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Abstract

Tanglegrams are graphs consisting of two rooted binary plane trees with the same

number of leaves and a perfect matching between the two leaf sets. A Tanglegram

drawing is a special way of drawing a Tanglegram; and a Tanglegram is called planar

if it has a drawing such that the matching edges do not cross. In this thesis, we

will discuss various results related to the construction and planarity of Tanglegrams,

as well as demonstrate how to construct all the Tanglegrams of size 4 by looking

at two types of rooted binary trees - Caterpillar and Complete Binary Trees. After

augmenting a Tanglegram with an edge between its roots, we will prove that the

Tanglegram crossing number of the original Tanglegram is greater than or equal to

the crossing number of the augmented Tanglegram taken as a graph. We will show

that the removal of a matching edge from a Tanglegram of size n ≥ 3 decreases the

Tanglegram crossing number by at most n − 3, and give a family of 1-edge panar

Tanglegrams (one for every n ≥ 3) of size n with Tangle crossing number n − 3,

showing that the previous statement is sharp. We will also discuss various conditions

on the nonplanarity of Tanglegrams.
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Chapter 1

Introduction

In this thesis, we begin in Chapter 2 by introducing the definitions needed to establish

elementary results that are necessary to facilitate future discussions on Tanglegrams.

We mention several results related to trees, due to their connection in the construction

of Tanglegrams. At times, we make distinctions between multiple forms of notation

as they relate to how it will be presented in this thesis.

In Chapter 3, we first focus on building our definition of Tanglegrams by talking

about both complete binary and caterpillar trees, make a distinction between unla-

belled and labelled Tanglegrams, and various operations that can be performed on

Tanglegrams. Then, our discussion is broken several parts, all of which illustrate

how to construct Tanglegrams of size 4. First, we consider the type of left and right

rooted binary trees that will be the bases of our Tanglegrams. Then, we focus on

determining all the matchings possible between the leaves of the two rooted binary

trees. We also provide many illustrations of the process throughout the chapter.

In Chapter 4, we discuss the planarity of Tanglegrams and rely on the idea of

the Tanglegram crossing number to generalize the planarity of Tanglegrams. Then,

we focus on proving several results related to Tanglegrams and the augmentation of

these graphs with an edge connecting the roots of the two rooted binary trees. Our

discussion concludes with proving a Theorem relates the Tanglegram crossing number

of a Tanglegram to a Tanglegram with one less matching edge.

Finally, we conclude this thesis in Chapter 5 by briefly touching on notable prop-

erties of induced Subtanglegrams, and in particular, extend the prior planarity argu-
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ments to these types of graphs.
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Chapter 2

Elementary Graph Notions

To begin discussing anything of importance to Tanglegrams, we need to state quite

a few central definitions.

Definition 1. For a set A and a non-negative integer k,
(

A
k

)
denotes the collection of

k-element subsets of A.

Definition 2. A graph G = (V,E) consists of a set V of vertices and a set E of edges

where E ⊆
(

V
2

)
. We use the notation e = xy for e = {x, y}, where e ∈ E and

x, y ∈ V ; we assume that V 6= ∅.

Definition 3. We define the order of G to be the number of vertices of G; denoted by

|V | or |V (G)|. Additionally, we define the size of G to be the number of edges of G;

denoted by |E| or |E(G)|.

In this thesis, we make no distinction between |V | and |V (G)| unless otherwise

stated. Similarly for |E| or |E(G)|. Also, all graphs discussed in this thesis are simple

finite graphs in that they have at most one edge between any two vertices in V . Note

that our definition does not allow loops, which are edges whose two endpoints are the

same.

Definition 4. We say a vertex v is incident with an edge e if v is an endpoint of e.

Similarly, v is adjacent to another vertex u if v and u are connected by an edge; u

and v are called neighbors.

Definition 5. The complete graph on n vertices, denoted Kn, is the graph where all

vertices are pairwise adjacent; equivalently, it is the graph where every vertex is

3



connected to every other vertex by an edge.

Complete graphs are of particular importance in this thesis, as they will allow us

to generalize the planarity of graphs. Figure 2.1 depicts an illustration of K3, K4,

and K5, the complete graphs on 3, 4, and 5 vertices, respectively.

Figure 2.1 The complete graphs K3 (top left), K4 (top right), and K5 (bottom).

Definition 6. Let G = (V,E) and G′ = (V ′, E ′) both be graphs such that V ′ ⊆ V

and E ′ ⊆ E. Then, we say G′ is a subgraph of G, and write it as G′ ⊆ G. If G′ ⊆ G

but G′ 6= G, then G′ is a proper subgraph of G.

Definition 7. LetG = (V,E) and be a graph. Then, an induced subgraph G′ = (V ′, E ′)

of G is a subgraph formed from a subset V ′ ⊆ V and all of the edges of E (i.e.

E ′ = E∩
(

V ′

2

)
) that connect pairs of vertices in that subset. Furthermore, a spanning

subgraph of G is a subgraph that contains all the vertices of the original graph.
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We now quickly mention some important notation revolving around the removal

of one or more vertices or edges of a graph.

Notation 1. For a graph G and a vertex v ∈ V (G), G− v denotes the graph induced

by V (G) − {v}. Similarly, let A = {v1, v2, . . . , vn} ⊆ V (G) such that vi ∈ V for all

1 ≤ i ≤ n. We denote the graph G with the removal of all the vertices contained in

A by G − A, where the order of the removal of the vertices of A does not matter.

Additionally, for G = (V,E) and v /∈ V , G+ v = (V ∪ {v}, E).

Notation 2. For a graph G and an edge e ∈ E(G), G − e denotes the graph with

vertex set V (G) and edge set E(G)−{e}. Similarly, let B = {e1, e2, . . . , en} ⊆ E(G)

such that ej ∈ E for all 1 ≤ j ≤ n. We denote the graph G with the removal of all

the edges contained in B by G−B, where the order of the removal of the vertices of

B does not matter. Similar notation follows for the addition of a edge e: G+ e.

Now, back to some key definitions needed to elaborate on future results.

Definition 8. The degree of a vertex v in a graph G, denoted by degG(v), is the

number of edges incident to v; i.e. the number of edges that have v as an endpoint.

We define the numbers δ(G) and ∆(G) as follows.

δ(G) = min{degG(v) | v ∈ V (G)}

∆(G) = max{degG(v) | v ∈ V (G)}

Definition 9. Let G = (E, V ) be a graph. We define a path on G to be a sequence of

k+ 1 distinct vertices v0v1 . . . vk (where k ∈ N such that for each i ∈ [k], vi−1vi ∈ E).

Note, v0 and vk are the endvertices of the path, and the length of the path is the

number of edges on the path, which is k.

Definition 10. Let G = (E, V ) be a graph. We define a cycle on G to be a sequence

of vertices v1v2 . . . vkv1 such that v1 . . . vk is a path P and vkv1 is an edge of the graph

that is not on the path. Note that this implies that k is at least 3. The length of the

cycle is the number of edges on the cycle, which is k.
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Definition 11. A graph G is connected if there is a path between any two vertices in

G.

Now that we have defined what is meant by a connected graph, we can discuss

some important terms and concepts related to induced subgraphs and minimal span-

ning subgraphs.

Definition 12. Let G = (V,E) be a graph. A component of G is the maximal con-

nected subgraph of G. Note that this means components have disjoint vertex sets.

We claim that the components of a graph are induced subgraphs. So, consider a

component H of G. By definition it is a subgraph, its vertex set is some U ⊆ V . Let

u1, u2 ∈ U such that u1u2 ∈ E. If u1u2 /∈ H, then H ′ = H + u1u2 is a subgraph of G,

still connected (as any two vertices of H ′ has a path between then even in H), and

H ′ contains H as a proper subgraph, contradicting that H was a maximal connected

subgraph. Thus all edges connecting vertices in U are edges of H, showing that H is

induced.

Figure 2.2 A minimal connected spanning subgraph of K5.

We will “cycle” back to graphs in a moment, but now it is time to throw away

cycles to begin with and discuss cycle-free graphs.

6



Definition 13. A tree T = (V,E) is a connected graph that is acyclic, or cycle-free.

All the vertices with degree at most one are called leaves. Any other vertex in T is

called an internal vertex. The order of T , denoted |T |, is the number of vertices of

T . Note that the vertex in the single vertex tree a leaf.

Theorem 1. For a graph T on n vertices the following are equivalent:

1. T is a tree.

2. There is a unique path between any two vertices of T .

3. T is minimally connected; i.e. T is connected but T − e is not for all edges

e ∈ T (E).

4. T is maximally acyclic; i.e. T contains no cycles but T + e does for e = xy,

where x and y are any two non-adjacent vertices in T .

5. T is connected and has n− 1 edges.

6. T is acyclic and has n− 1 edges.

Most of the proofs for the equivalences above can be found in [5]. We will show

that latter result - if T is a tree with n vertices, then T has n − 1 edges, simply

because the proof is a standard exercise.

Proposition 2. If T is a tree with n vertices, then T has n− 1 edges.

Proof. Let T be a tree such that |T | = n. We will work by induction on n.

Suppose |T | = 1. Then, T is a singleton point with no edges and the result holds.

Suppose |T | = 2. Then, T has two vertices that must be joined by an edge to

adhere to T being a connected graph. As this path is unique, we can only have 1

edge in our graph. So, the result holds.

7



Now suppose the result holds for all |T | = n and let T ′ = (V ′, E ′) be a tree with

n+ 1 vertices. We claim that T ′ has a leaf. Take a longest path in a tree with n ≥ 2

vertices. The endvertices of this path have degree 1. Otherwise you have either a

cycle, or you can lengthen you path, contradicting the choice of longest path.

So, let v be a leaf of T ′, u ∈ V (T ′) be a internal vertex, and e = vu be the unique

edge connecting v to u. By removing the leaf v and edge e, we have a resulting graph

G′ that is still connected, but with one less vertex: |G′| = (n+1)−1 = n. Then, by the

induction hypothesis, G′ has n−1 edges. Thus, we have that |E(T ′)| = (n−1)+1 = n,

and so T ′ is a tree with n vertices and n−1 edges. By induction, we are finished.

In this thesis, we need to specify a type of tree that will help us form future

graphs. The particular type of tree we care to discuss is called a binary tree.

Definition 14. A rooted tree is a tree with a vertex specified as a root. If T is a rooted

tree with root r, then for any non-root vertex y, the parent of y is the neighbor of y

on the unique r − y path in T ; the root has no parent. If y is any vertex of T, then

the children of y are those neighbors of y that are not the parent of y.

Note that this means that all neighbors of the root are the children of the root,

and leaves have no children.

Definition 15. A rooted binary tree L is a rooted tree where any non-leaf vertex has

precisely two children. Any non-leaf vertices are internal vertices. The size of L is

the number of leaves L has. Note that “size” here differs from “size” in Definition 3,

as we know exactly the number of edges in trees, we rarely speak about the number

of edges in them in the coming discussion. A cherry of L are two leaves with the

same parent.

Definition 16. A graph G = (V,E) is bipartite, denoted Km,n, if V admits a partition

into 2 classes, or sets A and B with |A| = m and |B| = n, such that every edge

has its ends in each class and every 2 vertices of G in the same class must not be

8



adjacent. A bipartite graph is complete if each pair of vertices from different classes

are adjacent. Figure 2.3 gives three different drawings of K3,3, the complete bipartite

graph on two classes each containing 3 vertices.

= =

Figure 2.3 Three different drawings of the bipartite graph K3,3. - Fig 1.6.2 from [5].

Definition 17. If G = (V,E) is a graph, and e = uv is an edge of G, then G/e (G

contracted on the edge e) is the graph with vertex set (V \ {u, v}) ∪ {wuv} and edge

set {xy : xy ∈ E, {x, y} ∩ {u, v} = ∅} ∪ {xwuv : x ∈ V −{u, v}, (xu ∈ E or xv ∈ E)}.

In other words, we remove the edge uv, identify the vertices u, v (the resulting vertex

is called wuv) and remove any duplicates from the resulting edges.

Definition 18. A minor of a graph G is a graph that can be obtained from a subgraph

by edge contractions.

Definition 19. A subdivision of a graph G is a graph obtained by replacing edges of

G with new paths of length at least one connecting the endpoints of the former edge.

The new vertices introduced with the paths differ from the old vertices of G and new

vertices introduced for different paths are distinct. A subdivision never decreases the

number of vertices. Figure 2.5 illustrates this concept.

Definition 20. A planar drawing is a drawing where the vertices of the graph are

represented by different points in the plane and edges are represented by simple

9



e ve

G G′

−→

Figure 2.4 Contracting the edge e of G to obtain G′. This results in G′ being a
minor of G.

−→

G1 G2

Figure 2.5 The graph G2 is a subdivision of the graph G1.

curves connecting their endpoints (i.e. the points representing their endvertices) such

that the interior of these curves are disjoint from the set of points that are vertices

of the graph and from each other. A planar graph is any graph that has a planar

drawing.

Definition 21. A graph G is planar if it can be drawn in a way such that no edges

intersect each other except at their endpoints.

We illustrate the concept of subdividing a graph in Figure 2.5. This idea is crucial

to understanding the planarity generalization embedded in Kuratowski’s Theorem.

Theorem 3 (Kuratowski’s Theorem, [7]). A graph is nonplanar if and only if it

contains a subdivision of K3,3 or K5.

10



Definition 22. A matching of a graph is a subset M of the edge set where each vertex

has either one or zero edges incident to it in M . The matching M is perfect if every

vertex is connected to exactly one edge in M .

In Chapter 3, we explore the properties and characteristics of a particular type of

graph called a Tanglegram.
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Chapter 3

Introduction to Tanglegrams

We now turn to a much deeper discussion on a peculiar type of graph known as a

Tanglegram. Tanglegrams play an important role in phylogenetics, particularly in

the theory of co-speciation. As we will see by its construction, the two rooted trees

that form a Tanglegram represent the phylogenetic tree of hosts and the phylogenetic

tree of their parasites. Although the results discussed in this thesis do not pertain to

any significant biological discussion or applications, one could find themselves drawn

to Tanglegrams simply for their inherit ability to illustrate the beauty of co-species

relations; refer to [8] for more information.

Recall that in Definiton 15, we defined what a rooted binary tree is. The binary

tree drawn in Figure 3.1 is called a Caterpillar, but different drawings of a Caterpillar

easy to make. We define the two types of importance below.

Definition 23. A Rooted Caterpillar, denoted Cn, of size n is the unique rooted binary

tree with n leaves such that there are two leaves of distance n− 1 from the root and

for each i ∈ {1, 2, . . . , n− 2}, there is one leaf of distance i from the root. Figure 3.1

gives a progression of Caterpillar trees up to size 4.

Definition 24. A Complete Binary Tree is a rooted binary tree, with height k, where

every leaf is at distance k from the root. All Complete Binary Trees have 2k leaves.

Figure 3.2 gives a progression of the Complete Binary Trees up to height 3.

By assigning a matching between the leaves of two arbitrary rooted binary trees

of the same order, we can finally construct the Tanglegram.

12



Figure 3.1 A progression of Caterpillar Trees of size 1 to 4.

Figure 3.2 A progression of Complete Binary Trees of height 0 to 3.

Definition 25. A Tanglegram (L,R, σ) of size n is a graph consisting of an n-leaf left

binary tree L with a root r, an n-leaf right binary tree R with a root p, and a perfect

matching σ between the leaves of L and R. The size of a Tanglegram is the number

of leaves in L or R.

For much of graph theory, we do not care for labels of vertices on the graphs. The

same follows for Tanglegrams. Some of the Tanglegrams depicted here have labels on

their vertices and some do not.

13



Definition 26. Two Tanglegrams (L1, R1, σ1) and (L2, R2, σ2) are considered the same

if there exists a bijection between the vertex sets of the two Tanglegram such that

the following are preserved.

• The left root maps to the left root.

• The right root maps to the right root.

• The bijection makes a graph isomorphism between the two Tanglegrams.

If you consider size n Tanglegrams as a labeled graph, the bijection described

in the previous definition defines an equivalence relation on these Tanglegrams, and

the different equivalence classes of this relation can be considered as the different

Tanglegrams. These Tanglegrams correspond to graphs where only the roots of the

left tree and the right tree have labels (identifying which tree they belong to as roots).

Definition 27. A Tanglegram Layout of (L,R, σ) is a straight line drawing such that:

1. A left planar binary tree that is isomorphic to L, with a root r and tree drawn

in the plane where x ≤ 0, and whose leaves are on the line x = 0.

2. A right planar binary tree that is isomorphic to R, with a root p and tree drawn

in the plane where x ≥ 1, and whose leaves are on the line x = 1.

3. A perfect matching σ between their leaves drawn in straight line segments.

Definition 28. A switch on the Tanglegram Layout of a Tanglegram (L,R, σ) is the

following operation: select an internal vertex v of one of the two trees L and R

and change the order of its two children. Then, draw the subtrees rooted at the

children the same way as they were drawn before. Figure 3.3 illustrates a switch on

a Tanglegram of size 4 at a root p.

To illustrate the difference between labeled and unlabeled Tanglegrams, consider

the 2 Tanglegrams presented in Figure 3.4.

14



r

`1

`2

`3

`4

m1

m2

m3

m4

p r

`1

`2

`3

`4

m2

m3

m4

m1

p

Original Layout After Switching at p

Figure 3.3 The results of a switch operation.

The left tree in both of them is a size 3 Tanglegram with root r, other internal

vertex a, where r is adjacent to leaf `3, and a is adjacent to leaves `1 and `2. Also,

the right tree in both of them has root p, other internal vertex b, where p is adjacent

to leaf m3, and b is adjacent to leaves m1 and m2.

The matching in the first one is {m1`1,m2`2,m3`3} and in the second one is

{m1`2,m2`1,m3`3}. They are different as labeled graphs, but the following isomor-

phism shows that they are the same Tanglegram:

f(v) =



v, if v /∈ {`1, `2}

`1, if v = `2

`2, if v = `1

The 16 pictures in the Figures 3.5 and 3.6 llustrate the different layouts of the

same Tanglegram. You have 16 different layouts if you consider the Tanglegram as a

labeled graph, but only 8 as a Tanglegram layout.

We then show that there are 16 different labelled Tanglegram layouts of this

labelled Tanglegram. As unlabelled and labelled Tanglegrams they are all the same,

but these are different labelled Tanglegram drawings of the same labelled Tanglegram.

Figures 3.5 and 3.6 show all 16 drawings.
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m3
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p
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`1
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`3

m1

m2

m3

Figure 3.4 These Tanglegrams are different as labeled Tanglegrams, but are the
same as unlabelled Tanglegrams.

Figure 3.7 gives a picture of a Tanglegram of size 4 using two Caterpillar trees as

its two rooted binary trees. The perfect matching of its leaves is notated by dotted

lines between its leaves. There happens to be an additional 12 distinct Tanglegrams

of size 4, which is illustrated later in Figure 3.14.

We can determine the distinct number of Tanglegrams of a particular size by

adhering to only those drawings that do not result in a symmetry of any other.

There is a unique binary tree with 1 leaf: the singleton vertex. We can obtain all

rooted binary trees with n > 1 leaves by using the rooted binary trees with n − 1

leaves and adding two children to one of their leaves. Now this means that there is

only one Tanglegram of size 1: both the left- and right tree is a singleton vertex, and

the matching connects these two vertices.

So for 2 leaves, we take the singleton vertex and add two leaves to it (this is both

a rooted Caterpillar and a rooted Complete Binary tree of height 1) - there is only

one such tree. For Tanglegrams of size 2, the left and right trees must be equal to

this unique tree, and there is only one way to match them (there are two ways if we

consider them as labeled graphs, but they are the same Tanglegram). See Figure 3.8.

For rooted binary trees on 3 leaves, there is one rooted (unlabeled) binary tree T

on 2 leaves. As the two leaves are not distinguishable (a tree isomorphism takes one

into the other) there is only one way to obtain a rooted binary tree on 3 -leaves by

appending two children on a leaf of T . The resulting tree is a rooted Caterpillar; with

16



r p

ba
`1

`2

`3

m1

m2

m3

Subset {} Subset {a, b}

r p

ba
`2

`1

`3

m2

m1

m3

r

b

a
p

`3

`1

`2

m1

m2

m3

Subset {r} Subset {r, a, b}

r

b

a
p

`3

`2

`1

m2

m1

m3

r
b

a

p

`1

`2

`3

m3

m1

m2

Subset {p} Subset {p, a, b}

r
b

a

p

`2

`1

`3

m3

m2

m1

r

ba

p

`2

`1

`3

m1

m2

m3

Subset {a} Subset {b}

r

ba

p

`1

`2

`3

m2

m1

m3

Figure 3.5 The first 4 pairs of layouts from corresponding set X = {r, a, b, p}.
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Figure 3.6 The second 4 pairs of layouts from corresponding set X = {r, a, b, p}.
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r p

Figure 3.7 A Tanglegram of size 4 with two C4 graphs as the rooted binary trees.

r p

Figure 3.8 A Tanglegram of size 2 with two rooted Complete Binary trees.

two distinguishable leaves: the two leaves forming a cherry are not distinguishable

from each other. Now the matching can do two things: the leafs connected to the

root on the left- and right-tree can be matched to each other or not. The two possible

size 3 Tanglegrams are discussed below.

As both the left and right tree must be a caterpillar tree, they have exactly one

leaf that is the child of the root, and two other leaves at distance two from the root.

So, we have two cases: the leaves that are children of the two roots are matched to

each other, or they are not. Both of these cases result in a unique Tanglegram, as

illustrated in Figure 3.9.

Now for size 4 tanglegrams. Note that the 4-leaf complete binary tree has two

cherries; the 4-leaf caterpillar has a cherry (both of its leaves at distance 3 from the

root), a leaf at distance one and another leaf at distance 2 from the root. If the two

sides are both complete binary trees, we have two cases:

• If one of the cherries on the left is matched to a cherry on the right, then the

19



r p

r p

Figure 3.9 The two different Tanglegrams of size 3.

other cherry on the left must match to the other cherry on the right.This defines

a unique (unlabeled) Tanglegram.

• If the previous case does not happen, then both leaves in a cherry need to

be matched to two leaves that do not form a cherry. This defines a unique

(unlabeled) Tanglegram.

If the left tree is a caterpillar and the right tree is a complete binary tree, then

we have two cases:

• The cherry in the caterpillar is matched to a cherry in the binary tree: this

defines a unique Tanglegram.

• The cherry in the caterpillar is not matched to a cherry in the binary tree: this

defines a unique Tanglegram.

If the left tree is a complete binary tree and the right tree is a caterpillar, the two

cases are very similar as the above ones.

Now, if both the left and right trees are caterpillars, we have the following cases:
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• The cherry on the left is matched to the cherry on the right, in which case the

following subcases occur.

– The leaves at distance 1 from the root match to each other (and conse-

quently so do leaves at distance 2 from the root).

– The leaves at distance 1 from the root do not match to each other (and

consequently a leaf at distance one from the root on one side matches to

a leaf at distance two from the root on the other side).

• The cherry on the left is matched to leaves that are not part of the cherry on

the other side (and consequently the cherry on the right is matched to leaves

that are not part of the cherry on the left: this defines a unique Tanglegram.

• One leaf of the cherry on the left is matched to one leaf of the cherry on the

right, but the other leaf of the cherry on the left is not matched to the cherry

on the right. We have the following based on where the other leaf of the cherry

matches to...

– both the left and the right cherry matches to the leaf at distance one from

the root on the other side (and consequently the leaves at distance two

from the root match to each other).

– both the left and the right cherry matches to the leaf at distance two from

the root on the other side (and consequently the leaves at distance one

from the root match to each other).

– the left cherry leaf matches to the leaf at distance one from the root on

the right and the right cherry matches to the leaf at distance two from the

root on the left.

– the left cherry leaf matches to the leaf at distance two from the root on

the right and the right cherry matches to the leaf at distance one from the

21



root on the left.

r p r p

T1 = (L,R, σ1) T2 = (L,R, σ2)

Figure 3.10 The 2 different Tanglegrams of size 4 with Complete Binary Trees as
L and R

Organizing all of our perfect matchings and figures, we conclude that there are13

Tanglegrams of size 4, Figure 3.14 illustrates all 13 layouts.

Now rooted binary trees with 5 leaves can be obtained from the following:

• The Complete Binary tree of height 2 by adding 2 children to one of its leaves

(as the leaves are indistinguishable, there is only 1 such tree, neither Caterpillar

nor Complete Binary).

• The rooted Caterpillar with 4 leaves by adding 2 children to a ...

– Leaf at distance 1 from the root (neither Caterpillar nor Complete Binary)

– Leaf at distance 2 (neither Caterpillar nor Complete Binary

– One of the cherry leaves (Caterpillar)

We can continue in this manner to find all the Tanglegrams of size n, but one will find

that this number grows quite quickly. In consideration to the enumeration problem

for Tanglegrams, [4] obtained an explicit formula for Tn of Tanglegrams with n leaves

on each side. The following asymptotic formula holds for the counting sequence
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r p r p

T3 = (L,R, σ3) T4 = (L,R, σ4)

r p r p

T5 = (L,R, σ5) T6 = (L,R, σ6)

r p r p

T7 = (L,R, σ7) T8 = (L,R, σ9)

r p

T9 = (L,R, σ9)

Figure 3.11 The 7 different Tanglegrams of size 4 with Rooted Caterpillars as L
and R.
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r p r p

T10 = (L,R, σ10) T11 = (L,R, σ11)

Figure 3.12 The 2 different Tanglegrams of size 4 with Complete Binary Tree L
and Rooted Caterpillar R.

r p r p

T12 = (L,R, σ12) T13 = (L,R, σ13)

Figure 3.13 The 2 different Tanglegrams of size 4 with Rooted Caterpillar L and
Complete Binary Tree R.

1, 1, 2, 13, 114, 1509, 25595, 535753, 13305590, 382728552, . . .

Tn ∼ n! · e
1
8 4n−1

πn3 ,

thanks to work done by [2]. We will end with determing the number of size 4 Tangle-

grams and encourage the reader to allocate what time they would have spent drawing

out all the Tanglegrams of size 5 into something much more productive.

The next chapter generalizes the planarity argument of Kuratowski’s Theorem,

and applies it to Tanglegrams.
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T3 = (L,R, σ3) T5 = (L,R, σ5) T4 = (L,R, σ4)

T7 = (L,R, σ7) T6 = (L,R, σ6) T9 = (L,R, σ9)

T8 = (L,R, σ8) T12 = (L,R, σ12) T13 = (L,R, σ13)

T10 = (L,R, σ10) T11 = (L,R, σ11) T1 = (L,R, σ1)

T2 = (L,R, σ2)

Figure 3.14 The 13 tanglegrams of size 4. T2 and T9 cannot be drawn without at
least one crossing of the matching edges.
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Chapter 4

Tanglegram Crossing Numbers and Planarity

We have discussed how to draw Tanglegrams in the plane (i.e. what a Tanglegram

layout is). This definition ensures that in a layout two edges can cross only if they

both are matching edges, but, as Figure 3.6 illustrates, in the different layouts of a

Tanglegram the amount of crossing that occur can be different.

Definition 29. A graph drawing, D, is drawing of a graph where the vertices of the

graph are represented by points and edges are represented by simple curves connecting

their endpoints, and not going through any other vertices of the graph.

Definition 30. For a drawing D and edges e, f , let crD(e, f) define the number of

common interior points of e and f. Then, the crossing number of the drawing D is

cr(D) =
∑

{e,f}∈(E
2)
crD(e, f).

The crossing number of a graph, denoted cr(G), is the minimal crossing number of

all of its drawings.

Definition 31. The Tangelgram crossing number of a Tanglegram T is the minimal

crossing number over all of its layouts.

Definition 32. A planar graph is a graph that has a planar drawing, i.e. a drawing

with crossing number 0. A plane graph is a planar graph together with a planar

drawing (i.e. two different planar drawings of the same graph are different plane

graphs)
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Definition 33. A Tanglegram is planar if its Tanglegram crossing number is zero;

in other words, if it has a layout without crossing matching edges. Otherwise, the

tanglegram is called nonplanar.

Let us explore some interesting characteristics of planarity and crossing numbers

of graphs.

Proposition 4. For a connected plane graph with v vertices, e edges and f faces, we

have v − e+ f = 2.

We can construct familiar drawings of K5 and K3,3 optimally with respect to their

crossing number. Although we do not prove that the crossing numbers of K5 and

K3,3 are not greater than 1, the graphs in 4.1 are drawn in such a way that K5 and

K3,3 have only one crossing.

K3,3 with cr(K3,3) = 1K5 with cr(K5) = 1

Figure 4.1 Drawings of K5 and K3,3 with their respective crossing numbers. The
red dots mark the point where the edges cross.

As both graphs K3,3 and K5 in Figure 4.1 are drawn with one crossing, their

crossing number is at most 1. As they are known to be non-planar, their crossing

number equals 1. Kuratowski’s theorem states that essentially these two graphs are
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the obstacles of planarity, as any nonplanar graph must contain a subdivision of one

of then. We will explore similar obstacles for the non-planarity of Tanglegrams.

Using Theorem 3, we assert multiple important ideas. One, in particular, is if the

graph crossing number of a Tanglegram augmented by an edge between the roots of

its binary trees is nonzero, so is Tanglegram crossing number.

Proposition 5 ([4]). Let T = (L,R, σ) be a Tanglegram and let the roots of L and

R be r and p, respectively. Let T ∗ be the underlying graph of T augmented with an

edge between r and p; see Figure 4.2. Then, crt(T ) ≥ cr(T ∗).

Proof. Consider an optimal layout of the Tanglegram T with crt(T ) crossings. We

can create a drawing D of T ∗ by drawing the edge between r and p in the optimal

layout of T such that this edge creates no new crossings. Then we have

cr(T ∗) ≤ cr(D) = crt(T )

r

`1

`2

`3

`4

m1

m2

m3

m4

p

Figure 4.2 Drawing of an augmented Tanglegram T with an augmented edge
connecting roots r and p.
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Proposition 6 ([4]). Let T = (L,R, σ) be a Tanglegram layout and let the roots of L

and R be r and p, respectively. Let T ∗ be the underlying graph of T augmented with

an edge between r and p; see Figure 4.2. Then, the following are equivalent: (comes

from [4])

1. crt(T ) ≥ 1

2. cr(T ∗) ≥ 1

3. T ∗ contains a subdivision of K3,3

Proof. Note that T ∗ has maximum degree 3, so it can not contain a subdivision of

K5. This means that Kuratovski’s theorem implies that 2 and 3 are equivalent.

1⇒ 2 can be done with standard techniques using topology.

2⇒ 1 follows from Proposition 5.

By the way we defined it in Definition 33, a Tanglegram is planar if its crossing

number is zero. But from the view of ordinary crossing numbers, the size 4 Tangle-

grams are simply a subdivision of the four vertex, 3-regular multi-graphs.

Definition 34. The Tanglegram is k-edge planar, if for any M ⊆ σ with |M | < k, the

Tanglegram induced by σ −M is not planar, but there is an M ′ ⊆ σ with |M ′| = k

such that the Tanglegram induced by σ −M ′ is planar.

Definition 35. A multi-graph is a graph where one or more of its vertices may be

connected to any other vertices by more than one edge. This includes vertices being

connected to itself via an edge, called a loop.

We first note the following remark, which can be seen since K4 can be drawn

without any crossings of the interior of its edges.

Remark 1. The complete graph on 4 vertices, K4, is planar.

Any four vertex, 3-regular graph can be obtained by duplicating some edges of

an appropriate subgraph of K4, and the size 4 Tanglegrams are simply a subdivision
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Figure 4.3 The extended Tanglegram T2 is a subdivided K3,3, but without the
extra edge it is a subdivided K4, which is a planar graph.

of the four vertex, 3-regular multi-graphs. If we view size 4 Tanglegrams as graphs,

they have crossing number 0 (in other words, as graphs, they are planar). However,

not all size 4 Tanglegrams are planar as Tanglegrams. In particular, the Tanglegrams

T2 and T9 have crossing number 1, and we can use Proposition 5 to show that they

are not planar. This is illustrated in Figures 4.3 and 4.4.

For now, we illustrate that planarity can be judged by the notion of how many

edges can be removed until the graph becomes planar. In particular, we show that for

a Tanglegram of size n, when we remove any one of the matching edges and suppress

the two leafs it connected, the crossing number of the original Tanglegram and the
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Figure 4.4 The extended Tanglegram T9 is a subdivided K3,3, but without the
extra edge it is a subdivided K4, which is a planar graph.

crossing number of the suppressed Tanglegram are related in a particularly nice way.

Theorem 7 ([1]). Let T = (L,R, σ) be a Tanglegram of size n ≥ 3 and let e ∈ σ be

a matching edge of T . Then, we have that

crt(T )− crt(T − e) ≤ n− 3.

Consequently, in any optimal layout, any matching edge crosses at most n− 3 edges.

Proof. We will work by induction on n. We will first verify the base case n = 3.

We previously found all the Tanglegrams of size 3 in Chapter 3. They were all

planar. Similarly, removing a matching edge, the Tanglegram still remains planar.
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So,

crt(T )− crt(T − e) ≤ n− 3

0− 0 ≤ 3− 3

0 ≤ 0

Clearly, in any optimal layout, the matching edges cross 0 = 3 − 3 other edges.

Therefore, the theorem holds for n = 3.

Now let n ≥ 4 and suppose that for every Tanglegram of size n− 1 that

crt(T )− crt(T − e) ≤ n− 4.

Fix some Tanglegram T = (L,R, σ) with size n. Let e ∈ σ be arbitrary. Let e = uv,

where u ∈ L and v ∈ R. We fix an optimal layout T ′ of T − e to be such that

T ′ = (Lu,Rv, σ − e)

with the fewest the number of crossings.

Now let wL′ be the parent vertex of u and L′ be the subtree rooted at the second

child of wL′ . Define wR′ in a similar manner. We have, as a result, two planar

drawings of L whose sub-drawings of Lu agrees with the drawing of Lu in T ′:

1. One drawing with u immediately above the leaves of L′.

2. One drawing with u immediately below the leaves of L′.

Observe that the ordering of the leaves of Lu in each drawing of L is the same as

in T ′. Also, by performing a switch operation at wL′ , we can obtain one of these

drawings of L. This is noted in R and R′, and Figure 4.5 illustrates two potential

positions of u and v in a drawing of T .
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u

u

wL′ L′

v

R′ wR′

v

L R

Figure 4.5 An illustration of the potential positions of u and v in the proof of
Theorem 7.

All that is left to show is that there is some drawing D of T that uses one of these

two drawings of L and R in which the matching edge e ∈ σ crosses at most n − 3

edges. Then, we will have that

crt(T ) ≤ crt(D) ≤ crt(T − e) + (n− 3).

Or, equivalently

crt(T )− crt(T − e) ≤ n− 3.

We have two cases to deal with:

1. L′ and R′ each have exactly one leaf and they are matched in σ − e or

2. There is a leaf in L′ and a leaf in R′ which are not matched with one another.

Case 1: Let e′ be the edge matching the single leaves in L′ and R′. By the induction

hypothesis e′ crosses at most n− 4 edges in the layout. Let the drawing of T be with

u above L′ and v above R′ be such that e is parallel to e′. Then e crosses precisely

those edges that e′ crosses, so e crosses at most n − 4 edges (See Figure 4.6 for an

illustration of this case.)
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Case 2: Let uL′ ∈ L′ be a leaf and vR′ ∈ R′ be a leaf such that uL′ and vR′ are not

matched together. We define two more ideas below:

1. We say a leaf is matched upward if the leaf to which it is connected is at least

as high as the lowest leaf in the respective tree.

2. We say a leaf is matched downward if the leaf to which it is connected is no

higher than the highest leaf in the respective tree.

Let e1 and e2 be matching edges with endpoints uL′ and vR′ , respectively. We have

two subcases to consider:

1. Let uL′ and vR′ be both matched upward (respectively, downward). Draw the

vertex u below (respectively, above) in L′ and the vertex v below (respectively,

below) in R′. Then, e does not cross e1 or e2, and so, e crosses at most n − 3

edges. Thus,

crt(T )− crt(T − e) ≤ n− 3.

2. Let uL′ be matched to a leaf higher (respectively, lower) than the leaves of R′

and let vR′ be matched to a leaf lower (respectively, higher) than the leaves of

L′. Draw the vertex u directly below (respectively, above) the leaves of L′ and

v directly above (respectively, below) the leaves of R′. Then, e does not cross

e1 or e2, and so, e crosses at most n− 3 edges. Thus,

crt(T )− crt(T − e) ≤ n− 3.

Figure 4.6 illustrates both of these subcases.

Now consider an optimal drawing of T with crt(T ) many crossings. Take a match-

ing edge e that crosses x other edges. The removal of e results in a subdrawing D of

T − e with crt(T )− x crossings. Since crt(T − e) ≤ crt(D) =crt(T )− x, we get that

x ≤ crt(T )−crt(T − e) ≤ n− 3.

Therefore, we have considered all possibilities and the Theorem is proven.
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Figure 4.6 An illustration of the possible relations between L′ and R′ in the proof
of Theorem 7: (a) L′ and R′ each have exactly one leaf and they are matched in
σ− e. (b) uL′ and vR′ are not matched to each other and are both matched upward.
(c) uL′ is matched to a leaf higher than the leaves of R′, and vR′ is matched to a
leaf lower than the leaves of L′.

Definition 36. A Tanglegram T is k-edge planar if for any M ⊆ σ with |M | < k, the

Tanglegram induced by σ −M is not planar, but there is an M ′ ⊆ σ with |M ′| = k

such that the Tanglegram induced by σ −M ′ is planar.

Definition 37. For each n ≥ 4, we define the Caterpillar Tanglegram Pn = (L,R, σ)

as follows: L and R are copies of the rooted caterpillar Cn. We label the leaves of L

as ui, where i is the leafs distance from the root. Since there are precisely two leaves

at distance n − 1, we arbitrarily label one of these un instead. Similarly, the leaves

of R are labeled using vi. Finally, we construct σn = {uivn−i | i ∈ [n− 1]} ∪ unvn.

Theorem 8 ([1]). For each n ≥ 4, Caterpillar Tanglegram Pn is 1-edge planar and

has a crossing number of n− 3.

Proof. Observe in Figure 8 that crt(Pn) ≤ n − 3, and that the removal of the unvn

edge results in a planar Tanglegram. As for n ≥ 4, or, n − 3 ≥ 1, the rest of the

statement is proved if we show that crt(Pn) ≥ n− 3. We prove this by induction on

n.
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Figure 4.7 The Caterpillar Tangelgram P8.

We have shown earlier that crt(P4) = 1 (refer back to Figure 4.4), so the statement

is true for n = 1. Let n ≥ 4 and assume that crt(Pn) = n− 3. Consider Pn+1. Since

P4 is an induced subtanglegram of Pn, we have that crt(Pn+1) ≥ 1.

Consider an optimal layout of Pn+1 with crt(Pn+1) ≥ 1 many crossings. D must

contain a crossing pair of edges, so one of these edges is of the form uivn−i for some

i ∈ [n − 1]. The removal of uivn−i from Pn+1 gives a copy of Pn (and an induced

layout D of Pn from our optimal layout of Pn+1). Since uivn−i crossed at least one

edge, we have that n − 3 ≤ crt(Pn) ≤ cr(D) ≤ crt(Pn+1) − 1, which gives that

n− 2 = (n+ 1)− 3 ≤ crt(Pn+1). Thus, the result is acheived.
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Chapter 5

Properties of Induced Subtanglegrams

Recall that an induced subgraph G′ = (V ′, E ′) of a graph G = (V,E) is a graph

consisting of vertex subset V ′ ⊆ V and edge set E ′ = E. An induced subtree T ′ acts

similarly on a tree T . We will focus primarily on induced binary subtrees, which is

utilized quite often in the study of phylogenetics.

In a rooted plane binary tree BT with a root r, we say a subset L of the leaves of

BT induces another rooted binary tree by taking the smallest subtree containing the

leaves in L, designating the vertex rL of this subtree closest to the old root as the

new root, and finally suppressing all vertices of degree 2 other than rL. See Figure

5.1 for an illustration of this process.

`1 `2 `3 `4

r

rLr`1`2`3`4

`1 `2 `3 `4

Figure 5.1 A rooted binary tree with root r, four leaves L = {`1, `2, `3, `4} selected,
the vertex r`1`2`3`4 and the tree induced by the selected leaves.

Consider a layout of a Tanglegram T = (L,R, σ) with roots r and p of L and R,

respectively. Let σ′ ⊆ σ be a subset of the set of matching edges. The leaf sets of σ′
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induce a left and right induced binary plane tree, which, after putting back the edges

of σ between the corresponding leaves, define a layout of a Tanglegram T ′.

Definition 38. We call T ′ the induced subtanglegram of a Tanglegram T ; T ′ is induced

by the matching edge set σ′ (see Figure 5.2).

e1

e2

e3

pe1e2e3

re1e2e3 = r p

e1

e2

e3

Figure 5.2 A Tanglegram T with matching edges σ′ = {e1, e2, e3} selected, the
vertices re1e2e3 and pe1,e2,e3 , and the subtanglegram induced by the selected edges.

We claim that given either a planar or non-planar drawing of a Tanglegram T

of size n ≥ 4, that we can always find an induced subtanglegram T ′ such that T ′ is

planar. In particular, we assert that the largest possible T ′ that is planar will always

be of size n− crt(T ).

Theorem 9. Let T = (L,R, σ) be a Tanglegram of size n ≥ 4. Then, there exists an

induced subtanglegram T ′ = (L′,R′, σ′) of T such that

|T ′| ≥ n− crt(T ).

Consequently, if T is k-edge-planar, then k ≤ crt(T ).

Proof. Let T be a Tanglegram of size n ≥ 4. We consider cases:

1. If T is planar, then any induced subtanglegram T ′ of T is planar, by the defi-

nition of how T ′ is constructed. So, the crt(T ) = 0 and further,

|T ′| = n ≥ n− 0 = n.

38



2. If T is nonplanar, then keep deleting matching edges until T has a crossing

number of zero and is planar. Since T is nonplanar, there was at least one

crossing of its matching edges, so any resulting subtanglegram T ′ is such that

|T ′| ≥ n− crt(T ).

We have shown that the removal of at most crt(T ) many edges from T results in

the planar Tanglegram. As by definition, we need to remove at most k edges from a

k-edge-planar Tanglegram, k ≤crt(T ).

Figure 5.3 Red and blue nodes represent the two partitions of a subdivided K3,3
with all vertices on the left side.

Recall that Proposition 7 states that every non-planar Tanglegram, the augmented

graph T ∗ contains a subdivision of K3,3. So, we state the next theorem which was

proved in [4].

Theorem 10 ([4]). Every non-planar Tanglegram contains T2 or T9 as an induced

Subtanglegram.

Now observe that Theorem 11 is stronger than the statement of Proposition 7,

as it provides a subdivided K3,3 such that three vertices of the K3,3 lie an the left-
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subtree, and the other three are in the right subtree. As Figure 5.3 shows, if we find a

subdivided K3,3 in the augmented graph of a non-planar Tanglegram, this subdivided

K3,3 does not have to correspond to any induced subtanglegram. So it can be seen

that Theorem 11 gives more structure than Proposition 7.
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