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ABSTRACT 

Each ach year a growing number of individuals report lingering deficits months-

years following concussion. Persistent post-concussion symptoms (PPCS) can negatively 

impact day-today activities and if left untreated may manifest in severe neurological 

sequelae resulting in long-term cognitive impairment or advanced neurological 

degeneration (i.e., CTE). Current clinical diagnostic and prognostic assessments (e.g., 

symptom reports and neurocognitive testing) lack the sensitivity to quantify neurological 

function. Accordingly, there is a critical need to identify objective biomarkers specific to 

PPCS to improve an individual’s quality of life and prevent severe long-term neurological 

dysfunction. 

Psychophysiological measurements (e.g., EEG derived event-related potentials, 

heart rate variability, and indices of pupil dynamics) utilize involuntary fluctuations in 

organ behavior (brain potentials, heart rate, pupil size) in response to environmental events 

quantify higher-order neurological function. Numerous studies have indicated significant 

alterations in psychophysiological function in both acute (days-weeks) and chronic 

(months-years) phases of concussion recovery. These studies demonstrate that 

psychophysiological measures may possess the necessary sensitivity to serve as 

reliablemeasures of concussion recovery. However, previous methodological limitations 

have restricted cross study comparisons and implementation into clinical settings. 

Specifically, few research studies directly compare currently asymptomatic and 

symptomatic individuals with a recent history of concussion. This comparison is critical as
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 previous research has demonstrated neurological deficits months to years following injury. 

By excluding this comparison analytical interpretations fail to account for neurological 

adaptations that may underlie typical recovery patterns. Additionally, traditional 

psychophysiological assessments employ task paradigms that do not fully capture the 

complexity of real-world engagement. If a task is too simplistic, it may fail to adequately 

challenge the individual and may not reveal lingering neurological dysfunction when 

completing tasks in the real-world. 

The present series of investigations found demonstrated that symptomatic 

individuals with a history of concussion report significant symptom burden spanning 

somatic disruptions, psycho-affective health, and general quality of life. Furthermore, 

symptomatic individuals demonstrated significant deficits in tasks of cognitive control, 

executive function, and attention. These deficits were exacerbated by more complex tasks 

designed to mimic real-world interactions. In addition to behavioral deficits, both 

symptomatic and asymptomatic individuals tended to demonstrate lingering deficits in 

psychophysiological function (i.e., pupillometry and ERPs). Unfortunately, ERP measures 

collected during more dynamic and complex tasks produced muted waveforms making 

comparisons across groups difficult. Finally, deficits in both cognitive performance and 

psychophysiological behavior demonstrated significant relationships with reported 

symptom burden. This supports their use as potential biomarkers of neurological 

dysfunction following concussion. In conclusion, the present series of studies supports the 

growing body of literature suggesting slow-to-recovery demonstrate lingering impairments 

in neurological function. Furthermore, behavioral assessments designed to mimic real-

world interactions may more precisely capture day-to-day impairments. However, these 
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tasks may be too complex and therefore distort neuroelectric recordings of cognitive 

function  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

viii 
 

TABLE OF CONTENT 

DEDICATION ....................................................................................................................... iii 

ACKNOWLEDGEMENTS........................................................................................................ iv 

ABSTRACT ............................................................................................................................v 

LIST OF TABLES ....................................................................................................................x 

LIST OF FIGURES ................................................................................................................. xi 

CHAPTER 1: GENERAL INTRODUCTION .................................................................................1 

CHAPTER 2: LITERATURE REVIEW ........................................................................................4 

CHAPTER 3. GENERAL METHODS ........................................................................................47 

CHAPTER 4: IMPACT OF CONCUSSION ON OCULOMOTOR 

 CONTROL PUPILLARY DYNAMICS ...........................................................................53 

INTRODUCTION ..........................................................................................................54 

METHODS ..................................................................................................................56 

RESULTS ....................................................................................................................61 

DISCUSSION ...............................................................................................................69 

CHAPTER 5: VALIDATION OF EVENT-RELATED POTENTIALS  

 DURING CONTINUOUS TASK PERFORMANCE ..........................................................74 

INTRODUCTION ..........................................................................................................75 

METHODS ..................................................................................................................77 

RESULTS ....................................................................................................................83



 

ix 
 

DISCUSSION ...............................................................................................................89 

CHAPTER 6: COGNITIVE PERFORMANCE AMONG SYMPTOMATIC 

AND ASYMPTOMATIC INDIVIDUALS WITH A HISTORY OF 

 CONCUSSION: COMPARISON WITHIN DISCRETE AND  

CONTINUOUS TASK PARADIGMS .............................................................................93 

INTRODUCTION ..........................................................................................................94 

METHODS ..................................................................................................................97 

RESULTS ..................................................................................................................103 

DISCUSSION .............................................................................................................121 

CHAPTER 7: GENERAL DISCUSSION ..................................................................................126 

BIBLIOGRAPHY .................................................................................................................130 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

x 

LIST OF TABLES 

Table 4.1 Participant Demographics & Injury Characteristics ..........................................62 

Table 4.2 Self-Reported Symptom Burden ........................................................................63 

Table 4.3 Anti-/Pro-Saccade Task Performance & Pupil Dynamics .................................66 

Table 4.4 Correlation Coefficients: APST Task Performance & 

 Symptom Burden ...................................................................................................68 

Table 5.1 Participant Demographics ..................................................................................84 

Table 6.1 Participant Demographics & Injury Characteristics ........................................104 

Table 6.2 Go/NoGo Task Performance (Discrete Button) ...............................................106 

Table 6.3 Go/NoGo Task Performance (Discrete Reach) ...............................................109 

Table 6.4 Correlation Coefficients: Go/NoGo REACH  

 Performance & Symptom Burden ........................................................................110 

Table 6.5 Go/NoGo Task Performance (Continuous Reach). .........................................111 

Table 6.6 Correlation Coefficients: Go/NoGo CTR  

 Performance & Symptom Burden ........................................................................114 

Table 6.7 Correlation Coefficients: Go/NoGo Neuroelectric Function 

 (BUTTON) & Symptom Burden .........................................................................117 

Table 6.8 Correlation Coefficients: Go/NoGo Neuroelectric Function 

 (REACH) & Symptom Burden ............................................................................120 

Table 6.9 Correlation Coefficients: Go/NoGo Neuroelectric Function 

 (CTR) & Symptom Burden ..................................................................................122 

 

 

 



 

xi 

LIST OF FIGURES 

Figure 3.1 Experimental Protocol ......................................................................................50 

Figure 4.1 Anti-/Pro-Saccade Task Visualization .............................................................59 

Figure 4.2 APST Task Performance ..................................................................................67 

Figure 4.3 Saccadic Reaction Time ...................................................................................65 

Figure 4.4 Task-Evoked Pupil Dynamics ..........................................................................70 

Figure 5.1 Go/NoGo Task..................................................................................................75 

Figure 5.2 Average ERP Waveforms.................................................................................87 

Figure 6.1 Go/NoGo Task..................................................................................................99 

Figure 6.2 Go/NoGo Button Task Performance ..............................................................107 

Figure 6.3 Go/NoGo CTR Task Performance .................................................................112 

Figure 6.4 Group Average ERP Waveforms ...................................................................115 

 

 

 

 

 

 

 

 



 

1 

CHAPTER 1 

GENERAL INTRODUCTION 
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Concussion, sometimes referred to as a mild traumatic brain injury (mTBI), is a 

neurological injury induced by biomechanical forces directed at the head, neck, or body.1 

This impact, transmits impulses to the brain resulting in a series of neurophysiological 

disruptions and structural abnormalities.2 Externally, individuals suffering from a 

concussion often report a combination of somatic (headache, dizziness), cognitive 

(difficulty concentrating, poor memory), and psycho-affective (anxiety, depression) 

symptoms.3-5 Individuals often report complete symptom resolution within 7-10 days from 

the initial injury.6  This has led to concussions to be stereotyped as mild and transient  in 

nature and this mindset has shaped public perception, diminishing their seriousness and 

severity. However, the last decade has seen a steady increase in evidence suggesting the 

potential severity and long-term consequences of these injuries.3, 7-10 

It is estimated that roughly 3.8 million concussions are diagnosed annually within 

the United States.11-13 This number has steadily increased over recent years, in part, due to 

heightened public awareness stemming from increased advocacy from current and retired 

athletes as well as research reports highlighting the public health impact of these injuries.14 

Most notably, repeated concussive and sub-concussive head impacts have been linked to 

chronic traumatic encephalopathy (CTE) a debilitating and fatal neurodegenerative 

disease, first identified in boxers and more recently found in several deceased retired 

professional football players.15, 16 Additionally, while most individuals will experience full 

symptom resolution within a couple weeks, a growing portion of concussed individuals 

(~40%) develop persistent post-concussive symptoms (PPCS), hallmarked by debilitating 

and persistent symptoms months after injury.17, 18 Our understanding of these conditions is 
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very limited, however, if left unattended they can negatively impact the inflicted 

individual’s mental health and overall quality of life.19-23 

Although efforts have been made to develop adequate rehabilitation strategies, our 

ability to gauge their effectiveness is limited by the lack of objective biomarkers of 

neurophysiological recovery following concussive injuries.24-26 One major barrier to this 

search is the limited number of studies directly comparing symptomatic and asymptomatic 

individuals with a history of concussion. Research has continuously identified a history of 

concussion as one of the strongest predictors of both incidence of injury and severity of 

injury outcomes.27, 28 Additionally, research has detected atypical neurophysiological 

profiles in asymptomatic individuals months to years after their last concussion.29-31 

Therefore, this additional level of comparison is crucial as it allows us to tease out atypical 

recovery patterns. An additional barrier lies in the unknown ecological validity of testing 

paradigms used to assess neurological function following concussion. To generalize 

function in the real-world, testing protocols should aim to mimic the dynamic and 

multidimensional activities individuals experience in their everyday life. Furthermore, 

paradigms designed to simulate real-world task complexity may provide the necessary 

level of physiological stress to uncover potentially latent deficits in neurological function.32 
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To better understand the critical need for identifying objective biomarkers of 

neurological damage following concussion, it is important to review the existing literature. 

First, an overview of concussion including a brief introduction, injury mechanism, 

underlying pathophysiology, and its relationship to symptom presentation will be 

presented. Second, the emerging evidence associated with long-term consequences of 

concussion, specifically persistent post-concussive symptoms (PPCS) and chronic 

traumatic encephalopathy (CTE) will be presented. Next, will be a description and critique 

of the current clinical diagnosis and management protocols of concussion. Finally, a 

detailed evaluation of behavioral and psychophysiological techniques will be presented, 

that provide non-invasive objective markers of neurological function and recovery 

following concussion. Specifically, assessments of cognitive control, saccadic eye-

movement behavior, pupillometry, and electroencephalography (EEG) will be introduced; 

highlighting key research that has advanced our ability to quantify neurological function 

and identify atypical patterns following concussion and other neurological conditions. This 

review will conclude with a summary highlighting important research gaps and the 

purposes of the proposed studies.  

Historical Perspectives on Concussion 

 Roughly 3.8 million concussions are diagnosed each year in the United States.11-13 

However, even with the growing incidence rates and public awareness of these injuries, 

our understanding of recovery following concussion remains limited. This is in large part 

due to the lack of sensitive and reliable assessments of neurological health during the 

recovery period. 
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 Mechanistically, a concussive brain injury occurs when a mechanical force is 

directed and delivered to the head, neck, body.6 This impact transmits impulses to the brain 

resulting in damaging acceleration and deceleration movement of the brain within skull 

causing deformation of underlying tissue.1, 2 These events initiate a cascade of 

neurochemical and neuroanatomical disruptions (see Concussion Pathophysiology) 

resulting in a constellation of symptoms ranging from headache, emotional dysregulation 

and cognitive deficits, to temporary loss of consciousness (LOC) and post-traumatic 

amnesia (PTA).3, 33 However, concussions can occur in a variety of situations (i.e. contact 

sports, motor vehicle accidents, assault) leading to the heterogenic and non-specific nature 

of symptom presentation among individuals, making precise clinical diagnoses difficult.  

 Most early attempts to define concussion were based on criteria attempting to rule 

out more severe brain injuries. These criteria emphasized transient symptomology, 

negative findings on standard computed topography (CT) or magnetic resonance imaging 

(MRI), a Glasgow Coma Scale (GCS) score less than 15, LOC for less than 30 minutes, 

and PTA lasting less than a day.34-36 However, it is estimated that LOC and PTA occur in 

only about 5% and 24% cases of concussion, respectively.8, 37 Additionally, it has been 

well established that MRI and CT imaging techniques lack the sensitivity to detect the 

microstructural damage of concussive injuries, challenging their utility in the diagnosis of 

concussion.38, 39  

 Since 2001, sport clinicians and top researchers in the field have gathered regularly 

to establish and update a consensus statement regarding the nature of concussive brain 

injuries and their management.40 In their most recent proceedings from the 2017 5th 

International Conference on Concussion in Sport, the group defined concussion as 
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“traumatic brain injury induced by biomechanical forces.”6 They further elaborated 

providing a series of supplemental features to help aid in the clinical diagnosis. These 

include: 1) may result from a direct blow to the head, neck, or body; 2) typically result in 

the rapid onset of transient neurological dysfunction that resolve spontaneously, though in 

some cases may exhibit delayed onset; 3) acute symptoms are largely due to functional 

abnormalities rather than large scale structural injury; 4) the range of clinical symptoms 

vary, and may or may not include LOC; and 5) resolution of symptoms typically occurs 

within 10-14 days post-injury, however in some cases symptoms may persist beyond this 

window. While this definition is concise and encompassing, without establishing 

biomarkers through sensitive imagine techniques or objectively quantifiable measures of 

neurological function a concrete definition (and diagnostic criteria) of concussion will 

remain impossible.41 

Concussion Pathophysiology 

 As mentioned above, traditional imaging techniques fail to detect neural 

abnormalities following concussions. However, animal models and advanced imaging 

techniques in humans have allowed scientists to outline the pathophysiological timeline of 

concussion.42, 43 Additionally, research has been able to connect these pathophysiological 

disruptions with symptoms and neural vulnerability to repeated assault.43 

Recall, concussions are initiated by biomechanical forces directed at the body that 

then transmit impulses to the brain. These impulses then result in translational and 

rotational movements of the brain within the skull.1, 21,2 This neural insult triggers a cascade 

of events significantly altering cerebral homeostasis. This ‘neurometabolic cascade’ is 
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characterized by alterations in membrane integrity, rapid ionic fluctuations, dysfunctional 

neurotransmitter release, indiscriminate cellular hyperexcitation, diminished cellular 

metabolism and uncoupled cerebral blood flow (CBF).43      

At the onset of injury, the permeability of the cellular membrane is greatly 

increased resulting in a massive ionic influx of calcium (Ca2+) and sodium (Na+) and efflux 

of potassium (K+).43 The rapid intercellular increase in Ca2+ and Na+ concentration 

initializes depolarization of the cellular membrane potential, further perpetuating the ionic 

imbalance and non-specific release of excitatory neurotransmitters (i.e. glutamate, N-

methyl D-Aspirate).44 To prevent the cell from entering a state of excitotoxicity, the cell 

initiates the adenosine triphosphate (ATP) dependent Na+/K+ pump to regulate intercellular 

and extracellular ion concentrations.44 This increased metabolic demand subsequently 

necessitates increased glucose delivery via the cerebral vasculature. However, it has been 

demonstrated that CBF may be reduced by up to 50% following concussion45 creating a 

state of hypoglycemia and energy crisis within the cell.46 In addition to Na+/K+ pump 

overdrive, the central nervous system tries to restore ionic homeostasis and meet the 

growing energy demand by shuttling intercellular Ca2+ and peripheral lactate47 into the 

mitochondria. This temporary solution eventually leads to a rise in oxidative stress within 

the cell and a breakdown in the capacity of the mitochondria to generate ATP via oxidative 

phosphorylation, furthering the cellular energy crisis.48   

In response to the increasing cellular damage and oxidative stress, neighboring 

astrocytes initiate the neuroinflammatory response by releasing inflammatory cytokines 

(e.g., IL-1, IL-6, TNF-α) into the extracellular space. In addition to the neuroinflammatory 

response, peripheral inflammatory markers may enter the brain space as the result of the 
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decreased integrity of the blood-brain barrier, caused by the trauma.49 Initially, this process 

signals the regenerative and recovery processes following neural insult. However, chronic 

exposure may be detrimental leading to cellular dysfunction, cellular degeneration. and/or 

apoptosis.44, 50, 51   

While disruptions in metabolic function following concussion are well established, 

structural alterations also occur. The translational movement of the brain within the skull 

induces tensile and shearing stress on the axonal fibers. This stress results in axonal 

swelling, demyelination, and structural degeneration of the neuron.52 The microlevel 

damage disrupts the efficiency and effectiveness of neural transmission impacting the 

overall network communication.53-57 While not detectable by conventional structural 

imaging (i.e. MRI and CT) this level of structural damage and disrupted communication 

has been shown using more sophisticated neuroimaging techniques such as diffuse tensor 

imaging (DTI), functional MRI (fMRI).and Susceptibility-Weighted Imaging (SWI).58-62 

 Although the concussive impulse widely distributes throughout the brain, specific 

brain regions and white matter tracts seem to be more susceptible to injury than others. DTI 

measures the diffusivity of water (directionality of movement) along the neuron and has 

been shown to be a valuable index of structural integrity and microscopic lesions following 

concussion.63 DTI studies have demonstrated atypical diffusivity patterns along the cortical 

spinal tract (CST), corpus callosum (CC), corona radiata, and the longitudinal fasciculus.58, 

64 These white matter tracts are vital as they link together various cortical regions allowing 

for efficient communication and integration. Damage to these networks is associated with 

reports of cognitive impairments following concussions.56, 65, 66 The link between structural 

disruption and cognitive impairment is further evidenced by fMRI studies demonstrating 
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decreases blood flow in key frontal and temporal brain regions involved in executive 

function and cognitive control.52, 59  Finally, SWI has been used to investigate microscopic 

hemorrhaging following concussion, These investigations have found that individuals may 

experience microbleeds following concussion.62, 67 Concussed individuals who develop 

microbleeds have shown to perform worse on cognitive tests compared to concussed 

individuals without.68 Structural abnormalities following concussion may be present 

months or even years after injury,69 and chronic impairment may contribute to the late life 

neurodegeneration, cognitive impairment, and mental health issues seen in individuals with 

a history of concussion.70   

Long-Term Outcomes 

 Though initially believed to be a mild injury with transient disruptions in 

neurological function, a growing body of literature is beginning to identify severe and 

debilitating long-term conditions associated with concussions; specifically, persistent post-

concussive symptoms (PPCS) and chronic traumatic encephalopathy (CTE).15, 16, 71-73 

While studies have identified significant structural and functional abnormalities in 

individuals suffering persistent symptoms, there is no concise definition or symptom 

profile for PPCS.74, 75 Generally, PPCS is characterized as a clustering of non-specific 

symptoms following a concussion persisting beyond the typical recovery window (>1-3 

months) and negatively impacting daily function.72 Reported symptoms typically fall 

within one of three categories; somatic disruptions (chronic headache, photosensitivity), 

emotional imbalance (depression, anxiety), and cognitive impairment (poor concentration, 

memory issues). PPCS has been linked to an unregulated neuroinflammatory response 

triggered by concussive injuries. The unrestricted release of pro-inflammatory cytokines 
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and excitotoxins results in increased neural damage, and lingering symptoms.76 In addition 

to patients with PPCS reporting lingering symptoms, these slow to recover individuals have 

demonstrate persistent deficits in neurological function. (Sicard, unpublished) Impacting 

approximately 30-40%18, 77 of concussed individuals, lingering symptoms associated with 

PPCS negatively impact daily quality of life.21-23, 78-81  

 CTE is a distinct neurodegenerative disease brought on by repeated exposure to 

concussive and sub-concussive blows over a lifetime.73 This chronic exposure to head 

trauma leads to irreversible structural and functional alterations of the brain. The first cases 

of CTE, termed ‘punch-drunk’, were used described abnormal behavior in retired boxers.82, 

83 However, recent autopsy reports identifying CTE in retired football players, military 

veterans, and individuals with a history of non-sport related concussions (motor-vehicle 

accidents, falls) has expanded the scope of the disease.19, 84, 85  

It has been hypothesized that the resulting neurochemical hyperexcitability 

combined with overactivation of the microglial immune response following injury induces 

a state of “immunoexcitotoxicity.”49, 51 This combination of events may result in significant 

oxidative stress on the neural mitochondria, further limiting energy production via 

oxidative phosphorylation, and eventual cell death. Research suggests that repeated injuries 

may prime the microglial response, exacerbating the release of pro-inflammatory cytokines 

and excitotoxins on subsequent injuries resulting in further neural degredation.86 The 

heightened immune response and neural damage may serve as a mechanistic link between 

repeated neural trauma and CTE.20, 87, 88 Mitochondrial dysfunction (calcium influx) and 

increased concentrations of excitotoxins disrupt the regulation of tau proteins within the 

brain.89 Unregulated tau phosphorylation causes the protein to coil producing tau plaques. 
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These tau plaques are hallmark signs of CTE, and other neurodegenerative diseases.16, 90, 

91 In CTE, the non-specific accumulation of hyperphosphorylated tau-proteins within the 

cortex (layers II-III) resulting in irregular patterns of cortical (i.e., frontal and temporal 

cortex) and subcortical (i.e., hippocampus, amygdala, and locus coeruleus) atrophy.91, 92 

Unfortunately, the current diagnostic criteria for CTE relies on the localization and 

histological examination of brain tissue found during post-mortem evaluations.92 However, 

retroactive reports have linked CTE with several stereotypical clinical manifestations such 

as declines in mental health (depression, suicidal thoughts, aggression), substance abuse 

problems, impairments in fine motor skills, and cognitive decline/dementia.19, 20, 93 

Additionally, investigations have begun to test the reliability of advanced neuroimaging to 

identify early biomarkers of PPCS and CTE.94-96  

Emerging evidence is starting to highlight the association of repeated sub-

concussive head impacts (SCHI) and chronic neurological dysfunction. SCHI are classified 

as blows to the head that inefficient to produce characteristic symptoms associated with 

concussion.  Numerous studies over the last decade have identified significant alterations 

in neurological function and increased blood-brain barrier permeability in current and 

retired athletes of contact sports, who did not experience a concussive event.97-101 More 

concerning are the reports of CTE emerging in individuals with repeated (sub-concussive) 

head trauma, but no history of neurological injury. In a recent investigation, Stern and 

colleagues102 collected positron emission tomography (PET) scans from retired 

professional football players, without a history of traumatic brain injury but reported 

cognitive and/or mood disruption and age-matched non-athlete control. Compared to the 

controls, the images of former athletes showed significantly greater traces of tau 
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aggregation in frontal, parietal, and temporal brain regions, all regions associated with tau 

deposits found in CTE.92   

Although little is known about the etiology and progression of both PPCS and CTE, 

they are both associated with repeated head trauma, with individuals sustaining more head 

impacts being at greater risk of these long-term conditions.73, 103-105  In addition to PPCS 

and CTE, increased exposure to concussive and sub-concussive blows is associated with 

general long-term cognitive deficits and an early onset of mild cognitive impairment 

(MCI)/dementia.8, 106 While not everyone will experience these severe outcomes following 

concussive injuries, these conditions represent abnormal recovery patterns following injury 

that significantly impair a person’s ability to carry out day to day tasks.22, 78, 80, 87, 105, 107-109 

These findings highlight the importance of accurately tracking concussion recovery and 

the prescription of specific therapeutic techniques in cases where recovery is lacking.  

Current Trends in Clinical Management of Concussion 

 As previously stated, (see Historical Perspectives on Concussion) the diagnosis of 

a concussive injury is a significant clinical challenge. Acute symptoms presentation 

following concussion tends to be the most agreed upon indicator of injury.110 However, the 

reliance on self-reported symptoms has been challenged, as their accuracy is inherently 

dependent on the motivation of the patient. Patients often feel pressure to lie or under report 

symptoms to return to school, work, or sport activities.111-113 In these instances, individuals 

may prematurely return to everyday activities before nervous system is able to 

accommodate the physical and mental stressors.32, 114-116 Premature re-introduction may 
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exacerbate concussion related deficits, prolong concussion recovery, or increase risk of 

more severe secondary injury.3, 9, 27, 108 

This has led officials to call for multimodal evaluation protocols that extends 

beyond symptom reports and include assessments of other domain impacted by 

concussion6.6  In addition to symptom reports, recent clinical tools such as the Sport 

Concussion Assessment Tool 5th edition (SCAT5) now include assessments of cognition, 

neurological function, and balance.117 Computerized neurocognitive tests such as; the 

Immediate Post-concussion Assessment & Cognitive Testing (ImPACT)118 and the 

CogState Brian Injury Test Battery119 have become widely used clinical and sideline 

assessments of concussion. These tools quickly generate easy to interpret composite scores 

that can be used to identify cognitive impairment. Indeed, these tools have been vital in 

identifying concussive injuries within the acute phase.120, 121 However, these computerized 

assessments have received immense scrutiny due to their low reliability and vulnerable to 

practice effects limiting their utility to be used repeatedly over the recovery period.122, 123 

Research has demonstrated that these computerized tests lose their value after 

approximately 72-hours post-injury as they are not sensitive enough to detect subtle, but 

meaningful cognitive deficits.124 While the addition of computerized assessments of 

neurocognitive function reduces observer bias and provides a more objective measure of 

response efficiency and cognitive function their use is limited to the first few days of injury. 

Furthermore, these measures provide little information regarding the health and integrity 

of brain failing to provide crucial information needed to determine whether an individual 

is ready to return to normal activity.  
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Ophthalmological (i.e., visual processing and oculomotor) dysfunction is very 

common following brain injuries, including concussion.125-129 Common symptoms 

associated with concussion include photosensitivity, erratic eye movements, blurred vision, 

and vestibulo-ocular deficits.129 This has led to the incorporation of ophthalmological 

screenings into the clinical concussion assessment toolbox.130-132 The Vestibular/Ocular-

Motor Screening (VOMS) was developed as a clinical screening tool to assess how 

combination of head and eye movements (e.g. smooth pursuits, saccades, vestibular ocular 

reflex, convergence) affect symptoms.131 One by one practitioners guide the patient 

through the various assessments, asking the patient to report if executing the given 

movement exacerbates any symptoms. When administered correctly the VOMS 

demonstrates a high degree of sensitivity in detecting concussive injuries.133, 134 However, 

to get the most out of the test administration, trained practitioners are needed to detect 

subtle abnormalities in eye movement quality indicative of underlying injury to vestibulo-

ocular pathways. Furthermore, reports suggest that approximately 56% of clinical 

practitioners administering the VOMS lack a true understanding vestibulo-ocular deficits 

and their implications following concussion.135  

To overcome some of the shortcomings of the VOMS, the King-Devick test (KD 

test) of rapid number naming was developed as a quick, and easy to administer sideline 

tool.136 When administering the KD test, patients are given three index cards with numbers 

arranged horizontally left-to-right. Patients are then asked to read the numbers aloud as 

quickly and accurately as possible. Patients are scored based on the time it takes to 

complete each card and the total number of errors committed.137 While quick and easy to 

administer, even as a sideline assessment in athletes, there are many confounding variables 
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that hinder its utility as an assessment of concussive injuries. Most notably is its reliance 

on individualized pre-injury assessments to establish baseline performance levels.138 This 

may be practical for some athletic populations but in the general public it simply is not a 

feasible option. Additionally, relying on change scores from pre-injury baseline data (or 

normative data) you must establish meaningful cutoff thresholds for injury diagnosis and 

management of recovery. Finally, while the behavioral outcomes from the KD test seem to 

be sensitive to concussive injuries in the acute phase of recovery, the assessment lacks the 

ability to quantify the quality of eye movements. This is crucial because it is possible that 

as patients progress through the initial recovery phase, acute neural plastic adaptations may 

set in. These changes may result in compensatory neural activity reducing observable 

behavioral deficits, obscuring still present neurological dysfunction.  

In conclusion, with the increased awareness in concussive injuries over the last 

decade drastic changes have occurred in clinical management practices. However, 

identifying complete recovery from injury remains one of the most difficult clinical 

challenges to date. The importance of proper management is further exacerbated by 

research repeatedly identifying previous concussion history as one of the strongest 

predictors of repeat injury, prolonged recovery, and long-term negative outcomes.3, 8, 10, 73, 

139, 140 Findings from neurophysiological research suggest a potential disconnect between 

symptom recovery and the neurophysiological recovery of neural tissue.141, 142 These 

studies both structural60, 63, 143 and functional144-148 abnormalities in concussed individuals 

no longer reporting symptoms or negative indications on computerized tests. This may 

suggest that individuals may be returning to normal activities prematurely, putting 
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themselves at risk for further injury or long-term neurological sequalae.7, 9, 10, 33, 149 

Therefore, it is crucial that we identify objective measures of neurological recovery.  

Behavioral & Psychophysiological Biomarkers to Index Neural Function 

 As stated in the previous section, diagnoses and tracking individual recovery 

profiles remains to be one of the most difficult clinical challenges related to concussive 

brain injuries. This is largely due to the lack of validated and objective biomarkers that can 

be used to infer symptom presentation and underlying neurological health. Biomarkers are 

characteristics of biological systems (e.g., heart rate, oxygen concentration of blood) that 

can be quantified. Biomarkers are critical to the medical field as they provide objective 

measurements that can be tracked overtime and provide insight into the health of the overall 

system. 

Concussion assessments of neurological function primarily reliant on performance 

scores from neurocognitive testing batteries that are insensitive to subtle deficits in 

cognitive performance. However, evidence suggests that tasks assessing various aspects of 

cognitive control may prove viable resources in identifying and understanding cognitive 

dysfunction following concussion.120, 150, 151 Additionally, psychophysiological 

measurement techniques can be used to assess natural responses of physiological systems 

(i.e., brain, heart, eye, skin) to assess function in a variety of situations (e.g., rest, exercise, 

cognitive demand, emotional processing). These assessments have been utilized to quantify 

underlying neurological health in a variety of healthy and clinical populations. In this 

section I will review some promising psychophysiological assessment techniques and how 

they are well suited for assessing neurological dysfunction following concussion. 
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Cognitive Control Measures to Index Neural Function 

 Successful completion of everyday tasks relies on the ability to organize behaviors 

to achieve a common goal. This is achieved by higher-order neurological processes 

collectively referred to as cognitive control (or executive control).152, 153 Effective cognitive 

control allows us to acquire information from our environment, prioritize what information 

is relevant, select and coordinate appropriate responses, and evaluate response selection 

for future performance adaptations.154 The three tenet components of cognitive control are 

inhibition (ability to willingly override prepotent/automatic behaviors), working memory 

(ability to store and manipulate information over a short period of time), and mental 

flexibility (ability to fluctuate between multiple operating rule sets).155 Functional 

neuroimaging and anatomical studies have linked cognitive control processes to regions 

within the pre-frontal cortex (PFC). The PFC possesses vast projections to cortical and 

subcortical brain regions enable it to modulate lower-level sensory and motor 

processing.156-158 

 One key function of cognitive control is to mitigate the degree of conflict within 

the behavioral processing pipeline, by adapting behavior once conflict arises.159 Conflict 

in a general sense, can be interpreted as any disturbance limiting goal-oriented cognitive 

processing. In the action-selection process, conflict results from interference due to 

competing and concurrent processing streams such as: response to competition from 

prepotent reflexive actions; having to choose from multiple and equally probable response 

choices; or from erroneous action evaluations.159 The process of conflict monitoring has 

been localized to regions of the frontal lobe, the anterior cingulate cortex (ACC).160-162 

From here, information is passed on to cognitive control centers to adjust behavior.  
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To better understand its role in conflict mitigation, cognitive control processes have 

been subdivided into ‘proactive’ and ‘reactive’ components.154 Proactive control refers to 

the early processes responsible anticipating and preventing sources of potential conflict. 

Sustained activation of the dorsal lateral PFC (dlPFC) helps to reduce the conflict by 

allocating attentional resources and biasing the perceptual system toward task-relevant 

stimuli in the environment.156, 163 Conversely, reactive control relies on transient activation 

throughout the PFC, including the ACC. This activation pattern allows the individual to 

identify the source of the ongoing conflict and employ immediate corrective measures 

and/or schematic alterations to subsequent behaviors.159, 164 Within complex daily 

activities, individuals rely on a combination of both proactive and reactive control 

strategies to successfully complete complex, goal-driven tasks of everyday life.160 

Cognitive Control & Concussion 

Due to the delayed maturation and anatomical location of frontal brain regions, a 

wide variety of cognitive control tasks have been utilized to assess neurological function 

associated with development and concussion.165-167 Task paradigms such as the Go/No-Go 

task are commonly used in research to assess aspects of inhibitory control and behavioral 

monitoring.168 Both processes are vital as they allow for the effective voluntary control of 

behavior, maintenance and adaptation of behavior, and learning.169, 170 Typically within the 

Go/No-Go task individuals are presented with one of two stimuli. Within one condition of 

the task, participants are instructed to respond to an infrequently appearing target stimulus 

while ignoring the frequently occurring distractor stimulus (GO trials). Following the GO 

trials, the task instructions are reversed, and the subject is instructed to respond to the 

previous frequently appearing stimuli, while ignoring the infrequent stimulus (NOGO 
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trials). Inhibitory control, indexed by the number of committed errors (commission errors), 

is stressed by asking subjects to inhibit both a previously learned rule set and a prepotent 

response within the NOGO trials.   

   One investigation by Moore and colleagues65 investigated Go/No-Go task 

performance in a group of previously concussed pre-adolescent children. Participants with 

a history of concussion were on average, 2.1 years post-injury. When comparing overall 

task accuracy, they found no significant difference in performance. However, further 

behavioral analysis revealed that compared to non-injured controls, pre-adolescent children 

with a history of concussion exhibited poorer inhibitory control indexed by a greater 

number of commission (false alarm) errors. In a similar Go/No-Go paradigm, Zhao and 

colleagues171 found that recently concussed adults (mean 15.8 days post injury) 

demonstrated significantly poorer task performance on several measures; total targets hit, 

number of omission errors, and overall reaction time. Both studies highlight the potential 

utility of the Go/No-Go task in assessing progression of neurological function following 

concussion. 

Eye Tracking & Saccade Behavior 

 In addition to limb-motor movements, the human ocular system has evolved to meet 

the complex needs of human goal-driven behavior. The eye contains millions of 

photoreceptors specialized for visual information processing. There are two types of 

photoreceptors (i.e., rods and cones), each optimized for specific aspects of visual 

processing. At the front of the eye, the pupil and lens adjust in to control the amount and 

shape of light entering the eye. These lens and pupillary adjustments focus the incoming 
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light onto an area of the retina highly concentrated with cones called the fovea.172 These 

photoreceptors are optimized for color discrimination and visual acuity. Therefore, the 

fovea represents the portion of the eye with the greatest visual acuity (foveal vision).173, 174 

To maximize visual information processing, humans must be able to effectively move the 

eyes to align the fovea on novel/goal-specific stimuli to allow for adequate analysis. 

Additionally, we must be able to inhibit eye movements toward irrelevant stimuli to 

maintain foveal vision (fixation) on a specific object.175  

The oculomotor system has developed two specific types of eye movements 

designed to direct the fovea to specific areas within the working environment. Fast, 

stimulus driven saccades are used to quickly orient the visual system toward a novel/task 

relevant stimulus.179 Pursuit eye movements allow the visual system to maintain fixation 

on moving stimuli for continued processing.176 The remainder of these section will focus 

on saccadic eye movements and emerging evidence in their ability to detect neurological 

impairment.  

As mentioned, saccadic eye movements are quick, ballistic rotations of the eye 

intended to maneuver the fovea throughout the environment. Perceptually we view our 

current environment in a single glance. However, this is not reality, our working 

representation of the environment comes from the integration (and estimation) of visual 

information stemming from numerous visual snapshots captured by saccades.177 The neural 

circuitry involved in saccade generation spans many cortical and sub-cortical brain regions. 

The superior colliculus (SC), a midbrain structure, plays a critical role in the integration of 

sensory information to guide motor behavior.178, 179 The SC receives direct input from the 

retina and utilizes this sensory information to drive saccades and/or maintain fixation.175 
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Additionally, higher order brain centers within the frontal (i.e. frontal eye fields, 

dorsolateral prefrontal cortex) and parietal lobes (lateral interparietal cortex) synapse 

directly to the SC and exert influence on saccadic eye-movements.180, 181 These regions are 

heavily involved in the attention and vigilance networks,182, 183 exerting top-down 

regulatory control over gaze fixation and pre-saccadic processing.184, 185 Because saccadic 

eye movements rely on both bottom-up (externally driven) and top-down (internally 

driven) control, experimental task manipulation can be used to provide valuable insight 

into underlying cognitive control processes.186 

One of the most common tasks used to study saccade generation is the anti-/pro- 

saccade task (APST).  This task utilizes two experimental conditions in which participants 

are instructed to make specific directional eye movements toward (pro-saccade) or away 

(anti-saccade) in response to appearing stimuli.187 Pro-saccade trials utilize bottom-up 

reflexes toward an appearing stimulus, investigating sensory and perceptual awareness. On 

the other hand, anti-saccades require top-down cognitive control to inhibit a prepotent 

response (i.e., pro-saccade).188-190 Traditional implementations of the APST utilize a 

blocked design, in which each trial in each experimental run is either a pro- or anti- saccade 

trial. However, some researchers challenge the block framework arguing that the constant 

response rule set may mitigate cognitive demand.191 Recent studies have begun 

incorporating an interleaved design, in which the trial condition is randomly assigned and 

defined by a specific stimulus feature (i.e., shape, color) of a pre-response fixation target. 

The interleaving of anti- and pro- saccade trials may more adequately stress the individual’s 

executive system, as it requires the participant to keep two response rule sets in mind (task 
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switching) and identify the appropriate rule set for each trial (updating working memory) 

in addition to the suppression of prepotent reflexive responses (response inhibition).192-194 

Eye Tracking & Concussive Brain Injuries 

 Eye tracking technology has greatly improved quality and sensitivity of 

neurological assessments. Eye tracking has been used to investigate cognitive impairments 

following neurological disorders such as stroke195, 196200,201, attention deficit hyperactivity 

disorder (ADHD)186, 197, post-traumatic stress disorder (PTSD),198 as well as providing 

objective measures of individual levels of psychological status such as fatigue199 and 

anxiety.200 Recent research has utilized eye tracking to identify cognitive deficits following 

concussive brain injuries. In one of the first studies to investigate oculomotor impairments 

following concussion, Heitger and colleagues201 compared self-paced and anti-saccade 

performance between individuals diagnosed with PPCS and healthy matched controls. 

They identified that individuals suffering from PPCS demonstrated significant impairment 

in several measurements of eye movement control, predominantly those related to sub-

cortically driven saccades. Furthermore, they observed that several saccadic variables were 

significantly correlated with patient reported symptom scores, suggesting the possible 

utility of saccadic performance as an indicator of neurological recovery following injury. 

This relationship was further investigated by Hunfalvay and colleagues,202 in their study 

they compared both vertical and horizontal self-paced saccades in a group of individuals 

suffering TBI (mild, moderate, severe). They observed that individuals suffering from TBI 

demonstrated poorer control over saccadic eye movements, namely a decrease in the 

overall number of saccades and a poorer speed-accuracy trade-off. Interestingly, they 

observed an overall negative effect of group for many of the measures, with individuals in 
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the severe TBI group demonstrating poorer performance. The results of these two studies 

highlight the potential for measures of saccadic performance as biomarkers of neural 

health.  

 In addition to self-paced saccadic eye movements, research has investigated task-

related saccade behavior to study concussion-related dysfunction. In a preliminary 

investigation, Ting and colleagues64 had concussed and non-concussed individuals undergo 

a neurological assessment battery including DTI scans and an anti-saccade task. Similar to 

previous research they observed that individuals with a history of concussion demonstrated 

significantly more directional errors and longer saccadic reaction times. More importantly, 

they found that saccadic reaction time was highly correlated (r > 0.90) with DTI measures 

of neural integrity in which longer reaction times were associated with poorer neural 

integrity. More recently, Webb and colleagues208 had a group of concussed athletes 

complete the anti-saccade task within the first week of injury and again 2 – 3 weeks later 

when the athlete was cleared to return to sports participation. They found that recently 

concussed individuals, within the first week of injury, demonstrated increased saccadic 

reaction time and increased directional errors to anti-saccade targets. When the athletes 

returned for the follow-up evaluation, athletes no longer exhibited longer reaction times 

but continued to commit more directional errors compared to matched controls. This is 

important because while the athletes reported no more concussion-related symptoms at 

follow-up, assessments of saccadic control were able to detect significant deficits in 

cognitive function (i.e., response inhibition). These studies highlight the sensitivity of eye 

tracking technology and the anti-saccade task to detect subtle neurocognitive deficits 
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typically missed by standard clinical assessments. Furthermore, they demonstrate a 

significant relationship between saccadic behavior and underlying integrity of the brain. 

Pupillometry 

In addition to eye movements, pupillary dynamics have become a popular metric 

in psychophysiological research.203 The pupil is the clear circular opening in the front of 

the eye, positioned in the center of the iris (colored portion of the eye) which contain the 

pupillary musculature. The primary purpose of the pupil muscles are to increase (dilate) or 

decrease (constrict) the diameter of the pupil modulating the amount of light that entering 

the interior space of the eyeball and ultimately the photoreceptors of the retina.204 

Constriction and dilation of the pupil are controlled by the intricate interplay between the 

parasympathetic (constriction) and sympathetic (dilation) branches of the autonomic 

nervous system (ANS).205 Tonic parasympathetic activity keeps the pupils in a natural state 

of constriction.172 This is controlled the integration of afferent visual information within 

the parasympathetic preganglionic Edinger-Westphal Nucleus (EWN). The EWN then 

activates the iris sphincter muscles causing the pupil to constrict.204, 205 However, in 

response to environmental stimuli, activation of the sympathetic dilation pathway both 

directly and indirectly override the tonic pupillary constriction. The hypothalamus and 

locus coeruleus (LC) are both regions of the brain activated during periods of increased 

arousal.206 These brain regions directly influence pupil diameter by innervating the iris 

dilator muscles. Additionally, during periods of increased mental effort, the hypothalamus, 

LC, and frontal brain regions inhibit the EWN, indirectly modulating pupil size by blocking 

parasympathetic activation.207-210 
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By changing the amount of light (visual stimuli) entering the eye, the pupil 

functions to maximize the trade-off between focused visual acuity (high acuity, small area 

of focus) and broad visual sensitivity (low acuity, large area of focus).172 A prime example 

of this is the pupillary light reflex (PLR) characterized by the automatic dilation and 

constriction of the pupil in response to changes in ambient lighting.211 When you turn on a 

lamp in a dark room, the increased light is detected by the photoreceptors on the retina and 

transmitted to the EWN initiating pupillary constriction. The narrowing of the pupil aids 

in focusing the incoming visual information on the cone dense fovea, allowing for 

increased visual discrimination (i.e., visual acuity) of the objects in the room. On the other 

hand, if you turn off the light, activation of the hypothalamus and LC cause the pupil to 

dilate. Increasing the size of the pupil allows the peripheral regions of the retina (highly 

concentrated with rods) to process the incoming visual information. Unlike cones, rods are 

maximally tuned to detect movement, subtle changes in light intensity (visual sensitivity) 

and are therefore well suited for processing visual information in the dark.173 In addition to 

being inherent evolutionary advantage, researchers have hypothesized that the PLR also 

has been maintained to prevent the retinal photoreceptors from becoming desensitized to 

maintain responsiveness to fluctuations in visual stimuli.172  

While the PLR is probably the most well-known behavioral response associated 

with the pupils, modulation of pupil size can be observed in response changes in other 

situational demands. Recall, higher order frontal brain regions, the LC, and hypothalamus 

can inhibit the EWN. Therefore, pupillary dilation and constriction can be observed in 

response to internal fluctuations in arousal, cognitive load, and emotion, termed the 

psychosensory pupil response (PPR).172, 199, 212-217 While the circuitry involved in the PPR 
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is unclear, many point to activation of the LC-noradrenaline pathway by frontal brain 

regions.206, 218-220 It is hypothesized that the coordinated release of noradrenaline and 

activation of downstream  brain regions (i.e. SC) act to inhibit EWN projections to the iris 

sphincter muscles allowing for the pupil to dilate.221-223 This relationship between pupil 

dilation and cognitive processing suggests task-related pupil response may serve as a 

psychophysiological measure of attentional engagement and individualized mental work 

load. Therefore, tasks designed to manipulate the PPR may be able to identify neurological 

dysfunction following brain injury.  

Video-Oculography: Eye Tracking & Pupillometry 

 Ophthalmological screening used within the clinical management of concussion are 

extremely limited by their subjective nature, reliance on observer quantification, and 

insensitivity of their coarse scoring systems. However, with the emergence of infrared-

based pupillography in the 1950s, scientist have been able to accurately record ocular 

dynamics in real time during various tasks.205 This discovery has permitted adequate 

illumination for video cameras to capture a clear image of the eye and more importantly 

the pupil, without using light within the visible spectrum. When using visible light, the 

luminance induces noise by eliciting the PLR. Incorporating eye-tracking technology into 

assessments administrators can quantify ocular kinematics and pupillary dynamics 

allowing a deeper investigation into the integrity of neurological systems following 

neurological insult.  

 As a non-invasive index of transitioning arousal states, pupillometric measures 

have been utilized in clinical populations as an index of autonomic regulation143, 224-227 and 
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fatigue.199, 215 To date few studies have investigated alterations in pupillary dynamics 

following concussive brain injuries. The PLR is the most commonly assessed pupillary 

response studied in the concussion literature.228 A recent study found that compared to 

healthy controls, individuals with a recent concussion demonstrated exacerbated PLR 

responses.229 Further validating the utility of pupillometric measures as indexes of 

neurological recovery following concussion. 

As mentioned previously, pupillary responses can also be modulated by variations 

in individual perceptions of cognitive load or an individual’s attentional resource allocation 

to a specific task (the PPR). Hershaw and colleagues230 manipulated task difficulty of the 

Fusion n-Back task to compare cognitive load among concussed individuals and health 

controls. They failed to find any differences in task performance among concussed 

individuals and healthy controls. However, they observed that concussed individuals 

demonstrated greater activation of the PPR under the low cognitive load condition of the 

task. This is significant because it suggests that concussed individuals needed to utilize 

greater mental effort just to meet the same level of performance at lower levels of cognitive 

demand. Since pupillary constriction and dilation within the PLR and PPR are tightly 

controlled by the sympathetic and parasympathetic nervous systems (respectively) the 

pupillary abnormalities seen following concussion may indicate disruptions in the 

integrated communication between frontal cortical brain regions and brain stim nuclei 

governing autonomic nervous system behavior.231   
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Neuroelectric Function 

 When we carry out any task in our everyday life (i.e., driving, grocery shopping, 

getting dressed) or in an experimental setting, only the stimulus-response behaviors are 

observable and therefore quantifiable. However, there is a great deal of simultaneous neural 

processing occurring to form, select, and generate (or inhibit) behavioral actions. 

Historically, the only way to observe real time neural activity required the surgical 

implantation of electrode arrays over large brain regions or embedded in single neurons.232 

In 1924, German scientist Hans Berger was the first to non-invasively record neural activity 

from EEG electrodes placed on the surface of the scalp.233, 234 Since its introduction, the 

utilization of EEG has expanded to include investigations of ongoing cognitive processes 

during task execution,235-244 identification of neurological disease,245-251 functional 

connectivity patterns,252-257 and interfacing with computer-based devices.258-260 

 EEG recordings depict graphical representations associated with activity dependent 

voltage fluctuations of underlying neural populations.261, 262 The voltage fluctuations are 

believed to represent the extracellular post-synaptic activity within regional cortical 

pyramidal cells (layers III & IV) summating at the scalp underneath each EEG sensor.262 

Due to the negligible resistance in the speed of current flow from source to electrode, EEG 

recordings provide an almost instantaneous measure of ongoing neural activity.262 This 

high degree of temporal resolution permits the parcellation of neural activity surrounding 

a given behavioral event, allowing for the investigation of underlying cognitive 

processes.263 By taking advantage of these physiological properties research has been able 

to utilize EEG to identify disruptions in neurological function following concussion and 

other brain injuries.  
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Event-related Potentials (ERP) 

 Embedded within the continuous raw EEG recording lie neural activations 

associated with event specific neural processes. By time-locking and averaging recorded 

EEG data to specific events such as stimulus presentation or behavioral response we can 

identify event-related potentials (ERPS).264 ERPs represent coordinated and synchronous 

activity of  large pools (>1000) of cortical neurons serving specific sensory, cognitive, and 

motor functions.261 ERP components are typically categorized based on; their positive (P) 

or negative (N) polarity and the time (latency) in which they occur.261 By comparing a 

component’s amplitude and latency researchers are able to investigate deviations in 

cognitive function irrespective of behavioral performance.  

Stimulus-locked ERPs 

 Stimulus-locked ERPs are components elicited by the onset of a stimulus and occur 

across sensory modalities (i.e., visual, auditory, tactile). These ERPs are dichotomized 

based on their relative occurrence. Early stimulus-locked components (exogenous 

components) are hypothesized to represent externally evoked aspects of selective attention 

relating to stimulus features. Late components (endogenous components) are believed to 

reflect internally driven aspects of stimulus-related cognitive processing.265 Stimulus-

locked ERPs occur across sensory modalities, however, their interpretations vary slightly 

based on the how the stimulus is presented (especially early components).261 Therefore, for 

the following section, I will focus on definitions and interpretations based on visually 

presented stimuli.     
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P1. The P1 component is the first positive going peak occurring after stimulus 

presentation. This component reflects arousal/attentional allocation to given stimulus 

features.266 Given the modulation of P1 amplitude to attended stimuli, it is hypothesized to 

reflect an enhanced processing of attended (goal-relevant) information and inhibition of 

distractors.267 The P1 peak is most prominent over occipito-parietal electrodes peaking 

approximately 100 – 130ms after stimulus onset. Furthermore, studies have associated the 

visual P1 component with activation of extrastriatal and fusiform brain regions.268 

N1. Following the visually evoked P1 is the visual N1. The N1 is the first negative 

heading deflection peaking 150 – 200ms after stimulus onset. The N1 reflects the initial 

allocation of attentional focus toward stimulus features, allowing for stimulus 

discrimination of attended targets.269 Research has identified several subcomponents of the 

N1 each occurring maximally in different recording regions along the scalp. The stimulus 

discrimination subcomponent of the N1 appears predominantly over the occipito-parietal 

sites, like the P1.   

N2. The anterior N2 is a late occurring stimulus-locked component associated with 

the process of, conflict monitoring.261 In tasks where multiple actions may be possible (i.e., 

push or pull a door open), there becomes a competition for response selection. This 

competition generates conflict detected by the ACC, as it tries to determine the appropriate 

action given the current task goals.270 The N2 amplitude has been shown to be positively 

associated with the amount of perceived conflict within a given trial. Higher degrees of 

conflict (i.e., tougher response selection) produce a larger N2 amplitude, whereas N2 

latency has been linked to response selection and ‘conflict resolution’.271, 272 The N2 peaks 

approximately 180 – 350ms over fronto-central electrodes. Source localization studies 
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have indicated frontal brain regions (most likely Anterior Cingulate Cortex) as neural 

generators of the N2.  

P3. The P3 is one of the most studied ERP components. This late occurring 

stimulus-locked component is characterized by a positive deflection peaking between 300 

– 800ms after stimulus onset. Two subcomponents of the P3 have been identified, the 

fronto-central P3a and the centro-parietal P3b.264  Both of these components occur in 

response to infrequently occurring stimuli, in which working memory must be contextually 

updated to suit the current demand.273 The frontal P3a is elicited in response to the detection 

of distractor or novel stimuli,273 and is believed to index involuntary re-orientation of 

attentional focus.274 In tasks of inhibitory control (i.e., Go/No-Go or APST) the P3a is 

elicited in response to stimuli in which an action must be withheld or inhibited.272 In 

contrast, the P3b is generated in response to target stimuli.261, 275 Therefore, the P3b 

amplitude is believed to reflect  attentional resources allocated during stimulus 

engagement.276 As contextual revisions cannot occur without stimulus classification, the 

latency of the P3b is associated with the speed at which the individual is able to identify 

and classify stimuli.261 

Response-Locked ERPs 

 Continuous EEG data can also be time-locked to behavioral responses (e.g., button 

press, eye movement, reach) to investigate neural processes underlying response 

preparation277, 278 or the cognitive processes behavior monitoring and adaptation.279, 280  

Bereitschaftspotential. The Bereitschaftspotential (BP) is a gradual slow negative 

wave beginning approximately 2000ms prior to movement onset over centro-parietal 
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electrode sites. Recent research has sub-divided the BP into early and late components 

representing distinct processes of motor preparation. The early component characterizes 

the slow gradual negative climb of the BP. It peaks maximally at CPz and is thought to 

reflect generalized motor preparation of the PFC and supplementary motor area (SMA).281 

The late component is represented by an abrupt, steeper increase in negative polarity 

occurring approximately 600ms prior to movement onset. The late component, sometimes 

referred to as the lateralized readiness potential (LRP), occurs maximally over central 

electrode sites contralateral to the movement effector.260 This asymmetrical distribution 

may reflect more specific motor preparation of the primary motor cortex (M1).260 The 

motor monitoring potential (MMP) has been observed as a persistent climb in negativity 

continuing until the movement ends.244, 282 This continued negative ramping has been 

associated with ongoing motor feedback associated with online activity of the SMA.283 

Collectively, these ERPs have been referred to as movement-related cortical potentials 

(MRCP) 

ERN. The error-related negativity (ERN) is a fronto-central negative deflection 

peaking 50 – 150ms after an error response.284 Similar to the N2, the ERN is thought to 

reflect early conflict that arises when there is disconnect between the intended and actual 

outcome (i.e., error).285 It is hypothesized that the ERN acts as an internal error signal to 

initiate compensatory corrections on future behaviors.286 The amplitude of the ERN has 

been associated with the subjective magnitude of the error, with greater perceived errors 

generating larger ERN amplitudes. Interestingly the ERN will occur whether the individual 

is consciously aware that an error has been committed or not.243 Given their involvement 

in behavioral monitoring, the N2 and ERN have been closely linked to error monitoring 
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and learning reinforcement learning behavior.162 Source localization studies have also 

identified the anterior cingulate cortex as a common source generator for the ERN and 

N2.287   

 Pe. Most of the time, following the ERN is a slow positive deflection called the 

error positivity (Pe). The Pe peaks maximally in centro-parietal electrodes 300 – 500ms 

post error response. Pe amplitude has been linked to post-error compensatory behavior 

(post-error increases in RT, post-error accuracy).241 As such, the Pe is believed to reflect 

conscious awareness of an error being committed.243, 288   

Stimulus-Locked ERPs & Concussion  

 ERP techniques have been used to evaluate neurological function following 

concussion for nearly two decades.289, 290 Most of the research has focused on comparing 

sensory and early cognitive processing associated stimulus-locked components. This 

research has included individuals within the acute, post-acute, and chronic (i.e., PPCS) 

phases of injury. The findings from these and other neuroimaging studies have helped to 

elevate the serious nature of concussive brain injuries.  

 Few studies have investigated the impact of concussion on early sensory 

components (i.e., P1 and N1). Visual pattern reversal tasks are commonly used to evoke 

early sensory components and investigate extrastriatal and fusiform gyrus integrity.291 

Moore and colleagues292 utilized this paradigm in a group of young adults who experienced 

their last concussion in early adolescents. They found that compared to matched controls, 

adults with a history of concussion demonstrated significantly reduced P1 amplitudes 

reflecting a potential inability to attend to task relevant stimuli.  Early sensory components 
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have also demonstrated the capacity to delineate soccer players with a sport-related 

concussion from those without but experience repetitive sub-concussive blows.101 Using a 

visual three-stimulus oddball task, investigators found that compared to non-contact 

athletes only individuals with a concussion demonstrated reduced N1 amplitudes. 

Furthermore, N1 amplitudes were sensitive to the number of previous injuries. More 

recently, Desjardins and colleagues101 employed a visual search task to probe functional 

hemispheric asymmetries and their contributions to P1 and N1 morphology in older 

individuals with concussion. They observed that following concussion older individuals 

demonstrated a reduction in normal patterns of hemispheric specialization, marked by 

increased activation of the contralateral hemisphere. The authors pointed out that this 

pattern is associated with normal aging processes,293 supporting the hypothesis that 

concussion induces hyper-maturation of the brain.99, 294 This highlights that impairments in 

upper level cognitive processing may be attributed to issues in downstream sensory 

capture.292, 295 Additionally, the literature suggests potentially chronic impairment in 

sensory capture following concussion, even in normally recovered individuals.  

 Late components stimulus-locked components associated with conflict monitoring 

and attentional resource allocation are the most widely studied in the concussion literature. 

The directional flanker task296 is commonly utilized to induce response conflict (N2) by 

forcing participants to make directional responses with compatibly oriented flanking 

distractors or in a more difficult scenario with incompatibly oriented (opposite facing) 

flanking distractors. Using a child friendly variant of the flanker task, Moore and 

colleagues297 found that asymptomatic children with a history of concussion demonstrated 

increased N2 amplitude during response incompatible trials of the flanker task. This 
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suggests that these children with a history of concussion experienced greater response 

conflict when distractors were incongruent to the cuing stimulus. Additionally, across both 

conditions, previously concussed children demonstrated longer N2 latencies, an index of 

prolonged conflict resolution. The prolonged N2 latency on incompatible trials was 

positively associated with omission errors. Indicating that individuals with a history of 

concussion necessitated longer periods and could not resolve the stimulus-response conflict 

and select the appropriate response within the allocated response window. Using a similar 

paradigm, Olson and colleagues298 found a similar increase in N2 amplitude among 

asymptomatic recently concussed Division I athletes. They failed to see any significant 

group differences in N2 latency but noted that N2 latency was significantly correlated with 

time since injury. These studies suggest that concussion may result in long-term deficits in 

response conflict monitoring, allocating more attentional resources than non-injured 

controls.  

 As mentioned, the P3 is one of the most studied ERP components. Therefore, it is 

no surprise that several neurophysiological studies of concussion have analyzed this 

measure of attention. Studies consistently show that P3b amplitude is significantly reduced 

in individuals with a history of concussion.150, 297, 299, 300 This pattern is consistent across 

multiple task paradigms and age at injury. In their study comparing sport-related 

concussion and sub-concussive blows, Moore and colleagues101 found that both the sport-

related concussion group and sub-concussive blow groups demonstrated significant 

decreases in P3a and P3b amplitude. This suggests that attentional allocation and orienting 

processes are sensitive to impacts to the head whether it leads to a concussion or not. A 

more recent study by Cavanagh and colleagues301 used an auditory oddball task to 
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investigate the association among P3a and P3b components and reported symptomology. 

They evaluated participants within the sub-acute phase (<2 weeks post-injury) and again 

at a two-month follow-up. Contrary to previous research they failed to observe any 

difference in P3a or P3b morphology in either the sub-acute or follow-up evaluations. 

However, they found that greater P3b amplitude at the sub-acute evaluation accurately 

predicted better improvement in symptom reporting on the Frontal Systems Behavior 

Scale, a questionnaire used to assess severity of behavioral disturbances.309 In a recent 

study Sicard and colleagues302 investigated neurological function in slow-to-recover and 

asymptomatic athletes, using a three-stimulus odd-ball task. They found that compared to 

healthy controls, both slow-to-recover and asymptomatic athletes demonstrated increased 

latency in P3b. However, only slow-to-recover athletes demonstrated reduced P3b 

amplitude. These findings further support research that has identified target related 

attentional deficits following concussion. Additionally, these results demonstrate the utility 

of neuroelectric measures in identifying individuals who have not fully recovered from 

their injury.  

Response-locked ERPs & Concussion 

 Response-locked ERPs of behavior monitoring (ERN) and error detection (Pe) have 

not been as widely used in the concussion literature. One of the first investigations was 

carried out by Pontifex and colleagues.144 Utilizing the flanker task in group of adolescent 

individuals with a history of concussion they found that concussion history was associated 

with significant decrease in ERN amplitude. Additionally, ERN amplitude was associated 

with the number of previous injuries, with more injuries correlating with greater reductions 

in ERN amplitude. These associations were later corroborated by De Beaumont and 
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colleagues303 who found reduced ERN amplitude in a group of young adults with a history 

of concussion. Moore and colleagues297 found that children with a history of concussion 

not only demonstrate a reduction in ERN amplitude, but also Pe amplitude. The authors 

also found that Pe amplitudes were positively correlated with post-error accuracy. With 

reduced Pe amplitudes within the concussion group, the results suggest that children with 

a history of concussion may not be able to adequately detect erroneous behaviors therefore 

unable to effectively moderate behavior. While modulations of Pe have not been observed 

in other studies, the developing brain of children may be more susceptible to more 

debilitating injuries.7 Behavior monitoring and error detection are crucial processes 

involved in motor learning.170 A recent study by Beaulieu and colleagues311 investigated 

ERN modulation in asymptomatic concussed and non-concussed individuals during 

repeated blocks of a sequence learning task.  They found that in addition to blunted reaction 

times throughout the task, asymptomatic concussed individuals demonstrated reduced 

ERN amplitude primarily in the later learning blocks. Supporting the role of error-based 

motor learning, the authors reported ERN amplitude was positively correlated sequence 

learning. However, this relationship was not observed in asymptomatic concussed 

individuals. This finding may indicate the increased reliance on compensatory processes 

in concussed individuals to maintain performance.  

Movement-Related Potentials & Concussion 

 In addition to cognitive and somatic symptoms, concussive brain injuries are 

associated with disruptions in motor behavior; impaired coordination, deficits in postural 

control, and slowed movement speed.304-306 However, few studies have investigated the 

impact of concussion on movement-related potentials. Slobounov and colleagues307 
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recorded EEG activity while previously concussed (~17mo since injury) and 

neurologically healthy controls participants performed a series of sub-maximal isometric 

finger contractions. They observed that at higher force demands (50% MVC), individuals 

with a history of concussion demonstrated more difficult maintaining consistent force 

production. Additionally, individuals with a history of concussion showed attenuated 

amplitude of all MRP compared to the health controls. Therefore, impaired motor-related 

brain activity may elicit decreased synchronization of muscle activity resulting in poor 

postural control and coordination seen following concussion.  

 In a follow-up study, Slobounov and colleagues308 investigated static and dynamic 

postural control in athletes at pre-season baseline and multiple recovery time points (3-

days, 10-days, and 30-days) following concussion. When compared to baseline 

performance recently concussed athletes demonstrated significant deficits in postural 

control within the first 10 days. These deficits in postural control were characterized by 

increased postural sway (static balance) and decreased range of control in a self-paced 

anterior-posterior sway test of dynamic balance. Furthermore, while behavioral indices of 

postural control by the 30-day assessment, MRPs remained attenuated. These results 

further suggest lingering neurological dysfunction following concussion, even in the 

absence of behavioral deficits.  

Barriers in Establishing Psychophysiological Biomarkers 

 As described above, psychophysiological techniques are rapidly advancing our 

understanding of the neurological sequelae following concussions. Furthermore, these 

techniques have allowed investigators to identify patterns of abnormal neurological activity 
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underlying inadequate recovery. Unlike current assessment tools utilized in concussion 

management, psychophysiological techniques measure automatic and naturally occurring 

responses of the body. These automatic responses are not under the conscious control of 

the patient, and therefore cannot be masked or faked. Therefore, they provide consistent 

and reliable measures of underlying neurological function that can be used as a biomarker 

to gauge recovery status following injury. However, there are two critical barriers that must 

be overcome in order to progress forward in establishing psychophysiological biomarkers 

of concussion.  

 First, studies in investigating deficits following concussion often either compare 

symptomatic individuals (HCx-S) to healthy controls with no history of concussion (HC-) 

or asymptomatic individuals with a history of concussion (HCx-A). These studies have 

been instrumental in establishing deviations in function in concussion, but by not 

comparing all three groups (HCx-S, HCx-A, HC-) we are unable to associate deviations in 

function to abnormal recovery. By comparing Cx-S individuals to HC- we are able to tease 

out functional abnormalities associated with sustaining a concussion. However, research 

has consistently identified EEG abnormalities several months after the initial injury in Cx-

A individuals.145, 309, 310 When attempting to establish biomarkers of concussion recovery 

it is essential to identify functionality profiles associated with atypical recovery. Therefore, 

it is imperative to include both HC- and HCx-A control groups.  

 A second barrier in current concussion research is the limited ecological validity, 

stemming from the experimental paradigms frequently used. Ecological validity reflects 

the ability of the research findings to predict real-world behaviors. Real-world behaviors 

often require continuous integration and rapid utilization of sensory, cognitive, and motor 
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processes. This dynamic and complex behavior is often neglected in the relatively simple 

and discrete button press tasks used in psychophysiological research. These tasks can be 

modified to incorporate reaching or continuous behaviors more reflective of real-world 

activities. Additionally, when assessing individuals, tasks are often completed in a 

basal/resting state or analyses are computed on data collected within a single timepoint 

within the experimental protocol. However, physiological function is designed to respond 

and regulate to systemic stressors to optimize performance and this dynamic response may 

serve as a valuable indicator an individual’s ability to adequately function within the real-

world.311-314 Indeed, several research studies have demonstrated that following concussion, 

individuals demonstrate a maladaptive response to acute stressors, even with no apparent 

symptoms at rest.32, 114, 115, 315, 316 In conclusion, when assessing the recovery of 

neurological function following brain injury, it is imperative to assess function that reflects 

behaviors and stressors required for conducting everyday activities.  

 It must be noted, that to evaluate neurological function in ecologically valid 

paradigms, several pieces of sophisticated technology need to be integrated to work 

seamlessly with one another. EEG systems, multidimensional assessment devices (e.g., 

KINARM lab systems, motion capture environments) and eye-tracking systems are 

typically developed by individual companies and require a bit of technical expertise to 

integrate and allow synchronous communication across all systems. Additionally, 

acquiring all these pieces of equipment can end up being quite expensive. Finally, each 

system generates a lot of data, reducing and analyzing EEG, eye-tracking, and behavioral 

kinematic data requires a high level of training and expertise. However, while all the 

aforementioned factors must be taken into account this pilot and exploratory investigation 
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will help generate proven and validated assessment paradigms for the evaluation of brain 

injuries. Once these paradigms have been established, they can be implemented in more 

portable and automated systems for more simplistic assessments.  

Conclusion 

 Concussive brain injuries are no longer marginalized as transient injuries with no 

long-term consequences. With the increased public awareness and incidence of concussive 

brain injuries it is imperative that we develop neurological assessment techniques that are 

sensitive and reliable enough to readily detect lingering neurological dysfunction, even in 

the absence of behavioral deficits. Current clinical applications, while suitable for the first 

few days following injury, lack the robustness necessary to identify proven dysfunction 

beyond. Psychophysiological assessments using eye tracking and electroencephalography 

have demonstrated the ability to quantify neurological dysfunction and are tied to brain 

regions known to be impacted by concussion. These techniques are relatively inexpensive, 

non-invasive, and can generate objective values that when compared against normative 

samples can provide quick and easy to understand indications of neurological injury. By 

incorporating objective measures like these into practice clinicians will have a clearer 

understanding of the patient’s underlying neural function throughout the recovery process. 

Additionally, by establishing consistent indexes of neurological health and recovery from 

concussion we can begin to design, test, and implement individualized and evidence-based 

rehabilitation programs to endure adequate recovery for everyone following concussion. 
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STATEMENT OF PROBLEM 

 Establishing sensitive biomarkers associated with neurological health and recovery 

is crucial for the clinical management of concussive brain injuries. Psychophysiological 

biomarkers may serve as viable measures of neurological recovery, as they have 

demonstrated the capacity to detect specific and subtle abnormalities in structure and 

function. However, current methodological barriers limit the interpretation of current 

literature and preclude their implementation in clinical practice. Specifically, studies fail 

to directly compare symptomatic and asymptomatic individuals with a history of 

concussion. This additional level of comparison is crucial as it allows us to tease out 

atypical recovery patterns. Additionally, the ecological validity of testing paradigms used 

to assess neurological function following concussion is limited. To generalize function in 

the real-world, testing protocols should aim to mimic the dynamic and multidimensional 

activities individuals experience in their everyday life. The purpose of the proposed study 

is to overcome these identified barriers and advance the search for objective biomarkers of 

concussion recovery.  

SPECIFIC AIMS & HYPOTHESES 

GENERAL HYPOTHESIS. Compared to HC- individuals, both HCx-S and HCx-A individuals 

will demonstrate significant alterations in non-invasive, physiological measures of 

neurological function, with HCx-S individuals demonstrating the greatest deviation in 

neurological function.  

SPECIFIC AIM 1. Compare saccadic and pupillometric measures among HCx-A, HCx-S, and 

HC- individuals during an interleaved Anti-/Pro- Saccade Task (APST).  
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Premise: The interleaved APST task stresses all three aspects of cognitive control. By 

comparing task-related saccade behavior as well as pupillometric indices among HC-, 

HCx-A, and HCx-S individuals we will be able to identify specific neurological profiles 

underlying persistent symptoms.  

Innovation: This is innovative because it is one of the first investigations to saccade 

behavior and pupillometry in HCx-A and HCx-S individuals.  

Hypothesis 1.1. HCx-S individuals will demonstrate more directional errors and increased 

saccadic reaction time than HCx-A and HC- individuals during anti-saccade trials. There 

will be no differences in directional errors and reaction times of HCx-A and HC- 

individuals.  

Hypothesis 1.2. HCx-A and HCx-S individuals will demonstrate progressive increases in 

their PPR compared to HC- individuals.  

Significance: This is significant as it will provide crucial steps towards validating prognostic 

biomarkers of concussion. 

SPECIFIC AIM 2 Validate neuroelectric measures of conflict monitoring and attention in HC- 

individuals during performance of discrete and continuous arm reaching variants of the 

traditional (button-press) Go/No-Go task. 

Premise: Real world tasks require continuous perceptual, cognitive, and motor integration. 

Current paradigms used to assess cognitive control lack the requisite ecological validity to 

generalize findings to real-world behavior.  
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Innovation: By utilizing all three Go/No-Go variants, systematic and stepwise comparisons 

of collected neuroelectric indices can be made. Establishing referenced N2 and P3 

waveforms from the traditional button press variant will allow for the validation of  N2 and 

P3 collected from discrete and continuous reaching variants.  

Hypothesis 2.1. Neuroelectric indices of subconscious conflict monitoring (N2) and 

attentional resource allocation (P3) gathered from discrete and continuous arm reaching 

variants of the Go/No-Go task will be quantitatively similar in amplitude and latency 

compared to those collected during a discrete button press variant of the Go/No-Go task. 

Significance: This is significant because established N2 and P3 waveforms from more 

ecologically valid reaching variants of the Go/No-Go task these will allow for more 

realistic assessments in clinical populations. The increased complexity of these tasks may 

reveal neurological deficits not previously seen in traditional assessments.  

SPECIFIC AIM 3. Compare behavioral performance and neuroelectric measures of conflict 

monitoring and attentional resource allocation among HCx-S, HCx-A and HC- individuals 

during discrete and continuous arm reaching variants of the traditional Go/No-Go task. 

Premise: Real world tasks require continuous perceptual, cognitive, and motor integration. 

Current paradigms used to assess cognitive control lack the requisite ecological validity to 

generalize findings to real-world behavior. These more complex tasks may provide enough 

cognitive challenge to provide a truer picture of cognitive deficits underlying the persistent 

symptoms experienced by HCx-S individuals.  

Innovation: Assessing both HCx-S and HCx-A using more complex and ecologically valid 

assessments will allow   
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Hypothesis 3.1. Compared to HC- individuals, HCx-A and HCx-S individuals will 

demonstrate progressive increases in commission errors (Go responses on No-Go trials) 

during discrete and continuous arm reaching variants of the Go/No-Go task. 

Hypothesis 3.2. HCx-A and HCx-S individuals will exhibit progressive decreases in 

amplitude of their N2 and P3 stimulus-locked ERPs compared to HC- individuals. 

Hypothesis 3.3. In HCx-S individuals N2 and P3 amplitudes will be negatively correlated 

with symptom severity reported on the Rivermead Post-Concussion Questionnaire.  

Hypothesis 3.4. N2 and P3 amplitudes will demonstrate significant correlations with self-

reported scores on the Neuro- Quality of Life questionnaire. 

Significance: This is significant as it will provide crucial steps towards validating prognostic 

biomarkers of concussion. 
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CHAPTER 3 

GENERAL METHODS 
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Participants.  

Male and female (18 – 30 years of age) were invited to participate in the proposed 

protocol. All interested participants completed a comprehensive demographic 

questionnaire to identify eligible participants for each aim of the study. In general, to limit 

the impact of potentially confounding variables, participants were excluded if they 

indicated any pre-existing history of neurological conditions (e.g., seizures, meningitis), 

learning disability or learning disorder (i.e., ADHD, LD), psychiatric or mood disorder, or 

any history of moderate to severe brain injury. Additionally, participants were excluded if 

they indicated any injury that would prevent them from making repeated reaching arm 

movements or sitting upright in a chair for an extended period. Eligible participants that 

indicated a medical diagnosis of a concussion (>3 weeks prior) were dichotomized into the 

history of concussion group (HCx). HCx individuals were further categorized as either 

asymptomatic (HCx-A) or symptomatic (HCx-S) based on individual reporting on the 

Rivermead Post-Concussion Questionnaire. Participants that indicated no history of 

diagnosed or suspected concussion were included in the healthy control (HC-) group. To 

prevent the possibility of an individual with an undiagnosed concussion being included in 

the control group, control participants were asked: “following a blow to the head, neck, or 

body, have you ever experienced any of the following symptoms: headache, dizziness, 

confusion, blurred vision, balance problems, sensitivity to light and/or noise, fatigue, 

drowsiness, difficulty falling asleep, emotional, irritable, sad, or anxious?” Participants 

who responded “yes” to any symptoms were excluded from the control group.  Prior to 

beginning the testing procedure, informed consent was be obtained from each participant. 
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All testing procedures have been approved by the University of South Carolina Institutional 

Review Board.  

Procedure.  

Upon arrival to the testing site, participants were immediately familiarized with the 

experimental procedures and informed consent will be obtained. Following the informed 

consent process, participants completed a series of questionnaires (see Questionnaires). 

After completion of the questionnaires, participants were seated in front of the testing 

apparatus (see Apparatus) and outfitted with an electroencephalography (EEG) cap. 

Finally, once the EEG cap was adequately situated and the participant is comfortably 

seated, the participant completed the customized cognitive testing battery (see Figure 3.1). 

Prior to each task, participants were given oral instructions from a member of the research 

team. Additionally, for behavioral tasks, participants completed a block of practice trials 

to ensure adequate understanding.  

Questionnaires.   

Participants completed a series of questionnaires, these evaluations are all standardized 

evaluations of neurological injury and will be utilized to assess psycho-affective health and 

observational behavior during the laboratory assessment.    

1. The BDI-II.317 The BDI-II consists of 21 questions designed to assess the presence 

and intensity of cognitive, affective, and somatic symptoms of depression. 

Participants are asked to choose between 4 statements, rated from 0 to 3, which best 

describes how they have been feeling during the past 2 weeks. Scores range from: 

0-21 for cognitive, 0-15 for affective, and 0-27 for somatic sub-dimensions. A total
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Figure 3.1. Experimental Protocol. Diagram of experimental cognitive battery consisting 

of Anti-/Pro-saccade task (APST), continuous reach Go/NoGo task (GNGC), discrete 

button Go/NoGo task (GNGB), discrete reach Go/NoGo task (GNGR), and resting (REST) 

assessments 
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 score, ranging from 0 to 63, is obtained by adding the answers to each question, a 

higher score indicating greater intensity of depressive symptoms.  

2. Rivermead Post-Concussion Symptoms Questionnaire (RPQ).318-320 The RPQ is a 

list of 16 concussion-related symptoms (i.e., headaches, dizziness, nausea). 

Participants were asked to indicate the degree/severity in which they are currently 

experiencing each symptom using a five-point Likert scale 0 (not a problem) to 4 

(severe problem).  Additionally, participants were asked to answer each question 

comparing how they feel now, compared to how they previously felt before the 

injury. Symptoms included within the RPQ have been mapped to DSM-IV 

diagnostic criteria for PCS.3215 This criterion was used to dichotomize HCx 

individuals into symptomatic (HCx-S) and asymptomatic (HCx-A) subgroups.  

3. Neurological Quality of Life (Neuro-QoL).322 Participants were asked to complete 

several sub-scales selected from the Neuro-QoL NIH Common Data Elements 

testing toolkit for brain injury. These short form assessments are designed to 

investigate how neurological injury and disease impact a variety of mental, 

physical, and social health domains.  

4. State Trait Anxiety Inventory (STAI).323 The STAI is a 40-item survey aimed at 

assessing both current (20 questions) and general (20 questions) feelings of 

psychological health. Participants were asked to indicate the level to which they 

experience each statement on a 4-point scale (1- “Not at all’, 4 – “Very much so”).  

Apparatus. 

 Robotic assessments were conducted on the BKIN KINARM End-Point robot 

(BKIN Technologies, Kingston, ON, Canada). The KINARM lab system generates an 
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augmented-reality environment using an inverted monitor to project stimuli at 60Hz on to 

a semi-transparent mirror that orients the task into the horizontal plane in front of the 

participant. Participants were seated in a custom-built chair set on floor mounted tracks 

and hydraulic lift. A custom chin rest will be used to help stabilize the head and prevent 

extraneous movement. The KINARM system is also equipped with an EyeLink 1000 Gaze 

Tracking System (SR Research, Kanata, ON, Canada). This setup allows us to track and 

monitor eye movements throughout the duration of each task. This system uses a high-

resolution camera mounted at the rear of the workspace. 
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CHAPTER 4 

IMPACT OF CONCUSSION ON OCULOMOTOR CONTROL & PUPILLARY 

DYNAMICS 
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INTRODUCTION 

Roughly 3.8 million concussions are diagnosed each year in the United States.11-13  

Concussions represent a form of traumatic brain injury (TBI), and occur from either a direct 

blow to the head (i.e., helmet to helmet contact) or indirectly from a blow delivered to the 

neck or body.6, 41 The subsequent biomechanical impulses initiate a cascade of pathological 

reactions leading to neurophysiological alterations throughout the brain43, 49 These changes 

result in a constellation of immediate or delayed symptoms ranging from headache, 

emotional dysregulation and cognitive deficits, to temporary loss of consciousness (LOC) 

and post-traumatic amnesia (PTA)3, 4  

Despite the growing public awareness of concussions, accurately diagnosing and 

tracking recovery remains a major barrier in the clinical management of these injuries. 

Unfortunately, due to the micro level damage associated with concussions, conventional 

clinical neuroimaging modalities (i.e., magnetic resonance and computed tomography) fail 

to detect abnormalities in neural structure.39, 324 Therefore, current trends in clinical 

practice heavily rely on patient-reported symptom scales,117, 318 assessments of balance and 

vestibular-ocular function,131 as well as computerized tests of neurocognitive function.118, 

119 However, these assessments are limited by the inherent subjective nature of symptom 

scales111, 112 and questionable reliability of neurocognitive tests beyond the acute phase of 

injury.123  

The effective management of concussive injuries is critical, as individuals who 

prematurely return to full sport, work, or academic engagement may exacerbate concussion 

related deficits, prolong recovery, and are at increased risk of developing chronic 

neurological sequela such as persistent post-concussive symptoms (PPCS).8, 9, 27, 108 PPCS 
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is characterized as a clustering of non-specific symptoms following a concussion persisting 

beyond the typical recovery window (>1-3 months) and negatively impacting daily 

function.71, 72 It is estimated that roughly 30 - 40% of individuals will develop PPCS 

following a concussion.77 In addition to lingering symptoms, these slow to recover 

individuals demonstrate persistent deficits in neuroelectric indices of attentional control,302 

and alterations in cortical white matter integrity.74 If left untreated persistent concussion-

related symptoms may negatively impact the individual’s social, emotional, and vocational 

well-being.22, 23, 28 Therefore, it is crucial to develop and implement sensitive assessments 

that can objectively quantify function of neurological systems impacted by concussion.  

Advances in video-based eye tracking systems have allowed for assessments of 

psychophysiological function that are easy to administer yet sensitive enough to detect 

specific deficits following acquired and developed brain injuries.195, 197, 198, 325 The neural 

network underlying the oculomotor system relies on complex integrations among 

distributed cortical180, 221 and subcortical brain regions.179, 184, 326 Accordingly, these brain 

regions work together to coordinate eye-movements (saccades and smooth pursuits) and 

pupil size to effectively and efficiently gather information from our environment, and guide 

goal-driven behavior.327-330 Research has shown saccadic eye-movements tend to be the 

most sensitive to neurological injury, especially in tasks requiring high levels of cognitive 

demand.331-333 Furthermore, impaired oculomotor function following traumatic brain injury 

has been shown to correlate with injury severity and loss of neural integrity.52, 64, 201, 334, 335 

In addition to deficits in oculomotor control, abnormal task-dependent pupillary 

modulations have been observed following concussion.228, 230, 336 These abnormal pupillary 
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dynamics may serve as psychophysiological biomarkers for impairments in autonomic 

arousal and cognitive control, commonly seen following concussion.188, 337 

Incorporating eye-tracking and oculomotor-based tasks into the assessment of 

concussive brain injuries may allow for more sensitive evaluations of neurological function 

and recovery from injury. The objective of the present study is to compare saccadic and 

pupillometric behavior among asymptomatic (HCx-A) and symptomatic (HCx-S) 

individuals with a history of concussion, as well as non-injured controls (HC-). Compared 

to HC-, we predict that individuals with a history of concussion (HCx-A and HCx-S) will 

demonstrate poorer oculomotor performance, with HCx-S individuals demonstrating the 

worst performance. Similarly, we hypothesize individuals with a history of concussion 

(HCx-A and HCx-S) will exhibit significant alterations in task-evoked pupillary dynamics 

(TEPD). Finally, we hypothesize that deficits in oculomotor behavior will be associated 

with concussion-related symptom burden.  

METHODS 

Participants. A description of participant sampling procedures, inclusion, and exclusion 

criteria is provided elsewhere (see Chapter 3: General Methods-Participants). To 

investigate the impact of concussion recovery on oculomotor control and pupillary 

dynamics HC-, HCx-A, and HCx-s individuals completed an interleaved variant of the 

Anti-/Pro-Saccade task.  

Procedures. A generalized description and illustration of study procedures can be found 

elsewhere (see Chapter 3: General Methods-Procedure).  
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Symptom Reporting Participants were asked to fill out questionnaires to assess various 

symptom-domains commonly associated with concussion.  

5. The BDI-II.317 The BDI-II consists of 21 questions designed to assess the presence 

and intensity of cognitive, affective, and somatic symptoms of depression. 

Participants are asked to choose between 4 statements, rated from 0 to 3, which best 

describes how they have been feeling during the past 2 weeks. Scores range from: 

0-21 for cognitive, 0-15 for affective, and 0-27 for somatic sub-dimensions. A total 

score, ranging from 0 to 63, is obtained by adding the answers to each question, a 

higher score indicating greater intensity of depressive symptoms.  

6. Rivermead Post-Concussion Symptoms Questionnaire (RPQ).318-320 The RPQ is a 

list of 16 concussion-related symptoms (i.e., headaches, dizziness, nausea). 

Participants were asked to indicate the degree/severity in which they are currently 

experiencing each symptom using a five-point Likert scale 0 (not a problem) to 4 

(severe problem).  Additionally, participants were asked to answer each question 

comparing how they feel now, compared to how they previously felt before the 

injury. Symptoms included within the RPQ have been mapped to DSM-IV 

diagnostic criteria for PCS.3215 This criterion was used to dichotomize HCx 

individuals into symptomatic (HCx-S) and asymptomatic (HCx-A) subgroups.  

7. Neurological Quality of Life (Neuro-QoL).322 Participants were asked to complete 

several sub-scales selected from the Neuro-QoL NIH Common Data Elements 

testing toolkit for brain injury. These short form assessments are designed to 

investigate how neurological injury and disease impact a variety of mental, 

physical, and social health domains.  
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8. State Trait Anxiety Inventory (STAI).323 The STAI is a 40-item survey aimed at 

assessing both current (20 questions) and general (20 questions) feelings of 

psychological health. Participants were asked to indicate the level to which they 

experience each statement on a 4-point scale (1- “Not at all’, 4 – “Very much so”).  

Anti-/ Pro-saccade Task. Participants were asked to complete 80 trials of an interleaved 

variant of the Anti-saccade/Pro-saccade task.338  Each trial began with the presentation of 

a colored (blue/yellow) central fixation target (CFT; diameter 0.5°, 140 lum). The trial 

condition was defined by the color of the CFT (e.g., pro-saccade, blue CF; anti-saccade, 

yellow CFT. Colors of the CFT were matched for luminance). After 1000ms, the CFT 

disappeared for 200ms (gap) prior to the appearance of the peripheral target (PT, diameter 

0.5°, 140 lum) to the left or right of CFT location (10° eccentricity on the horizontal axis). 

In pro-saccade trials, participants were asked to make directed eye movements in the 

direction of the PT as soon as it appears. In anti-saccade trials, participants were asked to 

make directed eye movements in the opposite direction of the PT as soon as it appears 

(Figure 4.1). Trial condition (pro-saccade or anti-saccade) and PT location (left or right) 

were randomly distributed throughout the task. Additionally, color mapping to trial 

condition (i.e., pro-saccade, blue or pro-saccade, yellow) was randomly assigned and 

counterbalanced among participants. Prior to beginning the task, participants were given 

oral instructions outlining the task objectives as well as informing the participant of the 

appropriate color mapping. Additionally, participants were given 16 practice trials to 

ensure familiarization with the task.  
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Figure 4.1. Anti-/Pro-Saccade Task 
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Oculomotor Control. Gaze position was recorded using EyeLink 1000 (SR Research Ltd. 

Ottawa, Canada). This system is a monocular system with a maximum sampling frequency 

of 500 Hz, accuracy of 0.5°, and microsaccade resolution of 0.25°. Recorded gaze data was 

processed and classified incorporating previously validated and published methods within 

our KINARM environment.65 This involves data reduction steps to remove any blink 

artifacts, one sample spike artifacts due to temporary loss of corneal detection, and outliers 

that occur when gaze position moves outside of the workspace. Once data has been cleaned, 

the Cartesian (X, Y) coordinates recorded by the gaze tracking system is converted into 

rotational kinematics to assist in the classification of saccade onset. Saccade onset was 

defined as >30°/s and >8000°/s2 for >30ms.193 Trials with excessive artifacts (e.g., blink or 

loss of corneal lock) occurring within the gaze fixation or saccade onset windows will be 

thrown out and excluded from further analyses. Trial accuracy was determined based on 

gaze positioning following the first saccade initiated after PT onset. Similarly, saccadic 

reaction time (SRT) was calculated as the temporal delay from PT onset to the first saccade 

away from CFT. Like previous eye-tracking research utilizing gap periods, any SRT < 

100ms was labeled an express saccade and excluded from analyses.  

Statistical Analysis. All statistical analyses were computed in MATLAB 2020b 

(Mathworks, Natick, MA) using functions within the Statistics and Machine Learning 

toolbox, with an a priori alpha level of p < 0.05. Parametric and non-parametric tests of 

group comparisons were used to analyze continuous and categorical, respectively, to 

identify potential demographic differences among groups. APST performance and pupil 

behavioral data were examined via a series of analysis of variance (ANOVA) models with 

group (HC-, HCx-A, and HCx-S) as the between-subjects variable. Continuous outcome 
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variables were assessed for normality via Kolmogorov-Smirnov tests. Post-hoc 

comparisons were used to evaluate interaction and main effects with Bonferroni corrections 

for multiple comparisons. Eta squared (2) measures of effect size were calculated for each 

ANOVA (2: < 0.05 = small; (2: 0.06 – 0.13 = medium; 2: > 0.14 = large). To investigate 

potential associations among task performance, neuroelectric measures, and symptom 

burden Pearson correlation coefficients were calculated among all individuals with a 

history of concussion. 

RESULTS 

Participant Characteristics. Thirty-nine participants were included in our analyses. 

Participants were identified as either non-brain injured healthy control (HC-, n = 11), 

history of concussion – asymptomatic (HCx-A; n = 9), or history of concussion – 

symptomatic (HCx-S; n = 19) based on self-reported medical history and symptoms. 

Parametric and non-parametric group comparisons failed to reveal any demographic 

differences among groups (p’s > 0.05). Demographic information is provided in Table 4.1.  

Symptom Reporting. Table 4.2 presents means and standard deviations for self-reported 

outcome measures of concussion-related symptom burden for each group. Compared to 

HC- and HCx-A, HCx-S individuals reported significantly greater RPQ symptoms (p’s < 

0.001, 2’s > 0.31), feelings of depression (p’s < 0.01, 2’s > 0.15), and state anxiety (p = 

0.002, 2 = 0.20). Additionally, HCx-S individuals reported significantly worse outcomes 

on several sub-scales within the Neuro-QoL (p’s < 0.001, 2’s > 0.23). There were no 

significant differences among HC- and HCx-A individuals. This suggests that individuals 

within the HCx-S group fit the defined criteria for PPCS.
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 Table 4.1. Participant Demographics & Injury Characteristics. 

 HC- (n=11) HCx-A (n=9) HCx-S (n=19) 

Demographics 

 Mean SD Mean SD Mean SD 

Age (yrs) 20.9 1.7 21.5 2.5 21.4 3.2 

Sex [#M /#F] 4/7 - 5/4 - 4/15 - 

BMI 26.2 4.9 24.4 3.4 24.7 4.1 

Injury Characteristics 

Prev Cx (n)   1.4 0.7 2.2 1.2 

Days Since Cx   1430 973.9 743 797.5 

HC-: non-injured control, HCx-A: History of Concussion-Asymptomatic, HCx-S: History of 

Concussion-Symptomatic, SD: Standard Deviation, yrs: years, M: male, F: female, BMI: body 

mass index, Prec Cx: previous concussioons. 
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Table 4.2. Self-Reported Concussion Symptom Burden. 

 HC- (n=11) HCx-A (n=9) HCx-S (n=19) GRP Stat 

 Mean SEM Mean SEM Mean SEM 2 

Symptoms 

RPQ16 2.4 0.4 5.3 1.1 20.5*‡ 2.1 0.63 

RPQCog 0.7 0.2 0.9 0.4 4.4*‡ 0.4 0.63 

RPQEmo 0.6 0.2 0.2 0.2 3.5*‡ 0.5 0.52 

RPQSom 0.8 0.3 1.9 0.4 6.7*‡ 0.8 0.57 

Depression 

BDItotal 2.2 0.9 1.8 0.7 15.1*‡ 1.8 0.57 

BDIcog 1.1 0.4 0.7 0.4 2.7*‡ 0.5 0.21 

BDIncog 0.8 0.3 1.9 0.4 5.1*‡ 0.6 0.57 

Anxiety 

SAI 23.0 1.0 26.2 1.7 34.7*‡ 2.2 0.35 

TAI 52.0 0.5 51.8 0.7 50.3 0.6 0.13 

Neuro-Quality of Life 

Fatigue 39.7 1.8 40.7 1.1 51.0*‡ 1.3 0.53 

Cog Func 53.5 1.2 52.5 1.2 40.2*‡ 1.4 0.65 

EmoDsy 39.1 1.1 37.2 1.1 50.3*‡ 1.4 0.61 

AffW-B 56.1 0.8 56.7 1.0 51.7*‡ 1.2 0.24 

Sleep 43.7 0.9 41.0 1,9 56.6*‡ 1.9 0.58 

PSR 48.1 0.9 49.3 0.6 43.4*‡ 0.6 0.56 

SSR 48.5 0.5 50.9 0.4 45.2*‡ 0.8 0.46 

Note: Data are presented as mean ± standard error (SEM), p-value, and effect size (2).  

HC-: non-injured control, HCx-A: History of Concussion-Asymptomatic, HCx-S: History of 

Concussion-Symptomatic, RPQ: Rivermead Post-Concussion Questionnaire, RPQCog: Rivermead 

Post-Concussion Questionnaire – Cognitive domain, RPQEmo: Rivermead Post-Concussion 

Questionnaire – Emotional subscale, RPQSom: Rivermead Post-Concussion Questionnaire – 

Somatic subscale, BDI: Beck’s Depression Index II, SAI: State Anxiety, TAI: Trait Anxiety, Cog 
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Func: Cognitive Function, EmoDys: Emotional Dysregulation, AffW-B: Affect & Well-Being, 

PSR: Participation in Social Roles & Activities, SSR: Satisfaction with Social Roles & Activities 

* Comparison to HC- p < 0.05  

‡ Comparison to HCx-A p < 0.05
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APST Task Performance. Table 4.3 presents means and standard deviations for task 

performance measures on the APST. Figure 4.2 illustrates significant group differences. 

Group comparisons revealed trends for group differences for measures of total accuracy (p 

= 0.25), Pro- errors (p = 0.11), or Anti- errors (p = 0 .18).  

Analysis of pro-saccade reaction times revealed a significant group effect (F[2,36] 

= 24.9, p < 0.001, 2 = 0.58; Figure 4.3). Bonferroni corrected multiple comparisons 

revealed that HCx-A (m = 276.4ms  24.3) demonstrated significantly longer reaction 

times to pro-saccade targets compared to HC- (m = 208.0ms  15.3); p < 0.001) and HCx 

-S (m = 221.4ms  24.3; p < 0.001). Similarly, analysis of the pro-saccade CVRT revealed 

a significant group effect (F[2,36] = 6.4,  p < 0.001, 2 = 0.18). Bonferroni corrected 

multiple comparisons revealed that HCx-A (m = 28.1  5.3) demonstrated significantly 

greater reaction time variability to pro-saccade targets compared to HC- (m = 19.8  2.6; 

p = 0.003). No other group differences were found.  

Analysis of anti-saccade reaction times revealed a significant group effect (F[2,36] 

= 9.6, p < 0.001, 2 = 0.17). Bonferroni corrected multiple comparisons revealed that both 

HCx-A (m = 314.1ms  24.6) and HCx-S (m = 301.8  21.8) demonstrated significantly 

longer reaction times to anti-saccade targets compared to HC- (m = 274.0ms  18.0) (p’s 

< 0.001). No other group differences were found. 

Within participants with a history of concussion, several associations were found 

between measures of APST task performance and self-reported symptom burden (see Table 

4.4). Task accuracy was negatively associated total BDI score (r = -0.48) and the cognitive 

subscale of the BDI (r = -0.54). Anti-saccade errors were positively associated with BDI
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Table 4.3. Anti-/Pro-Saccade Task Performance & Pupil Dynamics 

 HC- (n=11) HCx-A (n=9) HCx-S (n=19) GRP Stat 

 Mean SEM Mean SEM Mean SEM 2 

Acc (%)  88.0 1.51 91.0 1.86 85.2 2.47 0.07 

Pro-Saccade 

Errors (%) 1.8 0.36 1.9 0.60 3.9 0.92 0.11 

RT (ms) 208.0 4.61 276.4* 8.1 227.1 5.57 0.58 

CRVT 19.8 0.78 28.1* 1.77 23.1 1.38 0.18 

MaxConst -0.35 0.05 -0.49 0.11 -0.46 0.05 0.06 

TEPD 0.10 0.03 0.15 0.04 0.10 0.02 0.07 

Anti-Saccade 

Errors (%) 18.5 2.3 13.6 2.80 24.5 4.40 0.09 

RT (ms) 274.0 5.4 314.1* 8.20 301.8* 5.00 0.17 

CRVT 16.8 0.81 15.4 1.30 18.1 1.08 0.07 

MaxConst -0.46 0.07 -0.51 0.08 -0.56 0.05 0.04 

TEPD 0.22 0.03 0.16 0.04 0.16 0.02 0.08 

Note: Data are presented as mean ± standard error (SEM), p-value, and effect size (2).  

HC-: non-injured control, HCx-A: History of Concussion-Asymptomatic, HCx-S: History of 

Concussion-Symptomatic, Acc: Task Accuracy, RT: Reaction Time, CVRT: Coefficient of 

Variation Reaction Time, Max Const: Max Constriction, TEPD: Task-evoked Pupil Dynamics.  

* Comparison to HC- p < 0.05  

‡ Comparison to HCx-A p < 0.05 
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Figure 4.2. APST Task Performance. Individual performance and group averages for APST measures of task accuracy (A), Pro-

Saccade errors (B), and Anti-saccade errors (C). Dots represent HC- (green), HCx-A (blue), and HCx-S (red). Black squares and 

whiskers represent group means and standard errors. 
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Table 4.4. Correlation Coefficients: APST Task Performance and Symptom Burden 

 APST ACC Pro- Errors Anti- Errors 

RPQ16 - - - 

RPQCog - - - 

RPQEmo - - - 

RPQSom - - - 

BDItotal -0.48 - 0.49 

BDIcog -0.54 - 0.56 

BDIncog - - - 

SAI - - 0.39 

TAI 0.43 - -0.47 

Fatigue - - - 

Cog Func - - - 

Emot Dsy - - 0.42 

AffW-B - - - 

Sleep - - - 

PSR - - - 

SSR - -0.42 - 

APST ACC: Anti-/Pro-saccade accuracy, Pro- Errors: Pro-saccade errors, Anti- Errors: Anti-

saccade errors, RPQ: Rivermead Post-Concussion Questionnaire, RPQCog: Rivermead Post-

Concussion Questionnaire – Cognitive domain, RPQEmo: Rivermead Post-Concussion 

Questionnaire – Emotional subscale, RPQSom: Rivermead Post-Concussion Questionnaire – 

Somatic subscale, BDI: Beck’s Depression Index II, SAI: State Anxiety, TAI: Trait Anxiety, Cog 

Func: Cognitive Function, EmoDys: Emotional Dysregulation, AffW-B: Affect & Well-Being, 

PSR: Participation in Social Roles & Activities, SSR: Satisfaction with Social Roles & Activities 

- Correlation p > 0.05
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score (r = 0.49), BDI cognitive sub-scale (r = 0.56), state anxiety (r = 0.39) and emotional 

dysregulation scale of the Neuro-QoL (r = 0.42). 

Task Evoked Pupillary Dynamics. Table 4.3 presents mean and standard deviation data for 

computed measured of pupil dynamics. Figure 4.4 depicts  average changes in pupil size 

throughout pro-saccade (Figure 2.3A) and anti-saccade (Figure 2.3B) trials for each group. 

Statistical analysis failed to reveal significant differences in task evoked pupil dynamics.   

Within participants with a history of concussion, associations between metrics of 

task-evoked pupillary dynamics and self-reported measures of concussion burden failed to 

reach statistical significance. However, several relationships demonstrated strong trends 

towards significance. Anti-saccade TEPD was inversely associated with overall RPQ 

symptom burden (r = -0.28; p = 0.15), the emotional RPQ subscale (r = -0.26; p = 0.19), 

and the cognitive BDI subscale (r = -0.27; p = 0.17).  

DISCUSSION 

 The present study set out to investigate the impact of concussion recovery on 

oculomotor performance and task-evoked pupil dynamics. We achieved this by comparing 

saccade behavior and pupil fluctuations during an interleaved APST among symptomatic 

(HCx-S) and asymptomatic (HCx-A) individuals with a history of concussion (>4 weeks 

post injury), and non-injured controls (HC-). Symptomatic individuals with a history of 

concussion tended to demonstrate poorer performance on the APST compared to both 

asymptomatic and non-injured controls (HCx-S: 85%; HCx-A: 91%; HC-: 88%). This was 

accompanied by more errors made in both the pro-saccade (HCx-S: 3.9%; HCx-A: 1.9%; 

HC-: 1.8%) and anti-saccade (HCx-S: 24.5%; HCx-A: 13.6%; HC-: 18.5%) trials.
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Figure 4.4. Task Evoked Pupil Dynamics. Average changes in pupil size during Pro-Saccade (A) and Anti-Saccade trials. Solid lines 

represent HC- (green), HCx-A (blue), and HCx-S (red) groups. 
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Additionally, both HCx-A and HCx-S groups demonstrated slower saccadic reaction times. 

Surprisingly, HCx-A individuals exhibited significantly longer saccadic reaction times 

compared to both HC- and HCx-S individuals. These finding support previous research 

that concussive brain injuries negatively impact oculomotor control.52, 202, 339 

 Additionally, the present study observed concussive brain injuries may alter typical 

task-evoked pupillary responses. Compared to HC-, both HCx-A and HCx-S groups tended 

to demonstrate larger degrees of pupillary constriction in both the pro-saccade and anti-

saccade trials, leading to an overall reduction in pupillary dilation (TEPD) during the anti-

saccade trial fixation periods. This is contradictory to previous findings demonstrating 

larger pupillary dilation during anti-saccade fixation periods.336 Pupillary dynamics are 

tightly regulated by inputs from the autonomic nervous system.210, 340 Research has 

demonstrated that during periods of increased cognitive load, parasympathetic inhibition 

over the pupillary dilator muscles withdraws resulting in increased pupil size.221 This task-

evoked pupil dilation is therefore thought to index arousal and cognitive load.213, 341 Given 

the results of the  both the current investigation and previous studies, atypical task-evoked 

pupil dynamics may both indicate autonomic dysfunction. In the present study, the 

observed pattern of increased pupillary constriction followed by smaller degrees of 

pupillary dilation during anti-saccade trials may indicate failure of the autonomic nervous 

system to adequately adapt to situational demands. 

 The present study also observed associations within individuals with a history of 

concussion (HCx-A + HCx-S) between task performance and self-reported measures of 

concussion burden. Worse task accuracy and an increased anti-saccade error rate were 

associated with worse emotional symptom reports (BDI and Emotional Dysregulation 
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Neuro-QoL). We also observed several associations among pupil dynamics, overall self-

reported symptom burden (RPQ16) and emotional dysregulation (BDI) that trended toward 

significance. The possible relationships among pupillary dynamics and emotional 

dysregulation are not surprising as the branches of the autonomic nervous system have 

been linked to pupillary control212, 225 and emotional regulation.342-347 These relationships 

with symptom burden provide support for the utility of oculomotor and pupillary 

assessment of recovery following concussion. Further research is needed to further 

investigate these relationships. 

Limitations.  

 While informative, the present study is not without its limitations. First, the present 

study utilized a small sample size. The small sample size possibly limited our ability to 

detect significant group differences. Future studies should aim to recruit more participants 

to ensure it is sufficiently powered to detect meaningful differences. Additionally, while 

not significantly different, averages days since injury within the HCx-A group is almost 

double the HCx-S group. There was no association between days since injury and any of 

our measures of task performance or pupil dynamics. However, future studies should aim 

to better match on this variable to reduce the potential confounding influence.  

Conclusion.  

 The present study demonstrated that concussive brain injuries negatively impact 

gaze behavior and task dependent pupillary responses. Furthermore, these measures 

demonstrated meaningful associations to self-reported symptom burden. This provides 
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support that eye-tracking and pupillometric measures may serve as viable biomarkers for 

concussion recovery. 
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CHAPTER 5 

VALIDATION OF EVENT-RELATED POTENTIALS DURING CONTINUOUS TASK 

PERFORMANCE 
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INTRODUCTION 

When humans interact with their environment they are confronted with a vast 

number of competing stimuli. We must continuously filter through distractions in search 

for task-informative sources, synthesize and integrate incoming data, then select and 

execute our chosen action.328, 348 For decades, scientists across all domains of neuroscience 

have tried to understand the neural mechanisms and information flow that make up efficient 

and effective human behavior and decision making.180, 349-352 In the field of cognitive 

neuroscience, research has focused on understanding the neural processes that dwell 

between the stimulus presentation and behavioral execution. These processes of attention 

and cognitive control allow us to acquire information from our environment, prioritize what 

information is relevant, select and coordinate appropriate responses, and evaluate response 

selection for future performance adaptations.152-154 Better understanding these processes, 

and the neural networks involved are crucial to both normal and abnormal behavior.  

Functional neuroimaging techniques such as electroencephalography (EEG) have 

been vital for the study of cognitive processing and human behavior.161, 262, 263, 265, 267, 276, 

353 Unlike other functional imaging techniques, magnetic resonance imaging (MRI) and 

near-infrared spectroscopy (NIRS) that indirectly quantify neural activity from alterations 

in cerebral blood flow, EEG utilize the instantaneous electrical activity generated by active 

neurons. This allows for an extremely high level of temporal precision, with accuracy down 

to the millisecond. Furthermore, by time-locking the recorded neural series data to specific 

task-related events and analyzing the amplitude (i.e., magnitude) and latency of specific 

waveform components can quantify specific cognitive processes.261, 264, 354 These event-
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related potentials (ERPs) represent coordinated and synchronous activity of  large pools 

(>1000) of cortical neurons serving specific sensory, cognitive, and motor functions.  

Stimulus-locked analyses represents one ERP event-locking technique that allows 

for the quantification of processes serving conflict monitoring (i.e., N2) and stimulus 

evaluation (i.e., P300). The N2 ERP component is associated with the process of conflict 

monitoring.261 In tasks where multiple actions may be possible (i.e., push or pull a door 

open), there becomes a competition for response selection. Higher degrees of conflict (i.e., 

tougher response selection) produce a larger N2 amplitude, whereas N2 latency has been 

linked to response selection and ‘conflict resolution’.271, 272 The P300 component occurs in 

response to infrequently occurring stimuli, in which working memory must be contextually 

updated to suit the current demand.279 Depending on the specific task, the P300 is believed 

to index attentional resource allocation to processes serving response inhibition (P3a) or 

stimulus engagement (P3b).273-276, 355  

Over the last several decades these well-established waveforms have helped shape 

our understanding of human cognition. However, traditional paradigms rely on simple and 

discrete button press tasks. This level of response mapping fails to fully encompass the 

complex and continuous nature of real-world interactions. This limits the generalizability 

of the current literature findings. Additionally, these methods have even been utilized to 

identify cognitive deficits in neurological conditions  (i.e., ADHD, PTSD, autism spectrum 

disorder),248, 356, 357 and acquired brain injury (i.e., stroke, concussion).297, 299, 302, 358, 359 

Relying on tasks that are too simple may fail to fully capture or even completely miss 

ongoing deficits. Previous research has demonstrated that assessing psychophysiological 

function of recently concussed individuals under periods of acute cognitive and physical 
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stress exacerbates deficits not seen at rest or low stress loads.32, 114 Therefore, to advance 

the utility of EEG and ERP techniques, traditional recording methods need to be applied to 

more complex and real-world task paradigms.  

Accordingly, the aim to the present study is to validate neuroelectric measures of 

conflict monitoring and stimulus evaluation while participants perform discrete and 

continuous arm reaching variants of the traditional Go/No-Go task. We hypothesize that 

neuroelectric indices of subconscious conflict monitoring (N2) and stimulus evaluation 

(P300) gathered from discrete and continuous arm reaching variants of the Go/NoGo task 

will be quantitatively similar in amplitude and latency compared to those collected during 

a discrete button press variant of the Go/NoGo task. 

METHODS 

Participants. A description of participant sampling procedures, inclusion, and exclusion 

criteria is provided elsewhere (see Chapter 3: General Methods-Participants). To validate 

ERP measures during continuous task performance data from HC- participants were 

analyzed.  

Procedures. A generalized description and illustration of study procedures can be found 

elsewhere (see Chapter 3: General Methods-Procedure).  

Cognitive Task. Following setup and preparation of the EEG cap, participants were 

comfortably seated in front of the KINARM. Within the KINARM environment, 

participants completed three variants (discrete button, discrete reach, and continuous reach) 

of a modified Go/NoGo task (see Figure 5.1). For each variant, participants completed two 

separate conditions. The response infrequent condition in which participants were 
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instructed to respond quickly and accurately to the appearance of a grey diamond (25% of 

trials) and inhibit responses to a grey square (75% of trials). Conversely, in the response 

frequent condition participants were instructed to respond to the appearance of a grey 

square (75% of trials) and inhibit responses to a grey diamond (25% of trials). Within each 

variant, participants completed two blocks of the response infrequent condition followed 

by three blocks of the response frequent condition. Each block consisted of 120 trials. Prior 

to beginning the task, participants were given oral instructions outlining the task objectives 

as well as informing the participant of the appropriate target shape. Additionally, 

participants received a set of 20 practice trials to ensure familiarization with the task.  

 Within each variant, the method in which the participant is asked to respond 

changed. For the discrete button (BUTTON) variant, participants grasped a custom two-

button digital trigger box (Figure 5.1A). The participant instructed to make responses by 

pressing the button corresponding with their dominant hand. When the task began, an 

object (square or diamond) appeared in the center of the KINARM workspace. Targets 

were presented for 200ms followed by a 1500ms response window.  

For the discrete reach (REACH) variant, participants grasped one of the KINARM 

robotic arms with their dominant hand (Figure 5.1B). The participant’s hand position in 

the workspace is represented within the workspace as a white dot and movement of the 

robotic arm produced equivalent movement of the white dot. To begin the task, participants 

were instructed to move the dot into a yellow circle to indicate they are ready. This position 

served as the “waiting position” for every trial. Once the participant moved the dot into the 

waiting position, and their hand was still (hand velocity < 5mm/s for 200ms), an object 

(square or diamond) appeared in one of five potential object locations positioned
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Figure 5.1. Go/NoGo Task Variants. Visualization of discrete button (A), discrete reach 

(B), and continuous reach (C) Go/NoGo task variants.
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 equidistant over the “waiting position.” Objects were presented for 200ms followed by a 

1500ms response window. Participants were instructed to make a response, they needed to 

reach to the location where the target appeared then return their hand to the “waiting 

position” to initiate the next trial.  

For the continuous reaching (CTR) variant, participants again grasped one of the 

KINARM robotic arm with their dominant hand (Figure 5.1C). The participant’s hand 

position within the workspace was represented by a green rectangular paddle. Participants 

could freely maneuver the green paddle within the workspace by moving the robotic arm. 

Participants were instructed, once the task begins, to maneuver the paddle to intercept and 

hit away the target objects (square or diamond) as they fall from the top of the workspace 

toward the bottom. Objects fell one at a time so that only one object is present in the 

workspace and fall at a constant speed of 30cm/s. If a participant made contact with an 

object, a reciprocal perturbation was applied to the robotic handle and the object ricocheted 

away from the paddle to simulate contact with a real weighted object.  

Behavioral Measures.  

To calculate behavioral measures for each variant of the Go/NoGo task, all blocks 

within a given condition were combined. Primary behavioral measures of response 

accuracy (ACC, %), commission errors (CE, n), and omission errors (OE, n) were 

calculated for each task variant. Additionally, signal detection metrics were calculated to 

assess an individual’s discrimination sensitivity (dPrime) within each variant.360 
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Neuroelectric Data: Acquisition & Reduction.  

Electroencephalography (EEG) data was concurrently recorded from 64 high 

impedance, active electrodes (AFz, Fz, FCz, Cz, CPz, Pz, POz, Oz, FP1/2, AF1/2/4/8, 

F7/5/3/1/2/4/6/8, FT9/7/8/10, FC5/3/1/2/4/6, T7/8, C5/3/1/2/4/6, TP9/7/8/10, 

CP5/3/1/2/4/6, P7/5/3/1/2/4/6/8, PO7/3/4/8, O1/2) arranged according to the International 

10-10 system335 using actiCAP (EASYCAP Gmbh, Herrsching, Germany). Recordings 

were referenced online to FCz, with FPz serving as the ground electrode. Additional 

electrodes were also placed above and below the left orbit and to the left and right outer 

canthus to monitor vertical and horizontal electrooculographic (EOG) activity, 

respectively. Impedances were kept below 25kΩ for all electrodes. Continuous recordings 

were and amplified using actiChamp amplifier (Brain Products GmbH, Gilching, 

Germany) digitized at 1000Hz. Finally, an online bandpass filter 0.01 – 100 Hz was applied 

to each recording. Digital event codes sent from the KINARM and were received via 8-bit 

(0-256 possible events) input into the back of the electrophysiological system. All EEG 

activity was recording using Brain Vision Recorder (v1.21, Brain Products GmbH, 

Gilching, Germany). 

Reduction of continuous EEG data was conducted offline in MATLAB 2020b 

(Mathworks, Natick, MA) using custom scripts and plugins from the EEGLAB and 

ERPLAB toolboxes.361, 362 First, event codes and latencies recorded from the KINARM 

were synced with the continuous EEG data. Data will then be filtered using a 1.0 – 50.0Hz 

bandpass windowed sinc finite impulse response filter. Prior to independent component 

analysis (ICA) decomposition, artifact subspace reconstruction (ASR) was used to identify 

and remove any noise related artifacts.363 Once the data has been cleaned, an Infomax 
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independent component analysis (ICA) algorithm was used to characterize individual 

independent components (ICs) within the data. ICs were then classified using the iclabel() 

plugin function, and ICs labeled as non-neural (i.e., ocular, muscle) sources were 

subsequently removed and the data reconstructed. To account for excessive noise, average 

signal recorded from peripheral channels (i.e., F7/8, CP5/6, Pz/7/5/3/1/8/6/4/2, 

POz/7/3/8/4, Oz/1/2) were averaged to characterize signal noise. The channels were 

removed from the data and the characterized noise was subtracted from the remaining 

channels. Artifact free data was re-referenced to a whole head average and FCz (online 

reference) was added back in 

Stimulus-locked epochs were created from -100 – 1000ms epochs created around 

the stimulus presentation for correct trials and baseline corrected using the 100ms pre-

stimulus period. Incorrect trials and trials containing EEG activity exceeding ±75μV were 

removed. Finally, remaining trials were manually inspected for remaining artifacts and 

removed. The N2 component was identified as the mean amplitude within a 30ms window 

surrounding the largest negative-going peak 150 – 350ms post stimulus onset, at fronto-

central sites. The P300 component was obtained by identifying as the mean amplitude 

within a 50ms time window surrounding the largest positive-going peak within the interval 

300 – 800ms post stimulus onset at centro-parietal sites. Within the central-parietal 

electrode array, local hotspots were generated by locating the electrode with the largest 

peak and taking an average of neighboring electrodes. Peak amplitude was measured as the 

difference between pre-stimulus baseline and mean peak-interval amplitude. Peak latency 

was defined as the time point associated with the maximum deflection within the defined 

temporal window.  
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 Statistical Analysis. All statistical analyses were computed in MATLAB 2020b 

(Mathworks, Natick, MA) using functions within the Statistics and Machine Learning 

toolbox, with an a priori alpha level of p < 0.05. Behavioral performance data (accuracy, 

commission errors, and omission errors) and neuroelectric measures (N2 peak amplitude, 

N2 peak latency, P300 peak amplitude, and P300 peak latency) were examined via a series 

of 3 (variant: BUTTON, REACH, CTR) × 2 (condition: response infrequent, response 

frequent) mixed model ANOVA. Partial eta squared (p
2) measures of effect size were 

calculated for each ANOVA (p
2: < 0.05 = small; (p

2: 0.06 – 0.13 = medium; p
2: > 0.14 

= large). 

RESULTS 

Participant Characteristics. Twenty-three participants without a history of brain injury (or 

suspected brain injury) were included in our analyses. Demographic information is 

provided in Table 5.1.  

Go/NoGo Task Performance. Statistical analysis of task accuracy revealed a significant 

variant x condition interaction (F[2,20] = 9.3; p < 0.001; p
2 = 0.06). Simple main effects 

of condition were observed for all three task variants; BUTTON (t[22] = 8.6; p < 0.001), 

REACH (t[22], = 9.3; p < 0.001),  and CTR (t[22] = 2.17; p = 0.04). In each variant 

participants performed significantly worse in the response frequent condition (BUTTONm 

= 95.6  2.2, REACHm = 92.2  3.7, CTRm = 89.8  4.7) compared to the response 

infrequent condition  (BUTTONm = 99.4  0.6, REACHm = 99.2  0.6, CTRm = 91.3  

4.1). Additionally, a significant simple main effect of variant was observed (F[2,20] = 60.9; 

p < 0.001; p
2 = 0.37). Bonferroni corrected multiple comparisons revealed irrespective of
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Table 5.1. Participant Demographics 

 HC- (n=23) 

Demographics 

 Mean SD 

Age (yrs) 22.1 2.8 

Sex [#M /#F] 8/15 - 

BMI 25.0 3.8 

HC-: non-injured control, M: male, F: female, BMI: body mass index
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condition, participants performed significantly worse on the CTR variant (est. m = 90.6  

0.5) compared to the BUTTON (est. m = 97.5  0.5; p  < 0.001) and REACH (est. m = 

95.5  0.5; p  < 0.001). Participants also performed significantly worse on the REACH 

variant compared to the BUTTON (p = 0.02).  

Statistical analysis of commission errors reveled a significant variant x condition 

interaction (F[2,20] = 8.1; p < 0.001; p
2 = 0.05). Simple main effects of condition were 

observed for all three task variants; BUTTON (t[22] = -8.7; p < 0.001), REACH (t[22], = 

-9.5; p < 0.001),  and CTR (t[22] = -7.1; p = 0.04). In each variant participants committed 

significantly more errors of commission in the response frequent condition (BUTTONm = 

14.0  7.3, REACHm =  21.4  10.5, CTRm = 18.4  8.7) compared to the GO condition  

(BUTTONm = 0.3  0.6, REACHm = 0.5  1.0, CTRm = 9.7  7.2). Additionally, a 

significant simple main effect of variant was observed (F[2,20] = 10.5; p < 0.001; p
2 = 

0.06). Bonferroni corrected multiple comparisons revealed irrespective of condition, 

participants committed significantly more errors of commission on the CTR variant (est. 

m = 14.0   1.0; p < 0.001)  and REACH (est. m = 11.3  1.0; p = 0.02) compared to the 

BUTTON (est. m = 7.4 1.0).   

Statistical analysis of dprime revealed a significant variant x condition interaction 

(F[2,20] = 12.6; p < 0.001; p
2 = 0.06). Simple main effects of condition were observed for 

both the  BUTTON (t[22] = 9.7; p < 0.001) and REACH (t[22], = 8.9; p < 0.001) variants. 

In both variants, participants exhibited lower dprime metrics in the response frequent 

condition (BUTTONm = 3.6  0.5; REACHm = 3.3  0.4) compared to the response 

infrequent condition (BUTTONm = 4.7  0.3; REACHm = 4.4  0.7) indicating greater 
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difficulty distinguishing targets from distractors. Additionally, a significant simple main 

effect of variant was observed (F[2,20] = 101.3; p < 0.001; p
2 = 0.47). Bonferroni 

corrected multiple comparisons revealed irrespective of condition, participants exhibited 

lower dprime metrics on the  CTR variant (est. m = 2.6  0.8) compared to the BUTTON 

(est. m = 4.2  0.8; p  < 0.001) and REACH (est. m = 3.8  0.8; p  < 0.001). Participants 

also exhibited lower dprime metrics on the REACH variant compared to the BUTTON (p 

= 0.009).  

Statistical analysis failed to reveal a significant interaction for omission errors. 

However, a significant main effect of variant was observed (F[2,20] = 104.7; p < 0.001; 

p
2 = 0.57). Bonferroni corrected multiple comparisons revealed irrespective of condition, 

participants committed significantly more errors of omission on the CTR variant (est. m = 

13.9   0.7)  compared to the BUTTON (est. m = 1.2  0.7; p < 0.001) and REACH (est. 

m = 1.6  0.7; p < 0.001).  No significant differences were observed between the REACH 

and BUTTON variants.  

Neuroelectric Measures. Figure 3.1 depicts average neuroelectric waveforms for response 

infrequent (Figure 3.1A) and response frequent (Figure 3.1B) conditions during all three 

task variants.  

Statistical analysis of peak N2 latency revealed significant variant x condition 

interaction (F[2,15] = 7.6; p < 0.001; p
2 = 0.12). Simple main effects of condition were 

observed for all three task variants; BUTTON (t[17] = -8.7; p < 0.001), REACH (t[17], = 

-9.5; p < 0.001),  and CTR (t[17] = -7.1; p = 0.04). In both the BUTTON and CTR variants 

participants exhibited significantly shorter N2 latencies in the response frequent condition
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Figure 5.2. Average ERP Waveforms. Average ERP waveforms recorded during the 

response infrequent (A) and response frequent (B) of each Go/NoGo task variant; 

BUTTON (solid line), REACH (dashed line), and CTR (dotted line).
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(BUTTONm = 212.7ms  65.7; CTRm = 226.2ms  77.8) compared to the response 

infrequent condition (BUTTONm = 268.4ms  55.7; CTRm = 295.3ms  60.0). 

Conversely, in the REACH condition participants exhibited significantly longer N2 

latencies in the response frequent condition (REACHm = 276.2ms  61.3) compared to the 

response infrequent condition (REACHm = 240.7  45.1). Analyses failed to detect a 

significant simple main effect for variant.  

Statistical analysis of P300 latency revealed significant variant x condition 

interaction (F[2,15] = 7.2; p = 0.001; p
2 = 0.12). Simple main effects of condition were 

observed for the BUTTON (t[17] = 4.8; p < 0.001) variant. In the BUTTON variant 

participants exhibited significantly longer P300 latencies in the response infrequent 

condition (m = 542.7ms  38.9) compared to the response frequent condition (m = 487.8ms 

 43.1; p < 0.001). Analyses failed to detect a significant simple main effect for variant.  

No interaction effect was observed for peak N2 amplitude. However, a main effect 

for variant was detected (F[2,15] = 20.9; p < 0.001; p
2 = 0.28). Bonferroni corrected 

multiple comparisons revealed irrespective of condition, participants exhibited participants 

exhibited significantly smaller peak N2 amplitudes in both the CTR variant (est. m = -0.89 

 0.09; p < 0.001) and REACH variant (est. m = -1.1  0.09; p < 0.001) compared to 

BUTTON (est. m = -1.7  0.09). No significant differences were observed between the 

CTR and REACH variants.  

No interaction effect was observed for peak P300 amplitude. However, a main 

effect for variant was detected (F[2,15] = 37.4; p < 0.001; p
2 = 0.41). Bonferroni corrected 

multiple comparisons revealed irrespective of condition, participants exhibited 
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significantly smaller peak P300 amplitudes in both the CTR variant (est. m = 1.2  0.1; p 

< 0.001) and REACH variant (est. m = 1.5  0.01; p < 0.001) compared to BUTTON (est. 

m = 2.3 0.01). No significant differences were observed between the CTR and REACH 

variants.  

DISCUSSION 

 The present study set out to compare N2 and P300 waveforms collected from both 

discrete continuous variants of a traditional Go/NoGo. Previous research has demonstrated 

the ability to collect ERP-like waveforms during arm movement and continuous tasks.237, 

364 However, to our knowledge, the present study is the first to systematically compare ERP 

waveforms collected during discrete and continuous arm reaching task variants to a 

standard button press task. By comparing ERPs collected across the three variants we 

sought to characterize differences in the waveforms.  

These results demonstrated that N2 and P300 latencies did not differ across the 

three task variants. However, peak amplitudes for both ERPs were significantly smaller in 

both the discrete and continuous reach task variants. These reduction in ERP amplitudes 

may reflect the computationally more complex motor planning necessary for arm 

movements compared to button press actions.365 While the more dynamic and complex 

reaching tasks elicited similar These differences in ERP characteristics further highlights 

the importance of factoring in task parameters when comparing ERPs recorded under 

differing conditions. 

In the present study, ERPs collected from the discrete button press variant produced 

better overall waveforms. However, future studies should look to improve experimental 
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setups and ERP data reduction pipelines to allow for the investigation of psychological 

performance under continuous task paradigms. There are several advantages to using more 

complex task paradigms like the continuous and discrete reach variants in the present study. 

First, these types of tasks more closely resemble real-world behaviors and therefore the 

results will be more generalizable and potentially more ecologically valid. The field of 

brain-computer interfacing (BCI) utilizes real-time EEG and ERP recordings to allow for 

individuals to use brain activity to interact with various forms of technology.366 Advances 

in this field have been applied to neural prosthetics giving individuals suffering from spinal 

cord injuries and amputees increased functionality and independence.367 Collecting 

meaningful EEG and ERP data during continuous task paradigms will be crucial to further 

help these individuals independently function in their day-to-day lives. 

Additionally, more dynamic and complex tasks generate more cognitively 

demanding environments in which behavior and physiological parameters can easily be 

observed. Assessing physiological performance during periods of increased task 

complexity is crucial in the study of neurological conditions such as concussion. 

Individuals recovering from concussion experience a series of often transient somatic, 

emotional, and cognitive symptoms.33 While the established recovery window for adults is 

10-14 days, the true timeline of recovery is controversial.6 This is supported by research 

showing that individual’s reporting to be symptom free at rest report exacerbated 

symptoms following exercise or bouts of increased mental workload.32, 114, 316 Therefore, 

using more complex cognitive tasks in the assessment of concussion (or other neurological 

disorders) may elicit neurological deficits not seen at rest or under low load situations. 

Finally, one limitation of cognitive assessment batteries in clinical settings is the time 
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requirements to collect a necessary number of trials to allow for meaningful comparisons. 

Using continuous stimulus presentation and response, reduces the time needed to collect 

data.  

Limitations  

 While informative, the present study is not without its limitations. First, EEG data 

is very sensitive to biological artifacts such as muscle activity. The present study aimed to 

reduce the influence of muscle activity by utilizing a chin rest mounted in front of the 

presentation device, eliminating electrode site closest to muscle insertions on the skull and 

utilizing an IC classification algorithm with stereotyped components corresponding to 

muscle activation. Further studies should aim to further investigate this issue by more 

securely stabilizing the head or develop more sophisticated reduction algorithms. Finally, 

in stimulus-locked ERP analyses it is vital to have accurate time stamps corresponding to 

stimulus appearance. In a continuous task where objects are continuously appearing and 

moving stimulus “appearance” estimates become difficult. The present study aimed to 

minimize this issue by only having one object on the screen at a time. Future studies can 

potentially circumvent this issue with integrated eye tracking systems.  

Conclusion.  

 The present study demonstrated the utility of recording and computing similar ERP 

waveforms during continuous arm reaching tasks, compared to traditional discrete button 

tasks. However, the increased task complexity and cognitive load resulted in significantly 

smaller N2 and P300 amplitudes, making comparisons across tasks more difficult. Future 

studies should aim to improve on the present results by modifying experimental setups and 
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task parameters to reduce possible sources of noise. To help advance the field of cognitive 

neuroscience and   These findings will help advance the field of cognitive neuroscience by 

allowing for the evaluation of cognitive processes during tasks aimed to more closely 

mirror real-world tasks.
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CHAPTER 6 

COGNITIVE PERFORMANCE AMONG SYMPTOMATIC AND ASYMPTOMATIC 

INDIVIDUALS WITH A HISTORY OF CONCUSSION: COMPARISON WITHIN 

DISCRETE AND CONTINUOUS TASK PARADIGMS 
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INTRODUCTION 

Concussive brain injuries result from rapid acceleration and deceleration of brain 

tissue brought on by biomechanical impulses transmitted to the brain.6 The ensuing 

neuronal disfigurement and neurochemical cascade lead to significant neurophysiological 

dysfunction.49 Individuals who suffer a concussion often experience a myriad of immediate 

and/or delayed symptoms; ranging from headache, fatigue, emotional dysregulation and 

cognitive deficits, to temporary loss of consciousness (LOC) and post-traumatic amnesia 

(PTA).3, 4 Individuals typically report complete symptom resolution within the first two 

weeks of injury. This has resulted in the common public perception that concussions 

represent a transient and minor brain injury. However, there is a growing body of literature 

suggesting concussions can manifest into debilitating chronic conditions.71, 74  

Persistent post-concussive symptoms (PPCS) are a clustering of non-specific 

symptoms following a concussion persisting beyond the typical recovery window (>1-3 

months) and negatively impacting daily function.727 It is currently estimated that roughly 

40% of individuals will meet the criteria for PPCS following a concussion.77 PPCS 

represents a potentially debilitating condition with many individuals reporting a significant 

impact on their psychoaffective and social well-being,93, 302 as well as their academic and 

vocational attainment.21, 78, 109  Furthermore, slow-to-recover individuals with PPCS may 

be at greater risk of late life cognitive impairment or chronic traumatic encephalopathy 

(CTE).8, 73, 105 Given the impact of PPCS and the potential long-term neurological sequelae, 

it is imperative that these individuals be identified early in the concussion management 

process.  
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Current clinical practice relies on a multidimensional assessment battery typically 

consisting of self-reported symptom checklists,117, 318 manual assessments of vestibular and 

ocular function,131, 136 and computerized tests of cognitive function.119, 121 These 

assessments have greatly improved the diagnostic accuracy of acute concussive brain 

injuries. However, the effectiveness of these assessments is limited by the subjective nature 

of symptom checklists and poor sensitivity of computerized tests beyond the acute stage of 

recovery122-124, 368, 369 Additionally, these tests do not provide measurable insight into the 

neurophysiological function and recovery of the brain. Research suggests that 

neurophysiological recovery extends beyond the traditional window of recovery, and that 

premature return to full school or sport engagement before this neurophysiological 

recovery predisposes individuals to subsequent injury and chronic concussion-related 

deficits.6, 60, 142, 300 Accordingly, it is crucial to utilize sensitive and objective measures of 

neurological function to effectively and more accurately track recovery following a 

concussion.  

Electroencephalography (EEG) is well suited to track the neurophysiological 

recovery following concussion. EEG provides a non-invasive manner in which to measure 

fluctuations in electrical activity produced given off by cortical neurons. This allows for 

extremely reliable quantification of neuronal activity down to the millisecond.262, 354 

Utilizing this high level of temporal resolution, we are able to quantify task-related neural 

activity. Event-related potentials (ERPs) represent coordinated and synchronous activity of 

large pools of cortical neurons serving specific sensory, cognitive, and motor functions.261, 

264 EEG and ERP recordings have been used in numerous clinical populations to identify 

abnormal cognitive processing247-249, 370-372 Decisional conflict monitoring (N2) and 



 

 96 

attention allocation (P300) are two domains of cognitive control commonly studied in 

concussion using ERPs.264 Individuals with a history of concussion often demonstrate 

alterations in both the N2 and P300 amplitude and latency.142, 297-299 These findings suggest 

that individuals with a history of concussion exhibit abnormal neural function related to 

processes of cognitive control.  

While informative, due to methodological barriers these findings are limited in their 

clinical utility. First, most studies rely on a two-group design comparing either 

symptomatic or asymptomatic individuals to non-injured controls. To disentangle what is 

a typical recovery pattern compared to an abnormal pattern associated with PPCS, it is 

necessary to compare all three groups. A recent study utilizing this three-group design 

demonstrated that individuals with a history of concussion exhibited increased P300 

latency while performing an auditory odd-ball task. However, symptomatic individuals 

also demonstrated reduced P300 amplitude, indicating separate neurophysiological profiles 

among asymptomatic and symptomatic individuals.30210 A second limitation to current 

research is the utilization of simple and discrete button press tasks to assess cognitive 

function. To effectively interact within the real-world requires complex and continuous 

integration among perceptual, cognitive, and motor neural systems.180, 373-375 Indeed, 

research suggests incorporating physiological stressors or increasing cognitive complexity 

may expose underlying deficits that originally go unnoticed.32, 114, 376 

Therefore, the aim of the current study is to investigate behavioral performance and 

neuroelectric measures within asymptomatic (HCx-A) and symptomatic (HCx-S) 

individuals with a history of concussion (>4 weeks post-injury), compared to non-injured 

controls (HC-). We will collect behavioral and neuroelectric performance while they 
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complete discrete and continuous arm reaching variants of the traditional Go/NoGo task. 

We predict that compared to HC- individuals, HCx-A and HCx-S individuals will 

demonstrate progressive increases in commission errors (Go responses on NoGo trials) 

during discrete and continuous arm reaching variants of the Go/NoGo task. Furthermore, 

HCx-A and HCx-S individuals will exhibit progressive decreases in amplitude and latency 

of their N2 and P300 stimulus-locked ERPs compared to HC- individuals. Finally, we 

hypothesize that deficits in neuroelectric and behavioral performance will be related 

concussion-related symptom burden.  

METHODS 

Participants. A description of participant sampling procedures, inclusion, and exclusion 

criteria is provided elsewhere (see Chapter 3: General Methods-Participants). To 

investigate the impact of concussion recovery on cognitive performance HC-, HCx-A, and 

HCx-s individuals completed three variants of the traditional Go/NoGo task.  

Procedures. A generalized description and illustration of study procedures can be found 

elsewhere (see Chapter 3: General Methods-Procedure).  

Cognitive Task. Following setup and preparation of the EEG cap, participants were 

comfortably seated in front of the KINARM. Within the KINARM environment, 

participants completed three variants (discrete button, discrete reach, and continuous reach) 

of a modified Go/NoGo task (see Figure 5.1). For each variant, participants completed two 

separate conditions. The response infrequent condition in which participants were 

instructed to respond quickly and accurately to the appearance of a grey diamond (25% of 

trials) and inhibit responses to a grey square (75% of trials). Conversely, in the response 
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frequent condition participants were instructed to respond to the appearance of a grey 

square (75% of trials) and inhibit responses to a grey diamond (25% of trials). Within each 

variant, participants completed two blocks of the response infrequent condition followed 

by three blocks of the response frequent condition. Each block consisted of 120 trials. Prior 

to beginning the task, participants were given oral instructions outlining the task objectives 

as well as informing the participant of the appropriate target shape.  

 Within each variant, the method in which the participant is asked to respond 

changed. For the discrete button (BUTTON) variant, participants grasped a custom two-

button digital trigger box (Figure 6.1A). The participant instructed to make responses by 

pressing the button corresponding with their dominant hand. When the task began, an 

object (square or diamond) appeared in the center of the KINARM workspace. Targets 

were presented for 200ms followed by a 1500ms response window.  

For the discrete reach (REACH) variant, participants grasped one of the KINARM 

robotic arms with their dominant hand (Figure 6.1B). The participant’s hand position in 

the workspace is represented within the workspace as a white dot and movement of the 

robotic arm produced equivalent movement of the white dot. To begin the task, participants 

were instructed to move the dot into a yellow circle to indicate they are ready. This position 

served as the “waiting position” for every trial. Once the participant moved the dot into the 

waiting position, and their hand was still (hand velocity < 5mm/s for 200ms), an object 

(square or diamond) appeared in one of five potential object locations positioned 

equidistant over the “waiting position.” Objects were presented for 200ms followed by a 

1500ms response window. Participants were instructed to make a response, they needed to
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Figure 6.1. Go/NoGo Task Variants. Visualization of discrete button (A), discrete reach 

(B), and continuous reach (C) Go/NoGo task variants.
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 reach to the location where the target appeared then return their hand to the “waiting 

position” to initiate the next trial.  

For the continuous reaching (CTR) variant, participants again grasped one of the 

KINARM robotic arm with their dominant hand (Figure 6.1C). The participant’s hand 

position within the workspace was represented by a green rectangular paddle. Participants 

could freely maneuver the green paddle within the workspace by moving the robotic arm. 

Participants were instructed, once the task begins, to maneuver the paddle to intercept and 

hit away the target objects (square or diamond) as they fall from the top of the workspace 

toward the bottom. Objects fell one at a time so that only one object is present in the 

workspace and fall at a constant speed of 30cm/s. If a participant made contact with an 

object, a reciprocal perturbation was applied to the robotic handle and the object ricocheted 

away from the paddle to simulate contact with a real weighted object.  

Behavioral Measures.  

To calculate behavioral measures for each variant of the Go/NoGo task, all blocks 

within a given condition were combined. Primary behavioral measures of response 

accuracy (ACC, %), commission errors (CE, n), and omission errors (OE, n) were 

calculated for each task variant. Additionally, signal detection metrics were calculated to 

assess an individual’s discrimination sensitivity (dPrime) within each variant.360 

Neuroelectric Data: Acquisition & Reduction.  

Electroencephalography (EEG) data was concurrently recorded from 64 high 

impedance, active electrodes (AFz, Fz, FCz, Cz, CPz, Pz, POz, Oz, FP1/2, AF1/2/4/8, 

F7/5/3/1/2/4/6/8, FT9/7/8/10, FC5/3/1/2/4/6, T7/8, C5/3/1/2/4/6, TP9/7/8/10, 



 

 101 

CP5/3/1/2/4/6, P7/5/3/1/2/4/6/8, PO7/3/4/8, O1/2) arranged according to the International 

10-10 system335 using actiCAP (EASYCAP Gmbh, Herrsching, Germany). Recordings 

were referenced online to FCz, with FPz serving as the ground electrode. Additional 

electrodes were also placed above and below the left orbit and to the left and right outer 

canthus to monitor vertical and horizontal electrooculographic (EOG) activity, 

respectively. Impedances were kept below 25kΩ for all electrodes. Continuous recordings 

were and amplified using actiChamp amplifier (Brain Products GmbH, Gilching, 

Germany) digitized at 1000Hz. Finally, an online bandpass filter 0.01 – 100 Hz was applied 

to each recording. Digital event codes sent from the KINARM and were received via 8-bit 

(0-256 possible events) input into the back of the electrophysiological system. All EEG 

activity was recording using Brain Vision Recorder (v1.21, Brain Products GmbH, 

Gilching, Germany). 

Reduction of continuous EEG data was conducted offline in MATLAB 2020b 

(Mathworks, Natick, MA) using custom scripts and plugins from the EEGLAB and 

ERPLAB toolboxes.361, 362 First, event codes and latencies recorded from the KINARM 

were synced with the continuous EEG data. Data will then be filtered using a 1.0 – 50.0Hz 

bandpass windowed sinc finite impulse response filter. Prior to independent component 

analysis (ICA) decomposition, artifact subspace reconstruction (ASR) was used to identify 

and remove any noise related artifacts.363 Once the data has been cleaned, an Infomax 

independent component analysis (ICA) algorithm was used to characterize individual 

independent components (ICs) within the data. ICs were then classified using the iclabel() 

plugin function, and ICs labeled as non-neural (i.e., ocular, muscle) sources were 

subsequently removed and the data reconstructed. To account for excessive noise, average 
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signal recorded from peripheral channels (i.e., F7/8, CP5/6, Pz/7/5/3/1/8/6/4/2, 

POz/7/3/8/4, Oz/1/2) were averaged to characterize signal noise. The channels were 

removed from the data and the characterized noise was subtracted from the remaining 

channels. Artifact free data was re-referenced to a whole head average and FCz (online 

reference) was added back in 

Stimulus-locked epochs were created from -100 – 1000ms epochs created around 

the stimulus presentation for correct trials and baseline corrected using the 100ms pre-

stimulus period. Incorrect trials and trials containing EEG activity exceeding ±75μV were 

removed. Finally, remaining trials were manually inspected for remaining artifacts and 

removed. The N2 component was identified as the mean amplitude within a 30ms window 

surrounding the largest negative-going peak 150 – 350ms post stimulus onset, at fronto-

central sites. The P300 component was obtained by identifying as the mean amplitude 

within a 50ms time window surrounding the largest positive-going peak within the interval 

300 – 800ms post stimulus onset at centro-parietal sites. Within the central-parietal 

electrode array, local hotspots were generated by locating the electrode with the largest 

peak and taking an average of neighboring electrodes. Peak amplitude was measured as the 

difference between pre-stimulus baseline and mean peak-interval amplitude. Peak latency 

was defined as the time point associated with the maximum deflection within the defined 

temporal window.  

Statistical Analysis. All statistical analyses were computed in MATLAB 2020b 

(Mathworks, Natick, MA) using functions within the Statistics and Machine Learning 

toolbox, with an a priori alpha level of p < 0.05. Parametric and non-parametric tests of 

group comparisons were used to analyze continuous and categorical, respectively, to 
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identify potential demographic differences among groups. Behavioral performance data 

(accuracy, commission errors, and omission errors, dPrime) and neuroelectric measures 

(N2 peak amplitude, N2 peak latency, P300 peak amplitude, and P300 peak latency) were 

examined via a series of 3 (group: HC-, HCx-A, HCx-S) × 2 (condition: response 

infrequent, response frequent) mixed model ANOVA. Partial eta squared (p
2) measures 

of effect size were calculated for each ANOVA (p
2: < 0.05 = small; (p

2: 0.06 – 0.13 = 

medium; p
2: > 0.14 = large). To investigate potential associations among task 

performance, neuroelectric measures, and symptom burden Pearson correlation 

coefficients were calculated among all individuals with a history of concussion.  

RESULTS 

Participant Characteristics. Sixty-one participants were included in our analyses. 

Participants were identified as either non-brain injured healthy control (HC-, n = 23), 

history of concussion – asymptomatic (HCx-A; n = 16), or history of concussion – 

symptomatic (HCx-S; n = 22) based on self-reported medical history and symptoms. Chi 

Square analysis revealed significant differences in the distribution between male and 

females within each group. Accordingly, biological sex will be included as a covariate in 

subsequent behavioral and neuroelectric analyses. Demographic information is provided 

in Table 6.1.



 

 104 

Table 6.1. Participant Demographics & Injury Characteristics. 

 HC- (n=23) HCx-A (n=16) HCx-S (n=22) 

Demographics 

 Mean SD Mean SD Mean SD 

Age (yrs) 22.1 2.8 21.4 2.3 21.1 2.7 

Sex [#M /#F] 8/15 - 9/7 - 5/17 - 

BMI 25.0 3.8 24.4 3.4 25.2 5.1 

Injury Characteristics 

Prev Cx (n)   1.6 0.9 2.1 1.1 

Days Since Cx   1232.9 961.5 694.4 749.1 

HC-: non-injured control, HCx-A: History of Concussion-Asymptomatic, HCx-S: History of 

Concussion-Symptomatic, M: male, F: female, BMI: body mass index, Prec Cx: previous 

concussioons. 
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Go/NoGo Task Performance.  

Discrete Button Performance.  

Table 6.2 provides group means and standard deviations for measures of task 

performance. Figure 6.2 depicts observed significant group differences.  Group wide 

analyses failed to detect any interaction effects for outcome measures of task performance. 

A main effect of Group was observed for task accuracy (F[2,58] = 4.2, p = 0.02, p
2 = 

0.04). Bonferroni corrected multiple comparisons revealed HCx-S individuals performed 

significantly worse (est. m = 95.9  0.4) compared to HC- (est. m = 97.5  0.4; p = 0.01). 

A main effect of Group was also observed for omission errors (F[2,58] = 5.7, p = 0.004, 

p
2 = 0.08). Bonferroni corrected multiple comparisons revealed HCx-S individuals 

performed significantly more omission errors (est. m = 4.3  0.8) compared to both HC- 

(est. m = 1.3  0.7; p = 0.02) and HCx-A (est. m = 0.9  0.9; p = 0.01). Finally, a main 

effect for dprime was observed (F[2,58] = 3.7, p = 0.03, p
2 = 0.03). Bonferroni corrected 

multiple comparisons revealed HCx-S individuals demonstrated significantly more 

difficulty discriminating targets from distractors (est. m = 3.9  0.1) compared to HC- (est. 

m = 4.1  0.1; p = 0.03).  

 No significant associations were identified the BUTTON task performance 

variables and self-reported measures of symptom burden.
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Table 6.2. Go/NoGo Task Performance (Discrete Button). 

 HC- (n=23) HCx-A (n=16) HCx-S (n=22) GRP CND INT 

 Mean SEM Mean SEM Mean SEM 2 2 2 

Inf ACC 99.4 0.1 99.4 0.2 98.7*‡ 0.5 

0.04 0.43 0.01 
Frq ACC 95.6 0.5 94.5 0.7 93.2*‡ 0.9 

Inf OE 0.3 0.1 0.4 0.2 2.7*‡ 1.2 

0.09 0.04 0.01 
Frq OE 2.3 0.5 1.3 0.4 6.0*‡ 2.1 

Inf CE 0.8 0.1 0.9 0.2 0.5 0.1 

0.01 0.60 0.01 
Frq CE 14.0 1.5 17.3 2.0 18.5 2.3 

Inf D’ 4.7 0.1 4.7 0.1 4.6 0.1 

0.03 0.53 0.01 
Frq D’ 3.6 0.1 3.4 0.1 3.1 0.2 

Note: Data are presented as mean ± standard error (SEM), p-value, and effect size (2).  

HC-: non-injured control, HCx-A: History of Concussion-Asymptomatic, HCx-S: History of 

Concussion-Symptomatic, Inf: Infrequent Response Condition, Frq: Frequent Response Condition, 

ACC: Accuracy, OE: Omission Errors, CE: Commission Errors, D’: dprime, n: number, GRP: 

Group Effects, CND: Condition Effect, INT: Interaction Effect 

* Comparison to HC- p < 0.05  

‡ Comparison to HCx-A p < 0.05
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Figure 6.2. Go/NoGo Button Task Performance. Individual and group averages for task accuracy (A), omission errors (B), and 

commission errors (C). Individual dots represent HC- (green), HCx-A (blue), and HCx-S (red) groups within the response infrequent 

(solid) and response frequent (faded) conditions. Black squares and whiskers represent group means and standard error. 
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Discrete Reach Performance.  

Table 6.3 provides group means and standard deviations for measures of task 

performance. Statistical analysis failed to reveal significant differences in in task 

performance within the REACH variant.  

No significant associations were identified for REACH response infrequent task 

performance variables and self-reported measures of symptom burden. Table 6.4 reports 

correlation coefficients for REACH response frequent performance and self-reported 

measures of symptom burden. REACH response frequent commission errors were 

positively associated with total BDI score (r = 0.39), BDI cognitive sub-scale (r = 0.38), 

BDI non-cognitive sub-scale (r = 0.33), and Neuro-QoL sleep disturbance scale (r = 0.35). 

These indicate that individuals that committed more commission errors also reported worse 

outcomes on these scales. Additionally, task accuracy was negatively associated with BDI 

cognitive sub-scale (r = -0.37) indicating individuals that performed worse on the task, 

reported worse outcomes.  

Continuous Reach Performance.  

Table 6.5 provides group means and standard deviations for measures of task 

performance. Figure 6.3 depicts observed significant group differences.  Group wide 

analyses failed to detect any interaction effects for outcome measures of task performance. 

Group wide analyses failed to detect any interaction effects for outcome measures of task 

performance. A main effect of Group was observed for task accuracy (F[2,58] = 5.0, p = 

0.008, p
2 = 0.08). Bonferroni corrected multiple comparisons revealed HCx-S individuals 

performed significantly worse (est. m = 85.4  1.2) compared to HC- (est. m = 90.6  1.1;
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Table 6.3. Go/NoGo Task Performance (Discrete Reach). 

 HC- (n=23) HCx-A (n=16) HCx-S (n=22) GRP CND INT 

 Mean SEM Mean SEM Mean SEM 2 2 2 

Inf ACC 98.6 0.1 98.6 0.2 98.4 0.4 0.01 0.40 < 0.01 

Frq ACC 92.2 0.8 93.0 0.2 91.5 1.5 

Inf OE 0.5 0.2 1.1 0.4 1.0 0.5 0.02 0.07 0.02 

Frq OE 2.7 0.5 2.3 0.9 5.3 2.1 

Inf CE 1.2 0.2 1.6 0.4 2.7 0.8 0.01 0.48 0.01 

Frq CE 21.5 2.2 18.3 2.5 25.2 3.9 

Inf D’ 4.4 0.1 4.3 0.3 4.3 0.1 0.01 0.68 0.01 

Frq D’ 3.3 0.1 2.9 0.1 3.0 0.2 

Note: Data are presented as mean ± standard error (SEM), p-value, and effect size (2).  

HC-: non-injured control, HCx-A: History of Concussion-Asymptomatic, HCx-S: History of 

Concussion-Symptomatic, Inf: Infrequent Response Condition, Frq: Frequent Response Condition, 

ACC: Accuracy, OE: Omission Errors, CE: Commission Errors, D’: d prime, n: number, GRP: 

Group Effects, CND: Condition Effect, INT: Interaction Effect 

* Comparison to HC- p < 0.05  

‡ Comparison to HCx-A p < 0.05
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Table 6.4. Correlation Coefficients: Go/NoGo REACH performance and Symptom 

Burden. 

 ACC Inf ACC Frq OE Inf OE Frq CE Inf CE Frq D’ Inf D’ Frq 

RPQ16 - - - - - - - - 

RPQCog - - - - - - - - 

RPQEmo - - - - - - - - 

RPQSom - - - - - - - - 

BDItotal - - - - - 0.39 - - 

BDIcog - -0.37 - -0.40 - 0.38 - - 

BDIncog - - - - - 0.33 - - 

State Anx - - - - - - - - 

Trait Anx - - - - - - - - 

Fatigue - - - - - - - - 

Cog Func - - - - - - - - 

Emot Dsyf - - - - - - - - 

AffW-B - - - - - - - - 

Sleep - - - - - - - - 

PSR - - - - - - - - 

SSR - - - - - - - - 

RPQ: Rivermead Post-Concussion Questionnaire, RPQCog: Rivermead Post-Concussion 

Questionnaire – Cognitive domain, RPQEmo: Rivermead Post-Concussion Questionnaire – 

Emotional subscale, RPQSom: Rivermead Post-Concussion Questionnaire – Somatic subscale, 

BDI: Beck’s Depression Index II, SAI: State Anxiety, TAI: Trait Anxiety, Cog Func: Cognitive 

Function, EmoDys: Emotional Dysregulation, AffW-B: Affect & Well-Being, PSR: Participation 

in Social Roles & Activities, SSR: Satisfaction with Social Roles & Activities, ACC: Accuracy, 

OE: Omission Errors, CE: Commission Errors, D’: dprime, Inf: Infrequent Response Condition, 

Frq: Frequent Response Condition. 

- Correlation p > 0.05
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Table 6.5. Go/NoGo Task Performance (Continuous Reach). 

 HC- (n=23) HCx-A (n=16) HCx-S (n=22) GRP CND INT 

 Mean SEM Mean SEM Mean SEM 2 2 2 

Inf ACC 91.3 0.9 88.6 0.1 86.4* 2.3 

0.08 0.01 < 0.01 
Frq ACC 89.8 1.0 88.2 1.6 84.3* 2.0 

Inf OE 11.0 1.0 13.3 2.1 17.1* 2.6 

0.07 0.09 0.01 
Frq OE 16.7 2.0 23.1 3.9 30.4* 5.5 

Inf CE 9.7 1.5 11.3 2.8 15.5* 3.2 

0.05 0.12 < 0.01 
Frq CE 18.4 1.8 19.3 3.6 26.1* 3.3 

Inf D’ 2.7 0.1 2.4 0.2 1.9* 0.2 

0.15 < 0.01 < 0.01 
Frq D’ 2.6 0.1 2.3 0.2 1.8* 0.2 

Note: Data are presented as mean ± standard error (SEM), p-value, and effect size (2).  

HC-: non-injured control, HCx-A: History of Concussion-Asymptomatic, HCx-S: History of 

Concussion-Symptomatic, Inf: Infrequent Response Condition, Frq: Frequent Response Condition, 

ACC: Accuracy, OE: Omission Errors, CE: Commission Errors, D’: d prime, n: number, GRP: 

Group Effects, CND: Condition Effect, INT: Interaction Effect 

* Comparison to HC- p < 0.05  

‡ Comparison to HCx-A p < 0.05
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Figure 6.3. Go/NoGo CTR Task Performance. Individual and group averages for task 

accuracy (A), dPrime (B), omission errors (C), and commission errors (D). Individual dots 

represent HC- (green), HCx-A (blue), and HCx-S (red) groups within the response 

infrequent (solid) and response frequent (faded) conditions. Black squares and whiskers 

represent group means and standard error. 

# Significant difference from HC- (p < 0.05).  
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p = 0.006). A main effect of Group was also observed for omission errors (F[2,58] = 5.1, 

p = 0.007, p
2 = 0.02). Bonferroni corrected multiple comparisons revealed HCx-S 

individuals committed significantly more omission errors (est. m = 23.8  2.2) compared 

to HC- (est. m = 13.9  2.1; p = 0.005). A main effect of Group was also observed for 

commission errors (F[2,58] = 3.6, p = 0.03, p
2 = 0.03).  Finally, a main effect for d’ was 

observed (F[2,58] = 10.3, p < 001, p
2 = 0.15). Bonferroni corrected multiple comparisons 

revealed HCx-S individuals demonstrated significantly more difficulty discriminating 

targets from distractors (est. m = 1.9  0.1) compared to HC- (est. m = 2.6  0.1; p < 0.001 

) and HCx-A (est. m = 2.4  0.1; p = 0.01). 

 Associations with several self-reported measures of symptom burden were 

observed with both CTR response infrequent and response frequent (Table 6.6) Go/NoGo 

BUTTON performance.   

Neuroelectric Behavior. Figure 6.4 depicts group average stimulus-locked ERP waveforms 

computed for each Go/NoGo task variant.  

Discrete Button. 

 No significant interactions were identified for either peak N2 amplitude or latency. 

A significant main effect for variant was observed for N2 latency (F[2,43] = 5.0; p = 0.009; 

p
2 = 0.09). Bonferroni corrected multiple comparisons revealed HCx-S individuals 

demonstrated a significantly delayed  N2 peak (est. m = 286.5ms  11.1) compared to HC- 

(est. m = 240ms  0.1; p < 0.009) indicating greater difficulty in conflict resolution across 

task conditions.



 

 114 

Table 6.6. Correlation Coefficients: Go/NoGo CTR performance and Symptom Burden. 

 ACC Inf ACC Frq OE Inf OE Frq CE Inf CE Frq D’ Inf D’ Frq 

RPQ16 -0.36 -0.34 -0.34 - 0.45 0.39 -0.42 -0.40 

RPQCog - - - - - - - - 

RPQEmo -0.37 -0.35 -0.42 - 0.40 0.35 -0.41 -0.39 

RPQSom - - - - 0.39 - -0.35 - 

BDItotal -0.55 -0.52 -0.52 -0.38 0.46 0.49 -0.50 -0.66 

BDIcog -0.55 -0.52 -0.50 -0.38 0.54 0.49 -0.49 -0.63 

BDIncog -0.46 -0.43 -0.43 - 0.33 0.40 -0.42 -0.56 

State Anx -0.41 -0.47 -0.38 -0.36 0.49 0.42 -0.39 -0.48 

Trait Anx - 0.50 0.36 0.40 -0.39 -0.43 - 0.55 

Fatigue - - -0.33 -0.33 - - - -0.42 

Cog Func - - - - - - - - 

Emot Dsyf - -0.40 -0.34 - - 0.40 - -0.48 

AffW-B 0.42 0.40 0.46 - -0.39 -0.46 -0.39 0.47 

Sleep -0.36 -0.43 -0.37 -0.46 - 0.35 - -0.55 

PSR - - - - - - - 0.37 

SSR - - - - - - - 0.39 

RPQ: Rivermead Post-Concussion Questionnaire, RPQCog: Rivermead Post-Concussion 

Questionnaire – Cognitive domain, RPQEmo: Rivermead Post-Concussion Questionnaire – 

Emotional subscale, RPQSom: Rivermead Post-Concussion Questionnaire – Somatic subscale, 

BDI: Beck’s Depression Index II, SAI: State Anxiety, TAI: Trait Anxiety, Cog Func: Cognitive 

Function, EmoDys: Emotional Dysregulation, AffW-B: Affect & Well-Being, PSR: Participation 

in Social Roles & Activities, SSR: Satisfaction with Social Roles & Activities, ACC: Accuracy, 

OE: Omission Errors, CE: Commission Errors, D’: dprime, Inf: Infrequent Response Condition, 

Frq: Frequent Response Condition.  

- Correlation p > 0.05



  

 

1
1
5
 

 

Figure 6.4. Group Average ERP Waveforms. Average ERP waveforms computed for BUTTON (A,D), REACH, and CTR (C,F) 

task variants. Waveforms are presented for HC- (green), HCx-A (blue), and HCx-S (red) for both response infrequent (top) and 

response frequent (bottom) within each task variant.  
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  Analysis of peak P300 amplitude revealed a significant interaction (F[2,43] = 4.5; 

p = 0.01; p
2 = 0.08). A simple main effect for task condition was found within the HCx-S 

group (t[14] = 5.34; p < 0.001). HCx-S individuals demonstrated significantly smaller peak 

P300 amplitude in the response frequent condition (m = 1.2mV  0.5) compared to the 

response infrequent condition (m = 2.2mV  0.6). A simple main effect for group was also 

observed (F[2,43] = 7.2; p = 0.001; p
2 = 0.12). Bonferroni corrected multiple comparisons 

revealed HCx-S individuals demonstrated a significantly smaller P300 peak (est. m = 

1.7mV  0.1 ) compared to HC- (est. m = 2.3  0.1; p = 0.001).  Additionally, analyses 

revealed a significant interaction for P300 latency (F[2,43] = 7.23; p = 0.001; p
2 = 0.13). 

A simple main effect for task condition was found within the HC- group (t[17] = 4.8; p < 

0.001). HC- individuals demonstrated significantly delayed P300 latency within response 

infrequent condition (m = 542.7ms  38.9) compared to the response frequent condition 

(m = 487.8ms  43.1). A trend for a significant simple main effect for task was 

alsoobserved for HCx-S individuals (t[14] = 2.1; p = 0.05). HCx-S individuals 

demonstrated shorter P300 latency within the response infrequent condition (m = 513.3ms 

 84.4) compared to the response frequent condition (m = 563.7ms  74.6). A simple main 

effect for group was also observed (F[2,43] = 7.0; p = 0.001; p
2 = 0.12). Bonferroni 

corrected multiple comparisons revealed that across task conditions HCx-A individuals 

demonstrated a significantly delayed P300 latency (est. m = 569.1ms  11.0) compared to 

HC- (est. m = 515.2ms  9.3; p = 0.001).  

Associations with several self-reported measures of symptom burden were 

observed with BUTTON indices of neuroelectric function (Table 6.7).   
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Table 6.7. Correlation Coefficients: Go/NoGo Neuroelectric Function (BUTTON) and 

Symptom Burden. 

 Inf 

N2peak 

Frq 

N2peak 

Inf 

N2latn 

Frq 

N2latn 

Inf 

P3peak 

Frq 

P3peak 

Inf 

P3latn 

Frq 

P3latn 

RPQ16 - 0.39 - - - -0.50 - - 

RPQCog - - - - - -0.41 -0.48 - 

RPQEmo - - - - - -0.48 -0.41 - 

RPQSom - 0.45 - - - -0.61 - - 

BDItotal - - - - - - - - 

BDIcog - 0.46 - - - -0.52 - - 

BDIncog - - - - 0.39 - - - 

State Anx - - - - - - - - 

Trait Anx - - - - - - - - 

Fatigue - - - - - - - - 

Cog Func - - - - - 0.48 0.42 - 

Emot Dsyf - - - - - - - - 

AffW-B - - - - - - - - 

Sleep - - - - - - -0.42 - 

PSR - - - - - - 0.55 - 

SSR - - - - - - - - 

RPQ: Rivermead Post-Concussion Questionnaire, RPQCog: Rivermead Post-Concussion 

Questionnaire – Cognitive domain, RPQEmo: Rivermead Post-Concussion Questionnaire – 

Emotional subscale, RPQSom: Rivermead Post-Concussion Questionnaire – Somatic subscale, 

BDI: Beck’s Depression Index II, SAI: State Anxiety, TAI: Trait Anxiety, Cog Func: Cognitive 

Function, EmoDys: Emotional Dysregulation, AffW-B: Affect & Well-Being, PSR: Participation 

in Social Roles & Activities, SSR: Satisfaction with Social Roles & Activities, N2latn: N2 peak 

latency, N2peak: N2 peak amplitude, P3latn: P300 peak latency, P3peak: P300 peak amplitude, 

Inf: Infrequent Response Condition, Frq: Frequent Response Condition. 

 - Correlation p > 0.05
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Discrete Reach.  

Analysis of N2 latency revealed a significant interaction (F[2,42] = 3.4; p = 0.04; 

p
2 = 0.07). A significant simple main effect for task condition was observed for HC- 

individuals (t[17] = -2.2; p = 0.04). HC- individuals demonstrated significantly longer N2 

latencies within the response frequent condition (m = 276.2ms  45.5) compared to the 

response infrequent conditions (m = 240.7ms  61.3 ). Additionally, a simple main effect 

for task condition was observed for the HCx-A group (t[12] = -2.9; p = 0.01). HCx-A 

individuals demonstrated significantly longer N2 latencies within the response frequent 

condition (m = 315.4ms  104.9) compared to the response infrequent conditions (m = 

223.4ms  79.6). No simple main effect of group was observed.  

Analysis of P300 amplitude revealed a significant interaction (F[2,42] = 3.5; p = 

0.03; p
2 = 0.07). A significant simple main effect for task condition was observed for 

HCx-S individuals (t[13] = 3.7; p = 0.003). HCx-S individuals demonstrated significantly 

smaller P300 peak amplitude in the response frequent condition (m = 1.0mV  0.3) 

compared to the response infrequent condition. No simple main effect of group was 

observed.  

Analysis of P300 latency revealed a significant interaction (F[2,42] = 5.5; p = 

0.006; p
2 = 0.05). A simple main effect for task condition was observed for HCx-A 

individuals (t[12] = -2.9; p = 0.01). HCx-A individuals demonstrated significantly longer 

P300 latencies in the NOGO condition (m =  624.6  62.2) compared to the response 

infrequent condition (m = 537.5ms  99.3 ).Similarly, a simple main effect for task 

condition was observed for HCx-S individuals (t[13] = -8.37; p < 0.001). HCx-S 
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individuals demonstrated significantly longer P300 latencies in the response frequent 

condition (m =  730.3  54.4) compared to the response infrequent condition (m = 590.3ms 

 48.6). A simple main effect for group was also observed (F[2,42] = 37.4; p < 0.001; p
2 

= 0.36). Bonferroni corrected multiple comparisons revealed that across task conditions 

HCx-S individuals demonstrated significantly delayed P300 latencies (est. m = 660.3ms  

12.4) compared to both HC- (est. m = 517.7ms  10.9; p < 0.001) and HCx-A (est. m = 

581.1ms  12.8;  p < 0.001). Additionally, across task conditions, HCx-A individuals 

demonstrated significantly delayed P300 latencies compared to HC- (p < 0.001).  

Associations with several self-reported measures of symptom burden were 

observed with REACH response frequent indices of neuroelectric function (Table 6.8).  No 

associations were observed with indices of REACH response infrequent neuroelectric 

function.  

Continuous Reach.  

Analysis of N2 latency revealed a significant interaction (F[2,45] = 3.2; p = 0.04; 

p
2 = 0.05). A significant simple main effect for task condition was observed for HC- 

individuals (t[17] = 3.04; p = 0.008). HC- individuals demonstrated significantly longer 

N2 latencies within the GO condition (m = 295.3ms  60.0) compared to the GO conditions 

(m = 226.2ms  77.8 ). A simple main effect for group was also observed (F[2,45] = 10.5; 

p < 0.001; p
2 = 0.18). Bonferroni corrected multiple comparisons revealed that across task 

conditions HCx-S individuals demonstrated significantly delayed N2 latencies (est. m = 

314.1ms  12.0) compared to HC- (est. m = 260.8ms  11.3; p = 0.005). Additionally, 

HCx-A individuals demonstrated significantly delayed N2 latencies (est. m = 336.5ms 
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Table 6.8. Correlation Coefficients: Go/NoGo Neuroelectric Function (REACH) and 

Symptom Burden. 

 Inf 

N2peak 

Frq 

N2peak 

Inf 

N2latn 

Frq 

N2latn 

Inf 

P3peak 

Frq 

P3peak 

Inf 

P3latn 

Frq 

P3latn 

RPQ16 - 0.41 - - - -0.41 - 0.46 

RPQCog - 0.46 - - - -0.43 - - 

RPQEmo - - - - - - - - 

RPQSom - - - - - - - 0.52 

BDItotal - - - - - - - - 

BDIcog - - - - - - - - 

BDIncog - - - - - - - - 

State Anx - - - - - - - - 

Trait Anx - - - - - - - - 

Fatigue - - - - - - - 0.51 

Cog Func - -0.40 - - - 0.39 - -0.62 

Emot Dsyf - - - - - - - - 

AffW-B - - - - - - - - 

Sleep - - - - - - - - 

PSR - - - - - - - - 

SSR - - - - - - - - 

RPQ: Rivermead Post-Concussion Questionnaire, RPQCog: Rivermead Post-Concussion 

Questionnaire – Cognitive domain, RPQEmo: Rivermead Post-Concussion Questionnaire – 

Emotional subscale, RPQSom: Rivermead Post-Concussion Questionnaire – Somatic subscale, 

BDI: Beck’s Depression Index II, SAI: State Anxiety, TAI: Trait Anxiety, Cog Func: Cognitive 

Function, EmoDys: Emotional Dysregulation, AffW-B: Affect & Well-Being, PSR: Participation 

in Social Roles & Activities, SSR: Satisfaction with Social Roles & Activities, N2latn: N2 peak 

latency, N2peak: N2 peak amplitude, P3latn: P300 peak latency, P3peak: P300 peak amplitude, 

Inf: Infrequent Response Condition, Frq: Frequent Response Condition. 

- Correlation p > 0.05
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13.3) compared to HC- (p < 0.001). No differences were observed between HCx-S and 

HCx-A groups.  

 Analysis of P300 latency failed to reveal any significant interactions. However, a 

main effect for group was observed (F[2,45] = 49.5; p  < 0.001; p
2 = 0.52). Bonferroni 

corrected multiple comparisons revealed that across task conditions HCx-S individuals 

demonstrated significantly longer P300 latencies (est. m = 695.8ms  13.7) compared to 

HC- (est. m = 522.2ms  12.9; p < 0.001). Similarly, HCx-A individuals demonstrated 

significantly longer P300 latencies (est. m = 672.5ms  15.2) compared to HC- (p < 0.001). 

No differences were observed between HCx-S and HCx-A groups.  

Associations with several self-reported measures of symptom burden were 

observed with CTR indices of neuroelectric function (Table 6.9). 

DISCUSSION 

 The present study set out to compare behavioral performance and indices of 

neuroelectric function within three different response variants of a Go/NoGo task (discrete 

button press, discrete reach, and continuous reach) among HCx-A and HCx-S individuals, 

compared to HC-. The results of the current study demonstrate that HCx-S individuals 

consistently demonstrate behavioral deficits in all three task variants, regardless of task 

condition. Similarly, these behavioral deficits are accompanied by neurological 

dysfunction indexed by both N2 and P300 ERP components. While HCx-A individuals did 

not demonstrate any significant behavioral deficits compared to HC-, they demonstrated 

significant alterations in neuroelectric function.
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Table 6.9. Correlation Coefficients: Neuroelectric Function (CTR) and Symptom Burden. 

 Inf 

N2peak 

Frq 

N2peak 

Inf 

N2latn 

Frq 

N2latn 

Inf 

P3peak 

Frq 

P3peak 

Inf 

P3latn 

Frq 

P3latn 

RPQ16 - - - - - - - - 

RPQCog - - - - -0.37 - - - 

RPQEmo - - - - - - - - 

RPQSom - - - - - - - - 

BDItotal - - - - - - - - 

BDIcog - - - - - - - - 

BDIncog - - - - - - - - 

State Anx - - - - - - - - 

Trait Anx - - - - - - - - 

Fatigue - - -0.41 - - - - - 

Cog Func - - - - 0.46 - - -0.41 

Emot Dsyf - - - - - - - - 

AffW-B - - - - - - - - 

Sleep - - -0.41 - - - - - 

PSR - - - - - - - - 

SSR - - 0.47 - - - - - 

RPQ: Rivermead Post-Concussion Questionnaire, RPQCog: Rivermead Post-Concussion 

Questionnaire – Cognitive domain, RPQEmo: Rivermead Post-Concussion Questionnaire – 

Emotional subscale, RPQSom: Rivermead Post-Concussion Questionnaire – Somatic subscale, 

BDI: Beck’s Depression Index II, SAI: State Anxiety, TAI: Trait Anxiety, Cog Func: Cognitive 

Function, EmoDys: Emotional Dysregulation, AffW-B: Affect & Well-Being, PSR: Participation 

in Social Roles & Activities, SSR: Satisfaction with Social Roles & Activities, N2latn: N2 peak 

latency, N2peak: N2 peak amplitude, P3latn: P300 peak latency, P3peak: P300 peak amplitude, 

Inf: Infrequent Response Condition, Frq: Frequent Response Condition.  

- Correlation p > 0.05
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 Previous research has demonstrated that individuals with a history of concussion 

experience persistent deficits in cognitive control and attention.7, 65, 66, 120, 144, 377, 378 These 

deficits have been characterized as decrements in task performance,54, 66, 297, 310 lapses in 

attentions (i.e., increased omission errors),171, 379, 380 and difficulties in impulse control.381, 

382 The current study further supports these findings and demonstrates that in tasks of 

higher cognitive load and complexity behavioral deficits are exacerbated. The latter further 

highlights the importance of assessing concussed individuals under periods of acute mental 

and physical stress when determining readiness to return to sport or full vocational 

participation.  

 Previous research has also demonstrated persistent deficits in neuroelectric function 

following concussive injuries.7, 101, 114, 292, 297-299, 309, 383 The N2 ERP waveform indexes 

conflict arising from choice decision making. Whereas the P300 ERP waveform represents 

attentional resource allocation associated with stimulus evaluation. The results of the 

present study further support the aforementioned findings as both HCx-A and HCx-S 

individuals demonstrated abnormal N2 and P300 component profiles. Furthermore, HCx-

A and HCx-S groups demonstrated distinct neuroelectric deficits, which were most 

pronounced in the CTR variant. This finding replicates results reported by Sicard and 

colleagues,302 which suggested that slow-to-recover athletes  (i.e., symptomatic) and 

asymptomatic athletes with a history of concussion demonstrated significant deficits in 

P300 peak latency compared to non-injured controls. They similarly found that slow-to-

recovery athletes also demonstrated significant reductions in P300 peak amplitude. 

Together with the findings of the present study suggest atypical recovery in neurological 

function may underlie persistent symptoms and deficits following concussions.  
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 The present study observed significant relationships between cognitive dysfunction 

and self-reported measures of symptom burden. Few, meaningful associations were 

observed in either the BUTTON or REACH variants of the task. However, in the CTR 

variant, variant with the greatest cognitive load, we observed several significant 

associations. Generally, individuals with greater cognitive deficits reported worse 

symptom burden on the RPQ, greater feelings of depression, and worse outcomes on the 

Neuro-QoL. This supports the premise of utilizing more ecologically valid tasks, as these 

more readily simulate the difficulties individuals have in their everyday lives.  

Limitations 

 The present study is not without its limitations. First, the present study utilized a 

small sample size. The small sample size possibly limited our ability to detect significant 

group differences. Second, the sample consisted of predominately female participants. We 

attempted to account for this discrepancy by including biological sex as a covariate in all 

statistical models. Future studies should aim to incorporate more balanced samples to 

account for possible sex differences. Additionally, while not significantly different, 

averages days since injury within the HCx-A group is almost double the HCx-S group. 

There was no association between days since injury and any of our measures of task 

performance or neuroelectric indices. Future studies should aim to better match on this 

variable to reduce the potential confounding influence. Finally, in stimulus-locked ERP 

analyses it is vital to have accurate time stamps corresponding to stimulus appearance. In 

a continuous task where objects are continuously appearing and moving stimulus 

“appearance” estimates become difficult. The present study aimed to minimize this issue 
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by only having one object on the screen at a time. Future studies can potentially circumvent 

this issue with integrated eye tracking systems. 

Conclusion.  

 In summary, the present study further demonstrates that individuals with a history 

of concussion exhibit persistent deficits in neurological function. Furthermore, 

symptomatic individuals exhibited worse deficits in neurological function accompanied by 

significant deficits in cognitive performance in all variants of the Go/NoGo task. 

Importantly, these deficits were more pronounced in the CTR task variant. Additionally, 

performance deficits in the CTR task more strongly related to self-reported symptoms and 

concussion burden. Findings from this study highlight that chronic concussion-related 

symptomology reflects abnormal recovery of neurological function. It also suggests that 

behavioral measures of cognitive function collected during more ecologically valid tasks 

may serve as reliable biomarkers of recovery following concussive injuries. By 

establishing reliable and objective biomarkers of neurological recovery, we can begin to 

effectively test and implement rehabilitative interventions aimed at alleviating specific 

deficits. 



  

 126 

CHAPTER 7 

GENERAL DISCUSSION 
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Concussive brain injuries represent a growing public health crisis. As we begin to 

understand the long-term impact of these injuries on neurological function, we see these are not the 

mild and transient injuries they were once thought to be. However, our understanding of the 

neurophysiological recovery patterns following injury is limited. This restricts our ability to 

accurately diagnose concussions and our ability to accurately track recovery. With the rising 

prevalence of PPCS and other long-term conditions such as CTE, there is a critical need for 

diagnostic and prognostic biomarkers of injury.77, 384  

One of the biggest barriers in the clinical management of concussion is the lack of a direct 

measurement of neurological function. By relying on biased and insensitive assessments that 

indirectly estimate neurological function, we may fail to identify subtle indicators of neurological 

dysfunction.122-124, 369 These place patients at an increased risk for subsequent injuries and the 

development of long-term deficits.8, 103, 104, 294 The inclusion of psychophysiological assessment 

techniques in the clinical assessment of concussion may help overcome some of these pitfalls. 

Psychophysiological techniques such as EEG or pupillometry allow for  the quantification of 

neurological function by taking advantage of the relationship between fluctuations in physiological 

signals (i.e., pupil size, neuroelectric activity) and psychological behavior. Additionally, these 

techniques can be monitored in real time allowing for the detection of abnormal patterns at rest or 

during task execution. The objective of the current investigation was to implement pupillometric 

and EEG techniques to identify neurological deficits associated with PPCS.  

In the first aim of the experiment, we investigated the impact of concussion recovery on 

gaze behavior and task-evoked pupil dynamics in an interleaved variant of the Anti-/Pro-saccade 

task. Comparing all three groups, we observed non-significant trends indicating that symptomatic 

individuals may exhibit issues in oculomotor control. Eye movements are controlled by interactions 

among subcortical brain regions , and areas within the frontal and parietal cortex.180, 348 

Coincidentally, these brain regions are commonly impacted by concussions.59, 70, 385 Furthermore, 
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we observed non-significant trends in task-evoked pupil dynamics. The observed patterns suggest 

that individuals with a history of concussion exhibited heightened levels of pupillary constriction 

following the appearance of the central fixation cue. This increased pupil constriction resulted to 

smaller degrees of stimulus evoked pupil dilation, which has been linked to task-based arousal. 

Pupillary dynamics are tightly controlled by interactions between the sympathetic (dilation) and 

parasympathetic (constriction) nervous systems. They also receive modulatory input from higher 

order brain regions within the frontal cortex.314, 386 These brain regions work together to prime the 

body to adapt to dynamically changing environments.312, 387, 388 The observed pattern of deficits 

within symptomatic individuals may indicate difficulty regulating neurological systems to meet 

situational demand. 

 In the second and third aim of the experiment, we wanted to observe the impact of 

concussion recovery on cognitive performance during a continuous task paradigm. First, in the 

second aim, we needed to validate ERPs of situational conflict monitoring (N2) and attention 

(P300) during continuous task performance in healthy controls. We found that compared to a 

traditional discrete button press task, discrete reach and continuous reach variants resulted in N2 

and P300 with smaller peak amplitudes but no difference in peak latencies. Reaching movements 

require significantly greater levels of motor planning and coordination.389 The need to re-distribute 

cognitive resources to other cognitive processes necessary for reaching compared to thumb press 

actions may explain the observed reductions in ERP amplitudes. These results suggest that discrete 

tasks may be best suited for investigations of specific cognitive processes using ERP analyses.  

 In the third aim, we set out to investigate the impact of concussion recovery on cognitive 

performance using the task paradigms established in aim 2. We observed that in all three task 

variants (BUTTON, REACH, CTR) symptomatic individuals demonstrated significant deficits in 

task performance. Furthermore, compared to non-injured controls these deficits were most 

pronounced in the more dynamic and complex CTR task variant. This in line with previous research 
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that has shown increased physical and cognitive demand elicits latent symptoms and deficits in 

neurological function.32, 316, 390 When analyzing neuroelectric activity, we similarly observed 

consistent deficits in task related indices of stimulus-response conflict (N2) and allocation of 

attentional resources (P300) among individuals with a history of concussion. Based on the results 

of experiment two we are unable to compare across task variants. However, within each variant 

individuals with a history of concussion demonstrated increased peak P300 latency, suggesting 

delayed stimulus classification. Interestingly, in the BUTTON variant while both history of 

concussion groups demonstrated increased P300 latency only symptomatic individuals exhibited 

reduced P300 peak amplitude. These results further suggests that concussion results in lingering 

deficits in neuroelectric function.142, 144, 378, 383, 391  However, slow-to-recover individuals with PPCS 

demonstrate unique patterns possibly indicative of impeded recovery.302, 385 

 Overall, we observed that persistent deficits associated with PPCS are indicative of atypical 

patterns of neurological recovery following injury. It is important to identify these slow-to-recover 

individuals before their condition progresses into a chronic issue or more severe neurological 

degeneration. Psychophysiological assessments directly quantify specific deficits in neurological 

function and appear sensitive enough to detect lingering deficits. Additionally, incorporating 

dynamic and complex tasks mimicking real-world behaviors exacerbates behavioral performance 

deficits. Finally, neuroelectric indices and continuous task performance measures were correlated 

with generalized self-reported symptom burden suggesting these measures may serve as more 

objective indicators of concussion-related deficits. Future research is needed to further investigate 

these relationships. However, this research helps emphasize the need for objective biomarkers that 

can be used to quantify concussion recovery status and provides supports the use of 

psychophysiological measures to accomplish this. 
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