African Seminole Settlement Ecologies of Early Nineteenth Century Florida

Jordan E. Davis

Follow this and additional works at: https://scholarcommons.sc.edu/etd

Part of the Anthropology Commons

Recommended Citation

This Open Access Thesis is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact digres@mailbox.sc.edu.
AFRICAN SEMINOLE SETTLEMENT ECOCLOGIES OF EARLY NINETEENTH CENTURY FLORIDA

by

Jordan E. Davis

Bachelor of Arts
Calvin University, 2013

Master of Sustainable Peacebuilding
University of Wisconsin-Milwaukee, 2017

Submitted in Partial Fulfillment of the Requirements
For the Degree of Master of Arts in
Anthropology
College of Arts and Sciences
University of South Carolina
2022

Accepted by:
Terrance M. Weik, Co-Director of Thesis
Eric E. Jones, Co-Director of Thesis
Monica P. Barra, Reader
Tracey L. Weldon, Interim Vice Provost and Dean of the Graduate School
ACKNOWLEDGEMENTS

There are several individuals, groups, and institutions that have made the work of this thesis not only possible but inspiring. First, I would like to thank the co-directors of my thesis, Dr. Terrance M. Weik and Dr. Eric E. Jones, for their guidance, professional and personal support, and invaluable role in expanding my understanding of historical and anthropological archaeology. I would also like to thank my committee member Dr. Monica P. Barra, who encouraged me to consider how this work may contribute to broader discussions within anthropology and critical geographies/ecologies. Moreover, I would like to thank my cohort, fellow graduate students, and the faculty and staff in the Department of Anthropology, as well as the Institute for Southern Studies at the University of South Carolina for supporting this project and my personal growth.

From Florida, I would like to thank the Florida Department of Historical Resources for access to the Florida Master Site File. A special thanks to Dr. Lindsay Bloch and the Ceramic Technology Lab at the Florida Museum of Natural History for the opportunity to view and engage with the material record of Pilaklikaha (Abraham’s Old Town). Additional thanks to Jeffrey Shanks (NPS) and Dawn Lawrence (USFS) who encouraged this project and shared their insights into the heritage of Prospect Bluff along the Apalachicola River. I also would like to thank Jean McNary, Karen Cloud, and Della Daughtry for welcoming me to Sumter County and introducing me to ongoing heritage preservation efforts at Dade Battlefield Historic State Park and across Central
Florida. Finally, a very special thanks to Matthew Griffin. It has been a pleasure getting to know you over these past two years and I am honored to have had the opportunity to learn about your family’s heritage and Black Seminole history.

Finally, I would like to thank my family: mom and dad, Gail and Jerry Davis; mom and dad, Tracie Robinson and Glenn Johnson; and my siblings, both blood and those I am honored to call my chosen family. You all are my greatest inspiration, and I am forever grateful to have you with me on this journey.
ABSTRACT

For over three centuries prior to the outbreak of the Second Seminole War [1835-1842], peoples of African and Native American descent independently and collectively formed multiple communities throughout what is now Florida. During the early 1990s, several ancestral African Seminole (otherwise known as “Black Seminole”) settlements were identified across Central Peninsular Florida, many of which were founded by self-emancipated Africans commonly referred to as maroons. Previous archaeological research at the African Seminole settlement of Pilaklikaha, or Abraham’s Old Town, has greatly stimulated both scholarly and public interest in tracing the historical trajectories of individual African-Native American communities while remaining attentive to local environmental contexts, the impacts of U.S. settler colonial expansion, and the uncertainties of (re)enslavement. To date, however, few of these ancestral settlements have been documented and investigated archaeologically. Early archaeological interest in pursuing multi-sited and comparative approaches to African Seminole cultural history in Florida, as such, has largely gone unrealized.

Grounded in anthropological approaches to settlement ecology, African Diaspora archaeology, and informed by the multidisciplinary field of Black-Native/Afro-Indigenous Studies, this thesis aims to identify the range of variables or factors that influenced the settlement location choices of ancestral African Seminole communities formed in Central Peninsular Florida during the early nineteenth century. Using a mixed-method (quantitative and qualitative)
and Geographic Information Systems (GIS)-based approach to landscape reconstruction and the modeling of settlement processes, I examine the spatial relationships between the location of ancestral African Seminole settlements, environmental resources, and landscape features. These spatial relationships are examined to gain a fuller appreciation of how these communities may have perceived, engaged with, and shaped/were shaped by their surroundings within a context of increasing uncertainty. Results suggest that while subsistence, labor, and survival likely influenced the selection of locations where ancestral African Seminole communities came to dwell within Florida, attention to the trajectories of individual communities underscores the contingency of settlement processes.
TABLE OF CONTENTS

Acknowledgements ... iii
Abstract .. v
List of Tables .. viii
List of Figures .. x
List of Abbreviations .. xii

Chapter 1: Introduction .. 1
Chapter 2: Background .. 21
Chapter 3: Theoretical and Methodological Framework ... 39
Chapter 4: Survey of Previous Settlement Research .. 64
Chapter 5: Materials and Methods ... 91
Chapter 6: Results and Discussion .. 136
Chapter 7: Conclusions ... 175

References .. 183

Appendix A: Additional Discriminant Function Analysis Results ... 205
LIST OF TABLES

Table 4.1 Seminole and Miccosukee Indian Site/Settlement Characteristics ... 68

Table 5.1 List of FMSF Settlements Examined with Site Location Evaluation ... 105

Table 5.2 List of Non-FMSF Settlements Examined with Site Location Evaluation ... 119

Table 5.3 Variables Examined with the Landscape Activity They Index/Measure .. 113

Table 5.4 Agricultural Products of African/Black Seminoles Recorded in Florida and the Diaspora 114

Table 6.1 Nearest Neighbor Ratio (NNR) Results – Iteration 1 ... 137

Table 6.2 Nearest Neighbor Ratio (NNR) Results – Iteration 2 ... 137

Table 6.3 Independent DFA Results for the Comparison Between the African Seminole Settlements and the Two Random Sets of Points (2km Catchments) ... 139

Table 6.4 Independent DFA Results for the Comparison Between the African Seminole Settlements and the Two Random Sets of Points (5km Catchments) ... 148

Table 6.5 Area(s) of Low/High Intensity Urban Land Coverage – 5km ... 151

Table A.1 Average DFA Results for the Comparison Between the African Seminole Settlements and the Two Random Sets of Points (2km Catchments) ... 205

Table A.2 Average DFA Results for the Comparison Between the African Seminole Settlements and the Two Random Sets of Points (5km Catchments) ... 207

Table A.3 Average DFA Results for the Comparison Between the African Seminole Settlements and the Two Random Sets of Points (2km) with
Table A.4 Average DFA Results for the Comparison Between the African Seminole Settlements and the Two Random Sets of Points (5km) with Intergroup Relations

LIST OF FIGURES

Figure 1.1 Present-day view of site of Pilaklikaha (Abraham’s Old Town), Sumter County, Florida ... 2

Figure 2.1 Present-day view of Paynes Prairie Preserve State Park near Gainesville, Florida ... 24

Figure 2.2 The Central Florida and Apalachicola River Reservations ... 33

Figure 4.1 Path leading to Boggy/Kettle Island, Jumper Creek Wildlife Management Area ... 76

Figure 4.2 “Burning of Pilak-li-ka-ha by Gen. Eustis” ... 86

Figure 5.1 African Seminole Settlements within the Primary AOI with Depiction of the Extended boundaries of the Moultrie Creek Reservation ... 93

Figure 5.2 Map of Bowleg’s Town II and the Negro Towns of the Suwanee ... 97

Figure 5.3 Sample of Site-Catchments of 2km & 5km with Sediment Classification ... 118

Figure 5.4 African Seminole (black) Settlements within the Primary AOI with Spatial Distribution of Random Group 1 (yellow) and Random Group 2 (blue) ... 130

Figure 6.1 Black Seminole Settlement with Daub-Included Chink Construction at Las Moras Creek Outside of Fort Clark, Brackettville, Texas circa 1870s to 1880s ... 142

Figure 6.2 Brushed pottery from Pilaklikaha/Abraham’s Old Town (8SM136). Image Credit: Collections of the Anthropology Division of the Florida Museum of Natural History, FLMNH Cat. No. 2002-028-00002 ... 143

Figure 6.3 Average DFA Results for the Comparison Between the African Seminole Settlements and the Two Random Sets of Points (2km Catchments) ... 146
Figure 6.4 Average DFA Results for the Comparison Between the African Seminole Settlements and the Two Random Sets of Points (5km Catchments) ..153

Figure 6.5 Map of Primary AOI with Settlements and Notable River Valleys ..160

Figure 6.6 Reduced Study Area for Intergroup Variable Analyses ...163

Figure 6.7 Average DFA Results with Intergroup Variables (2km) ...164

Figure 6.8 Average DFA Results with Intergroup Variables (5km) ...166
LIST OF ABBREVIATIONS

CLC.. Florida Cooperative Land Cover Map
DFA.. Discriminate Function Analysis
FLUCCS... Florida Land Cover Classification System
FMSF.. Florida Master Site File
GIS.. Geographic Information Systems
ICC .. Indian Claims Commission
NHD .. National Hydrography Dataset
NNR.. Nearest Neighbor Ratio
NRCS ... National Resource Conservation Service
PLSS .. Public Land Survey System
SPSS .. Statistical Package for the Social Sciences
CHAPTER 1
INTRODUCTION

1.1 A View from Pilaklikaha

Facing north on a rural road in Central Florida, it can be difficult to fathom that at one time a well-known and prosperous African/Black Seminole settlement named Pilaklikaha, or Abraham’s Old Town, was once located here. Without the availability of an archival record describing the presence of agricultural fields, herds of cattle, and residential structures at Pilaklikaha and other African-Native American settlements formed across what is now Florida during the nineteenth century, an unsuspecting traveler would be hard pressed to find—let alone look for—traces of Black and Indigenous life in this place.

Tiffany Lethobo King (2019: 29) writes in The Black Shoals: Offshore Formations of Black and Native Studies that when “sites where the simultaneity of Black and Indigenous life, or anti-Black and anti-Indigenous violence, do not always come into view... [we] at times must create these spaces or create the conditions of possibility for them to emerge.” According to King (2019: 30), this process not only involves the creation of new analytical sites and modes of intertextual reading, but entails a more fundamental reconceptualization of knowledge production oriented by an ethics of care and an attentiveness to Black and Indigenous “livingness” (McKittrick 2014, 2016). In this thesis, I explore the potential role of archaeology in fostering spaces for these creative possibilities.
Figure 1.1 Present-day view of site of Pilaklikaha (Abraham’s Old Town), Sumter County, Florida (Davis 2021)
1.2 Problem Statement and Research Design

Through a case study examining the settlement patterning and wider landscapes of African/Black Seminole communities formed in Florida’s peninsular interior prior to the Second Seminole War [1835-1842], this thesis seeks to expand upon our current understanding of African-Native American experience during the early nineteenth century. Grounded in anthropological approaches to “settlement ecology” (Stone 1996), African Diaspora archaeology, and informed by the multidisciplinary field of Black-Native/Afro-Indigenous Studies, the core research questions I will investigate are: (1) What variables or factors influenced the settlement location choices of ancestral African Seminole communities formed in Florida during the early nineteenth century?; and (2) What can a contextually-responsive settlement ecology contribute to our understanding of how African-Native American communities perceived, engaged with, and shaped/were shaped by their surrounding landscapes?

Scholarship attentive to the trajectories of African/Black Seminole communities stretches back for several decades (Porter 1943, 1996; Littlefield 1977; Mulroy 1993a; Weisman 2000, 2009; Howard 2008; Mulroy 2007; Mock 2010; Dixon 2014, 2020a). With the documentation of Pilaklikaha and several other ancestral African/Black Seminole settlements in Florida during the early 1990s, a more materially grounded and comparative discussion of African-Native American experience was made possible. However, to date few African/Black Seminole settlements in Florida have been archaeologically investigated. Many African/Black Seminole settlements have only been identified in the period’s archival record, but unlike sites of Seminole Indian and
Miccosukee Indian heritage (Carr & Steele 1993), a state-wide archaeological survey directed explicitly toward the recovery of African/Black Seminole heritage in Florida has not been pursued. Early interest in defining a “Black Seminole settlement pattern” (Herron 1994), in turn, has largely gone unrealized.

For archaeologists attentive to African Diasporan landscapes, some of the most important places and spaces (e.g., provision grounds, routes of escape) remain the most difficult to identify, analyze, and interpret archaeologically (Delle 1998: 148–55; Ginsburg 2010; Cochran 2021). Absence of a copious body of archaeologically identified and intensively excavated site/settlements in Florida, nonetheless, has not precluded rich anthropological explorations of African/Black Seminole experience during early nineteenth century. Even with a limited material record, archaeologists have employed a wide and innovative range of theoretical perspectives and methodological approaches to document as well as envision the lived experiences of ancestral African/Black Seminole communities (Herron 1994; Weik 2002, 2007, 2009, 2012a; Ibarrola 2021). As Kenneth G. Kelly and Neil Norman aptly contend (2007: 189), “one does not necessarily need a regional survey or inventory to develop an understanding of the ways landscape played into the cultures of particular regions and times.”

Previous studies of African Seminole experience have drawn upon the period’s rich archival record, including eye-witness accounts, maps, military records, and artistic representations to augment (as well as critically interrogate) Euro-American depictions of African/Black Seminole communities. Archaeologists have also drawn upon anthropological and ethnohistorical scholarship on Black Seminole descendant communities residing across Oklahoma, Texas, Mexico, and the Caribbean to raise new questions about
African Seminole heritage (Porter 1943, 1996; Howard 2008; Mock 2010).
Following the rediscovery of linguistic ties between Black Seminole descendants
and Gullah/Geechee communities (Opala 1980, 1986; Sengova 2006; Amos 2011),
scholars attentive to African Diaspora frameworks drawn increasing attention to
the transatlantic dimensions of African/Black Seminole cultural histories.

Following recent archaeological operationalizations of what
anthropologist Glenn Davis Stone has termed “settlement ecology” (Stone 1996),
I proceed from the assumption that the analysis of spatial relationships between
the location of sites/settlements, environmental resources, and landscape
features can shed important light upon the decision-making processes
underlying past settlement location choices. As an “inherently spatial approach
to understand the causes of particular settlement strategies” (Kellett and Jones
2017: 8), settlement ecology allows us to consider how settlements and
landscapes can be read together. To do so, I employ a mixed-method
(quantitative and qualitative) and Geographic Information Systems (GIS)-based
approach to settlement location choice (i.e., decision-making processes).

In order to address the ahistorical, acultural, and apolitical tendencies
underlying classical models of settlement within and beyond anthropology
(Stone 1996: 185–86, 189), I engage in a heuristic reading of settlement decision-
making, drawing upon ethnohistorical sources, historical ecology, and analogical
reasoning to inform and interrogate more standardized models of settlement
analysis. By doing so, I follow recent scholarship that has stressed that
“settlement ecology is time and space contingent, and that settlement pattern
analysis requires a consideration of primarily specific and local environmental,
social, political, economic, ideological, and historical conditions” (Kellett & Jones 2017: 11–12). Part of this effort, I argue, begins by contextualizing settlement processes within the major currents of African Seminole cultural history, including diaspora, ethnogenesis, anti-slavery resistance, and removal.

Following Weik (2002: 6), my approach to African/Black Seminole cultural history is informed by a comparative African Diaspora perspective. As an analytical subject, historical approach, mode of analysis, and method of inquiry, African Diaspora perspectives complement, contextualize, and politically position African/Black Seminole cultural history within the “historical experiences of a socially identifiable global aggregate of dispersed and interconnected networks of people” (Hamilton et al., n.d.: 4). African Diaspora approaches, specifically, allow for the framing of African Seminole cultural history through shared features or “fibres that wrap around the diasporic rope” (Cohen 1997: 184) that can be connected and compared to currents underlying African Diaspora experience globally, including experiences of traumatic dispersal, strong ethnic group consciousness, and often troubled relationships with host societies (Weik 1997: 81–82). African Diaspora approaches simultaneously underscore the distinctiveness, contingency, and multiplicity of experiences, stressing that continuity does not necessarily have to mean fixity (Hamilton et al., n.d.: 8). Increasingly, African Diaspora scholars have challenged the single-sited focus of traditional archaeological and anthropological inquiry (Clarke 2004; Ogundiran 2008) by holding space for the localized, multi-scalar, networked, and de- and re-territorialized dimensions of African Diaspora experience. Part of this work has explored Native America as a “critical site in the histories and lives of dispersed African peoples” (Miles & Holland 2006: 3).
Much like theories of “resistance” and “ethnogenesis” (Weik 2012a: 47), African Diaspora approaches carry opportunities as well as challenges for archaeological and anthropological inquiry. In some ways, the acknowledgement of singular and increasingly multiple “African” currents or groundings within Black Seminole cultural history may work to diminish the significant role of Seminole Indian and other Native American heritages in shaping Black Seminole communities, especially for peoples of multi-racial ancestry (Katz 1986) and those whose cultural identifications complicate or actively contest “genetic tests” of ancestry (Johnston 2003; TallBear 2003). Efforts to acknowledge multiple heritages within African-Native American communities, nonetheless, raises an additional question of whether such work may inadvertently (or intentionally) “de-Africanize” (Leone et al. 2005: 585) or “de-Indianize” specific cultures. I suspect that new perspectives emerging from Afro-Indigenous Studies may ultimately compliment, extend, and address the potential shortcomings of current African Diaspora approaches to African/Black Seminole history.

This thesis is further conceptualized as an exercise in “Removal Period Archaeology” (Schurr 2006), albeit one attentive to the parallel and often interlocking experiences of Africans and Indigenous North Americans. Histories of U.S. settler colonial expansion and Native American dispossession in the Southeast, admittedly, cannot be easily isolated from African Diasporic experiences of forced relocation. As Claudio Saunt (2020: 43) contends, despite the limitations of comparison and analogy, “the transportation westwards of African Americans by steamboat and on foot, conspicuous to everyone who travelled in the South in the 1820s, served to make plausible the forced migration of other nonwhite peoples.” Between 1800 and the outbreak of the U.S. Civil
War, close to one million enslaved Africans were relocated from the Upper South (Virginia, Maryland, Kentucky) to the Lower South (Louisiana, Mississippi, Alabama, Florida)—an experience known today as the “Second Middle Passage.”

Damian Alan Pargas’ (2015) study *Slavery and Forced Migration in the Antebellum South* draws critical attention to the lived experiences of removal. During the antebellum period, threats of deportation were often used to strike fear within enslaved populations, while the separation of enslaved families manifested as a routine tactic of discipline. In addition to acknowledging the violence and scale of these forced relocations, scholars have increasingly sought to illuminate how individuals and communities perceived risk, negotiated uncertainty, and at times actively contested removal processes. And while it is improper to uncritically project psychological and emotional states into the past, or to claim that individuals or communities lived with an ever-present and debilitating state of fear (Sayers 2014: 115), it is important to consider how communities understood (and cared) about the prospect of forced removal. In this, we can contest the claims of individuals who often assume(d) that Black (and Indigenous) peoples “suffer little by separation” (Pargas 2015: 57–58).

Past archaeological, historical, and ethnographic scholarship on communities impacted by removal processes further underscores how individuals and communities have responded to removal processes—from the mobilization of labor to construct communal defenses to the modification of agricultural practices to reduce the risks of captive taking (Netting 1973; 1974; Diouf 2003; VanDerwarker and Wilson 2016; Melton 2018). Because “removal” often carried the possibility of (re)enslavement, especially for peoples of African descent, it is arguably imperative to position “archaeologies of removal”
alongside “archaeologies of anti-slavery resistance” (Weik 2012a, 2019a). To grapple with how ancestral African Seminole communities in Florida perceived, negotiated, and contested removal and (re)enslavement, as I argue throughout this thesis, necessitates a contextually responsive approach to settlement ecology.

Before outlining the organization of the thesis, it is important to address several terminological and conceptual considerations underlying this study.

1.3 Terminological Considerations

In the remainder of this thesis, I will use African Seminole and African-Native American when referring to ancestral African Seminole communities in Florida. According to Terrance Weik, “African Seminole is preferable to terms like ‘Maroon’ or ‘self-emancipated African,’ because it reflects multiple, interconnected, and newly created heritages and relations that resulted from African-Native American contact. Not all African Seminole populations should be equated with “Maroons” or “free blacks,” for they also included people of African descent who lived under some form of servitude to Native Americans” (Weik 2009: 207). Likewise, the term “African-Native American” is used with the aim of speaking to the multiple heritages contributing to communities formed by peoples of African and Native American descent in Florida, albeit in a relatively broader sense than those who claim (or may not) claim the identity of Seminole.

Noting these considerations, I recognize that my usage of African Seminole and African-Native American may not be preferred or deemed appropriate by descendant communities. The question of naming in this case is particularly difficult, as African-Native American descendant communities residing in Florida, Oklahoma, Texas, Mexico, and the Caribbean speak a range of languages and dialects, claim both shared and distinctive heritages, and
oftentimes express multiple positions on terminology. In a recent gathering of African Seminole descendants, individuals referred to themselves varyingly as Black Seminole, Freedmen, Seminole Freedmen, Black Seminole Maroon, Afro-Seminole, and Mascogo/s. Descendants also noted the difficult legacies of the term “Estelusi” as well as the qualifier of “Black” within past scholarship, while some descendants voiced preference for the use of new terms—such as Indigenous Peoples of Color and Native Americans of African Descent. Other descendants, moreover, prefer and claim the name of Seminole, unqualified. In this study, I will depart from the naming convention of African Seminole and African-Native American when referencing specific descendant communities (e.g., Mascogo/s will be used only when speaking of communities residing in Mexico). Furthermore, I will generally reserve the term “Black Seminole” when citing historiographical literature and while referring descendant communities in Oklahoma and Texas, as well as others who self-identify as Black Seminole.

“Seminole” is a second term deserving consideration. Following Weik (2009), I will use the term Seminole Indian to distinguish African Seminole peoples from groups that where not historically designated as “Negro,” “Black,” and/or “African,” while noting that this distinction remains problematic. Moreover, this study’s use of “Native American” and “Indigenous North American” may not be deemed acceptable by Seminole Indian descendant communities. Similarly, my general use of “Seminole Indian” admittedly circumvents important conversations raised by Miccosukee Indian identity. Weisman (1989: 170–71) has suggested that it may be fruitful to consider a uniquely Miccosukee Indian archaeological signature, although he stresses that this line of inquiry must be pursued in consultation with Seminole and Miccosukee Indian communities.
Patricia R. Wickman (1999) and Andrew K. Frank (2014) have offered detailed and critical discussions of the emergence and contemporary usage of the terminology of “Seminole.” Since the early sixteenth century, Europeans, Euro-Americans, and Native Americans have engaged in multiple efforts to name and define the identities and heritages of the diverse peoples residing in what is now Florida. Similar to Forbes’ (1993) discussion of the etymology of “mulatto,” Wickman and Frank draw particular attention to how efforts to name and defining “Seminole” peoples were (and are) part and parcel to intersecting ideological and political processes, including settler colonial conquest, genocide, and the racialization and dispossession of indigenous and non-white peoples in the Southeast. As part of this process, Seminole Indian and Miccosukee Indian indigeneity to Florida was/is routinely questioned or denied in favor of a model of Muskogeian origins, migration, and (re)settlement. In other ways, the authors draw attention to the ways “Muscogee,” “Seminole,” and “African/Black” peoples in Florida have been conflated as well as distinguished from one another historically, oftentimes based on competing ideological frameworks. As with the etymology of African/Black Seminole, I anticipate that the language used in this study may ultimately change as I continue to engage with these complexities.

A third term/concept appearing frequently throughout the literature attentive to African Seminole societies is “marronage.” The subject of marronage—defined by Daniel O. Sayers (2014: 136) “as the willful self-extrication of individuals or groups from the conditions of enslavement, on short term (petit marronage) permanent bases (grand marronage)” —emerged as a significant theme of historical archaeology during the 1990s (Agorssah 1994; Weik
It has since developed into a core consideration of African Diasporic archaeology, as well as central dimension of Black geographic thought throughout and beyond the Western Hemisphere (Bledsoe 2017; Wright 2020).

The experience of the absconding from settings of enslavement, confinement, and Euro-American influence characterizes much of the literature framing African Seminoles (and Seminole Indians) as “maroons” or cimarrones (Wickman 1999: 192). However, we must also take into consideration the multidirectional ways in which persons of African descent historically entered and were subsequently integrated within Florida’s Seminole Indian societies. Scholars have made both implicit as well as explicit distinctions between runaways, captives, and purchased Africans within Seminole Indian society (Mulroy 2007: 25), suggesting that the we should look closer at the designation of maroon. That the act of “liberating” enslaved Africans from Euro-American plantations, additionally, can itself be framed as a potentially traumatic and violent processes of captive taking (Mair 2020: 113–14), even when done by African Seminole and Seminole Indian communities. Scholars have suggested that these new arrivals may have also faced periods of ostracization and rituals of loyalty-testing upon entering African Seminole communities (Dixon 2014: 23), underscoring that we should perhaps recognize “community” formation as a dynamic and contingent process, rather than as a clear, fixed, or bounded entity.

Increasingly, scholars have recognized and explored a wider range of relations and subject positions for persons of African descent within Seminole Indian and other Native American societies, including relations more closely reflecting Euro-American racial chattel slavery (Weik 2002: 61, 2009: 211–12; Krauthamer 2013; Miles 2015; Mair 2020). For other scholars, Africans “were in
no case treated as chattel” within Seminole Indian societies (Dixon 2020a: 15), which calls attention to tensions within African Seminole historiography. In my assessment, while we should refrain from uncritically protecting frameworks of racial chattel slavery upon African-Native American communities, we should also contend judiciously with instances where social dynamics of coercion, forced labor, and violence are recorded historically (Weik 2012a: 122).

Use of term “maroon” in reference to all African Seminole communities, as such, may not necessarily reflect the full range of ancestral African Seminole experiences in Florida. It can be said that the use of this term/concept in reference to all Africans formerly enslaved within Euro-American settings precludes important discussions of the subject positions of peoples of African descent within Seminole Indian society, and may possibly impede comparative discussions of racialization, enslavement, and servitude within and across Native American societies historically (Weik 2009: 211–12). Admittedly, this study will not resolve these debates. Rather, I aim to hold space for a wider diversity of African Seminole experience than those granted by frameworks that categorically reject African experiences of coercive slavery within Seminole Indian society.

A second consideration raised by the designation of African Seminole communities as maroons is related to questions of indigeneity. Although the figure of the “maroon” is routinely associated with persons of African descent, African Diaspora approaches have increasingly investigated spaces of marronage as locales of African-Native American “convergence” (White 2010). As E. Kofi Agorsah (2007: 333) contends, “contrary to previous views and descriptions, which suggested that these communities derived only from African slave escapees, archaeological evidence from the Caribbean and other parts of the
Americas is now revealing that the heritage of Maroon communities stemmed initially from the union forged between native American communities and Africans.” Previous scholarship has interpreted evidence of these convergences (e.g., material and settlement attributes reflecting Indigenous North American design) as markers of networks of trade and exchange; African-produced materials using Indigenous forms; African reuse or recycling of Indigenous material culture; as well as evidence for multi-group occupation (White 2010: 475; Sayers 2014). Historical records suggesting the Seminole leader Micanopy and his wives lived at the African Seminole settlement of Pilaklikaha, markedly, potentially challenge whose presences we consider when discussing marronage.

Today, scholars, activists, and descendant communities also hold a wide array of perspectives on the usage of “marron” and “marronage.” For some, marronage is a viable form of “political-spatial praxis” (Bledsoe 2017: 47) and a useful aspect of contemporary Black struggle, while others (including descendant communities) have challenged usage of “maroon” on account of its origins as a dehumanizing etymology once used to refer to escaped cattle and then the formerly enslaved persons (Francis 2016). For this study, the term of “marronage” will be used primarily as a verb to describe the practices pursued by African descendant communities to abscond from settings of enslavement, while noting that this term/concept remains a site of ongoing contention.

Much like Seminole Indian cultural history, the concept of ethnogenesis (i.e., the formation of new ethnic groups) (Sturtevant 1971) has held a central place in African/Black Seminole scholarship (Mulroy 1993b; Bateman 2002; Weik 2002; Mulroy 2007; Howard 2008; Weik 2009, 2012a, 2014; Dixon 2020a; Ibarrola 2021), although considerations of diaspora, migration, race and racialization,
marronage, and anti-slavery resistance are more explicitly tied to ethnogenetic processes in these works. Scholars of ethnogenesis have traditionally focused on the formulation and adoption of ethnonyms (i.e., name referring to an ethnic group) and toponyms (i.e., place names) to trace the emergence of “new” identities. Archaeologists have increasingly explored a wider array of evidentiary sources to conceptualize ethnogenetic processes, including the examination of material culture (e.g., artifacts, architecture), cultural practices (e.g., foodways, marriage), as well as lines of bioarcheological evidence (Hudson 1999; Stojanowski 2010). Considerations of settlement form, intra-site layout, and inter-site patterning also figure prominently in discussions of ethnogenesis as a social as well as a spatialized process (Cipolla 2013b, 2017; Watts Malouchos 2020). And while considerations of ethnogenesis are not the sole focus of this study, ethnogenetic processes continue to inform how scholars have traditionally approached and modeled African Seminole experience (Weik 2012a: 45–46).

Following Kellett and Jones (2017: 13), the concepts of “site” and “settlement” will be used throughout this study, although I take note of ongoing critiques of site/settlement concepts within archaeological scholarship arising from studies of mobility/movement, critical approaches to sedentism, and efforts to articulate multiply situated phenomena (Ebert 1992; Ryzewski 2012; Beaudry & Parno 2013; Ogundiran 2016; Lelièvre 2017). As will be discussed in subsequent chapters, “settlement” should not be equated with sedentism, notions of a homogeneous or bounded “community,” nor conflated with traditional anthropological notions of the fixed, traditional, and disconnected “village” (Gokee 2016: 4–11). In other ways, this study’s focus on settlements is not intended to render the paths and spaces in-between as uninhabited, unused,
or insignificant space, even though the practice of archaeology and GIS can reinforce such a perspective. One of the most significant contributions of landscape approaches within settlement archaeology and related fields has been the growing interrogation of settler colonial notions of Indigenous absence, and the rendering of Black life as “ungeographic” (McKittrick 2006: xiii).

While I find settlement a more encompassing term than town or village to refer to the varying spatial and demographic configurations of African-Native American communities in Florida, I refrain from using the terminology of “settler” for describing African Seminole individuals and communities. Despite efforts to interrogate the racialized dimensions of settler colonialism, dominant White/Black and Settler/Native dichotomies of critical race and settler colonial scholarship do not always provide insight into how we should understand the positionality of African descendant peoples on Native land. Previous scholars have, often by omission, situated Africans and African Americans without claimed and/or recognized Indigenous North American ancestry as non-native settlers. Past and recent scholarship in Afro-Indigenous/Black-Native Studies, alternatively, has attempted to articulate a more nuanced set of positionalities, roles, and responsibilities for descendants of enslaved Africans living on Native land, including as “settlers of color,” “ambiguous settlers,” “exiled settlers,” and as “arrivants” (Miles 2019; Roberts 2021). Still, my use of the terminology of “settlement” to refer to aspects of African-Native American experience may be critiqued by some scholars, whom underscore that all “settlement, including its speculative projections and cartographic sketches and representation, was always violent and embedded in the larger project of conquest” (King 2019: 98).

Noting these considerations, “settlement ecology” is used throughout this
study, although I suspect that the field’s greater engagement with Black, Settler Colonial, and Indigenous Studies will lead to important discussions on the appropriateness of that terminology. Given the discipline’s attentiveness to questions of materiality and landscape, archaeology may be uniquely positioned to contribute new approaches to how we conceptualize and critically examine African-Native American relationships to space and place, both past and present.

1.4 Ethical-Political Considerations

The core ethical-political considerations I encountered during this study were/are: (1) the anticipated and unforeseen impacts of geospatial database management, statistical modeling, and use of digital technologies in exploring Black and Indigenous life; and (2) the potential consequences of settlement research upon the legal claims, citizenship statuses, and contemporary rights of descendant communities. First, my use of GIS and other computer-aided statistical approaches raises several ethical-political considerations for the study of Black and Indigenous life. Digital tools, such as slavery databases, are simultaneously capable of reinforcing and challenging modes of cartographic and ontological-epistemological violence. Extending the work of Katherine McKittrick (2014, 2016), Jessica Marie Johnson has aptly underscored that scholars should be cognizant of the ways their interventions may ultimately reinscribe violence, even in cases where they seek to challenge oppressive structures. However, Johnson further writes that the often painful intimacy of such engagements has the potential to challenge scholars of African Diaspora history to “feel this pain and infuse their work with a methodology and praxis that centers the descendants of the enslaved, grapples with the uncomfortable,
messy, and unquantifiable, and in doing so, refuses disposability” (Johnson 2018: 71). While this study marks the beginning of my own engagement with these forms of praxis, I am indebted to the Black Feminist scholarly tradition for underscoring the significance and emotional stakes involved in this work.

Given the demands of authenticity and continuity placed upon Black, Indigenous, and other racialized groups in colonial and settler colonial societies, I am also aware that archaeological and anthropological considerations of cultural and settlement histories may (and oftentimes have) challenged deeply held identity and legal claims (Voss 2015: 657). By focusing on African Seminole settlements, I find it necessary to explicitly name the ethical-political and legal implications of this study, even at its early stage. Although not all African/Black Seminole descendants claim Indigenous North American ancestry, scholarly and public concern over the legal claims, citizenship status, and rights of African Seminole and other Freedmen communities are entangled with Native American sovereignty. Ownership of Florida land during the early nineteenth century, in particular, remains entangled with contemporary tribal politics. The context of 1823 Treaty of Moultrie Creek, more specifically, has been used to define who constitutes the “Seminole Nation” (Glaberson 2001; Mathis & Weik 2005), thereby elevating the ethical-political ramifications of research attentive to questions of settlement, land tenure and use, and geographies of removal.

Due in large part to my own positionality a person of African (American) descent without claimed or recognized North American indigeneity, I am unable to foresee this study’s full implications. Following Sengova (2006: 215), I found it imperative to ask repeatedly myself throughout this study “To what degree does
academic research affect identity politics in the African diaspora, and to what extent is it affected by these politics?” In order to proceed with a level of care and ethical-political awareness of these considerations, I have made an effort to read outside of archaeological and anthropology, engaging with insights from Black, Indigenous North American, and Afro-Indigenous scholars who have and are navigating this difficult terrain, both professionally and personally (Mathis & Weik 2005; Miles & Holland 2006; Miles 2019; Roberts 2021). In many ways, while I am focusing on African Seminole heritage, I am inspired by the work of historian Tiya Miles whose engagement with Afro-Cherokee history underscores the possibilities of this field of inquiry while noting our multiple responsibilities: “It seemed that to capture the multiplicity and contradictory nature of this past, I would have to tell at least two stories—sketch two histories, enter two worlds, enlist two purposes, and sound two calls for justice—at once” (Miles 2015: 5).

1.5 Overview of Chapters

Chapter 2 offers a historical survey of African Seminole cultural history, introduces the geographical and environmental setting(s), and summarizes some of the major events/processes shaping African Seminole settlement trajectories during the early nineteenth century. Chapter 3 outlines the theoretical and methodological framework of this study, moving from traditional approaches within settlement/landscape archaeology to settlement ecology theory. Chapter 4 provides a more detailed survey of the history of settlement research in Florida, focusing first on Seminole Indian/Miccosukee sites/settlements and then proceeding to previous research on African Seminole communities. As part of this chapter, I also engage with histories of research on African/Black Seminole descendant communities, stemming from my positioning of African Seminole
cultural history within an African Diasporic framework. In Chapter 5, I introduce the materials and data collection and analytical methods used in this study. In Chapter 6, I provide the results of the study’s core analyses, specifically Nearest Neighbor Ratio (NNR) and Discriminant Function Analysis (DFA). This chapter also provides interpretations for the results, connect my findings to past scholarship. In the final chapter, Chapter 7, I conclude the study, discuss potential contributions to the field, and outline opportunities for future research.
CHAPTER 2
BACKGROUND

This chapter will orient this study’s exploration of settlement ecology, addressing questions of environmental setting, major historical events and processes, and introducing the broader cultural histories of the communities that will be under consideration. While Chapter 4 will consider the history of settlement research specifically, this chapter is intended to introduce the contextual frame within which questions of settlement ecology will be explored.

African Seminole and Seminole Indian cultural histories have been considered within several frameworks, each stressing particular events, processes, and contextual frameworks. In his foundational text Like Breads on a String, Brent R. Weisman (1989: 5–13) outlined three major approaches to Seminole Indian culture history—political, adaptative, and anthropological. In Weisman’s assessment, the first two approaches emphasize the role of primarily exogenous factors (e.g., warfare, changing environmental settings) in Seminole Indian cultural history, while anthropological approaches have more explicitly considered the agentive capacity of peoples to engage in cultural processes.

Political approaches have been rightly critiqued for privileging Euro-American presence and stressors as the primary stimuli for change in Native American communities, while adaptive approaches have had the tendency to stress the deterministic role of conditions and process in settlement decision-
making, thereby neglecting considerations of agency and contingency (Arponen et al. 2019: 2). Frameworks attentive to adaptation, nonetheless, remain insightful for considering environment and historical conditions not just as a static backdrop upon which socio-cultural processes occur, but as integral dimensions of how individuals and communities conceptualize and engage with their surroundings. Similarly, politically-oriented approaches are necessary for not rendering (settler) colonial entanglements as mere “cultural contact” (Silliman 2005), or problematically positioning questions of African Diasporic dispersal and settlement outside of considerations of racialization and anti-Blackness. In this chapter, I follow an integrative approach to African Seminole (and Seminole Indian) cultural histories, while noting that this survey is not comprehensive.

2.1 A Survey of African Seminole Cultural History

Before the acquisition of the Spanish colonies of La Florida by the United States between 1819 and 1821, peoples of African, Native American, and European descent independently and collectively formed multiple communities throughout Florida’s panhandle and peninsula for over three centuries. Investigations at the Spanish-sponsored free Black settlement of Gracia Real de Santa Teresa de Mosé (i.e., Fort Mosé) and other heritage sites in Florida, such as Negro Fort, have provided key insights into the multifaceted nature of African Diaspora experience in pre-Territorial Florida (Deagan & Landers 1999; Landers 1999; Ibarrola 2021). Because racial chattel slavery is oftentimes the exclusive frame through which we understand early African Diaspora experience in the Americas, it is important to repeatedly recognize the “physical and social mobility” (Landers 1999: 252) exhibited by Africans in Florida’s early history.
The regional and broader hemispheric context of Spanish-Anglo conflict and warfare provided space for the possibilities of African-Native American interaction, community formation, and marronage more broadly. Following several proclamations granting sanctuary to self-emancipated and free-born Africans by the Spanish Crown [c. 1693, 1733] and following the American War of Independence [1775-1783], Spanish Florida emerged as a key destination for self-emancipated Africans absconding from British and later American territories. Spanish Florida’s African and Black populations, however, included individuals holding multiple subject positions, and sometimes several over the course of a lifetime. While free Black landholders as well as slaveholders were recorded in Spanish Florida until the early nineteenth century (Landers 1999: 94–95, 2000), enslaved Africans also absconded directly from Spanish settings of enslavement near and surrounding St. Augustine, as not all Africans in Florida were “free” persons, whether affiliated with the settlement of Fort Mosé or born within other maroon communities. It is also imperative to frame African presence in Florida as contemporaneous with Europeans, noting that African descended peoples made up a near majority of persons residing across the peninsula at different times throughout its history (Weik personal communication, 2022). This framing allows for the positioning of African/Black Seminole experience within a much broader African Diaspora framework.
Figure 2.1 Present-day view of Paynes Prairie Preserve State Park near Gainesville, Florida (Davis 2021)
The expanse of fertile land known today as the Alachua Savannah—or “Payne’s Prairie” [Figure 2.1)—holds a pivotal place in Florida’s cultural history. The site of the “La Chua Ranch” was a major locale of Spanish cattle ranching during the seventeenth century, covering an area of nearly ninety miles. During the late eighteenth century, Anglo-American settlers would bring cattle as well as enslaved Africans into Spanish East Florida upon permission by the Spanish Crown (Parker 2000: 153). These “homesteaders” would join Spanish, Seminole Indian, and free Black ranchers in navigating the Spanish colonial economy, while routinely engaging in sanctioned as well as illegal forms of inter-country trade along the Georgia-Florida border. By the start of the nineteenth century, Seminole Indian communities had developed a profitable cattle industry in the Alachua Savannah. American naturalist William Bartram visited several Seminole Indian settlements across Florida during the 1770s, including the Alachua Seminole town of Cuscowilla led by the principal chief Cowkeeper.

Historians, anthropologists, and archaeologists regularly trace Seminole Indian ethnogenesis to what has been referred to as “Creek ancestral pattern” (Weisman 1989), taking note of a formative period of Oconee (Creek) Muscogee migration from Georgia and Alabama into Florida during the early-to-middle eighteenth century (Sturtevant 1971; Fairbanks 1978; Weisman 1989; Satler 1996; Blakney-Bailey 2007; Weisman 2007; Lawres 2012, 2014). Although many descendants recognize cultural, linguistic, and ancestral ties to the Muscogee (Creek), it is imperative to stress that many Seminole and Miccosukee also or alternatively underscore their direct descent from Florida’s surviving pre-contact tribes as Maskókî People (Wickman 1999; Frank 2014; Backhouse et al. 2017).
While noting Weisman’s (1989: 36) earlier assertion that no single/simple factor can explain the emergence of Seminole Indian ethnicity, he later posits that the integration of peoples of African descent into Florida’s Seminole Indian communities was perhaps “the most significant factor in the development of the Seminole plantation system” (Weisman 2000: 141). The role of African tributary labor is routinely considered as playing a key role in allowing Seminole Indian communities to development an agriculture surplus, which several authors have suggested had wider socio-economic implications for Seminole Indian society, including changes to subsistence practices, inheritance patterns, and (gendered) divisions of labor (Weisman 2000: 146–47; Mulroy 2007: 23–25). Several authors have explored the influences of Seminole Indian culture upon African majority communities in Florida, including transformations of dress, foodways, and ceremonies, such as the “Green Corn Dance” (Weik 2009: 231–32). Other scholars have searched for African and African American influences in Seminole Indian society, including in the realms of music and beadwork (Mulroy 2007: 30). Still, even when noting the closeness of these communities, many scholars posit that African Seminole and Seminole Indian communities “preferred separation over integration” (Mulroy 2007: 33), and despite close proximity, were able to maintain autonomous and distinct cultural identities (Dixon 2020a).

Given the multiple and heterogeneous heritages, individual biographies, and migratory trajectories of peoples who would ultimately form African Seminole communities in Florida, several scholars have argued for a greater recognition of the diverse African, African American, Euro-American, and Native Americans currents contributing to the formation of African Seminole communities in Florida (Mulroy 2007; Weik 2009, 2012a; Dixon 2020a). As will be
discussed at greater length throughout this study, I follow several scholars in framing African Seminole ethnogenesis within an African Diasporic framework, stressing the significant role of African cultural antecedents and linkages in the ethnogenetic formation and transformation of African Seminole communities.

2.2 The Patriot’s War and Florida’s “Liquid Landscape”

Seminole Indian settlements formed in the Alachua Savannah region figure prominently in the historiography as key sites of African Seminole ethnogenesis. During the eighteenth and into the early nineteenth century, African/Black “slaves” are increasingly recorded by Euro-American chroniclers as residing at several Seminole Indian settlements in north Florida (Simmons 1822: 75–77; Saunt 1999: 134), while other persons of African descent were recorded as living in separate communities. Markedly, when the Alachua settlements of principal chiefs Payne and Bowlegs were destroyed during the second decade of the nineteenth century, a third allied settlement with a majority African/Black population was recorded in the vicinity by the advancing U.S. military (Davis 1931: 272–73). As will be discussed in Chapter 4, the presence and role of separate, but closely affiliated African Seminole settlements within Seminole Indian territory remains an oft-cited factor contributing to the emergence of African Seminole communities as a distinct cultural group.

The prosperity exhibited by Seminole Indian and African Seminole communities across the Alachua Savannah provoked raids by both pioneering white settlers as well as other Native American groups in the Southeast, such as Cowetta Creek (Weisman 1989: 78–79). In the aftermath of American incursions into Spanish East Florida between of 1812 and 1814—a period that would later be
referred to as the “Patriot’s War”—several Seminole Indian and African Seminole communities across north-central Florida would be forcibly displaced, including those communities led by and affiliated with the Alachua Seminole principal chiefs Payne and Bowleg. In addition to the Alachua settlements, these events include the destruction of the British-allied maroon settlement of Negro Fort along the Apalachicola River in 1816; the relocated settlements of Payne and Bowlegs along the Suwanee River, culminating in the events of the First Seminole War [1816-1819]; and the devastation of Angola in 1821, a largely autonomous African maroon community situated along the Manatee River near Tampa Bay (Baram 2012, 2021). Although many of these displaced communities would reestablish themselves deeper within Florida’s interior and farther south to the region known today as the Everglades, other displaced communities would ultimately pursue routes of maritime marronage beyond Florida, finding sites of refuge across the Spanish and British Caribbean (Howard 2008, 2013).

According to Nathan R. Lawres (2014), Seminole Indian communities forcibly displaced from the Alachua Savannah region and other spaces of north-central Florida would have encountered a wide ranging and potentially unfamiliar set of environmental regimes as they moved deeper into Florida’s peninsula. “The environment to which they were accustomed,” Lawres (2014: 555) contends, “was a mosaic of temperate hardwoods forests, rivers, lakes, and dry prairies along rolling hills; the environment they faced in central and southern Florida, however, was a dynamic of isolated temperate forests amidst vast expanses of wetlands, both herbaceous and forested.” Given the diverse experiences and heritages of individuals who engaged with Florida’s landscapes during the early nineteenth century and earlier, it is likely that at least some
individuals pursued a degree of reconnaissance when relocating their activities and settlements (Zedeño 1997: 87). Yet, noting that Maskokí peoples consider(ed) all of Florida as part of their traditional territories (Weisman 1989: 33–34), we should critically interrogate whether it is appropriate to suggest that Seminole Indian and other Muskogean communities encountered and adapted to a truly “unfamiliar” landscape (Rockman & Steele 2003). Similarly, Ras Michael Brown (2002: 310–11) challenges us to consider the ways certain aspects of landscapes in Florida and the Americas, including certain landforms, flora, and non-human animals, may have appeared “vaguely familiar” to African Diasporic peoples.

Many African Seminole and Seminole Indian communities displaced from the Alachua Savannah and other north-peninsular settings would later reform their settlements within central Florida’s distinctive hammock ecosystems, characterized by elevated stands of trees (often hardwood) surrounded by seasonally and/or fully inundated wetlands and prairies. During the Seminole Wars, hammocks served as natural moat-like defenses and tactical staging points for Seminole Indian as well as African Seminole communities resisting settler colonial violence and slave raiding (Lawres 2014; Sivilich 2019). These island-like ecosystems simultaneously supported mixed modes of livelihood, including agriculture, horticulture, foraging, hunting, and animal husbandry. Weisman (1999: 108) suggests that Seminole Indian communities deliberately sought out hammock ecosystems, and that “the best hammocks were those surrounded by or close to prairies, seasonally wet grasslands were Seminole cattle could be turned loose to graze.” Karen E. Stephenson (2011) has attempted to reconstruct the distribution of Florida’s nineteenth century grasslands, noting that the timing
and seasonality of observation could greatly impact whether these environments appeared as dry prairies or shallow lakes to Euro-American observers.

United States Army officer and later Brigadier General George A. McCall’s eyewitness account of visiting the African Seminole settlement of Pilaklikaha during the early 1820s is a noteworthy description of some of the historical characteristics of Florida’s distinctive hammock ecosystems:

On the third day we reached “Pelaklikaha,—in English, “Many Ponds.” In the midst of these ponds, on a ridge of high “shell-hummock” land—once, when old ocean’s waves rolled over it—a vast bed of small shell-fish or mollusks which for centuries has probably been accumulating, there now flourishes one of the most prosperous negro towns in the Indian territory. We found these negroes in possession of large fields of the finest land, producing large crops of corn, beans, melons, pumpkins, and other esculent vegetables. They are chiefly runaway slaves from Georgia, who have put themselves under the protection of Micanopy, or some other chief, whom they call master; and to whom, for this consideration, they render a tribute of one-third of the produce of the land, and one-third of the horses, cattle, and fowls they raise. Otherwise they are free to go and come at pleasure, and in some cases are elevated to the position of equality with their masters (McCall 1974: 160).

The conceptualization of Florida a liquid land (Levin 2004) or as a liquid landscape (Navakas 2017) stretches back several centuries, and is perhaps most clearly observable in early Euro-American attempts to cartographically depict Florida as a collection of independent small islands. Before the turn of the twentieth century, while more than half of Florida possessed wetland habitats before the turn of the twentieth century (Ewel 1990: 281), extensive forests and savannas also covered much of north-central Florida alongside more inundated landscapes (Stephenson 2011; Volk et al. 2017: 53). And although dominant European and American discourses during the colonial and territorial periods regularly deemed Florida as an uninhabitable, unproductive, and unhealthy (Monaco 2015, 2019) landscape, other Euro-Americans explored alternatives to
notions of “settlement” framed by individual property and characterized by stable land (Navakas 2012, 2017). As naturalist William H. Simmons [1784-1870] noted during his travels in East Florida during the early 1820s, “Some new term in geography must be invented to describe this extraordinary land of many waters, which has, I believe, less of a terraqueous character, than any other region of country, perhaps in the known world” (Simmons 1822: 38–39).

Military records, maps, eyewitness accounts, newspaper articles, and other sources produced during the early nineteenth century have previously served as pivotal resource for reconstructing the settings under which Seminole Indian and African Seminole communities formed and pursued livelihoods in central Florida. While acknowledging the potential value of these descriptions, it is imperative to underscore that Euro-American descriptions of Florida’s natural environments and African Seminole and Seminole Indian communities during the early nineteenth century, nonetheless, occurred within a broader context of Western science, U.S. settler colonial expansion, and understandings of Black and Indigenous inferiority. As will be discussed in greater depth in Chapter 5, “the Euro-American documents that comprise the most accessible descriptions of relations in Seminole territory must be used with caution” (Weik 2009: 209).

2.3 African-Native American Communities During Florida’s “Removal Period”

Following the signing the Adams–Onís Treaty of 1819 and the final U.S. acquisition of Spanish La Florida in 1821, the U.S. territorial and federal governments ardently debated over whether to concentrate Florida’s Native American populations within the peninsula itself or to pursue a process of removal to either Georgia-Alabama or west of the Mississippi. Territorial
governors also came into frequent disagreement with Florida’s early Euro-American settlers and plantation owners, who had established profitable trade networks with both Seminole Indian and African Seminole communities (Mahon 1962; Carrier 2005). When full-scale removal from Florida was deemed temporarily unattainable (Mahon 1962: 354), a program of population relocation and confinement within Florida was pursued via a system of reservations.

Seven years before the signing of the Indian Removal Act of 1830, the Treaty of Moultrie Creek [1823] set in place a system of reservations aimed to relocate and subsequently confine Seminole Indian communities within the Territory of Florida, the largest being situated within the peninsula’s interior [Figure 2.2]. The four smaller reservations were formed along the Apalachicola River (Royce 1971), which were administered to Neamathla, Econchatimico, Mulatto King, Tuski-Hajo, and Blout for their support of the 1823 treaty.
Figure 2.2 The Central Florida and Apalachicola River reservations (Royce 1971)
The Treaty of Moultrie Creek was signed by thirty-two Seminole Indian leaders, although there remains doubt over whether this group was truly representative of Florida’s Native American polities (Mahon 1962: 370). Summarized by the late Charles H. Fairbanks in 1957 as part of an ethnohistorical report submitted to the Indian Claims Commission (Fairbanks 1957: 251–52), the core stipulations of the Moultrie Creek Treaty were as follows:

1. Indians ceded all claims to the whole territory of Florida except such lands as might be given as a reservation.
2. The Seminole would be concentrated and confined in a reserve in the central part of the state.
3. The United States would afford protection against all persons, provided the Indians conformed to the laws of the United States. The United States would provide $6,000 for tools and implements and $5,000 a year for twenty years.
4. The United States guaranteed peaceable possession of the reserve.
5. The United States, as compensation, would provide rations for one year and in addition $4,500.
6. An agent, sub-agent, interpreter, and school would be provided, as well as a gun and blacksmith.
7. The Indians promised to apprehend and deliver absconding slaves and fugitives from justice.
8. A commissioner would run and blaze the reserve boundaries.
9. If the Agent thought proper, the northern boundary of the reserve might be extended northward to provide adequate tillable lands.

An estimated twenty-eight million acres of land were acquired from those Seminole Indian leaders gathered at Moultrie Creek in exchange for the much-reduced reservation system (Monaco 2019: 15). While noting the wider power imbalance exhibited by the treaty itself, the late historian John K. Mahon (1962: 370–72) attests that the treaty was “not entirely a white-dictated document,” underscoring that Seminole Indian leaders were able to acquire certain provisions during the negotiations, such as Neamathla’s insistence on remaining along the Apalachicola River rather than removing his people to the peninsula’s interior. Many Seminole Indians did not consider themselves obligated to the
treaty and stayed where they were (Mulroy 2007: 42), and some communities swiftly returned to their lands after treaty obligations were not met (Brown 1995: 424–25). In response, Governor DuVal and Captain Francis Langhorne Dade would utilize tactics to forcibly compel communities to relocate, including the destruction of settlements (Brown 1995: 434–35). By 1826, most Seminole Indian communities in north-central Florida were relocated to the territory’s reservations (Mulroy 2007: 42), although historians posit that few spaces within the reservation could “new” communities given the continuing presence of communities formed prior to the Treaty of Moultrie Creek (Monaco 2012: 17–18).

Increasingly, scholars have begun to draw attention to the ways in which many Seminole Indian and African Seminole communities contested and exploited the cracks in Florida’s reservation system—grazing cattle outside of the reservation boundaries, engaging in sanctioned and illicit trade with Euro-American settlers and Spanish wreckers along the coasts, and maintaining ties with enslaved family members living on plantations (Carrier 2005: 27–28, 49, 61; Dixon 2014: 100–101). Both formal and clandestine networks with the broader Euro-American landscape would prove vital for anti-colonial and anti-slavery resistance efforts pursued by Seminole Indian and African Seminole communities during the Second and Third Seminole Wars, exhibited in the planning military actions, receiving arms/ammunition, and stoking plantation insurrections across Florida. As Dixon (2014: 101) aptly notes of this atmosphere surrounding Florida moving into the Second Seminole War, “A massive slave rebellion within plantation society would have meant that Whites would have had to fight two wars simultaneously, a war against the Seminoles and a war
against the slaves. As if to confirm the Whites’ worst fears, approximately 400 slaves fled the plantations to join the Seminoles by January 1836.”

Scholars have and will likely continue to debate whether anxieties over the presence of Florida’s maroon and free-born African populations should be considered as central to our understanding of U.S. actions in Florida during the early nineteenth century (Giddings 1858; Dixon 2014, 2020b), or whether a framework of settler colonial expansion and Native American dispossession should take precedence. The potentially wide-ranging implications of these interpretations, notably, are not limited to the scholarly domain but intersect with heritage claims held by descendant communities within and beyond Florida (Weisman 2014; Monaco 2017, 2019). Still, even a cursory review of the period’s historic record underscores that one of the most pressing factors leading U.S. governments to prefer a full-scale programme of removal over a reservation system within the territory of Florida itself were anxieties over the continued presence of peoples of African descent within Seminole Indian communities.

Considering that the subject positions of African peoples within Native American societies did not always reflect Euro-American conventions of chattel slavery (Krauthamer 2013; Miles 2015; Mair 2020), the presence of the African “slaves” within Seminole Indian territories routinely perplexed Euro-American observers. As Weik (2009: 211) contends, although many Euro-Americans understood the qualities attributed to African/Black peoples as inherently linked to racial bondage, “the issue of how slavery and freedom were realized in Seminole territory is complicated by a diversity of observations and relationships.” Notably, Weik recognizes one of the broadest ranges of subject positions characterizing African experience within Seminole Indian societies,
including roles as leaders, soldiers, interpreters, laborers, as well as coercive relationships that reflect American chattel slavery (Weik 2002: 161, 2009). Still, given the strength of Euro-American perceptions that Seminole Indian leaders had allowed Africans to gain control over them, efforts to prevent the regular absconding of Africans into Florida’s peninsular interior meant that the goal of forcibly removing Seminole Indian communities from Florida was often deemed a necessary precondition for securing and expanding Florida’s plantation society.

Following a severe drought in 1825 and Governor DuVal’s assessment of the exceedingly poor quality of land upon the reservation, the boundaries of Florida’s central reservation were extended northward to encompass an area known as the “Big Swamp,” albeit with stringent opposition from others in the territorial government and white settler families who had established themselves in the Alachua Savannah (Brown 1995: 430). Yet, Florida’s territorial government would also reiterate the consequences if Seminole Indian communities left the reservation in pursuit of resources, and at times explicitly pressured Seminole Indian leaders to return persons of African descent living within the reservation’s boundaries to their Euro-Americans “owners” (Brown 1995: 430–31). Since the creation of the Territory of Florida between 1819-1821, a significant increase in runaway slave petitions were made to Florida’s territorial officials (Kokomoor 2008: 52–53), coinciding with a formidable wave of “planter migration” into Florida during the 1820s and early 1830s (Baptist 2002: 45). And while some Euro-Americans knew their claims to be dubious if not blatantly predatory (Monaco 2012: 18–19), the increase in runaway slave claims created an atmosphere that likely provoked a degree of anxiety across historic Florida.
The practices employed by the U.S. government in Florida during this period are reflective of what James Delle (1998: 155–56) has termed “spatialities of control,” including methods of restricting free movement (i.e., spatialities of movement) and efforts to monitor and control action within bounded territories (i.e., spatialities of surveillance). Combined with the installation of several military fortifications across Florida and the routine patrol of the reservation borders, it was projected that Seminole Indians (and allied African Seminole communities) would be forced to end traditions of maritime trade and hunting to pursue agricultural pursuits, albeit within a more difficult environment than they had pursued agriculture in Florida’s northern regions. According to contemporary accounts, Seminole Indian communities unwilling to transition to Anglo-American forms of racial plantation slavery, private property, and household economics struggled to the point of starvation (Monaco 2012: 17–18).

These and other pressures would ultimately lead to increasing levels of conflict with Euro-American settlers and slaveholders in Florida as well as with the United States government. Andrew Jackson’s presidential election in 1829 and the Congressional passage of the Indian Removal Act of 1830 would propel an already aggressive set of removal processes in Florida and across the Southeast. During the early 1830s, the largely coercive and fraudulent treaties of Payne’s Landing [1832] and Fort Gibson [1833] would effectively end Florida’s reservation system, setting the stage for two more Seminole Wars [1835-1842] and [1855-1858] as many Seminole Indian and African Seminole communities refused to leave their ancestral homelands for the Indian Territory (Oklahoma).
CHAPTER 3

THEORETICAL AND METHODOLOGICAL FRAMEWORK

In this chapter, I introduce the theoretical and methodological frameworks underlying this study. While I ground my approach within traditions of settlement and landscape archaeology, this study draws additionally upon anthropological and archaeological articulations of “settlement ecology” (Stone 1996). Following a discussion of this conceptual framework, I turn to theoretical and methodological considerations raised by the archaeological application of settlement ecology theory to more recent historical settings. Finally, I argue that in order for settlement ecology to be contextually responsive to African Seminole cultural history, it is necessary to extend settlement ecology theory through additional frameworks (e.g., diaspora, ethnogenesis) while situating settlement processes within the contexts of settler colonialism and anti-slavery resistance.

3.1 Theoretical Background: Settlement Archaeology

Efforts to trace the historical development of approaches to “settlement” within archaeology have been attempted several times over the past century (Trigger 1967; Parsons 1972; Binford 1980, 1982; Billman & Feinman 1999; Knapp & Ashmore 1999; Anschuetz et al. 2001; Kantner 2008; Kowalewski 2008; Kellett & Jones 2017). The origins of the term “settlement archaeology” are frequently attributed to German philologist and archaeologist Gustaf Kossina [1858-1931]’s concept of Siedlungsarchäologie (settlement space). For Kossina, the spatial distribution of archaeological sites and material culture could be tied directly to
the identification of national territories and to the geographic origins of contemporary racial-ethnic communities—aligning early settlement archaeology with the anthropological (and initially racialized) concept of the cultural area.

In North American archaeology, Bruce G. Trigger (1996) attests that settlement archaeology’s early search for distinctive archaeological ‘cultures’, however, differed by first approaching settlement as a “cultural-geographical, not cultural-historical entities” (Trigger 1996: 279–80). As archaeologists were generally slow to recognize (and often resistant to) the chronological depth and cultural development of non-European peoples, migratory and diffusionist perspectives arising from evolutionary anthropology initially framed much of archaeology’s early articulations of settlement theory (Trigger 1996: 278–86).

Since the 1950s, archaeology has witnessed a strong “systematization of settlement pattern studies” (Anschuetz et al. 2001: 170). Gordon R. Willey’s (1953) pivotal settlement studies within Peru’s Virú Valley; Kwang-chih Chang’s (1958, 1968) investigation of Neolithic and New World settlement patterns; and Lewis Binford’s (1980, 1982) ethnoarchaeological studies of hunter-gatherer settlement systems solidified settlement archaeology’s close alignment with considerations of ecological adaptation, and particularly, subsistence-oriented settlement research. One of the most used definitions of settlement archaeology within North American archaeology emerged from Willey’s Virú Valley research:

The term “settlement patterns” is defined here as the way in which man disposed himself over the landscape on which he lived. It refers to dwellings, to their arrangement, and to the nature and disposition of other buildings pertaining to community life. These settlements reflect the natural environment, the level of technology on which the builders operated, and various institutions of social interaction and control that the culture maintained. Because settlement patterns are, to a large extent, directly shaped by widely held cultural needs,
they offer a strategic starting point for the functional interpretation of archaeological cultures (Willey 1953: 1).

Willey’s Virú Valley study propelled a significant reorientation of settlement archaeology toward more explanatory, systematic, regional, and predictive approaches to past human behavior, which coincided with archaeology’s broader processual turn. The proliferation of behavioral-functionalist-ecological approaches within archaeology during the mid-to-late twentieth century, and more specifically, the growth of ethnoarchaeological studies of hunter-gather settlement systems (Schiffer 1975; Binford 1978, 1980) had a particularly long-lasting impact on settlement archaeology—although critiques of the processual paradigm can also be found during this period (Stanislawski 1973; Hodder 1977; Wobst 1978). The assumption that human behavior and the archaeological record is not random but “patterned” (Schiffer 1983: 675) would ultimately have a strong influence upon the trajectory of settlement archaeology; so much so that the subfield of settlement archaeology remains for many archaeologists and anthropologists terminologically and conceptually interchangeable with “settlement pattern analysis.”

Settlement archaeology during this period would also witness the increasing application of models derived in geography (e.g., locational modeling, central place theory), encouraged in part by some of the earliest anthropological applications of GIS (Howey & Brouwer Burg 2017; Kellett & Jones 2017: 6–7). Developments in locational analysis brought explicit attention to questions concerning the spatial organization and structure of phenomena, departing from more traditional approaches in geography attentive to exceptionality and the pursuit of “biographical” questions (Haggett 1965). Discussing the state of
exceptionalist traditions within geography, Peter Haggett, (1965: 3) stressed that
the “uniqueness concept, one shared with history, has a strong hold upon much
of our geographical teachings at all educational levels, building up in our
students the inevitable conviction that region A must be different from region B.”
Considering settlement archaeology, this turn away from assumptions of site
exceptionality can be seen in the increasing influence of predictive modeling as
well as in the growing appreciation of regional and multi-scalar approaches. This
period also witnessed efforts to tie spatial archaeology more closely with
advanced statistical and quantitative techniques (Hodder & Orton 1976; Hodder
1977), including the increasing use of ethnoarchaeological inquiry to interrogate
intra- and inter-site spatial distributions in archaeological analysis.

Post-processual approaches emerging during the 1980s and 1990s would
critically interrogate many if not all of the foundational theoretical, empirical,
and ontological assumptions of processual-era archaeology (Ingold 1993; Thomas
1993; Tilley 1994, 2010; Wheatley 2004; Johnson 2006). Ian Hodder (1982), and the
British phenomenological tradition more broadly, were/are particularly critical
of settlement archaeology’s turn toward predictive modeling, underscoring that
behavioral-functionalist-ecological approaches to settlement routinely distracted
from naming the ideological frameworks underlying their seemingly “objective”
critiques, nevertheless, elicited a body of counter-critiques, often highlighting
that post-processual critiques do not adequately discredit the contributions of
more traditional approaches to settlement (Kvamme 2005; Fleming 2006, 2007).
Today, much of contemporary settlement archaeology can be characterized as
“processual-plus” (Hegmon 2003: 216–17), whether open to the critiques of early
processual-era approaches and/or actively engaged in the integration of complementary as well as more divergent frameworks within archaeology (Oetelaar & Oetelaar 2007; Verhagen & Whitley 2012; Supernant 2017).

It is important to address two additional developments within contemporary settlement archaeology. First, approaches emerging from distributional, landscape, and multiscalar approaches have complicated (and sometimes explicitly challenged) the analytical utility of the “site/settlement” concept (Ebert 1992; McCoy 2020). Cherry et al. (1988) stress that settlement archaeology’s “traditional emphasis on high-density concentrations (i.e., sites) alone ignores much potentially useful information which can be recovered through survey” (Cherry et al. 1988: 159). Increasing calls for a “siteless” and “non-site” archaeology, moreover, reflect a growing degree of recognition among scholars that “sites” are not self-evident; and yet, scholars within and external to archaeologically and anthropology have simultaneously underscored that sites/settlements are not simply disembodied analytical constructs. Rather, “sites” can be alternatively conceptualized as significant places of embodied, political, and ideological work (Gupta & Ferguson 1997; Gal & Irvine 2019).

Recent approaches to mobility and movement have further complicated archaeology’s normative dichotomization of mobility and sedentism, as well as archaeology’s tendency to conflate sedentism with settlement (Lelièvre & Marshall 2015; Ogundiran 2016; Lelièvre 2017). Some scholars have argued that an epistemological dichotomy between “sites/settlements” and “places/landscapes” may address some of these considerations, while other scholars have called for a broader recognition of the pragmatic value of integrating both sets of concepts within archaeological approaches to settlement
(Kellett & Jones 2017: 13). As will be discussed, anthropological and archaeological approaches to “settlement ecology” (Stone 1996) may offer a potential means to work with, alongside, as well as beyond the “site” concept.

Second, contemporary settlement archaeology has and arguably continues to struggle against a set of accusations of theoretical deficiency, including indictments of (1) environmental determinism; (2) uncritical reliance upon quantification, statistical models, and GIS technologies; and (3) neglect for and/or difficulties with addressing the anthropogenic, social, and historical dimensions of spatial phenomena. Traditionally, scholars in settlement archaeology have responded to these and related challenges by offering counter-critiques, by suggesting a degree of complementarity between settlement and landscape-oriented approaches, and/or by offering alternative and integrative approaches cognizant of these critiques (i.e., a “settlement archaeology-plus”).

Settlement archaeology’s contemporary engagement with archaeological approaches to community, finally, is one of the most promising developments within the subfield. Increasingly, archaeologists have acknowledged the dialectical (i.e., relating to oppositions), recursive (i.e., relating to repetition and recurrence), and mutually constitutive relationships between settlement processes, individual practice, non-human actors, and social structural (Cipolla 2013b, 2017; Harris 2014; Watts Malouchos 2020). Harris’ (2014) reframing of community as relational assemblages composed of humans and nonhumans—and Cipolla’s (2013b) articulation of ethnogenesis as a diasporic process involving the resituation of “homeland” in new settings—complicate normative discussions of settlement patterns as either disembodied constructions or the result of environmental processes divorced from human consciousness. If we
understand space as a dimension of material culture (Delle 1998: 19), Watts Malouchos’ (2020: 150) (re)framing of material practices as “interdigitated and multidimensional processes of community-making” opens space for the consideration of settlement processes as part and parcel to ethnogenetic and diasporic dynamics. These understandings have the potential to connect considerations of settlement ecology to African Seminole cultural history.

3.2 Theoretical Positioning: Settlement Ecology

Settlement ecology theory owes much to the foundational work of the late anthropologist Robert McC Netting, whose collected body of ethnographic scholarship greatly expanded anthropological concern for the socio-spatial organization and contemporary vitality of smallholding agricultural communities. Netting’s (1965, 1968) early study of the Kofyar of the Jos Plateau in northern Nigeria was greatly influenced by Julian Steward’s cultural ecology, through which Netting attempted to model the relationships between environmental, technological, and socio variables within Kofyar society. For Netting, the important anthropological question of how people sustained livelihoods and engaged with their surrounding landscapes were predicated upon “a prior question of why they live where they do” (Netting 1968: 43).

While Netting would ultimately continue this work in Nigeria over several decades (Netting et al. 1989, 1990; Netting 1993; Stone et al. 1995), and would also examine smallholding agricultural societies on a global scale (Netting 1993), anthropologist Glenn Davis Stone is largely responsible for extending and popularizing this body of work in Settlement Ecology: The Social and Spatial Organization of Kofyar Agriculture (Stone 1996). Stone drew particular attention to a significant gap in previous anthropological (and archaeological) literatures on
settlement, noting how a disciplinary emphasis on hunter-gatherers—coupled with anthropology’s tendency to study “in villages”—had resulted in limited attention to smallholding agricultural societies (Stone 1991a: 7). Stone also found the assumptions of classical geographical models and ethnoarchaeological studies of hunter-gatherers largely inappropriate for interrogating intensive agriculturalists and underscored that settlement location choices or decision-making processes were entangled with the social organization of agriculture.

As defined by Stone, “settlement ecology” merges a concern for the descriptive (i.e., patterns) with an interest in the explanatory (i.e., processes) dimensions of human settlement. At the core of Stone’s contribution to anthropological studies of settlement, markedly, lies an attentiveness to questions of causality—and particularly, to the problem of equipifinality in studies of settlement patterning. Stone’s ethnographic research in Nigeria underscored a core consideration of environmental anthropology previously raised by Steward (1995: 35)—namely “that various different patterns may exist in any natural environment and that unlike cultures may in exist in similar environments.”

Stone’s ethnographic and ethnoarchaeological studies of Kofyar and Tiv settlement across Nigeria’s Jos Plateau provided a unique opportunity to witness these decision-making processes unfold in real time, thereby shifting away from archaeology’s reliance upon hypothetical models of human behavior. Stone’s remarked upon a degree of variation between Kofyar agricultural “intensifiers” and neighboring Tiv agricultural “extensifiers” within Nigeria’s Namu Plain, arguing that the Kofyar settlement pattern was not an optimal response to the surrounding environment, but one of many possible settlement trajectories. In a similar vein, Stone (1996: 194–95) interrogates questions of settlement
abandonment, which he suggests must consider questions of social organization
and ideology alongside more recognizable aspects of land tenure/use, such as
soil exhaustion and land availability. Based on these ethnographic observations,
Stone hypothesized that “An agrarian settlement pattern differing sharply in
settlement size, occupation span, tenure arrangements, and land use could have
developed in the same place, even by a population with the same agricultural
technology” (Stone 1996: 186). Ultimately, Stone argued for the recognition of

Previous work by Lawres’ (2014) on Muscogee/Seminole Indian
settlement processes exemplifies this line of anthropological inquiry. Within an
ethnogenetic framework of coalescence, Lawres traces changes in southeastern
Native American settlement patterns over several centuries, concluding with an
exploration of the emergence of a dispersed settlement pattern characterizing
nineteenth and twentieth century Seminole communities. Lawres posits that the
development of the *istithapo*, or clan camp, is demonstrative of a purposeful
reconceptualization of earlier Seminole and Mississippian settlement practices,
and one particularly responsive to Florida’s subtropical environment during a
period of heightened warfare. Still, Lawres is careful to note that the settlement
structure and associated subsistence practices associated with the clan camp are
not predetermined by central and south Florida’s distinctive ecological,
topographical, and hydrological settings. Rather, Lawres relates the settlement
structure of the clan camp to earlier settlement patterns exhibited by Florida’s
Indigenous Peoples during the pre-contact period. Centering on the fact that
multiple settlement trajectories have emerge within the same environmental
setting over the course of Florida’s cultural history, Lawres (2014: 562) posits that
“the prehistoric settlement pattern demonstrates that large, aggregated settlements were possible in this environment.” Ultimately, Lawres suggests that we must look to a conceptually wide range of environmental and non-environmental variables to understand settlement decision-making processes.

By framing settlement not as a predetermined or random occurrence, but rather as a consequence of human decision-making, settlement ecology offers an important corrective to settlement archaeology’s tendency toward environmental determinism. Rather than a search for predetermined outcomes, for Stone:

... settlement decisions can be affected by myriad different factors, and it seems to me that these decisions must be guided by a mental balance sheet for each factor. To propose a rule is to claim one factor to be overriding in a particular situation, yet rules vary in how overridable they are, and by what. Rather than single rules for site spacing, abandonment, and so on, I prefer to think of priorities of varying strength. The ease with which these are overridden and the types of factors that tend to override them are not noise but a central aspect of settlement study (Stone 1996: 8).

Settlement ecology, as such, is not primarily intended to formulate a set of rigid or definitive rules or laws of settlement behavior, but rather aims to investigate “the relative impact of particular variables on community settlement location choice” (Jones 2008: 97). As mentioned, approaches grounded in settlement ecology often direct inquiry beyond the enumeration or listing of individual factors (e.g., a settlement’s proximity to a particular local resource) to explore questions of cause and effect amongst multiple variables. Furthermore, settlement ecology is not generally directed toward the in-depth analysis of single phenomenon, although the in-depth investigation of individual settlement factors or variables remains an important subject of archaeological inquiry. Instead, articulations of settlement ecology are most routinely directed toward
investigating the interactions amongst and between a wide range of variables in order to gain a fuller understanding of settlement systems. According to Kellett and Jones (2017: 12), “It is not just the influence of individual pressures upon settlement decisions, but how they intersect, connect, and impact one another.”

Recent applications of settlement ecology research in archaeology rest upon a group of core group of premises, namely that (1) settlement entails interaction with the environment; (2) settlement decision-making is both time and space contingent; and (3) settlement is a consideration of the spatial relationships between sites and broader landscapes (Jones & Ellis 2016: 86; Kellett & Jones 2017: 11–13). Premise (1) is shared with more conventional approaches within settlement archaeology, while premises (2) and (3) integrate insights from settlement ecology’s more recent engagement with historical ecology and landscape archaeology respectfully. It would be inaccurate, however, to characterize settlement ecology as an entirely new approach or a replacement of settlement archaeology. Rather, recent articulations of settlement ecology have been framed as a “repackaging” and “synthesizing” of previous approaches within anthropology, archaeology, and related disciplines (Kellett & Jones 2017: 11). Because this study addresses questions of settlement during the early nineteenth century, nevertheless, it is important to take into consideration the arguably distinctive theoretical and methodological concerns that arise from archaeological research settings.

3.3 Operationalizing Settlement Ecology: Theoretical and Methodological Considerations

Kellett and Jones’ (2017) edited volume Settlement Ecology of the Ancient Americas highlights the relevance of settlement ecology theory to archaeological contexts across North, Central, and South America. Recent archaeological
applications of settlement ecology are considering a wider range of settlement processes, including settlement location choice (Jones 2008, 2010, 2016); multiscale and intra-/interregional variability (Jones & Ellis 2016; Herrera 2017; Ozorio de Almeida 2017; Gokee & Thiaw 2020); settlement continuity and change (Brannan & Birch 2017; Jones 2017a; Loughlin 2017); questions of risk, uncertainty, and structural violence (VanDerwarker & Wilson 2016; Ingram 2017; Melton 2018a); and the application of advanced (paleo)climatic models (Elliot 2017; Gijsegam 2017). Settlement location choice, or what archaeologists have termed “site location analysis,” remains the most prevalent archaeological application of settlement ecology theory (Kellett & Jones 2017: 31).

Recent archaeological applications of settlement ecology have primarily focused on paleo, pre-contact, and early historical periods (especially in the Western Hemisphere), while a more limited number of studies have engaged with more recent (post-1700) historical settings. A wider review of scholarship, notably, may identify a much larger body of work in historical archaeology attentive (both implicitly and explicitly) to the core theoretical currents of cultural ecology and settlement ecology as outlined by Steward, Netting, and Stone. Linebaugh and Robinson (1994: 4–6), for instance, draw attention to a number of foundational studies in historical geography/archaeology that stand as exceptions to the subfield’s general reluctance to pursue environmentally-oriented approaches (Hudson 1969; Gritzner 1983; Warren & O’Brien 1984; Beaudry 1986). Yet, as Stone (1996) notes, geographical and archaeological studies of urban and market-oriented sites predominate much of this previous literature, with less attention to smallholding agricultural societies. Moreover, a bias toward Euro-American sites/settlements can be recognized in some of the
earliest approaches to land tenure/use and environmental change in historical archaeology, albeit with some notable exceptions (Cronon 1983; Silver 1990).

Brannan and Birch’s (2017) contribution to Settlement Ecology of the Ancient Americas offers an explicit articulation of a “Historical Settlement Ecology.” Brannan and Birch underscore that settlement ecology can be extended to engage with important theoretical and methodological currents in historical ecology and political ecology (Balée 2002, 2018; Offen 2004), thereby addressing some of the ahistorical and apolitical foundations of settlement ecology as an outgrowth of Steward’s cultural ecology. A historical settlement ecology, moreover, prompts a consideration of archaeology’s capacity to reconstruct past environments and decision-making processes. Given the wide range of approaches employed in settlement archaeology and landscape archaeology (Zedeño 1997; Anschuetz et al. 2001; Branton 2009; González-Tennant 2016; Kellett & Jones 2017; Álvarez Larrain & McCall 2019), it is important to explicitly outline how this study approaches questions of “reconstruction,” “modeling,” and “context.”

3.3.1 Reconstruction

Historically, quantitative, qualitative, and mixed-methodological approaches have been applied within archaeology to reconstruct past environmental settings and cultural landscapes, although minimal terminological, methodological, or theoretical consensus has emerged in the field (Anschuetz et al. 2001: 158; Yang et al. 2014). Uses of “reconstruction” within archaeology, moreover, are not limited to the (re)conceptualization of past land-use and land-cover but can also refer to a much wider array of approaches to the past found within archaeological scholarship—even within the same analytical
framework. Brent Weisman’s (1989) use of “reconstruction” in Like Beads on a String, for example, refers to the physical reconstruction of material artifacts (e.g., ceramics, bottles); to the conceptual reconstruction of past activities (e.g., trade, production); and to broader notions of “cultural reconstruction” of social and ethnic groups (Weisman 1989: 61, 73, 168). In this study, “reconstruction” will refer primarily to the revisioning of past landscape cover/use, with an understanding that alternative frameworks to the reconstruction of the past are found within as well as beyond archaeology (Morrison 1995; Hartman 1997).

With the increasing availability of modern and historical environmental-landscape data, as well as advancements in geospatial hardware and software, a growing number of archaeologists are attempting to move closer toward what Marieka Brouwer Burg terms total landscape reconstruction—defined as “richly-furnished and detailed spatial surfaces” (Brouwer Burg 2013: 2308) upon which archaeologists can more meticulously investigate questions of past settlement, land-use, and a fuller range of individual and collective decision-making processes. For Brouwer Burg (2013: 2319), developing a realistic reconstruction of a landscape is an imperative matter of “cultural sensitivity,” allowing for a more emic appreciation of landscapes. Reconstruction, from this perspective, provides a necessary staging ground to explore questions of past socio-cultural dynamics.

Archaeological research addressing paleo, pre-contact, and historic period contexts, nonetheless, has also drawn considerable attention to the practical and ontological-epistemological challenges that can arise from environmental and landscape reconstruction (Parcero-Oubina 1997; Parcero-Oubina et al. 1998; Yang et al. 2014; Jones 2017c). Brouwer Burg (2013: 2319) emphasizes that along with the need to assess the quantity and quality of datasets, it is imperative to
recognize that uncertainty and speculation enters with every succeeding stage of the methodological process. Environmental settings that have undergone significant change—or environments that are characterized by geological, hydrological, and ecological heterogeneity, such as Florida—challenge modes of archaeological reconstruction. In Florida, even the seemingly “formal” elements of environments that archaeologists have used to base models of past human behavior complicate notions of fixity. And while the rendering of environmental phenomena and landscape features as unvarying units of analysis are often necessary for the communication and comparison of research (Brabyn 2009), classification necessarily involves the simplification of complex phenomena.

In Kellett and Jones’ (2017: 14) assessment, while certainly not ideal in all cases, archaeological approaches utilizing modern datasets routinely assume a degree of stability or similarity in environmental and landscape characteristics over time, which is “not overly problematic for recent cases.” Several scholars however, have expressed concern over the appropriateness of using modern datasets in the reconstruction of the past (Poska et al. 2018; Sevara et al. 2018; Kempf 2020), including questions of spatial and temporal resolution. Similarly, scholars have raised caution over the use of legacy (and specifically historical) datasets in environmental and landscape reconstruction, especially given considerations of scale, survey comprehensiveness, and in the case of digital materials, problems arising from source and processing errors (Ullah & Bergin 2012; Ullah 2015; Cooper & Green 2016). As Polska et al. (2018: 541) stress, we must be cognizant of the ways historical environmental and landscape datasets are often discontinuous, variable, and selective. And while GIS technologies have offered expedient ways to digitally integrate and layer multiple forms of modern
and historical spatial information to explore changes (as well as continuities) in land cover/use across space and over time, we must also remember that environmental and landscape “reconstruction” is not an unfiltered recovery of the past, but a deeply creative process of past-making in the present.

In the case of Florida, assumptions of environmental stability/similarity must be measured against a considerable body of work that has examined fluidity and change in Florida’s environmental history, especially over the last two hundred years (Stephenson 2011; Volk et al. 2017). Considering the more anthropogenic dimensions of Florida’s landscape, several decades of research in historical landscape archaeology has stressed the opportunities and challenges provided by both synchronic (point in time) and diachronic (through time) analysis. Historical archaeologists have drawn increasing attention to the ways in which landscapes are neither fixed nor singular, underscoring that “landscapes emerge from the interaction of human actors in space, and how the experience of landscapes varies greatly according to the experiences of different groups or individuals” (Kelly & Norman 2007: 177). African Diaspora and Atlantic African archaeologies, in particular, stress that the (re)construction of past landscapes must take into account their historical contingency, multiplicity, multivocality, as well as a concern for the ways landscapes are negotiated and contested. In this study, I approach environmental and landscape reconstruction as an ongoing process that is not directed toward a totalizing or a definitive rendering of the past, but rather one that allows for the exploration of how individuals and communities may have perceived and engaged with their surroundings.
3.3.2 Modeling

Similar to archaeological modes of reconstruction, “modeling,” whether inductive or deductive, has elicited considerable debate within and beyond archaeology. Post-processual critiques emerging during the 1980s and 1990s were particularly condemning of environmentally and quantitatively-oriented modes of archaeological predictive modeling (Thomas 1993; Wheatley 2004), resulting in the cautionary use of environmental and cultural ecological approaches in subsequent decades, especially within historical archaeology (Linebaugh & Robinson 1994: 5). Several scholars, however, have highlighted the unproductive nature of maintaining a “processual vs. post-processual” and “inductive vs. deductive” debate within the field (Salmon 1976; Overmars et al. 2007), stressing the need for a more explicit consideration of theory, significance, and context within spatial archaeology (Verhagen & Whitley 2012; Jones 2017c).

In a broad sense, “models” are simplifications that enable the interpretation of phenomena based on assumptions about (past) reality. As such, modeling is not restricted to modes of prediction, but can be situated conceptually on a spectrum ranging from phenomenological (i.e., descriptive, data-systemizing) to more explanatory (i.e., highly idealized, theoretically motivated) (Wylie 2016). Archaeological models of settlement decision-making, in particular, are routinely based in assumptions drawn from human behavioral ecology, and more specifically, the assumption that spatial correlations are indicative of past decision-making. Drawing upon the geographic “proximity principle,” archaeological studies have traditionally inferred that environmental resources and landscape features found within close proximity to sites and/or
settlements were those variables or factors most prioritized in settlement location choices (Jones 2017a: 31–32). Other archaeologists have articulated similar understandings of the spatial significance of “social resources” in settlement analysis (Agorah 1988: 235), wherein stronger social ties are assumed to lie between individuals and groups dwelling within close physical proximity.

Although most settlement studies have focused upon tracing the influence of individual and/or groups of similar environmental and landscape features upon settlement location choice, archaeologists have also turned to Stone’s (1996: 8) concept of a “mental balance sheet” to describe the ways priorities of varying strength are considered within settlement decision-making processes. Eric E. Jones’ (2016, 2017a) has previously used Discriminant Function Analysis (DFA) to replicate Stone’s mental balance sheet, stressing that evaluation of the significance of spatial correlations between sites/settlements and landscape features (based on the proximity principle previously mentioned) may aid in the identification and inform our understanding of the values underlying past settlement location choices. Building upon advances in GIS, other computer-aided technologies, and statistical regression (i.e., how a variable is affected by one or more independent variables), archaeologists have increasingly explored a progressively wider and varied range of variables or factors within models of settlement. The selection, measurement, and evaluation of these variables, nonetheless, highlights questions of agency and the potential for tensions to emerge between etic and emic understandings of past decision-making.

Following the post-processual turn, archaeologists would be hard pressed to leave unjustified the use of models derived solely from environmental, behavioral, or technological variables/factors. The question of which (and also
how) social, cultural, and historical phenomena should be integrated into models of past decision-making, however, is not forthright. Archaeologists that have drawn from available ethnohistorical records (Young 1997; Odewale 2016), direct historical and general comparative analogies (Agorsah 1988, 1999; Brown 2004; Tuma 2006; Seymour 2009), and contemporary ethnographic settings (Donnay 2016; Supernant 2017) routinely stress the need to consider the theoretical, methodological, and ethical considerations of these approaches—especially in the case of archaeological analogy (Wobst 1978; Lyman & O’Brien 2002; Lyons & Casey 2016). Whether these insights inform, supplement, replace, and/or are used to heuristically “test” (Supernant 2017: 70) more normative models of human behavior, they should be used judiciously. In this study, models are understood as arguments exhibiting varying degrees of analytical utility.

Weik (2009: 233, 2012a: 118) has previously demonstrated that the judicious application of analogues drawn from ancestral West/Central African, Native American, and Black Seminole descendant communities can inform approaches to African Seminole settlement histories. Grounded in research at Pilaklikaha, Weik (2009, 2012a: 124–52) has proposed a “dynamic sociocultural model” for exploring African Seminole experience in Florida. Weik’s work exemplifies the opportunities and challenges of social model-building that is not primarily directed toward a normative or universalizing understanding of settlement and cultural histories. Similar to Stone’s (1991a: 19) concern for acknowledging the potential for “multiple [settlement] trajectories” to emerge within a single ecological regime, Weik (2012a: 124) underscores that “unique actions and processes affected the nature and rhythms of each location,” noting that considerations of time, scale, and social organization complicate regional
and landscape based studies that are not necessarily attentive to the trajectories of individual locales, communities, and individuals (Weik 2012a: 47–50). Weik’s work at Pilaklikaha, as well as Weisman’s (1989, 2012) and Blakney-Bailey’s (2021) detailed work at Powell’s Town, underscores that more in-depth case studies may be necessary to fully appreciate broader regional dynamics.

Moreover, Weik’s scholarship challenges us to contend with both the internal and externally dynamics African Seminole social and political organization, which has several implications for how we understand and conceptualize notions of “decision-making” and “choice.” Internally, African Seminole communities did not necessarily exhibit forms of centralized authority devoid of intra-communal fractioning. At Pilaklikaha, at least four leaders, Abraham, July, August, and Billy John, are associated with the settlement according to Euro-American chroniclers (Weik 2009: 223), and it is likely that kinship, gender, economic status, language capacities, and individual biographies played a role in how collective decisions were made within and potentially across multiple settlements. Weik (2012a: 138–39) suggests that a decentralized decision-making arrangement was likely present at Pilaklikaha, which may have included the role of Seminole Indians, such as the principal chief Micanopy who occupied a residence at the settlement along with two of his wives. As with other dimensions of African Seminole experience, questions of socio-political organization, gender and age divisions, and racial-ethnic heterogeneity should inform our interpretations of past settlement processes.
3.3.3 Context

Archaeologists have increasingly questioned the uncrical application of spatial-statistical models and analytical methods derived from other disciplines, including human geography (Kintigh & Ammerman 1982; Howey & Brouwer Burg 2017; Supernant 2017). For these authors, traditional (and especially quantitative) modes of spatial analysis are often burdened by the loss of contextual information. By “context,” these authors are referring not only to questions of artifactual provenience (Lyman 2012: 212–13), nor exclusively to what Karl Butzer (1980: 418–19) has articulated as contextual archaeology, which focuses on “the multidimensional expression of human decision-making within the environment.” Rather, context for these authors also refers more expansively to the ways “our data and analyses must be contextualized in the relevant theory and archaeological data and cultural information known about the past people and their society” (Jones 2017c: 54). Questions of context, therefore, are deeply entangled with considerations of significance. For Jones, researchers should engage in ongoing processes of evaluation and testing and should refrain from allowing tools, such as GIS, to direct our theoretical and methodical choices.

Context may also be understood as a mode of construction through which archaeological and non-archaeological data may be situated “historically, socially, and culturally” (Matthews 1999: 261). In historical archaeology, debates have arisen not only over how contexts (e.g., “capitalism,” “colonialism”) should be defined, but also how different contextual constructions relate to past lived experience and material culture. Addressing arguments over context and interpretation during the late 1990s, Matthews (1999: 262) stated that “the appeal
to context made to date must be better formulated since context by itself has no clear meaning. It must be asked how contexts truly relate to the everyday cultural actions being studied.” In other ways, scholars have voiced warranted concern over the ways even productive contextual frameworks can at times over-determine modes of critical inquiry. As Silliman (2005: 63) aptly contends, “We must be vigilant to prevent a needed focus on colonialism-as-context from turning into an unwanted focus on colonialism-as-defining moment.”

One of the more noticeable features of Stone’s initial conceptualization of settlement ecology is that it is a framework on the one hand critical of predictive and deterministic models of settlement process while remaining “generally independent of cultural and historical context...” (Stone 1996: 185). While settlement ecology expands upon classical models of settlement (e.g., Boserup, Chisholm, von Thünen) through its attentiveness to causality, Stone characterizes his framework as largely “acultural and ahistoric” (Stone 1996: 185) despite references to the role of the Kofyar homeland in subsequent settlement processes. Moreover, it is difficult to find within Stone’s scholarship a sustained discussion of how Kofyar settlement ecologies relate to the politics of settlement (and anthropological research more broadly) in Nigeria’s (post-)colonial context (Ogundiran 2015; Imoh-Itah et al. 2016), although Stone (1996: 68) does address the question of “colonial tribalization.” Still, it is important to situate Stone’s approach within broader trends within African and Africanist anthropology. According to Nigerian-American archaeologist Akinwumi Ogundiran, post-colonial Nigarian archaeology has “favored questions that are rich in context, with footprints that can be traced spatially and through time, and are implicated in the integration of the local into the wider networks of interactions over time
(e.g., Stahl 2001; Norman 2008; Chouin 2009; Gijanto 2011; Logan 2012; Monroe 2014)” (Ogundiran 2015: 105–6). A contextually responsive approach to settlement ecology, as I argue in this study, requires a culturally, historically, and politically attentive approach to settlement decision-making processes.

African-descended peoples who would ultimately form settlements throughout Florida during the early nineteenth century brought with them diverse and multiple heritages, including those of West/Central Africa and the Gullah/Geechee Lowcountry. Scholars have drawn repeated attention to the ways tradition or the “cultural groundings” (Brown 2012: 86) of African-descended peoples informed perceptions of the landscapes they encountered in the Americas; how they made settlement location choices (Agorsah 1988, 1999); as well as how Africans engaged in the tactical negotiation and reappropriation of contested space (Symanski 2012: 145), even within conditions of enslavement. And although these traditions did not arrive in Florida as a singular “African heritage,” nor did they manifest as isolated and unchanging cultural traditions in the face of interactions with Euro-American and Native American societies, African cultural continuities are emphasized here as a significant (but not the sole) factor in African Seminole cultural ethnogenesis and transformation (Opala 1986; Weik 1997: 89, 2002: 66). Following Brown (2012: 18), I find utility in the “productive tension produced by the processes of continuity and creativity.”

One of the challenges and opportunities of extending settlement ecology through an African Diasporan framework is the potential capacity to name and acknowledge the spiritual dimensions of settlement and landscape activity. Although Stone (1996: 119, 125–27) does note religion as a demographic factor shaping the social organization of Kofyar society, we can (and arguably should)
hold greater space for the role of spirituality in the agricultural and broader landscape activities related to settlement processes. According to Brown,

African-descended people relied on the land and waters for material sustenance and employed knowledge and techniques derived from their African ancestors to plant, hunt, and fish... While identifying antecedents for this rich legacy represents an important endeavor, it remains incomplete without consideration of the spiritual aspects of these activities. African newcomers to the Lowcountry came from societies that based their knowledge and techniques on the insight that any efforts to grow crops or obtain animals depended on the support of nature spirits to succeed. As such, we must keep in mind that behind the visible ways that African-descended people produced food from the land and waters of the Lowcountry stood the invisible yet vital presence of nature spirits, including the simbi (Brown 2012: 143).

In order to moderate my interpretation of the role of African-derived traditions in the shaping of African Seminole experience, I draw upon Craig Cipolla’s (2013a) and Anna Agbe-Davies’ (2017) discussions of pragmatism. Drawing upon research exploring Brothertown migration and ethnogenesis, Cipolla (2013a: 18) argues that pragmatism offers a vital framework for addressing considerations of structure and agency, and more specifically, an attentiveness to the “actual differences that Brothertown agency made in the world.” Similarly, Agbe-Davies (2017: 24) stresses that pragmatism both contextualizes and draws attention to the implications of how “culture operated, and what it might have meant to live in that world.” By approaching settlement processes through tradition and pragmatism, it may also be possible to ask different forms of questions—particularly those directed beyond origins and the distinctiveness of practices (Agbe-Davies 2017: 24). Markedly, my own interest in settlement ecology has been motivated less by questions aiming to locate the definitive origins of African Seminole settlement forms, or to construct an
argument outlining their distinctive qualities (although these questions and aims are certainly worthwhile endeavors). Rather, I am most interested in what settlement processes can tell us about how African Seminole communities may have perceived, engaged with, and shaped/were shaped by their surroundings while contextualizing those processes within broader cultural histories.

Melding or even juxtaposing multiple theoretical currents, however, is not straightforward. It is imperative to remain cognizant of the potential reduction of theoretical distinction and richness through attempts at theoretical integration and/or dichotomization (Weik 2012a: 37, 52). Strategic and judicial comparisons, however, can be analytically productive. As Weik (2002: 87–88) has previously offered, “No one concept, whether it be diaspora, race, ethnicity, or ethnogenesis need be the sole determinant of discussion, where all are applicable at some point of discussion. Each concept contributes a piece of the grand picture, and must be used judiciously, with awareness of its insights, limitations, and perilous implications.” Similarly, Ogundiran (2014: 6) has drawn apt attention to the productivity of mobilizing the “elasticity” of past conceptual frameworks, underscoring that models “can become more useful and achieve its interpretive objectives when scrutinized with empirical data at the microscales of time and space, and when applied to questions that may have been outside the original framework of the model’s exponent.” Noting these considerations, I argue that an enriched settlement ecology theory can contribute to a contextually responsive understanding of ancestral African Seminole experience in Florida.
CHAPTER 4
SURVEY OF PREVIOUS SETTLEMENT RESEARCH

In this chapter, I provide an overview of African Seminole settlement research. Because the history of scholarship on African Seminole communities formed in Florida runs alongside, intersects with, and is often propelled by research on (and increasingly with) Seminole Indian as well as Miccosukee Indian communities, I begin with a review of Seminole Indian/Miccosukee settlement research. While emphasis is placed on research conducted in Florida over the last century, I also address research in Oklahoma, Texas, Mexico, and the Caribbean (Bahamas) attentive to African/Black descendant communities.

4.1 Seminole Indian Settlement Research

A major impetus for post-contact period settlement research in Florida emerged from the Indian Claims Commission (ICC). In the decades immediately following the passage of the Indian Land Claims Commission Act of 1946, three pivotal volumes on Seminole Indian cultural history and geography were compiled by historian Howard F. Cline (1974a; b) and anthropologist Charles H. Fairbanks (1974). During the 1950s, the Seminole Tribe of Florida (1950) and the Seminole Nation of Oklahoma (1951) filed claims against the United States for land taken in Florida during the nineteenth and early twentieth centuries.
The ICC report of 1964 (republished in 1974) established that until the Treaty of Moultrie Creek of 1823, the Seminole Nation held exclusive title to the majority of Florida and concluded that the Seminole Tribe of Florida and the Seminole Nation of Oklahoma were due compensation as successors to the historic Seminole Nation. Today, archaeologists have and continue to draw upon the records of the ICC to identify culturally significant sites, trace territorial transformations, and reconstruct past land and resource use (Zedeño 1997).

Based on historical and cartographic research, Cline’s (1974b) *Provisional Historical Gazetteer with Locational Notes on Florida Colonial Communities, 1700-1823* contains over a dozen maps recording Native American (as well as Euro-American and Black/African) settlements across Florida from the eighteenth century until the signing of the Treaty of Moultrie Creek of 1823. Cline’s study is notable for its early use of maps to trace the spatial distribution of settlements and the division of Florida’s historic period settlement history into discrete units of time, thereby providing the basis for synchronic (point in time) and diachronic (through time) analysis of settlement patterns. At the close of his study, Cline also produced several maps reconstructing community “occupance areas.”

Cline concluded that settlement during this period was marked by “continuity and discontinuity” (1974b: 232), stressing that Seminole Indian communities exhibited relatively short occupation periods (less than 50-60 years) when compared to major Euro-American settlements, such as St. Augustine and Pensacola. Cline underscored the prevalence of site/settlement destruction and depopulation, and further hypothesized that emigrating groups generally settled near previous Native occupation areas, albeit with few exceptions (Cline 1974b: 246). Cline attributed settlement pattern changes primarily to the rapidly shifting
political context of Florida under competing European and Euro-American regimes. While not the focus of his work, Cline also documented and traced the trajectories of several African Seminole sites/settlements in Florida. Settlements like Pilaklikaha and Buckra Woman’s Town, and affiliated Native American settlements like Oklawaha and Opauney’s Town, are recorded repeatedly.

Archaeological research attentive to Seminole Indian heritage in Florida expanded significantly during the second half of the twentieth century. Studies of individual settlements (e.g., Oven Hill, Powell’s Town) (Weisman 1989), regional and subregional surveys (e.g., The Withlacoochee Cove, Apalachicola River Valley) (Mitchem & Weisman 1987; Buffington 2009), and state-wide surveys (Carr & Steele 1993) have identified several sites/settlements types or forms, including traditional squaregrounds, dispersed townsites, cemeteries, trading sites, and (war) camps. Archaeological research attentive to Seminole Indian sites/settlements, however, is also marked by several obstacles, including the relatively short period of occupation exhibited by many sites/settlements; the frequency of site/settlement movement or relocation; the destruction of sites both historically and more recently due to urban development; as well as the practical challenges related to the identification of archaeological sites within Florida’s inundated environments (Weisman 1989: 4–5; Carrier 2005: 163–64; Blakney-Bailey 2007: 74–75). Weisman (1989) summarizes a set of challenges facing historic period archaeological settlement research in Florida:

The number of known Seminole archaeological sites is small, especially compared with the number of sites upon which archaeologists customarily define cultures or phases. Because sites are frequently of low artifact density, they often go undiscovered and are inadvertently destroyed through various human activities. Seminole sites rarely have above-ground manifestations and must be discovered through a detailed
direct-historic approach. Thus their identification is both costly and labor intensive. These factors have tended to discourage systematic, problem-oriented research (Weisman 1989: 4–5).

Despite these challenges, previous historical and archaeological surveys have identified several early-nineteenth century Seminole Indian and African Seminole sites/settlements throughout Florida. Many of these sites/settlements were identified using a “direct historical approach” (Weisman 1989: 123), demonstrating the affordances provided by the period’s rich archival record and association with a significant period U.S. settler colonial expansion in the Southeast. Mark R. Schurr (2006) contends that in spite of the comparatively short duration of the removal period (often less than 50 years), the early nineteenth century exhibits a striking degree of visibility in the archival record, especially relative to earlier periods of North American history. This somewhat paradoxical degree of visibility has allowed for the identification of archaeological materials and finer-grained site/settlement chronologies.

Site/settlement research has contributed in significant ways to the periodization of Seminole Indian cultural histories. Given broader scholarly concern for ethnogenesis, questions of site/settlement form, internal layout, and patterning have routinely played a central role in efforts to trace connections between Seminole and Miccosukee settlement characteristics to a Muscogee (Creek) ancestral pattern, while also underscoring the emergence of unique characteristics. While a comprehensive survey of this literature is beyond the scope of this chapter, [Table 4.1] offers a summarized periodization of Seminole Indian and Miccosukee site/settlement characteristics, based on Weisman’s (1989: 6–7) periodization of Seminole Indian and Miccosukee cultural history.
Representative archaeological sites associated with some or all of these characteristics are also provided based on a focused literature review.

Table 4.1 Seminole and Miccosukee Indian Site/Settlement Characteristics*

<table>
<thead>
<tr>
<th>Period</th>
<th>Characteristics/Features</th>
<th>Representative Sites/Settlements</th>
</tr>
</thead>
</table>
| Colonization, c. 1716-1767 | - Continuity with ancestral Creek pattern (e.g., individual township or talwa plan with ceremonial squareground; smaller towns/talofas; neighboring households of related women/hutis)
- Beginnings of changes (e.g., moiety/traditional chieftancy disintegration, simplification of talwa plan) | A-296 (Cuscowilla), Oven Hill (8Di15) |
| Enterprise, c. 1767-1821 | - Proliferation of and greater archaeological and historical visibility of sites
- Increasingly dispersed, non-centralized settlements
- Erosion of chiefly authority
- Lessened town affiliation and increasing fissioning of hutis (i.e. nuclear families)
- Individual wealth
- Broader engagement with colonial economy and greater presence of European trade goods
- Shifts in traditional matrilineal inheritance
- Integration of Africans and the emergence of the plantation system | Nicholson Grove (8PA114), Payne’s Town, Bowleg’s Town I and II |
| Revitalization, c. 1821-1842 | - Emergence of the “clan camp” (i.e., related women in the same matrilineal household) and renewed emphasis on clan affiliation
- Nativism (e.g., traces of squareground form, chiefly authority, rejection of European trade goods) | Zellner Grove (8Ci206), Newman’s Garden (8Ci206), Powell’s Town |

*Based on Weisman (1989, 2000); Blakney-Bailey (2007); Buffington (2009); Lawres (2014)

In recent years, the Seminole Tribe of Florida has taken a leading role in the archaeological study of settlement patterns (Fenno et al. 2017; Mahoney 2017), which has led to important attention to late nineteenth and early-to-mid twentieth century heritage. The Seminole Tribal Historical Preservation Office has also continued research into sites/settlements formed during the early nineteenth century, such as the recent (re)discovery of principal chief Bowleg’s
Suwanee River town. A significant amount of this work has been not only community-directed but participatory in nature, and has increasingly drawing upon oral histories and the mobilization of advanced geospatial technologies. These studies provide an excellent foundation for advancing community-based archaeological research with African/Black Seminole descendant communities.

4.2 African Seminole Settlement Research

As mentioned previously, research attentive to the histories, spatial layout, and patterning of ancestral African Seminole communities in Florida stretches back for several decades (Porter 1943, 1996; Littlefield 1977; Mulroy 1993a, 2007; Dixon 2014, 2020a). African Seminole historiography has traditionally followed Kenneth Porter’s (1996) feudal model stressing an unequal, but largely autonomous position for Africans within Seminole Indian society (Porter 1996), characterized by separate, yet closely placed settlements. According to Porter (Porter 1996: 6), African Seminoles “lived apart from the Seminoles in their own villages, prized evidence of their independence... the relationship between the blacks and the tribespeople might be described as primitive democratic feudalism, with basically no personal inequality between the two groups.” Scholarship has also explored alternative configurations, such as codependency and peaceful coexistence (Dixon 2014: 86, 2020a: 21).

Spatial relationships between African Seminole and Seminole Indian settlements remains a core consideration in African/Black Seminole historiography. As noted previously, discussions of settlement patterning have informed multiple theories of interaction between African Seminole and Seminole Indian communities formed in Florida (Porter 1996; Mulroy 2007; Weisman 2009; Dixon 2020a), including (democratic) feudalism, codependence,
peaceful coexistence, and autonomy. Many of these theories have been mobilized to explain the frequently encountered phenomenon of “paired” or closely affiliated African Seminole-Seminole Indian settlements in Florida, such as between Pilaklikaha and Micanopy’s Okahumpka; between Nero’s “Blacktowns” and Bowleg’s Town along the Suwanee River; and between Minatti and Peace Creek Tallahassee settlement of Talakchopko south of Lake Hancock.

Historically, close spatial proximity and strong/frequent interactions between groups has been interpreted by archaeologists as a contributing factor to the formation of shared cultural identities and material culture (Hodder 1977). Several scholars of African Seminole history, however, have offered that the close spatial proximity exhibited historically between African Seminole and Seminole Indian settlements in Florida is not necessarily an indicator of intergroup cohesiveness, frequent exchange, or the erosion of cultural distinctions (Mulroy 2007; Dixon 2014, 2020a). According to Mulroy (2007: 32–33), “When left to their own devices, Indians and maroons preferred separation to integration. They interacted substantially only during military campaigns, and then they fought in separate companies under their own leaders.” Markedly, these authors underscore that separate living arrangements contributed to the maintenance of a separate and African-based cultural identity amongst Florida’s African Seminole communities. For Mulroy (2007: 30–33), the exclusion of the majority of peoples of African descent from the Seminole Indian clan system contributed to the maintenance of a unique African Seminole identity, including a unique language and cultural practices despite documented instances of cohabitation, cultural exchange, and intermarriage. Similarly, Dixon (2014: 56) stresses that African Seminoles be understood as “a nation within the Seminole Nation.”
While this body of previous scholarship has made a significant and valuable contribution to African/Black Seminole cultural history, to characterize African-Native American relationships in Florida as uniform risks essentializing African Seminole (and Seminole Indian) communities. Past scholarship, however, has not generally attended to systematically explore the histories of individual African-Native American settlements, albeit with the exceptions of Pilaklikaha and Angola (Weik 2002, 2009, 2012a; Howard 2013; Baram 2012, 2021; Weik 2007). According to Weik, “the formation, change, and functioning of particular African-Native American settlements is not well understood, in part, because past studies have focused on regional and family scales of analysis concerning cultural identity, intercultural relations, borderland politics, and slavery” (Weik 2009: 208). Weik (2009: 207–8) has also drawn additional attention to the strong androcentric bias characterizing much of African Seminole historiography, as past scholarship has traditionally concentrated on the exploits and biographies of prominent male leaders (e.g., Abraham, John Horse) while overlooking the central role(s) of women within African Seminole communities. Archaeological research on African Seminole communities, in particular, has greatly expanded scholarly attention to the histories of individual settlements.

Jordan T. Herron (1994) was the first archaeologist to explicitly formulate what can be considered a “Black Seminole Settlement Pattern.” Coinciding with a growth of archaeological interest in maroon heritage during the 1980s and early 1990s (Agorsah 1994), a core question underlying Herron’s study was whether African Seminole communities formed in Florida in the context and aftermath of the Patriot’s War [1812-1814] fit a model of maroon settlement exhibited elsewhere in the Western hemisphere. This larger body of maroon archaeological
research has historically focused on both well-established maroon communities as well as those that have been referred to as “refuge sites.” Norton and Espenshade (2007: 6–7) distinguish between these two settlement categories, with the former exhibiting characteristics shared with non-maroon heritage sites, such as persistence of residential stability, permanent structures, and were well-known and at times tolerated by colonial entities (e.g., Jamaica, Suriname). In contrast, maroon refuge sites are held to exhibit characteristics that Norton and Espenshade (2007: 7–9) posit to be more methodologically challenging. Markedly, the characteristics examined by Herron more closely fit the model of refugee sites. Herron asked whether African Seminole communities in Florida similarly prioritized inaccessible, concealed, and defensible locations for settlement from which they could better contend with settler colonial violence and attempts at capture and (re)enslavement (Herron 1994: 41-42). For Herron, Seminole Indian communities were experiencing some of the same settlement pressures, yet research on African Seminole settlements at the time was limited.

To test these assumptions, Herron focused primarily upon surface collections recovered from the African Seminole settlement of Pilaklikaha, although he originally anticipated to conduct a comparative study of Pilaklikaha, Boggy/Kettle Island, and the “Negro Towns” depicted in Captain Hugh Young’s 1818 map. Herron noted that all three of these settlements met the condition of being displaced from the Alachua Savannah after 1813-1814 (Herron 1994: 41,69). Additionally, all three settlements were located within a few miles of a closely affiliated Seminole Indian settlement. Additionally, based on an assessment of the documentary/cartographic record, archaeological surface collections, as well as inferences drawn from the physical geographical of the site (Herron 1994: 66),
Herron made an argument confirming the historical location of Pilaklikaha. He ultimately concluded that all three settlements conformed to a maroon model.

Herron’s work laid an important foundation for subsequent investigations of African Seminole settlements in Florida. Regrettably, Herron was unable to complete a more robust and comparative analysis of settlement patterning, or his additional interest in identifying those African Seminole settlements formed in the Alachua Savannah prior to 1813. Several aspects of Herron’s study and conclusions, however, should be critically evaluated. First, Herron and other authors have tended to privilege considerations of site defensiveness in settlement location choices, situating settlement decision-making within a context of U.S. settler colonial violence while highlighting defensive factors impacting maroon societies (i.e., capture taking, slave raiding). Recent work by Ibarrola (2021: 29), however, has questioned whether Pilaklikaha can be said to be as concealed and inaccessible as the “maroon” label might suggest, especially given the frequency with which the settlement was recorded and visited by Euro-Americans historically. Additionally, Amaral (2017: 215) has aptly suggested that we must interrogate how we conceptualize understandings of “remoteness” and “inaccessibility” in the study of maroons/marronage—underscoring the danger of essentializing maroons and maroon geographies.

Second, Herron’s study lacked extensive sub-surface artifact collection, and thus his notion that Pilaklikaha exhibited a material signature distinct from Seminole Indian sites based primarily on artifact quantities should be read critically. Scholarship on contemporaneous Seminole Indian sites/settlements in Florida has drawn attention to the possibility that individual sites/settlements could carry unique material signatures, complicating the potential for Pilaklikaha
to serve as a representative “type” for defining additional African Seminole sites/settlements. Brent R. Weisman’s (1989: 166–74, 2007) examination of variability within the Seminole and Miccosukee archaeological record and attentiveness to the cultural impact of individuals (Weisman 2012) raises important considerations for developing a unique African Seminole archaeological signature, as unique clan affiliations, nativist movements, and the influence of individual actors must now be considered as potential sources of variation, and not necessarily markers of, larger racial and ethnic groupings.

Finally, Herron’s study did not explicitly address how African Seminole communities might have dealt with potentially competing settlement priorities. For instance, given a hammock more conducive to agriculture/animal husbandry, a hammock in a more defensible, inaccessible area, and a hammock within closer proximity to an affiliated Seminole Indian community, what settlement priority would take precedent? Admittedly, while Herron’s study introduces three potentially important variables/factors influencing settlement location choice, it does not explicitly address the dynamics of interaction between them. As discussed in the previous chapter, archaeological applications of settlement ecology may offer insight into these decision-making processes.

Mitchem and Weisman (1987) conducted a study of sites/settlements within the Withlacoochee Cove region of Florida’s central peninsula, including a survey of the well-documented African Seminole site/settlement of Boggy/Kettle Island associated with Sitarkey and Osceola’s Powell’s Town site. The initial survey focused on four areas of the island, including an area immediately north of the island known as “Indian Field.” Notably, despite the site’s strong historical documentation, Mitchem and Weisman concluded that “artifactual
evidence does not serve to strengthen this association.” In the absence of a comparative collection from an African Seminole site at the time, the authors state that interpretation of the site was admittedly limited. In the later *Seminole Heritage Survey* (Carr & Steele 1993: 266) further testing was suggested.
Figure 4.1. Path leading to Boggy/Kettle Island, Jumper Creek Wildlife Management Area (Davis 2021)
In comparison to present-day landscape of Pilaklikaha, the Boggy/Kettle Island more closely resembles the character of Norton and Espenshade’s (2007) “refuge site.” During a field visit to the site in summer of 2021, the standing water surrounding the island prohibited straightforward access [Figure 4.1]. Both Weisman (2009: 71) and Weik (2009: 218) have previously underscored the defensive and moat-like qualities exhibited by the Withlacoochee Cove region, and future fieldwork would likely present some of the same logical challenges encountered in similar settings, such as the Great Dismal Swamp crosscutting North Carolina and Virginia (Sayers 2014). In comparison to the relatively rich and varied material assemblage recovered from several of the sites in the swamp exhibiting characteristics of semi-permanent as well as permanent residence (Sayers 2014: 119), Mitchem and Weisman’s findings at Boggy/Kettle Island underscore that archaeological survey should be cognizant of the differential qualities exhibited by sites situated within seemingly similar ecological regimes.

Weisman (2000, 2009) has also contributed to our understanding of African Seminole settlement priorities, albeit with a framework explicitly attentive to the relationships between African Seminole and Seminole Indian communities. Based on a reading of primary and secondary sources, Weisman centers his interpretation on the interrelated themes of labor and survival. Weisman (2009: 71–72) posits that Seminole Indian communities acted as “middlemen” between African Seminole communities and the external world, which provided persons of African descent with a degree of protection in exchange for agricultural tributes and their roles as guides, interpreters, and military leaders. Notably, Weisman suggests that Euro-American travelers could only gain access to African Seminole communities by first gaining passage from
Seminole Indian leaders, as in the case of Horatio’s Dexter’s experience traveling from Micanopy’s settlement of Okahumpka to Pilaklikaha. For Weisman (2009: 72), “to live outside this system was to risk great peril,” which is highlighted by accounts from the period recording the presence of refugees at several settlements throughout the interior. Weisman’s attentiveness to the role of intergroup relations in settlement processes complements Herron’s work.

During the 1990s and into the 2000s, a parallel body of scholarship on African Seminole settlement emerged from archaeological and ethnohistorical research conducted with descendant communities in Oklahoma, Texas, Mexico, and the Bahamas. At the same time as the Seminole Heritage Survey, a 1993/1994 Cultural Resource Management Project in Brackettville, Texas (Mock & Davis 1997) excavated two sites within what was designated as the Black Seminole village/encampment of Las Moras in a 1902 U.S. military map at Fort Clark. It was an interdisciplinary and methodologically integrative project, combining archaeological investigations as well as ethnographic research with African/Black Seminole descendant communities. Archaeological investigations recovered the foundations of a Black Seminole household, including the remains of a chimney, a hearth lined with charcoal, and an assemblage of artifacts (e.g., buttons, ceramics, military insignia) (Mock 2010: 15). Historic photographs taken during the mid-late nineteenth or possibly the early twentieth century reveal a compound-like settlement structure (Mock 2010: 94–95, 109) [Figure 6.1].

Mulroy (2007: 31–32) has suggested that post-Removal Black Seminole communities may shed light on key dimensions of African Seminole experience in Florida, including social-political and household organization. Rebecca Belle Bateman (1990, 2002), Shirley Boteler Mock (2010), and Rosalyn Howard’s (2008,
linguistic and ethnohistorical studies of Black Seminole descendant communities in Oklahoma, Texas, Mexico, and the Caribbean (Bahamas), in particular, underscore the persistence and transformations of African Seminole lifeways in what has been considered a secondary Black Seminole diaspora. Bateman’s (1990, 2002) historical ethnography of African Seminole descendants in Oklahoma centered questions of kinship and family organization, while subsequent research interrogated considerations of naming patterns. Bateman’s discussion of the ways kinship and gender structure individual and collective forms of labor (Bateman 1990: 24, 67) is particularly informative, as available eyewitness accounts of African Seminole collective labor during the early nineteenth century provide limited information regarding how activities were organized and mobilized (Weik 2009: 228–29). Mock’s (2010: 297) ethnographic account of Black Seminole/Mascogo lifeways in Texas and Mexico, additionally, draws attention to questions of mobility and sedentism, underscoring that Black Seminole/Mascogo communities resided on both sides of (and often transgressed) the United States-Mexico border during their history. Mock’s work, however, is perhaps most foundational for its role in highlighting the experiences of women within Black Seminole communities, including women’s roles as “trackers, traders, horticulturalists, engineers, artisans, guides, and inventors” as well as keepers of cultural-linguistic traditions (Mock 2010: 30).

Rosalyn Howard’s (2008, 2013) historical ethnography of Black Seminole descendant communities residing on Andros Island, Bahamas, however, highlights some of the opportunities and challenges for employing direct historical analogies in the “reconstruction” of African Seminole experience. According to Lyman and O’Brien (2002: 317–19), three considerations are
important for evaluating direct historical analogies in archaeology, including (1) the consideration of time depth, wherein the strength of a specific historical analogy is understood to decrease with the increasing temporal distance between groups; (2) the challenge of identifying cultural traits that can be considered homologous, or those traits that represent core elements of a culture and not isolated aberrations to a cultural norm; and (3) questions of analogical directionality, noting the difficulty of identifying and the direction and content of change between groups over time and across space. Howard’s (2008: 94–96) discussion of Black Seminole subsistence systems on Andros Island, for example, highlights that some features of the community’s subsistence practices have changed from those exhibited by the community during the earliest years of (re)settlement on Andros Island during the 1820s to the time of Howard’s ethnographic research. If taken uncritically, the limited role of farming observed by Howard at Red Bays could be projected problematically upon Florida’s ancestral African Seminole and African maroon communities, or projected forward as a defining element of “African Seminole” culture. Juxtaposition of multiple lines of evidence and judicious use of analogies remains necessary.

One of the core challenges in the study of African Seminole experience is the absence of a substantial archive of written materials produced by these communities during their time in Florida. Some surviving records are associated with prominent African Seminole leaders, such as Abraham (Souanaffe Tustenukke), a leader of Pilaklikaha and an advisor-interpreter for the Seminole principal chief Micanopy. Other reflections of African/Black Seminole practices and cultural beliefs emerge from the ethnohistorical and ethnographic records produced alongside descendant communities. And although the “African-base”
(Dixon 2020a: 21) of African Seminole society should be noted, African American, Seminole Indian, and Euro-American traditions also shaped (and were shaped by) African Seminole communities (Weik 2009: 230–31). In the next section, I summarize how archaeology has contributed to these discussions.

4.2.1 Pilaklikaha, an African Seminole Settlement in Central Peninsular Florida

Outside of the largely autonomous settlement of Angola (Baram 2012, 2021; Howard 2013), Pilaklikaha remains the most extensively excavated African Seminole settlement within central peninsular Florida to date. Using a comparative archaeological framework and building upon Herron’s initial study, Terrance Weik’s early work (2002) at Pilaklikaha addresses two major considerations: (1) the distinctiveness of the intra-site spatial layout of African Seminole settlements from contemporaneous Seminole and Muscogee, plantation, and ancestral West African town layouts and (2) the presence of a different range of pottery rim styles between African Seminole and Seminole Indian settlements in Florida. Markedly, Weik’s collected body of scholarship on African Seminole material culture at Pilaklikaha remains the most clearly articulated attempt to evaluate whether a distinctive structural and material signature is exhibited by ancestral African Seminole settlements in Florida.

Initial comparison of the spatial layout and material assemblage of pottery at Pilaklikaha revealed a degree of difference between Pilaklikaha and comparative assemblages drawn from African, Seminole and Muscogee, and plantation contexts that could be mobilized for distinguishing African Seminole material assemblages (Weik 2002: 167–71). Weik (2002: 140) originally hypothesized that Pilaklikaha exhibited a comparably larger site surface area and
“featured an asymmetrical, non-geometric site layout that differed from the family-homestead arrangement of most Seminole Indians, and the linear plantation villages of the southeastern United States.” Concerning material culture, a comparatively wider range of rim styles and unique triangular punctate rim style were found to differentiate Pilaklikaha from Seminole Indian and Muscogee (Creek) sites/settlements sampled in Weik’s original study (Weik 2002: 150–51). Additionally, the wider assemblage at Pilaklikaha did not exhibit a noticeable absence of European trade goods found at some Seminole Indian sites (e.g., Powell’s Town), which has been previously interpreted as evidence of nativist sentiments within Seminole Indian society (Weisman 2007).

Given the relatively sparse material records of contemporaneous and ancestral African Seminole settlements within the region, it remains unclear whether the archaeological signature at Pilaklikaha is representative of other African Seminole communities. Ongoing archaeology at the African Maroon settlement of Angola along the Manatee River, additionally, may not be directly comparable with Pilaklikaha and other African-Native American settlements. Given Pilaklikaha’s close association with the Seminole Indian settlement of Okahumpka lead by Micanopy, as well as understandings that African/Black communities in Florida could at times exist separately and independent from Native American communities (Saunt 1999: 247; Howard 2013: 45), a shared material signature across African Seminole and other African maroon settlements in Florida cannot be assumed. Furthermore, at this time a clear and unique material signature differentiating early nineteenth century African Seminole and Seminole Indian/Miccosukee assemblages has been strongly articulated. Admittedly, without the aid of direct historical approaches, it is
likely that the site/settlement of Pilaklikaha would not have been classified as an African or Black Seminole settlement solely upon its spatial layout and/or material assemblage (Weik personal communication 2021). We must also hold space for the possibility that African Seminole settlements in Florida reflected and/or diverged from the spatial configuration exhibited by Pilaklikaha.

Weik employs an integrative theoretical approach to African Seminole cultural and settlement histories, addressing (1) inter-group cultural contact, (2) diaspora, (3) race, racialization, and racism, (4) ethnogenesis, and most recently, (5) cultural transformation and (6) anti-slavery resistance. As mentioned previously, Weik encourages an integrative, yet judicious approach to the application of concepts and theoretical frameworks (Weik 2002: 87–88). Weik’s scholarship, moreover, is foundational for its nuanced exploration of a wide-ranging set of themes/topics in African Seminole cultural history, from considerations of historical demography to considerations of religion, ritual, and spirituality in African Seminole life. Weik’s scholarship is also notable for its integration of archaeological, documentary, cartographic, linguistic, and artistic representations to explore African Seminole settlement histories. I position my own work at the regional scale as complementary to the in-depth approach Weik pursued at Pilaklikaha, but also aim to follow core elements of Weik’s framework for investigating past settlement processes across central Florida.

Concerning questions of settlement ecology, research at Pilaklikaha has provided important insights into the historical trajectory (or life history) of African Seminole settlements in Florida. Although recent applications of settlement ecology have focused on settlement decision-making, and specifically those initial periods in which site location choices are made, Weik (2012a: 127)
has explored the non- and multi-linear possibilities of Pilaklikaha’s foundational period. Drawing upon concepts in ethnogenesis theory (e.g., group formation, splitting, joining), Weik (2012a: 128) suggests that “[Pilaklikaha] may have been settled by a single group who undertook one in-migration at a particular point in time, by multiple migrations, by seminomadic inhabitants, or by a combination of foundational scenarios.” Weik’s research at Pilaklikaha, moreover, has opened additional space for the consideration of whether socio-cultural, historical, and/or environmental-topographical factors were more (or less) central in shaping African Seminole settlement location choices (Weik 2002: 18, 169).

Proceeding from theories of diaspora, ethnogenesis, and cultural transformation, a range of West/Central African, African American, Maskoki, and Euro-American traditions may have influenced African Seminole settlement processes (Weik 2012a: 131–33). E. Kofi Agorsah (1988, 1999, 2003) has highlighted the potential role of social ties, cultural traditions, and collective memory in shaping African Diaspora settlement processes. For Agorsah (1999: 46), maroon settlements are important locales for the study of settlement in situations “outside the constraints imposed by the slavery system and where the greatest freedom to express cultural values and continuities exist.” Admittedly, Agorsah further states that part of the difficulty of this endeavor is to define the degree(s) of “freedom” individuals and communities had/have in their settlement choices, underscoring that we “must clearly define the decision-making parameters” (Agorsah 1999: 53). Given the limited information we have regarding African Seminole socio-political organization in Florida (Weik 2009: 223–25), in this study I take an exploratory approach to decision-making processes, noting the potential for multiple configurations of social organization.
Noting the prevalence of violent conflict and captive taking in Florida during this period, we may also consider the role of defensiveness in shaping African Seminole settlement strategies [Figure 4.2]. Some African Seminole and in Florida may have pursued risk-averse settlement and subsistence practices in response to captive taking (VanDerwarker & Wilson 2016; Kellett 2017; Melton 2018b), as previously suggested by Baram’s (2012: 118–19) discussion of escape crops/agriculture at Angola. Weik (2012a: 128–30) has suggested that African Seminoles may have prioritized the defensive qualities of the environment (e.g., the moat-like characteristics of hammocks) and strategies of flight rather than the construction of fortifications such as earthworks, although this was not the case for all African Seminole settlements in Florida and the Southeast. According to Mulroy (2007: 11), during the late eighteenth century a Black community had erected palisades near Chiaha, a Creek-Seminole town on the Chattahoochee river near present-day Columbus, Georgia. Some residents at Pilaklikaha and other African Seminole settlements in Florida, including Abraham, experienced life at fortified settlements, including Negro Fort on the Apalachicola River. Weik (2012a: 130) suggests that individual and collective memory may have played a central role in strategic decision-making with implications for settlement form.
Figure 4.2 “Burning of Pilak-li-ka-ha by Gen. Eustis” (Gray & James 1837)
Despite the increasing degree of attentiveness to risk and hazards within archaeological studies of settlement decision-making, scholars have not reached consensus over the role of risk in shaping settlement priorities. While site/settlement defensibility is considered by some scholars to be a lower ranked priority when compared to a settlement’s proximity to available land, water, and food resources (Kellett 2017: 230–31), other scholars have stressed that “the quest for security was the decisive factor in the choice of settlement” (Bah 2003: 16). In other ways, we must remain attentive to the offensive implications of settlement location choices. In Florida, anti-slavery and anti-colonial resistance manifested through both defensive as well as offensive tactics, including the raiding and plunder of plantations for both resources as well as enslaved persons (Carrier 2005; Dixon 2014). In this study, priorities of settlement defensiveness and offensiveness are not assumed; rather, they are subject to interrogation, as are other variables that may have potentially influenced settlement location choices.

Perhaps the most significant influence of Weik’s collected body of work upon this study is the complication of settlements-as-communities, as well as his appreciation of multi-scalar and landscape-oriented approaches. For Weik, two problems must be avoided in the study of a specific African Seminole historical settlement are the assumption that archaeological “sites” are isomorphic with the space inhabited by a certain society, and the idea of a homogeneous, bounded community. These challenges are addressed by shifting inquiry between individual acts and group relations, by considering ancestral (and descendant) analogues and idiosyncratic sources for beliefs, and by oscillating the focus from local to regional contexts. Places and material culture are viewed as derivates of and catalysts for human experiences and meanings across time and space... Settlements and the intervening countrysides are not randomly inhabited or used. They are not merely the backdrop for human action. Space is socially constituted and constituting (Weik 2009: 208–9).
It is a hope that this study’s regional scale will complement the detail exhibited by the settlement-level case studies completed at Pilaklikaha and most recently at Angola. At this smaller spatial and temporal scales, questions of site demography, seasonality, and inter-settlement movements can be explored with a degree of nuance needed to illuminate the experience of individual lives, especially through material culture. Regional perspectives, nonetheless, offer the potential to extend anthropology’s comparative perspective, wherein similarities and differences between settlements can be further examined. Both approaches have the potential to contribute to a multi-scalar and comparative perspective.

A final set of considerations examined in Weik’s model of African Seminole settlement are questions of spirituality. While settlement archaeology/ecology theory has traditionally foregrounded considerations of subsistence, labor, and political economy when framing settlement processes, it is imperative to examine the potential role of African (as well as Indigenous North American) spirituality in African Seminole experience. As mentioned previously, Brown’s (2012: 24) scholarship on the spiritual dimensions of African-Atlantic cultures in the Lowcountry stresses a need to “look beyond agriculture and the work of slavery to explore perceptions of the natural environment as part of the contested terrain of power struggles between the enslaved and enslavers.” Recent applications of settlement ecology theory have already begun to expand beyond Netting and Stone’s early attention to agrarian societies (Kellett & Jones 2017: 11), but certainly more attention can be paid to the breadth of relations between humans, non-human animals, and aspects of what we have historically struggled to define conceptually as the “natural world.”
In his discussion of Pilaklikaha, Weik (2009: 230–32, 2012a: 148–49) suggests that divination may have played an important role in the selection of settlement locations, while spirituality likely shaped broader perceptions of the natural environment. Weik (2009: 231–32) also suggests that African Seminoles may have participated in forms of communal socialization, including both traditional African-derived traditions (e.g., first fruit ceremonies) and Christian-based religious observances (e.g., Christmas celebrations). African Seminoles may have also participated in ceremonies shared with neighboring Seminole Indian communities (e.g., “The Green Corn Dance”), as suggested by the forms of material culture recorded by U.S. soldiers following the destruction of Pilaklikaha, including turtle shell rattles, ball sticks, and flutes (Weik 2012a: 149).

To date, scholars have not investigated the spatial location of African Seminole settlements in relation to sites interpreted as significance spaces of Seminole Indian ceremonialism, such as the “Flying Eagle Ranch” site within the Withlacoochee Cove (Weisman 1989: 110–11). As will be discussed in the final chapter, the exploration of spiritual landscapes is a worthwhile endeavor.

Finally, my study aims to build upon the scholarship of Mary Elizabeth Ibarrola (2016, 2021). Using a regionally oriented and comparative framework, Ibarrola has explored Pilaklikaha’s material assemblage alongside contemporaneous sites of African Diaspora heritage in Florida. Central to Ibarrola’s work is the question of “resistance.” Upon review of African Diaspora scholarship (especially within archaeology), Ibarrola observes a degree of difference between scholarly approaches to settings of marronage and enslavement. As an intervention, Ibarrola (2016: 12) situates marronage “within a regional context, as part of the spectrum of African and African American life in
the colonial world, rather than as a discrete entity.” Ibarrola’s work highlights the common experiences of Florida’s maroon and enslaved populations, underscoring that “Maroon experience cannot be understood by looking at ethnic identity [ethnogenesis] or resistance alone” (Ibarrola 2021: 54). Material traces of adaptation, cultural transformation, and resistance, in turn, can be recognized in enslaved as well as maroon contexts. By studying multiple settlements within a regional context, it may be possible to explore both variation as well as the similarity of experience between African Seminole communities.
CHAPTER 5
MATERIALS AND METHODS

This chapter outlines the materials and methods used in this study. While the previous chapters focused primarily on theoretical considerations and the framing of African Seminole cultural histories in Florida, this chapter focuses on the “operationalization” of settlement ecology (Kellett & Jones 2017: 13). The chapter closes with a discussion of my analytical methods and framework.

5.1 Sites/Settlements

Following Herron (1994), this project is directed toward the investigation of African Seminole settlements formed within Florida’s central peninsular interior [Figure 5.1], considering the period immediately following the Patriot’s War [1812-1814] to the outbreak of the Second Seminole War [1835-1842]. Fifteen settlements categorized as “African Seminole” were examined in this study. Nine of these settlements were previously digitized as discrete points and acquired directly from the Florida Master Site File (FMSF), the State of Florida’s official inventory of historical and cultural resources containing information on more than 200,000 cultural resources and copies of over 22,000 manuscripts curated by the Florida Department of Historical Resources. An additional six settlements were identified during review of secondary scholarship on African Seminole
archaeology and historiography, as well as through a more limited review of primary sources. A selection of secondary and primary sources consulted for each African Seminole settlement are provided in Table 5.1 and Table 5.2.

In line with these parameters, several well-known settlements in Florida discussed in relation to African Seminole historiography will not be considered within this study, including (1) settlements occupied prior to or destroyed during the Patriot’s War [1812-1814], including Fort Mosé north of St. Augustine and the Alachua Savannah settlements of Cuscowilla and Payne’s Town; (2) settlements that had a predominant affiliation with a Euro-American military fortification, such as Negro Fort along the Apalachicola River, as I aimed to prioritize spaces without resident Euro-American populations (although Euro-American material culture is found at African Seminole settlements); and (3) coastal settlements, such as the settlement of Angola. A discussion of site definition, categorization, location, and chronology is presented below.
Figure 5.1. African Seminole Settlements within the Primary AOI with Depiction of the Extended Boundaries of the Moultrie Creek Reservation (Royce 1971).
5.1.1 Site Definition

Artifacts and features collected and documented through surveys and excavations remain the normative basis upon which “sites” are defined as “settlements” in archaeological applications of settlement ecology, often through (1) the delineation of settlements based on assumptions of permanency and seasonal occupation; (2) the presence, number, and form of structures; (3) evidence of domestic activities; and/or (4) population size (Jones 2010; Jones & Ellis 2016; Ingram 2017). Alternatively, artifact concentrations and specific architectural features (e.g., permanent structures, palisades) have been employed as basic units of analysis (Loughlin 2017). Given that the majority of African Seminole settlements investigated in this study are not associated with ground-truthed archaeological excavations (Carr & Steele 1993; Herron 1994), alternative approaches leading to the designation of sites-as-settlements were necessitated. Considerations of site/settlement definition are presented in detail below.

Researchers encounter several challenges in comprehending Florida’s demographical character during the early nineteenth century. For Euro-American chroniclers, Seminole Indian (and African Seminole) “towns” could contain as many as several hundred residents as well as less than two dozen individuals (Weisman 1989: 82–83). African Seminole and Seminole Indian settlements, moreover, exhibited a potentially wide range of structural forms, ranging on a spectrum from more nucleated to more dispersed arrangements. Initially, Norton and Espenshade’s (2007: 6–7) distinction between stable marron communities (i.e., villages) and marron “refuge camps” was considered. However, as description rather than prediction of site/settlements was this
study’s aim, and given the limited number of communities that have been documented archaeologically, designations between “village” and “camp” are depended upon the accuracy of Euro-American depictions of these communities. Weik (2009: 221) contends that different population estimates between Euro-American chroniclers “may have resulted from different estimation methods, errors, speculation, or actual population fluctuations,” as well as active efforts on the part of African Seminole and Seminole Indian communities to conceal their locations and population numbers. Markedly, archaeological applications of settlement ecology have explored alternative modes to estimate population densities that are less reliant on the documentary record (Jones 2008, 2010).

While Euro-American descriptions of African Seminole and Seminole Indian settlements should not be approached uncritically or in isolation of other sources of evidence, comparisons between similar and different types of Euro-American sources (e.g., documents, artistic representations) suggest a degree of potential variance in the spatial arrangements of Florida’s ancestral African Seminole and Seminole Indian communities. Captain Hugh Young’s sketch map of the Negro Towns situated along the Suwanee River [Figure 5.2] suggests that many settlements may have extended over much larger areas than can be spatially represented as isolated points. Similarly, early chroniclers recorded that Black settlements extended nearly fifty miles along the Apalachicola River in Florida’s panhandle during the late eighteenth and early nineteenth centuries, although only the Negro Fort (now Fort Gadsden) has garnered sustained attention (Griffin 1950; Poe 1963), associated fields extended for miles north of the site along the Apalachicola River. Weik’s (2009: 220) research at Pilaklikaha, moreover, underscores the importance of consulting multiple lines of evidence,
including archaeology, artistic representations, and the descriptions of early chroniclers, to hypothesize the spatial arrangements of these settlements.

Considering these methodological considerations, querying of the FMSF database and other archaeological reports for recorded settlements with distinct structural or artifactual signatures was not pursued, although this approach has proved beneficial for linking historically documented Muscogee and Seminole Indian towns to archaeological assemblages (Buffington 2009). Rather, this project relies primarily upon the results of direct-historical approaches employed in Florida historical archaeology over the past century, whereby settlements were identified through multiple lines of evidence (e.g., diaries, land survey records, historical maps) not restricted to archaeological survey and excavation. Importantly, the majority of African Seminole settlements examined in this study were historically identified as secondary outcomes of cultural resource management and Indian Claims Commission surveys of Seminole Indian and Miccosukee heritage in Florida (Cline 1974b; Carr & Steele 1993; Herron 1994).
Figure 5.2. Map of Bowleg’s Town II and the Negro Towns on the Suwanee (Craig 1969: 177)
Other African Seminole settlements were identified through the author’s review of African Seminole archaeology (Herron 1994; Weik 2002, 2007, 2009, 2012a; Howard 2013; Ibarrola 2016; Baram 2021; Ibarrola 2021); Seminole, Miccosukee, and Muscogee/Creek archaeology (Mitchem & Weisman 1987; Weisman 1989; Carrier 2005; Blakney-Bailey 2007; Buffington 2009); and African Seminole historiography (Littlefield 1977; Mulroy 1993a; Porter 1996; Landers 1999; Twyman 1999; Weisman 2000; Mulroy 2007; Weisman 2009; Dixon 2014, 2020b). In each case, individual settlement attribute information was recorded and cross-referenced with materials available in the FMSF. With the flexibility of GIS, sites/settlements may be added to this dataset or modified based on the acquisition of additional attribute and locational information. The following sections address site categorization and the evaluation of locational information.

5.1.2 Site Typology/Categorization

In archaeological approaches to settlement ecology, site typologies are used both to classify sites-as-settlements and to subdivide and compare smaller units within larger analytical categories (Jones & Ellis 2016). In this study, the subclassification of settlements within the broader category of “African Seminole” is constrained by the incomplete nature of the attribute information available, especially in the case of those that are not archaeologically identified. Importantly, this project focuses on those sites that are historically defined as “settlements,” “towns,” “villages,” and “plantations,” thereby excluding an important number of archaeological sites (e.g., artifact isolates, surface scatters), historic “camps” (Weisman 1989; Carrier 2005; Lawres 2012, 2014; Fenno et al.)
2017), and other culturally significant places that would provide a fuller and more nuanced understanding of ancestral African Seminole landscapes.

A further consideration in the subcategorization of African Seminole settlements is the anthropological and historiographical tendency to conflate archaeological sites with fixed, homogeneous, and bounded notions of “community” (Gokee 2016: 11). Horatio Dexter’s survey of the peninsula during the early 1820s highlights Florida’s racial and ethnic heterogeneity during the early nineteenth century, as several Seminole (i.e., Indian) villages are documented with significant populations of people of African descent (i.e., Negroes, Black), such as Apilshopko (40%) and Apilchapoocha (60%) (Boyd 1958), thereby complicating straightforward racio-ethnic site typologies. Historical records also suggest that the Seminole Indian leader Micanopy and his wives maintained a two-story residence at Pilaklikaha in addition to a residence at Micanopy’s nearby settlement of Okahumpka (Weik 2009: 219). Questions of inter-site movement should also be considered in considerations of demography.

Site demographic figures should be understood as point-in-time observations (Jones 2008, 2010: 12), where population estimates take into consideration the timing of population changes as well as other impediments to the recording of site demographics by Euro-Americans. Dexter’s discussion of the ancestral Seminole settlement of Chukochatty is instructive. According to Dexter, while only three persons of African descent were residing at Chukochatty during his visit in 1823, roughly 60 persons of African descent resided at the site before slave raids occurred across the Tampa Bay region only two years prior in 1821 (Boyd 1958: 89; Brown 1991: 20–22). In other ways, Weik (2009: 221) notes that during this period U.S. government agents were at times
denied demographic information by Seminole Indian leaders for an 1830 census, underscoring intentional and tactical efforts to restrict colonial knowledge.

As noted already, although Euro-American sources can be productively interrogated to illuminate aspects of African and Native American experience, several authors have drawn repeated attention to the limitations and potential biases arising from Euro-American sources. We should not assume that Euro-Americans, especially those with interests in Native American removal and African (re)enslavement, had the capacity to understand, accurately record, and/or appreciate African Seminole residence practices, socio-spatial organization, and/or racial and ethnic boundaries. In other ways, we must consider ways in which African Seminole (and Seminole Indian) communities actively contested Euro-American categories, especially along racial lines. As Weik (2012b: 133) aptly notes, “These labels fail to consider how self-liberated people defined themselves, and whether they saw race as the primary or primordial basis of their collective identity.” As such, we should proceed with caution when relying upon the period’s documentary record when defining the demographic character of any African Seminole (or Seminole Indian) settlement.

González-Tennant (2014) has drawn explicit attention to the opportunities and challenges of developing archaeologies of multi-racial/ethnic heritage sites. González-Tennant calls for a reappraisal of the often-simplistic racialization of archaeological and other heritage sites, underscoring how archaeologists and anthropologists have routinely (and problematically) engaged in “coloring archaeological sites based upon their supposed racial and ethnic histories” (González-Tennant 2014: 27; Baram 2019). For these reasons, the designation of “African Seminole” used here is restricted to those settlements where (1) the site
was historically identified as a “Negro” or “Black” and/or (2) where peoples of African descent were documented in the numerical majority of residents, while noting that these designations may be modified upon review of new information.

The site/settlement typology pursued in this study, notably, excludes several Seminole Indian settlements with recorded African presence, such as Chuckochatty. Further research is needed to engage with those Seminole Indian settlements where Africans were in the numerical minority, as these individuals may have still impacted the selection of settlement locations and/or actively participated in decision-making (Weik 2009: 223–25). Considerations of leadership, governmentality, and social organization complicate straightforward understandings of settlement decision-making, as a diverse range of social dynamics could have potentially framed choices of where to settle in space.

5.1.3 Site Location/Chronology

The spatial extent of the project’s primary area of interest (AOI) covers Florida’s central peninsula interior. The majority of the settlements analyzed are located within the boundaries of the U.S. reservation as it existed in 1827 three years following the Treaty of Moultrie Creek of 1823 (Royce 1971), which includes a northern area in the immediate vicinity of the historic Seminole Indian Agency and Fort King near present-day Ocala. Research should be conducted in Florida’s panhandle, along the coastlines, and in South Florida moving forward.

As mentioned previously, my selection of ancestral African Seminole settlements was based on a review of secondary literature on African Seminole historiography. Initial effort was directed to compiling a list of settlements historically located within the study area. Challenges of this methodological
process were questions of *synonymy* (i.e., settlements known historically by more than one name or name changes over time) and *nomenclature* (i.e., absence of a standardized modes of transcription and transliteration between chroniclers) (Cline 1974b: 3–5), as well as the difficulties of addressing conflicts between lists found within the primary/secondary literature. Evaluation of the original lists of settlements dating to the early nineteenth century (often referenced and/or reproduced directly within the secondary scholarship), however, was not undertaken. Several scholars have raised a degree of caution over the accuracy and potential biases of these settlement lists, including the well-cited list of Florida towns submitted by the Mikasuki leader Neamathla dating to 1823 (Mahon 1962: 370). Some conflicts encountered during this process were ultimately resolved through a selected review of primary source materials, many of which were cited repeatedly within the secondary literature. Other conflicts, within/between sources, nevertheless, necessitate further investigation.

After assembling a list of African Seminole settlements located within the parameters outlined above, I then proceeded to select from that number those settlements formed during the project’s temporal period of interest. One major factor complicating the determination of settlement chronologies was the fact that very few secondary sources included chronological data for individual settlements. Howard F. Cline’s (Cline 1974b) *Provisional Historical Gazetteer with Locational Notes on Florida Colonial Communities* and Robert S. Carr and Willard S. Steele’s (1993) *Seminole Heritage Survey* remain two of the most comprehensive (published) catalogues of non-Euro-American settlement in Florida recorded during the eighteenth and nineteenth centuries. Still, as many site date ranges are coarsely defined in these and related secondary sources (e.g., post 1830s)
(Landers 1999: 236) or based upon limited source materials (e.g., dated to a singular diary or cartographic entry (e.g. Abraham’s New Town and Charlie’s Town) (Carr & Steele 1993). Data triangulation between sources was pursued when possible. Due to these challenges, and the incompleteness of site occupation data for the majority of the settlements included in the dataset, finer grained temporal typologies (e.g., short-term, medium long-term, and large long-term) were not developed for this study as in Jones and Ellis (2016: 89–90).

Challenges of chronology also arose from the limited ability of the author to control adequately for questions of site foundation, relocation, contemporaneity, and fissioning in all cases. Although mean ceramic dating has determined that the African Seminole presence at Pilaklikaha began around 1811-1813, Weik (2009: 219) has suggested that Pilaklikaha may not represent a single, generation-long occupation, but may have been seasonally and intermittently occupied at different times over the course of its two-decade historical trajectory [c. 1813 – 1836]. Similarly, while the trajectory of settlement relocation for some settlements is recorded historically, as in the case of Buckra Woman’s Town and the relocated settlement of Tobassa/Wahoo (Mulroy 2007: 34), it is not clear in other cases whether settlement relocation or fissioning occurred. In the case of Pilaklikaha (also known as Abraham’s Old Town), Weik (2009: 225) suggests that an ethnogenetic fissioning event at Pilaklikaha could have occurred, resulting in the formation of the nearby settlement of Abraham’s New Town. Alternatively, given comparative examples of Seminole and Muscogee/Creek histories of settlement relocation (Weisman 1989: 4–5; Carrier 2005: 163–64; Blakney-Bailey 2007: 74–75), it may also be the case that the settlement of Abraham’s New Town represents an example of population
movement to a new location, rather than fissioning of a community. Due to these considerations (and the need to set reasonable study parameters), a finer-grained chronology of settlement movement could not be pursued for all settlements in the dataset at this time. Following the framework used by Jones (2008: 10), the fifteen African Seminole settlements examined in this study represent a selected and amalgamated spatial arrangement of settlements occupied over a coarsely-grained period—in this case, the two decades between the Patriot’s War [1812-1814] and the signing of the outbreak of the Second Seminole War in 1835.

Following the selection of settlements fitting the project’s spatio-temporal parameters, a subgroup of nine settlements [Table 5.1] were acquired from previously digitized materials contained within the FMSF. Most of these settlements, however, are not associated with ground-truthed archaeological signatures and exhibit varying degrees of spatial accuracy/precision. Part of the difficulty of using the FMSF arises from the process by which archaeological and historical sites enter the FMSF itself. “The criteria for recording a resource on the Florida Master Site File are that it be adequately documented with a State Site Form and that it be approximately 50 years of age or older.” (Florida Division of Historical Resources 2019). The absence of explicit criteria leading to the evaluation of historical significance lowers the overall confidence in the FMSF dataset. Moreover, as both professionals and nonprofessionals may submit resources to the FMSF, site locational accuracy and precision cannot be assumed.
Table 5.1 List of FMSF Settlements examined with site location evaluation.

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Locational Confidence</th>
<th>Previous Field Research Recommendations</th>
<th>Sources (Archaeological Reports and Selected Publications)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abraham’s New Town</td>
<td>Medium</td>
<td>Site warrants additional investigation</td>
<td>Carr and Steele (1993)</td>
</tr>
<tr>
<td>Big Swamp</td>
<td>High</td>
<td>Site warrants further investigation</td>
<td>Carr and Steele (1993)</td>
</tr>
<tr>
<td>Boggy/Kettle Island</td>
<td>High</td>
<td>Recommended for further testing and preservation</td>
<td>Porter (1950); Weisman (1985); Mitchem and Weisman (1987); Carr and Steele (1993); Herron (1994)</td>
</tr>
<tr>
<td>Charlie’s Town</td>
<td>Medium</td>
<td>Site needs to be precisely located in the field</td>
<td>Carr and Steele (1993); Torres (2005)</td>
</tr>
<tr>
<td>Emathla’s Town</td>
<td>High</td>
<td>Recommended for further testing and preservation</td>
<td>McFadden (2016)</td>
</tr>
<tr>
<td>Mulatto Girl’s Town</td>
<td>Low</td>
<td>Site requires further investigation</td>
<td>Carr and Steele (1993)</td>
</tr>
<tr>
<td>Negro Town (Little Berry Branch’s Town)</td>
<td>Medium</td>
<td>This site requires further investigation</td>
<td>Carr and Steele (1993); Herron (1994)</td>
</tr>
<tr>
<td>Ocklawaha</td>
<td>High</td>
<td>Site warrants further investigation</td>
<td>Carr and Steele (1993)</td>
</tr>
</tbody>
</table>

Big Swamp, Boggy/Kettle Island, Emathla (King Phillip)’s Town, Ocklawaha, and Pilaklikaha were categorized as having relatively “high” locational confidence based on the results of archaeological investigation and/or the clear association of each settlement with a well-known landscape feature (e.g., Boggy/Kettle Island). Given the use of point rather than polygon (i.e., surface area) representation for settlements, “Big Swamp” refers to both the FMSF recorded Coe Hadjo’s Town and the settlement of Cudjo, a well-known Black leader whose settlement was visited in the Big Swamp during the 1820s. Abraham’s New Town, Charlie’s Town, and Negro Town were designated with “medium” locational confidence, given that their spatial location is estimated
within the bounds or a larger spatial unit (e.g., within a specified tract/permit of the Armed Occupation Act of 1842) and are not associated with an archaeological investigation or collections (Carr & Steele 1993: 270). The location of Charlie’s Town was recently discussed during a CRM project, as the location of the site fell within the project’s boundaries. However, no traces of an archaeological site resembling the town were recorded during this study (Torres et al. 2005).

In this study, it is important to make note of the spatial locations of Boggy/Kettle Island and Negro Town. Boggy/Kettle Island has been previously associated with references in Lt. Henry Prince’s 1837 visit to the Withlacoochee River as well as Horatio Dexter’s preceding visit during the early 1820s. According to Weisman (1989: 103), “The nameless ‘negros’ of the Prince account were certainly Sitarkey’s blacks, formerly from the Alachua savanna. Their settlement on the banks of the Withlacoochee, mentioned by Dexter in 1823, closely matches the location and description of Prince’s Boggy Island.” A 2016 CRM survey completed by SEARCH refers to the same Dexter account as the town of Sitarkey, although the authors’ state that the location of Sitarkey’s town is not known except through early historical maps (Azevedo & Arbuthnot 2016: 18). Sitarkey’s town is associated with the notable Seminole Indian leader, who is identified in the report as the nephew and successor to Bowlegs based on Simmons’ 1822 account. Sitarkey’s town is also listed as the village of Holata Amathla in the Treaty of Moultrie Creek, suggesting that may have been occupied into the early 1830s. Markedly, this report makes no reference of Sitarkey’s town as Boggy/Kettle Island. For this study, I defer to Weisman’s assessment that the location of the African majority settlement associated with Sitarkey was located on Boggy/Kettle Island in the Withlacoochee Cove.
Multiple locations for a “Negro Town” near or on the banks of the Withlacoochee River are suggested in previous scholarship. Based on historical cartography, the 2016 SEARCH report identifies the site/settlement of “Negro Town” or “Old Negro Town” as a Black Seminole community south of Sitarkey’s village (Azevedo & Arbuthnot 2016: 19). Both Lt. J. E. Johnson’s 1836 Map of the Seat of War in Florida and John Lee Williams’ 1837 map list a “Negro Town” or “Old Negro Town” in the vicinity of the Withlacoochee River independent from Sitarkey’s settlement. A site/settlement named “Negro Town” (also named Little Berry Branch’s Town), additionally, was identified within the FMSF database, but this site is located northeast of Boggy/Kettle Island and east of the Withlacoochee River. This town is referenced in Carr and Steele’s Seminole Heritage Survey (1993: 270) and is based on a tract description completed for Armed Occupation Permit #90, rather than upon Johnson’s or William’s maps.

During my review, I also found a reference describing a “Negro Town” in Simmons’ (1822: 42–45) Notices of East Florida, which is noted by Simmons as being located 30 miles west of Cudjo’s settlement in the Big Swamp (north of present-day Ocala). Mulroy (2007: 35) suggests that this settlement was associated with the Mikasuki leader Kapichee Mikko and led by the Black leader Pompey, rather than one of Payne’s successors. Of note, Simmons’ (1822: 44–45) description of this settlement appears immediately following a reference to the “Withlacouchy Creek,” suggesting that he had traveled in a southwest direction from the Big Swamp. When measured using GIS, the FMSF location for Negro Town/Little Berry Branch’s Town is located at a distance of roughly 30 miles southwest from the Big Swamp, which further suggests that this Negro Town was located northeast, rather than south, of the Boggy/Kettle Island settlement.
affiliated with Sitarkey and recorded by Dexter and Prince. For this study, I use the FMSF location for Negro Town as a basis for my spatial analyses.

Finally, Mulatto Girl’s Town was designated with “low” relative locational confidence. The settlement has not been precisely located in the field and only the general vicinity of the settlement has been determined (Carr & Steele 1993: 234). However, it was not designated as having medium locational confidence, such as in the case of Charlie’s Town, due to the presence of potentially conflicting geospatial information. Historical sources place Mulatto Girl’s Town generally south of Caskawilla/Tuskawilla Lake (Cline 1974b: 188), but these sources do not provide a measure of distance from that feature. Most secondary sources place this site immediately south of the Alachua Savannah, which has been reproduced across several maps (Brown 1991; Landers 1999; Weik 2009). Yet, the FMSF, based on geospatial information drawn from Carr and Steele’s Seminole Heritage Survey (1993: 234), places this settlement immediately south of modern-day Ocala. Mulatto Girl’s Town was ultimately included in the study based on the FMSF location. Further attention should be paid to reevaluate this settlement’s locational confidence moving forward.
Table 5.2. List of Non-FMSF settlements examined with site location evaluation.

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Geospatial Information</th>
<th>Near and Adjacent Landscape Features</th>
<th>Locational Confidence</th>
<th>Sources (Secondary)</th>
<th>Sources (Primary)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buckra Woman’s Town</td>
<td>Near Long Swamp, East of Big Hammock</td>
<td>Long Swamp; Big Hammock</td>
<td>Low</td>
<td>Swanton (1952); Simpson (1956); Fairbanks (1958); Brown (1991); Cline (1964); Landers (1999); Mulroy (2007); Rivers (2001; 2012)</td>
<td>Bell (1822 in Brown 1991: 26)</td>
</tr>
<tr>
<td>Minatti</td>
<td>South of Lake Hancock and North of Bartow; On the Southeast shore of Lake Hancock</td>
<td>Lake Hancock, Bartow</td>
<td>Medium</td>
<td>Brown (1991); Mulroy (2007); Rivers (2001, 2012)</td>
<td>Dexter (1823 in Boyd 1958); Gadsden (1824); Williams 1837; 1827 Army Map</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Canter Brown 1991: 20)</td>
</tr>
<tr>
<td>Nero’s Town</td>
<td>Immediately North of Bowleg’s Town (II) on the Suwanee River</td>
<td>Suwanee River</td>
<td>High</td>
<td>Porter (1943, 1950, 1996); Cline (1964); Craig (1969); Brown (1991); Landers (1999); Mulroy (2007); Weisman (1989, 2009); Howard (2013); Baram (2012, 2021); Steele (2021)</td>
<td>Young (1818)</td>
</tr>
<tr>
<td>Opauney’s Plantation</td>
<td>Two miles East of Opauney’s residence on the other side of Lake Hancock and East of Saddle Creek</td>
<td>Lake Hancock</td>
<td>High</td>
<td>Brown (1991); Mulroy (2007); Weisman (1989, 2009)</td>
<td>Dexter (1823 in Boyd 1958); Gadsden (1824); Yancy (1824); Army Map (1827 in Canter Brown 1991); Williams (1837, see Oponays)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tobassa/Wahoo</td>
<td>Two miles up Bowlegs Creek from its junction with the Peace Creek</td>
<td>Bowleg’s Creek</td>
<td>High</td>
<td>Brown (1991); Mulroy (2007); Rivers (2001, 2012)</td>
<td>Dexter (1823, in Boyd 1958); P. B. Prior (see Brown 1991: 373)</td>
</tr>
<tr>
<td>Tohopikalika</td>
<td>The largest island in Lake Apopka; On the Northeast Shore of Lake Apopka</td>
<td>Apopka Lake</td>
<td>Medium</td>
<td>Simpson (1956); Fairbanks (1958); Cline (1964); Mulroy (2007)</td>
<td>Dexter (1823, in Boyd 1958)</td>
</tr>
</tbody>
</table>
For those settlements not acquired from the FMSF, site locations were estimated [Table 5.2]. Estimation and digitization of settlement locations followed a multi-step process: (1) secondary sources (and referenced primary sources) were reviewed for geospatial information; (2) settlements with poor and/or limited locational information were removed from consideration; (3) of those remaining settlements, conflicts were assessed/evaluated; (4) historically documented landscape features adjacent and/or near to the settlements that could be located in contemporary maps were identified; and (5) a preliminary geospatial location for the settlement was digitized as a discrete point within the project GIS. Nero’s Town, Opauney’s Plantation, and Tobassa/Wahoo had relatively “high” locational confidence amongst this subgroup; Minatti and Tohopikalika had slightly lower (“medium”) locational confidence; and finally, Buckra Woman’s Town was designated with “low” locational confidence.

Before proceeding, it is important to note that in this study historical cartographic sources were used minimally in the estimation of site/settlement locations. Concerning the digitization and georeferencing of site/settlement locations (as well as environmental and landscape data) from historical cartography, Statatuto et al. (2017: 4) underscore the importance of evaluating the topographic accuracy, chronometric accuracy, and planimetric completeness of cartographic materials. While historical maps have been integral to archaeological inquiry for decades (Zedeño 1997; Weik 2019b), an individual cartographer’s selection of topographic features to be included and emphasized; unknown delays between topographic recording and the subsequent production of maps; and the geometric accuracy of the cartographer and distortions
resulting from GIS analysis—are all serious considerations that potentially limit the confidence of these materials as sources of site locational information.

Additionally, Stephenson (2011: 51) notes that due to the difficulty of conducting fieldwork across the peninsula during the nineteenth century, Florida was surveyed by the U.S. government over a 50 year period. Therefore, in addition sources of surveyor bias and cartographic error, analysts must also account for the possibility that state-wide spatial models (especially those constructed from the contributions of multiple surveyors, such as the GLO/PLSS) may reflect significant time delays (Walls 2015: 13). In turn, while these historical data sources oftentimes exhibit greater detail and resolution than modern datasets (i.e., topographic accuracy), they do not necessarily eliminate questions of chronometric accuracy or planimetric completeness. Expanded use of historical cartography will be proposed and discussed in the final chapter.

In the next sections, the selected variables and measurements used in this study will be outlined, followed by a discussion of analytical frameworks.

5.2 Variables and Measurements

According to Stone (1996: 7), the number of variables or factors at work in any settlement decision-making processes “is limited by little beyond the investigator’s imagination”—a reality made more difficult when considering the conceptually wide range of variables potentially influencing past settlement processes. For this study, a total of fifteen variables were examined, which can be subdivided into the following general categorizes: (1) agricultural features and (2) other non-agricultural resources [Table 5.3]. A third category, (3) intergroup
relations, adds two additional variables. As will be discussed in more detail later in this chapter, these two variable were only examined at the subregional scale.

The role of agriculture in settlement processes is a central concern of settlement ecology (Netting 1993; Stone 1996; Jones 2017a). Historical sources, and particularly eye-witness accounts by Euro-American chroniclers dating to the early nineteenth century, were the primary sources informing my exploration of African Seminole agriculture. Several named African Seminole settlements in this study were visited during the 1820s, including those visited by Horatio Dexter (Pilaklikaha, Boggy/Kettle Island, Opauney’s Plantation) (Boyd 1958); William H. Simmons (Pilaklikaha, Big Swamp, and Negro Town) (Simmons 1822); and George A. McCall (Pilaklikaha) (McCall 1868). The crop varieties recorded by these chroniclers are listed below [Table 5.4]. Descriptions of African Seminole agricultural activities also emerge from the records of Euro-Americans during the First [1816-1819] and Second [1835-1842] Seminole Wars, often in the context of finding abandoned fields and corn cribs and/or during the destruction of settlements and agricultural landscapes. These were not thoroughly examined.
Table 5.3 Variables examined with the landscape activity they index/measure

<table>
<thead>
<tr>
<th>Variable</th>
<th>Landscape Activity</th>
<th>Measurement*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of loam in catchment</td>
<td>Agriculture (Dryland Crops)</td>
<td>Area (m²) of loam sediment within buffer (NRCS)</td>
</tr>
<tr>
<td>Area of clay in catchment</td>
<td>Agriculture (Wetland Crops); Clay Source Procurement (Building Material, Ceramics)</td>
<td>Area (m²) of loam sediment within buffer (NRCS)</td>
</tr>
<tr>
<td>Area of well-drained sediment in catchment</td>
<td>Agriculture (Dryland Crops)</td>
<td>Area (m²) of poorly drained sediment (as defined by NRCS) within buffer</td>
</tr>
<tr>
<td>Area of poorly drained sediment in catchment</td>
<td>Agriculture (Wetland Crops)</td>
<td>Area (m²) of xeric hammock (as defined by NRCS) within buffer</td>
</tr>
<tr>
<td>Area of dry soil (xeric) hammock within catchment</td>
<td>Animal Husbandry; Foraging; Wood Resources</td>
<td>Area (m²) of mesic hammock (as defined by CLC) within buffer</td>
</tr>
<tr>
<td>Area of moist soil (mesic) hammock within catchment</td>
<td>Agriculture (Wetland Crops); Animal Husbandry; Foraging; Wood Resources</td>
<td>Area (m²) of hydric hammock (as defined by CLC) within buffer</td>
</tr>
<tr>
<td>Area of wet soil (hydric) hammock within catchment</td>
<td>Agriculture (Wetland Crops); Animal Husbandry; Foraging</td>
<td>Area (m²) of loam sediment (as defined by CLC) within buffer</td>
</tr>
<tr>
<td>Area of good tree growth within catchment</td>
<td>Wood Resources; Foraging; Hunting; Animal Husbandry</td>
<td>Area (m²) of sediments conducive to tree growth (calculated from CLC) within buffer</td>
</tr>
<tr>
<td>Area of forested wetlands within catchment</td>
<td>Wood Resources; Foraging; Hunting; Animal Husbandry</td>
<td>Area (m²) of forested wetland (as defined by CLC) within buffer</td>
</tr>
<tr>
<td>Area of non-forested wetlands within catchment</td>
<td>Foraging; Animal Husbandry</td>
<td>Area (m²) of non-forested wetland (as defined by CLC) within buffer</td>
</tr>
<tr>
<td>Total area of wetlands within catchment</td>
<td>Foraging; Hunting; Animal Husbandry</td>
<td>Area (m²) of forested and non-forested wetland area within buffer</td>
</tr>
<tr>
<td>Total number of wetlands within catchment</td>
<td>Foraging; Hunting; Animal Husbandry</td>
<td>Count of forested and non-forested wetlands of which any portion that falls within buffer</td>
</tr>
<tr>
<td>Number of tributary streams and rivers within catchment</td>
<td>Water; Fishing; Foraging; Hunting; Agriculture (Irrigation Canals)</td>
<td>Count of tributary streams and rivers (as defined by NHD) of which any portion falls within buffer</td>
</tr>
<tr>
<td>Length of tributary streams and rivers within catchment</td>
<td>Water; Fishing; Foraging; Hunting; Agriculture (Irrigation Canals)</td>
<td>Length (km) of tributary streams and rivers (as defined by NDH) within catchment</td>
</tr>
<tr>
<td>Number of springs within catchment</td>
<td>Water; Fishing; Foraging</td>
<td>Count of springs (as defined by NHD) of which any portion falls within buffer</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Distance to nearest named Seminole Indian settlement**</td>
<td>Intergroup Relations (Communal Labor, Trade, Communication, Defensibility)</td>
<td>Measure (km) of straight-line distance from sites to nearest named Seminole Indian site</td>
</tr>
<tr>
<td>Distance to Euro-American landscape feature (i.e., Fort King Road)**</td>
<td>Intergroup Relations (Trade, Communication, Defensibility)</td>
<td>Measure (km) of straight-line distance from sites to the Fort King Military Road (est. 1823)</td>
</tr>
</tbody>
</table>

Measurements calculated for 2km and 5km diameter buffers within ESRI ArcGIS

**Measurements calculated for secondary DFA analysis at the subregional scale

Table 5.4. Agricultural Products of African/Black Seminoles Recorded in Florida and the Diaspora

<table>
<thead>
<tr>
<th>Source Category</th>
<th>Types of Crops</th>
<th>Sites/Settings</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historical (Florida)</td>
<td>Corn, Melons, Pumpkins, Other Vegetables, Potatoes, Beans, Sugar Cane, Rice, Fruit Trees, Ground Nuts</td>
<td>Big Swamp, Boggy Island, Opauney’s Plantation, Pilaklikaha</td>
<td>Dexter (1823, Boyd 1958: 88-89, 91, 94); Simmons (1822: 38-47, 67, 77); McCall (1868: 160)</td>
</tr>
<tr>
<td>Oral History/Ethnographic</td>
<td>Corn, Melons, Potatoes, Pumpkins, Peas, Beans, Sugar Cane, Rice, Tomatoes, Oaks, Tubers, Eddy, Bay Rush, Cassava, Corn, Benny (Sesame Seed), Fruit Trees, Cotton, Wheat, Barley, Yams</td>
<td>Oklahoma, Texas, Mexico, Caribbean (Bahamas)</td>
<td>Bateman (1990: 14); Howard (2008: 82-96; 2013); Mock (2010: 63, 186-187)</td>
</tr>
</tbody>
</table>
Howard (2008, 2013) and Baram (2012)’s archival and ethnographic research draws important linkages between crop varieties grown by Black Seminole descendants in the Caribbean to early nineteenth century records describing African Seminole and maroon agriculture in Florida at Angola [Table 5.4]. For my study, I reviewed a limited survey of available oral history and ethnographic sources produced alongside Black Seminole descendant communities in the Bahamas, Texas, and Mexico to (1) evaluate the authenticity and credibility of early nineteenth century Euro-American accounts and (2) to gain insights into African Seminole agriculture and past landscape activity.

Corn (maize) and rice occur across historical, oral history, and ethnographic sources and are referenced by Euro-American chroniclers as the dominant crops produced by African Seminole communities in Florida (Boyd 1958: 91–92). To represent these predominant crops as well as the wider range of crops highlighted above, I classified these agricultural products into (1) dryland and (2) wetland categories. Each of these categories can be associated with general soil qualities (dryland = loamy, well-drained sediment; wetland = clay, poorly-drained sediment). The association of these crop varieties with the soil properties designated above, however, is not necessarily exclusive. As Netting (1968: 60–61) contends, standard (i.e. dryland) crops may be grown in drained patches of terraced soil and may be situated in close proximity to more inundated spaces used for wetland crop cultivation, including rice. Noting African Seminole connections to the Lowcountry and West Africa, rice (as well as sugarcane) cultivation among African Seminole communities in Florida has been previously interpreted as a potentially significant reflection of transatlantic African heritage.
Markedly, this study focuses most intently on the physical ways African Seminole communities may have engaged with their surrounding landscapes, with less attention to the intellectual and metaphysical dimensions of landscape perception and interaction. Ras Michael Brown (2002: 305–6) draws important attention to the ways West-Central Africans in the Lowcountry engaged with their surroundings for both “material and spiritual sustenance,” underscoring that the environment afforded resources not generally perceivable by Euro-Americans. “Outsiders,” Brown (2012: 179) contends, “almost always of European descent – who observed and recorded aspects of the culture of African-descent saw only what they were allowed to see, in large part because insiders did not wish to indulge to outsiders who typically expressed little more than contempt and condescension for what they witnessed.” Similarly, Shirley Boteler Mock (2010: 186) recounts an experience where she was initially unable to see a farm outlined by a Mascogo descendant named Alice in Nacimiento, Coahuila, Mexico: “I didn’t see anything looking like a farm—only thick brush and dried corn stalks standing in an empty field of dark cracked earth with deep furrows. Again I recalled Kenneth Porter describing the big ears of corn, lush fruit trees, and beans and melons he saw on his visits to Nacimiento in the 1940s.”

Admittedly, the potential spiritual significance of woodlands and forested areas for the procurement of medicinal herbs, or the spiritual aspects of “natural” landscape features (e.g., springs, rocks), are not represented sufficiently in this study. Spiritual phenomena, nonetheless, may have been significant if not deciding factors in the settlement location choices of African Seminole communities. Noting that I would likely underestimate the spiritual landscape
(i.e., spiritual aspects are likely present but not confined to specific area), these activities are not incorporated directly into the variable list [Table 5.3]. Rather, I will primarily explore these activities heuristically through my interpretations.

Following Jones (2016, 2017a), sediment data was acquired from National Resource Conservation Service (NRCS) soil surveys, which are based on qualitative measures of texture and drainage properties [Figure 5.3]. Although it is extremely likely that African Seminole communities in Florida differentiated between finer-grained qualities/classes of sediments than those recorded by the NRCS, such as those observed in contemporary Senegal (Gokee & Thiaw 2020: 110–11), these generalized qualitative measures were deemed appropriate for gaining a baseline understanding of how farmers (rather than land surveyors) would have evaluated the productivity of sediments for different modes of land use. Considerations of relatively more changeable sediment properties, such as nutrient levels and the presence/absence of organic matter, are not considered. Ethnobotanical research with Black Seminole descendant communities may ultimately lead to more locally and culturally derived insights into soil qualities.
Figure 5.3 Sample of Site-Catchments of 2km & 5km with Sediment Classification.
To measure sediment qualities in relation to site/settlement location, I employed standardized forms of site-catchment analysis. Site-catchments emerge from optimization theory and human behavioral ecology, and have traditionally relied upon the assumption that “human [economic] activity and mobility are limited to a certain range” (Hunt 1992: 283). Historically, both ethnographic and ethnoarchaeological studies of agricultural movement have complicated straightforward notions of habitual use areas and bounded territories, noting how variable the relationship between behavioral activities and space can be, both within a society and cross-culturally (Netting 1968; Stone 1991b, 1996). Hunt (1992) has proposed that GIS can address some of the core limitations of site-catchment analysis. GIS-based analyses have allowed for inquiry at multiple spatial and temporal scales, the integration of geospatial and attribute data, and the manipulation of catchment size as well as shape to reflect landscape activity. Nonetheless, site-catchment analysis does not resolve the question of how boundaries should be defined or modeled, nor the ways in which individuals and communities engage with environments in potentially non-optimal ways.

During the early 1990s, Savage (1990) advocated for the adoption a geographical location theory, “which would embellish existing location theory by taking into account nonoptimal behavior, imperfect knowledge, other psychological variables, socially dictated constraints, and the impact of existing patterns on subsequent patterns (processes)” (Savage 1990: 336; Zedeño 1997). In this study, site-catchment analysis must take into consideration the well-documented record of long-distance travel, collective labor, and inter-settlement movement and residence exhibited by African Seminole individuals and communities during this period. Concerning the mobilization of agriculture
labor and land tenure, past scholarship notes that African Seminole and Seminole Indian communities labored in separate as well as common fields, sometimes at significant distances away from their settlements (Dixon 2020b: 18).

While noting the limitations of site-catchment analyses, they can be useful as a baseline for archaeological research. Circular site-catchments of 2km and 5km in diameter are utilized in this study to approximate spaces of “good” sediment quality. Site-catchments of 2km were determined based on ethnoarchaeological and contemporary ethnographic studies of agricultural movement (Jones & Ellis 2016: 94), and more specifically, Stone’s observation that roughly 70% of all daily trips for farmers occurred within a 1km of residences (Stone 1996: 132). Site-catchments of 5km were also measured as an estimation of the maximum distance farmers generally travel to fields (Kanter 2005: 1191).

Site-catchments of 2km and 5km in diameter were also explored based on review of ethnohistorical materials. Euro-American chroniclers record the location of small garden plots near residences as well as agricultural fields within the immediate vicinity of several African Seminole settlements, including at Pilaklikaha and Boggy/Kettle Island. Similarly, Seminole Indian “plantations” utilizing African labor were recorded during the early nineteenth century at distances within 2 miles (3.219 km) of some settlements, such as Opauney’s Town (McCall 1868: 160; Boyd 1958: 89, 92). If, as Mulroy (2007: 26) suggests, African Seminoles engaged in similar agricultural practices to Seminole Indian communities in Florida, site-catchment analysis should consider immediate, daily, and longer-term processes of landscape use and resource acquisition.

Any effort to model the distances to which African Seminole individuals and communities were willing to travel to cultivate and acquire resources,
importantly, should not be hypothesized only according to human behavioral ecology or optimization models. Weik (2012a: 142) underscores that “African Seminoles were involved in regional economic interactions as well as subsistence and local productivity,” aptly reflected in the material and archival record associated with Pilaklikaha. In addition to the presence of Euro-American ceramics and other trade goods, the records of early Euro-American travelers, traders, and plantation owners speak to the inter-regional networks within which many African Seminole settlements were situated (Weik 2012a: 142–45).

At the local scale, accounts also suggest the greater lengths to which African Seminole communities were willing to engage in collective labor activities. Horatio Dexter noted during the early 1820s that residents at Pilaklikaha were cultivating a field of rice nearly 32.1869km (20 miles) away from their settlement (Weik 2012a: 140). Netting (1968: 86–87) further observed that agricultural fields are generally not considered within daily access (i.e., one day’s walk) beyond 5kms, and may require the building of temporary shelters or additional residences near fields. Given the added centrality of animal husbandry, particularly cattle ranching, to African Seminole and Seminole Indian communities in Florida, future studies should consider the placement of settlements relative to longer-distance (>5km). In turn, this study is biased toward agricultural considerations which privilege local, daily activities.

Site-catchments were also used to measure immediate (2km) as well as daily (5km) access to other non-agricultural resources [Table 5.3]. This category includes landscape activities related primarily to subsistence, including animal husbandry, foraging, hunting, fishing, as well as wood and freshwater resources. In this study, these activities were associated with three primary landscape
features that could be conceptually isolated across space: (1) hammocks; (2) wetlands; and (3) streams/rivers. During the early nineteenth century, African Seminole agricultural and animal husbandry practices were closely associated with Florida’s hammock ecosystems (Weisman 2009: 70–71), which oftentimes appeared to Euro-Americans as forested “islands” along watercourses and/or within more inundated settings. Hammocks, also known as temperate hardwood forests, are commonly designated as xeric (i.e., dry soils), mesic (i.e., moist soils), or hydric (i.e., wet soils) based on degrees of soil moisture, and/or are differentiated based on topographic gradients (i.e., high, midslope, low) (Platt & Schwartz 1990: 194–95). Wetlands, both forested (i.e., swamps) and non-forested (i.e., marshes), remain key sites of ecosystem diversity in Florida that are also examined here as spaces for wildlife, wetland crop cultivation (e.g., rice), and the pastoring of wetland-adapted livestock (e.g., cracker cattle). Hammocks, wetlands, and streams/rivers, moreover, served both defensive as well as offensive purposes for African Seminole and Seminole Indian communities in Florida during this period (Lawres 2012: 124–26, 2014: 560; Sivilich 2019).

Hammock and wetland distribution data was acquired from the Florida Cooperative Land Cover Map (CLC) (Version 3.4). The CLC was developed as part of the Florida Comprehensive Wildlife Conservation Strategy, which developed a state-wide dataset of existing environmental data and expertly reviewed aerial photography. The CLC follows the Florida Land Cover Classification System (FLUCCS), which is a hierarchical and habitat-based approach to land use/cover designations and was initially intended to address the challenge of state-wide analysis due to the multiplicity of local, regional, and agency-based classification schemes currently in use across Florida. Stream,
river, and springs data were acquired from the National Hydrography Dataset (NHD). Additionally, following (Jones 2016: 150–51), NRCS soil data served as a proxy for measuring areas of good tree growth. These datasets as well as the study’s site/settlement data were analyzed within ArcGIS and QGIS.

While noting the significant changes that have affected Florida’s land cover and biodiversity over the last two centuries (Volk et al. 2017), existing (i.e., modern, non-historical) environmental and landscape datasets were used as proxies for hammocks, wetlands, and streams/rivers in this study. As previously mentioned, the projection of existing land cover/use data into the past is a common, yet routinely debated practice within contemporary archaeology. Due in part to critiques provoked by processual-leaning approaches and concerns of environmental determinism, the use of historical environmental and landscape data is often assumed to be a more appropriate and reliable reflection of past land cover/use. Several methodological considerations, however, arise from the acquisition and analytical use of historical datasets in landscape reconstruction.

Karen E. Stephenson’s (2011) study of grassland distribution in Florida and Michael D. Walls’ (2015) examination of pre-removal Chickasaw landscapes underscore some of the core challenges involved in the reconstruction of “natural” and “cultural” phenomena from Euro-American survey records and naturalistic accounts, which remain the most readily available and commonly used materials for environmental/landscape reconstruction in the United States. Although General Landscape Office (GLO) survey records—including maps as well as surveyor’s notes—have served multiple purposes within archaeological reconstructions for several decades, early Euro-American land surveys were not primarily concerned with the comprehensive documentation of natural or
cultural phenomena (Stephenson 2011: 53–54; Walls 2015: 19). Oftentimes, Euro-American were not familiar with the environmental features they were recording, nor were modes of environmental observation and recording standardized across individual surveyors. Regarding “cultural” features, Walls (2015: 27) underscores that it is problematic to assume the accuracy of Euro-American sources uncritically. While positive reviews of African Seminole settlements and landscape use appear archivally (McCall 1868: 160; Boyd 1958: 88–89), many Euro-Americans had a vested interest in denying Black and Indigenous presence and designating non-white landscapes as “uncivilized,” “unproductive,” and “in-excess” in order to justify dispossession (Krauthamer 2013: 24–26; Walls 2015: 69). We should also remain cognizant of the limited capacity of Euro-Americans to recognize African Seminole cultural practices, especially when they marked “rival geographies” (Ginsburg 2010; Cochran 2021).

The third category of variables explored in this study are intergroup relations, including considerations of relationships between African Seminole and Seminole Indian settlements. Understanding of intergroup relations is imperative for a more contextually responsive understanding of African Seminole settlement processes. Historical reconstruction and modeling of intergroup relations, however, remains a considerable challenge within archaeological inquiry.

Research on post-1700 settlement patterning in Florida (Cline 1974b; Weisman 1989; Carr & Steele 1993; Buffington 2009) has previously highlighted the methodological difficulties of matching known historic towns to archaeological assemblages, including the time costs of evaluating individual site records contained across multiple repositories (Buffington 2009: 117). Efforts to model past landscape movement using historical trail and path data (Sivilich
reconstructions of navigable waterways (Ackerman 2019), and/or models of animal-based travel (Sunseri 2015), moreover, depend upon the reliability of source materials and the availability of time to collect, digitize, and evaluate spatial as well as non-spatial attribute data. In this study, the location of at least two Seminole Indian sites/settlements (i.e., Okahumpka and Zellner’s Grove) differed between the FMSF digitized points and reviewed secondary literature; in the case of Okahumpka, a distance of four miles closer to Pilaklikaha than that cited by Weik (2009: 214). While I initially anticipated this study would address these settlement considerations at the regional scale, considerations of data quality and the associated time costs of reconstructing and modeling the primarily socio-cultural, economic, and political dimensions of intergroup relations was ultimately deemed beyond the scope of this study.

As a preliminary exercise, I explore intergroup relations through a case study at the subregional scale, focusing on a reduced study area encompassing portions of the Withlacoochee River Valley, which has been the subject of multiple archaeological surveys and studies attentive to the early nineteenth century Seminole Indian settlement history of central peninsular Florida since the 1980s (Mitchem & Weisman 1987; Weisman 1989; Carr & Steele 1993; Weisman 2007, 2012). This study area extends southeast of Lake Tsala Apopka to include portions of Sumter County and is bounded on the south by the Little Withlacoochee River. Additionally, this area was selected for its distance from Euro-American sites/settlements and landscape features, such as the Seminole Indian Agency (est. 1824) and Fort King (est. 1827). Many Euro-American fortifications in the region (e.g., Fort Cooper, Fort Foster, Camp Izzard) were established after 1835, and thus were not features present on the landscape.
during the 1810s and 1820s when scholars suggest several key African Seminole settlements in the peninsula’s interior were formed following the Patriot’s War of 1812-1814. Other features of the landscape, such as the Fort King Military Road, which stretches between Fort King and Fort Brook [est. 1823] (Goza 1964; Morris & Hough 2009), were constructed during the decades preceding the Second Seminole War and may have factored into settlement location choices.

The potential role of the U.S. reservation system established with the Treaty of Moultrie Creek of 1823 in shaping the settlement decision-making processes of African Seminole and Seminole Indian communities is a worthwhile consideration. Although several communities were formed prior to 1823 (e.g., Pilaklikaha, Okahumpka), others were (re)established as communities from elsewhere in the peninsula following relocation to areas within the reservation. The timing of these settlement processes is also of note, as the boundaries of the central reservation were modified multiple times throughout the late 1820s. Notably, while some African Seminole and Seminole Indian communities were positioned within the initial boundaries, other communities would be “contained” only after the boundaries were extended (e.g., Big Swamp). A finer-grained examination of settlement movements might reveal how these communities may have responded to processes of containment over time.

Other reasons for exploring the spatial relations between African Seminole and Seminole Indian settlements relate to the considerations of socialization, familial and kinship networks, as well as aspects of spiritual and ceremonial life. While questions of collective agricultural labor, exchange and tribute, and military alliances between African Seminole and Seminole Indian communities remains a longstanding scholarly concern (Porter 1996; Weisman 2000, 2009;
Dixon 2020a), comparably less scholarly attention has been paid to the social and spiritual dimensions of these spatial relationships between settlements. The quantity and quality of spatial and attribute information for individual Seminole Indian sites/settlements, admittedly, complicates and potentially constrains what can ultimately be said about these inter-settlement relationships, especially when considering matters of contemporaneity (Petrie & Lynam 2020: 1).

Based on these considerations, for this secondary case study I explored two aspects of intergroup relationality, including the straight-line distances of African Seminole settlements to (1) straight-line distance to the nearest Seminole Indian site/settlement and (2) straight-line distance to the Fort King Military Road [Table 5.3]. Addressing intergroup relations is imperative for articulating a contextually responsive settlement ecology of African Seminole experience.

5.3 Analytical Frameworks and Methods

In this study, Nearest Neighbor Ratio (NNR) and Discriminate Function Analysis (DFA) were used to examine settlement patterning and spatial correlations between settlements and environmental/landscape features respectively. A prevalent and normative approach within spatial analysis and settlement archaeology, NNR measures the distribution of a phenomenon over a geographical space, describing the extent to which points are clustered, dispersed, or randomly situated. Nearest neighbor statistics were estimated for (1) the total set of (15) African Seminole settlements within the Primary AOI and (2) for two random sets of points, each with 15 individual points, within the Primary AOI. NNR returns a ratio of observed and expected mean distances between points within a study set in a user defined area. As such, NNR is influenced by the definition of study area. For some archaeologists, limitations of
NNR approaches arise primarily from the approach’s use of Euclidian distance and the question of how the model accounts for how people (and nonhuman animals) move across differently elevated terrain. Despite these challenges and limitations, NNR has proven useful for comparing different sets of points within the same study area (Jones & Ellis 2016: 94). NNR analysis was also pursued based on my initial perception that African Seminole settlements in Florida were clustered, a question shared by others (Weik personal communication 2021).

To more fully conceptualize how variables were potentially prioritized within past settlement decision-making processes, I draw upon the analytical use of DFA used in recent archaeological applications of settlement ecology (Jones 2016; Jones & Ellis 2016; Jones 2017c). As a form of multiple statistical regression, DFA employed for two primary reasons. First, DFA addresses considerations of autocorrelation. Following Jones (2017c: 57–58), autocorrelation should be evaluated in settlement ecology analysis, as there is a high potential to confuse spatial correlation between settlements and landscape features depending on the characteristics of the study area. For example, a conclusion emphasizing a strong relationship between settlements and loam sediments might be misread if one does not account for the characteristics of the environment itself; 70% settlements with site-catchments bearing high levels of loam sediments is expected if 70% of the entire landscape is also characterized by loamy soils. Autocorrelation may also emerge from simple qualitative observations of researchers, who may perceive correlation between dependent and independent variables that are not statistically evaluated. To address these concerns, it is useful to compare settlements against randomly distributed points and/or against entire
landscapes (Kvamme 1990). In this study, I chose to compare my set of (15) settlements against two sets of (15) randomly distributed points [Figure 5.4].

Second, DFA was selected in an effort to envision what Stone’s (1996: 8) concept of settlement decision-making as a “mental balance sheet,” wherein settlement location choice is understood as a weighing of multiple and interrelated settlement priorities. Using Statistical Package for the Social Sciences (SPSS), DFA returns function values for individual variables. Traditionally, p-values have been utilized to determine significance, although increasingly statisticians and archaeologists have tested significance by comparing multiple iterations of model configurations (Jones 2017b: 43). Jones (2017b: 43–44) has previously used a standard value or threshold of 0.200 for identifying discriminating variables, which is followed in this study. For values above this threshold, variables can be ranked using natural breaks or alternative methods to isolate variables that more strongly discriminate between two or more groups; in this case, between the set of African Seminole settlements and the sets of random points. Additionally, function values are returned in SPSS as either positive or negative values, which can be used to assess which group had a higher/lower average for that variable. In this study, I used a 0.200 value threshold and natural breaks to identify highly discriminating variables within my DFA results, combining quantitative measures with a degree of subjective comparison.
Second, DFA was selected in an effort to envision what Stone’s (1996: 8) concept of settlement decision-making as a “mental balance sheet,” wherein settlement location choice is understood as a weighing of multiple and
interrelated settlement priorities. Using Statistical Package for the Social Sciences (SPSS), DFA returns function values for individual variables. Traditionally, p-values have been utilized to determine significance, although increasingly statisticians and archaeologists have tested significance by comparing multiple iterations of model configurations (Jones 2017b: 43). Jones (2017b: 43–44) has previously used a standard value or threshold of 0.200 for identifying discriminating variables, which is followed in this study. For values above this threshold, variables can be ranked using natural breaks or alternative methods to isolate variables that more strongly discriminate between two or more groups; in this case, between the set of African Seminole settlements and the sets of random points. Additionally, function values are returned in SPSS as either positive or negative values, which can be used to assess which group had a higher/lower average for that variable. In this study, I used a 0.200 value threshold and natural breaks to identify highly discriminating variables within my DFA results, combining quantitative measures with a degree of subjective comparison.

DFA, given their similarity to regression-based approaches, have garnered critique within contemporary archaeological scholarship. Yaworsky et al. (2020) have drawn recent attention to the theoretical, empirical, and analytical challenges and limitations of regression-based models in archaeology. Concerning landscape attributes, the authors stress that problems can emerge from the transformation of continuous phenomena (e.g., aspect) into linear relationships. Kovarovic et al. (2011: 3007) address the use of DFA in archaeology specifically. For these authors, the problem of “over-fitting” (i.e., the correct classification rate is higher than chance expectations) is often overlooked by archaeologists unfamiliar with the statistical literature. Additionally, Kovarovic
et al. (2011) stress that much of the statistical literature (and the techniques and limitations identified within) do not necessarily account for the relatively “smaller, imperfect assemblage-based sets of observations with which we tend to work in archaeology.” Despite these limitations, regression-based approaches have proven productive when prediction is not the goal, and where analysts are cognizant of the problem of collinearity (i.e., variables that explain similar degrees of variance in the dependent variable) and the potential for the use of too many variables to lead to overfitting or peaking (Yaworsky et al. 2020: 3013).

To evaluate whether the methods used in this study can (or cannot) inform our understanding of past settlement processes, in this study I aimed to employ a reflexive (Jones 2017b) and heuristic (Supernant 2017) approach. In addition to assessing the methodological considerations outlined above (e.g., autocorrelation, collinearity) and considerations of computational/human error, we should additionally ask if our results are novel contributions to scholarship (Jones 2017b: 60). Some reviewers, admittedly, may find my initial selection of variables problematic, or suggest alternative analytical methods. As demonstrated by Jones’s publication trajectory (Jones 2010, 2016, 2017a), I anticipate that this study could be succeeded by additional iterations and testing.

The second practice I will employ in this study is heuristic inquiry. During the early 1980s, Kintigh and Ammerman (1982: 31) published an article introducing heuristic approaches to spatial archaeology, which attempt to “open the way for the use of contextual knowledge and human expertise within a formal (computer-executed) procedure for aiding human-directed spatial analysis.” The authors’ differentiate heuristic approaches from formal or traditional methods in spatial archaeology, which oftentimes rely upon the
“eyeballing” of spatial phenomena and/or utilize statistical methods that are largely divorced from archaeological theory or the cultural-historical contexts under consideration. To address these considerations, archaeologists have paid more attention to the appropriateness of spatial analytical methods to the kinds of archaeological materials under consideration while also articulating innovate approaches for employing more normative models in a contextually responsive way. Following Kisha Supernant (Métis/Papaschase/British) (2017), my use of DFA and GIS-based reconstruction and modeling is informed by a desire for contextual responsiveness to local spatial knowledges. As Supernant writes,

My contribution here is not to argue that [Least Cost Path] analyses are flawed; others have adequately demonstrated its shortcomings. Instead, I argue that LCP needs to be attentive to local knowledge systems, rather than the creation of generalized models of movement... One of the benefits of having historic trails is that they provide a check against which to test the utility of our models, creating a heuristic device that allows deficiencies in the models to be addresses (Supernant 2017: 70).

This study builds upon a rich body of archival, ethnohistorical, and ethnographic record of African/Black Seminole, African Diasporan, and West-Central African experience, which are partially as heuristic devices to interpret as well as “test” the significance of the analytical models employed. In other ways, these sources directly informed my selection of landscape variables. While settlement priorities may hold features that may be found cross-culturally, I argue that the multiple heritages and cultural understandings found within African Seminole communities compel us to contend with “resource” values that may have been markedly different from Euro-American society. And although this study does not reflect the degree of community-based direction reflected in Supernant’s scholarship, I hope that my efforts to derive an additional range of
variables and potential settlement priorities from the ethnohistorical, as well as my effort to use those analogues both critically and judiciously, will provide a basis for a more community-directed research programme moving forward.

Following recent developments in settlement ecology (Kellett & Jones 2017: 7–8), my analytical framework is further informed by developments within landscape archaeology and historical ecology. While distinctions between the wide range of approaches found within these fields should be recognized, the multiplicities, multivocalities, and historical contingencies of landscapes are repeatedly underscored. Past scholarship within and beyond archaeology has drawn increasing attention to how Indigenous North Americans, Euro-Americans, and persons of African descent may have differentially perceived, reconceptualized, and at times struggled over Florida’s environments during the early nineteenth century (Nelson 2005; Lawres 2014; Navakas 2017; Sivilich 2019), although few studies have explicitly used landscape oriented approaches to examine African Seminole experience specifically (Weik 2009: 209).

Following Brown (2012: 34) and Ginsberg’s (2010: 54–56) discussion of environment and landscape, I approach the subject of African Seminole landscapes as more than a network of physical sites and routes of movement, but also as modes of perception. According to Ginsberg, “The term ‘black landscape,’ then, is an expression of geographical intelligence. It refers to the ways that enslaved people knew the land, to the modes by which they made sense of and imagined their surroundings.” And while scholars often debate the degree to which origins, traditions, and the pragmatic context(s) shape our perceptions of the world, to divorce questions of landscape and settlement from the broader diasporic and ethnogenesis processes shaping African Seminole experience
would be to render these processes inconsequential to the narration of cultural history. As Cipolla (2013b: 121) compellingly writes of the diasporic (re)formation of Brothertown settlements, “although the individuals and families who created and shaped these patterns discussed here might have done so unconsciously, the resulting patterns still had pragmatic effects in the world. The patterns were part of the fabric of everyday life in Brothertown and therefore to some extent informed their identities and their relations with one another.” In the following chapter, I present and interpret the results of these analyses.
CHAPTER 6
RESULTS AND DISCUSSION

In this chapter, I present the results of the Nearest Neighbor Ratio (NNR) analysis and the Discriminant Function Analysis (DFA) used in this study. In this section, “settlement” refers to the group of 15 African Seminole settlements examined in this study, while Random Group 1 and Random Group 2 refer to the two sets of 15 randomized points used for the NNR and DFA comparisons.

6.1 Nearest Neighbor Ratio (NNR)

Table 6.1 displays the nearest neighbor ratio results based on the primary area of interest (AOI). In this study, NNR are interpreted as dispersed (i.e., > 1), evenly distributed (i.e., = 1), and clustered (i.e., < 1) patterns. The 15 African Seminole settlements in this study exhibit a clustered pattern. Random Group 1 and Random Group 2 both exhibit a dispersed pattern, with Random Group 2 exhibiting an almost evenly distributed pattern. [Table 6.2] displays the nearest neighbor ratio results based on the area of the minimum enclosing rectangle that would encompass all features. In this iteration, the 15 African Seminole settlements exhibit a dispersed pattern (i.e., > 1), although this value is close to an evenly distributed pattern (i.e., = 1). Random Group 1 and Random Group 2 both exhibit a dispersed pattern. For these NNR calculations, I employed by nearest neighbor analytics using both QGIS as well as ESRI ArcGIS (Pro).
Table 6.1. Nearest Neighbor Ratio (NNR) Results – Iteration 1

<table>
<thead>
<tr>
<th>Dataset</th>
<th>NNR</th>
<th>Observed Mean Distance</th>
<th>Expected Mean Distance</th>
<th>Z-Score*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settlements</td>
<td>0.870</td>
<td>21977.66</td>
<td>25271.450</td>
<td>-0.966</td>
</tr>
<tr>
<td>Random Group 1</td>
<td>1.472</td>
<td>42384.820</td>
<td>28791.640</td>
<td>3.498</td>
</tr>
<tr>
<td>Random Group 2</td>
<td>1.202</td>
<td>32210.860</td>
<td>26791.830</td>
<td>1.202</td>
</tr>
</tbody>
</table>

*Z-score indicates clustering (negative) or dispersion or evenness (positive)

Table 6.2 Nearest Neighbor Ratio (NNR) Results – Iteration 2

<table>
<thead>
<tr>
<th>Dataset</th>
<th>NNR</th>
<th>Observed Mean Distance</th>
<th>Expected Mean Distance</th>
<th>Z-Score*</th>
<th>P-Value**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settlements</td>
<td>1.016</td>
<td>21972.480</td>
<td>21631.470</td>
<td>0.117</td>
<td>0.907</td>
</tr>
<tr>
<td>Random Group 1</td>
<td>1.716</td>
<td>43394.930</td>
<td>24700.680</td>
<td>5.3076</td>
<td>0.000</td>
</tr>
<tr>
<td>Random Group 2</td>
<td>1.309</td>
<td>32235.090</td>
<td>24634.980</td>
<td>2.286</td>
<td>0.022</td>
</tr>
</tbody>
</table>

*Z-score indicates clustering (negative) or dispersion or evenness (positive)
**P-value indicates significance of each result (i.e., significance = p < .0)

Due to the potentially adverse impact of outliers on NRR results and related considerations of area definition (shape and size), two nearest neighbor iterations using different area definitions were calculated. Although the NNR results for Iteration 2 (using a minimum enclosing rectangle) returned a dispersed pattern, the value is extremely close to 1 and may have been impacted by the presence of the two outlying settlements in the group, namely Nero’s Town on the Suwanee River and Emathla’s Town on the St. John’s River. A third iteration of nearest neighbor analysis was calculated removing these two settlements, yet still returned a dispersed pattern (NNR = 1.0158). Based on these considerations, I am personally inclined to conclude that the African Seminole settlements in this study represent a dispersed pattern, and that the minimally enclosing rectangle used for Iteration 2 is a more relevant marker of nearness than use of the study’s Primary AOI. Given that the selection of African Seminole
settlements and the spatial parameters used in this study was judgmental, the addition of sites/settlements to this group may alter these spatial calculations.

6.2 Discriminant Function Analysis (DFA)

DFA for 2km site-catchments were calculated to identify potential spatial correlations between the selection of African Seminole settlements and the two sets of random points. Settlements were most distinguished from Random 1 [Table 6.3] by having a smaller area of non-forested wetlands and having a smaller area of total wetlands (both non-forested and forested). Although below the 0.200 value threshold, the higher presence of clay and springs may have also contributed to past location choices based on the 2km site-catchments results.

Non-forested wetlands, or marshes, are estimated to make up one third of all of Florida’s existing freshwater wetlands (Kushlan 1990: 324), which together once accounted for more than half of Florida’s original land cover (Ewel 1990: 281). Although generally containing less than one-third of trees and shrubs in comparison to swamps (i.e., forested wetlands), marshes are oftentimes characterized by a wide range of ecological diversity, including the presence of bogs, (wet) prairies, and (wet) savannahs (Kushlan 1990: 324–25). And while the majority of Florida’s freshwater marshland areas are found within South Florida (i.e., the Everglades), major as well as more minor freshwater marshlands are found across the peninsula’s interior, such as the notable Alachua Savannah.

Site-catchments containing a relatively smaller area of freshwater wetlands, both non-forested and forested, may reflect a preference for settlement in areas that are less inundated. Weisman (2009: 70–71) notes that “Black Seminoles established themselves on hammocks or high ground so that both agricultural soils and pastureland were accessible.” Weik (2009: 214) notes that
Pilaklikaha was likely settled on a hammock surrounded by wetlands, and Dexter (Boyd 1958: 88–89) referred to the surrounding landscape of Pilaklikaha during the early 1820s as “savannahs,” which during the early nineteenth century most readily referred to a “flat, treeless plain” (Stephenson 2011: 50).

Settlements were most distinguished from Random Group 2 [Table 6.3] by containing a smaller area of poorly drained sediments, fewer non-forested wetlands, a larger area of well-drained sediments, a larger area of clay sediment, and a larger area exhibiting characteristics of good tree growth. These findings align with results from the comparison with Random Group 1, as settlements had fewer non-forested wetlands when compared to both random sets of points.

Table 6.3. Independent DFA Results for the Comparison Between the African Seminole Settlements and the Two Random Sets of Points (2km Catchments)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Function value for Settlement vs. Random 1 - Function 1*</th>
<th>Variable</th>
<th>Function value for Settlement vs. Random 2 - Function 2**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of non-forested wetlands within catchment</td>
<td>-0.341</td>
<td>Area of poorly drained sediment in catchment</td>
<td>0.477</td>
</tr>
<tr>
<td>Total area of wetlands within catchment</td>
<td>-0.205</td>
<td>Area of non-forested wetlands within catchment</td>
<td>0.395</td>
</tr>
<tr>
<td>Area of clay in catchment</td>
<td>0.146</td>
<td>Area of well-drained sediment in catchment</td>
<td>-0.347</td>
</tr>
<tr>
<td>Number of springs within catchment</td>
<td>0.136</td>
<td>Area of clay in catchment</td>
<td>-0.243</td>
</tr>
<tr>
<td>Number of tributary streams and rivers within catchment</td>
<td>-0.128</td>
<td>Area of good tree growth within catchment</td>
<td>-0.232</td>
</tr>
<tr>
<td>Variable</td>
<td>Value</td>
<td>Variable</td>
<td>Value</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>Area of wet soil (hydric) hammock within catchment</td>
<td>0.114</td>
<td>Total area of wetlands within catchment</td>
<td>0.177</td>
</tr>
<tr>
<td>Area of moist soil (mesic) hammock within catchment</td>
<td>0.096</td>
<td>Number of tributary streams and rivers within catchment</td>
<td>0.141</td>
</tr>
<tr>
<td>Area of well-drained sediment in catchment</td>
<td>0.089</td>
<td>Length of tributary streams and rivers within catchment</td>
<td>0.138</td>
</tr>
<tr>
<td>Area of forested wetlands within catchment</td>
<td>-0.074</td>
<td>Number of springs within catchment</td>
<td>-0.114</td>
</tr>
<tr>
<td>Area of dry soil (xeric) hammock within catchment</td>
<td>-0.073</td>
<td>Area of wet soil (hydric) hammock within catchment</td>
<td>0.106</td>
</tr>
<tr>
<td>Length of tributary streams and rivers within catchment</td>
<td>-0.050</td>
<td>Area of dry soil (xeric) hammock within catchment</td>
<td>-0.099</td>
</tr>
<tr>
<td>Area of good tree growth within catchment</td>
<td>0.048</td>
<td>Total number of wetlands within catchment</td>
<td>-0.081</td>
</tr>
<tr>
<td>Area of loam in catchment</td>
<td>-0.041</td>
<td>Area of moist soil (mesic) hammock within catchment</td>
<td>-0.059</td>
</tr>
<tr>
<td>Total number of wetlands within catchment</td>
<td>-0.033</td>
<td>Area of loam in catchment</td>
<td>-0.028</td>
</tr>
<tr>
<td>Area of poorly drained sediment in catchment</td>
<td>-0.007</td>
<td>Area of forested wetlands within catchment</td>
<td>0.009</td>
</tr>
</tbody>
</table>

*Function 1 = Settlements (1.345), Random Group 1 (-1.345)
**Function 2 = Settlements (-1.608), Random Group 2 (1.608)
Note: +/- value indicates which group has a higher average value of that variable. Values in bold are highly discriminating. Values below 0.200 were deemed of low(er) discriminating value.

When considered alongside the Random Group 1 results, the higher ranking but larger area of good tree growth for Random Group 2 may indicate that areas containing hardwood forests were somewhat prioritized, which are correlated in this study with activities of wood fuel collection and the acquisition of building materials. For African Diasporan communities in what is now the Southeast, forests were often important spaces where medicinal herbs could be
procured, wild fauna hunted, and spiritual and ritual life pursued (Brown 2002: 311–14). Forests also figure as important spaces for burial of the dead and the visitation of ancestors, for both African Diasporans and Native Americans. The multiple values potentially associated with forests and other natural features (e.g., springs, streams) speaks to the potentially wide-ranging field of concerns held by ancestral African Seminole communities that ultimately informed decisions about where and how to live within the broader Floridian landscape.

To evaluate these initial inferences, we should also take into consideration potential changes in Florida’s forest cover over time, as suggested by early nineteenth century accounts. During Simmons (1822: 45) visit to the Negro Town settlement near present-day Lake Panasoffke, “The fields planted by the Negroes at the settlement were originally of that growth of pine and oak, of which there is so great a quantity in this Province, and had been previously worked by the Indians; having been, as I was told, under cultivation for, at least, fifty years. It yet continued to produce well, which must be attributed, in part, to the warmth of the climate, and the influence of the sea air—the effect of which, is, probably, felt over every part of the peninsula.” Today, within 2km of Negro Town, no areas of upland hardwood are recorded within the CLC. And while we should not assume the reliability of Simmons’ observations or the land cover/use history he recorded uncritically, the case of Negro Town may suggest that areas of good tree growth may hold less weight in the priorities of African Seminole communities than other variables but may have been considered by preceding Seminole Indian and earlier Native American communities. The potential role(s) “persistent places” (2017: 304) had in shaping settlement location choices and intergroup relations will be discussed at greater length later in this chapter.
Figure 6.1. Black Seminole settlement with daub-included chink construction at Las Moras Creek outside of Fort Clark, Brackettville, Texas circa 1870s to 1880s (Brian Wildenthal Memorial Library 2018)
Figure 6.2. Brushed pottery from Pilaklikaha/Abraham’s Old Town (8SM136). Image Credit: Collections of the Anthropology Division of the Florida Museum of Natural History, FLMNH Cat. No. 2002-028-00002.1
The relatively high discriminating role of clay sediment exhibited by the Random Group 2 DFA result may be correlated with several landscape activities. First, we may consider the local sourcing of clay sediments by African Seminole communities for housing construction and ceramic production. Although the use of daub (i.e., mixture wet soil, clay, animal dung, and straw) is recorded in the construction of African-derived structures in the South Carolina and Georgia Lowcounty (Botwick 2018: 203–4), as well as in the building materials used by Black Seminole descendants in Texas, Mexico, and Oklahoma (Mock 2010: 93–96) [Figure 6.1], daub comprised a relatively small percentage of Pilaklikaha’s artifact assemblage (Weik 2012a: 130), which Weik suggests may be indicative of the preference for local materials in construction. Based on the NRCS, no clay sediments are recorded within 2 or 5km of Pilaklikaha, although Weik notes that Pilaklikaha’s hammock included clayey sand and clay deposits (Weik 2009: 214). In summer of 2021, I viewed samples of clay collected by Weik at the Florida Museum of Natural History, which are included in a recent Florida-based ceramic ecology study (Wallis et al. 2015). This discrepancy underscores the need for ground-truthing of GIS datasets with local environmental information.

Clay (and timber) based building materials, however, exhibit generally low preservation qualities (Weik 2002: 99), and we should not assume that the absence/presence of clay in archaeological assemblages is a straightforward indicator of past building materials. While potentially problematic, comparison of NRCS sediment values for 2km and 5km site-catchments across the group of African Seminole settlements examined in this study indicates that larger clay sources may have been available at other settlements (e.g., Tobassa/Wahoo, Emathla’s Town, Minatti). Given that Tobassa/Wahoo was associated with
Bucker Woman who operated a large cattle operation in central Florida during the 1820s and 1830s (Brown 1991: 26–27), access to local clay sources and animal byproducts may have played a potential role in past residential construction.

Clay sources, additionally, may be correlated with the localized production of ceramics [Figure 6.2] and pipes, such as those recovered at Pilaklikaha. Although the presence of Euro-American ceramics at Pilaklikaha suggest the position of African Seminole communities within intra- and inter-regional trade networks, and/or may point to other forms of acquisition (e.g., plunder of neighboring and more distant plantations), the sand-tempered and brushed earthenware pottery recovered at Pilaklikaha may be indicative of trade as well as local production (Weik 2002: 118–19). Both sand-tempered and brushed earthenware pottery accounts for a little over half (51%) of the ceramics recovered at Pilaklikaha and represents the most prevalent artifact category identified at Pilaklikaha when considering pottery as well as other items of material culture (e.g., glass, nails, metals, lithics). Weik (2009: 228–29) has suggested that both men and women at Pilaklikaha may have been potters, and that Seminole Indian residents at Pilaklikaha (e.g., Micanopy’s wives) may have also contributed to the settlement’s assemblage. Wallis et al.’s (2015) state-wide study of clay composition in Florida (and south Georgia) lays important groundwork for future considerations of pottery provenience and local ceramic and clay pipe production at African Seminole and Seminole Indian settlements.

When all three groups were compared simultaneously using 2km site-catchments, I averaged the function values across all three [Appendix A.1]. A designation of “conflicting” was provided to the non-averaged function value if they did not have the same positive or negative value across all three groups,
indicating that settlements were randomly placed in relation to that variable. Based on the averaged function values, settlements were most distinguished by having fewer non-forested wetlands within their catchments and having fewer total wetlands within their catchment (both non-forested and forested). Other potentially distinguishing factors include a greater area of clay sediment. A graphic depiction of the averaged DFA results between settlements and the two groups of random points is provided in [Figure 6.3]. Several settlements are distinguished from both Random Group 1 and Random Group 2 based on area of non-forested wetland, but all three groups converge, suggesting similarity as well as distinction. Settlements show a level of distinctiveness from both Random Group 1 and Random Group 2, which overlap to a greater degree.

Figure 6.3. Average DFA Results for the Comparison Between the African Seminole Settlements and the Two Random Sets of Points (2km Catchments)
Based on the averaged results, the highly discriminating but comparably smaller area of non-forested and total wetlands exhibited may indicate several priorities contributing to settlement location choice. First, they may suggest that African Seminole communities prioritized less-inundated (and potentially forested or semi-forested) environments, such as hammocks. This relationship may be indicative of the island-like status early chroniclers suggested characterized African Seminole settlements during the early nineteenth century, where settlements situated on high and drier ground hammocks were often surrounded by areas of more inundated wetlands and tree-less prairies and savannahs (McCall 1868: 160; Boyd 1958: 88–89). According to Weisman (2009: 70–71), hammocks afforded both area for agriculture as well as pastureland for livestock, including cattle and horses. Alternatively, these results may suggest that African Seminole communities aimed to intentionally distance themselves from wetland environments. Both of these assessments, however, rely heavily upon the continuity between existing and historical wetland land cover.

Wetland area is one of the more challenging datasets used in this study. Efforts to reconceptualize past wetland locations are exceedingly time consuming, and modern datasets tend to be biased toward wetlands that have not been affected by urban and suburban development (Jones 2016: 151–52). The difficulties of delineating wetland environments should also be noted historically, as Stephenson (2011: 54–55) notes that surveyors during the nineteenth century may have routinely mistaken marshes as dryland prairies or savannahs given that surveys were conducted during the dry season. Similarly, Weik (2009: 218) has drawn attention to the seasonal fluctuations of the water
table surrounding Pilaklikaha, noting that “a visit to Pilaklikaha during a wet season provides one with an appreciation for how inundated the land can get, down slope from the archaeological remains.” Finer-grained, historical, and seasonally-responsive wetland data could enhance these preliminary inferences.

Following comparison of 2km catchments, I compared 5km catchments. Settlements were most distinguished from Random Group 1 [Table 6.3] by having a smaller area of non-forested wetlands, with a smaller area of total wetlands (non-forested and forested) almost reaching the 0.200 threshold for discriminating variables. The DFA comparison with Random Group 2 also exhibited a smaller area of non-forested wetlands, which occurred as the highest discriminating variable. For Random Group 2, non-forested wetlands were followed closely by a smaller area of poorly drained soils. Other influencing factors based on the comparison with Random Group 2 include a greater area of well-drained sediments, a smaller total area of wetlands, a smaller length of tributary streams/rivers, and a relatively greater area of good tree growth.

Table 6.4. Independent DFA Results for the Comparison Between the African Seminole Settlements and the Two Random Sets of Points (5km Catchments)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Function value for Settlement vs. Random 1 – Function 1*</th>
<th>Variable</th>
<th>Function value for Settlement vs. Random 2 – Function 2**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of non-forested wetlands within catchment</td>
<td>0.379</td>
<td>Area of non-forested wetlands within catchment</td>
<td>0.495</td>
</tr>
<tr>
<td>Total area of wetlands within catchment</td>
<td>0.182</td>
<td>Area of poorly drained sediment in catchment</td>
<td>0.470</td>
</tr>
<tr>
<td>Variable</td>
<td>Value</td>
<td>Alternative Variable</td>
<td>Value</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>Area of moist soil (mesic) hammock within catchment</td>
<td>-0.129</td>
<td>Area of well-drained sediment in catchment</td>
<td>-0.308</td>
</tr>
<tr>
<td>Length of tributary streams and rivers within catchment</td>
<td>0.100</td>
<td>Total area of wetlands within catchment</td>
<td>0.254</td>
</tr>
<tr>
<td>Number of tributary streams and rivers within catchment</td>
<td>0.098</td>
<td>Length of tributary streams and rivers within catchment</td>
<td>0.235</td>
</tr>
<tr>
<td>Area of clay in catchment</td>
<td>-0.097</td>
<td>Area of good tree growth within catchment</td>
<td>-0.203</td>
</tr>
<tr>
<td>Area of wet soil (hydric) hammock within catchment</td>
<td>-0.078</td>
<td>Number of tributary streams and rivers within catchment</td>
<td>0.190</td>
</tr>
<tr>
<td>Total number of wetlands within catchment</td>
<td>0.077</td>
<td>Number of springs within catchment</td>
<td>-0.158</td>
</tr>
<tr>
<td>Area of well-drained sediment in catchment</td>
<td>-0.072</td>
<td>Area of clay in catchment</td>
<td>-0.155</td>
</tr>
<tr>
<td>Number of springs within catchment</td>
<td>-0.065</td>
<td>Area of dry soil (xeric) hammock within catchment</td>
<td>-0.091</td>
</tr>
<tr>
<td>Area of loam in catchment</td>
<td>0.042</td>
<td>Area of moist soil (mesic) hammock within catchment</td>
<td>-0.072</td>
</tr>
<tr>
<td>Area of good tree growth within catchment</td>
<td>-0.035</td>
<td>Total number of wetlands within catchment</td>
<td>-0.066</td>
</tr>
<tr>
<td>Area of poorly drained sediment in catchment</td>
<td>0.024</td>
<td>Area of forested wetlands within catchment</td>
<td>0.057</td>
</tr>
<tr>
<td>Area of dry soil (xeric) hammock within catchment</td>
<td>-0.016</td>
<td>Area of loam in catchment</td>
<td>-0.028</td>
</tr>
<tr>
<td>Area of forested wetlands within catchment</td>
<td>0.011</td>
<td>Area of wet soil (hydric) hammock within catchment</td>
<td>-0.004</td>
</tr>
</tbody>
</table>

Function = Settlements (-1.583), Random Group 1 (1.583)

Function 2 = Settlements (-1.833), Random Group 2 (1.833)

Note: +/ - value indicates which group has a higher average value of that variable. Values in bold are highly discriminating. Values below 0.200 were deemed of low(er) discriminating value.
Markedly, a smaller area non-forested wetlands appear as the highest-discriminating variable for the DFA comparisons between African Seminole settlements for both Random Group 1 and Random Group 2 using 5km site-catchments. As highly ranked values, these results may suggest that wetland areas may have been avoided by African Seminole communities in their settlement location choices. However, as Engelbrecht (2003) and Jones (2016) suggest, a greater distance between settlements and wetland locations does not necessarily mean that wetland settings were not valued resources. Specifically, Jones (2016: 162–64) argues that despite a historical record stressing the importance of wetlands to Haudenosaunee communities, wetland settings may have been avoided for settlement due to certain prohibiting factors (e.g., mosquito), but may have been simultaneously valued for hunting and foraging. When considering African Seminole settlements, wetland locations may have been prioritized for alternative purposes, such as defensibility. The wetland-dominant location of Boggy/Kettle Island [Figure 4.2], in turn, may be a reflection of a different configuration of settlement priorities among individual African Seminole communities that prioritized more inundated environments.

In order to better evaluate these results, I conducted additional DFA tests isolating areas of “non-forested wetlands” from both “forested wetlands,” and “total wetlands” (both area and count), given that these variables do have overlapping qualities. When isolating non-forested wetlands, the relative position of this variable remained consistent across the 2km site-catchments, as the highest discriminating variable for Random Group 1 and the second highest discriminating variable for Random Group 2 (behind poorly drained sediment). Negative/positive values also remained consistent, with the group of African
Seminole settlements exhibiting a smaller area of non-forested wetlands from Random Group 1 and a larger area for Random Group 2. For the 5km site-catchments, non-forested wetlands remained the highest discriminating variable with settlements containing a relatively smaller area of non-forested wetlands.

For the DFA results using a 5km site-catchment for Random Group 1, non-forested wetlands were ranked as a nondiscriminating (i.e., 0.026) and were positioned with the lowest value out of all variables overall. These values are noticeably opposite of the values when this variable is not isolated, with this variable ranking as the highest discriminating variable in the initial DFA analyses. Upon further review, both “forested” and “total wetlands” (both area and count) were also the lowest ranking variables when isolated for Random Group 1 using the 5km site-catchments. In the case of Florida’s CLC wetland data, wetland data represents both ground-truthed and remotely-sensed datasets, and are prioritized based on the conditions or quality of surrounding (natural) landscape. In turn, wetland coverage may be underestimated if there is significant urban and suburban development in site’s the immediate area.

Table 6.5. Area(s) of Low/High Intensity Urban Land Coverage – 5km

<table>
<thead>
<tr>
<th>Group</th>
<th>Average Area (m²) of Low/High Intensity Urban</th>
<th>Maximum Area (m²) of Low/High Intensity Urban</th>
<th>Number of Points without Urban Land Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settlements</td>
<td>6,347,446.5</td>
<td>23,020,206.1</td>
<td>0</td>
</tr>
<tr>
<td>Random Group 1</td>
<td>10,312,665.1</td>
<td>43,575,539.5</td>
<td>1</td>
</tr>
<tr>
<td>Random Group 2</td>
<td>1,346,063.6</td>
<td>6,639,595.6</td>
<td>4</td>
</tr>
</tbody>
</table>
Measuring low/high intensity urban land coverage within 5km site-catchments for the settlements and the two random groups [Table 6.5], the group of African Seminole settlements have the second highest ranking of urban land coverage. Both Random Group 1 and Random Group 2, noticeably, had points that did not contain any urban land coverage within the 5km catchments. This may suggest that the differential values for urban land coverage may have impacted wetland designation, thereby influencing the DFA comparisons. While a preliminary observation, the role of wetland area in African Seminole settlement location choices should be reassessed using an alternative dataset and/or a detail reconstruction of past wetland coverage should be pursued.

Based on the averaged function values comparing all three groups simultaneously [Appendix A.2, Figure 6.4], the settlements with 5km site-catchments were most distinguished by having smaller areas of poorly drained sediments compared to both groups of random points. The settlements also had a greater average area of well drained sediments. Other discriminating factors included a smaller area of tributary streams/rivers (length), a greater area of good tree growth, and a comparably smaller number of tributary streams/rivers.
Figure 6.4. Average DFA Results for the Comparison Between the African Seminole Settlements and the Two Random Sets of Points (5km Catchments)

The smaller average area of poorly drained sediments (and greater area of well-drained sediment) using 5km site-catchments may indicate preferences for a less inundated landscape. Poorly drained sediments, which include clays, are generally understood to afford wetland crop cultivation, including rice, and may be associated with cultivation at lower elevations. Given that during the 1820s the African Seminole community at Pilaklikaha was recorded as growing sugarcane at least twenty miles away from their settlement (Weik 2012a: 140), it is not inconceivable that the community’s rice fields could have been located at some distance away from settlements, and perhaps at a greater distance than the 5km investigated in this study. While the close association between rice fields and malaria and yellow (for which persons of African descent were regarded as
having greater, albeit not absolute immunity) (Dubisch 1985: 644) may have led some communities to locate rice production at some distance away from the immediate area of their residential structures, there is much we still do not know about the mechanics of inland rice cultivation. As Agha (2015: 336) has aptly written, “rice itself is given more attention than rice fields; descriptions of the procedure involved in land selection, water drainage, ditch location, soil types, construction techniques, native vegetation and the labor required to introduce rice are absent from these narratives.” While the spatial correlation is of note, what role sediment played in settlement location choice remains less clear.

Edelson (2007a: 385) has previously argued that scholars of antebellum agriculture in the Southeast should reevaluate our assumptions about how Euro-American planters perceived and responded to wetland environments over time, underscoring that “as [Euro-American planters] learned to grow rice in cleared swamps, planters changed the criteria by which good agricultural land was valued.” Although Edelson’s assessment could more explicitly acknowledge the indigenous agricultural knowledges and agency of African as well as Native American communities who were the primary actors in plantation agriculture, similar reassessments of “poor” and “good” quality land can also be found in the histories of sugarcane, (sea island) cotton, indigo cultivation throughout the Southeast (Kovacik & Mason 1985). In a similar vein, we should consider that disagreements may have arisen over differential perceptions of the landscape.

As mentioned previously, although ethnohistorical sources suggest a gendered division of agricultural labor among African Seminole communities in Florida, wherein men prepared fields while women were the primary farmers and wild food collectors, how different landscape activities were prioritized,
structured, and mobilized within and between communities is less clear (Weik 2009: 228–29). It is certainly possible that members within the same community negotiated conflicts between multiple agricultural and non-agricultural priorities, and may have shifted emphases over time even within the same area. Smith’s (2012) study of inland rice cultivation in South Carolina has highlighted that agricultural systems could vary by plantation, and we can extend that same possibility for agricultural and land use variability across African Seminole settlements. Following settlement ecology studies, considerations of seasonality, labor scheduling, intensification and extensification, and settlement fissioning (Netting et al. 1990; Stone 1996) should also be considered as potential factors shaping African Seminole settlement and landscape activity historically.

Noting the centrality of rice cultivation among West-Central Africans and African descendant communities in the Southeast (Wood 1974; Joyner 1984; Opala 1986; Sengova 2006; Agha 2015; Johanson & Agha 2021), it is imperative to recognize the affordances African Seminole communities in Florida may have perceived in well-inundated environments. In their recent study identifying historic rice field locations in South Carolina using a combination of geospatial technologies, Hanks et al. (2021) found that roughly 90% of historic rice fields in South Carolina were correlated with wetland environments as defined by the National Wetlands Inventory (NWI), with inland rice fields comprising close to 50% of the total area of historic rice fields identified. In turn, while African Seminole communities (especially those comprised of individuals who had labored previously on Lowcountry plantations), may have also avoided these environmental settings for the placement of their dwellings, they may have simultaneously positioned their settlements within traveling distance to wetland
environments for the purpose of wetland agriculture. As will be discussed in further detail below, contemporary CLC land cover designations may actually underestimate historic wetland presence and a greater proportion of wetland environments may have been situated closer to settlements historically.

Noting these considerations, we should also consider that African Seminole communities were not necessarily constrained (or granted uncomplicated affordances) by the sediment qualities exhibited by Florida’s diverse environmental settings. Weisman (2009: 72) notes that African Seminole communities were adept at “productively cultivating what were often thin and either poorly or excessively drained soils,” which he attributes to their rich agricultural backgrounds. In the Lowcountry, in preparation for the cultivation of rice and other moisture-dependent crops, enslaved communities routinely engaged in the clearing of dense forested areas—although Peter Wood (1974: 107) has previously noted that rice in South Carolina was sometimes “sown among the fallen trees even before the stumps and logs had been removed.” Several scholars have also underscored the significant labor and time costs involved in the construction and maintenance of irrigation networks for rice as well as sugar cane cultivation throughout the Southeast (Joyner 1984: 45–48), often performed by hand. In the Lowcountry as well as in Florida, hammock environments were at times so dense that agriculture (or pasturing) may not have been considered a conceivable option, or a worthwhile expenditure of (collective) labor to prepare landscapes for use (Kovacik & Mason 1985: 80).

Added to the potential labor costs required to prepare land for cultivation, we should also consider the risk attentive and hazard-responsive knowledge sets employed by African Seminole communities may have employed to address
adverse climate fluctuations, such as droughts, periods of freezing, and flooding (Edelson 2007b: 385). Central Florida experienced several droughts during the 1820s, including a significant drought in 1825 that historians have stated led to starvation for both Seminole Indian and African Seminole communities within the reservation. And while the ingenuity displayed by these communities in acquire resources should engender a degree of caution to this assessment (as Euro-Americans aiming for removal had a vested interest in depicting non-white communities as incapable of surviving within Florida’s environments), Seminole Indians and African Seminoles did venture outside of the reservation boundaries in search of resources during this period (Eby 1962: 154; Brown 1995: 422). Upon his visit to the Peace River south of Lake Hancock during the early 1820s, Horatio Dexter recounted a confluence of several environmental, as well as socio-historical, factors shaping degrees of hardship faced by communities in Florida:

I met here a part of the late Payne’s family, who had been obliged to retreat from their fields & settlements near the sea coast in consequence of the rise of the Water. They informed me that they had great difficulty in reaching the high lands. Their object in settling in this remote situation was to avoid the frequent incursions of the Cowetas, whose depredations upon the Indians of the province (sic) ought to engage the early attention of the Agent, and be made the subject of complaint to the Agent of the Creek Nation. The statement of these Indians respecting the inundated state of the country of course prevented making any further attempt to gain the coast or Charlotte harbor at this unfavorable season (Boyd 1958: 93).

Preliminary investigation of the event histories (i.e., events of initial settlement, movement, abandonment) of this group of African Seminole settlements highlight the challenges of identifying and assessing the interactions between what scholars of population movement refer to as push and pull factors. According to Stone (1996: 79), the identification of “push” factors (e.g., pressures
on land, disease, government removal) and “pull” factors (i.e., land availability, need for resources) can support the interpretation of settlement histories. More recently, Jones and Wood (2012) have paired settlement ecology theory with event-history analysis to examine considerations of semi-sedentism and questions of site “abandonment,” underscoring that decisions to move should be understood as complex processes that rarely are determined by singular factors.

The diversity of African Seminole agricultural practices, including both dryland and wetland agriculture, complicates straightforward explanations of the complex relationship between sediment quality, associated landscape modifications, and site locational priorities. Stone’s (1996: 174) ethnographic study of Kofyar agriculture, importantly, suggests that sediment variability or heterogeneity often plays a “vital, but not simple, role in shaping settlement pattern,” and that a community’s efforts to optimize proximity to “good” soil quality may be less stringent than avoidance of poor soils. The spatial correlation between African Seminole settlements and areas exhibiting a smaller area of poorly drained sediments may be indicative of a push (i.e., avoidance of inundated spaces) factor. However, when we consider the distance to which African Seminole communities were historically willing to travel to cultivate agricultural fields, hunt for wild game, manage wetland-adapted livestock, and/or forage for resources, we should be mindful that well-inundated environments may have held multiple and potentially conflicting values as both push and pull factors within past settlement decision-making processes.

With specific reference to the significance of African descendant communities in the transformation of inundated landscapes throughout the Southeast and across the diaspora (Edelson 2007a; Dawson 2018; Schwalbe 2020),
and given the broader significance of water and waterways to African Diasporan experience (Dawson 2018), I initially anticipated that hydrography would play a discriminating role in African Seminole settlement processes. The fact that tributary streams and rivers (both length and number of) were relatively low-ranking variables was surprising. A qualitative observation of the spatial distribution of African Seminole settlements may suggest a potential correlation between settlement location and some of the principal waterways in Florida, including the Suwanee, Ocklawaha, Withlacoochee, St. John’s, and the Peace River [Figure 6.5]. Other African Seminole settlements, such as Tohopikalika and Opauney’s Plantation, were historically recorded as adjacent (or situated within) some of Florida’s major lakes, including Lake Apopka and Lake Hancock.
Weisman (2009: 71) has suggested that waterways served multiple purposes in Florida during the historical period—as modes of movement, as networks of trade and communication, and as routes of escape in times of uncertainty and conflict. Waterways are also associated with specific activities in African/Black Seminole historiography. Mock (2010: 97, 188) notes the presence of irrigation canals (or acequias) at the Black Seminole and Mascogo settlements of Las Moras (Texas) and in Mexico, stating that “Three acequias, or irrigation canals, like the ones at Las Moras, carried water to the Mascogos’ fields and two others ran along streets to provide water for household uses and gardens.”

Addressing tensions between the DFA results presented and what we know (and
can theorize) about African Seminole relationships with the “natural” world, markedly, underscores the utility of heuristic approaches to settlement ecology. The capacity to heuristically “test” (Supernant 2017: 70) the results of spatial-statistical modeling against other forms of evidence, and the capacity to contemplate “dynamic sociocultural scenarios” (Weik 2009: 212), arguably facilitates a more nuanced and wholistic understanding of settlement processes.

6.3 Intergroup Relations

In the remainder of this chapter, I offer a preliminary exploration of the potential role of intergroup relations on settlement decision-making processes, focusing on the relationships between African Seminoles, Seminole Indians, and Euro-Americans at the subregional scale. While the practice of agriculture and the other non-agricultural resources (e.g., wood fuel, wild fauna/flora) are considered significant variables in settlement processes as argued by Netting (1968, 1993) and Stone (1996), we cannot fully understand African Seminole settlement and associated landscape activities without attention to the context of intergroup relations. Conflicts with Euro-American settlers and threats of captive taking/slave raiding emerge frequently across both primary and secondary sources. This study is indebted to Herron’s (1994) initial suggestion that African Seminole settlement processes should be situated within a broader political-historical context, with particular attention to the aftermath of the forced removals of African Seminole and Seminole Indian communities from the Alachua Savannah during the Patriot’s War of 1812-1814. While some of those displaced would form settlements on the Suwanee River (i.e., Bowleg and Nero’s
Towns), others would (re)form settlements deeper within the peninsula’s interior, such as Boggy/Kettle Island, Pilaklikaha, and further south to Minatti.

Given the difficulties of modeling intergroup relations at the regional scale, a reduced study area [Figure 6.6] was selected to examine two additional variables: (1) straight-line distance to the nearest Seminole Indian site/settlement and (2) straight-line distance to the Fort King Military Road. The reduced study area was selected judgmentally, based on the spatial concentration of African Seminole settlements and the comprehensiveness of archaeological and archival surveys attentive to early nineteenth century settlement history (Mitchem & Weisman 1984; Weisman 1986; Mitchem & Weisman 1987; Weisman 1989; Mitchem 1996; Carr & Steele 1993). The selected group of Seminole Indian settlements/sites were drawn primarily from the FMSF database and were cross-referenced with available secondary literature. Specific effort was made to locate named Seminole Indian sites/settlements occupied during the early decades of the nineteenth century prior to the outbreak of the Second Seminole War [c. 1835-1942], although the sites/settlements examined are likely an underrepresentation of the historic distribution of ancestral Seminole Indian towns, villages, and camps dating to this period. To complete the DFA analyses (using 2km and 5km site-catchments), two random sets of six points were created to compare with the six African Seminole settlements located within in the reduced study area.
When straight-line distance to the nearest named Seminole Indian site/settlement and distance to the Fort King Military Road are added to the DFA analysis [Figure 6.7, Appendix A.3], African Seminole settlements are distinguished from the two random sets of points using the 2km site-catchments by having a greater area of poorly drained sediment and a smaller area of well-drained sediment. These results may be reflective of the distribution of poorly drained sediments within the study area. These findings contrast with the results of the 2km site-catchments for the larger study area, where African Seminole settlements exhibited a greater correlation with less-inundated environments.

Upon qualitative observation of the reduced study area, four of the six African Seminole settlements are situated in the southeastern section, where
poorly drained sediments predominate. The two remaining African Seminole settlements, namely Boggy/Kettle Island and Negro Town, are located within or closely adjacent to the Withlacoochee River Valley, which similarly exhibits a predominance of poorly drained settlements. Overall, the random groups of points appear to exhibit a wider degree of sediment variability, suggesting that African Seminole communities are spatially concentrated within areas that exhibit a higher degree of inundation. African Seminole settlements are also distinguished by having a larger area of wet soil (hydric) hammocks, further suggesting a correlation between settlements and well-inundated environments.

Figure 6.7 Average DFA Results with Intergroup Variables (2km)

Both variables addressing intergroup relationality (i.e., distance to Seminole Indian sites/settlements and distance the Fort King Military Road) resulted in conflicting function values with the 2km site-catchments [Appendix A.3], suggesting that African Seminole settlements were randomly placed in
relation to both variables when measured against the two random groups of points. The results for Function 2, however, were not conflicting (i.e., negative values were returned for both statistical comparisons), suggesting that these variables exhibit a more nuanced position in relation to the discriminating strength of the highest-ranking variables. Based on the threshold of 0.200 for statistical significance, African Seminole settlement distance to nearest named Seminole Indian site/settlement is a discriminating variable for Function 2, but it is moderately ranked. In comparison, the distance between the six African Seminole settlements and the Fort King Military Road are ranked as one of the least discriminating variables for Function 2. The conflicting measures returned, thus, are most likely attributable to Random Group 1, which appears to shift between positive and negative values across the functions, whereas the values for the African Seminole settlements do not shift between the functions. Because Function 2 is the second most discriminating function value, these intergroup variables can be said to be at most moderately significant. Additional data points would likely enhance our evaluation of the significance of these statistical results.
Figure 6.8 Average DFA Results with Intergroup Variables (5km)

For the 5km site-catchments, African Seminole settlements were distinguished from the two sets of random points by being situated at a farther distance from the Fort King Military Road and containing a smaller overall area of well drained sediments within their site-catchments [Table 6.8, Appendix A.4]. African Seminole settlement distance to the nearest named Seminole Indian site/settlement were returned as conflicting values for both Random Group 1 and Random Group 2, suggesting that settlements were randomly distributed in relation to this intergroup variable. When evaluated alongside the results for the 2km site-catchments, it appears that African Seminole settlements within the reduced study area are correlated most strongly with well-inundated environments and are located at some distance from the Fort King Military Road.

Concerning questions of intergroup relationality, these results suggest that proximity to Seminole Indian sites/settlements did not necessarily play a
singly determining role in the location of African Seminole settlements, although this variable may have played a moderate role in settlement location choices at the most localized scale examined in this study (i.e., 2km site-catchments are interpreted as measures of immediate access to residents). In comparison, distance from the Fort King Military Road appears to be a highly distinguishing factor characterizing African Seminole settlements in the reduced study area at the larger spatial scale (5km site-catchments), although it would be injudicious to leave this result unqualified or to project this interpretation uncritically upon settlements within the larger study area. In the remainder of this chapter, I offer some preliminary interpretations of the presented results.

On the surface, an interpretation that the location of Seminole Indian sites/settlements played a minimal (or at best a moderate) role in the locations of African Seminole settlements does not necessarily conflict with previous discussions of intergroup relationality. As previously mentioned, Herron (1994: 41) noted that one of the characteristics of African/Black Seminole settlements formed in the aftermath of the Patriot’s War of 1812-1814 were that they were “located within several miles of a Seminole Indian town with whose leader and inhabitants they were affiliated,” citing Pilaklikaha, Bowleg’s Town (adjacent to Nero’s Town), and Boggy/Kettle Island. Admittedly, Herron did not elaborate upon the parameters by which “several miles” should be assessed, nor whether geographical proximity should be considered reflective of the strength or faintness of inter-settlement affiliations. First, we should be mindful of the ways in which proximity is conceptualized. For instance, Herron’s discussion of settlement proximity includes both the paired settlements of Bowleg’s Town (II) and Nero’s “Negro Towns” on the Suwanee River [Figure 5.2], which are located
within a distance of two miles, as well as the settlements of Pilaklikaha and Okahumpka, which are cited by Weik (2009: 214) at a distance of about 10 miles. Given that residents at Pilaklikaha were recorded as traveling up to twenty miles to cultivate common fields (Weik 2012a: 140), it may be inappropriate to suggest that relations between affiliated settlements could not extend greater distances. Thus, while close geographical proximity may not have played a determining role in settlement location choice relative to other factors (e.g., availability of well-drained sediments), this does not mean that African Seminole communities were unable to establish and maintain relations across geographical space.

Second, degrees of geographic distance between settlements should not necessarily be interpreted as a marker of the strength or faintness of inter-settlement affiliations. Measures of straight-line distance between settlement locations are likely to underestimate the multiplicity of possible routes taken by individuals and groups to travel between settlements, whether for communication, short and long-distance trade and exchange, and/or for the mobilization of agricultural labor to cultivate common fields. Weisman (2009: 71) has previously suggested that overland trails and waterways served multiple purposes for African Seminole and Seminole Indian communities in Florida, and ultimately a more sophisticated degree of modeling could enhance our understanding of these landscapes of movement (Ackerman 2019). In an essay “The Peace River: A Forgotten Highway,” Lynn W. Ware (1984) recounts a theory of past waterway movement in Florida proposed by Park DeVane, who is identified as a longtime student of Seminole Indian heritage. According to DeVane, it was once possible to travel continuously from the Gulf of Mexico to the Atlantic using linked streams, rivers, lakes, and swamps (Ware 1984: 3–4).
Micanopy’s residence at Pilaklikaha, furthermore, challenges us to consider the possible ways that residence may have facilitated similar degrees of intergroup relationality commonly attributed to measures of site/settlement proximity. According to Weik (2012a: 136), “Native Americans such as Micanopy and African Seminoles such as John Horse had familial ties that moved them between settlements and placed them in kinship networks linking Pilaklikaha to towns such as Okehumpke (Micanopy’s other settlement) or Thonotosassa and (later) the Oklawaha River (the site of John Horse’s residences).” African Seminoles, moreover, also maintained economic and kinship ties to enslaved family members on distant plantations (Dixon 2014: 100), thereby suggesting that geographical proximity between affiliated settlements was not necessarily a precondition for the establishment and continuation of intergroup relationships.

Although preliminary, this discussion of intergroup relationality would be incomplete without a focused consideration of the broader context of U.S. settler colonial expansion into Florida during the early nineteenth century, and the related uncertainties brought about by slave raiding. Following the destruction of Payne and Bowleg’s settlements in the Alachua Savannah, Herron (1994: 41) argues that “the Seminole Indians and Black Seminole fled to less desirable lands, unoccupied by whites, but lands that still provided the necessary resources for the survival of their communities.” When these displaced groups (re)settled deeper within the peninsula’s interior, African Seminole and Seminole Indian communities continued to be targeted by violence and slave raids by both Euro-Americans and other Native American groups (e.g., Coweta Creeks).

Both ethnohistorical and ethnographic accounts of slave raiding underscore the multiscalar impacts of these direct and structural violence,
including the transformation of landscape activities to reduce exposure to risk (Diouf 2003; MacEachern 2011; VanDerwarker & Wilson 2016; Melton 2018b). In Florida, scholars have suggested that African Seminole and Seminole Indian communities pursued multiple tactics to respond to these uncertainties.

Following Baram’s (2012: 118–19) discussion of escape agriculture at Angola and Weik’s (2012a: 140) discussion of the role of food security for enslaved African, risk averse and hazard-responsive knowledge sets may have shaped not only the macro structures of agricultural systems (e.g., shifting agriculture) but also the microscalar dimensions of those agricultural systems, including crop selection. According to James C. Scott (2009: 199), “escape crops” may be characterized by staggered maturity, growing speed, and their capacities for concealment, especially those that can be grown underground such as tubers. Weik (2009: 128–29) has argued that the limited evidence for extensive fortifications at Pilaklikaha suggests that residents may have prioritized flight over fortification; an inference strengthened by the fact that residents at Pilaklikaha had left weeks before its destruction by U.S. forces in 1836. In other ways, scholars have suggested that tactically mobilized their physical labor and knowledge to ensure a degree of security and protection within Seminole Indian society (Weisman 2009: 71–72).

Past scholarship has drawn increasing attention to spatial dimensions of risk and uncertainty. In addition to accounts of temporary flight, several longer-term population/settlement movements have been interpreted as responses to slave raiding in Florida, including between Buckra Woman’s Town and Tobassa/Wahoo, as well as between Emathla’s Town and Tohopikalika (Mulroy 2007: 34–35). According to Brown (1991: 26–27), the “remote situation” of the Peace River offered a degree of sanctuary for African Seminoles affiliated with
Buckra Woman in the aftermath of the Coweta Raids that resulted in the destruction of Angola and the Tampa Bay settlements in 1821. In the case of Emathla’s (King Phillip’s) Town, in 1835 the community moved from the St. John’s River to a more defensible location within the reservation boundaries (Mulroy 2007: 35), settling at an already established community on Lake Apopka.

The construction of the Fort King Military Road, which connected Fort Brooke [est. 1824] and to Fort King [est. 1827] near present-day Ocala, was selected as a potential measure of intergroup relationality for two reasons. First, it is an aspect of the landscape constructed prior to the 1830s. Determining the landscape features present within Florida’s interior during the 1810s and 1820s is particularly challenging, as the most detailed and readily available materials documenting Florida’s nineteenth century landscapes were not produced until the Second Seminole War [1835-1842]. Concerning interior and southern Florida, Weisman (1989: 93) has noted that accurate maps did not appear for certain locales, such as the Withlacoochee Cove, until the late 1830s. At a broader scale, detailed knowledge of Florida’s southern peninsula by Euro-Americans did not occur at a significant scale until the twentieth century, due in large part to the difficulties of survey and the shifting character of Florida’s environments.

Second, the Fort King Military Road is an aspect of U.S. “colonial technology” (Freed 2010), which aimed to grant Euro-American access to and control over physical space in Florida. Examination of the spatial relationships between aspects of Euro-American infrastructure in Florida (e.g., roads, forts, reservation boundaries) and African Seminole and Seminole Indian settlements was understood as a potential means to explore questions of spatiality raised by scholars of maroon and African Seminole historiography. While noting my
previous interrogate the concept of the “maroon,” I find Amaral’s (2017: 215) critique of the essentialization of maroon geographies as “remote” and “inaccessible” helpful for interpreting considerations of settlement location.

The six African Seminole settlements examined were most distinguished by being geographically farther from the Fort King Military Road than the two sets of random points based on the 5km site-catchments. Geographic distance may suggest that communities prioritized locations emphasizing concealment and natural forms of defensibility (e.g., swamps, densely forested hammocks), such as Boggy/Kettle Island. However, given that many of these settlements are suggested to have formed in the decade prior to the construction of the Fort King Military Road, the presence of the road itself cannot be said to have influenced these settlement choices directly. Most likely, the military road can be said to reflect efforts to increase the accessibility of interior Florida for Euro-Americans following the signing of the Treaty of Moultrie Creek in 1823. During the mid-to-late 1820s, Brown (1995: 422–23, 433) notes at least two attempts by the U.S. military to “demonstrate ‘the strength and power of the United States’” by entering the reservation boundaries. During one such maneuver in 1825, the U.S. military found the settlements of Pilaklikaha and Okahumpka deserted, as their residents had moved into the swamps in preparation for violent conflict.

While speculative, it may be the case that geographic distance from the most accessible aspects of Florida’s landscape (i.e., the area selected for the Fort King Military Road, which largely avoided the Withlacoochee Cove) provided African Seminole and Seminole Indian communities the space to pursue tactics of flight, as close geographical proximity may have not allowed for the necessary time to quickly move residents to safety. Specific African Seminole communities,
such as those formed at Boggy/Kettle Island and the Big Swamp north of present-day Ocala, nonetheless, appear to have prioritized locations that slave raiding would have found to be particularly challenging to access. During my own visit to the site of Boggy/Kettle Island, it was immediately clear (even with historical distance) why this particular locale persisted as a central space of refuge throughout the Seminole Second War while Pilaklikaha and other settlements were quickly burned by the U.S. military at the war’s onset.

Weik (2019a: 143) has suggested that “African Seminole settlements were the most southern and interior of all villages in each regional Seminole settlement cluster. This positioning was likely the result of calculated decision by self-liberated people to use distance and buffer zones of indigenous Seminole settlements to protect themselves from enslavers’ attacks.” In other ways, Weisman (2009) contends that even traditional markers of accessibility, such as trails and roads, may have been effectively closed off to those not granted permission by Seminole Indian leaders. In his assessment of Horatio Dexter’s visit to Pilaklikaha during the early 1820s, Weisman postulates that Seminole Indian leaders and settlements acted as “middlemen” (Weisman 2009: 71), allowing African Seminoles to engage with the outside world while reducing the risks of capture. African Seminoles, however, were certainly willing to risk reenslavement (Weik 2012a: 144; Dixon 2014: 100–101), exhibited by both the covert and overt ways they engaged with colonial and plantation spaces.

We must also consider the ways in which African Seminole communities may have prioritized strategic locations that can be said to be “accessible.” Several scholars have noted that residents at Pilaklikaha were likely drawn to its centralized physical location, as Pilaklikaha was well connected to a network of
paths and trails (Carrier 2005; Mulroy 2007: 12–13; Dixon 2014: 100–101; Ibarrola 2021: 21). For Ibarrola (2021: 21), this more centralized location may be reflected in the frequency with which Pilaklikaha was visited by Euro-Americans during the early nineteenth century, as well as the regularity with which Pilaklikaha was depicted on historical maps in comparison to other African Seminole (and Seminole Indian) settlements. Ultimately, it is likely that African Seminole communities in Florida held a wide range of perspectives on whether to locate near or at distances farther away from Euro-American landscape features. Continued examination of the spatial relationships between African Seminole settlements and other aspects of Euro-American colonial technology would enhance our understanding of how communities navigated these landscapes.
CHAPTER 7
CONCLUSIONS

This thesis set out to address two overarching questions: (1) What variables or factors influenced the settlement location choices of ancestral African Seminole communities formed in Florida during the early nineteenth century?; and (2) What can a contextually-responsive settlement ecology contribute to our understanding of how African-Native American communities perceived, engaged with, and shaped/were shaped by their surrounding landscapes? As discussed previously, scholarly interest in the formation of ancestral African Seminole settlements in what is now Florida stretches back several decades, with most work approaching African Seminole settlement processes through considerations of environmental adaptation to Florida’s distinctive ecological settings; through notions of marronage and responsiveness to Euro-American settler colonial expansion; and/or through various approaches to African-Native American relationality, including (democratic) feudalism and co-dependence. Together, past scholarship has underscored that considerations of “settlement” remain a recurring, if challenging, subject in African Seminole historiography.

formed in the aftermath of the Patriot’s War of 1812-14 prioritized defensible, inaccessible areas and close proximity to affiliated Seminole Indian settlements—priorities that were necessary for survival given the risks of slave raiding and Euro-American expansion. Weisman (2009) and Weik (2009, 2012) further posited that Florida’s distinctive hammock ecosystems not only acted as natural defenses for African Seminole communities, but also afforded important space for the practice of agriculture and animal husbandry, particularly cattle herding. Euro-American chroniclers who visited African Seminole and Seminole Indian settlements throughout the peninsular interior in the years preceding the Second Seminole War [1835-1842] made detailed note of these landscape activities, allowing us to hypothesize why specific locales may have been prioritized.

Drawing upon a settlement ecology framework (Stone 1996; Kellett and Jones 2017), I proceeded to argue that while Herron’s (1994) foundational study did articulate several of the key variables that likely informed settlement decision-making, the act of enumerating variables does not necessarily address how African Seminole communities prioritized these factors, nor does it explicitly answer how individuals and communities may have dealt with potentially competing settlement priorities. Additionally, most recent scholarship has begun to complicate how we understand and conceptualize “maroon social geographies,” noting that characterizing these sites and landscapes as “remote” and “inaccessible” may work to essentialize the environmental settings exhibited by individual settlements, but may also reinforce settler colonial spatial logics of Black and Indigenous geographic disconnection (Amaral 2017: 214-215; Ibarrola 2021). My effort to examine the spatial relationships between ancestral African Seminole sites/settlements,
environmental resources, and neighboring landscape features, in turn, has aimed to more closely consider the factors shaping past settlement decision-making.

Building upon previous applications of settlement ecology, I began by calculating two sets of Nearest Neighbor Ratios (NNR) to explore the spatial relationships between the group of 15 African Seminole settlements examined in this study. NNR measures the distribution of a phenomenon over a geographical space, describing the extent to which points are clustered, dispersed, or randomly situated. Because the size and shape of the study area can influence NNR measurements, two iterations of NNR using different spatial configurations of the study area were used: one based on the study’s Primary Area of Interest [Figure 5.1] and the second based on a minimum enclosing rectangle. In summary, I argued that the 15 African Seminole settlements examined in this study exhibited a dispersed pattern. Moving forward, the addition of more sites to this group of ancestral settlements may return different spatial distributions.

Using Discriminant Function Analysis (DFA) as a statistical means to operationalize and model settlement decision-making as a “mental balance sheet” (Stone 1996: 8) of multiple and intersecting settlement priorities, I then examined a range of agricultural, other non-agricultural, and intergroup variables to investigate which factors may have been prioritized in past settlement location choices. To date, archaeologists have utilized DFA to explore an increasingly wide range of settlement variables (e.g., Ellis and Jones 2016), especially given the greater availability of environmental datasets and the processing capabilities of GIS software. And while we should remain attentive to the role of individual action, intra-group negotiation, and considerations of social organization and community leadership (Weik 2009) in our discussions of
“decision making,” I found settlement ecology to be an effective approach during this study to explore the influence of particular variables at a regional scale.

In summary, African Seminole settlements formed in Central Peninsular Florida during the early nineteenth century appear to have prioritized areas for settlement exhibiting well drained sediments, good tree growth, and access to clay resources. Proximity to poorly drained sediments and nonforested and forested wetlands, alternatively, were likely “push” factors in these settlement considerations, especially given the need for higher, less-inundated ground for the construction of residential structures and the practices of dryland agriculture and animal husbandry. Still, we should consider the ways that well-inundated settings were likely prioritized for the additional landscape values they afforded. Given the historical record of wetland crop cultivation at several African Seminole settlements in Florida (and recognition of the centrality of these pursuits amongst ancestral West/Central African and African-descendant communities in the South Carolina-Georgia Lowcountry), it is difficult to deny that African Seminole communities may have perceived Florida’s distinctive wetland environments as valuable spaces for a range of landscape activities, including agriculture, foraging, hunting, and as natural modes of defensibility.

Noting these broad considerations, it is important to compare these results with the histories of individual settlements and communities. Rather than incompatible perspectives, I argue that the integration of (1) in-depth studies of individual settlements and (2) multi-settlement or regionally oriented studies allow us to consider questions of settlement patterning without losing site of the specific trajectories of individual communities. Future efforts to revisit the variables and associated geospatial datasets used in this study, moreover, may
ultimately underscore that settlement ecology models are not the only or definitive reconstructions of these settlements processes, but may be approached as one of many possible “dynamic sociocultural scenarios” (Weik 2009: 212). Moving forward, it is imperative to address how ancestral African Seminole communities actively transformed their surrounding landscapes at the local scale (e.g., construction of irrigation networks, clearing of forested areas for agricultural fields, finer-grained considerations of sediment quality). Importantly, these more localized considerations may have played a significant role in why and how settlements locations were prioritized and selected.

A preliminary case study examining the role of inter-group relations in these settlement processes was pursued at a reduced spatial scale. In summary, while the DFA results suggest that distance to neighboring Seminole Indian settlements played a minimal or at most a moderate role in the spatial locations of African Seminole communities, we should not interpret geographical distance as a direct indicator of intergroup relationality. Additional factors, such as the historically documented willingness of African Seminole individuals and communities to travel significant distances to pursue agricultural activities, to engage in economic exchange, and maintain kinship ties, should be considered when evaluating these results. Preliminary investigation of the spatial relationships between African Seminole settlement locations and Euro-American landscape features (e.g., the Fort King Military Road), additionally, underscore that the timing of settlement decisions should be taken into greater account. Diachronic, rather than synchronic, approaches to landscape phenomena are needed to more fully grapple with what specific features were present on the landscape during the “founding” moments of African Seminole settlements, as
well as how changes in the landscapes may have impacted decisions to relocate settlements and/or to fission communities. Questions of multiple founding events, as well as considerations of seasonal occupation, point to several future directions for a spatially and temporally multiscalar settlement ecology.

The reliability of the preceding assessments, admittedly, are largely dependent upon considerations of data quality/quantity. One area of further research should be directed to the evaluation and enhancement of the geospatial datasets, including the review of spatial and attribute information for the individual sites/settlements examined in this study. Efforts to develop a spatially multiscalar, diachronic, and comparative approach to the settlement ecologies of individual African Seminole communities—and continued attention to the role of inter-group and intra-group dynamics in past decision-making (e.g., social and political organization, kinship, leadership)—will likely add to our understanding of why certain locales were prioritized and/or avoided, and also to what degree these observed trends may be considered a “settlement pattern.”

While the practice and social organization of agriculture remains a core consideration of settlement ecology and African Seminole historiography, this study has followed recent archaeological applications of settlement ecology by exploring settlement beyond agriculture. Considering relationships to springs, forests, and other dimensions of the “natural” environment is essential to fully appreciate the range of priorities potentially shaping settlement decisions. The question of animal husbandry (and specifically cattle ranching), moreover, prompts an additional set of methodological and analytical considerations not explored here, such as the appropriateness of the measuring site-catchments. Given the centrality of cattle ranching traditions to both North American and
Afro-Atlantic cultural-environmental histories (Sluyter 2012; Fisher 2015), we should consider a broader role for the non-agricultural dimensions of settlement ecology. Further research is also needed to account for how African Seminole communities may have perceived and engaged with their surroundings beyond the lens of labor and survival, including the potential role of spirituality.

This study, moreover, aimed to address a tendency within past scholarship to isolate political-historical, environmental/adaptative, and anthropological approaches to cultural history (Weisman 1989: 5–13). More specifically, I aimed to encourage recognition that settlement decision-making is not incidental to the broader processes (e.g., diaspora, ethnogenesis, anti-slavery resistance) shaping African Seminole experience in Florida, but that decisions on where to live were part and parcel to these processes. Moving forward, it may be possible to interrogate Cipolla’s (2013b: 121) notion that settlement decisions are “influenced by the particular contexts in which they took place but also recursively shaped those contexts in ways unbeknownst to their practitioners.”

As one many possible directions of inquiry, I approached African Seminole settlement ecologies through an African Diaspora perspective. Past scholars have demonstrated the utility of framing African Seminole cultural history within a diasporan framework (Weik 2002, 2007, 2009, 2012a; Ibarrola 2021), especially following the (re)discovery of diasporic connections between African/Black Seminole descendant communities across the Western Hemisphere and to West/Central Africa (Opala 1986; Amos 2011). At the same time, it is imperative to acknowledge that African diasporan perspectives have the potential to essentialize distinct “African” heritages while affirming or negating personal histories of and claims to North American Indigeneity.
Future directions for this work should include the perspectives of African/Black Seminole (and Seminole Indian and Miccosukee Indian) descendant communities. Supernant’s (2017) community-grounded approach to Métis landscapes and recent archaeological research conducted by the Seminole Tribe of Florida (Fenno et al. 2017; Mahoney 2017) points to where collaborative work with African/Black Seminole descendants could proceed. Assuming community support, future work could be directed to the archaeological identification and excavation of additional African Seminole settlements in Florida. This work should involve a central role for descendant communities in the selection, implementation, and evaluation of archaeological approaches.
REFERENCES

Ackerman, Brandon

Agbe-Davies, Anna

Agha, Andrew

Agorsah, E. Kofi

Álvarez Larraín and Michael K. McCall

Amaral, Adela

Amos, Alicone M.

Anschuetz, Kurt F., Richard H. Wilshusen, and Cherie L. Scheick

Binford, Lewis R.
Blakney-Bailey, Jane Anne
Bledsoe, Adam
Botwick, Bradford
Boyd, Mark F.
Brabyn, Lars
Brannan, Stephan and Jennifer Birch
Branton, Nicole
Brian Wildenthal Memorial Library
Brouwer Burg, Marieka
Brown, E. Canter (Jr.)
Brown, Kenneth L.

Brown, Ras Michael

Buffington, April J.

Butzer, Karl W.

Carr, Robert S. and William S. Steele

Carrier, Toni

Chang, Kwang-chih

Cherry, John F., Jack L. Davis, Anne Demitrack, Eleni Mantzourani, Thomas F. Strasser, Lauren E. Talalay

Cipolla, Craig N.

Clarke, Kamari Maxine

Cline, Howard F.
---1974b *Provisional Gazetteer with Locational Notes on Florida Colonial Communities, 1700-1820*. A Garfield Series, American Indian Ethnohistory,
Cochran, Lindsay E.

Cooper, Anwen and Chris Green

Craig, Alan K.

Cronon, William

Davis, T. Frederick

Dawson, Kevin

Deagan, Kathy A. and Jane A. Landers

Delle, James A.

Diouf, Sylviane A. (ed.)

Dixon, Anthony E.

Donnay, Sirio Canós

Dubisch, Jill

Ebert, James I.

Eby, Cecil D.

Edelson, S. Max
 Plantation Landscape in the Colonial South Carolina Lowcountry.
 "Agricultural History" 81(3): 381-406.
Elliot, Michelle
2017 Climate, Ecology, and Social Change in Prehispanic Northwestern
Engelbrecht, William
2003 "Iroquoia: The Development of a Native World." Syracuse University Press,
 Syracuse, New York.
Ewel, Katherine C.
1990 Swamps. In "Ecosystems of Florida", edited by Ronald L. Myers and John
Fairbanks, Charles H.
---.1978 The Ethnoarchaeology of the Florida Seminole. In "Tacachale: Essays on
 the Indians of Florida and Southeastern Georgia during the Historic Period,
 Gainesville, Florida.
Fenno, Matthew, Karen Brunso, and Jessica Freeman
2017 Camp Life: Recording Historic Camps as Heritage. In "We Come for
 Good: Archaeology and Tribal Historic Preservation at the Seminole Tribe of
 Florida", edited by Paul N. Backhouse, Brent R. Weisman, and Mary Beth
Fisher, John Ryan
2015 "Cattle Colonialism: An Environmental History of the Conquest of
 California and Hawai‘i." University of North Carolina Press, Chapel Hill,
 North Carolina.
Fleming, Andrew
Florida Division of Historical Resources
2019 Florida Master Site File: Information for Users. Electronic document,
Forbes, Jack D.
1993 "Africans and Native Americans: The Language of Race and the Evolution of
 Illinois.
Francis, Kimone
2016 "Maroons are not runaway slaves." Jamaica Observer, March 7, 2016,
Frank, Andrew K.
2014 Creating a Seminole Enemy: Ethnic and Racial Diversity in the
Freed, Libbie

Gal, Susan and Judith T. Irvine

Giggins, Joshua R.
1858 Exiles of Florida: Or the Crimes Committed by Our Government Against the Maroons, Who Fled from South Carolina and Other Slave States, Seeking Protection Under Spanish Laws. Palala Press.

Gijsegham, Henrick Van

Ginsburg, Rebecca

Glaberson, William

Gokee, Cameron

Gokee, Cameron and Ibrahima Thiaw

González-Tennant, Edward

--- 2016 Recent Directions and Future Developments in Geographic Information Systems for Historical Archaeology. Historical Archaeology 50(3): 24-49.

Goza, William M.

Gray & James

Griffin, John W.

Gritzner, Janet H.
1983 Cultural Geography and Historical Archaeology: A Call for Cooperation Along a Rich Interdisciplinary Interface. In Forgotten Places and
Gupta, Akhil and James Ferguson

Haggett, Peter

Harris, Oliver J. T.

Hartman, Saidiya

Hegmon, Michelle

Herrera, Roberto A.

Herron, Jordan T.

Hodder, Ian

Hodder, Ian and Clive Orton

Howard, Rosalyn

Howey, Meghan C.L. and Marieka Brouwer Burg

Hudson, John C.

Hudson, Mark James

Hunt, Eleazer D.

Ibarrola, Mary Elizabeth

Imoh-Itah, Imoh, Luke Amadi, and Roger Akpan

Ingold, Tim

Ingram, Scott E.

Johanson, Jessie L. and Andrew Agha

Johnson, Jessica Marie

Johnson, Matthew

Johnston, Josephine

Jones, Eric E.

Jones, Eric E. and Peter Ellis

Jones, Eric E. and James W.

Joyner, Charles

Kanter, John

Katz, William Loren

Kellett, Lucas C.

Kellett, Lucas C. and Eric E. Jones

Kelly, Kenneth G. and Neil Norman

Kempf, Michael
King, Tiffany Lethobo

Kintigh, Keith W. and Albert J. Ammerman

Knapp, A. Bernard and Wendy Ashmore

Kokomoor, Kevin D.

Kovacjk, Charles F. and Robert E. Mason
1985 *Changes in the South Carolina Sea Island Cotton Industry.* *Southeastern Geographer* 25(2): 77-104.

Kovarovic, Kris, Leslie C. Aiello, Andrea Cardini, and Charles A. Lockwood
2011 *Discriminant function analyses in archaeology: are classification rates too good to be true?* *Journal of Archaeological Science* 38: 3006-3018.

Kowalewski, Stephen A.

Krauthamer, Barbara

Kushlan, James A.

Kvamme, Kenneth L.

Landers, Jane

Lawres, Nathan R.
2012 *“You Have Guns and So Have We...”*: An Ethnohistoric Analysis of Creek and Seminole Combat Behaviors. PhD Dissertation, University of Central Florida.

---.2014 *Reconceptualizing the Landscape: Changing Patterns of Land Use in a*
Lelièvre, Michelle A.
Lelièvre, Michelle A. and 2015
Leone, Mark P., Cheryl J. LaRoche, and Jennifer J. Babiarz
Levin, Ted
Linebaugh, Donald W. and Donald W. Robinson
Littlefield, Daniel F.
Loughlin, Michael L.
Lyman, R. Lee
Lyman, R. Lee and Michael J. O’Brien
Lyons, Diane and Joanna Caset
MacEachern, Scott
Mahon, John K.
Mahoney, Maureen
2017 Tarakkvlkv (Land of Palms): Bridging the Gap between Archaeology and Tribal Perspectives. In *We Come for Good: Archaeology and Tribal Historic Preservation at the Seminole Tribe of Florida*, edited by Paul N. Backhouse,

Mair, Edward

Mathis, Ruth and Terrance M. Weik

Matthews, Christopher N.

McCall, George A.

McCoy, Mark D.

McKittrick, Katherine

Melton, Mallory A.

Miles, Tiya

Miles, Tiya and Sharon P. Holland (eds.)

Mitchem, Jeffrey M.

Mitchem, Jeffrey M. and Brent R. Weisman
Mock, Shirley Boteler

Mock, Shirley Boteler and Mike Davis

Monaco, Chris S.

Morris, Jerry C. and Jeffrey A. Hough
2009 The Fort King Road: Then and Now. Seminole Wars Foundation, Inc., Dade City, Florida.

Morrison, Toni

Mulroy, Kevin

Navakas, Marie Curie

Nelson, Megan Kate

Netting, Robert McC

Robert McC Netting, Priscilla M. Stone, and Glenn D. Stone

Norton, Holly K. and Christopher Espenshade

Odewale, Alicia

Oetelaar, Gerald and D. Joy Oetelaar

Offen, Karl

Ogundiran, Akinwumi

Opala, Joseph
1980 *A Brief History of the Seminole Freedmen*. University of Texas African and Afro-American Studies and Research Center, Austin, Texas.

Overmars, Koen P., Wouter T. de Groot, and Marco G. A. Huigen

Ozorio de Almeida, Fernando

Parcero-Oubina, César
1997 Deconstructing the Land: the Archaeology of Sacred Geographies. CAA 97: 73-79.

Parcero-Oubina, César, Felipe Criado Boado, and Manuel Santos Estévez

Pargas, Damian Alan
Parker, Susan R.

Parsons, Jeffrey R.

Petrie, Cameron A. and Frank Lynam

Platt, William K. and Mark W. Schwartz

Poe, Stephen

Porter, Kenneth W.

Roberts, Alaina E.

Rockman, Marcy and James Steele (eds).

Royce, Charles C.

Ryzewski, Krysta

Salmon, Merrilee H.

Satler, Richard A.

Saunt, Claudio

Sevara, Christopher, Geert Verhoeven, Michael Doneus, and Erich Draganits 2018 Surfaces from the Visual Past: Recovering High-Resolution Terrain Data from Historic Aerial Imagery for Multitemporal Landscape Analysis. Journal of Archaeological Method and Theory 25(2): 611-642.

Simmons, William H. 1822 Notices of East Florida with an account of the Seminole Nation of Indians. A.E. Miller, Charleston, South Carolina.

Sluyter, Andrew

Smith, Hayden Ros

Stanislawski, Michael B.

Statuto, Dina, Giuseppe Cillis, and Pietro Picuno

Stephenson, Karen E.

Steward, Julian H.

Stojanowski, Christopher M.

Stone, Glenn Davis

Stone, M. Priscilla, Glenn Davis Stone, and Robert McC Netting

Sturtevant, William C.

Sunseri, Jun Ueno

Supernant, Kisha

Symanski, Luís Cláudio P.

TallBear, Kimberly

Thomas, Julian

Tilley, Christopher

Torres, Joshua M., Martin F. Dickinson, and Lucy B. Wayne

Trigger, Bruce G.

Tuma, Michael W.

Twyman, Bruce Edward

Ullah, Isaac I.T.

Vanderwarker, Amber M. and Gregory D. Wilson

Verhagen, Phillip and Thomas G. Whitley

Volk, Michael I., Thomas S. Hoctor, Belinda B. Nettles, Richard Hilsenbeck, Francis E. Putz, and Jon Oetting

Voss, Barbara L.

Walls, Michael David

Warren, Robert and Michael J. O'Brien

Watts Malouchos, Elizabeth

Weik, Terrance M.

Weisman, Brent R.
---1999 **Unconquered People: Florida’s Seminole and Miccosukee Indians.**

Wheatly, David
2004 Making space for an archaeology of place. *Internet Archaeology* 15(15).

White, Cheryl

Wickman, Patricia Riles

Willey, Gordon R.

Wobst, H. Martin

Wood, Peter H.

Wright, Willie Jamaal

Wylie, Alison

Yang, Yuanyuan, Shuwen Zhang, Jiuchun Yang, Liping Chang, Kun Bu, Xiaoshi Xing

Yaworsky, Peter M., Kenneth B. Vernon, Jerry D. Spangler, Simon C. Brewer, Brian F. Codding

Young, Amy L.

Zedeño, María Nieves
APPENDIX A

ADDITIONAL DISCRIMINANT FUNCTION ANALYSIS RESULTS

Table A.1 Average DFA Results for the Comparison Between the African Seminole Settlements and the Two Random Sets of Points (2km Catchments)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Function value (average of Settlements vs. Random 1 vs. Random 2) (Function)</th>
<th>Function value (average of Settlements vs. Random 1 vs. Random 2) (Function)</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of non-forested wetlands within catchment</td>
<td>-.305</td>
<td>-0.278</td>
<td>-0.292</td>
</tr>
<tr>
<td>Total area of wetlands within catchment</td>
<td>-0.157</td>
<td>-0.193</td>
<td>-0.175</td>
</tr>
<tr>
<td>Area of clay in catchment</td>
<td>0.282</td>
<td>0.021</td>
<td>0.152</td>
</tr>
<tr>
<td>Number of springs within catchment</td>
<td>.175</td>
<td>0.095</td>
<td>0.135</td>
</tr>
<tr>
<td>Number of tributary streams and rivers within catchment</td>
<td>-0.136</td>
<td>-0.083</td>
<td>-0.110</td>
</tr>
<tr>
<td>Area of moist soil (mesic) hammock within catchment</td>
<td>.090</td>
<td>0.084</td>
<td>0.087</td>
</tr>
<tr>
<td>Area of forested wetlands within catchment</td>
<td>-0.017</td>
<td>-0.107</td>
<td>-0.062</td>
</tr>
<tr>
<td>Area of well-drained sediment in catchment</td>
<td>0.324</td>
<td>-0.119</td>
<td>Conflicting</td>
</tr>
<tr>
<td>Area of dry soil (xeric) hammock within catchment</td>
<td>0.063</td>
<td>-0.187</td>
<td>Conflicting</td>
</tr>
<tr>
<td>Variable</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Note</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>Area of good tree growth within catchment</td>
<td>0.257</td>
<td>-0.139</td>
<td>Conflicting</td>
</tr>
<tr>
<td>Length of tributary streams and rivers within catchment</td>
<td>-0.151</td>
<td>0.061</td>
<td>Conflicting</td>
</tr>
<tr>
<td>Area of poorly drained sediment in catchment</td>
<td>-0.418</td>
<td>0.349</td>
<td>Conflicting</td>
</tr>
<tr>
<td>Area of loam in catchment</td>
<td>0.025</td>
<td>-0.088</td>
<td>Conflicting</td>
</tr>
<tr>
<td>Area of wet soil (hydric) hammock within catchment</td>
<td>-0.140</td>
<td>0.183</td>
<td>Conflicting</td>
</tr>
<tr>
<td>Total number of wetlands within catchment</td>
<td>0.086</td>
<td>-0.125</td>
<td>Conflicting</td>
</tr>
</tbody>
</table>

*Function 1 = Settlements (1.417), Random Group 1 (-0.155), Random Group 2 (-1.262)
**Function 2 = Settlements (0.531), Random Group 1 (-1.285), Random Group 2 (0.754)

Note: +/- value indicates which group has a higher average value of that variable. Values in bold are highly discriminating. Values below 0.200 were deemed of low(er) discriminating value.
Table A.2 Average DFA Results for the Comparison Between the African Seminole Settlements and the Two Random Sets of Points (5km Catchments)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Function value (average of Settlements vs. Random 1 vs. Random 2) – Function 1*</th>
<th>Function value (average of Settlements vs. Random 1 vs. Random 2) – Function 2*</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of poorly drained sediment in catchment</td>
<td>-0.298</td>
<td>-0.635</td>
<td>-0.467</td>
</tr>
<tr>
<td>Area of well-drained sediment in catchment</td>
<td>0.235</td>
<td>0.300</td>
<td>0.268</td>
</tr>
<tr>
<td>Length of tributary streams and rivers within catchment</td>
<td>-0.227</td>
<td>-0.280</td>
<td>-0.254</td>
</tr>
<tr>
<td>Area of good tree growth within catchment</td>
<td>0.176</td>
<td>0.300</td>
<td>0.238</td>
</tr>
<tr>
<td>Number of tributary streams and rivers within catchment</td>
<td>-0.196</td>
<td>-0.218</td>
<td>-0.207</td>
</tr>
<tr>
<td>Total number of wetlands within catchment</td>
<td>0.011</td>
<td>0.282</td>
<td>0.147</td>
</tr>
<tr>
<td>Number of springs within catchment</td>
<td>0.156</td>
<td>0.132</td>
<td>0.144</td>
</tr>
<tr>
<td>Total area of wetlands within catchment</td>
<td>-0.246</td>
<td>-0.035</td>
<td>-0.141</td>
</tr>
<tr>
<td>Area of clay in catchment</td>
<td>0.173</td>
<td>0.063</td>
<td>0.118</td>
</tr>
<tr>
<td>Area of dry soil (xeric) hammock within catchment</td>
<td>0.080</td>
<td>0.140</td>
<td>0.11</td>
</tr>
<tr>
<td>Area of loam in catchment</td>
<td>0.002</td>
<td>0.145</td>
<td>0.074</td>
</tr>
<tr>
<td>Study variable</td>
<td>Estimate 1</td>
<td>Estimate 2</td>
<td>Estimate 3</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Area of forested wetlands within catchment</td>
<td>-0.048</td>
<td>-0.080</td>
<td>-0.064</td>
</tr>
<tr>
<td>Area of non-forested wetlands within catchment</td>
<td>-0.461</td>
<td>0.023</td>
<td>Conflicting</td>
</tr>
<tr>
<td>Area of wet soil (hydric) hammock within catchment</td>
<td>0.033</td>
<td>-0.136</td>
<td>Conflicting</td>
</tr>
<tr>
<td>Area of moist soil (mesic) hammock within catchment</td>
<td>0.133</td>
<td>-0.128</td>
<td>Conflicting</td>
</tr>
</tbody>
</table>

*Function 1 = Settlements (1.818), Random Group 1 (-0.671), Random Group 2 (-1.147)
**Function 2 = Settlements (-0.142), Random Group 1 (0.885), Random Group 2 (-0.743)

Note: +/- value indicates which group has a higher average value of that variable. Values in bold are highly discriminating. Values below 0.200 were deemed of low(er) discriminating value.
Table A.3 Average DFA Results for the Comparison Between the African Seminole Settlements and the Two Random Sets of Points (2km) with Intergroup Relations

<table>
<thead>
<tr>
<th>Variable</th>
<th>Function value (average of Settlements vs. Random 1 vs. Random 2) – Function 1</th>
<th>Function value (average of Settlements vs. Random 1 vs. Random 2) – Function 2</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of poorly drained sediment in catchment</td>
<td>0.175</td>
<td>0.332</td>
<td>0.254</td>
</tr>
<tr>
<td>Area of well-drained sediment in catchment</td>
<td>-0.094</td>
<td>-0.281</td>
<td>-0.188</td>
</tr>
<tr>
<td>Area of good tree growth within catchment</td>
<td>-0.097</td>
<td>-0.276</td>
<td>-0.187</td>
</tr>
<tr>
<td>Area of wet soil (hydric) hammock within catchment</td>
<td>0.023</td>
<td>0.276</td>
<td>0.149</td>
</tr>
<tr>
<td>Area of dry soil (xeric) hammock within catchment</td>
<td>-0.089</td>
<td>-0.179</td>
<td>-0.134</td>
</tr>
<tr>
<td>Area of loam in catchment</td>
<td>-0.087</td>
<td>-0.124</td>
<td>-0.106</td>
</tr>
<tr>
<td>Total area of wetlands within catchment</td>
<td>0.029</td>
<td>0.175</td>
<td>0.102</td>
</tr>
<tr>
<td>Area of moist soil (mesic) hammock within catchment</td>
<td>-0.098</td>
<td>-0.106</td>
<td>-0.102</td>
</tr>
<tr>
<td>Area of forested wetlands within catchment</td>
<td>0.026</td>
<td>0.156</td>
<td>0.091</td>
</tr>
<tr>
<td>Area of non-forested wetlands within catchment</td>
<td>0.022</td>
<td>0.155</td>
<td>0.088</td>
</tr>
<tr>
<td>Variable</td>
<td>Function 1 (1.203)</td>
<td>Function 2 (1.958)</td>
<td>Conflicting</td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Area of clay in catchment</td>
<td>-0.065</td>
<td>-0.081</td>
<td>-0.073</td>
</tr>
<tr>
<td>Total number of wetlands within catchment</td>
<td>0.034</td>
<td>0.093</td>
<td>0.064</td>
</tr>
<tr>
<td>Number of tributary streams and rivers within catchment</td>
<td>0.035</td>
<td>0.081</td>
<td>0.058</td>
</tr>
<tr>
<td>Length of tributary streams and rivers within catchment</td>
<td>0.022</td>
<td>0.060</td>
<td>0.041</td>
</tr>
<tr>
<td>Distance to nearest named Seminole Indian settlement</td>
<td>-0.031</td>
<td>0.220</td>
<td>Conflicting</td>
</tr>
<tr>
<td>Distance to Euro-American landscape features (i.e., Fort King Military Road)</td>
<td>-0.088</td>
<td>0.029</td>
<td>Conflicting</td>
</tr>
</tbody>
</table>

Function 1 = Settlements (1.203), Random Group 1 (5.251), Random Group 2 (-6.454)

Function 2 = Settlements (1.958), Random Group 1 (-1.281), Random Group 2 (-0.677)

Note: +/- value indicates which group has a higher average value of that variable. Values in bold are highly discriminating. Values below 0.200 were deemed of low(er) discriminating value.
Table A.4 Average DFA Results for the Comparison Between the African Seminole Settlements and the Two Random Sets of Points (5km) with Intergroup Relations

<table>
<thead>
<tr>
<th>Variable</th>
<th>Function value (average of Settlements vs. Random 1 vs. Random 2) – Function 1*</th>
<th>Function value (average of Settlements vs. Random 1 vs. Random 2) – Function 2*</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance to Euro-American landscape features (i.e., Fort King Military Road)</td>
<td>-0.345</td>
<td>-0.016</td>
<td>-0.180</td>
</tr>
<tr>
<td>Area of well-drained sediment in catchment</td>
<td>0.201</td>
<td>0.128</td>
<td>0.166</td>
</tr>
<tr>
<td>Area of poorly drained sediment in catchment</td>
<td>-0.220</td>
<td>-0.085</td>
<td>-0.152</td>
</tr>
<tr>
<td>Area of good tree growth within catchment</td>
<td>0.180</td>
<td>0.081</td>
<td>0.1302</td>
</tr>
<tr>
<td>Area of wet soil (hydric) hammock within catchment</td>
<td>-0.058</td>
<td>-0.124</td>
<td>-0.091</td>
</tr>
<tr>
<td>Number of tributary streams and rivers within catchment</td>
<td>-0.045</td>
<td>-0.068</td>
<td>-0.056</td>
</tr>
<tr>
<td>Area of forested wetlands within catchment</td>
<td>-0.060</td>
<td>-0.046</td>
<td>-0.053</td>
</tr>
<tr>
<td>Area of non-forested wetlands within catchment</td>
<td>0.031</td>
<td>0.061</td>
<td>0.046</td>
</tr>
<tr>
<td>Total area of wetlands within catchment</td>
<td>-0.040</td>
<td>-0.019</td>
<td>-0.030</td>
</tr>
<tr>
<td>Length of tributary streams and rivers within catchment</td>
<td>-0.023</td>
<td>-0.011</td>
<td>-0.017</td>
</tr>
<tr>
<td>Variable</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Result</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Distance to nearest named Seminole Indian settlement</td>
<td>0.002</td>
<td>-0.192</td>
<td>Conflicting</td>
</tr>
<tr>
<td>Area of moist soil (mesic) hammock within catchment</td>
<td>0.013</td>
<td>-0.145</td>
<td>Conflicting</td>
</tr>
<tr>
<td>Number of springs within catchment</td>
<td>-0.037</td>
<td>0.149</td>
<td>Conflicting</td>
</tr>
<tr>
<td>Total number of wetlands within catchment</td>
<td>-0.027</td>
<td>0.127</td>
<td>Conflicting</td>
</tr>
<tr>
<td>Area of loam in catchment</td>
<td>0.103</td>
<td>-0.018</td>
<td>Conflicting</td>
</tr>
<tr>
<td>Area of dry soil (xeric) hammock within catchment</td>
<td>0.093</td>
<td>-0.016</td>
<td>Conflicting</td>
</tr>
<tr>
<td>Area of clay in catchment</td>
<td>0.084</td>
<td>-0.016</td>
<td>Conflicting</td>
</tr>
</tbody>
</table>

*Function 1 = Settlements (-3.575), Random Group 1 (-2.722), Random Group 2 (6.297)
**Function 2 = Settlements (-2.097), Random Group 1 (2.296), Random Group 2 (-0.198)
Note: +/- value indicates which group has a higher average value of that variable. Values in bold are highly discriminating. Values below 0.200 were deemed of low(er) discriminating value.