear constraints assign value 0 to je,d,y if be,y = bd,y; otherwise, they assign

value 1 to je,d,y. Hence, Constraint Set (9.7) is replaced by the following linear

constraints.
For each q, p ∈ QP and e, d ∈ E s.t. δP(q, e) 6= ⊥ and δP(p, d) 6= ⊥,

(1− aq,p) +
∑
y∈Y

(je,d,y) + aδP (q,e),δP (p,d) ≥ 1. (9.14)

We also replace Constraint Set (9.8) by linearized forms:

For each q, p ∈ QP and e ∈ E s.t. δP(q, e) 6= ⊥,

(1− aq,p) +
∑
y∈Y

be,y + aδP(q,e),p ≥ 1. (9.15)

Similarly, we linearize Constraint Set (9.9) as follows.
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For each q, p ∈ QP and e ∈ E s.t. δP(p, e) 6= ⊥,

(1− aq,p) +
∑
y∈Y

be,y + aq,δP (p,e) ≥ 1. (9.16)

Now, we have an ILP formulation of MSSVI, which can be solved directly by any

of the many existing highly-optimized ILP solvers. This ILP formulation not only

can be used for obtaining solutions to MSSVI but also to compute feasible (rather

than optimal) solutions for large instances of world graphs for which exact solutions

to MSSVI cannot be computed in a reasonable amount of time.

9.5 Case studies

In this section, we present case studies, using the ILP formulation from the previous

section to solve some representative instances of MSSVI. All trials were performed

on an Ubuntu 16.04 computer with a 3.6 GHz processor.

Case study 1: Computer Science Department

Recall Fig. 9.1, with a map of a small computer science department. For this world

graph, we executed several instances of the MSSVI with different itineraries to verify

the algorithm’s correctness. Table 9.1 shows results on those instances. The first

two instances consider extreme itineraries as boundary test cases. For the first, the

itinerary consists of all walks on the world graph, including the empty string; in the

second instance, the itinerary does not have any walks over the world graph. In both

of these instances, the optimal solution (which has size 0, i.e. no sensor is needed)

was correctly found. The third scenario considers an itinerary moving any way, other

than entering room G. To certify this itinerary, it suffices to turn on only one of

the sensors o3 and o4, both located in room G. Again, our implementation found

this solution correctly. The fourth itinerary specifies a single sequence in which the
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Table 9.1: Results of our experiment for the environment in Fig. 9.1, which shows
the floor map of an environment.
Itinerary Description Solution Comp.

time (sec)
1 Walks(G) All location sequences ∅ 2.7
2 E∗ \Walks(G) No location sequence ∅ 2.3
3 {r ∈Walks(G) | e21 /∈ r} Do not enter G {o3} 2.8
4 e1e5e9e15 R1ABR2D infeasible 2.5
5 e1e5e9e15 + e1e5e7e13 R1ABR2D or R1ABR1C {o1, b1, b2, o2, b3} 2.9
6 e12(e11e12 + e20e19)∗e20e21 R1R2(R1R2 +R3R2)∗R3G {o1, o2, o3, b1} 4.1

agent enters room A from R1, then it enters room B from the right door between A

and B, then passes through R2 to enter D. There is no certifying sensor selection

for this itinerary because there is another walk, e1e5e7e13, that is not within the

claimed itinerary but which produces the same sequence of world-observations, for

any selection of sensors. In contrast, the fifth scenario, whose itinerary includes both

the walk from the fourth scenario and additionally e1e5e7e13, can be solved with no

need to turn on sensors o3 and o4. The last itinerary specifies all walks in which the

agent does not enter any room but only room G at the end after traveling along the

corridor between any of regions R1, R2 and R3. For this itinerary, it is required to

turn on sensors o1, o2 and b to verify that the robot did not enter any of rooms A,

B, C, D, F . It also requires either o3 or o4 be turned on to ensure the robot enters

room G at the end. Our program took less than 5 seconds to compute a minimal

certifying sensor selection for each of these itineraries.

Though small, this case study suggests the correctness of our algorithm. The next

section tests its scalability.

Case study 2: Where eagles soar

Ornithologists employ cellular-network devices to track migratory patterns of larger

birds, allowing new insights to be gleaned [90]. Fig. 9.4a shows aggregated tracking

data (from [138]) for journeys made by eagles over a year. The surprisingly infrequent
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flights across open water might lead one to hypothesize that eagles circle the Caspian

Sea (the region made visually salient in the figure). To validate this hypothesis would

require purchasing data roaming capabilities from cellular-network operators across

multiple countries in this region. Fig. 9.4b shows an approach to model the problem of

minimizing these costs. The map is divided into subregions, each representing a vertex

of a world graph. Edges of the world graph are between adjacent hexagons. When

whole subregions fall substantially within a single country, they have been assigned

a color representing the potential of purchasing data service for that country. There

are 10 colors, representing the sensor set S. We model the hypothesis of circling the

Caspian Sea by an itinerary containing walks that visit III·II·I·III, III·I·II·III, or their

extra cyclic permutations. The DFA describing this itinerary consists of 7 states.
The observations provided by the cellular network are akin to the occupancy

sensors in the previous example, with events triggered when the eagle enters or leaves

each hexagonal cell. Our decomposition, shown in Fig. 9.4b, has 36 colored cells.

Accordingly, there are 72 events. An additional 9 cells are uncolored. It took 734.83

seconds for our implementation to form the ILP model and then it took 270.17 seconds

to find an optimal solution. In this solution, only 6 out of the 10 sensors (the colors

listed in the caption of Fig. 9.4) were turned on. Before finding an optimal solution,

the program found feasible solutions of sizes 10, 9, and 8 respectively in 83.07, 90.91,

and 176.13 seconds.
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a) b)
Figure 9.4: a) An aggregate of tracking data, reproduced from [138], showing the
journeys across parts of North Africa and Central Asia made by eagles over a period
of one year. Fig. b) The decomposition of the map into subregions. Subregions who
fall substantially within a single country have been assigned a color representing the
potential of purchasing data roaming service from that country (there are 10 colors,
representing sensors set S). The optimal sensor selection to certify the hypothesis
of circling the Caspian Sea has six sensors, consisting of the sets of hexagons of the
following colors: , , , , , and .
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Chapter 10

Conclusions and future work

In this dissertation, we considered a collection of new, related planning problems that

extend the classical point-to-point planning problem with complex goals.

10.1 State space reduction of combinatorial fil-

ters

Combinatorial filters are useful discrete structures for reasoning and filtering in sys-

tems that process discrete sensory data. They are also useful for planning, and

especially for automata-theoretic approaches to planning. State space reduction of

this kind of filters is important many because of several reasons.

1. First, reduced filters provide insight into the nature of the underlying problems

that arises from identifying the information required to solve those problems,

and this sometimes results to an optimal robotic design in terms of physical

and computational resources.

2. Second, reducing combinatorial filters yields smaller memory usage and reduced

combinatorial filters can be used on small devices, such as bee robots that

are used for flower pollination, that have limited computational and physical

resources.

3. Third, reduced filters are useful for communicating information and plans be-

tween multiple robots over communication channels that have low-bandwith or
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are noisy.

4. Finally, reducing the size of filters that are used in automata-theoretic ap-

proaches for planning leads to have smaller structures and product automata

and sometimes reducing the sizes of those structures even by a small fraction

significantly improves the performance and computation time to solve a prob-

lem.

In this dissertation, we first studied the filter minimization and the filter partition-

ing minimization problems from the lens of bisimulation. We showed that the bisimu-

lation quotient, which is widely used for reducing the size of transition systems, is not

always appropriate for optimally reducing the size of combinatorial filters. However,

we also showed that it is useful when one needs to prevent expansion of the language

of a filter under minimization. We conclude that both filter minimization and filter

partitioning minimization problems can be done by constructing a quotient filter, but

for filter partitioning minimization we need to look for an equivalence relation while

for filter minimization we need to look for a covering. While any feasible solution to

FPM is a feasible solution to FM, a feasible or even an optimal solution to FPM may

not be a good feasible solution to FM.

If the union of all compatibility relations or the mergeability relation for a filter

is an equivalence relation, then one can optimally reduce the size of that filter. By

way of example, we identified several classes of filters for which this is the case.

Knowing that making the quotient of a filter under a compatibility equivalence

relation (closed covering) with minimum number of classes produces an optimal so-

lution to FPM (FM), future work might consider the design of efficient heuristic

algorithms for finding a such relation (covering). It is also interesting to attempt to

identify practical filters for which finding a compatibility equivalence relation with

minimum number of classes can be done in polynomial time.
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The filter partitioning minimization problem for filters for which the helper graph

in Algorithm 2 has no edges is reduced to the problem of vertex clique partitioning

for the graph of the mergeability relation, and several classes of graphs for which the

vertex clique partitioning are in P have been recognized. This approach may provide

a roadmap for finding additional classes of filters that can be minimized in polynomial

time.

Our experiments show that by using the ILP technique, we can compute exact

solutions for large filters for which the brute force algorithm is unable to compute

exact solutions. Even for large filters for which we cannot compute an exact solution

in a reasonable amount time, we can still resort to the ILP technique to compute

feasible solutions that are smaller than those computed by the heuristic algorithm of

O’Kane and Shell [20]. Those smaller feasible solutions are unlikely to be computed

by randomized versions of the algorithm of O’Kane and Shell even if it is executed

thousands of times. This is because forming the equivalence class must ‘globally’ find

the ‘mergeable’ states while the algorithm of O’Kane and Shell finds them ‘locally.’

In fact, their algorithm iteratively colors a sequence of conflict graphs, at each step of

which it is decided with which states, a state must not be merged, and that decision

forces certain decisions to be made at later steps.

We also demonstrated using of this kind of filters in several planning problems with

complex goals, beyond the classical point-to-point obstacle-avoidance path planning

problem. We consider a variety of problems, including planning for what parts of

the world to observe, where to monitor other agents’ movements, and how to achieve

desired temporally-extended behaviors in spite of conflicting constraints.
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10.2 Planning to chronicle

For planning what parts of the world to observe, we considered the idea of deploying

robots to capture and chronicle events that happen in an unpredictable environment

to form stories that meet specifications given by the user. We specifically considered

the problem of minimizing the expected time to record an event sequence satisfying a

set of specifications. This was posed as the problem of computing an optimal policy in

an associated partially observable Markov decision problem or Markov decision prob-

lem, depending on the level of world-observability. Our implementation confirmed

the fact that, by considering global implications, careful planning of observations can

improve performance significantly. Also, having studied differing of levels of observ-

ability, the results support the intuition that as the robot’s ability to perceive the

world improves, the expected number of steps to record a desired story decreases.

Gaps remain between the results presented in this dissertation and the eventual

use of real sensors aboard real robots to chronicle sequences of events.

In particular, our approach relies heavily on the event model, which must abstract

sufficient detail about the physical environment to model the occurrences of events.

In addition, our approach abstracts the details of planning of the robot’s physical

movements in its attempt to capture events, but of course those details of motions

may have a major impact on the likelihood of successfully capturing events.

In Chapter 8, we tried to mitigate these two problems by modeling the physical

environment using a transition system, separately from the event model. Using the

transition system allows not only for planning for which events to try to capture but

also for where to capture those events. In that chapter, we also considered a variant

of the problem where the robot needs to optimally satisfy a set of prioritized soft

constraints. Solution to that problem reduced to the problem of computing the set

of Pareto optimal polices for a multi-objective Markov decision process.

The applicability of our results to real systems depends directly on the practica-
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bility of resolving these abstract elements into fully-realized implementations within a

complete system stack. Such a process seems likely to involve a number of challenges,

including for example, the tradeoff between granularity of state (which, at some level,

must model locations) and computational efficiency.

10.3 Temporal logic planning with conflicting

soft constraints

We also studied planning problem in which high-level specification languages, LTL,

LDLf , and LTLf , are used for specifying the complex goals and tasks. This languages

are user friendly for humans to use, expressive enough for planning to specify complex

goals, and precise for robots to manipulate algorithms. We considered temporal

logic planning to achieve desired temporally-extended behaviors in spite of conflicting

constraints while nevertheless satisfying given hard specifications. We considered

this problem in two settings: in one the hard specifications are in LTL but the soft

constraints are in LDLf , and in the other, both the hard specifications are the soft

specifications are in LTL. While the later subsumes the former, they are solved using

different algorithms and the algorithm for the former is more efficient compared to

when the algorithm for the later is is used for the former. We also consider for the

later problem, synthesizing a shortest trajectory rather than any satisfying trajectory,

which may lead to reduce energy consumption and to save resources. These two

variants solved in deterministic environments, but we also studied a variant of it for

stochastic environment, an extension of the planning to chronicle problem presented

in Chapter 5. This problem is reduced to the problem of computing the set of Pareto

optimal policies for a multi-objective MDP. In general it is not feasible to compute the

set of all those polices even for small MDPs given in general there are many Pareto

optimal polices. Accordingly, we combined an approximation method with the convex
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hull value iteration method. Our implementation of this algorithm on an MDP with

more than 200 state showed the applicability of the approach. For LTL planning,

it is essential to make the size of the product automata as small as possible. To do

so, one need to abstract away from the transition system those propositions that are

irrelevant to the logical formulas of the mission and the soft constraints, to minimize

those automata for the missions and the soft constraints, and also to minimize the

other structures, such as the filter and the transition system, that participate in the

product automaton construction. The well-known techniques of bisimulation and its

variants are useful for these minimization processes.

10.4 Sensor selection for detecting deviations

from a planned itinerary

We also examined the question of selecting the fewest sensors subject to the require-

ment that they have adequate distinguishing power to differentiate motions conform-

ing to an itinerary from those that do not. This optimization question fits the resource

minimization concern that underlies several useful applications. Our formulation of

this problem allows for the possibility that when a sensor is selected, it can provide

readings for events in potentially multiple places. We proved that this problem is

NP-Complete and provided an ILP formulation to solve both exact and approxi-

mate solutions. We show the applicability of the approach on two case studies with

moderate size.

10.5 Open problems and future work

There are several future directions to each of the problems we considered in this

dissertation.
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For filter reduction, there are several related problems that remain open.

Consider that any optimal solution to FPM can be obtained by finding within

the mergeability relation, a compatibility equivalence relation that has a minimum

number of equivalence classes as a subset of the mergeability relation. Also, one

can show, by example, that there exist filters for which not all pairs related by

the mergeability relation are related by a compatibility equivalence relation with

minimum number of classes. Accordingly, there exists a relation that relates only

those pairs that are related by a compatibility equivalence relation with minimum

number of equivalence classes. This relation is a subset of the mergeability relation

and one can always find an optimal solution to FPM, by searching for a compatibility

equivalence relation within this relation. A question that remains open is whether

that relation can be computed in time polynomial in the size of the input filter or

not.

Another problem that remains open is the problem of whether a similar relation

containing only pairs of states that are within a compatibility class of a closed covering

with minimum number of compatibility classes can be computed in polynomial time.

Such a relation can be used to search within it for a closed covering with minimum

number of compatibility classes to make an optimal solution to FM. In addition, it

is not known whether, for each of those two relations, the conditions that assure a

pair is related by that relation can be posed in a natural way as conditions to define

a variant of the notion of compatibility relation whose definition should be similar in

nature to Definition 6.

Note that both closed coverings and compatibility equivalence relations are, in

fact, sets of compatibility classes in which all the states within each class are compat-

ible with each other. It is not known under what conditions a compatibility class is

within a closed covering (a compatibility equivalence relation) that yields an optimal

solution to FM (FPM).
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Another interesting open problem is to establish more general conditions that

determine for which classes of filters, FM can be solved in polynomial time. The

approach utilized in Section 3.9 to identify some such classes was based on analyz-

ing where the union of all compatibility relations becomes an equivalence relation.

Another approach, however, would be to impose conditions that guarantee a filter

has only a polynomial number of distinct closed coverings. Under such conditions,

FM could be solved in polynomial time by enumerating the closed coverings. Addi-

tionally, notice that for each of those filters in Section 3.9 for which FM is solvable

in polynomial time, there is a single unique closed covering with minimum number

of classes. Accordingly, another interesting line of inquiry would be to find classes

of filters that have more than one closed covering with minimum number of classes,

but still one such closed covering can be constructed in polynomial time. Similar

questions may be posed for FPM, considering the mergeability relation instead of

the union all compatibility relations and also considering compatibility equivalence

relations instead of closed coverings.

Future work can consider designing metrics to measure the level of difficulty of

minimizing a given filter, which can be used for deciding an optimal stopping time

and deciding which one of the three ILP formulations is more appropriate to use for

a given filter. It can also consider computing strong lower bounds, similar to a recent

work by van Hoeve [158], who uses an idea based on decision diagrams for computing

lower bounds for the graph coloring problem. Being able to efficiently compute strong

lower bounds not only assists accelerate proving optimally, but it also helps decide

stopping time for filters that are hard to minimize. Another consideration would

be using a ‘better’ relation than the union of all compatibility relations in the ILP

formulations. One possibility would be the mergeability relation, a subset of the union

of all compatibility relations, which consists of only those pairs of compatible states

that are related by at least a compatibility equivalence relation. The mergeability
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relation will serve a better mean to design a heuristic algorithm for estimating lower

bounds, but experiments are required to see if it will affect the quality of solutions or

the performance of the ILPs. Another direction would be to apply machine learning

techniques to optimize the use of the current work, especially for computing lower

and upper bounds and for learning an appropriate time at which the solver must stop

in computing solutions for difficult instances of filters.

Future work on temporal logic planning can consider learning soft constraints.

It can also consider the case where the environment is dynamic. In this case, the

changes are reflected in the product automaton, for which one needs to maintain

the SCCs of the automaton in a data structure that is able to quickly adapt to the

changes. The problem of planning to chronicle with soft constraints reduced to the

problem of computing the set of Pareto optimal polices for the multi-objective MDP.

For the MDP, we combined an approximation algorithm with the convex hull value

iteration method. This algorithm still needs to be improved both for computing

better solutions and for having more efficient algorithms. Given that research is still

ongoing on approximate solutions to MOMDPs [86, 130], future work can consider

better algorithms, and perhaps algorithms for our specific MDP.

For future work on sensor selection, one can consider the steps that have become

standard when dealing with NP-hard problems remain: seeking special-cases that

possess some additional structure making them easier, understanding the problem

using more nuanced parameterization (i.e., fixed parameter tractability approaches),

and custom heuristics and approximation algorithms.
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