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ABSTRACT

Motivation to study mathematics and science is an important influencing factor of 

career aspirations in STEM fields which predicts STEM major choice in college and 

STEM careers after graduation. Using restricted data from a nationally representative 

sample HSLS:09, the current study identified U.S. high school students’ motivation 

profiles in mathematics and science courses in 9th and 11th grade, examined the stability 

of these profiles across the two time points, and studied the association between 11th 

grade motivation profiles and STEM career aspirations. Differences between male and 

female students in motivation profiles, profile stability and career aspirations were 

examined. The stability of STEM career aspirations between 9th grade and 11th grade and 

the consistency between 11th grade STEM career aspirations and STEM major choice in 

college were also investigated. Latent profile analysis revealed four distinct motivation 

profiles at both time points. Latent transition analysis found substantial stability in 

profiles: participants were most likely to stay in their original profiles than transition to 

another profile. Students in the High All profile in 11th grade were more likely to aspire 

for STEM careers and health occupations than those in other profiles. Students in the 

Higher Science profile were more likely to aspire for health occupations than those in the 

Higher Math profile. There were significant differences between male and female 

students in profile membership, transition probability, and STEM career aspirations. In 

general, male students were more likely to be in latent profiles characterized by higher 

math and science motivation and aspire for traditional STEM careers. Female students 
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were more likely to be in profiles characterized by lower motivation and aspire for health 

occupations. Career aspirations remained relatively stable from 9th grade to 11th grade. 

About 70% of students had the same career aspirations in 11th grade as in 9th grade. 

About 62.5 % of the participants’ first major in college was consistent with their career 

aspirations in 11th grade. Implications of these results for research and interventions on 

math and science motivation and STEM career aspirations are discussed. 

Keywords: STEM, math motivation, science motivation, career aspiration, person-

centered approach 
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CHAPTER 1  

INTRODUCTION 

Many countries urgently need a workforce for Science, Technology, Engineering, 

and Mathematics (STEM) to help address their increasingly volatile economy (Razali, 

2021). Therefore, students’ STEM career/occupational aspirations, which may play a 

crucial role in bolstering the STEM pipeline and workforce, have received increasing 

attention worldwide. Career aspirations are based on individual aptitudes, interests, and 

values. Research has consistently demonstrated that STEM career aspirations shape 

subsequent pathways to the STEM career pipeline (Eccles, 2009; Eccles et al., 2004; 

Maltese & Tai, 2011; Wang, 2012). For example, high school career plans predict college 

major, STEM degree completion (Maltese & Tai, 2011; Morgan et al., 2013; Tai et al., 

2006), and having a STEM career as an adult (Lauermann et al., 2017). As students’ 

attitudes towards STEM careers usually stabilize and level during their secondary years 

(Wiebe et al., 2018) and occupational interest remains stable during much of adolescence 

(e.g., Low et al., 2005), it is important to closely examine the factors influencing 

adolescents’ STEM career aspirations. 

Though research has found that students with higher prior mathematics and 

science ability or achievement were more likely to aspire for STEM careers, choose 

STEM majors in college, or have future STEM employment (e.g., Holmes et al., 2018; 

Sahin et al., 2018; Wang et al., 2017), having high ability may not always be sufficient to 
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motivate their pursuit of a STEM major or occupation (Ceci & Williams, 2010; Maltese 

& Tai, 2011, Wang et al., 2017). For instance, some studies found that science ability has 

no direct effect on students’ motivation to aspire to a science career in the future; instead, 

science ability belief is positively associated with their motivation to become scientists 

(Taskinen et al., 2013). High school students with relatively low math and science 

abilities were more likely to have a STEM career in the future if they had higher math 

ability self-concept (Wang et al., 2017). Therefore, ability beliefs, such as self-efficacy 

and ability self-concept, could be a more important predictor of career choice decisions 

than achievement, at times or for some youths (Bandura et al., 2001; Eccles, 2005). 

Meanwhile, students with high levels of skill and preparation in math and science may 

not aspire for and choose STEM careers or choose STEM majors unless they are very 

interested in STEM (e.g., Lubinski & Benbow, 2006; Maltese & Tai 2011; Masnick et al., 

2010). This is because students must value STEM to be motivated to pursue it (Andersen 

& Cross, 2014; Maltese & Tai, 2011). Motivational beliefs, such as competence beliefs, 

interest in, and perceived utility value of math or science courses, are positively 

associated with students’ willingness to pursue a STEM career (see Wang & Degol, 2013 

for a review). Fostering students’ motivation in math and science courses could increase 

their desire to choose STEM fields (Aeschlimann et al., 2016; Rosenzweig & Wigfield, 

2016). Therefore, it is necessary to closely examine how key math and science 

motivational beliefs influence STEM career aspirations. 

Researchers have generally used variable-centered approaches (e.g., regression, 

ANOVA, or structural equation modeling) to examine the relationship between academic 

motivation and career aspirations (Paixão & Gamboa, 2017). Variable-centered 
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approaches are designed to examine average relations between variables in a given 

sample or each variable’s unique contribution to an outcome (Moran et al., 2012; 

Vansteenkiste et al., 2009). However, individual students often hold multiple 

motivational beliefs simultaneously (e.g., Andersen & Chen, 2016; Conley, 2012; 

Linnenbrink‐Garcia et al., 2018), and these motivational factors may work together to 

influence students’ STEM-related decisions (Perez, Wormington, et al., 2019). Therefore, 

it is not sufficient to only study how each motivational variable individually predicts 

STEM outcomes with variable-centered approaches. Further, research finds that although 

expectancy beliefs, task values, and costs are theoretically distinct variables, they are 

interrelated (Perez, Dai, et al., 2019). Such interrelation can pose difficulty for variable-

centered statistical analyses. For instance, some studies have examined the interactive 

effects of science expectancy and value beliefs on STEM career choice (Nagengast et al., 

2011), but it is challenging to examine interactions between more than two variables and 

clearly describe the joint effects of the variable combinations with variable-centered 

approaches (Gillet et al., 2017; Perez, Wormington, et al., 2019). There might be too 

many interactions to interpret when more variables are involved. Besides, some 

interactions may occur very rarely, therefore, are not worth analyzing. Person-centered 

approaches that consider how typical combinations of beliefs influence behavior are more 

appropriate to model complicated relationships. Person-centered approaches, such as 

latent class/profile analysis, can identify frequently occurring combinations of 

motivational beliefs within a sample and how these combinations predict distal outcomes.  

Due to various reasons, differences between males and females in STEM fields 

have been evident in the past decades. Although females have made impressive progress 
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in math and science course enrollment and performance in recent years, there are still 

concerns about the number of females pursuing degrees and careers in specific STEM 

fields (National Science Foundation, 2008, 2011). Studies have also found that male 

adolescents were more likely to be interested in a STEM career or pursue a STEM major 

(e.g., Holmes et al., 2018; Jiang et al., 2020)1. It is worth noting that gender differences in 

occupational interests vary greatly by STEM fields, with men much more interested in 

physical sciences, mathematical careers, engineering disciplines, and women more 

interested in social sciences and biological/medical services (Su & Rounds, 2015; Watt et 

al., 2017; Wiebe et al., 2018). Distinguishing between STEM fields in which women are 

well-represented (Health, Biological, and Medical Sciences; HBMS) and those in which 

women are not (Mathematics, Physical, Engineering, and Computer Sciences; MPECS) 

can be a meaningful strategy to investigate gender differences in STEM career choices 

(Eccles & Wang, 2016). Compared to prior achievement, differences in math and science 

enjoyment and self-concept explain a much larger variance in the gender gaps in high 

school students’ STEM career aspirations and females’ uneven representation in STEM 

career choices (Riegle-Crumb et al., 2012; Wegemer & Eccles, 2019). Therefore, some 

researchers point to individual motivation in math and science as a more important 

explanatory factor for the observed lack of female participation in STEM fields (Shumow 

& Schmidt, 2013; Taskinen et al., 2013). Research findings further indicate that although 

girls in high school are less likely to be interested in some STEM majors, such as physics, 

 
1 Many existing research studies have examined gender differences in career aspirations. However, gender 

and sex have been used interchangeably in some of these studies. For instance, some studies examine 

“gender differences” between “males and females” based on the sex assigned at birth (usually obtained 

from school record instead of self-reported gender identity). The literature review keeps the original 

wording from the reviewed literature. 
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computer science, engineering, and energy (Gremillion et al., 2019), those who do choose 

a STEM major are as likely to earn a STEM degree as men (e.g., Cech et al., 2011; King, 

2016; Ost, 2010; Soldner et al., 2012). Therefore, motivating girls in high school to be 

interested in STEM careers becomes a critical first step towards improving their STEM 

representation.  

Considering the critical role of math and science motivational beliefs in STEM 

career aspirations and the necessity of using person-centered research methods, the 

primary purpose of the current study is to investigate high school students’ math and 

science motivation profiles as well as the stability of motivation profiles, and how 

motivation profiles relate to their career aspirations in STEM fields. Considering the 

gender differences in STEM career aspirations and motivational beliefs, a secondary 

purpose is to examine differences between male and female students in math and science 

motivation profiles, profile stability, and how those differences affect their STEM career 

aspirations.  

1.1 THEORETICAL FRAMEWORK 

Expectancy‐value theory (EVT) (Eccles et al., 1983) provides one of the most 

comprehensive theoretical frameworks for studying individual and gender differences in 

mathematics and science academic motivation, performance, and career choice (e.g., 

Eccles, 1994, 2005; Wigfield & Eccles, 2000). EVT posits that expectancies for 

success and subjective task values are the most proximal psychological determinants of 

essential outcomes, such as academic choice and persistence (Eccles, 1983; Wigfield & 

Eccles, 2000).  

Expectancies for success refer to individuals' beliefs about how well they will 

perform on an upcoming task (Eccles & Wigfield, 2020). Subjective task values refer to 
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the motivation that allows an individual to engage in an activity (Eccles, 1983). 

Subjective task values are further divided into intrinsic value (interest or enjoyment), 

attainment value (importance for identity or self), utility value (usefulness or relevance), 

and cost (loss of time/valued alternatives, overly high effort demands, or negative 

psychological experiences such as stress) (Eccles & Wigfield, 2020). Expectancies for 

success and subjective task values are usually domain-specific and are affected by 

individuals’ personal characteristics, interpretations of their own past achievement 

experiences, social experiences, and cultural norms (Eccles, 1983; Eccles, 1994; Eccles et 

al., 1997; Eccles & Wigfield, 2002).  

1.2 PERSON-CENTERED APPROACHES  

Person-centered approaches focus on identifying homogeneous subgroups of 

participants who share similar behavior patterns by categorizing individuals into 

distinctly different groups based on patterns that appear across a variety of variables 

(Hayenga & Corpus, 2010). Therefore, individuals who function similarly and differently 

from other individuals at the same level are classified into different groups. Interpreting 

profiles of multiple beliefs is usually less challenging than interpreting complex 

interactions that involve multiple variables produced in variable‐oriented analyses. By 

identifying common combinations of variables that represent individuals in a given 

sample, one can also avoid the concern about interpreting aspects of the interaction that 

rarely occur in the sample (Bergman & Trost, 2006; Wormington & Linnenbrink‐Garcia, 

2017).  
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1.3 GAPS IN LITERATURE  

EVT posits that expectancy and value beliefs are domain-specific (Eccles, 1983), 

and studies found that motivation is not a static trait of the learner, as it may vary from 

course to course (e.g., Ng et al., 2016). STEM includes both math and science domains. 

However, most of the research has only examined either motivation in math (e.g., Jiang et 

al., 2020; Lauermann et al., 2017) or motivation in science (e.g., Nagengast et al., 2011) 

as the predictor of STEM career aspirations. Studies that do include both math and 

science motivation usually examine students’ math and science motivational beliefs in 

separate analyses (Andersen & Cross, 2014), or use a composite score averaged across 

math and science (e.g., Garriott et al., 2013). Only a few have examined how math and 

science abilities and interests interactively predict STEM career choices (e.g., Garriott et 

al., 2017). Scholars have argued that using adolescents’ motivational beliefs in a single 

domain to understand their STEM choices is insufficient to understand their STEM 

pathways development (Wang & Degol, 2017). This is because although correlations 

between high school students’ math and science achievement scores tend to be 

moderately high, correlations between math and science expectancies and interests are 

low (Else-Quest et al., 2013; Li et al., 2002).  

Variable-centered approaches have examined individual and interactive effects of 

different predictors on STEM career aspirations, but they primarily focus on main effects 

(and sometimes interaction effects) rather than the effects of complex combinations of 

variables (Perez, Wormington, et al., 2019). Person-centered analyses may be more 

appropriate to examine how motivation profiles shape academic choices, such as STEM 

career aspirations and STEM major choice, as multicollinearity issues do not exist in 

person-centered approaches such as latent profile analysis (Perez, Dai, et al., 2019). A 
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few studies have used person-centered approaches to examine within-person and within-

sample stability of motivation profiles over time, guided by self-determination theory 

(Paixão & Gamboa, 2017; Gillet et al., 2017) and achievement goal theory (Goncalves et 

al., 2017; Tuominen et al., 2020). However, up to now, few studies have examined the 

math and science motivation profiles characterized by expectancies and values. 

Furthermore, most of the studies on motivation profiles are cross-sectional and have not 

adequately examined the critical issue of profile stability (Gillet et al., 2017). Besides, 

gender differences in math and science academic profiles and how the differences 

influence STEM career aspirations have not been thoroughly investigated. More research 

is also needed to explore gender differences in the stability of math and science 

motivation profiles. 

To address these research gaps, the present study uses person-centered approaches 

(latent profile analysis and latent transition analysis) to identify high school students’ 

math and science motivation profiles in 9th and 11th grade, examine stability of these 

profiles across the two time points, and investigate whether math and science motivation 

profiles would be differentially related to aspirations in traditional STEM occupations 

(e.g., physical science, information technology, electronic engineering, and mathematics) 

and health occupations (e.g., physicians, veterinarians, nurses, medical technicians). 

Differences between male and female students in motivation profiles and profile stability, 

and how the differences influence STEM career aspirations are examined along the way. 

The study also descriptively examined stability of STEM career aspirations and the 

association between STEM career aspiration in high and STEM major choice in college.  
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1.4 SIGNIFICANCE OF THE STUDY  

Studies have shown that adolescents’ career aspirations are highly stable from 

early adolescence to middle adulthood (see Low et al., 2005 for a review of career 

interest stability). By 12th grade, the decision to major in a STEM or non-STEM career 

was largely solidified for many students (Maltese & Tai, 2011). Therefore, the high 

school years are critical for identifying the cognitive and motivational factors that 

increase the likelihood of future STEM employment (Wang et al., 2017). Research has 

confirmed that in order to improve students’ learning, one of the most critical factors that 

educators can target is their motivation (Williams & Williams, 2011). The current study 

used a nationally representative sample to study high school students’ STEM career 

aspirations, which will contribute to our understanding of how motivation in math and 

science influences STEM career aspirations.  

The current study is one of the few studies that examine latent profiles of high 

school students’ academic motivation in math and science courses under the EVT 

framework. A study that examines how math and science motivation jointly influences 

STEM outcomes seems timely and necessary given that limited prior research has 

investigated such a question. Findings will contribute to our understanding of how math 

and science motivational beliefs may coexist and what combinations of these variables 

may be adaptive or deleterious for career aspirations in STEM (Perez, Wormington, et 

al., 2019). Such an understanding can provide insights into identifying high school 

students who might join in STEM disciplines. Moreover, differences in motivation 

profiles between male and female students are examined to determine whether students of 

a particular sex were overrepresented in profiles characterized by lower math or science 

motivation.  
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Besides, exploring the stability of math and science motivation profiles will help 

understand how adolescents’ career trajectories are developed. The current study uses a 

longitudinal design to address within-person profile stability (the stability in the academic 

motivation profiles of individuals) and within-sample profile stability (whether the nature 

of the academic motivation profiles changes across time) (Kam et al., 2016) in high 

school, which helps to better understand motivation profile stability. Such an 

understanding could guide school and career counselors to create targeted and relevant 

career development interventions that aim to increase the number of high school students 

who plan to select a STEM career path.  

Taxonomies of STEM occupations usually include physical and natural sciences, 

computer science, technologist positions, engineering, and mathematics. There is ongoing 

debate on whether to consider social sciences and medical/health sciences as STEM 

occupations (Wiebe et al., 2018). The current study considers health occupations and 

social sciences2 as STEM subdomains and treats health occupations separately from 

traditional STEM domains when studying associations between motivation profiles and 

career aspirations. Distinguishing between health occupations and other STEM domains 

is desirable because many students aspire for a health occupation in this sample of 

students. It could help us better understand the association between motivation profiles 

characterized by different levels of math and science motivations and career aspirations 

in different fields (non-STEM, traditional STEM, and health occupations). Further, it 

could also help better understand gender disparity in different STEM fields, as research 

finds that female representation is uneven across STEM fields (Wegemer & Eccles, 

 
2 Social sciences were coded as “split across two (STEM) domains” and its relation with math and science 

motivation profiles was not examined due to its small sample size and ambiguous coding.  
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2019). For instance, female adolescents favored human services occupations such as 

social science and health occupations. Male adolescents, on the other hand, were more 

likely to aspire to math/science-related careers (Lauermann et al., 2015). The findings 

may provide insight into understanding the imbalance between male and female students 

in different STEM occupations.  

Specifically, the current research extends the literature on high school students’ 

motivation profiles and STEM career aspirations by: 

1. using a large, restricted, nationally representative longitudinal dataset and 

person-centered approaches to examine motivation profiles characterized by 

both mathematics and science motivational beliefs; 

2. examining both within-sample and within-person motivation profile stability; 

3. examining how math and science motivation profile and STEM career 

aspirations are associated;  

4. making a distinction between traditional STEM occupations and health 

occupations when examining their association with motivation profiles;  

5. investigating differences between males and females in math and science 

motivation profiles, profile stability, and how that influences career 

aspirations in different STEM fields.  
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CHAPTER 2  

LITERATURE REVIEW 

2.1 EXPECTANCY VALUE THEORY OF MOTIVATION  

Expectancy-Value Theory (EVT; Eccles et al.,1983; Eccles, 2005) offers a 

comprehensive theoretical framework to explain achievement-related choices. EVT was 

initially used to explain gender differences in enrollment in advanced mathematics and 

science classes and the pursuit of college majors and careers in mathematics and science. 

It focuses on belief systems and cultural and gender-related differences in current levels 

and changes in individuals' competence beliefs and value beliefs (Eccles, 1994; Eccles & 

Wigfield, 2002). EVT posits that beliefs about how well individuals will do on the task 

(expectancy) and the extent to which they value the task (value) will influence their 

choice, persistence, and performance (e.g., Wigfield & Eccles, 2000). Expectancies for 

success include ability beliefs and expectancy beliefs. Ability beliefs are an individual’s 

current beliefs about being able to complete a task, which are general beliefs about 

competence in a specific domain. Expectancy beliefs are beliefs about being able to do 

the task in the future (expectancies of success on a particular upcoming task). However, 

the two sub-components are often highly correlated and difficult to distinguish in 

empirical research; therefore, they have typically been used interchangeably or collapsed 

into a single construct (Eccles & Wigfield, 2002).  

Expectancies for success are theoretically closely related to other conceptions of 

self-beliefs, such as self-efficacy in social cognitive theory (Bandura, 1997). In prior  

https://www.frontiersin.org/articles/10.3389/fpsyg.2019.00990/full#B31
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.00990/full#B28
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research that adopted EVT as the theoretical framework, similar constructs have been 

used interchangeably with expectancies, such as self‐efficacy, competence belief, self‐

concept of ability, or confidence to successfully complete tasks in a specific domain (e.g., 

Andersen & Chen, 2016; Andersen & Ward, 2014; Neuville et al., 2007; Schaefers et al., 

1997). Some studies which claimed using EVT as their theoretical framework used self-

efficacy beliefs to represent expectancies for success (e.g., Neuville et al., 2007; 

Schaefers et al., 1997) because expectancy beliefs were measured like self-efficacy 

expectations (Eccles & Wigfield, 2002). Self-efficacy is an individual's belief in his/her 

ability to succeed in specific situations or accomplish a task (Bandura, 1982). A high 

correlation was also found between self-efficacy and expectancies (Jones et al., 2010); 

therefore, it makes sense for some studies to use self-efficacy.  

Subjective task values refer to the motivation that drives an individual to engage 

in an activity (Eccles, 1983). Four types of task values have been identified: intrinsic 

value, attainment value, utility value, and cost (Eccles, 2009; Eccles et al., 1983). 

Intrinsic value is sometimes referred to as interest/enjoyment value, which reflects the 

inherent enjoyment or interest that individuals experience from engaging in the task of 

the subject in question. Attainment value is the perceived importance of a task for an 

individual’s identity and self-worth. Individuals will attach a high value to options that 

allow them to establish this identity (Eccles, 2009). Utility value reflects the perceived 

usefulness or importance of a task in helping to accomplish other goals. Cost is related to 

perceptions of drawbacks when engaging in a task, and it is essential for decision-making 

(Eccles et al., 1983). Eccles and Wigfield (2020) suggested three different types of costs: 

effort cost (excessive effort demands), opportunity cost (loss of time or valued 
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alternatives), and emotional cost (negative psychological experiences such as anxiety and 

the social costs of failure). Partly due to its complex multidimensional nature, cost has 

been operationalized less fully until recently, and thus studied less comprehensively than 

intrinsic value and utility value.   

Theoretical work (Eccles, 1983) and empirical studies (e.g., Nagengast et al., 

2011) suggest that expectancies and values interact to predict important outcomes, such 

as academic achievement, continuing interest, and choice. EVT posits that one’s ability 

self-concept influences interest in a given field (Eccles, 1983). On the other hand, high 

school students’ math interest was a positive predictor of their math identities (e.g., 

Godwin et al., 2016). Caspi and colleagues (2019) found high correlations between 

nineth graders’ self-efficacy, attainment value, intrinsic value, utility value, and relative 

cost in terms of picking STEM disciplines in high school. In much of the empirical 

research on task values, the three subconstructs of task values (intrinsic, utility, and 

attainment) have not been measured separately (e.g., Aschbacher et al., 2014; Bong, 

2001; Neuville et al., 2007; Perez et al., 2014). This is perhaps because intrinsic, utility, 

and attainment value are sometimes positively correlated with each other (e.g., Beier et 

al., 2019), and attainment value and intrinsic value are often highly correlated (Hulleman 

et al., 2008; Trautwein et al., 2012). However, it is not always the case. For instance, high 

school students who feel competent in math and who value math as useful are not 

necessarily interested in math (Lazarides et al., 2020), which suggests the necessity to 

study the value components separately.  
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2.2 ASSOCIATIONS BETWEEN EXPECTANCIES, VALUES, COST, AND  

STEM CAREER ASPIRATIONS/STEM MAJOR CHOICE  

Existing studies that used variable-centered approaches have found unique 

relations between expectancies, task values, perceived costs, and STEM outcomes, such 

as STEM career aspirations and STEM major choice in college. For instance, ninth-grade 

competence beliefs, intrinsic value and utility value in math positively predicted career 

goals related to math in 12th grade (Lauermann et al., 2017). High school students’ 

science expectancy and value also predicted STEM career interest (Robnett & Leaper, 

2013). Riegle‐Crumb et al. (2011) found that eighth graders’ science self-concept and 

enjoyment are positively and significantly associated with science career aspirations after 

controlling for the effect of test scores, while math self-concept and enjoyment do not 

help explain differences in career aspirations. It is probable that other aspects of the EVT 

model, such as attainment value or utility value, may be more pertinent. Responses to 

open-ended questions reveal that interest, utility value, and self‐efficacy were the three 

major reasons most frequently cited by nineth grade students who plan to choose a STEM 

discipline in high school; while they only occasionally cited reasons such as attainment 

value, friends and family (Caspi et al., 2019). However, although research findings 

indicated that both expectancies and task values predicted achievement-related choices, 

such as career interests, they also suggested that expectancies was an important predictor 

of achievement among high school students (Hill et al., 2010), while task values can be 

more influential in shaping individual career choices than academic self-concept 

(Wigfield & Eccles, 1992; Wigfield et al., 2009). Gender differences have been found in 

expectancy and value beliefs in math and science. For instance, high school boys had 

higher math task values, and a greater preference for STEM careers (Wang et al., 2015). 
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Meanwhile, high school girls were more likely to have lower math self-efficacy/self-

concept and values, which predicted a lower likelihood for them to strive for a STEM 

career, such as math (Dang & Nylund-Gibson, 2017; Guo, Parker, et al., 2015; Lazarides 

& Lauermann, 2019).  

Expectancies or self-efficacy is domain-specific, and individuals are more willing 

to be involved in activities in which they feel they can succeed (Eccles et al., 1998). 

Middle school and high school students’ mathematics-related ability beliefs, such as 

mathematics self-efficacy and expectancy for success, strongly predicted their later 

aspiration to a STEM career, such as math, science, and engineering (Blotnicky et al., 

2018; Cass et al., 2011; Lauermann et al., 2017; Mau, 2003; Seo et al., 2019). High 

school students’ math self-efficacy beliefs affected students’ intent to major in STEM 

fields, which in turn influences entrance into STEM majors (Wang, 2012). Wegemer and 

Eccles (2019) found that math self-concept of ability became a salient predictor of STEM 

choices in 11th grade. Science self-concept affected 9th-grade students’ interest in 

science-related careers (Taskinen et al., 2013), and science efficacy predicted 9th graders’ 

career aspirations in STEM fields (Mau & Li, 2018). Math and science ability beliefs are 

sometimes measured together as a single variable. For instance, students in 9th grade who 

had higher math and science efficacy were more likely to consider selecting a STEM 

major in college (Sahin et al., 2018). High school students’ math/science self-efficacy 

was a significant predictor of math/science interests which predicted math/science career 

goals (Garriott et al., 2017). This finding suggests that sometimes the relationship 

between efficacy and career interest might be mediated by math/science interests. 

Different expectancy levels could also be associated with interests in various STEM 
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careers. For instance, students with lower math self-concept of ability in middle and high 

school were more likely to be interested in careers in HBMS (Health, Biological, and 

Medical Sciences) over MPECS (Mathematics, Physical, Engineering, and Computer 

Sciences) (Wegemer & Eccles, 2019).  

Perhaps one of the prominent factors that hinder girls from aspiring to careers in 

STEM fields is low self-efficacy or ability belief in math and science. For instance, boys 

in eighth grade had higher math efficacy than girls, and they were more likely than girls 

to persist in science and engineering career aspirations (Mau, 2003). Female high school 

students had lower math and science self-concept of ability and were less likely to pursue 

a STEM major in college (Jiang et al., 2020). Interestingly, high-school boys perceived 

higher math competence than girls even when their grades and test scores in math were 

similar and were more likely to have math related career aspirations (Correll, 2001). 

Furthermore, math self-concept was more important for female adolescents than male 

adolescents in their career choices related to STEM (Watt et al., 2017). 

Research finds that expectancies or efficacy belief is a necessary but not a 

sufficient predictor of adolescents’ educational outcomes or career choices (Wang, 2012). 

Being competent at an activity does not necessarily mean that an individual will enjoy 

that activity (Wang & Degol, 2013). EVT suggests that besides the confidence in one’s 

abilities to succeed in such activities, career aspirations also depend on the value one 

attaches to various occupation-related activities (Wang & Degol, 2013). 

Values are concerned with preferences and desires (Perez & Wormington et al., 

2019). Intrinsic value (operationalized as interest and enjoyment) has been studied very 

frequently in relation to STEM outcomes. Mathematics interest is a significant predictor 
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of underrepresented high school students’ career aspiration in STEM fields (Cass et al., 

2011; Mau & Li, 2018). Nineth graders with higher levels of interest and enjoyment in 

science reported having a higher motivation to take up a science-related occupation, even 

after class-level characteristics were controlled for (Taskinen et al., 2013). Science 

enjoyment is still a significant predictor of fifteen-year-old students’ STEM career 

aspirations after controlling for science achievement and STEM career awareness 

(Ahmed & Mudrey, 2019). Students in 7th and 9th grades who were more interested in 

scientific and technical skills were more likely to consider a STEM career (Blotnicky et 

al., 2018). Conversely, a few studies did not find a significant influence of intrinsic value 

on STEM career interest. For instance, Watt and colleagues (2012) found that 

adolescents’ intrinsic value in math did not predict math-related career plans in U.S. or 

Canadian samples (Lauermann et al., 2017). Researchers have found that mathematics 

interest played the most substantial role in predicting male high school students’ STEM 

career preferences, and it was more important for male adolescents than female 

adolescents in their career choices related to STEM fields (Watt et al., 2017).  

Subject-specific identity (e.g., math identity, science identity, or STEM identity) 

is often used to represent attainment value (e.g., Estrada et al., 2018; Kuchynka et al., 

2019; Leggett-Robinson et al., 2018). A high correlation has been found between 

attainment value and subject-specific identity (e.g., Jones et al., 2010), which can justify 

the use of identity in place of attainment value. Research asserts that students who have 

higher subject-related identities are more likely to aspire for related careers. For instance, 

a student with a high science identity was more likely to follow the norms of that role and 

pursue a career in science (Estrada et al., 2011; 2018). High school students’ math 
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identity was important for predicting choosing an engineering major at college (Godwin 

et al., 2016). Higher math and science attainment values were significantly related to 

increased odds of high school students’ planning for a STEM career (Gottlieb, 2018). 

Given the potential value of math and science identity in pushing high school students 

into or out of the STEM pipeline (Wang & Degol, 2013), studying how math and science 

identity predict career aspirations in STEM is necessary.  

Utility value concerns how the task relates to future goals. If an activity is 

instrumental to pursuing their goals or is integral to their vision of their future, students 

may be motivated to pursue it, even when they do not enjoy it (Wigfield, 1994). Math 

utility beliefs positively predicted high school students’ aspirations in a math-related 

career (Lauermann et al., 2017). Higher levels of perceived math utility significantly 

increased high school students’ odds of planning for a STEM career (Gottlieb, 2018). 

Math utility value was more directly related to 15-year-old Australian youths’ STEM 

major selection compared to math self-concept (Guo, Parker, et al., 2015). Similarly, high 

school students’ belief that science was useful for learning, career, and everyday life was 

a significant predictor of engineering career choice (Godwin et al., 2016). Science 

instrumental value (utility value) was an important predictor of 15-year-old students’ 

career aspirations after controlling for science achievement, STEM career awareness, and 

socioeconomic status (Ahmed & Mudrey, 2019). Watt et al. (2019) examined 

mathematics and science utility value together, and found it was positively associated 

with 10th graders’ effort exertion and STEM career aspirations.  

Cost has been studied much less frequently as a predictor of STEM outcomes. 

Existing studies found that adolescents might not choose to pursue a career in 
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mathematics or science if they perceive that the effort cost is too great (Wang & Degol, 

2013). High school students who did not perceive a high time or social cost to study math 

or science classes were more likely to plan for a career that requires a bachelor’s degree, 

regardless of the career type (Gottlieb, 2018).  

Expectancies and values are distinct constructs, but they are correlated in the 

meantime. For instance, high school students’ self-concept of ability and subjective task 

value were moderately correlated within math and science (Jiang et al., 2020). Besides, 

9th graders’ expectancies tend to predict their later task values, such as intrinsic interest 

(Taskinen et al., 2013), which means individuals tend to value the subjects/tasks in which 

they feel competent (Eccles & Wigfield, 2002). A few studies have examined interactions 

between these motivational variables and how different combinations influence STEM 

outcomes. For instance, Nagengast et al. (2011) found that 15-year-old’s science 

expectancy, science intrinsic value (enjoyment of science), and the expectancy × value 

interaction all had significant and positive effects on intentions to pursue scientific 

careers. Trautwein et al. (2012) found that if either expectancies or values was very low, 

the other cannot compensate for it. High scores on the outcome variables could only 

emerge when both expectancy and value beliefs were high. In a nationally representative 

longitudinal sample of Australian high school students, math self-concept was more 

strongly related to choosing STEM fields of study when the intrinsic value was also high 

(Guo, Parker, et al., 2015). These findings suggest that it is crucial to simultaneously 

consider the levels of both competence beliefs and task values. It is worth noting that 

most studies only examined two‐way interactions between competence beliefs and values 

(as a single construct)/each subcomponent of task values individually. As a result, it is 
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not clear how different levels of the subdimensions of task values and competence beliefs 

are combined and how such combinations relate to key STEM outcomes.  

2.3 PERSON-CENTERED APPROACHES AND FINDINGS 

Individual differences are essential to the field of educational psychology because 

we cannot assume that each individual learns in the same way under the same conditions 

(Raufelder et al., 2013). However, our knowledge about individual differences in 

educational psychology is limited because of the dominance of variable-oriented 

statistical analyses, which assume equality between individuals, and a seeming reluctance 

to employ person-oriented methods (Rosato & Bear, 2012). Fortunately, person-centered 

approaches have been gaining momentum in recent research in educational psychology. 

The term “person-centered” is often used interchangeably with “pattern-oriented” 

and “person-oriented” (Bergman & Andersson, 2010). So far, there is no unified 

definition of a person-centered approach. The works of Bergman and Magnusson have 

heavily influenced the theory and methodology of person-centered approaches developed 

over the past thirty years (e.g., Magnusson, 1988; Magnusson & Törestad, 1993; 

Bergman & Magnusson, 1997; Bergman, von Eye, & Magnusson, 2006). The theoretical 

conceptualizations of the person-oriented approach are grounded in the holistic-

interactionistic framework, in which the individual is seen as an organized whole, 

functioning and developing as a totality formed by interactions among the components 

involved (e.g., biological factors, plans, values, goals, behaviors, and environmental 

factors) (Magnusson & Törestad, 1993; Bergman & Magnusson, 1997; Bergman & 

Wångby, 2014). In operation, this focus usually involves studying individuals based on 

their patterns of individual characteristics that are relevant to the problem under 

investigation (Bergman & Magnusson, 1997).  
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Person-oriented research acknowledges that particular concepts exist in or only 

apply to specific populations or even individuals. This basic tenet of person-oriented 

approaches allows for the use of terms that are specific to populations, age groups, 

locations, or historical times in the formulation of person-oriented theories (Bergman & 

Magnusson, 1997; Bergman, von Eye, & Magnusson, 2006; von Eye & Bergman, 2003). 

Another fundamental tenet asserts that aggregating data prematurely can lead to 

conclusions that fail to recognize the variability in populations (von Eye & Spiel, 2010). 

Bergman and Wångby (2014) proposed some more revised tenets. They argued that 

individuals’ development process follows laws that relate to structures functioning as 

patterns of operating factors. These laws are supposed to have communalities across 

individuals but not identical across individuals. Besides, in the development process, 

typical patterns of observed system components often show up both within the individual 

and across individuals.  

The person-oriented theoretical view has implications for the choice of research 

methodology in empirical research: the methodology should allow for inferences about 

the single person and individual patterns of functioning. Usually, this can only be attained 

by treating the key pattern defining the system of interest (usually a vector of variable 

values) as an indivisible unit in the analysis (Bergman & Wångby, 2014). This is 

different from a standard variable-oriented approach, which focuses on the variable as the 

primary unit of analysis. The main theoretical and analytical unit of a person-oriented 

approach is the specific pattern of operating factors (Bergman & Wångby, 2014). In other 

words, the individual and the pattern are at the focus of person-oriented approaches. 

Although theoretically, there is an infinite variety of differences in observed states and 
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process characteristics at a specific level, there is often a small number of more 

frequently observed patterns/common types if viewed at a more global level (Bergman & 

Magnusson, 1997). There are two major kinds of person-centered analysis approaches: 1) 

algorithmic approaches, which include the traditional “cluster analyses,” and 2) latent-

variable approaches, which are methods based on latent-variable models. Latent class 

analysis (LCA) is a latent-variable approach that is used in the current study.  

LCA is a type of mixture model that aims to describe subgroups of participants 

distinct from one another in their pattern on a number of indicators. LCA assumes that 

people can be classified into subgroups or subpopulations with different configural 

profiles of personal and/or environmental attributes with varying degrees of probabilities. 

These subgroups are called latent classes, which are represented in the model as the 

different categories of an underlying categorical latent variable. Each category represents 

an inferred subpopulation (Lubke & Muthen, 2007). Individuals are categorized 

according to the pattern of their responses, and the optimal number of latent classes is 

determined by comparing models with different numbers of latent classes. Depending on 

whether the observed variables are categorical or continuous, mixture models can take 

the form of latent class analysis (LCA) and latent profile analysis (LPA) (Woo et al., 

2018). The rationale is the same for LCA and LPA models (Bergman & El‐Khouri, 

2003); therefore, the following literature review may only mention LCA.  

The person-oriented approach in LCA is based on three arguments. First, there are 

individual differences within a phenomenon or effect, and these differences are 

important. Second, these individual differences occur in a logical way and can be 

examined through patterns. Third, a small number of patterns are meaningful and occur 
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across individuals (Bergman & Magnusson, 1997; Bergman et al., 2003). The overall 

goal of LCA is to uncover groups or latent classes of individuals who share an 

interpretable and meaningful pattern of responses on the measures of interest (Bergman et 

al., 2003; Marsh et al., 2009; Masyn, 2013). The basic principle of LCA is to group 

individuals with a similar profile of indicator variables into distinct classes (Vermunt & 

Magidson, 2002). This could be done by obtaining the probability that individuals belong 

to different groups based on their responses to the indicator variables (Oberski, 2016; 

Wang & Hanges, 2011). LCA examines the distributions of groups in the data and 

decides whether these distributions are meaningful (Ferguson et al., 2020). It is 

particularly useful for research in social sciences because shared behavior patterns within 

and between samples may be overlooked in variable-centered, interindividual analysis 

(Howard & Hoffman, 2018).  

In order to make the interpretation of latent classes more relevant and meaningful, 

it is critical to show that class memberships bear relevant relations with crucial outcome 

variables (Bergman & El‐Khouri, 2003; Bergman & Trost, 2006). LCA can examine 

typical classes within a sample and how various classes relate to specific outcomes 

(Bergman & El-Khouri, 2003; Bergman & Trost, 2006). Researchers usually identify 

subgroups of individuals who share similar patterns of variables and compare them with 

other subgroups, not only in terms of how the variables combine to shape the latent 

classes/profiles but also how those combinations are associated with predictors and 

outcomes in different ways (Wang & Hanges, 2011).  

Another way to make the interpretation of latent classes meaningful is to show 

that class memberships can be replicated across samples or time points (Marsh et al., 
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2009; Muthén, 2003). Classifying individuals based on cross-sectional responses is 

sufficient in many cases, but the researcher may want to incorporate other features in 

others (Woo et al., 2018). Based on specific individual developmental paths, a person 

may change from one group to another over time, as the boundaries of many groups are 

not very clear and permeable (Bergman, 1988). Changing environmental or 

psychobiological conditions, or a combination of the two, may also lead to changes of 

patterns over time (Peck & Roeser, 2003). Latent transition analysis (LTA) takes into 

account the process aspect and can be used to analyze long-term developmental processes 

in terms of patterns (Bergman & Wångby, 2014). LTA is another type of mixture model 

developed within the latent class analysis framework (Collins & Wugalter, 1992). It is 

also referred to as hidden Markov modeling, where latent classes are measured over time 

and individuals can transition between latent classes (Muthén & Muthén, 1998-2015). 

With LTA, stability and change in the latent classes at the structural and individual levels 

can be studied (Bergman & Wångby, 2014). LTA gives us the ability to look at how 

individual students stay or change from their original motivation profiles, which a latent 

growth curve analysis cannot do. 

LTA is a longitudinal extension of LCA. It is any model that includes two or more 

latent class constructs informed by the same or different indicators measured at different 

time points. LTA is designed to model not only the latent class membership but also the 

frequency of transitions between classes over time (Collins & Lanza, 2009). LTA 

considers the dynamic nature of latent class membership by modeling movements across 

different membership categories across developmental levels, shifting contexts, or states 

(Woo et al., 2018). LTA can be used to investigate the within-sample and within-person 
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stability in class membership by investigating whether there are different latent classes 

present in the data (within-sample stability), whether individual students correspond to 

the same classes over time (within-person stability), as well as the nature of observed 

class transitions (Collins & Lanza, 2009). For instance, there might be adaptive 

transitions and maladaptive transitions. In LTA, two or more latent class/profile variables 

are measured at different time points, and the relationship between these variables is 

estimated through a logistic regression (Asparouhov & Muthén, 2014). The latent 

classes/profiles in LTA are called latent statuses because they may change over time. 

In recent years, researchers have paid more attention to investigating how 

expectancy and value beliefs are combined in students’ motivation profiles and how such 

profiles relate to academic STEM outcomes, such as STEM course selection, selecting a 

STEM major in college, and STEM career aspirations. Several research studies have 

examined adolescents’ expectancy and value beliefs using person‐oriented methods (e.g., 

Andersen & Chen, 2016; Andersen & Cross, 2014; Aschbacher et al., 2014; Bøe & 

Henriksen, 2013; Chow et al., 2012; Conley, 2012; Dang & Nylund-Gibson, 2017; Fong 

et al., 2021; Linnenbrink-Garcia et al., 2018; Wang et al., 2013). However, some of them 

did not investigate the relationship between motivation profile membership and STEM 

outcomes.  

Three of these studies used HSLS:09 data to study high school students’ math 

and/or science motivation profiles and STEM career aspirations and STEM major choice 

in college. Andersen and Chen (2016) did a latent profile analysis on high school 

students’ motivation to study science courses and examined how profile memberships 

were related to STEM occupational plans. Based on four profile indicators – science self-
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efficacy, science attainment value, science utility value, and science interest-enjoyment 

value, four latent profiles were identified: 1) Low expectancy-value, in which all 

indicators were below the mean; 2) Typical, in which all indicators were a little above the 

mean; 3) High Self-Efficacy (HSE), in which self-efficacy was very high, but the three 

value indicators were relatively low; and 4) High Utility Value (HUV), in which science 

utility value was very high, and science attainment and interest value were above those in 

the HSE profile, and science efficacy below the level in the HSE profile. The percentage 

of students who planned to have a STEM occupation at the age 30 was different across 

each motivation profile. Students in the HUV profile planned to have a STEM occupation 

at the highest rate (45.6%), followed by the HSE profile (36.9%). The percentage was 

low in the typical profile (25.3%) and low profile (15.8%). Two limitations of this study 

are that it only used descriptive statistics to examine the relationship between science 

motivation profile and occupational plans, and they did not examine math motivation and 

how that would affect their interest in STEM occupations. Andersen and Cross (2014) 

examined math profiles and science profiles separately and uncovered four distinct math 

profiles and four science profiles. The four math profiles were: 1) Typical, all profile 

indicators (math efficacy, math attainment value, math intrinsic value, and math utility 

value) were near the mean (44%); 2) Low, all profile indicators were below the mean 

(15%); 3) High Math Self Efficacy, math self-efficacy was high, and the other indicators 

were above the mean, except for math utility value, which was average (23%); 4) High 

Math Utility Value, all indicators were high, but math self-efficacy was lower than that of 

the high MSE class (18%). The four science profiles were similar to the math profiles. 

This study did not examine the relationship between math and science profiles and STEM 
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career aspirations, but it uncovered that students with high ability in math or science may 

also have low ability beliefs and low values of the subjects. Fong et al. (2021) used a 

subsample of HSLS:09 data (7,237 students) to investigate 11th graders’ math and science 

motivation profiles, and how these profiles influence their STEM major choice in college. 

Latent profile analysis revealed five profiles: Low Math/Low Science (low levels of 

expectancy and value beliefs in math and science), Moderate Math/Moderate Science, 

High Math/High Science, Low Math/High Science, and High Math/Low Science. Female 

students were less likely to be in the High Math/High Science profile than in the Low 

Math/Low Science profile and the Moderate Math/Moderate Science profile. Students in 

all profiles had significantly lower odds of STEM career intentions and STEM major 

choice than those in the High Math/High Science profile.  

Lazarides and colleagues (2020) examined students’ math motivational beliefs 

(task value and ability self-concept) profiles (when they were in Grade 7 and Grade 12) 

and how they predicted math-related career plans and choice of math related majors in 

college. Four latent profiles were identified: high motivational beliefs, medium 

motivational beliefs, low motivational beliefs, and low intrinsic value. Students’ profile 

membership in Grade 10 predicted their math-related career plans in Grade 12: Students 

who were in the low motivational beliefs profile reported a significantly lower level of 

math-related career plans than students in all other profiles. Students in the low intrinsic 

value profile and students in the medium motivational beliefs profile in Grade 10 both 

reported a lower level of math-related career plans in Grade 12 than students in the high 

motivational beliefs profile (Lazarides et al., 2020). In this study, subjective task value 
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was measured as a single construct with four items that reflect intrinsic, attainment and 

utility value components.  

Some research examined how science motivation predict STEM career 

aspirations. Aschbacher et al. (2014) used latent class analysis to classify students in 

eighth and ninth grades based on their perceptions of science ability and values. Students 

with high science ability beliefs and high values in science were more likely to be 

interested in STE-M (Science, Technology, Engineering, and Medical) careers than 

students with other combinations, such as high value but low ability belief, high ability 

belief but low value, and low on both. The findings suggest that ability belief and value 

belief in science are equally important for STEM career aspirations, and one needs to 

have high levels in both to be more motivated to have a STEM career. This is similar to 

the finding of Trautwein et al (2012) that if either expectancies or value is low, the other 

one cannot compensate for it. Gender and type of STE-M field did not significantly 

influence the relationship between science ability beliefs and values and STE-M career 

aspirations. 

Chow et al. (2012) examined 10th graders’ motivation profiles based on the three 

subjective task values in math, physics, and chemistry (compared to English), and 

identified three profiles: 1) high math and physical science; 2) moderately low math and 

physical science; and (3) low math and physical science. Boys were more likely to fall 

into the high math and physical science group and were less likely to fall into the low 

math and physical science group than girls. Students in the low and moderately low math 

and physical science groups had lower aspirations for physical and IT-related science 
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jobs that require a college degree. This study did not examine expectancy belief as a 

profile indicator and did not study the value subcomponents separately.  

Besides math and/or science motivational beliefs, some studies also considered 

English/verbal ability and motivation as influential factors of STEM career aspirations. 

For instance, Dang and Nylund-Gibson (2017) examined latent profiles of tenth graders’ 

math self-efficacy and attitudes (values) after classifying them into different English 

proficiency groups and how these profiles predicted their occupations ten years later. 

Four latent classes were identified: 1) High math attitudes, Low math self-efficacy; 2) 

Low math attitude, High self-efficacy; 3) Low math attitudes, Low math self-efficacy; and 

4) High math attitudes, High math self-efficacy. Students with high math self-efficacy 

and high math attitudes were more likely to have a STEM career. Female students were 

more likely to have lower math self-efficacy and attitudes, which helps explain their 

underrepresentation in STEM fields. In this study, attitudes were measured as a single 

construct with items reflecting task values. Another study with German high school 

students examined math and English expectancy and value together and uncovered four 

distinct profiles: 1) Low Math and High English, 2) Moderate Math and Moderate 

English, 3) High Math and Low English, and 4) High Math and High English. Compared 

with other profiles, girls were overrepresented in the Low Math and High English profile. 

Students in the High Math and Low English profile were most likely to choose a STEM 

major, followed by students in the High Math/High English profile, then the Moderate 

Math/Moderate English profile, and finally the Low Math/High English profile. Profile 

membership was also a better predictor of students’ choice of a STEM major than 

achievement and demographic characteristics (Gaspard et al., 2019). Findings of this 
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study suggest that including English motivation as a profile indicator helps to better 

understand who were more likely to choose a STEM major among those who had high 

math motivation beliefs.  

Wang et al. (2017) studied ninth graders’ probability of selecting STEM 

occupations by first classifying them into different verbal/math/science ability groups. 

Three cognitive ability groups were identified: 1) moderate math and science ability and 

lower verbal ability; 2) high math, science, and verbal ability; and 3) low math, science, 

and verbal ability. Participants of the group with low cognitive ability across all three 

subject domains had a meager chance of STEM employment relative to participants of 

the other two groups. However, it is interesting to note that youths with relatively low 

math and science abilities were more likely to be employed in a STEM career if they had 

a greater math self-concept, which again shows the importance of motivational factors. 

For instance, in the high math, science, and verbal ability group, those with higher 

science task value were more likely to select a STEM career. For youths with high ability 

across verbal, math, and science domains, science task value and lower altruistic values 

were key motivators for selecting a STEM career.  

Thus, many studies using variable-centered approaches have found math and/or 

science expectancy and values to be critical positive predictors of STEM career 

aspirations and cost to be a negative predictor. There are some limitations in the existing 

studies. For instance, although the value variables were related, they did not always occur 

at the same levels. However, many studies have treated the three value subconstructs as a 

composite variable (e.g., Aschbacher et al., 2014; Chow et al., 2012; Dang & Nylund-

Gibson, 2017) or even combined expectancy and value as a single motivational variable 
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(e.g., Gaspard et al., 2019). Extant research also recognized the importance of using a 

person-oriented approach to investigate how math and science motivation relate to STEM 

career aspirations STEM major choice. These studies have shown that different 

expectancy-value profiles can be identified across different samples, and these profiles 

are differentially related to STEM career aspirations. It is common to see that 

expectancies and values are at different levels within student subgroups. In general, 

students with higher expectancy and value beliefs in math and science are more likely to 

aspire for a STEM career. Being low in either expectancy or one of the value components 

(especially intrinsic value) would significantly reduce the chance of aspiring for a STEM 

career. Sometimes their English motivation and gender may play a role. One limitation of 

the studies that used person-centered approaches is that most of them did not examine the 

stability of the motivation profiles; therefore, they could not reveal the developmental 

aspects of motivation profiles.  

2.3 STABILITY OF MATH AND SCIENCE MOTIVATIONS 

Stability is the extent to which motivational traits are temporary or are likely to 

persist into the future (Locke & Latham, 2004). Motivation can be seen as stable 

characteristics of individuals or transient states that fluctuate in response to 

environmental or internal states. Expectancy Value Theory holds a developmental 

perspective of motivational beliefs (see Eccles & Wigfield, 2002 for an overview). Even 

though overall motivational decreases have been found in all school stages, such as math 

academic self-concept (see a review in Scherrer & Preckel, 2019), several studies found 

that general academic self-concept, intrinsic value, and utility values are quite stable 

during the upper high school years (e.g., Gottfried et al., 2001; Guo, Marsh, et al., 2015). 

Confidence and self-efficacy in math/science were also stable across the high school 
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years (Gremillion et al., 2019). Lazarides and Lauermann (2019) found that the stability 

of students’ academic self-concept, intrinsic value and utility value in mathematics were 

relatively high from 9th grade to 10th grade. Studies have also found gender differences in 

stability of motivational beliefs. For instance, girls showed increasingly lower math 

ability self-concept compared to boys from middle school through high school and 

college (Pajares, 2005). Girls’ interest in mathematics decreased while boys’ interest did 

not change through adolescence (Koller et al., 2001). 

It is necessary to specifically study the stability of motivation profiles 

characterized by math and science motivation beliefs to understand how that might 

influence STEM outcomes. According to Kam et al. (2016), the adoption of a 

longitudinal perspective makes it possible to assess two types of stability in LPA 

solutions over time: 1) the consistency of profiles over time for specific participants 

(within-person stability); and 2) the stability of the profile structure within a sample 

(within-sample stability). Only a few studies have examined the motivation profile 

stability of high school students. Lazarides and colleagues (2019) investigated the 

stability of adolescents’ motivation profile in mathematics characterized by mathematics 

self-concept, interest (including items measuring attainment value: “Mathematics is 

personally important to me”), intrinsic value, and utility value. They found that 

motivation profile membership remained relatively stable from grades 9 to 10. 

Meanwhile, they also found adaptive changes in motivation profile from lower to higher 

levels of motivation and maladaptive changes in motivation profile from higher to lower 

motivation levels. Another study found that math motivation profile was relatively stable 

from the beginning of Grade 7 to Grade 12. The high motivation profile showed 
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substantial stability, and students in the low motivation profile were more likely to remain 

in the same profile than those in higher motivational beliefs profiles (Lazarides et al., 

2020). One limitation of the above two studies is that they only relied on cross-tabulation 

to describe the percentages of students who stayed in the same profile and who switched 

to another profile. As a result, only within-sample stability was described. Within-person 

stability – the probability of individuals staying in the same profile or transitioning to a 

different profile was not described.   

More longitudinal studies are needed to examine the within-sample and within-

person stability of motivation profiles characterized by math and science motivational 

beliefs. Moreover, experimental and longitudinal research is needed to study the stability 

of motivation profiles, examine their predictive power over career exploration and career 

decision-making development, and provide a more in-depth analysis of possible between-

subjects and within-person variability over time (Paixão & Gamboa, 2017).  

2.4 RESEARCH QUESTIONS  

Based on the gaps in the literature, the present study aims to answer the following 

questions using High School Longitudinal Dataset HSLS: 09:  

1. What are the different profiles of high school students’ math and science 

academic motivational beliefs at the beginning of 9th grade and the end of 11th 

grade? Are there differences between male and female students in motivation 

profiles at each time point? 

2. Are students’ math and science motivation profiles stable from 9th grade to 11th 

grade? Do the probabilities of staying in the same profile and transitioning 

between motivation profiles differ between male and female students? 
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3. How is 11th grade math and science motivation profile related to 11th grade STEM 

career aspirations (traditional STEM fields and Health Occupations were 

examined separately3), and do male and female students differ in STEM career 

aspirations within and across motivation profiles?  

4. How stable are high school students’ STEM career aspirations between 9th grade 

and 11th grade? Are students’ 11th grade STEM career aspirations consistent with 

their STEM major choices in college? 

 

 
3 In the current study, the number of participants who picked social science as their future occupation is 

very small, but many picked health occupations. Therefore, it makes sense to examine differences in 

choosing traditional STEM or health occupations between male and female students.  
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CHAPTER 3  

METHODS 

3.1 DATA  

The current study used the restricted data of the High School Longitudinal Study 

of 2009 (HSLS:09), a nationally representative dataset sponsored by the National Center 

for Education Statistics (NCES) (Ingels et al., 2011). HSLS:09 is a longitudinal study that 

surveyed students beginning in their ninth grade, with additional follow-ups scheduled as 

students transition to postsecondary education and the workforce. One of the goals of 

HSLS:09 was to help researchers and policy analysts investigate high school students’ 

paths into and out of STEM curricula and occupations. HSLS:09 focuses on STEM 

education, making it ideal for examining the development of STEM career aspirations. 

The HSLS:09 base-year data was collected in the 2009–2010 academic year with 

a sample of 9th graders in public and private high schools in the United States. Students 

completed a mathematics assessment in person and a web-based survey with items on 

sociodemographic background, educational experiences and expectations, and their 

perceptions of the value of mathematics and science as a subject and occupation. Data for 

the first follow-up of HSLS:09 was collected in the spring of 2012 when most 

participants were in the 11th grade, and students completed a mathematics assessment 

and web-based survey again.  

3.2 PARTICIPANTS 

Base-year data were collected during the fall of the ninth grade. Students enrolled 

in the 9th grade (not including foreign exchange students) in the sampled schools during 

the base-yeardata collection were considered eligible. Altogether 21,444 student 
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participants from 944 schools completed the student questionnaire in the base-year data 

collection in 2009, with a weighted response rate4 of 85.7% (Ingels et al., 2015). The 

sample was representative of ninth-grade students in public and private schools in the 

United States in 2009, allowing for generalization to more than 4.2 million students at 

over 23,000 high schools. Data for the first follow-up was collected again from the same 

students in their 11th grade in 2012 (Ingels et al., 2015). Altogether 20,594 students 

completed the student questionnaire in the first follow-up with a weighted response rate 

of 82.0%. Students’ demographic characteristics, such as sex, race/ethnicity, and 

socioeconomic status, were collected in both rounds of data collection (Ingels et al., 

2015). The second follow-up data were collected from March 2016 through January 

2017, about three years after most participants were expected to have graduated from 

high school (Duprey et al., 2018). By the time of the second follow-up, most students 

should have already entered 4-year postsecondary institutions, transitioned from 

community college settings to 4-year programs, or attained postsecondary certificates, 2-

year degrees, and certifications granted by public institutions or for-profit schools. 

Altogether 25,123 participants remained eligible for the second follow-up, and 17,335 

completed the survey, with a weighted response rate of 67.9% (Duprey et al., 2018).  

The sample size used for the present study is smaller than the original sample size 

due to missing data on some of the variables and attrition in the follow-ups (see the 

Missing Data section for details about data cleaning). After data cleaning, 18,430 

participants remained for the latent profile and latent transition analysis, 17,700 remained 

 
4 The weighted response rate is the rate of response calculated with exclusions made only for previously 

identified deceased and study ineligible sample members. Weighted response rate reflects the proportion of 

the eligible target population represented by sample respondents, and therefore serves as an indicator of 

data quality (Ingles et al., 2011). 
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for descriptive statistics that describe career aspiration stability, and 10,820 remained for 

descriptive statistics that show the consistency between career aspirations and major 

selection in college.  

3.3 SAMPLE DESIGN 

HSLS:09 used a stratified, two-stage random sample design. The primary 

sampling units were schools selected in the first stage and students randomly selected 

from the sampled schools in the second stage. Its target population of schools in the base 

year was regular public schools (including public charter schools) and private schools in 

the 50 states and the District of Columbia, where instruction is provided to students in 

both the 9th and 11th grades as of fall 2009. The student target population was all 9th-

grade students who attended either public or private schools in the 50 states and the 

District of Columbia (Ingels et al., 2015). 

In the first stage of sampling for the base-year survey of HSLS:09, stratified 

random sampling based on geographic region (Northeast, South, Midwest, West), school 

type (public, private-Catholic, private-other), and geographic location of the school 

(suburban, city, town, rural) resulted in the identification of 1,889 eligible schools in the 

50 United States and the District of Columbia. In the end, 50.0% of these eligible schools 

chose to participate (the weighted school response rate was 55.5% (Holian & Kelly, 

2020). In the second stage of sampling, 25,206 eligible students were randomly selected 

from school enrollment rosters (about 27 students in the 9th grade per school). Students 

were considered eligible as long as they were not foreign exchange students. All 25,206 

base-year students who were study-eligible were included in the first follow-up sample, 

regardless of their enrollment and response status. Of these sample members, 25,184 

remained eligible for the first follow-up. The student questionnaire included the items in 
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the base-year survey and added new items on various topics, such as grade progression, 

completion of admission tests, and college choice (Ingels et al., 2015). The second 

follow-up included 23,316 of the 23,401 sample members fielded and found eligible for 

the 2013 update (Duprey et al., 2018). 

Unlike simple random sampling, where participants have an equal probability of 

being selected, participants are sometimes oversampled to ensure adequate measures in 

complex sample design. Oversampling creates an unequal probability of selection, which 

must be compensated for to make the results generalizable. Weights adjust for unequal 

probability of being selected and for non-response bias which can affect significance 

testing and lead to Type I errors (Ingles et al., 2004). Using survey weights enables 

making correct inferences about the finite population that is represented by the sample 

who took the survey.  

The use of weights is critical to producing estimates that are representative of the 

HSLS:09 target student population. Although HSLS:09 was a national design to be 

representative of 9th-grade students across the United States in the 2009–2010 school 

year, in response to the National Science Foundation’s request for representative 

estimates within some states, additional sample schools were added to the design to 

support the objectives of the revised study within ten states (Ingels et al., 2011). As a 

result, these states were overrepresented relative to other states. In addition, not all 

persons identified to provide contextual information for the sampled students agreed to 

participate in HSLS:09, creating non-response bias. Therefore, weights were created for 

analyzing HSLS:09 data to adjust for imbalances in the sampling and nonresponse 

(NCES, 2011). For instance, variables created for base year data were weighted by 
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W1STUDENT, and variables created for the first follow-up data were weighted by 

W2STUDENT. If the data were analyzed without utilizing weights, analyses would lead 

to estimated variances and confidence intervals that are too small, increasing the 

likelihood of Type I errors (Ingles et al., 2011).  

Analytic weights were used in the present study combined with software that 

accounts for HSLS:09 complex survey design to produce estimates for the target 

population, with appropriate standard errors. When appropriately weighted, estimates 

from the HSLS:09 are generalizable to the U.S. population of ninth graders attending 

schools in the fall of 2009. To ensure that estimates are nationally representative, 

appropriate HSLS survey weights were employed in the LPA and LTA analysis. In the 

current study, LPA and LTA analysis were conducted using data from the base year and 

first follow-up; therefore, weight W2W1STU was used, which accommodates analysis 

that incorporates both base-year and first follow-up student questionnaires data (Ingles et 

al., 2011).  

3.4 VARIABLES 

Instrument design for HSLS:09 was guided by a conceptual model, and the 

questionnaire items reflect the constructs of EVT (Ingels et al., 2011). The model takes 

the student as the fundamental unit of analysis and seeks to identify factors that influence 

academic goal setting and education-related choices. It traces the many influences on 

students’ values and expectations that factor into their education-related decisions, such 

as math-science course taking, college, and occupations and careers (Ingles et al., 2011). 

The current study focuses on EVT motivational variables, differences between male and 

female students, STEM career aspirations, and STEM major choice.  
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Motivational Variables. All the motivational variables used in the current study 

were created by survey staff through principal component factor analysis (PCA), 

including mathematics/science self-efficacy, mathematics/science identity, 

mathematics/science interest, and mathematics/science utility5. These variables were 

represented with the same items in the base year and first follow-up student survey. Items 

used to create these variables were all on a four-point Likert scale (1 = Strongly agree, 2 

= Agree, 3 = Disagree, 4 = Strongly Disagree). The survey staff calculated composite 

scores for these variables with PCA analysis. The composite scores were the factor scores 

standardized to a mean of 0 and standard deviation of 1 (Ingels et al., 2011). Only 

respondents who answered all items of a variable were assigned a composite score for 

that variable. Higher scores reflect higher motivation. There were items in the student 

survey about perceptions of cost in taking math and science courses. These items were on 

a Likert scale in the base year survey; however, they were on a nominal scale (Yes/No) in 

the first follow-up survey. Responses to a nominal scale could not be transformed to a 

composite variable that is suitable for latent profile analysis and latent transition analysis. 

Besides, the items were not worded in the same way in the first follow-up. Therefore, 

cost was not included in this study. The reliability of each scale was assessed using 

Cronbach’s alpha.  

Mathematics/Science self-efficacy. Two scale scores represented mathematics and 

science self-efficacy, respectively. The items used to construct these scales asked 

 
5 I recalculated the values of the 11th grade science utility variable using principal component analysis 

(PCA) because the variance of the variable seems too small to be correct (σ2 = .005). The three items used 

to create science utility were reverse coded before conducting CFA. Factor scores from PCA were used to 

replace the original values for this variable.  
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students about their beliefs in their abilities to be successful in the current 

mathematics/science course. Four items were used to calculate a composite score for 

math/science self-efficacy. “You are confident that you can do an excellent job on tests in 

this course”. “You are certain that you can understand the most difficult material 

presented in the textbook used in this course”. “You are certain that you can master the 

skills being taught in this course”. “You are confident that you can do an excellent job on 

assignments in this course”. Higher values represent higher math/science self-efficacy. 

The mathematics and science self-efficacy scales had Cronbach’s alphas of .90 and .88, 

respectively (Ingels et al., 2011).  

 Mathematics/Science intrinsic value. Intrinsic value is operationalized as 

mathematics/science interest, representing participants’ interest in their math/science 

course, and higher values represent a greater interest in their math/science courses. 

Examples of items used to create this variable include “You are enjoying this class very 

much.” “You think this class is a waste of your time.” “You think this class is boring.” 

The math/science interest scale showed moderate reliability (α =.78 and α =.73, 

respectively) (Ingels et al., 2011). 

Math/Science identity. Attainment value is operationalized as math/science 

identity, which is students’ belief about being a math/science person and being 

acknowledged by others as competent in mathematics. This scale measures how well the 

domain of math/science is compatible with the student’s identity. Participants were asked 

how well they agreed with statements such as “You see yourself as a math/science 

person” and “Others see you as a math/science person.” Those who tend to agree with 

these statements will have higher values for this variable. Mathematics attainment value 
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had a reliability of .84, and science attainment value had a reliability of .83 (Ingels et al., 

2011).  

Math/Science utility value. Utility value is operationalized as the usefulness of 

math/science courses for everyday life, college admission, and future career. The sample 

items include “What students learn in this course is useful for everyday life,” “What 

students learn in this course will be useful for college,” and “What students learn in this 

course will be useful for a future career.” Higher values represent perceptions of greater 

mathematics/science utility. Participants who tend to agree with these statements will 

have higher values. Scale reliability for math utility and science utility was .78 and .75, 

respectively (Ingels et al., 2011). 

Auxiliary Variables. Two auxiliary variables were examined in the LPA and 

LTA analysis: sex and STEM career aspirations. Sex was examined as a covariate for 

latent profiles, and STEM career aspirations was examined as a distal outcome of latent 

profiles. The information on the sex variable was collected during the base year (2009) 

and the first follow-up (2012). Since there is some missing on the sex variable in the base 

year data but no missing on this variable in the first follow-up, sex in the first follow-up 

was used in the analysis that involves examining differences between male and female 

students. 

STEM career aspirations in the base year and first follow-up were measured by 

students’ responses to the same question, “As things stand now, what is the job or 

occupation that you expect or plan to have at age 30?” Respondents were asked to 

indicate their expected occupations in the survey. All job titles were then coded by survey 

staff after data collection using the Bureau of Labor Statistics STEM classification based 
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on Standard Occupational Classification (SOC) codes6 (Duprey et al., 2018). STEM 

career aspirations were coded as a categorical variable: 0 = “Not a STEM occupation”, 1 

= “Life and Physical Science, Engineering, Mathematics, and Information Technology 

Occupations”, 2 = “Social Science Occupations”, 3 = “Architecture Occupations”, 4 = 

“Health Occupations”, 5= “Split across two STEM or STEM-related Sub-domains”, 6 = 

“Unspecified sub-domain”. Note that categories 1 to 6 were all STEM subcategories. 

When examining the stability of STEM career aspirations and consistency between 

STEM career aspirations and STEM major choice, categories 2, 3, 4, 5, and 6 were 

combined and re-coded as 1= “STEM”. Therefore, the career aspirations variable resulted 

in two categories, non-STEM and STEM. To examine how the 11th grade latent profile is 

related to 11th grade career aspirations in traditional STEM fields and health occupations, 

categories 1 and 4 were retained while categories 2 and 3 were dropped from the analysis 

because they don’t belong to either traditional STEM or health occupations.  

STEM Major Choice. STEM major choice was represented by the first major or 

field of study for the postsecondary degree/certificate the respondent had declared or 

decided upon, as reported during the second follow-up interview in 2016. Data were 

collected from respondents who ever enrolled in a postsecondary degree or certificate 

program after high school. For students who had a double major for their 

degree/certificate, their “second major” does not impact the coding of this variable 

(X4RFDGMJSTEM). Students’ STEM major choice is a dichotomous variable where 1 

indicates a STEM major and 0 indicates a non-STEM major. Majors within physical 

sciences and science technologies, engineering and engineering technologies, computer 

 
6 see http://www.bls.gov/soc/ATTACHMENT_B_STEM.pdf   

http://www.bls.gov/soc/ATTACHMENT_B_STEM.pdf
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and information sciences, mathematics and statistics, biological and biomedical sciences 

were coded as STEM.  

3.5 MISSING DATA 

Missing data occurs when a respondent does not answer a question either 

intentionally or unintentionally. Missing data appears in most of the variables used for the 

current study. There are only six missing values on the sex variable in base-year data, and 

there are no missing values on the sex variable in the first follow-up. Since the two 

rounds of data were collected from the same group of participants, the sex variable from 

the first follow-up – X2SEX7 was used in all the analyses that examine differences based 

on sex. 

Data cleaning was performed before running LPA and LTA analysis. To facilitate 

the analysis and interpretation of the LTA that uses data from both 9th grade and 11th 

grade, only participants who completed the survey at both time points were retained. As a 

result, 18,425 participants were retained. Next, data cleaning was performed on the 

STEM career aspirations variable. Only participants who provided data on this variable at 

both 9th grade and 11th grade were retained to model the stability or change of STEM 

career aspirations across the two time points. The cleaning resulted in 17,700 

participants. Last, to model the consistency between 11th-grade career aspiration and 

major choice in college, only participants who completed the survey at both time points 

were retained. The cleaning resulted in 11,487 participants.  

 
7 According to National Center for Educational Statistics, information on students’ sex was obtained from 

the school and stored in his or her roster data; in addition, the student’s sex was collected in the student 

interview and the parent interview. If there was a discrepancy across sources, the student’s first name was 

reviewed to determine and store the correct value. Therefore, in the current study, students’ assigned sex 

information was used to study differences between male and female students. 
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Most statistical software packages do not analyze records without complete 

information, which reduces the utility of the data. Mplus uses all available data to 

estimate the model parameters with FIML, which maximizes the utility of the data. FIML 

is considered one of the best approaches currently available to handle missing data 

(Acock, 2005; Enders, 2010; Molenberghs et al., 2014). It provides maximum likelihood 

estimation under MCAR (missing completely at random), MAR (missing at random), and 

NMAR (not missing at random) for continuous, categorical, or the combinations of these 

variable types (Little & Rubin, 2019; Muthén & Muthén, 1998-2015). In the current 

study, missing values on some of the motivational variables were estimated in Mplus 

using FIML before the LPA and LTA analysis process. 

3.6 ANALYTIC APPROACH  

General mixture modeling, specifically latent profile and latent transition analysis 

were used for this study. Latent profile models are a type of structural equation modeling, 

factor analysis, or random-effects modeling in which the latent variable is discrete rather 

than continuous (Skrondal & Rabe-Hesketh, 2004). Mixture modeling aims to recover 

hidden groups from observed data by making assumptions about what the hidden groups 

look like. It is possible to discover distributions within such groups and obtain the 

probability that each person belongs to one of the groups (Oberski, 2016). Mixture 

modeling often involves the investigation of what types of individuals belong to each 

class by relating latent classes to covariates, also known as auxiliary variables (Clark & 

Muthén, 2009).  

LPA and LTA are chosen for the current study because they have advantages over 

variable-centered methods. Variable-centered analyses assume that all individuals within 

the sample belong to a single profile with no difference between latent subgroups. With a 
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variable-oriented statistical method, the modeling or description of several variables over 

individuals can be very challenging to translate into properties representing single 

individuals (Bergman & Magnusson, 1997). In the current study, a variable-centered 

approach could not accurately estimate whether a person with different levels of math 

and science expectancy and value beliefs would be interested in a STEM career. 

Advocates of person-oriented approaches argue that the complex and dynamic processes 

of individual development and functioning cannot be well understood by summarizing 

results from studies of individual variables investigated separately from other variables 

(Magnusson, 1998). A person‐oriented approach such as LPA has potential advantages 

when dealing with multiple constructs. For instance, interpreting profiles of multiple 

variables is usually less challenging than interpreting patterns from interactions involving 

four or more variables in variable‐oriented analyses. Besides, LPA identifies common 

combinations of variables that represent individuals in a given sample, so one does not 

have to interpret interactions that rarely occur (Perez, Wormington, et al., 2019). Finally, 

LPA can include demographics as covariates in the model for profile description 

(Magidson & Vermunt, 2002). With person-centered approaches like LPA, LTA, I can 

discern what math and science motivation profiles exist among high school students and 

whether these profiles are stable across high school years. By adding covariates to LPA 

and LTA models, I can find out whether there are differences between male and female 

students in motivation profiles and transition probabilities and how their differences in 

profile membership influence their career aspirations.  LTA is appropriate when the latent 

group membership is hypothesized to change over time (Woo et al., 2018).  



 48 
 

The LPA and LTA analyses were conducted using Mplus 8.6 with the robust 

maximum likelihood estimator. Parameter estimates were obtained by a procedure that 

repeatedly improves estimates and stopped when no further improvements could be 

obtained or until a maximum number of iterations was reached. The starting values were 

the values at which such repetitions were started. Increasing the number of iterations 

(cycles within each estimation) and setting more different starting values for each 

repetition leads to a greater likelihood that the global maximum of the log-likelihood 

function or the best possible solution is reached (Achterhof et al., 2019). I used 100 

random sets of start values and a maximum of 20 iterations to estimate the LPA models 

and LTA models as recommended by Muthén and Muthén (1998-2015). The LTA 

models were estimated using the data from all respondents who completed both 

measurement points, focusing on the subset of participants who completed the survey at 

both time points.  

Due to the stratified random sampling in the current study, there is clustering due 

to both primary(schools) and secondary sampling stages(students), which violates the 

assumption of independence. This violation would produce biased standard error 

estimates and increase the Type I error rate (McCoach & Adelson, 2010). To account for 

the effects of clustering due to the primary and secondary sampling stage, I used TYPE = 

COMPLEX MIXTURE analysis in Mplus, which adjusts the standard errors and fit 

statistics for clustering (Muthén & Muthén, 1998-2015). The CLUSTER option is used 

with VARIABLE to identify the variable containing clustering information, which is the 

variable PSU in the current study. The STRATIFICATION option is used with 

TYPE=COMPLEX to identify the variable containing information about the 
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subpopulations from which independent probability samples are drawn. In the present 

study, the variable is STRAT_ID. 

Latent Profile Analysis (LPA). To examine high school students’ math and 

science motivation profiles at the beginning of 9th grade and end of 11th grade, LPA 

models were estimated separately at each time point with the motivational variables as 

profile indicators (which were observed variables): math/science efficacy, math/science 

attainment value, math/science intrinsic value, and math/science utility value. I ran 

several models, starting from a one-profile model and adding a profile each time. I 

stopped adding more profiles when the BIC ceased to decrease or the size of latent 

profiles became too small (e.g., less than 5% of the whole sample). The means of profile 

indicator variables were freely estimated in all profiles, and the estimates of variances 

across the profiles were constrained to be equal. Each model was compared to the 

previous model(s) to decide the number of latent profiles in the data (Marsh et al., 2009; 

Masyn, 2013). The optimal model was determined based on model fit indices, 

classification quality, theoretical support, ease of interpretability, and meaningfulness of 

the profiles (DiStefano & Kamphaus, 2006; Muthén, 2003).  

The following model fit indices were compared across the models to decide the 

optimal class/profile solution: 1) Akaike Information Criterion (AIC), 2) Bayesian 

Information Criterion (BIC), 3) the sample-size Adjusted BIC (SABIC), 4) entropy and 

5) the adjusted Lo-Mendell-Rubin test (LMR) (Lo et al., 2001). Simulation studies 

indicate that these indices are particularly effective (e.g., Nylund et al., 2007; Peugh & 

Fan, 2013; Tein et al., 2013). AIC is a test of relative model fit and rewards parsimony. 

BIC is another parsimony index like AIC, which is particularly useful for evaluating LPA 
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models. SABIC is BIC with further sample size adjustment. Lower values in these three 

criteria suggest a better-fitting model. The BIC is particularly useful as it prefers 

parsimony in a model and has been shown to outperform other indices with continuous 

indicators (Morgan, 2015; Nylund et al., 2007). However, researchers have also pointed 

out that although lower values indicate better fit, lower is relative. Attention should also 

be paid to the magnitude of difference and the context when evaluating change between 

models. So far, there is no rule on what level of change in fit indices is considered 

“meaningful” (e.g., Masyn, 2013). The entropy provides a useful summary of 

classification accuracy (from 0–1), with higher values indicating more accuracy. 

However, it should not be used to determine the optimal number of profiles (Lubke & 

Muthén, 2007). An entropy level of 0.6 or above means sufficiently good class separation 

(Asparouhov & Muthén, 2014). The LMR test helps determine when adding an additional 

profile is not improving fit or model discrimination. A nonsignificant p-value in the LMR 

test suggests that the more parsimonious model is the representative and better fitting 

model (Ferguson et al., 2020).  

In addition to evaluating fit, researchers need to review classification diagnostics 

(Masyn, 2013). The average latent class posterior probability is the average probability 

of the class model accurately predicting class membership for individuals (Muthén & 

Muthén, 2000). The interpretability and usefulness of the latent profiles and whether the 

solution is reasonable in relation to previous research and theory were also considered. 

Researchers claim that as in any model testing, the retained final model should have 

theoretical support, and the patterns or profiles uncovered should be interpretable (Marsh 

et al., 2004; Marsh et al., 2009; Masyn, 2013). Dependence on theory and prior research 
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is essential for evaluating the reasonableness of an LPA model and ensuring that the final 

model and its underlying profiles represent meaningful and interpretable classifications of 

individuals (Ferguson et al., 2020).  

After the decision of optimal solution at each time point, I examined differences 

between male and female students in latent profile membership and how profile 

membership is related to career aspirations. Including auxiliary variables after the 

original model retention decision is supported by findings from simulation studies 

(Nylund-Gibson & Masyn, 2016). I ran two auxiliary models. The first model examines 

differences between male and female students in latent profiles of 9th grade by adding sex 

as a covariate in the LPA model. The second model examines differences between male 

and female students in latent profiles of 11th grade and how 11th graders’ profile 

membership is related to their career aspirations. Including a covariate and a distal 

outcome variable in the LPA model at the same time ensures that the effect of the latent 

profile variable on the distal outcome variable is controlled for by the covariate 

(Asparouhov & Muthén, 2021). In the second model, sex was specified to influence both 

the latent profile variable and the career aspirations variable.  

The manual BCH method was used to estimate the two auxiliary models. BCH is 

a three-step approach. In the first step, the parameters of the LPA model are estimated 

without the covariate/distal outcome variable (which is already done when choosing the 

optimal solution). The second step of the estimation process is to save the BCH weights 

(computed based on the posterior probabilities of profile membership) for the latent 

profile variable. In the third step, the auxiliary model is estimated with the BCH weights 

(Asparouhov & Muthén, 2021). The BCH weights reflect the measurement error of the 
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latent profile variable (Bakk & Vermunt, 2014; Vermunt, 2010). BCH approach allows 

latent profile variables to be examined independently of the auxiliary variables, so adding 

the auxiliary variables into the model does not change profile membership (Asparouhov 

& Muthén, 2021; Vermunt, 2010).  

Latent Transition Analysis (LTA). Latent transition analysis was performed to 

examine the stability of math and science motivation profiles from 9th grade to 11th grade 

and differences between male and female students in motivation profile stability. The 

following parameters were estimated in LTA: 1) proportion of individuals within each 

status at each time point (prevalence of latent statuses at each time point), 2) transition 

probabilities between the two time points (the probabilities of switching to another status 

given the current status), and 3) the parameter values of each status (means of the 

indicators). Transition probabilities refer to individual students’ probability of changing 

from one profile to another between different time points, which reflect within-person 

stability.  

If the same number and type of profiles are identified across both points of LPA, 

it is reasonable to explore the longitudinal measurement invariance before running LTA 

models (Nylund, 2007; Ryoo et al., 2018). Measurement invariance assumes equality of 

the measurement model parameters, specifically equality of conditional response means 

for LPA variables (Nylund, 2007). Measurement invariance assures that latent statuses 

can be interpreted in the same way across time, so it is easy to understand the transitions 

between latent classes/profiles (Meeus et al., 2011; Nylund, 2007). Measurement 

invariance testing is necessary for the current study because conditional response means 
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of the profile indicators were freely estimated in previous LPA models at the two time 

points, which may cause ambiguity when defining latent statuses in LTA.  

Three levels of measurement invariance can be investigated: full measurement 

invariance, partial measurement invariance, and full measurement noninvariance. Full 

measurement invariance implies that the conditional response means are invariant (i.e., 

the same) across the different time points. The interpretation of the transition 

probabilities is straightforward with full invariance as the meanings of the profiles are the 

same across time. Partial measurement invariance means constraining some of the 

measurement parameters to be equal across time, while leaving the rest unconstrained. 

There are a number of possible invariance specifications. Full measurement 

noninvariance imposes no constraints on the measurement parameters across time 

(Nylund, 2007).  

The invariance test was conducted by comparing the measurement invariance 

model (constraining the conditional response means of the profile indicators to be the 

equal at each time point) and the measurement non-variance (conditional response means 

were freely estimated at each time point) model with the likelihood ratio tests (LRT, 

based on loglikelihood values and scaling correction factors obtained with the MLR 

estimator). If the 2 test statistic of the LRT indicates no significant worsening of fit when 

equality constraints are imposed, then measurement invariance can be assumed. Full 

measurement invariance was first examined by constraining the number of latent statuses 

and item response means invariant across measurement occasions, which assumes there 

are the same number and type of profiles at each time point. Partial measurement 

invariance was then examined by imposing equality constraints for some measurement 
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parameters across time, while allowing others to vary freely (Nylund, 2007). Models with 

different measurement non-invariance specifications were fit and compared. For instance, 

one profile of the base year and first follow-up (9th grade and 11th grade) was freely 

estimated across time, while equality constraints were imposed on other profiles of these 

two time points (these profiles were invariant) if LPA results suggest such a trend.  

Another way to test partial measurement invariance is to focus on differential item 

functioning with respect to time. For instance, one item (or more) within a profile was 

noninvariant across time (e.g., math identity in Profile 1 of base year and first follow-up), 

while the rest of the parameters were held invariant. After testing measurement 

invariance, the most invariant model was retained for LTA without covariate to examine 

the prevalence of latent statuses at each time point and transition probabilities and 

define/name the latent statuses that are consistently identified over time (Ryoo et al., 

2018). In the latent transition model, transition probabilities were freely estimated, which 

means students were allowed to transition from one status to any other status in the 

estimation. The entropy value should be above .60 for the best final LTA model 

(Asparouhov & Muthén, 2021). In the next step, the sex variable was added to the LTA 

model as a covariate to examine if male and female students differ in math and science 

motivation stability. Therefore, the LTA model included a measurement model for the 

latent profile variable at each time point and a structural model that related the latent 

profile variables to each other and the covariate (Muthén & Asparouhov, 2011).  

Descriptive Statistics. Descriptive statistics was used to model career aspiration 

stability between 9th grade and 11th grade, and consistency between 11th-grade career 

aspiration and major choice in college. Percentages were calculated on students who had 
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the same career aspirations in 11th grade as they had in 9th grade, students who switched 

from having a non-STEM career aspiration in 9th grade to having a STEM career 

aspiration in 11th grade, and students who switched from having a STEM career 

aspiration to having a non-STEM career aspiration. Three percentages were calculated: 

percentage of students whose career aspirations in 11th grade matched their first major in 

college, percentage of students who had non-STEM career aspirations in 11th grade but 

chose STEM as a first major, and percentage of students who had STEM career 

aspirations in 11th grade but chose a first major in a non-STEM field. Note that the first 

percentage included those who had STEM career aspirations in 11th grade and chose 

STEM as their first major in college, and those who had non-STEM career aspirations in 

11th grade and chose non-STEM as their first major in college.  
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CHAPTER 4  

RESULTS 

4.1 LATENT PROFILE ANALYSIS  

Descriptive Statistics of the Motivation Variables. Descriptive statistics of the 

latent profile indicators were run before running latent profile analysis. The means, 

standard deviations, maximum and minimum values of the eight motivation variables 

used for the base-year LPA analysis can be found in Table 4.1. Since the variables were 

standardized, all the means were around 0, and the standard deviations were around 1. 

The highest values were science identity (2.15) and math interest (2.08). The lowest 

values were math utility (-3.51) and science utility (-3.1).  

Table 4.1 Descriptive Statistics of Motivation Variables at Base Year  

 

Variable Count Mean Min Max SD 

Math Identity  18,250 .07 -1.73 1.76 1.00 

Math Utility 16,310 -.01 -3.51 1.31 .99 

Math Efficacy 16,290 .07 -2.92 1.62 .99 

 Math Interest 15,990 .06 -2.46 2.08 .99 

Science Identity  18,210 .06 -1.57 2.15 1.00 

Science Utility  15,030 .02 -3.10 1.69 .98 

Science Efficacy 15,000 .06 -2.91 1.83 .99 

Science Interest 14,740 .05 -2.59 2.03 .99 

Note. SD = Standard Deviation. Detail may not sum to totals because of  

rounding.  
SOURCE: U.S. Department of Education, National Center for Education Statistics,  

High School Longitudinal Study of 2009 (HSLS:09) Base Year 
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Correlations between the motivation variables in the base year can be found in 

Table 4.2. The correlation coefficients among the eight motivation variables ranged 

between .14 and .57. Some of the correlation coefficients were above the threshold of 

large correlation (>.50, according to Cohen’s (1988) conventions)8. Large correlations 

were found between math interest and math identity (.54), math interest and math 

efficacy (.54), math efficacy and math identity (.57), science efficacy and science identity 

(.51), science utility and science interest (.51), science efficacy and science interest (.52). 

The correlation coefficients between math and science motivation variables were all 

below .50, ranging from .14 to .39. In other words, science efficacy and values were 

weakly or moderately correlated with math efficacy and values.  

Table 4.2 Correlations of Motivation Variables at Base Year 

 

  

Math 

Identity 

Math 

Utility 

Math 

Efficacy 

Math 

Interest 

Science 

Identity 

Science 

Utility 

Science 

Efficacy 

Science 

Interest 

Math Identity 1 
       

Math Utility .31 1 
      

Math Efficacy .57 .36 1 
     

Math Interest .54 .44 .54 1 
    

Science Identity .28 .13 .19 .13 1 
   

Science Utility .20 .43 .21 .24 .42 1 
  

Science Efficacy .26 .19 .39 .17 .51 .40 1 
 

Science Interest .14 .20 .14 .20 .48 .51 .52 1 

Note. Correlation coefficients above .50 appear in boldface type.  

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School 

Longitudinal Study of 2009 (HSLS:09) Base Year. 

 

Descriptive statistics for the eight motivation variables in the first follow-up can 

be found in Table 4.3. Means of motivation variables in the first follow-up were also 

 
8 According to Cohen (1988), a correlation coefficient of .10 represents a small or weak association; a 

correlation coefficient of .30 represents a moderate correlation; and a correlation coefficient of .50 or larger 

represents a large strong or correlation. 
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around 0, and the standard deviations were around 1. The lowest values were math utility 

(-3.94) and science utility (-3.21). The highest value was math interest (2.17).  

Table 4.3 Descriptive Statistics of Motivational Variables at First  

Follow-up 

 

Variables Count Mean Min Max SD 

Math Identity  18,130 .061 -1.54 1.82 1.02 

Math Utility 18,080 .006 -3.94 1.21 1.00 

Math Efficacy 17,910 .047 -2.50 1.73 1.00 

Math Interest 15,320 .030 -1.89 2.17 1.01 

Science Identity  18,050 .063 -1.74 1.86 1.01 

Science Utility  17,980 .043 -3.21 1.50 1.00 

Science Efficacy 17,720 .045 -2.47 1.64 .99 

Science Interest 13,900 .043 -2.24 1.71 1.00 

Note. SD = Standard Deviation. Detail may not sum to totals because  

of rounding. 

SOURCE: U.S. Department of Education, National Center for Education  

Statistics, High School Longitudinal Study of 2009 (HSLS:09) First  

Follow-up. 

 

Correlations between the motivation variables in the first follow-up can be found 

in Table 4.4. The correlation coefficients of the eight motivation variables range between 

.13 and .62. Similar to the findings in base year data, large correlation coefficients were 

found between math interest and math identity (.62), math interest and math efficacy 

(.58), math efficacy and math identity (.58), science efficacy and science identity (.53), 

science efficacy and science interest (.58). This time, two additional strong correlations 

were found between science utility and science identity (.54) and between science interest 

and science identity (.56). Like base year data, the correlation coefficients between math 

and science motivation variables were below .50 (ranging between .13 and .45), the 

threshold of large correlation. 
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Table 4.4 Correlations of Motivation Variables at First Follow-up  

 

 

Math 

Identity 

Math 

Utility 

Math 

Efficacy 

Math 

Interest 

Science 

Identity 

Science 

Utility 

Science 

Efficacy 

Science 

Interest 

Math Identity 1 
       

Math Utility .43 1 
      

Math Efficacy .58 .38 1 
     

Math Interest .62 .44 .58 1 
    

Science Identity .25 .17 .20 .13 1 
   

Science Utility .22 .45 .23 .23 .54 1 
  

Science Efficacy .18 .18 .31 .13 .53 .40 1 
 

Science Interest .13 .19 .16 .21 .56 .46 .58 1 

Note. Correlation coefficients above .50 appear in boldface type.  

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School 

Longitudinal Study of 2009 (HSLS:09) First Follow-up. 

 

Latent Profile Analysis for the Base Year Data. Several latent profile solutions 

were estimated for the base year data with the eight motivation variables as profile 

indicators. The aim was to identify a parsimonious model with the best fit and the 

smallest number of meaningful groups. To do that, I tested models by increasing the 

number of profiles by one each time, starting with the one-profile model. I did not test 

beyond seven profiles as both the 6-profile and 7-profile solutions resulted in one cell 

containing less than 5% of the subjects. The fit and interpretability of each model were 

then compared with the more parsimonious model. Model fit indices can be found in 

Table 4.5. The 4-profile solution was considered the best. The decision was based on 

better model fit indices, classification probability, average latent class probabilities, 

interpretability, and theoretical support (Ferguson et al., 2020). First, the LMR test was 

significant for the 4-profile solution, which means it is better than the 3-profile solution. 

Although the 2-profile solution is better than the 1-profile solution, the BIC values 

continue to drop sharply with more profiles added. Researchers argued that the BIC may 

be the most reliable fit statistic (Nylund et al., 2007; Vermunt, 2002). Nylund-Gibson and 
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Choi (2018) introduced using an elbow plot of fit statistics to examine model fit9. The 

plot of BIC values revealed relatively large decreases until Model 4, as can be seen from 

the obvious elbow in Figure 4.1. The average latent class probabilities were above .80 in 

the 4-profile solution but below .80 from the 5-profile model. Besides, the profiles in the 

4-profile solution make sense theoretically, as students’ math and science motivation can 

be different (which was not reflected in the 3-profile solution).  

Table 4.5 Fit Values for Different Profile Solutions of Base Year Data 

 

Model 1-profile 2-profile 3-profile 4-profile 5-profile 6-profile 7-profile 

AIC 364,690 348,420 343,047 338,047 336,109 334,171 332,551 

BIC 364,815 348,615 343,313 338,383 336,516 334,648 333,099 

SABIC 364,764 348,536 343,205 338,247 336,151 334,454 332,876 

Entropy NA .66 .74 .67 .67 .68 .71 

LMR p NA <.001 .079 <.001 .41 .49 .55 

ALCP 1 .90 .87 .82 .79 .78 .79 

Note. ALCP = average latent class probabilities; LMR p = p-value of the Lo-Mendell-Rubin test.  

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School 

Longitudinal Study of 2009 (HSLS:09) Base Year. 

 

 

 

 

 

 

 

 

 

 
9 AIC, BIC, and SAIC values of each solution were very close to BIC and overlapped in the plot, so only 

BIC values were plotted. 
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Figure 4.1 BIC Values of the Different Solutions for Base-year 

SOURCE: U.S. Department of Education, National Center for Education 

Statistics, High School Longitudinal Study of 2009 (HSLS:09) Base Year. 

 

Figure 4.2 illustrates the profile allocation of the 4-profile model of the base year 

data. Table 4.6 summarizes profile sizes (including final class counts and proportions for 

the latent profiles based on estimated posterior probabilities), average profile membership 

probabilities for most likely latent profile membership, and conditional response means 

(in the form of Z scores) of the motivational variables in each profile. Based on the means 

of each motivation factor, the four profiles in the base year were named: 1) Low All 

(13.1%), 2) Higher Science (32.6%), 3) Higher Math (29.4%), and 4) High All (24.9%). 

In the Low All profile, students’ math and science motivational beliefs were all very low, 

and some motivational beliefs were one standard deviation below the mean. In the Higher 

Science profile, students’ math motivational beliefs were below average, while their 
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science motivational beliefs were above average. Their science motivational beliefs were 

remarkably higher than math motivational beliefs. In the Higher Math profile, students’ 

math motivational beliefs were above average, while their science motivational beliefs 

were below average. Their math motivational beliefs were remarkably higher than their 

science motivational beliefs. In the High All profile, students’ math and science 

motivational beliefs were all high.  

 

Figure 4.2 Profile Allocation of the 4-profile Solution (Base Year) 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School 

Longitudinal Study of 2009 (HSLS:09) Base Year. 
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Table 4.6 Profile Size, Average Probabilities of Most Likely Latent Profiles and Motivation Profile Conditional Response Means  

(the 4-profile solution for the base year) 

 
Profile N % AP

MP 

Math 

Identity 

Math 

Utility 

Math 

Efficacy 

Math 

Interest 

Science 

Identity 

Science 

Utility 

Science 

Efficacy 

Science 

Interest 

Low All 2,420 13.1% .84 -1.13 -.94 -1.18 -1.02 -.80 -.91 -.98 -.81 

Higher Science 4,590 24.9% .79 -.42 -.21 -.35 -.40 .26 .19 .19 .34 

Higher Math 6,000 32.6% .78 .38 .05 .29 .38 -.47 -.40 -.43 -.60 

High All 5,420 29.4% .87 .90 .60 .85 .84 .81 .75 .80 .77 

Note. APMP = Average profile membership probabilities. Detail may not sum to totals because of rounding. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 2009  

(HSLS:09) Base Year.
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Latent Profile Analysis for the First Follow-up Data. Similarly, seven latent 

profile models were examined for the first follow-up data. The 4-profile solution was 

identified as the best fitting model based on model fit indices (see Table 4.7), theoretical 

support, interpretability, and classification quality. The AIC, BIC, and SAAIC continued 

to drop as more profiles were added, but the decrease was less sharp from the 5-profile 

model (See Figure 4.3). The LRT was significant for the 4-profile model but was 

insignificant for the 5-profile model. Besides, the entropy was better than the 3-profile 

solution. The above indices suggest that the 4-profile model was the best.  

Table 4.7 Fit Values for Different Profile Solutions of First Follow-up Data 

 
Model  1-profile 2-profile 3-profile 4-profile 5-profile 6-profile 7-profile 

AIC 390,436 366,672 360,474 353,225 349,941 347,624 345,217 

BIC 390,561 366,868 360,740 353,561 350,348 348,101 345,764 

SABIC 390,510 366,788 360,632 353,425 350,183 347,907 345,542 

Entropy NA .71 .69 .71 .76 .77 .76 

LMR p NA <.001 .003 <.001 .40 .31 .24 

ALCP  1 .91 .85 .84 .85 .84 .83 

Note. ALCP = Average Latent Class Probabilities. LMR p = p-value of the Lo-Mendell-Rubin 

test. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School 

Longitudinal Study of 2009 (HSLS:09) First Follow-up. 
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Figure 4.3 BIC Values of the Different Solutions for the First Follow-up  

SOURCE: U.S. Department of Education, National Center for Education  

Statistics, High School Longitudinal Study of 2009 (HSLS:09) 1st Follow-up 

 

Figure 4.4 illustrates the profile allocation of the 4-profile model for first the 

follow-up. Table 4.8 summarizes profile sizes (including final class counts and 

proportions for the latent profiles based on estimated posterior probabilities), average 

profile membership probabilities for most likely latent profile membership, and means of 

the motivational variables in each profile. Based on the distribution of the profile 

indicator means, the four profiles were named 1) Low All (20.1%); 2) Higher Science 

(32.3%); 3) Higher Math (29.1%); 4) High All (18.5%). The profile names were the same 

with those in the base year, because they share similar characteristics. In the Low All 
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profile, students’ math and science motivational beliefs were all very low. In the Higher 

Science profile, students’ math motivational beliefs were below average, while their 

science motivational beliefs were above average. In the Higher Math profile, students’ 

math motivational beliefs were above average, while their science motivational beliefs 

were below average. In the High All profile, students’ math and science motivational 

beliefs were all high.  

 

Figure 4.4 Profile Allocation for the 4-profile Solution (first follow-up) 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School 

Longitudinal Study of 2009 (HSLS:09) First Follow-up. 

  



 

  
 

6
7

 

Table 4.8 Profile Size, Average Probabilities of Most Likely Latent Profiles, and Motivation Profile  

Conditional Response Means (the 4-profile solution for the first follow-up) 

 

Profiles 
N % APMP 

Math 

Identity 

Math 

Utility 

Math 

Efficacy 

Math 

Interest 

Science 

Identity 

Science 

Utility 

Science 

Efficacy 

Science 

Interest 

Low All 3,710 20.1% .85 -.89 -.76 -.93 -.87 -.80 -.81 -.86 -.87 

Higher Science 3,400 32.3% .82 -.47 -.19 -.29 -.53 .41 .25 .38 .44 

Higher Math 5,370 29.1% .82 .51 .21 .39 .52 -.49 -.31 -.37 -.51 

High All 5,950 18.5% .88 .97 .79 .90 .93 .94 .92 .85 .83 

Note. APMP = Average profile membership probabilities. Detail may not sum to totals because of rounding. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 2009  

(HSLS:09) First Follow-up. 
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Differences Between Male and Female Students in Latent Profiles. Sex was 

added to the 4-profile model at each time point as a covariate, using the BCH approach. 

Table 4.9 presents the logistic regression odds ratios, 95% confidence intervals and p-value 

of the odds ratios for the LPA analysis of each time point, with the Low All profile as the 

reference group. As such, three covariate comparisons were made: (1) the likelihood of being 

in the Higher Science profile compared to the Low All profile, (2) the likelihood of being in 

the Higher Math profile compared to the Low All profile, and (3) the likelihood of being in 

the Higher Math & Higher Science compared to the Low All profile.  

Table 4.9 Logistic Regression Results for the  

Sex Covariate 

 

Model OR 95% CI p 

LPA1    
Higher Science .73* .59, .89 <.001 

Higher Math 1.02 .84, 1.25 .84 

High All .93 .76, 1.15 .49 

LPA2    
Higher Science .84* .72, .98 .017 

Higher Math .78* .66, .92 .001 

High All .56* .47, .67 <.001 

Note. OR = Odds Ratio. * p < .05. The parameters  

were estimated with Low All as the reference group  

at each time point.  

SOURCE: U.S. Department of Education, National  

Center for Education Statistics, High School  

Longitudinal Study of 2009 (HSLS:09) Base Year  

and First Follow-up. 

 

For the base year, the odds of being in the Higher Science profile relative to the 

Low All profile is 27% lower (OR = .73, 95% CI [.11, 41], p < .001) for female students 

than male students. Or female students have .73 times the odds of male students being in 

the Higher Science profile. The odds of being in the Higher Math and High All profile 

relative to Low All profile were not statistically different between male and female 

students. In the first follow-up, the odds of being in all the other three profiles relative to 
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the Low All profile were lower for female students than male students. The odds of being 

in the Higher Science profile was 16% lower (OR = .84, 95% CI [.72, .98], p = .017), the 

odds of being in the Higher Math profile was 22% lower (OR = .78, 95% CI [.66, .92], p 

= .001), and the odds of being in the High All profile was 44% lower (OR = .56, CI [.47, 

.67], p < .001) for female students than male students. Female students had consistently 

lower odds of being in the Higher Science profile across the two time points. The 

difference is that female students were less likely to be in the Higher Math profile and the 

High All profile than male students in the first follow-up, while there was no significant 

difference between them in the base year.  

4.2 LATENT TRANSITION ANALYSIS  

Since the 4-profile solution was considered optimal in both the base year and the 

first follow-up, and the characteristics of the four profiles appeared consistent across 

time, the four-status model was chosen to do the latent transition analysis. Before running 

LTA, cross-sectional results can first be used to describe the changes. A cross-tabulation 

of profile membership at each time point provides a preliminary description of the type of 

movement in the sample (See Table 4.10). There are a few things to note when comparing 

the profile sizes presented in Table 4.10. First, there was a large increase in the Low All 

profile, from 13.1% to 20.1%. Second, there was a noticeable decrease in the High All 

profile, from 24.9% to 18.4%. The changes in profile sizes of the Higher Science and 

Higher Math profile were small. The changes in profile sizes suggest a trend of decrease 

in math and science motivation as students moved up the grades in high school. However, 

this assumption was based only on the cross-sectional analysis when the latent profile means 

were freely estimated. To describe the type of movement among the four motivation profiles 

over time with latent transition analysis, it is necessary to first determine whether the latent 
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profiles across time are the same or at least similar. Formal measurement invariance testing 

was used to verify if the selected measurement model was invariant across time.  

Table 4.10 Percentage of Students in  

Each Motivation Profile in Grade 9  

and Grade 11  

 

Profiles Grade 9 Grade 11 

Low All 13.1% 20.1% 

Higher Science 32.6% 32.3% 

Higher Math 29.4% 29.1% 

High All 24.9% 18.4% 

SOURCE: U.S. Department of Education,  

National Center for Education Statistics,  

High School Longitudinal Study of 2009  

(HSLS:09) Base Year and First Follow-up. 

 

Measurement Invariance Testing. The full measurement invariance test results 

indicated a significant difference in fit between the measurement non-invariance and the 

measurement-invariance model. The model with complete measurement non-invariance 

had a better model fit than the full measurement invariance model. A series of partial 

measurement invariance models were fit based on the results of cross-sectional LPAs and 

compared to the full invariance model. The following partial invariance models were 

considered: a model that allowed all the item parameters to be noninvariant for the Low 

All profile, while the other three profiles were held invariant (because the biggest profile 

indicator mean differences occur in this profile, with the mean differences in 6 out of 8 

indicators greater than .30); a model that allowed all the item parameters to be 

noninvariant for the Low All and Higher Math profile, while the other two profiles were 

held invariant; a model that allowed math motivation variables to be noninvariant, while 

science motivation variables were held invariant; a model that allowed identity, efficacy, 

and interest to be non-invariant, while utility value was held invariant; and several other 
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models that allowed different combinations of items within each profile to vary across 

time. Although the results indicated statistical improvement in fit for all the partial 

invariance models compared to the full invariance model, no model stood out as a better 

fitting model. In other words, there was not one partial measurement invariance model 

that appeared the most reasonable among those considered. Therefore, full measurement 

noninvariance was assumed (not constraining latent status indicator means to be the 

same) because of not finding a partial measurement invariance model that made statistical 

and practical sense. Even though measurement invariance cannot be assumed, it still 

makes sense to run the latent transition analysis because the plots of the profiles at the 

two time points were remarkably similar across time, and the differences in conditional 

response means across time were small. It is still easy to interpret the transitions between 

the two time points, as the meanings of the latent profiles were quite similar.  

Latent Transition Analysis without Covariates. The LTA model without 

covariates had an entropy of 0.74, which is acceptable. Final profile counts and 

proportions for each latent profile variable were based on estimated posterior 

probabilities. Based on the LTA results, the latent statuses were named: Status 1 = Low 

All; Status 2 = Higher Science, Status 3 = Higher Math, Status 4 = High All. The means 

of the status indicators can be found in Table 4.11. There were some differences between 

status indicator means at the two time points, but the differences were mostly small. 

Some small shifts in profile size were found. For instance, the size of the Low All profile 

in 9th grade was 13.1% in LPA, but it changed to 13.2% in LTA. The size of the High All 

profile in 9th grade was 24.9% in LPA, but it changed to 23.8% in LTA.  
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Table 4.11 Latent Status Indicator Means (base year/first follow-up) 

 

Status Indicator Low All Higher Science Higher Math High All 

Math Identity  -1.12/-.90 -.56/-.52 .39/.52 .90/1.01 

Math Utility  -.95/-.74 -.13/-.16 .08/.19 .60/.77 

Math Efficacy  -1.13/-.92 -.40/-.27 .26/.35 .81/.90 

Math Interest -.1.01/-.86 -.48/-.49 .31/.45 .78/.91 

Science Identity  -.90/-.78 .21/.45 -.46/-.48 .83/.93 

Science Utility  -.1.08/-.78 .19/.29 -.33/-.32 .71/.89 

Science Efficacy  -1.07/.-82 .16/.40 -.35/-.35 .79/.83 

Science Interest -.94/-.84 .31/.47 -.53/-.48 .77/.79 

SOURCE: U.S. Department of Education, National Center for Education Statistics,  

High School Longitudinal Study of 2009 (HSLS:09) Base Year and First Follow-up.    

 

The transition matrix (see Table 4.12) describes the probability of staying in the 

same latent status and transitioning to a different status in 11th grade conditional on 9th-

grade latent status. The transition matrix shows that most students were more likely to 

stay in the same status across time than transition to another status. The probability of 

staying in the same status ranged between 56.4% and 66.8%. The High All status showed 

a lower degree of stability (56.4%) than the other three statuses (65.8%, 62.6%, and 

66.8%, respectively). The most likely transitions were from Higher Science to Low All 

(23.1%), from High All to Higher Science (21.7%) and Higher Math (20.5%), and from 

Low All to Higher Science (19.1%). The probability of transitioning from Low All to the 

other three statuses (from lower to higher motivation) was 34.2% in total; and from High 

All to the other three statuses (from higher to lower motivation) was 43.6% in total. The 

probability of transitioning from Higher Science and Higher Math to High All (from 

lower to higher motivation) was 15.4% in total. The probability of transitioning from 

these two statuses to Low All was 37.6% in total (from higher to lower motivation). 
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Table 4.12 Latent Status Prevalence and Estimated Latent Transition Probabilities 

 
Latent Grade 

9 

Transition Matrix 
 

Grade 

11 

status 
 

Low 

All 

Higher 

Science 

Higher 

Math 

High 

All 

 

Low All .132 .658 .191 .130 .021 .209 

Higher Science .316 .231 .626 .081 .062 .305 

Higher Math .313 .145 .094 .668 .092 .301 

High All .238 .013 .217 .205 .564 .186 

Note. The stability of each latent status appears in boldface type.  
SOURCE: U.S. Department of Education, National Center for Education Statistics, High  

School Longitudinal Study of 2009 (HSLS:09) Base Year and First Follow-up. 

 

Transition Probability by Sex. An LTA model with a covariate of sex was 

estimated to examine differences between male and female students on transition 

probabilities. In this model, profile membership at first follow-up (T2) was predicted by 

profile membership at base year (T1), and by sex while controlling for previous latent 

status. Table 4.13 and Table 4.14 show the estimated latent transition probabilities for 

male and female students separately. The results indicate that in general, both male and 

female students’ motivation statuses were still relatively stable. Male students’ 

probabilities of staying in the same status ranged between 59.7% and 68.1%, and female 

students’ probabilities of staying in the same status ranged between 51% and 69%.  

Table 4.13 Estimated Latent Transition Probabilities for Male  

Students (N=9,240) 

 

Status Low All Higher Science Higher Math High All 

Low All .646 .188 .140 .025 

Higher Science .223 .616 .088 .074 

Higher Math .132 .085 .681 .103 

High All .012 .191 .200 .597 

SOURCE: U.S. Department of Education, National Center for Education  

Statistics, High School Longitudinal Study of 2009 (HSLS:09) Base Year  

and First Follow-up. 
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Table 4.14 Estimated Latent Transition Probabilities for Female  

Students (N=9,190) 

 

Status Low All Higher Science Higher Math High All 

Low All .690 .182 .112 .016 

Higher Science .251 .627 .074 .048 

Higher Math .169 .098 .655 .077 

High All .017 .253 .219 .510 

SOURCE: U.S. Department of Education, National Center for Education  

Statistics, High School Longitudinal Study of 2009 (HSLS:09) Base Year  

and First Follow-up. 

 

A series of Wald tests were then used to compare if differences between male and 

female students in transition probabilities were statistically significant. A Bonferroni 

correction of .0031 was used since 16 comparisons were made. Wald tests results 

revealed four transition paths with significant differences (see Table 4.15). Male students 

were more likely to stay in the High All status than female students (p < .001). Male 

students were more likely to transition from the Higher Science status to the High All 

status (p < .001), and from the Higher Math status to the High All status (p = .003). 

Female students were more likely to transition from the High All status to the Higher 

Science status (p < .001). 
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Table 4.15 Transition Probabilities by Sex  

 

 χ2 df p 

Low All -> Low All 6.69 1 .010 

Low All -> Higher Science .275 1 .60 

Low All -> Higher Math 6.49 1 .010 

Low All -> High All 7.49 1 .006 

Higher Science -> Low All 3.62 1 .057 

Higher Science -> Higher Science .38 1 .537 

Higher Science -> Higher Math 3.76 1 .052 

Higher Science -> High All 16.99* 1 <.001 

Higher Math -> Low All 7.56 1 .006 

Higher Math -> Higher Science 3.81 1 .05 

Higher Math -> Higher Math 1.79 1 181 

Higher Math -> High All 8.91* 1 .003 

High All -> Low All 7.56 1 .006 

High All -> Higher Science 12.64* 1 <.001 

High All -> Higher Math 1.53 1 .216 

High All -> High All 11.71* 1 <.001 

Note. χ2 is the Chi-square statistic value. * denotes significance at Bonferroni-adjusted p-value of 

.0031.  

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School 

Longitudinal Study of 2009 (HSLS:09) Base Year and First Follow-up. 

 

4.3 ASSOCIATION BETWEEN LATENT PROFILE MEMBERSHIP AND 

STEM CAREER ASPIRATIONS  

To examine the association between motivation profile membership and career 

aspirations and the differences between male and female students in career aspirations, an 

auxiliary LPA model was run with career aspirations as the outcome variable, latent 

profile as the predictor variable, and sex as the covariate. To more closely examine the 

relationship between motivation profile membership and career aspirations in traditional 

STEM fields and health occupations, the career aspiration variable was dummy coded as 

traditional STEM and health occupations with non-STEM as the reference group (See 

Table 4.16 for the percentage of each category). Traditional STEM and health 

occupations were then separately examined as the outcome variables.  
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Table 4.16 Percentage of Different Career Aspirations in the First Follow-up  

 

Non-STEM 

Traditional 

STEM 

Health 

Occupations Other10 Total 

11,590(62.9%) 1,710(9.3%) 4,230(23.0%) 890(4.8%) 18,430(100.0%) 
     

Note. Data for this variable is from the sample of students for LPA2 analysis. The category 

“other” includes those coded as “Split across 2 sub-domains”, “Unspecified sub-domain”, 

“Uncodeable” and “Missing”. Detail may not sum to totals because of rounding. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School 

Longitudinal Study of 2009 (HSLS:09) First Follow-up. 

 

BCH approach was used to examine the relationships. Pair-wise comparison tests 

were used to compare differences in career aspirations across profiles (See Table 4.17). 

Given there were six pairwise comparisons, a Bonferroni-corrected alpha of .008 was 

used. The results indicated significant differences between the Low All profile and each 

of the other three profiles in aspirations for traditional STEM careers. Students in this 

profile were less likely to aspire to a traditional STEM career at the age of 30 than 

students in all the other three profiles (p<.001). Students in the High All profile were 

more likely to aspire for a STEM career than students in the other three profiles (p<.001). 

There were no significant differences between students in the Higher Science profile and 

the Higher Math profile in traditional STEM career aspirations (p=.034).  

Significant differences existed between students in any two profiles regarding 

aspirations for health occupations. Students in the Low All profile were less likely to 

aspire for health occupations than students in any other profiles (p<.001). Students in the 

High All profile were more likely to aspire for health occupations than those in any other 

profiles (p<.001). Students in the Higher Science profile were more likely to aspire for 

health occupations than students in the Higher Math profile (p<.001).  

 
10 This category was coded as missing in the LPA analysis with career aspirations as the outcome variable.  
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Table 4.17 Differences in Proportion of Students Aspiring  

 for Traditional STEM and Health Occupations  

 between Profiles  

 

 Difference S.E. P-Value 

Traditional STEM     

Low All vs Higher Science -.06* .011 <.001 

Low All vs Higher Math -.09* .012 <.001 

Low All vs High All -.30* .013 <.001 

Higher Science vs Higher Math -.03 .013 .034 

Higher Science vs High All -.23* .015 <.001 

Higher Math vs High All -.21* .016 <.001 

Health Occupations    
Low All vs Higher Science -.14* .013 <.001 

Low All vs Higher Math -.04* .011 <.001 

Low All vs High All -.20* .013 <.001 

Higher Science vs Higher Math .10* .013 <.001 

Higher Science vs High All -.06* .015 <.001 

Higher Math vs High All -.16* .014 <.001 

Note. * denotes significance at Bonferroni-adjusted p-value of .008.  

SOURCE: U.S. Department of Education, National Center for  

Education Statistics, High School Longitudinal Study of 2009 

(HSLS:09) First Follow-up. 

 

The logistic regression results (see Table 4.18) indicate no statistically significant 

differences between male and female students in their odds of being interested in 

traditional STEM careers among students in the Low All profile and the Higher Science 

profile relative to non-STEM careers. Within the Higher Math profile, the odds of female 

students to aspire for traditional STEM careers were 7% lower than male students (OR = 

.93, 95% CI [.91, .95], p<.001). Or female students have .93 times the odds of male 

students aspiring for a traditional STEM career. Within the High All profile, the odds of 

female students to aspire for traditional STEM careers were 15% lower (OR = .85, 95% 

CI [.82, .87], p<.001) than male students. Female students in each profile had higher odds 

to aspire for health occupations than male students relative to non-STEM careers. Within 
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the Low All profile, the odds of female students to aspire for health occupations were 

14% higher (OR = 1.14, 95% CI [1.11, 1.12], p <.001) than male students. Within the 

Higher Science profile, the odds of female students to aspire for health occupations were 

27% higher (OR = 1.27, 95% CI [1.23, 1.31], p <.001) than male students. Within the 

Higher Math profile, the odds of female students to aspire for health occupations were 

22% higher (OR = 1.22, 95% CI [1.19, 1.26], p <.001) than male students. Within the 

High All profile, the odds of female students to aspire for health occupations were 37% 

higher (OR = 1.37, 95% CI [1.32, 1.42], p <.001) than male students.  

Table 4.18 Differences between Male and Female  

Students in Aspirations for Traditional STEM and  

Health Occupations 

 

 OR 95% CI p 

Traditional STEM    

Low All 1.01 1.00, 1.03 .162 

Higher Science 1.01 .99, 1.04 .207 

Higher Math .93* .91, .95 <.001 

High All .85* .82, .87 <.001 

Health Occupations    
Low All 1.14* 1.11, 1.12 <.001 

Higher Science 1.27* 1.23, 1.31 <.001 

Higher Math 1.22* 1.19, 1.26 <.001 

High All 1.37* 1.32, 1.42 <.001 

Note. * p < .05. The parameters were estimated with  

“non-STEM” as the reference group.  

SOURCE: U.S. Department of Education, National Center  

for Education Statistics, High School Longitudinal Study of  

2009 (HSLS:09) First Follow-up. 

 

4.4 CAREER ASPIRATION STABILITY, CAREER ASPIRATION AND 

COLLEGE MAJOR CHOICE  

The distribution of career aspirations at age 30 was similar in both base year 

(2009) and first follow-up (2012), but there were changes within career categories. Table 

4.19 shows the frequency of students’ career aspirations in STEM and non-STEM fields 
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at each time point. A few more students (about 2.7%) aspired for a STEM career in the 

first follow-up than the base year.  

Table 4.19 Frequency of Different Career Aspirations among  

High School Students in Base Year and First Follow-up 

 

 Non-STEM STEM Total 

Base Year 11,780(66.5%) 5,920(33.5%) 17,700(100%) 

First Follow-up 11,290(63.8%) 6,410(36.2%) 17,700(100%) 

SOURCE: U.S. Department of Education, National Center for Education  

Statistics, High School Longitudinal Study of 2009 (HSLS:09) Base Year  

and First Follow-up. 

 

Table 4.20 shows that over 70% of the students held the same career aspirations 

across the two time points, but 13.3% of students who reported intentions for a STEM 

(including traditional STEM and health occupations) career at age 30 in 2009 reported 

intentions for an occupation in a non-STEM field in 11th grade. In the meantime, 16% of 

students who reported intentions for a non-STEM career in 9th grade reported intentions 

for a STEM career in 2012. 

Table 4.20 Career Aspiration Stability from Base Year to First Follow-up 

Same Non-STEM to STEM STEM to Non-STEM Total 

12,510(70.7%) 2,840(16%) 2,350(13.3%) 17,700(100%) 

SOURCE: U.S. Department of Education, National Center for Education Statistics,  

High School Longitudinal Study of 2009 (HSLS:09) Base Year and First Follow-up. 

 

Although it is only logical to choose a STEM major in college if a student wants to 

have a career in a STEM field, it is not always the case due to various reasons. In the 

current study, students in 11th grade who had STEM career aspirations might not choose a 

STEM major in college. Of the 10,820 students who reported both career aspirations in 

11th grade and major selections in college, 62.6% of them chose a college major that was 

consistent with their career aspirations in 11th grade. About 9.5% of them selected a 

STEM major in college even though they did not aspire to have a STEM career when 
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they were in 11th grade, and 27.9% of them who aspired to a STEM career in 11th grade 

ended up selecting a non-STEM major in college (see Table 4.21).  

Table 4.21 Consistency of Career Aspirations in High School  

and College Major Selection 

 

Same Non-STEM to STEM STEM to Non-STEM Total 

6,770(62.6%) 1,030(9.5%) 3,020(27.9%) 10,820(100%) 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School 

Longitudinal Study of 2009 (HSLS:09) First Follow-up and Second Follow-up. 
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CHAPTER 5  

DISCUSSION 

Using Expectancy-Value Theory, this longitudinal study examined high school 

students’ math and science motivation profiles (with math and science identity, utility, 

efficacy, and interest as profile indicators) at 9th and 11th grade, the stability of their 

motivation profiles, and how 11th-grade motivation profile is related to STEM career 

aspirations. Differences between male and female students in motivation profiles, profile 

transition probabilities and STEM career aspirations were examined along the way. The 

study also examined the stability of career aspirations in high school, and the consistency 

of 11th-grade career aspirations and first major in college. Specifically, latent profile 

analysis was used to classify the sampled high school students into different groups 

according to their shared pattern of math and science motivational beliefs. Latent 

transition analysis was used to examine the stability and transition probability of 

students’ motivation profiles from the beginning of 9th grade to the end of 11th grade. An 

auxiliary LPA model was used to examine how 11th grade math and science motivation 

profile membership relates to STEM career aspirations. Results from the analyses yielded 

several main findings. First, similar motivation profiles were identified at the two time 

points. In some of the profiles, students’ math motivation and science motivation were on 

remarkably different levels. Differences between male and female students were more 

evident in 11th grade than in 9th grade. Second, most students’ motivation profile was 

stable between 9th and 11th grade, but a considerable number of them (33.2% - 43.6%) 
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switched to a different profile. There were both adaptive and maladaptive changes. Male 

students were more likely to move to profiles with higher math and/or science 

motivation, but female students were more likely to move to profiles with lower math 

and/or science motivation. Third, in general, students in latent profiles characterized by 

higher math and science motivation were more likely to be interested in traditional STEM 

and health occupations. Students in the Higher Science profile were more likely to be 

interested in health occupations than those in the Higher Math profile, but they did not 

differ in aspirations for traditional STEM careers. Female students in each motivation 

profile were more likely to be interested in health occupations than male students, while 

female students in the Higher Math profile and the High All profile were less likely to be 

interested in traditional STEM careers than male students in these two profiles. Fourth, 

students’ career aspirations remained relatively stable from 9th grade to 11th grade, and 

most students who had STEM career aspirations in 11th grade picked a STEM major in 

college. The rates of switching from STEM to non-STEM career aspirations and 

otherwise were similar. However, the rate of students having a STEM career aspiration in 

high school but choosing a non-STEM major in college is much higher than that of 

students having a non-STEM career aspiration in high school but choosing a STEM 

major in college. This chapter discusses these findings one by one and provides 

implications of the results, limitations, and suggestions for future research. 

5.1 STUDENTS’ MOTIVATION PROFILES IN 9TH AND 11TH GRADE 

One of the research aims of the current study was to identify motivation profiles 

in high school students when they were in 9th grade and 11th grade, using constructs from 

Expectancy Value Theory. The study found four motivation profiles at each time point in 
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the sampled students who were representative of all high school students in the U.S. in 

2009 and 2012. The four-profile solutions were very much alike.  

One interesting finding is that while two of the four profiles at each time point 

were characterized by similar levels of math and science motivation (the Low All profile 

and the High All profile), the other two profiles were characterized by distinctly different 

levels of math and science motivation (the Higher Science profile and the Higher Math 

profile). The combinations of different math and science motivation levels within a 

profile were directly evidenced by the low correlation between math and science 

motivational beliefs. The correlation matrix in Table 4.2 and Table 4.4 showed that the 

correlations between the math motivational beliefs were mostly large, so were the 

correlations between the science motivational beliefs. However, the correlations between 

math and science motivational beliefs were mostly low and sometimes moderate. 

Previous research also found low correlations between math and science expectancies 

and interests (e.g., Else-Quest et al., 2013; Li et al., 2002). Therefore, using a composite 

score that averages math and science motivational beliefs is inappropriate because one 

can have high math motivation and low science motivation at the same time, and vice 

versa. Simply averaging math and science motivation would conceal the difference. 

Furthermore, ignoring this difference could lead to the failure of discovering how the 

difference might lead to different outcomes within individuals. Researchers have called 

on using adolescents’ motivational beliefs in more than one domain to understand their 

STEM pathways development (Wang & Degol, 2017). Since math and science courses 

are the foundations of most STEM fields, it is necessary to simultaneously examine math 

and science motivation as the indicators of motivation profiles. The person-oriented 
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approach applied in this study is an ideal method for studying math and science 

motivations simultaneously. 

Besides the overall response pattern, it is also necessary to investigate the 

response pattern within a profile. The conditional response means suggest variation in 

agreement on profile indicators within each profile. For instance, in the High All and the 

Higher Math profile of 9th grade, math utility was clearly lower than the other math 

motivational beliefs. In contrast, math utility was higher than other math motivational 

beliefs in the Low All and Higher Science profiles. A similar pattern was also found in the 

latent profiles of 11th grade. This might be because utility value is not necessarily highly 

correlated with expectancies, or with intrinsic and attainment value even though there is 

often high correlation between attainment value and intrinsic value (e.g., Hulleman et al., 

2008; Trautwein et al., 2012). In other words, recognizing the usefulness of a subject 

does not mean one is interested in it or good at it. These findings suggest that there is still 

a need to study the value components separately. However, it must be noted that even 

though there is variation in their expectancy and value levels, one still needs to have all 

of them on a relatively high level to be more likely to choose STEM careers. This has 

been shown by previous research findings with person-centered approaches (e.g., 

Aschbacher et al., 2014; Lazarides et al., 2020) and variable-centered approaches (e.g., 

Guo, Parker et al., 2015; Trautwein et al., 2012).  

Differences between male and female students were found in motivation profiles, with 

female students less likely to be in profiles with higher motivation. Similar findings were 

documented in studies that examined students’ math and/or science motivation with 

latent profile analysis (Chow et al., 2012; Dang & Nylund-Gibson; 2017; Fong et al., 
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2021). The differences were more obvious in 11th grade than in 9th grade. In 9th grade, 

female students were only less likely to be in the Higher Science profile than male 

students. They did not differ from male students in their likelihood of being in the Higher 

Math profile and the High All profile relative to the Low All profile. But in 11th grade, 

female students were less likely to be in all the other three profiles relative to the Low All 

profile, including the Higher Math and the High All profile. This change suggests a 

decrease in female students’ motivational beliefs (which can also be seen in the LTA 

results) through high school years, especially in math motivation. Overall, findings from 

the LPA analysis suggest that there is high heterogeneity in high school students’ math 

and science motivation which needs to be attended to in classroom instructions. 

5.2 MOTIVATION PROFILE STABILITY 

In 9th grade, students were beginning to experience high school math and science, 

and by 11th grade, they had already studied high school math and science for over two 

years and reached a stage where they needed to finalize plans for college. Their 

experience with math and science courses over this time might have impacted their math 

and science motivation and then influenced their STEM outcomes, such as career 

aspirations and preference of college major. The current study examined the stability and 

change of math and science motivation profiles (or latent status in LTA analysis) from 9th 

grade to 11th grade. Two kinds of motivation stability were examined: within-sample 

stability and within-person stability. Within-sample stability examines whether there are 

different latent classes present in the data or the stability of the profile structure within a 

sample. Since in both base year and the first follow-up, the four-profile solution was 

considered the best, and the profile structure was quite similar, within-sample stability 

roughly holds.  
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Since the measurement invariance test did not find the conditional response 

means of the latent status indicators to be invariant across time, we cannot assume that 

the corresponding latent statuses at the two time points were exactly the same. In general,  

latent status means in the first follow-up were slightly higher than that of the base year. 

We need to bear that in mind when interpreting latent status prevalence changes across 

time and transition probabilities between latent statuses across time.  

The biggest differences in the prevalence of corresponding latent status across 

time were found in the Low All status and the High All status. The Low All status 

increased by 7.7%, whereas the High All status decreased by 5.2%. This suggests that 

students were more likely to switch to profiles characterized by lower math and/or 

science motivation than switch to profiles characterized by higher math and/or science 

motivation. The prevalence of Higher Science and Higher Math status were quite similar, 

with a decrease of only 1.1% and 1.2% respectively. However, this does not mean that 

almost all students in these two statuses remained in the same status across the years. 

This is perhaps because when some students moved from the Higher Science/Higher 

Math status to the other statuses, a similar number of students moved the other way round 

at the same time. To better understand whether individual students correspond to the 

same status over time (within-person stability) and the nature of the transition between 

latent statuses, there is a need to closely examine individuals’ transition probability 

between latent statuses across time.  

The latent transition matrix shows that the latent statuses were relatively stable, as 

most students (56.4%-66.8%) were more likely to stay in the same status than transition 

to another status. This is consistent with Lazarides et al. (2020) which found that the 
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math motivation profile was relatively stable from the beginning of 7th grade to 12th 

grade, and Wang et al. (2017) which found 63% of the participants had stable levels of 

ability self-concept and task value in physical science across 7th to 12th grade. Studies 

with variable-centered approaches also found that math self-concept, intrinsic value, and 

utility value were relatively stable from 9th grade to 10th grade (Lazarides & Lauermann, 

2019), and confidence and self-efficacy in math/science were stable across the high 

school years (Gremillion et al., 2019). In the current study, students were most likely to 

transition to a status that was adjacent to their original status. It was unlikely for them to 

move from the lowest motivation status to the highest status, and vice versa. For instance, 

the probability of transitioning from the Low All status to the High All status was only 

2.5%, and from the High All status to the Low All status was only 1.2%. The status with 

the lowest math and science motivation was the most stable. This is consistent with 

Lazarides et al. (2020), which found that students with low motivation were more likely 

to remain in the same profile than those with higher motivational beliefs profiles. This is 

perhaps because math and science courses become increasingly difficult in high school, 

and it is hard for students with low math and science motivation to increase their 

performance and motivation, especially those who have decided to pursue a non-STEM 

career in the future. Perceptions of teachers’ beliefs and support could also influence 

student motivation. For instance, the more teachers believed that math ability is innate, 

the lower was the intrinsic motivation(similar to intrinsic value) of their low-achieving 

students (Heyder et al., 2020). Perception of teacher caring was a significant predictor for 

all motivational constructs in high school (Umarji et al., 2021). Perhaps students with low 

motivation in math and science also perceived lower levels of teacher support and caring 
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in math and/or science class, which further hindered them from increasing their 

motivation.  

Consistent with Lazarides et al. (2019; 2020), both increase and decrease were 

found in students’ math and science motivation levels. Increase in math and/or science 

motivation include transitions from the Low All status to any other status (34.2% in total), 

and transitions from the Higher Science or the Higher Math status to the High All status 

(15.4% in total). Decreases in motivation include transitions from Higher Math and 

Higher Science to Low All (37.6% in total) and transitions from the High All status to any 

other three statuses (43.6% in total). The different probabilities indicate that students’ 

motivation was more likely to decrease than increase. Various reasons might contribute 

to the changes in motivation, such as classroom quality, gender stereotype beliefs (Barth 

& Masters, 2020), and students’ psychological needs satisfaction from teachers and peers 

(Gnambs & Hanfstingl, 2016; Mata et al., 2012). Research found that if students’ basic 

psychological needs for autonomy, competence, and relatedness were well supported, 

their intrinsic motivation could be increased across adolescence (Gnambs & Hanfstingl, 

2016; Stiglbauer et al., 2013). However, secondary school teachers often enforce stricter 

discipline and provide fewer opportunities for students to be involved in decision-making 

than in elementary school, although adolescents’ needs for autonomy support may be 

high (Anderman & Mueller, 2010). When students’ need for autonomy support is not 

met, their intrinsic motivation is hard to increase. Besides, school climate, school 

composition (e.g., the percentage of students whose parent(s) has a college degree), high 

school policies (e.g., tracking, course sequence policies), and their peer groups could also 

influence students’ math and science motivational beliefs (Jiang et al., 2020). 
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The transitions between the Higher Science status and the Higher Math status 

suggest that one’s math and science motivation may change in different directions, 

although transition probabilities between these two statuses were relatively small (below 

10%). For instance, one can start with relatively lower science motivation and relatively 

higher math motivation at the beginning of high school but end up with relatively higher 

science motivation and relatively lower math motivation towards the end of high school. 

This transition is characterized by increased science motivation and decreased math 

motivation. There were also transitions characterized by decreased science motivation 

and increased math motivation.  

The extent of the changes in students’ math motivation and science motivation 

was also different. For instance, students in the Low All status were more likely to 

transition to the Higher Science status (19.1%) than transition to the Higher Math status 

(13.0%). This difference in transition probability suggests that it might be easier for high 

school students to increase their science motivation than math motivation. It might be 

also easier to lose science motivation than to lose math motivation. For instance, the 

probability for students in the Higher Science status to transition to the Low All status 

was 23.1%. In comparison, the probability was 14.5% for students from the Higher Math 

status to transition to the Low All status. The complex pattern in math and science 

motivation transition further indicates the need to examine math and science motivation 

separately as indicators of motivation profiles and latent statuses. 

Differences between male and female students in transition probabilities were also 

manifest. Male students were more likely to stay in the High All status than female 

students, and they were more likely to move from lower motivation statuses to higher 
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motivation statuses. On the contrary, female students were more likely to move from 

higher motivation statuses to lower motivation statuses. This sharp contrast shows that 

starting with the same motivation level (i.e., the same latent status), female students were 

more likely to lose motivation in math and/or science than male students during high 

school years. This finding suggests that it is important to closely monitor changes in math 

and science motivation, especially among female students, and design relevant measures 

to prevent or slow down such changes. Research with variable-centered approaches also 

had similar findings. For instance, girls’ math interest decreased while boys’ did not 

change through adolescence (Koller et al., 2001), and girls showed increasingly lower 

math ability self-concept compared to boys from middle school through high school 

(Pajares, 2005). One advantage of person-centered approaches is that they enable us to 

identify subgroups of individuals at higher risk of motivational declines, which can 

facilitate the development of more individualized interventions to increase student 

motivation (Wang et al., 2017). 

5.3 CAREER ASPIRATIONS AS AN OUTCOME OF STUDENTS’ 

MOTIVATION PROFILES 

The current study seeks to understand how math and science motivation profile 

membership influences STEM career aspirations (broken down into traditional STEM 

and health occupations) and differences between male and female students in STEM 

career aspirations within and across profiles. The findings offer evidence that STEM 

career aspirations are influenced by the congruency of math and science motivation and 

gendered preferences for STEM fields. Consistent with findings from variable-centered 

approaches (e.g., Lauermann et al., 2017; Riegle‐Crumb et al., 2011; Robnett & Leaper, 

2013) and person-centered approaches (e.g., Anderson & Chen, 2016), students with 
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higher math and science motivations were more likely to be interested in traditional 

STEM careers and health occupations than those with lower math and science 

motivations. For instance, students in the High All profile were more likely to be 

interested in a traditional STEM career than students in all the other three profiles. 

Students in the Low All profile were less likely to be interested in health occupations than 

students in any other profiles.  

One unique finding is that although there is no significant difference between 

students in the Higher Science profile and students in the Higher Math profile in 

traditional STEM career aspirations, those in the Higher Science profile were more likely 

to be interested in health occupations than those in the Higher Math profile. The Higher 

Science profile is characterized by relatively high science motivation and relatively low 

math motivation. This finding suggests that high school students were aware that 

different STEM careers had different requirements in math. If they were not good at math 

and/or had a lower interest in math courses, they could still plan to have a STEM career 

that does not have very high requirements for math. Previous research also found that 

students with lower math self-concept of ability in middle and high school were more 

likely to be interested in careers in Health, Biological, and Medical Sciences over 

traditional STEM careers (Wegemer & Eccles, 2019). As such, schools and parents 

should provide enough information and opportunities for adolescents to learn about the 

different STEM fields and their differential requirements in math and science. By doing 

this, high school students who originally may avoid a STEM career path due to lower 

math motivation may now be drawn to STEM fields that do not have very high math 
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requirements, such as health occupations, social and behavioral sciences (e.g., economics, 

political science, psychology, and sociology).  

Consistent with previous studies, which found that as early as in adolescence, 

males and females demonstrated different occupational aspirations (Diekman et al., 2010; 

Eccles, 2009), the current study also found significant differences between male and 

female high school students. After controlling for motivation in math and science (i.e., 

within the same latent profile), 11th grade female students in the Higher Math profile and 

the High All profile were still less likely to be interested in traditional STEM careers than 

male students in the same profile. On the other hand, female students in each profile were 

more likely to aspire for health occupations than male students in their profile. This is 

consistent with another research which found large gender differences in career plans, 

with boys showing much higher interest, particularly in engineering, while girls were 

more interested in careers in health occupations during their high school years (Sadler et 

al., 2012). The finding suggests that even when female students were confident about 

their ability in math and science and place high value on them, they were still less likely 

to be interested in traditional STEM careers. Meanwhile, regardless of their motivation 

level in math and science, female students were more likely to be interested in health 

occupations.  

It is interesting to probe why male and female students have different career 

preferences. A meta-analysis on gendered vocational interests pointed out that females 

show stronger artistic, social, and conventional interests and prefer occupations that 

involve interacting with people, whereas males show stronger realistic and investigative 

interests and prefer occupations that involve working with objects, machines, and tools 
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(Su et al., 2009; Wang & Degol, 2013). Female students may have been deterred by the 

stereotypes associated with traditional STEM fields. For instance, the nerd-genius 

stereotypes (e.g., STEM professionals are nerdy geniuses, tech-obsessed, have no social 

lives, and are not romantic) affected females more than males’ identification with STEM 

and their motivation to pursue STEM careers (Starr, 2018). Besides, females tend to put 

more value on jobs that involve helping others and benefitting society, while males place 

more value on jobs that allow them to make a lot of money, have power, and become 

famous (Cerinsek et al., 2013; Freund et al., 2013; Schwartz & Rubel, 2005). Because 

females tend to endorse communal goals (e.g., working with or helping other people) 

more than males, their interests in traditional STEM careers were disproportionately 

affected (Diekman et al., 2010). Compared to traditional STEM fields, health occupations 

involve more interactions with people and helping people, which may explain why 

female students prefer them. In addition, some studies found that the combination of high 

ability beliefs in both math and English signified a lower possibility of pursuing 

math/science-related careers. Since females placed a higher value on English than males, 

they were less likely to have math/science-related career plans (Lauermann et al., 2015). 

It might also be useful to help female students recognize their standing in math and 

science abilities and motivation relative to the male students, which may boost their 

confidence to pursue a traditional STEM career, as females tend to underestimate their 

ability to succeed in STEM fields (Correll, 2001; Sáinz & Eccles, 2012).  

From the perspective of person-centered approaches, it is important to know a 

student’s math and science motivation profile to understand his/her likelihood of being 

interested in a STEM career to be able to design targeted interventions to increase the 
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likelihood. Because students can have a motivation profile with remarkably different 

levels of math and science motivation and its implications for different STEM career 

aspirations, it is necessary to clearly define the purpose and strategies of the 

interventions. For instance, to increase students’ interests in traditional STEM careers, the 

measures should be more towards identifying students whose motivation profile is 

characterized by lower math motivation and improving their math efficacy and values. 

Since female students within the High All and Higher Math profiles were still less likely 

to be interested in traditional STEM careers than male students, only improving their 

math motivation is not enough. One necessary strategy might be to help them discover 

the possibilities of helping people and benefiting society through a traditional STEM 

career (Diekman et al., 2010). Another measure might be to reduce the influence of 

negative stereotypes of STEM (e.g., being less people-oriented and masculine), because 

they have the potential to decrease students’ STEM career interests (Luo et al., 2021; 

Makarova et al., 2019). Counter-stereotypical perceptions of STEM professionals (i.e., 

perceptions that scientists are individuals with talents and various interests who do not 

work in isolation) could positively motivate students’ future plans in STEM fields 

(Nguyen & Riegle-Crumb, 2021). STEM interventions should also aim to reduce the 

nerd-genius stereotypes and the reminiscence of these stereotypes in classrooms (Starr, 

2018). 

Motivation interventions have been shown to improve students’ competence-

related beliefs, values, interests, and academic performance in STEM courses 

(Rosenzweig & Wigfield, 2016). Practical measures can also be taken in the daily 

learning context, such as the classrooms, to improve adolescents’ math and/or science 
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motivational beliefs.  Numerous research studies have documented effective measures to 

improve adolescents’ science motivation, such as providing examples of science 

applications and science-related careers available (Aeschlimann et al., 2016), having a 

diverse range of activities in the class (such as science clubs or science field trips) 

(Taskinen et al., 2013), service-learning activities for high school students that focus on 

hands-on experiences and solving real-life problems (Collins et al., 2020), supporting 

students’ self-concepts in science, and inclusive classroom practices (Bøe & Henriksen, 

2013). These measures focused on one or more motivational aspects in science, such as 

students’ expectancy in science, intrinsic or utility value of science, and were effective in 

improving students’ science competencies, interest and values, and interest in STEM 

careers. More research is needed to explore the best practices to improve students’ math 

motivation.  

5.4 STABILITY OF STEM CAREER ASPIRATIONS AND CONSISTENCY 

BETWEEN CAREER ASPIRATIONS AND COLLEGE MAJOR SELECTION 

Cross tabulation results suggest that high school students’ career aspirations 

remained relatively stable from 9th to 11th grade, as 70% of them had the same career 

aspirations. It is interesting that 16% of the students switched from non-STEM career 

aspirations to STEM career aspirations. A slightly lower percentage (13%) of students 

switched from STEM to non-STEM career aspirations. This finding suggests that even 

though career interests are relatively stable for the majority of students through high 

school years, approximately one third of the students changed career aspirations across 

the three years of high school. A lot of factors might have contributed to the change 

except for transitions in math and science motivation profile, such as advanced math and 
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science course taking, good/bad teachers, and other experiences in and outside the 

classes.   

Likewise, most students (62.6%) had chosen their first college major consistently 

with their career aspirations in 11th grade, which means those who wanted to have a 

STEM career in 11th grade chose a STEM major in college, and those who wanted to 

have a non-STEM career chose a non-STEM major. However, a considerable proportion 

of the students (27.9%) who indicated aspiring for a STEM career did not pick STEM as 

their first major. This proportion is higher than students who changed their career 

aspirations from STEM to non-STEM in high school. There were also students who 

wanted to have a non-STEM career but chose a STEM major, but the proportion was 

remarkably lower (9.5%). Except for the possible increase or decrease in math and/or 

science motivation, a lot of other factors may affect one’s choice of college major, such 

as the major’s job opportunities and potential for career advancement, the level of 

compensation in the field (Malgwi et al., 2005), potential income, parents’ influence, 

teacher/professor influence (Stock & Stock, 2018), and sense of belonging in the STEM 

field (Rainey et al., 2018). This finding suggests that picking a first major in college 

becomes more complex for students than just maintaining their original career aspirations 

in high school.  

Because of the nature of STEM jobs, if one does not study in a STEM major in 

post-secondary education, it is very hard for that person to have a career in STEM fields 

that requires a STEM degree or certificate. The possible instability of STEM career 

aspirations and the inconsistency between STEM career aspirations and STEM major 

selection imply that it is challenging for students to remain in the STEM pipeline. The 
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inconsistency in STEM career aspirations in 9th grade and 11th grade reveals that the leak 

is already obvious from high school, so educational efforts to maintain STEM career 

interests should begin at an earlier age than college. It must be noted that this study used 

the definition and categorization of STEM fields adopted by NCES, which considered 

health occupations, social sciences, and architecture as STEM subcategories. Therefore, 

those who left traditional STEM fields to go to other fields such as social sciences were 

still considered to remain in the STEM pipeline, which ensures a more accurate 

description of the transition between STEM and non-STEM fields. However, many 

students participated in the data collection in the second follow-up but did not provide 

information on their first major or field of study for the postsecondary degree/certificate 

(5,848 students in total). The best guess is that most of these students did not pursue 

further study beyond high school, but a few of these students might still have the 

opportunities to have a STEM career, such as computer support specialists, electrical 

installers and repairers, machinists, or veterinary assistants. Sometimes these STEM 

careers require only a high school diploma or a professional, high-quality portfolio of 

completed work instead of a degree.  

5.5 LIMITATIONS AND DIRECTIONS FOR FUTURE RESEARCH 

The data used for the current study were collected in 2009, 2012, and 2017. 

Although the sampled students could represent the students enrolled in high schools in 

2009 in the United States, they may not well represent high school students in the United 

States in the 2020s. However, HSLS:09 is still the most recent nationally representative 

dataset available on high school students which focuses on understanding high school 

students’ math and science experiences and how that influences students’ STEM 

outcomes through college and the workplace. It takes enormous time, effort, and money 
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to collect a large-scale longitudinal dataset like this; therefore, it needs to be thoroughly 

studied. Future research could use more recent and smaller datasets to investigate similar 

questions and compare the findings with the current study. 

The study examined the associations between STEM career aspirations and latent 

profile membership characterized by math and science motivational beliefs, but other 

factors might also play a significant role in influencing STEM career aspirations. For 

instance, adolescents’ math ability belief became a weaker predictor of math/science-

related career plans when their English ability belief became higher (Lauermann et al., 

2015). Likewise, in another study, math expectancy and value beliefs also became a 

weaker predictor of STEM major selection when English expectancy and value beliefs 

were higher (Gaspard et al., 2019). As a result, students with high ability beliefs in 

math/science may not be interested in a STEM career because they are more interested in 

a non-STEM career. These findings highlight the importance of considering the 

combined influences of different domains on career plans (Lauermann et al., 2015). 

Particularly, future studies could include English motivational beliefs together with math 

and science and as latent profile indicators to see how they interactively influence STEM 

career aspirations.  

Although the present study did not assume a causal relationship between math and 

science motivation profile and career aspirations, the auxiliary model was specified in a 

way that implies such a relationship. In the auxiliary model, profile membership is the 

predictor variable, and career aspiration is the outcome variable. Most existing studies 

have also examined math and/or science motivation as the predictor of career aspirations. 

However, for some students, their career aspirations might shape their math and science 
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motivation instead of the other way around. Moreover, some students may not be able to 

tell which one is the influencing factor. Future research can examine career aspirations as 

the predictor of math and science motivation profile, or examine the reciprocal 

relationship between career aspirations and math and science motivation profile for 

respondents who indicate such a relationship. Future research could also separate the 

three situations and find out which situation is more common.  

Cost was not included as a profile indicator because the items used to form the 

cost variable were not the same at the two time points, and they were scaled in different 

ways (continuous variable at the base year and dichotomous at first follow-up), so it was 

hard to compare them across time and use them in the latent transition analysis. So far, 

only a few of the extant studies included perceived costs (e.g., Bøe & Henriksen, 2013; 

Conley, 2012; Lauermann et al., 2015) as a profile indicator, and the recent new measures 

of cost sometimes use the same labels to describe very different sets of items (Eccles & 

Wigfield, 2020). Future research should develop a measure that could better represent the 

multidimensional nature of the cost construct as described in EVT (Eccles & Wigfield, 

2020) to better understand its effect on motivation profiles and potential influence on 

waning STEM motivation and career aspirations.  

Latent transition analysis was used to explore the directions and nature of change 

in students’ motivation profiles. However, measurement invariance tests could not find a 

good invariance model. Therefore, the study used the least restrictive constraint – 

measurement noninvariance (freely estimate the latent status indicator means across time) 

in the latent transition analysis. This assumption made the interpretation of transition 

probabilities between latent status across time not as straight forward as the LTA model 
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which assumed measurement invariance, because the latent statuses at each time point 

were not exactly the same. Future research should seek to do latent transitions with 

stronger measurement invariance and/or find more theoretical and practical support for 

assuming measurement noninvariance in LTA analysis.  

The current study only descriptively modeled the stability of career aspirations 

during high school and the consistency between 11th grade career aspirations and first 

major in college. More complex statistical analysis may be used to model the trend and 

provide more reliable inferential statistics. Besides, only two categories – STEM and 

non-STEM – were included in the analysis. Health occupations were not separately 

examined because the first college major variable does not contain such a category. 

Future research can break down careers into more categories to describe the stability of 

STEM career aspirations more accurately. For instance, Sadler and colleges (2012) 

distinguished five broad career categories: non-STEM, science (such as physical, life, and 

earth sciences, mathematics), engineering (including computer science), medicine (such 

as physicians, veterinarians that require advanced degrees), and health (such as nursing, 

medical technicians), and studied how students’ initial specific (disciplinary) career 

interests influenced the stability of their interest in a STEM career throughout high 

school11. Studying different STEM fields separately would also greatly facilitate the 

understanding of gender differences in STEM career interests. A different perspective on 

women’s interest in STEM careers can be provided by disaggregating the STEM fields 

and using a broader definition of STEM, which includes the health occupations and other 

often excluded fields, such as social sciences.  

 
11 The Sadler et al. (2012) study did not consider medicine and health as STEM majors. 
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5.6 CONCLUSIONS  

This study extends previous literature on STEM career aspirations by using 

person-centered approaches to examine how high school students’ math and science 

motivation profiles influence career aspirations with a nationally representative dataset. It 

is one of the few studies that examined high school students’ motivation profiles 

characterized by both math and science expectancy and values. The results revealed 

latent profiles with similar levels of math and science motivation and profiles with 

distinctly different levels of math and science motivation. Math and science motivation 

carry different weights in the associations between latent profile membership and 

aspirations in traditional STEM and health occupations, which calls for future research to 

examine both math and science motivation when studying the implications of math and 

science motivations. The study also used latent transition analysis to explore the 

possibility and directions of change between different profiles across high school years. 

The transition matrix demonstrated the relatively stable nature of math and science 

motivation profiles and revealed transition probabilities between different profiles, which 

cannot be shown with variable-centered approaches. Female students were more likely to 

be in lower motivational profiles, more likely to transition to lower motivation profiles, 

more likely to be interested in health occupations and less likely to be interested in 

traditional STEM careers, which signals the direction for future research toward 

improving female students’ math and science motivation and interest in traditional STEM 

careers.  
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