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ABSTRACT

Epitaxial 4H-silicon carbide (4H-SiC) is an essential semiconductor material for 

the development of harsh environment radiation detectors due to its excellent electrical and 

thermal properties and resistance to radiation damage, opening the door for a wide variety 

of applications in NASA space missions, nuclear safeguards, and nuclear energy. However, 

the low atomic numbers of its constituent atoms Si (Z = 14) and C (Z = 6) make 4H-SiC 

nearly transparent to most neutrally charged radiation which can only be compensated 

using thicker active volumes.  

In this dissertation, Ni/n-4H-SiC Schottky barrier diode (SBD) radiation detectors 

are fabricated for the first time on 250 µm thick 4H-SiC epitaxial layers—the thickest 

epilayers used for radiation detection to date.  The detectors were found to have low leakage 

current densities <3 nA cm-2 at -800 V and benchmark 5486 keV alpha particle energy 

resolutions of <0.5% full width half maximum (FWHM). Despite this, evaluation of the 

barrier lowering determined the leakage current was predominantly trap-assisted through 

the Poole-Frenkel effect and the detector energy resolution limited by trapping in the 

epilayer. In addition to increasing the detector leakage current, defects can trap radiation 

induced charge carriers in intraband states preventing them from being collected. In n-type 

4H-SiC, the most significant trapping center is Z1/2 which along with EH6/7 corresponds to 

different charge states of the carbon vacancy which is theoretically predicted to appear in 

all as-grown epilayers based on ab initio calculations. Deep level transient spectroscopy 
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(DLTS) studies show that the energy resolution of 4H-SiC radiation detectors is correlated 

with the trapping rate of Z1/2. 

Further studies were conducted to characterize the effects of harsh environment 

conditions on the properties of the detectors. First, temperature variation of the leakage 

current at elevated temperature was studied by temperature-dependent current voltage (I-

V-T) measurements on 150 µm epitaxial layers which revealed that traps such as Z1/2 and 

EH6/7 and low barrier patches in spatial geometry of the metal-semiconductor (M-S) 

interface can produce excess leakage current compared to thermionic emission-diffusion 

(TED) theory. Next, the effect of neutron irradiation up to fluences of 1013 cm-2 was 

studied using 250 µm epilayers. Detector energy resolution was shown to degrade with 

increasing fluences which was correlated with the formation of three new deep levels at 

0.8, 1.2, and 1.8 eV below the conduction band. These levels were found to correspond 

to—based on density functional theory calculations with hybrid pseudopotentials—silicon 

displacement-related defects formed from the collision of fast neutrons (> 1 MeV) with the 

silicon nucleus.   
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𝑐𝑝 Capture rate of holes by a deep level. 

 

𝐸𝑇 Trap energy level. 

 

𝑛𝑇 Concentration of occupied traps. 

 

𝐸𝐷,𝑞
𝑓

 Formation energy of defect 𝐷 at integer charge state 𝑞. 

 

𝐸𝐷,𝑞 Energy of defective supercell 𝐷 at charge state 𝑞 calculated by density functional 

theory. 

 

𝐸𝑖𝑑𝑒𝑎𝑙 Energy of the ideal supercell calculated by density functional theory. 

 

𝑛𝑖 Number of atoms of species 𝑖 added (+) or removed (-) from the ideal supercell to 

create the defective supercell. 

 

𝜇𝑖 Chemical potential of atomic species 𝑖. 
 

𝐸𝑖 Energy per atom of atomic species 𝑖 in the elemental state. 

 

𝑞 Integer charge state. 

 

𝐸𝑐𝑜𝑟𝑟 Correction energy for periodic imaging by density functional theory in formation 

energy calculations.  

 

𝑁𝑠 Concentration of unique sites where defects of a specific type can form.  

 

𝑄 The total charge collected from an incident radioactive particle. 

 
𝑑𝑄

𝑑𝑥
 The differential charge generated per unit length by an alpha particle.  

 

𝑥𝑟 The stopping range of an incident radioactive particle. 

 

𝐿𝑑 The minority carrier diffusion length which is proportional to the square root of the 

minority carrier trapping time. 

 

𝐶𝑆𝑆 Steady-state capacitance of a Schottky barrier diode at an applied bias. 

 

𝐶𝑇 The capacitance of a Schottky barrier diode if 𝑁𝑒𝑓𝑓 was replaced with 𝑛𝑇. 

 

Δ𝐶 Maximum change in capacitance due to charge trapping at the steady-state bias in 

capacitance mode DLTS.  
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𝑡1 Initial measuring time in deep level transient spectroscopy. 

 

𝑡2 Second measuring time in deep level transient spectroscopy. 

 

Φ𝐵0 The average barrier over the entire surface of the Schottky barrier. 

 

𝑣𝑅 Richardson velocity. The average velocity at which carriers are ejected past the 

Schottky barrier by thermionic emission. 

 

𝑣𝐷 Drift-diffusion velocity. The average velocity at which charge carrier can diffuse 

through the space-charge region. Roughly equivalent to the drift velocity.  

 

𝑣𝑒𝑓𝑓 Effective carrier velocity between thermionic emission and diffusion at which 

carrier move through Schottky diode. 

 

𝐼0 Reverse saturation current density 

 

𝐼𝑝0 Reverse saturation current density of a low barrier patch. 

 

𝐴𝑝 Area of a low Schottky barrier patch at the metal-semiconductor interface. 

 

Φ𝑝 Barrier height of the low barrier patch.   

 
𝜇𝑃𝐹𝑛0 Trap-assisted mobility-carrier density product. 

 

𝐸𝑎 Activation energy. 
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CHAPTER 1 

INTRODUCTION 

1.1 4H-SIC DETECTORS FOR HARSH ENVIRONMENT 

Radiation detectors which can withstand harsh environments—extreme 

temperatures and high background radiation fields—are essential for a variety of 

applications in NASA space missions, nuclear safeguards, nuclear reactor core monitoring, 

and high energy physics experiments. For example, within the last few years, there has 

been considerable interest among the international community to return to the Earth’s 

moon for future surface chemistry characterization experiments [1]. Cosmic rays from the 

sun and beyond predominantly consist of fast protons and other heavy ions which collide 

with and penetrate the lunar surface [2]. This activates the nuclei of atoms on the lunar 

surface producing alpha particles with specific energies related to the activated materials 

[3]. Direct charge conversion radiation detectors or simple ‘radiation detectors’ can 

accurately determine the exact energy of these particles allowing them to be correlated with 

the surface and subsurface chemistry. However, the cosmic ray interactions additionally 

produce uncharged fast neutrons and heavy gamma rays which along with the charged 

radiation from cosmic rays can damage the detectors and spectrometric equipment. In 

2020, it was determined by China’s Chang’E lander mission that the background radiation 

dose from uncharged and charged radiation was 3.1 and 10.2 µGy/hour, respectively, 

which is roughly equivalent to a neutron fluence of 109 cm-2 (assuming ~1 MeV neutrons) 

[4]. Furthermore, the temperature of the lunar surface can vary rapidly from 80 K to 400 K 
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requiring materials with high thermal conductivity and which can withstand high 

temperatures [5]. Another harsh environment detector application is nuclear safeguards. 

One of the current challenges facing the United States Nuclear Regulatory Committee 

(NRC) is in-situ monitoring of nuclear waste caskets to minimize the health risks faced by 

waste storage site employees due to radiation exposure [6]. A typical dry waste casket used 

to store spent fuel can exceed 300 oC making most radiation detectors completely 

inoperable [7]. 

 

Table 1.1 Comparison of 4H-SiC properties with other materials at 300 K. 

 HPGe 

 

Si GaAs CdTe 4H-SiC GaN CVD 

Diamond 

Z 

 

32 14 31,33 48,52 14,6 31,7 6 

𝐄𝐠  

(eV) 

0.66 1.11 1.42 1.44 3.27 3.39 5.47 

𝛜  

(eV) 

2.95 3.62 4.3 4.43 7.28 8.9 12 

𝛋  

(W/cm K) 

0.58 1.5 0.55 0.06 4.9 1.3 24 

𝛒  

(g/cm3) 

5.33 2.33 5.33 5.65 3.24 6.15 3.51 

𝛍𝐧 

(cm2/Vs) 

3900 1400 8500 1100 1020 2000 4500 

𝛍𝐩 

(cm2/Vs) 

1900 480 400 100 120 200 3800 

𝐯𝐬𝐚𝐭  

(107 cm/s) 

0.6 1 1 1.3 2 2 2 

𝐄𝐁𝐃 

(MV/cm) 

0.1 0.3 0.4 - 3 5 10 

 

Radiation detectors require a wide variety of material properties for high resolution 

radiation detection [8, 9]. First and foremost, they must have good charge transport 

properties such as high saturation charge carrier velocities 𝑣𝑠𝑎𝑡 or high carrier mobilities 
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𝜇𝑛 and 𝜇𝑝. This maximizes the rate at which particles can be detected and minimizes the 

amount of charge trapping from defects. Additionally, the material should have a low 

electron-hole pair creation energy 𝜖 to achieve a high signal-to-noise ratio (SNR). For harsh 

environment applications, detector materials additionally need a wide bandgap 𝐸𝑔 to 

minimize the thermal noise at high temperatures and should have a high thermal 

conductivity to stabilize quickly in environments with rapid thermal fluctuation. Finally, it 

should have high atomic displacement energies and low atomic numbers to minimize 

radiation damage. Table 1.1 show a comparison of the essential properties of radiation 

detectors between various semiconductor materials [8, 10-17]. From this list, the only 

materials with bandgaps wide enough to withstand temperatures well above room-

temperature are 4H-SiC, GaN, and diamond. While GaN certainly shows promise for high 

temperature applications, the high atomic number of Ga (Z = 31) makes it more susceptible 

to radiation damage from uncharged radiation than either diamond (Z = 6) or 4H-SiC (Z = 

6 and 14), and the poor thermal conductivity makes it unsuitable for thermally unstable 

environments. The only radiation detector materials which can operate effectively in 

environments with both high temperatures and high radiation backgrounds are 4H-SiC and 

chemical vapor deposition (CVD) diamond. However, detector grade CVD diamond is a 

less mature material and much more costly to produce than 4H-SiC. Additionally, 4H-SiC 

integrated circuits are proven continuously operable up to 1000 oC [18] and have high 

atomic displacement energies (19 eV for C and 42 eV for Si) making it resistance to low 

energy radiation [19]. As a result, 4H-SiC is the material of most interest for harsh 

environment applications [20-24]. Indeed, Schottky barrier detectors (SBDs) fabricated on 

epitaxial 4H-SiC are well established as high-resolution radiation detectors of charged 
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particles with a best resolution to date of 0.25% full width half maximum (FWHM) for 

241Am alpha particles [25, 26]. 

  

1.2 IMPORTANCE OF DETECTOR THICKNESS 

  The drawback of 4H-SiC is that the low atomic numbers of its constituent atoms Si 

(Z = 14) and C (Z = 6)—the source of 4H-SiC’s radiation hardness—make it nearly 

transparent to uncharged radiation such as X-/gamma-rays. Charged radiations such as 

alpha particles deposit energy continuously over the full range of the incident particle and 

can be fully collected with a relatively small active area thickness (≈18.22 µm for 5486 

keV alpha particles). On the contrary, photons will normally generate electron-hole pairs 

at only a single point of interaction and can pass through materials without generating any 

charge. The key parameter for determining the likelihood of an interaction within the active 

region occurring is called the linear attenuation coefficient or its reciprocal, attenuation 

length, which describes the mean distance a photon can travel before scattering and causing 

ionizations. The total attenuation coefficient is the sum of the component attenuation 

coefficients for the different types of ionization events that can occur: photoelectric 

absorption, Compton scattering, and pair production [27]. Photoelectric absorption occurs 

at lower energies and results in all energy of the incident photon being converted into 

electron-hole pairs. At higher energies, Compton scattering becomes more likely and only 

a portion of the charge is collected depending on the scattering angle. Pair-production is a 

high energy physics phenomena that creates two oppositely charged real electrons. For 

radiation detection, photoelectric absorption is preferred because there is a one-to-one 

mapping between the energy of the charged particles and the charge collected. 
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Figure 1.1 Linear Attenuation coefficients of 4H-SiC for high energy photons ranging 

from 1 keV to 1 MeV simulated using NIST’s XCOM program.  

 

Figure 1.1 shows the linear attenuation coefficients for 4H-SiC obtained from 

NIST’s XCOM photon cross-section database [28]. From the graph, the photoelectric 

absorption attenuation length of 4H-SiC for a 5 keV photon would be ≈10 µm making it 

relatively easy to capture with most 4H-SiC devices. However, a 50 keV low energy 

gamma ray would have an attenuation length greater than 1 cm making the probability of 

collection extremely low.  Per Beer-Lamberts laws, the collection probability is related to 

the linear attenuation coefficient by, 

 𝑃𝑟(𝑥) = 1 − 𝑒𝑥𝑝(−𝛼𝑥) 

 

1.1 

where, 𝑥 is the thickness of the active region and 𝛼 is the linear attenuation coefficient. 

Figure 1.2 displays the collection probability of a typical low energy X-ray Fe-55 (5.19 
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keV) and low energy gamma ray Am-241 (59.5 keV) as a function of the active region 

thickness in 4H-SiC. At 10 µm, Fe-55 has ≈50% chance of being collected and improves 

to 99% at 100 µm. Over the same range, the probability of Am-241 being detected 

improves from less than one thousandth to less than one hundredth. The probability is still 

low, but there is a clear linear improvement in detection probability with thickness, and as 

long as the particle count rate is higher than the background noise count rate, the particle 

will be detectable. 

 

 

Figure 1.2 Probability of photoelectric adsorption occurring within the detector as a 

function of the depletion width for 55Fe X-rays (5.19 keV) and 241Am (59.5 keV) gamma 

rays. 
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 Large thicknesses are readily available for bulk semi-insulating 4H-SiC; however, 

semi-insulating 4H-SiC is usually vanadium doped [29] which introduces a large 

concentration of trapping centers making high resolution radiation detection impossible 

[30-32]. For this reason, most high resolution 4H-SiC radiation detectors are Schottky 

barrier diodes (SBD) fabricated on high quality epitaxial 4H-SiC with a low concentration 

of intrinsic defects. 241Am (59.6 keV) gamma rays have been detected in 4H-SiC SBDs 

with epilayer thicknesses as low as 16 µm, and it has been observed that both the 

responsivity and resolution of the detector improves as the thickness increases with a 

resolution of 2.1 % reported for 124 µm epilayers [33-36]. Hence, there is clear motivation 

for fabricating 4H-SiC SBDs on as thick epitaxial layers as possible. 

   

1.3 DISSERTATION OVERVIEW 

 The main purpose of this dissertation is the study of Ni/4H-SiC Schottky barrier 

radiation detectors fabricated on 4H-SiC epilayers of thicknesses up to 250 µm for harsh 

environment radiation detection applications. Epilayers as thick as possible are necessary 

for detection of low energy X/gamma-rays. To date, 250 µm epilayers are the thickest 

epilayers in the world being applied for radiation detection and this is the first dissertation 

to report on radiation detectors with epilayers of such thickness.  

 Chapter 2 is a discussion on the physics, operation, and fabrication of 4H-SiC 

Schottky barrier detectors and an evaluation of the device performance of the detectors 

fabricated on 250 µm epitaxial layers. This chapter begins with a description of thermionic 

emission-diffusion (TED) theory before moving onto the fabrication process of the 

detectors. The fabricated 250 µm detectors are then characterized via current-voltage (I-V) 
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and capacitance-voltage (C-V) measurements in terms of TED theory. Finally, the 

detectors are characterized for their radiation detection performance through pulse height 

spectroscopy (PHS) measurements. 

 Chapter 3 is an introduction to defects in 4H-SiC and their influence on radiation 

detection. This chapter begins with a discussion of charge trapping by defects and its effect 

on radiation detection performance. Next, the primary performance limiting defects in 4H-

SiC are discussed in terms of their physical meaning based on first principles calculations. 

To correlate radiation detection properties with these performance limiting defects, defect 

parameters of detectors fabricated on 50, 150, and 250 µm epitaxial layers are extracted 

using a drift-diffusion model for charge collection and capacitance mode deep level 

transient spectroscopy (DLTS) measurements.  

 Chapter 4 marks the start of harsh environment characterization of the detectors 

with a study on the leakage current variation with temperature on a 150 µm detector. Here, 

both surface barrier inhomogeneities and trapping centers in the device structure are 

correlated with increases in the detector reverse bias leakage current at elevated 

temperature. 

 Chapter 5 is a harsh environment study on the effect of super cadmium filtered fast 

neutrons on 250 µm epitaxial layers. The radiation detection performance is correlated with 

neutron dose and the creation of new deep levels in the detectors’ DLTS spectra. These 

new defects are correlated with silicon displacement-related point defects calculated from 

first principles. 

 Finally, Chapter 6 is the conclusion to this dissertation and provides suggestions 

for future work in this area.



9 

CHAPTER 2 

4H-SIC SCHOTTKY RADIATION DETECTORS FABRICATED ON 250 

µm EPITAXIAL LAYERS 

2.1 PHYSICS OF SCHOTTKY BARRIER DIODES

When radioactive particles interact with a semiconductor material, this generates 

electron-hole pairs within the device. Applying an electric field then causes the charge pairs 

generated within the active region to drift towards their respective electrodes producing a 

radiation induced current pulse which can be processed and interpreted by a detection 

system so long as the current pulse is sufficiently greater than the DC dark current. 

Increasing the electric field strength across the active region can increase the induced 

current, but will also increase the DC dark current requiring the material to either be highly 

resistive or the device to be rectifying. The two main types of rectifiers are p-n junction 

diodes and SBDs. For radiation detectors, SBDs are preferred over p-n junctions for their 

faster timing resolution and direct access to the active volume through the detector window.  

A Schottky barrier diode is a type of semiconductor device formed from the 

junction between a metal contact and the surface of a semiconductor. This type of junction 

is called a Schottky contact and occurs with n-type semiconductors when the work function 

of the metal Φ𝑚 is greater than the work function of the semiconductor Φ𝑠. Figure 2.1 

demonstrates this with a schematic of the band diagram for this category of junction both 

before and after Schottky contact formation. Initially, the fermi-level of the semiconductor 
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𝐸𝐹 is above the fermi-level of the metal 𝐸𝐹𝑚 which will force electrons in the metal to build 

up at the surface inducing a negative potential. This potential pushes electrons in the 

semiconductor away from interface causing the conduction and valence bands edges, 𝐸𝐶 

and 𝐸𝑉, to bend until the fermi level in the semiconductor is equal to the metal. The 

potential barrier between the metal fermi-level and 𝐸𝐶 immediately at the junction is called 

the barrier height 𝜙𝐵 and is ideally equal to the difference between Φ𝑚 and the 

semiconductor electron affinity 𝜒𝑠.  

 

 

Figure 2.1 Energy band diagram for a Schottky junction between a metal and an n-type 

semiconductor (a) before contact and (b) at equilibrium. 

 

In the semiconductor, the surface charge induces a potential gradient that can be 

described by the one-dimensional Poisson’s equation given as [37],  

 

𝑑2𝜙

𝑑𝑥2
= −

𝑒

𝜀
[𝑝(𝑥) − 𝑛(𝑥) + 𝑁𝑒𝑓𝑓]. 

 

2.1 

Here,  𝜙(𝑥) is the electrostatic potential in the semiconductor, 𝑒 is the elementary charge 

of an electron, 𝜀 is the electric permittivity of the semiconductor (8.55 × 10-13 F/cm in 4H-
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SiC), 𝑝(𝑥) and 𝑛(𝑥) are the free hole and electron concentrations, respectively, and 𝑁𝑒𝑓𝑓 

is the net donor or effective carrier concentration. 𝜙(𝑥) has the boundary conditions of 

𝜙(0) = −𝑉𝑏𝑖 and 𝜙(∞) = 0 where 𝑉𝑏𝑖 is the built-in voltage across the semiconductor. In 

an n-type semiconductor, the free hole concentration is assumed to be negligible whereas 

the free electron concentration is a function of the electrostatic potential described by Eqn. 

2.2. 

 
𝑛(𝑥) = 𝑁𝑒𝑓𝑓 𝑒𝑥𝑝 (

𝜙(𝑥)

𝑘𝐵𝑇
). 

 

2.2 

Here 𝑘𝐵 is Boltzmann’s constant and 𝑇 is absolute temperature in Kelvin. Clearly, Eqn. 

2.1 is impossible to solve analytically. However, Eqn. 2.2 falls off exponentially allowing 

the problem to be resolved by introducing a parameter called the depletion width 𝑥𝑑 defined 

such that for 𝑥 < 𝑥𝑑, 𝑛(𝑥) ≪ 𝑁𝑒𝑓𝑓 and 𝜙(𝑥𝑑) ≈ 0. Thus, Eqn. 2.1 can now be solved 

analytically. Integrating Eqn. 2.1 once returns the position dependent electric field strength 

within the semiconductor as  

 
𝐸𝑥(𝑥) = −

𝑑𝜙

𝑑𝑥
=

𝑒𝑁𝑒𝑓𝑓

𝜀
𝑥 + 𝐸𝑚, 

 

2.3 

where 𝐸𝑚 is the electric field strength at the M-S interface.  Assuming the electric field is 

zero in the neutral region beyond 𝑥𝑑,  

 
𝐸𝑚 = −

𝑒𝑁𝑒𝑓𝑓

𝜀
𝑥𝑑 . 

 

2.4 

Integrating Eqn. 2.1 once again and using Eqns. 2.3 and 2.4 gives the electrostatic potential 

between the surface and 𝑥𝑑, now referred to as the space-charge region or depletion region, 

as shown below, 

 
𝜙(𝑥) = −

𝑒𝑁𝑒𝑓𝑓

2𝜀
𝑥2 +

𝑒𝑁𝑒𝑓𝑓

𝜖
𝑥𝑑𝑥 + 𝜙(0). 

 

2.5 
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Using the boundary condition 𝜙(𝑥𝑑) = 0,  𝑥𝑑 is derived to Eqn. 2.6 below, 

 

𝑥𝑑 = √
2𝜀(−𝜙(0))

𝑒𝑁𝑒𝑓𝑓
. 

 

2.6 

In terms of radiation detectors, the implication is that both the electric field strength and 

active region thickness are a function of the square root of the surface potential. Under bias 

conditions, the surface potential changes to 𝜙(0) = −(𝑉𝑏𝑖 − 𝑉) where 𝑉 is the applied bias 

allowing both the electric field strength and depletion width be controlled by the applied 

bias.  

 

 

Figure 2.2 Energy band diagram of Schottky contact under forward bias and reverse bias. 

The current transport mechanisms are (a) thermionic emission, (b) diffusion (drift under 

reverse bias), and (c) tunneling. 

 

At equilibrium, 𝐸𝐹 is aligned in both the metal and semiconductor making electrons 

equally likely to move from one side of the junction to the other producing a net current of 

zero. Applying a forward bias voltage pushes 𝐸𝐹 above 𝐸𝐹𝑚 reducing the surface potential 
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barrier by the applied bias allowing electrons to move from the semiconductor to the metal 

more readily. Under reverse bias, 𝐸𝐹 is pushed below 𝐸𝐹𝑚 increasing the surface potential 

by the applied voltage, and thus electrons can only flow from the metal to the 

semiconductor if they can surmount Φ𝐵. Figure 2.2 illustrates the various current flow 

mechanisms that can occur under forward and reverse bias. The most common mechanism 

is thermionic emission which states that electrons can be thermally excited above the 

potential barrier at which point they will be swept up by the strong electric field. Assuming 

the drift velocity is sufficient high, the current density will be rate limited by how often 

charges jump the barrier and can be described by the Bethe thermionic emission model 

given in Eqn. 2.7 [38, 39],  

 
𝐽 = 𝐴∗𝑇2 𝑒𝑥𝑝 (−

𝛷𝐵

𝑘𝐵𝑇
) [𝑒𝑥𝑝 (

𝑒𝑉

𝑛𝑘𝐵𝑇
) − 1]. 

 

2.7 

Here, 𝐴∗ is the effective Richardson coefficient of the material (146 A cm-2 T-2) and 𝑛 is 

an ideality factor introduced to describe nonidealities in the forward bias current. The 

second most common type of current flow is diffusion current of electrons along the 

electron concentration and is described by drift-diffusion theory as [39], 

 
𝐽 = 𝑒𝜇𝑛𝐸𝑚𝑁𝐶 𝑒𝑥𝑝 (−

𝛷𝐵

𝑘𝐵𝑇
) [𝑒𝑥𝑝 (

𝑒𝑉

𝑛𝑘𝐵𝑇
) − 1]. 

 

2.8 

In Eqn. 2.8, 𝑁𝐶 is effective density of states of the conduction band (1.6 × 1019 cm-3 in 4H-

SiC at room temperature).  This equation has a similar form to Eqn. 2.7 albeit with a linear 

dependence on the electric field.  Combined Eqns. 2.7 and 2.8 are referred to as thermionic 

emission-diffusion (TED) theory which states that the slower of the two mechanisms will 

dominate. The last common transport mechanism is tunneling through the Schottky barrier 
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[39]. It has no temperature dependence and is usually negligible in low-doped Schottky 

barrier diodes.  

2.2 FABRICATION OF NI/N-4H-SIC SBDS 

 4H-SiC Schottky barrier diode radiation detectors were fabricated on epitaxial 

layers of thicknesses up to 250 µm. The epilayers were grown by hot wall chemical vapor 

deposition on the (0001) face of a 100 mm diameter, 350 µm thick bulk 4H-SiC substrate 

with a low n-type resistivity of 0.015-0.028 Ω-cm. The two most damaging structural 

defects in 4H-SiC are basal plane dislocations (BPD) and micropipes (MP). Prolonged use 

of devices fabricated on BPDs will introduce stacking faults, degrading device 

performance over time. They can be eliminated through KOH etching or conversion into 

threading edge dislocations (TED). TEDs are benign and form more easily from BPDs 

when epilayers are grown slightly off axis or at higher C/Si ratios [40-43]. MPs are a type 

of threading screw dislocation which act as highly conductive channels completely killing 

device rectification and leading to premature breakdown. They originate from the substrate 

and are more likely to close at lower C/Si ratios [43-46]. The present epilayers were grown 

on a substrate with an ultralow areal MP density of ~0.11 cm2 at an 8o offcut towards the 

⟨112̅0⟩ direction. The net donor concentrations of the epilayers were (1-2) × 1014 cm-3 due 

to unintentionally nitrogen doping.  Following growth, the parent wafer was diced into 8 × 

8 mm2 samples to be used as substrates for device fabrication.  

Next, the samples are cleaned and prepped for metal deposition using a 5-stage 

process based on the Radio Corporation of America (RCA) method [47]. The first stage is 

cleaning with inorganic solvents to remove organic contaminants introduced in the 

processing of the samples after growth. The sample is first wiped with a cotton swab soaked 
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with boiling trichloroethylene, and then in rapid succession, the samples are dipped into 

boiling trichloroethylene, acetone, and methanol for three minutes each. 

The second stage uses a ‘base piranha’ solution of H2O/H2O2/NH4OH (5:1:1) to 

remove any organic residue left over from the previous stage. H2O/NH4OH (5:1) is first 

heated to 100oC to ensure that H2O2 reacts with NH4OH. H2O2 is then slowly poured into 

the solution before dipping the sample for 5 minutes.  

The third stage is an ionic cleaning with an ‘acidic piranha’ solution of H2O2/H2SO4 

(2:5) for 30 seconds to remove any metal contaminants left over from the growth process. 

It additionally introduces a passivating silicon dioxide layer (a few angstrom) that protects 

the surface from further contamination. This is fine for conventional electronic devices, 

but SBDs require the metal to be directly deposited onto the silicon face of the epilayer.   

To remove the silicon dioxide layer, the sample is dipped into diluted hydrofluoric 

acid (~1%) for one minute. Between each of the steps, the sample is rinsed in running 

deionized (DI) water before finally being dried with an N2 gun. The dried detectors are 

immediately taken for metal deposition to avoid any native oxide formation. 

The Schottky contacts were formed by DC sputtering Ni onto the Si-face of the 

square samples using a Quorum Q150T sputtering unit. Ni has a large metal work function 

of (Φ𝑀 ≈ 5 eV) resulting in large barrier heights. In SBD radiation detectors, the barrier 

height needs to be as high as possible to minimize the detector leakage current. Ni is chosen 

over other high work function metals such as Au or Pt due to its lower atomic number (Z 

= 28) which helps minimize charge loss in the metal. Metal rectangular (6 × 6 mm2) masks 

with a 2.9-3.9 mm diameter circular opening were placed onto the Si-face of the samples 

and held in place using a tin foil wrapping. The sample was then placed onto the sample 
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stage of the sputtering chamber. A sputtering current of 60 A was set for a duration of 10 

seconds resulting in the formation of the ~10 nm thick Ni/4H-SiC Schottky contact which 

is a sufficiently thin to prevent charge loss in the metal.  This process was repeated to 

deposit a 100 nm thick, 6 × 6 mm2 Ni contact onto the bulk surface (C-face). Due to the 

high conductivity of the bulk, this contact was ohmic. Often, the sharp tungsten probes 

used in the measurement systems can damage the very thin Ni Schottky contacts creating 

some inaccuracies in electrical measurements.  To remedy this, a 100 nm thick, 1 mm 

diameter gold contact—which is sufficiently small enough in area to not impact radiation 

detection—is deposited onto the Ni Schottky contact.   

 

 

Figure 2.3 Schematic of the device structure of a Ni/n-4H-SiC radiation detector 

fabricated on 250 µm epitaxial layers. 
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2.3 ELECTRICAL CHARACTERIZATION MEASUREMENTS  

In this study [48], the junction properties of three detectors fabricated on 250 µm 

epitaxial layers were characterized by current-voltage (I-V) and capacitance-voltage (C-V) 

measurements. The first two detectors, S1 and S2, had an active area diameter of 3.9 mm 

whereas the third had a diameter of 2.9 mm. For I-V measurements, the detectors were 

individually mounted onto a PCB and loaded into an electromagnetic interference (EMI) 

shielded electronic box connected via low noise triaxial cables to a Keithley 237 source-

measure unit. The Keithley 237 can apply ±1000 V to a device with an error of 10-100 fA 

in the measured current depending on the range. The source measure unit was then 

interfaced with a PC for data collection using a LabVIEW based data acquisition program. 

C-V measurements were taken with a pulse generator capable of outputting ±12 V and a 

1 MHz capacitance meter, both built-in to a SULA DDS-12 system.  The samples were 

loaded into a Janis VPF800 cryostat configured for capacitance measurements and 

connected to the DDS-12 system via low noise BNC cables. 

Figures 2.4 and 2.5 show the forward and reverse bias characteristics of the three 

detectors, respectively. All three detectors expressed rectifying characteristics under the 

correct polarities confirming that top contact is Schottky. Thermionic emission theory 

predicts that relationship between ln 𝐽 and 𝑉 is approximately linear for some voltage range 

and therefore both the barrier height and ideality factor can be extracted from the linear fit 

by Eqn. 7. For the present detectors, the barrier heights were calculated to be 1.35, 1.31, 

and 1.45 eV while the ideality factors were 1.06, 1.00, and 1.08 for S1, S2, and S3, 

respectively. S1 and S3 had ideality factors slightly greater than one indicating spatial 

inhomogeneity in the surface barrier height [49]. For all three detectors, the reverse bias 
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leakage current density remained under 3 nA cm-2. After converting applied bias to the 

electric field strength at the M-S interface using Eqn. 2.4, it was found that detector S2 had 

the lowest relative leakage current of the three devices. When compared with other Ni/4H-

SiC detectors, the leakage current was most comparable to edge terminated detectors 

fabricated on 20 µm epitaxial layers [50]. 

 

 

Figure 2.4 Forward bias I-V characteristics for detectors S1, S2, and S3 fabricated on 250 

µm 4H-SiC epitaxial layers. The solid lines represent the straight line fit of the linear 

region. 
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Figure 2.5 Reverse bias I-V characteristics for detectors S1, S2, and S3 fabricated on 250  

µm 4H-SiC epitaxial layers.  

 

 

Figure 2.6 Capacitance per unit area as a function of applied bias for the 250 µm Ni/n-

4H-SiC epitaxial layer radiation detectors. 
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 Figure 2.6 shows the C-V characteristics of the detectors normalized to the active 

area of each device. The capacitance of a Schottky diode is proportional to the reciprocal 

of its depletion width and thus varies with 1/√𝑉𝑏𝑖 − 𝑉. Taking the reciprocal of the 

capacitance squared results in what is called the Mott-Schottky equation which can be used 

to extract 𝑉𝑏𝑖 and the net donor concentration 𝑁𝑒𝑓𝑓. 

 1

𝐶2
=

2

𝐴2𝑒𝜀𝑁𝑒𝑓𝑓

(𝑉𝑏𝑖 − 𝑉) 

 

2.9 

Figure 2.7 displays the plot of 1/𝐶2 versus the applied reverse bias. Using Eqn. 2.9, the 

net donor concentrations were calculated to be 9.8 × 1013, 1.8 × 1014, and 1.7 × 1014 cm-3 

for S1, S2, and S3, respectively. S1 shows nonlinear behavior at low bias which is 

indicative of a gradient doping. From the linear fit of the forward bias region, it is estimated 

that the initial net donor concentration is close to 2 × 1013 cm-3 and then ramps up to 1 × 

1014. From the initial linear fit, the built-in voltages were calculated to be 18.4, 3.9, and 1.3 

V, respectively. The forward bias linear fit of S1 gave a built-in voltage of 1.9 V. The 

Schottky barrier height is equal to the sum of the built-in voltage and the bulk Fermi-level 

measured relative to the conduction band minimum and is represented by 

 
𝛷𝐵 = 𝑉𝑏𝑖 + 𝑘𝐵𝑇 𝑙𝑛 (

𝑁𝑐

𝑁𝑒𝑓𝑓
), 

 

2.10 

where 𝑁𝑐 is the effective density of states of the conduction band (1.6 × 1019 cm-3 in 4H-

SiC at 300 K). Using this equation, the barrier heights were calculated to be 2.2 and 1.6 eV 

for S1 and S3, respectively, which is higher than the values obtained from the I-V 

measurements. This is because the C-V barrier height corresponds to the average barrier 

over the entire contact area whereas the I-V barrier height is an effective value resulting 

from current preferring to pass through the low barrier regions of a spatially 
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inhomogeneous barrier [49, 51]. S2’s built-in voltage was too high to reasonably be 

correlated with the barrier height. A high built-in potential usually indicates either minor 

gradient donor or the presence of some dielectric layer between the metal and 

semiconductor surface [52]. Since the ideality factor of S2 was almost exactly one, it can 

be assumed that the average and effective barrier height are the same. 

 

 

Figure 2.7 Mott-Schottky plots of the detectors S1, S2, and S3. The solid lines are straight-

line fits for calculating the effective doping concentration at two different bias regimes. 

 

 One of the challenges of 250 µm epilayers is the extreme bias needed to fully 

deplete them. Solving Eqn. 2.6 for the full depletion bias shows that the bias needed to 

fully deplete a detector increases quadratically with the thickness of the epilayer. For 

example, a detector with a 20 µm epitaxial layer and carrier concentration of 1014 cm-3 
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would only take about 30 V to be fully depleted, whereas 40 µm would require 120 V and 

80 µm, 480 V. Using the net donor concentrations of each sample, it is estimated that it 

would take 5.7, 10.7, and 10.0 kV for S1, S2, and S3, respectively, to fully deplete. The 

extremely high bias poses two major risks to operating the devices at full depletion.  One 

is that the detectors will undergo breakdown long before being fully depleted. However, as 

per Eqn. 2.4, the present detectors will have an interfacial electric field of 0.5, 0.9, and 0.8 

MV/cm, respectively, which is less than the breakdown electric field of 4H-SiC (≈3 

MV/cm) and theoretically should survive the high bias. 

 

 

Figure 2.8 Variation of current density under reverse bias as a function of mean electric 

field across the space charge region. The mean field can be converted to maximum field at 

the M-S interface by multiplying by 2. 

 

 The other major risk is that the reverse bias leakage current will be too high for 

radiation detection, potentially degrading SNR or damaging the electronic equipment.  
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Figure 2.8 shows a linear relationship between the leakage current and mean electric field 

at low to moderate electric fields which indicates that the current could be better described 

by drift-diffusion theory rather than thermionic emission. Fitting the data to Eqn. 2.8, 

results in an estimated barrier height of ≈1.1 eV for all three samples which is much lower 

than that obtained using the thermionic emission model. A possible explanation is that 

thermionic emission was the wrong assumption for the forward bias analysis. Alternatively, 

the leakage current could be trap assisted through Poole-Frenkel emission which also has 

a linear electric field dependence making it indistinguishable from diffusion at low to 

moderate electric fields [53]. 

 

 

Figure 2.9 Interfacial electric field dependence of the current density J normalized to the 

interfacial electric field 𝐸𝑚. Dashed lines are the linear fit of experimental data. S2 has a 

second linear fit in red corresponding to interfacial electric fields greater than 0.2 MV/cm. 
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At high electric fields, the leakage current starts to increase more substantially due 

to barrier lowering described by the following equation [39, 53, 54], 

 
𝛥𝛷 =

1

𝑚
√

𝑒𝐸𝑚

𝜋𝜀
. 
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Herse,  𝑚 is a scaling factor describing how quickly the barrier is reduced.  For Schottky 

barrier lowering by image charges, the scaling factor is 2, whereas for Poole-Frenkel 

emission, the scaling factor is 1.  Thus, the relative contribution of each mechanism can be 

identified by the slope of a ln 𝐽/𝐸𝑚 versus 𝐸𝑚
1/2

 plot which has been given for the three 

detectors in Figure 2.9. For S1 and S3, the scaling factor is 1.2 and 0.8 respectively 

indicating that current transport is trap assisted. In sample S2, the scaling factor is initially 

2.0 before changing to 1.1 at 0.2 MV/cm. How big of an impact barrier lowering will have 

on the detector leakage current can be estimated by taking the ratio between the expected 

current at full depletion and the current at some point in the linear region of ln 𝐽/𝐸𝑚 versus 

𝐸𝑚
1/2

 as shown below, 

 𝐽1

𝐽2
=

𝐸𝑚1

𝐸𝑚2
𝑒𝑥𝑝 (

𝛥𝛷1 − 𝛥𝛷2

𝑘𝐵𝑇
). 
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Using this relation, it is estimated that at full depletion the current could increase by more 

than 300 times its value at 800 V with Poole-Frenkel lowering or more than 40 times with 

Schottky lowering.  

 

2.4 ALPHA PULSE HEIGHT SPECTROSCOPY WITH 
241AM 

 A typical analog spectrometric system consists of a radiation detector, a high 

voltage power supply, a charge-sensitive preamplifier, a wave shaping amplifier, and a 

multichannel analyzer. The power supply unit is connected to the detector anode and 
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cathode through a biasing circuit with a high series resistance (> 100 MΩ) to limit the 

maximum current. Charges generated in the detector are swept up by the electric field 

generating a current pulse which is then fed into the input of the preamplifier. The 

preamplifier is a current integrator which produces a voltage signal directly proportional 

to the charge injected by the detector. These devices are usually amplifier circuits that apply 

a negative feedback capacitor to produce a voltage signal much larger than the voltage 

stored on the input capacitor. To prevent saturation, they use a feedback resistor to 

continuously discharge the feedback capacitor. A shaping amplifier converts the integrated 

pulse from the preamplifier into a gaussian waveform with an amplitude proportional to 

the charge collected. The system consists of an input differentiator followed by a fourth 

order active integrator which together create a semi-gaussian waveform while attenuating 

high frequency electronic noise. The width of the gaussian waveform is determined by the 

RC time constant of the input differentiator. The last component is a multichannel analyzer 

(MCA) which interprets the gaussian waveforms and bins them into a histogram based on 

the amplitude of the gaussian. As a result, the bin number or ‘channel number’ is directly 

proportional to the charge generated in the detector.   

The radiation detection performance of detectors S1, S2, and S3 were characterized 

by the pulse height spectrometer at UofSC (Figure 2.10) with a 0.9 µCi 241Am alpha source. 

The detectors were mounted onto PCBs and loaded into an EMI shielded electronic box 

with the source placed ≈1 cm above the detector. The electronic box was connected to the 

remainder of the system via a single male-to-male BNC connector. During measurements, 

the electronic box was kept under continuous vacuum to minimize scattering of alpha 

particles in air. The spectrometer at UofSC consists of a CR110 preamplifier, a Canberra 
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3106D high voltage power supply, an ORTEC 572 shaping amplifier, and a Canberra 

Multiport II multichannel analyzer.  

 

 

Figure 2.10 Block diagram of the radiation detection system at UofSC (a), a photograph 

of the electronic box used for radiation detection (b), and a photograph of the radiation 

detection system (c), used in this work. 

 

The energies of the incident particles were calculated by calibrating the detector 

with an ORTEC 419 precision pulse generator to charge a calibrated feed-through test 

capacitor connected to the input of the preamplifier. Due to the low capacitance (2.466 pF), 
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the capacitor quickly discharges its stored charge into the preamplifier as a current pulse 

and is eventually binned by the MCA. By adjusting the amplitude of the pulser voltage, a 

one-to-one linear mapping can be constructed between charge injected and channel 

number. Multiplying the charge by the electron-hole pair generation energy 𝜖 (7.28 eV in 

4H-SiC [55]) converts the mapping to be between energy injected and channel number. 

The detector performance was interpreted in terms of energy resolution defined as the full 

width half maximum (FWHM) of the of primary 241Am alpha peak in keV as a percentage 

of the centroid energy.  

 

 

Figure 2.11 241Am Pulse height spectra obtained for S1 (a), S2 (b), and S3 (c). The solid 

red lines are the triple Gaussian model fitted overtop the PHS. 
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The primary alpha decay of 241Am has an energy of 5486 keV which means that 

the range of the particle is 18.22 µm based on SRIM calculations [56]. To achieve this 

active region thickness, the detectors would need biases of approximately 30 V for S1 or 

60 V for S2 and S3; however, usually the optimal bias is much higher. Figures 2.11 shows 

the best resolution spectra for each detector. The optimum bias was −200 V for all three 

detectors whereas the optimum shaping time was 3, 2, and 1 µs for S1, S2, and S3, 

respectively. 241Am has three closely spaced primary alpha particle energies of 5486 (85%), 

5443 (13%), and 5388 (2%) keV. In all three detectors, all three alpha peaks were clearly 

visible indicating that the detectors are of high resolution. The FWHMs of the 5486 keV 

peaks were 26.7, 25.6, and 25.1 keV corresponding to resolutions of 0.49%, 0.47%, and 

0.46% for S1, S2, and S3 respectively. A summary of the electronic and radiation detection 

properties of each device is given in Table 2.1. 

 

Table 2.1 Detector parameter obtained for detectors fabricated on 250 µm epilayers. 

ID 𝑛 Φ𝐵 (eV) 𝐽 @ -800V  

(nA cm-2) 

𝑁𝑒𝑓𝑓        

(1014 cm-3) 

Shaping 

Time 

(µs) 

Energy 

Resolution 

(%) 

S1 1.06 1.35 1.9 0.97 3 0.49 

S2 1.00 1.31 1.0 1.8 2 0.48 

S3 1.08 1.45 2.9 1.7 1 0.47 

 

Figure 2.12 shows the pulser peak obtained at the same conditions as detector S3 

at the optimum conditions both with and without the detector connected which gives the 

overall electronic noise of the system. The electronic noise of the system was originally 

4.7 keV FWHM (4H-SiC equivalent) without the detector and increases to 10.2 keV 
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FWHM when the detector is connected to the system. This is because the detector leakage 

current and the detector capacitance both contribute to the white parallel noise component 

of the system. The total broadening of the radiation peak is the quadratic sum of the peak 

broadening from the electronic system 𝐹𝑊𝐻𝑀𝑒𝑙𝑒𝑐 and the peak broadening from the 

detector 𝐹𝑊𝐻𝑀𝑑𝑒𝑡 and can be described by Eqn. 2.13 [54].  

 𝐹𝑊𝐻𝑀𝑡𝑜𝑡𝑎𝑙
2 = 𝐹𝑊𝐻𝑀𝑒𝑙𝑒𝑐

2 + 𝐹𝑊𝐻𝑀𝑑𝑒𝑡
2 . 

 

2.13 

Detector peak broadening originates from statistical fluctuations in the charge collected 

which is mostly related to trapping of charge carriers by defects in the crystalline structure.   

Using 25.1 keV as the total broadening and 10.2 keV as the system broadening, the peak 

broadening from the detector is calculated to be 22.9 keV indicating that the detector 

energy resolution is limited by charge carrier trapping.   

 

 

Figure 2.12 Pulser PHS obtained with and without detector S3 at -200 V and a shaping 

time of 1 µs. 
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2.5 CONCLUSION 

 Ni/n-type 4H-SiC Schottky barrier diode radiation detectors were fabricated on 250 

µm epitaxial layers which are the thickest to date and essential for high resolution gamma 

spectroscopy with 4H-SiC. The detectors were evaluated for their junction properties in 

terms of Schottky barrier physics to determine their potential for operation at full depletion. 

Due to the net donor concentrations <2 × 1014 cm-3, it was found that it would require up 

to 10 kV to fully deplete the detectors. This corresponded to an electric field strength at the 

M-S interface of up to 0.9 MV/cm, which is lower than the breakdown electric field of 4H-

SiC, suggesting that the detectors should be able to survive at full depletion without 

breaking down. From a ln 𝐽/𝐸𝑚 versus 𝐸𝑚
1/2

 model, it was determined that current growth 

is predominantly trap-assisted and could result in an increase in reverse bias leakage current 

from 800 V to 10 kV of up to 300 times. Radiation detection measurements showed high 

energy resolutions of <0.5 % FWHM for all three detectors. Comparison with the peak 

broadening of a precision pulser fed into the spectrometer revealed that the resolution is 

predominantly limited by trapping of charge carriers in the detectors.  
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CHAPTER 3

CORRELATION OF DEFECTS WITH RADIATION DETECTION 

3.1 CHARGE TRAPPING IN SEMICONDUCTOR RADIATION DETECTORS 

 When radiation interacts with a semiconductor detector, electron-hole pairs are 

produced at the point of interaction 𝑥𝑖 which induces charges on the anode and cathode of 

the device by image charge induction. By superposition, the net charge induced is initially 

zero due to the electrons and holes occupying the same position. Applying an electric field 

across the material will cause the holes to drift towards the cathode and electrons towards 

the anode causing the induced image charge to change creating an electrical current. This 

current is defined by Shockley-Ramo theorem [57-60] as 

 𝑖(𝑡) = 𝑒𝑁(𝑡)𝑣𝑑(𝑥, 𝑡)𝐸𝑤(𝑥, 𝑡), 
 

3.1 

where 𝑁 is the number of mobile electrons or holes, 𝑣𝑑(𝑥, 𝑡) is the instantaneous drift 

velocity, and 𝐸𝑤 is a weighting field related to the geometry of the anode and cathode. The 

total charge collected for each charge type is the integral of Eqn. 3.1 over the transit time 

𝑡𝑟 with the net charge collected being the sum of the individually collected electron and 

hole charges. Ideally, the amount of charge collected will equal the amount of charge 

generated and the relative contribution of electrons and holes equal to the ratio of the transit 

distance to the thickness of the active region of the device.  
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Figure 3.1 Demonstration of charge collection in both an ideal detector and a detector with 

trapping from defects. 

 

Realistically, charge carriers vibrate statistically at high thermal velocity and have 

some probability of colliding with point defects in the crystalline structure. Upon collision 

with an unoccupied defect, charge carriers will stop directional motion, no longer inducing 

a current on the electrode. The probability of trapping obeys the principles of mean free 

path where the trapping rate is proportional to how big the traps are and how many traps 

there are to hit reflected in the traps’ capture cross-sections 𝜎𝑛 for electrons and 𝜎𝑝 for 

holes and trap concentrations 𝑁𝑇. The mean free path of a single trap is defined as the 

reciprocal of the product between the two. Assuming quasi-random thermal motion is 

either much faster than or comparable to the drift velocities of the carriers, the mean 

trapping rate can be described as the reciprocal sum of the mean free paths for multiple 

traps multiplied by the mean thermal velocities 〈vth,n〉 and  〈vth,p〉 for electrons and holes, 

respectively. The mean trapping time 𝜏𝑛 or 𝜏𝑝 would then be defined as the reciprocal of 

the trapping rate as illustrated by the following [61], 



 

33 

 

𝜏𝑛 = [〈𝑣𝑡ℎ,𝑛〉 ∑ 𝜎𝑛,𝑖

𝑖

𝑁𝑇,𝑖]

−1

. 

 

3.2 

Returning to Eqn. 3.1, with electron trapping, the differential change in 𝑁(𝑡) with time is 

equal to 𝑁(𝑡) divided by 𝜏𝑛 which is a simple homogeneous first order ordinary differential 

equation with an exponential solution as shown below 

 
𝑁(𝑡) = 𝑁0 𝑒𝑥𝑝 (−

𝑡

𝜏𝑛,𝑝
), 

 

3.2 

where 𝑁0 is the number of charge carriers generated. If 𝜏𝑛 is short compared to the transit 

time of carriers, all charge will effectively be lost without being collected. If 𝜏𝑛 is long, the 

device behaves almost like an ideal device. For example, in a planar detector with thickness 

𝑑 and a constant drift velocity, 𝐸𝑤 = 1/𝑑 allowing Eqn. 3.1 to be rewritten as 

 
𝑖(𝑡) =

𝑒𝑁0𝑣𝑑

𝑑
𝑒𝑥𝑝 (−

𝑡

𝜏𝑛,𝑝
). 
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Assuming the interaction depth 𝑥𝑖 is measured relative to the cathode, the distance the hole 

travels will be 𝑥𝑖 whereas the electron will travel a distance 𝑑 − 𝑥𝑖. Therefore, the transit 

times 𝑡𝑟 will be 𝑥𝑖/𝑣𝑑,𝑝 for holes and (𝑑 − 𝑥𝑖)/𝑣𝑑,𝑛 for electrons. After integrating with 

respect to time over the range [0, 𝑡𝑟], the charge collected will be, 

 
𝑄𝑝 =

𝑒𝑁0𝑣𝑑,𝑝𝜏𝑛

𝑑
[1 − 𝑒𝑥𝑝 (−

𝑥𝑖

𝜏𝑝𝑣𝑑,𝑝
)], 

 

3.4 

for holes and,  

 
𝑄𝑛 =

𝑒𝑁0𝑣𝑑,𝑛𝜏𝑝

𝑑
[1 − 𝑒𝑥𝑝 (−

𝑑 − 𝑥𝑖

𝜏𝑛𝑣𝑑,𝑛
)], 

 

3.5 

for electrons. Eqns. 3.4 and 3.5 are referred to as the Hecht equation [62] and illustrate how 

charge trapping reduces the amount of charge collected.  Additionally, it shows that the 

relative contribution of electrons or holes to the total charge collected is related to their 
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transit distances. Since trapping is a statistical process, shorter trapping times will have 

wider peaks in the detector pulse height spectra. A schematic illustrating the difference in 

charge collection between the ideal case and in the case of trapping is shown in Figure 3.1. 

 

 

Figure 3.2 Band diagram displaying how a captured electron with capture rate 𝑐𝑛 can either 

recombine with a captured hole 𝑐𝑝 or emit back to the conduction band. 

 

As illustrated in Figure 3.2, trapped charges are stuck in localized energy states 

within the bandgap where they will remain until they either recombine with free carriers of 

the opposite polarity or are able to thermally break free of the trap and return to their 

respective energy band. The former is extremely unlikely to occur for either carrier type in 

wide-bandgap SBDs because the recombination rate is proportional to the free carrier 

concentration of the opposite charge type [63, 64]. For example, in 4H-SiC the intrinsic 

carrier concentration is 10-9 cm-3 at room temperature. For n-type 4H-SiC doped at 1014 

cm-3, the hole concentration would be 10-32 cm-3 meaning that there is not a single hole in 

1017 km3. If the entire earth was made of n-type 4H-SiC, there would not be a single free 
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hole to recombine with a trapped electron. For the other carrier, recombination is killed by 

the surface potential of the Schottky barrier effectively eliminating free majority carriers 

within the depletion width. Emission is related to the depth of trap level 𝐸𝑇 from the 

respective band. For electrons, the emission rate 𝑒𝑛 is described by the following 

 
𝑒𝑛 = 𝜎𝑛〈𝑣𝑡ℎ,𝑛〉𝑁𝑐 𝑒𝑥𝑝 (−

𝐸𝑐 − 𝐸𝑇

𝑘𝐵𝑇
) . 

 

3.6 

 

 

Figure 3.3 Band diagram displaying the steady-state occupation of trap levels (a) and the 

emission of traps in the space-charge region of SBDs under reverse bias (b). 𝑛𝑇 is the 

concentration of occupied defect levels. 

 

As demonstrated in Figure 3.3, before a bias is applied to an SBD, most of the 

device is in the neutral region and the fermi-energy level EF will be greater than trap energy 

level ET. Per Fermi-Dirac statistics [37, 65], the trap level will then essentially be fully 

occupied by electrons in most of the device and cannot trap new electrons (although it can 

trap holes). Upon applying a bias to the detector, the depletion width will expand and push 

the quasi-fermi level well below the trap level in most of the device’s active region. At this 
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stage, the trap level will want to release its trapped electrons but is limited by the emission 

rate of the trap.  If the emission time is very short (nanosecond or microsecond scale), then 

the carrier will quickly be returned to its respective band and be collected as if it was never 

trapped. If the emission time is on the scale of hours, days, or even years, then they will 

effectively be occupied forever and never contribute to trapping. The most significant 

trapping centers will be those with emission rates on the order of seconds or minutes which 

can fully emit before measurements start allowing them to act as trapping centers.  

 

3.2 POINT DEFECTS IN 4H-SIC 

 Deep levels are derived from atomic level point defects in the crystal structure 

which can switch charge state—capture or lose electrons—depending on the position of 

the fermi-level relative to the trap level. The main types of point defects are vacancies, 

interstitials, antisites, and substitutions. Vacancies refer to the removal of an atom from its 

lattice site leaving behind an empty space. Vacancies are the most common defects in 

semiconductor materials due to their high chemical potential energy of atoms. Interstitials 

are atoms occupying in-between spaces in the crystal structure that are usually empty in 

the ideal crystal. They are unlikely to form by themselves in as-grown structures because 

the additional atom gives them a very low chemical potential. Both antisites and 

substitutions are the wrong atom occupying an atomic site. However, antisites involve 

native elements whereas substitutions are impurities. Impurities that only introduce 

shallow levels can be used to dope semiconductor crystals to be n-type or p-type. Defects 

can also form pairings such as vacancy-antisite complexes (adjacent atom moves into a 

vacancy), vacancy-interstitial complexes (vacant atoms moves to interstitial site), 
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divacancies (two adjacent atoms are removed), or diantisites (two atoms switch places). A 

schematic of the types of point defects in a simple zincblende lattice is given in Figure 3.4.  

 

 

Figure 3.4 Crystal structure of a generic zinc blende lattice illustrating the various types 

of point defects that can occur in semiconductor crystals. 

 

  As shown in Figure 3.5, 4H-SiC has a hexagonal lattice with a four-part ABAC 

stacking structure [11]. By rotational symmetry, it has two nonequivalent carbon sites and 

two silicon sites which can be occupied by defects. The Si-C pairs repeated every A 

sequence are in the cubic or k-site because their repetition retains semi-cubic symmetry. 

The other Si-C pairs are in the hexagonal or h-site because they are repeated only once 

every sequence. Additionally, there are four nonequivalent interstitial sites positioned 
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above and below each stacked Si-C pair. The most important defect in 4H-SiC is the carbon 

vacancy which is known to form two deep levels in all as-grown epilayers [66-71]. 

 

 

Figure 3.5 Stacking structure of 4H-SiC showing the various lattice sites which defects 

can occupy. 

 

The probability of a defect forming is proportional to its formation energy defined 

as the additional energy needed to form a defective structure relative to the ideal structure 

and can described locally by Eqn. 3.7 [72], 

 𝐸𝐷,𝑞
𝑓

= 𝐸𝐷,𝑞 − 𝐸𝑖𝑑𝑒𝑎𝑙 − ∑ 𝑛𝑖(𝜇𝑖 + 𝐸𝑖)

𝑖

+ 𝑞𝐸𝐹 . 

 

3.7 

Here, 𝐸𝐷,𝑞 is the energy of the crystal with defect 𝐷 at the integer charge state 𝑞, 𝐸𝑖𝑑𝑒𝑎𝑙 is 

the energy of the perfect crystal structure, 𝑛𝑖 is the number of atoms of species 𝑖 removed 

(-) or added (+) from the crystal structure to make 𝐷, 𝐸𝑖 is the energy per atom of the atomic 

species added or removed in its elemental state, 𝜇𝑖 is the atomic chemical potential which 
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largely depends on the chemical environment during growth, and 𝐸𝐹 is the fermi energy 

level.  

Energy calculations are usually conducted by first principles calculations based on 

density functional theory (DFT). The real multi-electron Schrodinger’s equation cannot be 

solved using modern computational technology due to the sheer complexity the interactions 

between multiple electrons. DFT uses single electron pseudo-Schrödinger’s equations 

called Kohn-Sham equations which give the same electron densities as the real 

Schrodinger’s equation for a much lower computational cost [73, 74]. In general, Kohn-

Sham equations are of the form, 

 
[−

ℏ2

2𝑚
𝛻2 + 𝑉(𝑟) + 𝑉𝐻(𝑟) + 𝑉𝑋𝐶(𝑟)] 𝜙𝑖(𝑟) = 𝜖𝑖𝜙𝑖 

 

3.8 

where, ℏ is the reduced Planck’s constant, 𝑉(𝑟) is the electron-nuclei interaction, 𝑉𝐻(𝑟) is 

the Hartree potential, 𝑉𝑋𝐶(𝑟) is the exchange-correlation potential, 𝜙𝑖 is the wavefunction 

for noninteracting electron 𝑖, and 𝜖𝑖 is the eigenvalue or Kohn-Sham energy of the 𝑖th 

electron. The only unknown parameter in this equation needed to solve for the eigenvalues 

is the exchange-correlation potential. DFT approximates it using density functionals which 

can result in highly accurate material properties, but usually inaccurate band structures and 

deep level positions. This can be amended using hybrid density functionals which use a 

portion of the real exchange-correlation potential to better correct for the self-interaction 

of electrons resulting in more accurate bandgaps. Another problem with DFT calculations 

is the projected augmented wave (PAW) method [75] used by most DFT simulation 

packages periodically images the input structure. As a result, defects will be spaced too 

close together compared to real materials and will coulombically interact with each other, 



 

40 

altering the total energy [76]. Accuracy can be improved by using larger supercells [77] or 

by introducing a correction factor 𝐸𝑐𝑜𝑟𝑟 to Eqn. 3.7—usually both. 

 

 

Figure 3.6 Band structure of 4H-SiC calculated using HSE06 pseudopotentials. The x-axis 

is the k- or reciprocal space projection of periodic lattice structure. The labels refer to the 

high symmetry points of the first Brillouin zone of a simply hexagonal lattice [73].  

 

To study the major deep levels in as-grown 4H-SiC, the formation energies of 

silicon and carbon vacancies in 4H-SiC as a function of the fermi energy taken over 

bandgap of 4H-SiC were calculated by the PAW method implemented in the Vienna ab 

initio software package (VASP). These calculations were performed on a 3 x 3 x 1 supercell 

(72 atoms) using HSE06 pseudopotentials [78, 79] with a Γ-centered 2 x 2 x 2 Monkurst-

Pack grid and an energy cutoff of 520 eV. The Heyd-Scuseria-Ernzerhof functional (HSE) 

is a hybrid density functional which mixes the short and long range components of the 

Perdew-Burke-Ernzerhof generalized (PBE) gradient approximation (GGA) 
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pseudopotential [80] with a portion of the short-range component of the full exchange-

correlation potential [78]. HSE06 is the 2006 variation of the hybrid functional [79, 81] 

which provides accurate bandgaps and solves the generalized Koopman’s theory for Group 

IV semiconductors and thus should produce transition levels which accurately match deep 

levels observed in real materials [82]. 

 

 

Figure 3.7 Formation energies as a function of the Fermi-level for carbon and silicon 

vacancies in 4H-SiC calculated using HSE06 pseudopotentials. 

 

For 4H-SiC to exist in the 4H-SiC chemical phase, the chemical potentials of silicon 

𝜇𝑆𝑖 and carbon 𝜇𝐶 are required to sum to twice the heat of formation of 4H-SiC [83]. The 

heat of formation is defined as the energy difference/atom between 4H-SiC and its 

elemental constituents in the elemental state which was calculated to be -0.31 eV/atom. A 
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value of 𝜇𝐶 = 0 refers to carbon rich conditions loosely corresponding to a high C/Si ratio 

whereas 𝜇𝑆𝑖 = 0 is roughly equivalent to a low C/Si ratio.  

The Fermi-energy level is treated as an independent variable ranging over the 

bandgap of the material and is meant to reflect different doping conditions. At 0 K, the 

fermi-level would simply be equal to the valence band maximum. To find the bandgap, the 

energy levels of the eight-atom unit cell were computed over linearly spaced k-points along 

the high symmetry lines. As shown in Figure 3.6, 4H-SiC is an indirect bandgap 

semiconductor with the valence band maximum located at the Γ-point and the conduction 

band minimum at the M point in k-space. The energy gap between these two points was 

3.17 eV which is close to the experimental bandgap and agrees with what has been reported 

elsewhere [84, 85]. The correction factors were calculated using the extended Freysoldt-

Neugebauer-Van de Walle (FNV) correction by Kumagai et al. which gives better energy 

correction for hexagonal structures than the original FNV correction [76, 86].  

For each charge state, the formation energy is plotted against the fermi energy level 

creating a series of formation energy lines. The intersections of these the lines are called 

transition levels and mark the energy level where a defect will prefer to switch charge state 

directly corresponding to deep levels in real materials.  As defects will always prefer to 

occupy the lowest energetic state, only the minimum formation energies are needed to 

explain charge state switching in materials. The minimum formation energy as a function 

of fermi energy level is presented in Figure 3.7 which acts as the charge state phase diagram 

for the defects. The present calculation shows four defects derived from silicon vacancies 

(two electron and two hole) and three carbon vacancy related defects which are recorded 

in Table 3.1. It should be noted that silicon vacancies have high formation energies at the 
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midgap (> 8 eV) which makes them unlikely to appear in as-grown epilayers. The trap 

concentration is related to the formation energies at the midgap by the following Boltzmann 

relation [87], 

 
𝑁𝑇 = 𝑁𝑠 𝑒𝑥𝑝 (−

𝐸𝑓

𝑘𝐵𝑇
) 

 

3.9 

Carbon vacancies have formation energies between 4 and 5 eV depending on the growth 

conditions which can correspond to easily observable concentration ~1011-1013 cm-3.  

 

Table 3.1 Vacancy transition levels computed with HSE06 pseudopotentials. The energy 

levels are measured from the valence band maximum and given in eV. 

Defect (+2|+1) (+1|0) (0|-1) (-1|-2) (-2|-3) 

VSi  0.25 1.33 2.18 3.01 

VC 0.88 1.76 2.52   

VC
a 1.7 2.0 2.5   

VC (k)b 1.74 1.96 2.58 3.10  

VC (h)b 1.65 2.03 2.47   

aGorden et al. [88]. 
bKobayashi et al. [84]. 

 

 As mentioned, the phase diagram predicts the formation of three carbon vacancy 

deep levels in as-grown 4H-SiC. The (+2|+1) transition 0.88 eV above the valence band 

maximum will act as a hole trapping center and possibly correlates to the lifetime limiting 

HK2 defect in as-grown p-type 4H-SiC which has acceptor-like characteristics and is 

thermally stable up to 1550 oC [89, 90]. The other defects, 1.76 eV (+1|0) and 2.52 eV (0|-

1) above the valence band, are electron trapping centers. The former likely corresponds to 

EH6/7 which is well established as carbon vacancy related and the later to Z1/2 which is 

considered the most important lifetime limiting defect in 4H-SiC radiation detectors [68-
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70, 91-93]. In comparison with previous work, the (0|-1) transition approximately occupies 

the same position as the others have reported. Both Gordon et al. and Kobayashi et al. have 

reported the (+2|+1) transition as closer to 1.7 eV whereas the (+1|0) transition is positioned 

at 2.0 eV [86, 88]. A possible explanation for the discrepancies is possibly the energy cutoff 

used, the lattice constants, the supercell size, or the chosen k-mesh. This essentially predicts 

three electron traps originating from carbon vacancies which could be Z1/2 and the split 

peaks of EH6/7. However, Laplace DLTS studies on EH6/7 suggest that only EH7 

corresponds to carbon vacancies and EPR studies show that its charge transition state is 

(+1|0) [70].   

The capture cross-section is more difficult to exactly calculate with density 

functional theory. However, because trapping is in-part a coulombic effect, defects with a 

more positive charge state will be able to pull in electrons from a further distance increasing 

their capture cross-section relative to neutral defects. Likewise, more negatively charge 

defects will want to push electrons away, thus, shrinking the capture cross-section. In 4H-

SiC, the capture cross-sections of neutrally charged Z1/2 is ~10-15 cm2 whereas the 

positively charged EH6/7 can be 10-15-10-14 cm2.  

 

3.3 MINORITY CARRIER DIFFUSION LENGTH MEASUREMENTS  

To study the effect of both minority and majority carrier trapping on the radiation 

detection performance of Ni/4H-SiC SBD radiation detectors, detectors were fabricated on 

4H-SiC epilayers of 50, 150, and 250 µm thickness. In this section, the detectors are 

characterized electrically and via their radiation detection performance with an 241Am alpha 

particles. The impact of minority carrier trapping, evaluated from the bias dependence of 
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the radiation detection response, will be discussed this section and that of majority carrier 

trapping will be discussed in Sec. 3.5. The device fabrication and experimental methods 

are the same as described in Chapter 2.  

 

 

Figure 3.8 Forward bias current-voltage characteristics for the detectors fabricated on the 

50, 150, and 250 µm epitaxial layers. The solid lines represent the fit to the linear region. 

 

The forward and reverse bias I-V characteristics of the three detectors are given in 

Figures 3.8 and 3.9 showing that all three detectors are SBDs. From the thermionic 

emission model (Sec. 2.1), the barrier heights were calculated to be 1.43, 1.55, and 1.46 eV 

and the ideality factors, 1.30, 1.56, and 1.14 for the detectors fabricated on 50, 150, and 

250 µm epilayers, respectively. Of the detectors, 150 µm had largest effective barrier 

height, but also the highest ideality factor indicating that it has the most substantial spatial 

variation in the barrier height. Because the Schottky contact serves as the window for 
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radiation detection, larger contacts can help increase the detection efficiency for a larger 

gap between the source and detector. However, as the contact area increases, so does the 

probability of spatial variation in the surface barrier resulting in high ideality factors and 

low barrier patches [49, 94]. The leakage current densities for the 50 and 150 µm detectors 

remained under 1 nA/cm-2 up to -100 V [78 kV/cm] whereas the 250 µm could retain this 

such low currents up until -800 V [280 kV/cm]. The higher current in the first two samples 

could be derived from a shunting pathway which is evident from the portion of the forward 

bias characteristics to the left of the linear region for the 50 and 150 µm detectors [95, 96].  

 

 

Figure 3.9 Reverse bias current-voltage characteristics for the detectors fabricated on the 

50, 150, and 250 µm epitaxial layers. 
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Figure 3.10 Mott-Schottky plot of detectors fabricated on the 50, 150, and 250 µm epitaxial 

layers. The solid lines are the linear fits. 

 

The net donor concentrations were determined from the Mott-Schottky plots of the 

detectors (Figure 3.10) to be between 1.6 and 1.8 × 1014 cm-3 for all three detectors. The 

50 µm detector had a built-in voltage of 1.68 V corresponding to an average barrier height 

of 1.98 eV. The 150 and 250 µm had high built-in voltages making the average barrier 

unable to be determined by C-V. Using Eqn. 2.6, it was estimated that the detectors will be 

fully depleted at 380 V [150 kV/cm], 3.3 kV [450 kV/cm], and 10 kV [810 kV/cm] for the 

detectors fabricated on 50, 150, and 250 µm epilayers, respectively.  
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Figure 3.11 Pulse height spectra at the bias which gave the best resolution for the detectors 

fabricated on 50 (a), 150 (b), and 250(c) µm 4H-SiC epitaxial layers.  

 

Table 3.2 Detector parameters obtained for detectors fabricated on 50, 150, and 250 µm 

epitaxial layers. 

Epilayer 

Thickness 

(µm) 

𝑛 Φ𝐵 (eV) 𝑁𝑒𝑓𝑓        

(1014 cm-3) 

Energy 

Resolution 

(%) 

𝐿𝑑 (µm) 

50 1.30 1.43 1.61 2.0 16 

150 1.56 1.55 1.59 0.78 10 

250 1.14 1.46 1.74 0.63 9.2 

  

Figures 3.11 give the best resolution spectrum for each of the detectors whereas 

Table 3.2 shows the detector parameters for each device. The detectors coincidently had 



 

49 

resolutions of 2.0%, 0.78%, and 0.63% in increasing order of epilayer thickness. Because 

the detectors were not fully depleted, thickness cannot be considered a strong predictor of 

detector optimal resolution. Additionally, better 241Am alpha spectra has been observed in 

unpassivated 20 µm detectors than in any of the three detectors present [20, 50]. The 

detectors have similar capacitances to the detectors discussed in Chapter 2 and therefore 

the electronic noise should be negligible. The most likely explanation for the observed peak 

broadening is trapping by deep levels within the epilayers.  

 

 

Figure 3.12 Illustration of the drift-diffusion model for charge collection. 

 

 For charged particles, the incident radiation generates a continuum of charges over 

the entire path of the particle which makes the Hecht equation inadequate for characterizing 

the trapping lifetimes of detectors. Furthermore, in 4H-SiC SBDs, the internal electric field 

is strong enough that most carriers would immediately be accelerated to saturation drift 

velocity making the charge collected nearly independent of the applied bias, assuming all 
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carriers are generated within the space-charge region. Another approach is to consider the 

collection of charge generated outside the active region. Per the drift diffusion model 

illustrated in Figure 3.12 [97], charges generated in the space-charge region will 

immediately drift towards their respective electrodes producing a current. Charge pairs 

generated in the neutral region can only be collected if they first diffuse into the space-

charge region at which point holes will be swept up by the electric field. The total induced 

charge can then be described by, 

 
𝑄 = ∫ (

𝑑𝑄

𝑑𝑥
) 𝑑𝑥

𝑥𝑑

0

+ ∫ (
𝑑𝑄

𝑑𝑥
) 𝑒𝑥𝑝 (−

𝑥 − 𝑥𝑑

𝐿𝑑
) 𝑑𝑥

𝑥𝑟

𝑥𝑑

. 

 

3.9 

Here, 𝑑𝑄/𝑑𝑥 is the differential charge generated per unit length or Bragg curve, 𝑥𝑟 is the 

range of the alpha particles (18.22 µm in 4H-SiC), and 𝐿𝑑 is the ambipolar diffusion length. 

𝐿𝑑 is reciprocally the sum of both the majority and minority carrier diffusion length which 

are related to the square roots of their individual trapping times in the neutral region. 

However, because 4H-SiC has significantly worse hole transport properties than electron 

properties and most trapping centers should be filled with electrons, 𝐿𝑑 is practically the 

minority carrier diffusion length and can be used to quantify the hole trapping properties 

of the detectors.   

Figure 3.13 shows the charge collected as a function of the applied reverse bias for 

each detector and the simulated models with the numerical optimized values of 𝐿𝑑. Using 

an initial value of 20 µm for 𝐿𝑑, the normalized charge collected was computed numerically 

for 𝑥 ∈ [0, 𝑥𝑟] using a step size of 0.01 µm. The simulated charge collected was then 

compared to the experimental charge collected versus bias data via the mean absolute 

percent error. If the mean absolute error was above the convergence threshold of 0.1%, 

then the value of 𝐿𝑑 was adjusted by ±0.1 µm depending on the sign of the mean error. The 
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process was repeated procedurally until the convergence condition was reached or the 

number of iterations exceeded 1000 indicating that a local minimum had been reached.  

 

 

Figure 3.13 Charge collected as a function of the applied reverse bias given in channel 

number to clearly distinguish among the three curves. The dashed lines are the fit to the 

drift-diffusion model. 

 

The minority carrier diffusion lengths were found to be 16, 10, and 9.2 µm for the 

50, 150, and 250 µm detectors, respectively, implying that the resolution is not limited by 

hole trapping. As shown in Figure 3.14, the Bragg curve is a back-heavy function leading 

most electron-hole pairs to be generated towards the end of the particle’s path. For this 

reason, the transit distance for holes initially is much longer on average than the transit 

distance for electrons, and therefore, holes contribute more to the total charge collected. 

As the depletion width expands, eventually the electron transit distance will exceed the 
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hole transit distance making the detector limited predominantly by majority carrier 

trapping. 

 

 

Figure 3.14 Bragg curve for 5486 keV alpha particles interacting with 4H-SiC. 

 

3.4 DEEP LEVEL TRANSIENT SPECTROSCOPY BACKGROUND 

 The majority carrier trapping parameters of the detector were characterized by deep 

level transient spectroscopy (DLTS). DLTS is a powerful technique developed by D. V. 

Lang at Bell Laboratories that uses capacitance transients to characterize the 

concentrations, cross-sections, and energy levels of deep levels in rectifying diodes. More 

information on DLTS theory can be found in Ref. [98]. 
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Figure 3.15 Band diagrams of a Schottky detector with a trap level ET demonstrating the 

trapping and de-trapping with periodic biasing.  

 

As illustrated in Sec. 3.2, deep levels prefer to be occupied by electrons when the 

fermi-energy level is above the trap level and prefer to be unoccupied when the fermi-

energy level is below the trap level. In SBDs, energy bands are bent by the surface potential 

whereas the semiconductor quasi-fermi level is constant throughout the device. This leads 

to deep levels closer to the metal preferring to be unoccupied whereas defects closer to the 

neutral region will prefer to be empty. As demonstrated in Figure 3.15, reducing the reverse 
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bias will push the fermi level above the trap level allowing trap states within a region Δ𝑥 

to fill with electrons reducing the net charge of the depletion region. Upon returning to the 

steady-state bias, the traps within Δ𝑥 will start to emit back to the conduction band creating 

a transient in the net charge. During this time, capacitance will be described by the 

difference between the net donor concentration and the occupied trap concentration as 

shown below, 

 

𝐶(𝑉, 𝑡) = 𝐴√
𝑒𝜖(𝑁𝑒𝑓𝑓 − 𝑛𝑇(𝑡))

2(𝑉𝑏𝑖 − 𝑉)
. 

 

3.10 

Here, 𝑛𝑇(𝑡) is the concentration of occupied traps defined in terms of the electron emission 

rate as, 

 𝑛𝑇 = 𝑁𝑇 𝑒𝑥𝑝(−𝑒𝑛𝑡). 
 

3.11 

As it is written, Eqn. 3.10 can be expressed as the square root of two capacitances squared,  

 
𝐶(𝑉, 𝑡) = √𝐶𝑠𝑠

2 (𝑉) − 𝐶𝑇
2(𝑡), 

 

3.12 

where the first term is the ideal steady-state capacitance, 

 

𝐶𝑆𝑆(𝑉) = 𝐴√
𝑒𝜖𝑁𝑒𝑓𝑓

2(𝑉𝑏𝑖 − 𝑉)
, 

 

3.13 

and the second term is what the capacitance would be if the trap concentration was the net 

donor concentration, 

 

𝐶𝑇 = 𝐴√
𝑒𝜖𝑒𝑓𝑓𝑛𝑇(𝑡)

2(𝑉𝑏𝑖 − 𝑉)
. 

 

3.14 

Taking the Taylor series expansion of √𝑥 evaluated at Css
2 (V) − CT

2(t) about the point 𝑥0 = 

𝐶𝑠𝑠(𝑉) allows Eqn. 3.12 to be written as the following series expression,  
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𝐶(𝑉, 𝑡) = 𝐶𝑠𝑠(𝑉) −

1𝐶𝑇
2(𝑡)

2𝐶𝑠𝑠(𝑉)
+

𝐶𝑇
4

8𝐶𝑠𝑠
3 (𝑉)

+ ⋯ 
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If 𝑁𝑒𝑓𝑓 ≫ 𝑁𝑇, then all terms after the first two terms are approximately zero and can be 

neglected which leads to the classic equation for the capacitance transient  

 𝐶(𝑉, 𝑡) = 𝐶𝑠𝑠(𝑉) + 𝛥𝐶 𝑒𝑥𝑝(−𝑒𝑛𝑡), 

 

3.16 

where Δ𝐶 is the maximum change in capacitance observed due to trapping. Knowing Δ𝐶, 

the trap concentration can be calculated using the second term of the Taylor polynomial 

 𝛥𝐶

𝐶𝑠𝑠(𝑉)
=

𝑁𝑇

2𝑁𝑒𝑓𝑓
 . 
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 Real materials have multiple trap levels which all contribute to the change in 

capacitance which transforms Eqn. 3.16 into a summation of multiple exponential terms 

corresponding to individual trap level making direct exponential fitting nearly impossible. 

To surmount this, D. V. Lang developed a method known as the double boxcar method 

which instead uses the capacitance difference spectrum with two measuring times 𝑡1 and 

𝑡2 to characterize the trap levels such that for a single trap,  

 𝐶(𝑡1) − 𝐶(𝑡2) = 𝛥𝐶[𝑒𝑥𝑝(−𝑒𝑛𝑡1) − 𝑒𝑥𝑝(−𝑒𝑛𝑡2)]. 
 

3.18 

For multiple traps, the DLTS signal would be the superposition of their individual DLTS 

signals.  
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Figure 3.16 Demonstration of the capacitance transient and the formation of the DLTS 

signal.  

 

As illustrated in Figure 3.16, at low temperatures, the emission rate is extremely 

slow (inactive) and the difference in capacitance will essentially be zero because the 

waveform does not decay. As temperature increases, the emission rate will speed up 

increasing the difference in capacitance between 𝑡1 and 𝑡2 until reaching some maximum 

value. At that point, the difference will fall off towards zero again as the waveform will 

essentially be fully decayed before 𝑡1 is even reached (fully active). For sufficiently spaced-

out deep levels (energy wise), there will be little overlap between the DLTS signals of 

multiple traps because when one is active, the others will be either fully inactive or fully 

active. The emission rate corresponding to the peaks in the DLTS spectrum can be acquired 
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by setting the derivative of 𝐶(𝑡1) − 𝐶(𝑡2) to zero and solving for 𝑒𝑛 leading to the result 

below, 

 

𝑒𝑛,𝑝𝑒𝑎𝑘 =
𝑙𝑛 (

𝑡2

𝑡1
)

𝑡2 − 𝑡1
, 

 

3.18 

which is independent of temperature and only depends on the chosen values of 𝑡1 and 𝑡2. 

Therefore, for any peak centered at any temperature, its corresponding emission rate will 

be known. Thus, using several measuring times will allow for the collection of multiple 𝑇-

𝑒𝑛 pairs which will have the following linear relationship derived from Eqn. 3.6,   

 
𝑙𝑛 (

𝑒𝑛

𝑇2
) = 𝑙𝑛(𝜎𝑛𝛽) −

𝐸𝑐 − 𝐸𝑇

𝑘𝐵𝑇
. 

 

3.18 

Here, 𝛽 is a constant equal to 〈𝑣𝑡ℎ,𝑛〉𝑁𝐶/𝑇2 (approximately 3.4 × 1021 cm-2 s-1 in 4H-SiC). 

From the linear fitting of the 𝑇-𝑒𝑛 pairs to Eqn. 3.18, both 𝐸𝑐 − 𝐸𝑇 and 𝜎𝑛 can be acquired 

for an individual trap. Additionally, the value of [𝐶(𝑡1) − 𝐶(𝑡2)]/Δ𝐶 will be constant at 

the peaks for select 𝑡1 and 𝑡2 allowing the trap concentration to be extracted from the 

magnitude of the peaks.  

 

3.5 DLTS ON 4H-SIC RADIATION DETECTORS 

 DLTS studies were performed on the detectors fabricated on 50, 150, and 250 µm 

4H-SiC epitaxial layers using a SULA DDS-12 DLTS system consisting of a 1 MHz 

capacitance meter, a pulse generator that can output up to ±12 V with a pulse width as 

small as 2 µs, a preamplifier module with signal gains ranging from one to three hundred, 

a correlator module for selection of the initial measuring time 𝑡1, and an NI digitizing card 

for fast data acquisition interfaced with a LabVIEW based data acquisition software. The 

correlator module can collect up to four DLTS spectra simultaneously with initial delays 
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ranging from 0.02-100 ms predetermined by the DLTS system. The second measuring time 

𝑡2 is defined internally as 5.3 × 𝑡1 which ensures that all spectra have the same 

normalization. The samples were mounted onto the sample stage of a Janis VPF 800 LN2 

cryostat consisting of a gold backing plate and sharp tungsten probes for connection to the 

top circular contacts. The pulse generator and capacitance meter were connected to the 

cryostat through BNC cables passed through to the sample stage through copper wires 

wrapped in thermal sleeves. The temperature within the cryostat was controlled using a 

Lakeshore LS335 temperature controller interfaced with the SULA DLTS’s LabVIEW 

data acquisition software. A typical DLTS scan ranges from 80-790 K which allows for 

the extraction of a broad range of deep levels from 0.15-1.8 eV below 𝐸𝑐.    

 

 

Figure 3.17 DLTS spectrum of a typical high quality as-grown 4H-SiC epitaxial layer 

radiation detector. 
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Figure 3.18 Arrhenius plot of the spectrum shown in Figure 3.17. 

 

 To demonstrate what typical DLTS spectrums of 4H-SiC SBD radiation detectors 

look like, Figure 3.17 shows the full DLTS spectrum of one of the UofSC’s 250 µm Ni/4H-

SiC SBDs, displaying three peaks which appear in all as-grown samples. Figure 3.18 

displays its corresponding Arrhenius plot. This specific spectrum was acquired using a -2 

V steady-state bias and a 1 µs, 0 V filling pulse over the full temperature range. The first 

peak with an energy level 0.16 eV below the conduction band edge corresponds to titanium 

impurities from the wall of the growth chamber occupying cubic silicon sites [99]. At room 

temperature, the average emission time can vary from 1-100 ns depending on the cross-

section and exact activation energy. This is fast enough to not significantly impact the 

detector resolution at room temperature but can affect the optimal shaping time. The second 

peak at 0.62 eV and third peak at 1.43 eV corresponds to the key lifetime limiting defects 
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Z1/2 and EH6/7, respectively, which have already been discussed thoroughly in Sec. 3.2. Z1/2 

operates on a timescale of second and millisecond making it the most substantial trapping 

center at room temperature. EH6/7 has a time scale of years. Since measurements always 

start at zero bias, EH6/7 will always be full even if the quasi-Fermi level is pushed below it 

by a reverse bias making it benign as an electron trap at room temperature.  

 

Table 3.3 Comparison of defect parameters obtained from DLTS results on 50, 150, and 

250 µm epilayers. 

  Z1/2   EH6/7  

Thickness 

(µm) 
𝑁𝑡  

(1011 

cm-3) 

𝜎𝑛  

(10-15 cm2) 

𝐸𝑐 − 𝐸𝑇  

(eV) 

𝑁𝑡  

(1011 

cm-3) 

𝜎𝑛  

(10-15 cm2) 

𝐸𝑐 − 𝐸𝑇  

(eV) 

50 23 130 0.73 1.8 19 1.59 

150 8.6 1.4 0.60 2.6 38 1.63 

250 5.3 0.26 0.56 5.3 3.2 1.49 

 

DLTS spectra were acquired for the three detectors fabricated on 50, 150, and 250 

µm epilayers at a steady-state bias of -5 V and a 0 V, 1 msec trap filling pulse. The 

temperature was varied from 200-790 K which is sufficient to capture the Z1/2 peak for all 

initial delays and the EH6/7 peak using the highest set.  Figure 3.19 shows the zoomed in 

Z1/2 and EH6/7 peaks for the detectors, and their extracted trapping properties are recorded 

in Table 3.2. Per Eqn. 3.2, the mean trapping time is related to the reciprocal of the sum of 

products between 𝑁𝑇 and 𝜎𝑛 implying that detectors with larger products should have more 

significant peak broadening. The individual trapping time for Z1/2 was calculated to be 180 

ns for the 50 µm detector compared to 44 and 380 µs for the 150 and 250 µm detector, 

clearly demonstrating why the 50 µm detector had the worst resolution of the three. For 

EH6/7 the trapping times were 15, 5, and 3 µs for 50, 150, and 250 µm, respectively. Overall, 
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the increasing trend for the lifetimes of both Z1/2 and EH6/7 agreed with the improvement 

observed in the detector resolution. 

 

 

Figure 3.19 DLTS spectra obtained using 0.5 ms initial delays and zoomed in on Z1/2 (a) 

and the spectra obtained using 10 ms initial delays zoomed in on EH6/7 (b) for each of the 

detectors fabricated on 50, 150, and 250 µm epilayers. 
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3.6 CONCLUSION 

 The trapping properties of Ni/4H-SiC SBD radiation detectors were investigated 

for detectors of varying epilayer thicknesses ranging from 50 µm to 250 µm. 241Am pulse 

height measurements on the detectors showed worsening resolution with increasing 

detector epilayer thickness. Numerical optimization of the minority carrier diffusion length 

in a drift-diffusion model for charge collected in SBDs showed decreasing hole diffusion 

lengths with detector thickness despite increasing resolution suggesting the worst detectors 

had less hole trapping and therefore were not limited by minority carriers. Careful 

consideration of the Bragg curve of 5486 keV alpha particles in 4H-SiC along with charge 

collection theory suggested that at the optimum bias, the signal from the three detectors 

would predominantly be derived from electron transport. DLTS measurements on the three 

detectors showed two lifetime limiting peaks, Z1/2 and EH6/7, which are both correlated to 

carbon vacancies by density functional theory. The mean trapping time of Z1/2 was 

significantly lower in the worst performing detector and the results overall showed 

correlation between the trapping times of both Z1/2 and EH6/7 and detector performance.  
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CHAPTER 4

CURRENT FLOW ANALYSIS BY I-V-T 

4.1 INTRODUCTION 

 One of the major challenges in developing 4H-SiC radiation detectors for harsh 

environment applications—especially on thicker epilayers—is maintaining sufficiently 

low leakage currents to avoid degradation of the detection signal. At the radiation detector 

lab at UofSC, the CR110 preamplifiers used for detector evaluation can typically withstand 

a detector leakage current of 10 nA before the signal-to-noise ratio (SNR) starts to decline. 

To avoid reaching this threshold, SBD detectors require as high Schottky barrier heights as 

possible. Unfortunately, as demonstrated in Sec. 2.3, 4H-SiC SBDs fabricated on as-grown 

epilayers almost always have leakage currents which exceed those predicted by TED 

theory because of non-ideal current transport mechanisms such as Poole-Frenkel emission 

[48]. Furthermore, SBD radiation detectors are fabricated with larger metal contacts than 

conventional electronics to maximize the detection efficiency leading to a higher 

probability of spatial variation in the surface barrier height which reduces the effective 

barrier height while increasing the ideality factor [100]. Additionally, the wider surface 

area increases the probability of dislocation defects propagated from the bulk being 

integrated into the M-S junction forming low barrier patches that electrons can use to 

bypass the main Schottky barrier [101, 102]. 
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Temperature dependent current-voltage (I-V-T) measurements are useful for 

characterizing the behavior of electronic devices at elevated temperatures and can be 

employed to separate the nonideal vs. the ideal. For example, I-V-T measurements have 

been used to characterize barrier inhomogeneities and identify low barrier patches in a 

variety of materials including 4H-SiC [94, 103, 104]. Under reverse bias, I-V-T can be 

used to differentiate among various types of current transport mechanisms [105]. 

In this chapter, I-V-T is employed on a Ni/4H-SiC SBD radiation detector 

fabricated on 150 µm epitaxial layers to characterize and identify the various current 

transport models which may result in excess current at elevated temperatures that could 

impact the SNR in harsh environments. Information on the preparation of the detector 

discussed in this chapter can be found in Sec. 2.2. 

 

4.2 DEVICE CHARACTERIZATION FROM C-V-T 

 Before I-V-T measurements could be conducted, the detector was first 

characterized for temperature variation in its average barrier height and net donor 

concentration by temperature dependent capacitance-voltage (C-V-T) measurements using 

the C-V setup described in Sec. 2.3 and the Lakeshore LS335 temperature controller. 

Measurements were taken from -12 to 0 V for temperatures ranging from 300-600 K at 50 

K increments. The parameters were then extracted from their individual Mott-Schottky 

plots. 

 Figure 4.1 shows the 1/C2 vs. V plots for the detector showing full linearity over 

the entire voltage range for all temperatures. This indicates that doping profile is uniform, 

and the M-S junction is nearly ideal with no dielectric layers between the metal and 
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semiconductor. There is a slight uptick in the slope with temperature indicating that the 

donor concentration increases.  

 

 

Figure 4.1 Mott-Schottky plots extracted from the C-V-T characteristics for a Ni/n-4H-

SiC Schottky barrier  detector fabricated on 150 µm epitaxial layers recorded at 

temperatures between 300 and 600 K in steps of 50 K. 

 

Figure 4.2 shows the extracted values for the net donor concentration 𝑁𝑒𝑓𝑓 and 

average barrier height Φ𝐵0 using Eqns. 2.9 and 2.10. The donor concentration was shown 

to increase linearly at a rate of 9.6 × 1010 cm-3 K-1 from 2.12 × 1014 at 300 K to 2.41 × 1014 

at 600 K. Impurities have specific ionization energies which relate what percentage of 

implanted atoms become ionized donors or acceptors to the thermal energy 𝑘𝐵𝑇. The net 

carrier concentration is defined as the difference between the number of ionized donors 

and acceptors. Since the effective carrier concentration increases slightly with temperature, 

the donor ionization energies must be slightly lower than the acceptor ionization energies. 
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The barrier height was found to vary between 2.09 and 2.23 eV in an almost parabolic 

fashion with the mean situated at 2.16 eV which is approximately the theoretical maximum 

barrier height for Ni/4H-SiC Schottky contacts. In Schottky diodes, fermi-level pinning by 

defect states at or near the interface can reduce the average barrier height to the charge 

neutrality level (Φ𝐵0 ≈ 1.5-1.6 eV) [106, 107]. The near ideal high average barrier is a 

strong indication that the surface quality of this diode is very high.   

 

 

Figure 4.2 Net donor concentration and average barrier height acquired from the C-V-T 

results on the 150 µm detector. 

 

4.3 SURFACE BARRIER EVALUATION FROM FORWARD BIAS MEASUREMENTS 

 The surface barrier properties of the detector were characterized by forward bias I-

V-T using the Keithley 237 source measure unit and Lakeshore LS335 temperature 

controller mentioned in the preceding chapters. The detector was mounted in the Janis 
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VPF800 cryostat as described in Sec. 3.4. The Keithley 237 was connected to the pulse 

input of the cryostat via low noise BNC cables while the capacitance meter input was 

grounded out. I-V curves were acquired at 0.01 V steps by sweeping the forward bias 

voltage between 0 and 1 V in the temperatures range 300-600 K at 50 K intervals. 

 

 

Figure 4.3 Forward bias I-V characteristics for a Ni/n-4H-SiC SBD fabricated on 150 µm 

epitaxial layers from 300 to 600 K measured in steps of 50 K. The plot is divided by the 

arrow into two linear regions, the low voltage region (LVR) and high voltage region 

(HVR). 

 

 Figure 4.3 shows the forward bias I-V-T characteristics of the detector. As 

discussed in Sec. 2.1, the two main types of currents in Ni/4H-SiC SBD radiation detectors 

are thermionic emission and diffusion, and whichever process is slower will dominate. At 

a net donor concentration of 1014 cm-3 diffusion will be slightly slower than thermionic 

emission under forward bias making neither model exactly accurate for characterizing the 

effective barrier height and ideality factor. This necessitates the use of the combined TED 
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model proposed by Sze [39] where the effective carrier velocity is the reciprocal sum of 

the drift-diffusion velocity 𝑣𝐷 ≈ 𝜇𝐸𝑚 and Richardson velocity 𝑣𝑅 = 𝐴∗𝑇2/𝑒𝑁𝑐 as shown 

by the following equation 

 
𝐽𝑇𝐸𝐷 =

𝑒𝑁𝑐𝑣𝑅𝑣𝐷

𝑣𝑅 + 𝑣𝐷
𝑒𝑥𝑝 (−

𝛷𝐵 − 𝛥𝛷

𝑘𝐵𝑇
) [𝑒𝑥𝑝 (

𝑒𝑉

𝑛𝑘𝐵𝑇
) − 1], 

 

4.1 

which includes the barrier lowering term 𝛥𝛷. From 300-450 K, the I-V traces clearly show 

the linear regions with separate ideality factors. This can be caused by impurity or 

dislocation defects creating a separate localized barrier height distribution independent of 

the main Schottky barrier [49, 96] and is more likely to occur in 4H-SiC devices with larger 

contact areas [108, 109].   

 From the fit to the linear regions, it was found that the low voltage region (LVR) 

had a constant ideality factor of 1.34 ± 1.01 while the high voltage region (HVR) 

decreased with rising temperature. The range of the LVR was observed to shrink with 

increasing temperature starting with a maximum of 0.6 V at 300 K and dropping to 0.4 at 

450 K which suggests that the single linear region at 500 K and above corresponded to the 

HVR. This is further supported by the drop in ideality factor in this region. The effective 

barrier height was approximately the same for both the LVR and HVR and increased from 

1.29 eV at 300 K to 2.07 eV at 600 K.  

 As presented in Figure 4.4, the reverse saturation current 𝐼0, defined as the term 

outside the bracket of Eqn. 4.1, has a linear relationship with 1/𝑘𝐵𝑇 when normalized to 

the effective carrier velocity 𝑣𝑒𝑓𝑓 = 𝑣𝑅𝑣𝐷/(𝑣𝑅 + 𝑣𝐷) and 𝑁𝑐. Based on Tung’s Schottky 

barrier models, this is indicative of a single low Schottky barrier patch with a barrier height 

Φ𝑝 and effective area 𝐴𝑝. From the linear fit, Φ𝑝 was calculated to be 0.93 eV which 

corresponds to a built-in voltage 𝑉𝑏𝑖 of 0.63 V at 300 K or 0.47 V at 450 K. In SBDs, when 
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the applied forward bias equals the built-in voltage, the space-charge region will be 

eliminated. Therefore above 𝑉𝑏𝑖 of the patch, the patch will be closed off allowing the main 

Schottky barrier to dominate leading to the double linear region phenomena observed in 

Figure 4.3. The area of the patch was calculated to be approximately 3 × 10-10 cm2 

corresponding to a diameter of ≈200 nm.  

 

 

Figure 4.4 Arrhenius plot of the saturation current density 𝐼0 normalized by 𝑁𝑐𝑣𝑒𝑓𝑓. The 

effective carrier velocity 𝑣𝑒𝑓𝑓 is defined as 𝑣𝑅𝑣𝐷/(𝑣𝑅 + 𝑣𝐷). 

 

As demonstrated by Figure 4.5, the relationship between the ideality factor and 

effective barrier height of the HVR is linear which implies an inhomogeneous barrier 

height distribution with an average barrier height Φ𝐵0 equivalent to the C-V barrier height 

[49, 103]. For a spatially distributed barrier height, the net saturation current will be the 

integral sum of all saturation currents over the entire surface area of the M-S junction and 

can be described by,  
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𝐼0 = 𝐴∗𝑇2 ∬ 𝑒𝑥𝑝 (−

𝛷𝐵(𝑥, 𝑦)

𝑘𝐵𝑇
) 𝑑𝑥𝑑𝑦. 

 

4.2 

At low temperatures, most current will prefer to pass through the low barrier regions 

resulting in an effective barrier height less than the average barrier height Φ𝐵0 and an 

ideality factor greater than one. As temperature increases, more current will pass through 

the high barrier regions whereas the low barrier regions will saturate causing the effective 

barrier height to increase towards the average barrier height and the ideality factor to 

approach one as 𝑇 → ∞. Simulation of Tung’s original model by Schmitsdorf et al. 

revealed that this relationship is linear and thus the average barrier height can be extracted 

from intersection of the linear fit of Φ𝐵 vs. 𝑛 and 𝑛 = 1 [103]. For the present detector, 

this was calculated to be 2.11 eV which is around what was extracted from the C-V-T 

results.  

 

 

Figure 4.5 Barrier height plotted against the corresponding ideality factor in the HVR. The 

high temperature region (≥ 500 K) is included as part of the HVR, and the solid line is the 

linear fit used to acquire the average barrier height Φ𝐵0. 
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 Both the effective barrier height and the dominant low barrier patch will contribute 

to the total reverse bias leakage current. The potential impact of one versus the other can 

be estimated by taking the ratio of saturation currents of the low barrier patch 𝐼𝑝0 to the 

saturation current of the full Schottky barrier 𝐼0 as shown below,  

 𝐼𝑝0

𝐼0
= (

𝐴𝑝

𝐴
) 𝑒𝑥𝑝 (−

𝛷𝑝 − 𝛷𝐵(𝑇)

𝑘𝐵𝑇
). 

 

4.3 

At 300 K, this ratio is approximately 10-3 implying that the patch will have a negligible 

effect on the leakage current. However, the ratio quickly grows with temperature up to 0.5 

at 400 K and then peaks at 14 at 500 K, implying that more current will eventually pass 

through the patch than the main Schottky barrier.  

  

4.4 LEAKAGE CURRENT ANALYSIS FROM REVERSE BIAS MEASUREMENTS 

 Following evaluation of the surface barrier from the forward bias, the leakage 

current was analyzed from the detector’s reverse bias characteristics. Using the same I-V 

setup described in the previous section, the leakage current was recorded between reverse 

biases ranging from 0 to -300 V over the same temperature range. The Janis VPF800 

cryostat uses sapphire washers with a room temperature resistivity of 1016 Ω-cm to isolate 

the stands holding the tungsten probes. This is sufficient at room temperature to keep the 

shunting current below the measuring limit of the Keithley 237. However, the resistivity 

grows exponentially with temperature and can reach up to 1011 Ω-cm at 500 oC. To correct 

for the shunting current at elevated temperatures, I-V-T data was collected for the cryostat 

without the detector and then subtracted from the data collected with the detector.  



 

72 

 

Figure 4.6 Reverse bias I-V characteristics for the Ni/n-4H-SiC SBD fabricated on 150 

µm epitaxial layers measured at temperatures ranging from 300 to 600 K in steps of 50 K. 

  

Figure 4.6 shows the detector leakage current as a function of the applied reverse 

bias which expressed low currents under 100 nA up to 300 V even at 400 K [127 oC]. 

Above 400 K, the log scale growth in leakage current with temperature becomes 

substantial, and from 500 K up the leakage current has a much sharper increase in current 

at higher biases.     

 As expressed in Figure 4.7, when the leakage current is plotted against the 

interfacial electric field at low to moderate bias voltages, the relationship is approximately 

linear at 400 K and above. As discussed in Sec. 2.3, this indicates drift-diffusion current or 

trap-assisted current by Poole-Frenkel emission. The full expression for the Poole-Frenkel 

emission current density is given below [53],  

 
𝐽𝑃𝐹 = 𝑒𝜇𝑃𝐹𝑛0𝐸𝑚 𝑒𝑥𝑝 (−

(𝐸𝑐 − 𝐸𝑇) − 𝛥𝛷

𝑘𝐵𝑇
). 4.4 
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Clearly, under reverse bias, Eqn. 4.4 is effectively identical to the drift-diffusion current 

given in Eqn. 2.8. The only major changes are that the barrier height is replaced by the 

activation energy of the trap and 𝜇𝑛𝑁𝑐 is replaced by the trap-assisted mobility carrier 

product 𝜇𝑃𝐹𝑛0. In both models, the natural log of the slope of 𝐽 vs. 𝐸𝑚 is linear with 1/𝑘𝐵𝑇 

which allows some activation energy term 𝐸𝑎 to be extracted from the following Arrhenius 

relationship, 

 
𝑙𝑛 (

𝑑𝐽

𝑑𝐸𝑚
) = 𝐾 −

𝐸𝑎

𝑘𝐵𝑇
, 

 

4.5 

where, 𝐾 is a constant related to the factor outside the exponential in Eqns. 2.8 and 4.4.  

 

 

Figure 4.7 Reverse bias leakage current as a function of the electric field at the metal-

semiconductor interface for the I-V-T characterized 150 µm epitaxial layer detector. The 

solid lines are the linear fit to the data points. 
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Figure 4.8 Arrhenius plots of the slopes of each I-V trace from 20 to 80 kV/cm. The solid 

line is the overall linear fit, whereas the dashed and dotted lines correspond to the fits over 

a reduced temperature range. 

 

From the Arrhenius plot in Figure 4.8, the overall activation energy from 400-600 

K is extracted to be 0.76 eV which is lower than expected for the low barrier patch. The 

leakage current could be derived from Poole-Frenkel emission, but an activation energy of 

0.76 eV would correspond to silicon vacancies which theoretically cannot exist in as-grown 

4H-SiC [84, 88]. It should also be noted that from the model described by Eqn. 4.3, the low 

barrier patch is not expected to be a significant contributor to the total leakage current until 

500 K. Accounting for this, if 400 and 450 K are removed from the linear fitting to the 

Arrhenius model, then the activation energy increases to 0.82 eV which is closer to the 

barrier height of the patch, especially when considering an expected barrier lowering of 

≈0.04-0.05 eV over the range of 20-80 kV/cm. Likewise, if 550 and 600 K are removed 

from the fitting, the activation energy reduces to 0.71 eV. In summary, the activation 
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energy of 0.76 eV appears to be overlap of at least two effects with activation energies 

greater than 0.8 eV and below 0.7 eV. 

 

 

Figure 4.9 Natural logarithm of the reverse bias leakage current normalized to the 

interfacial electric field plotted against the square root of the interfacial electric field for 

the I-V-T characterized 150 µm epilayer detector. 

 

These effects can be differentiated from their barrier lowering as described by Eqn. 

2.11 in Sec. 2.3. Figure 4.9 shows the ln(𝐽/𝐸𝑚) vs. 𝐸𝑚
1/2 

 plot used to extract the barrier 

lowering parameter 𝑚 at each temperature. At 400 and 450 K, 𝑚 is 11.65 and 4.55, 

respectively. At 20-80 kV/cm, this suggests that the barrier lowering would be less than 

0.01 eV which is equivalent to no barrier lowering at all. It should be noted that Poole-

Frenkel barrier lowering is a coulombic effect and thus there will only be barrier lowering 

if the assisting defect level is charged [110, 111]. Given the lack of barrier lowering and 

that the activation energy drops below 0.7 eV as temperature decreases, it is likely that the 
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leakage current at these two temperatures is derived from Z1/2 or the (0|-1) transition of the 

carbon vacancy which would be neutrally charged in the depletion region under reverse 

bias.  

 

 
Figure 4.10 DLTS spectra of the I-V-T characterized 150 µm epilayer detector using the 

initial delays 0.5, 1, 2, and 5 ms. 

 

This can be verified from the DLTS spectrum of the detector presented in Figure 

4.10. For this sample, DLTS studies were conducted from 80-750 K using a -5 V steady-

state bias and a 0 V, 1 µs filling pulse. The spectrum showed four peaks labeled Ti (c), 

EH1, Z1/2, and EH6/7. Their corresponding Arrhenius plots are given in Figure 4.11 and 

defect parameters are recorded in Table 4.1. The only unusual peak in the spectrum is the 

EH1 reported by Castaldini et al. [112]. However, its trap concentration is ~1010 cm-3 

making it mostly irrelevant compared to the other peaks. While EH6/7 mostly corresponds 
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to the carbon vacancy, Z1/2 can be a composite peak consisting of carbon vacancies and 

other related defects such as di-antisites or divacancies but is always greater than equal to 

the EH6/7 peak [71]. For this detector, the Z1/2 and EH6/7 trap concentrations are identical at 

2 × 1011 cm-3 implying that both near exclusively correspond to carbon vacancies. 

Therefore, Z1/2 is the (0|-1) transition and could be the main transport mechanism of the 

leakage current at 400 and 450 K.  

At 500 and 550 K, the barrier lowering term is approximately 2. Based on the 

activation energy >0.8 eV, this likely corresponds to Schottky barrier lowering of the low 

barrier patch. At 600 K, the parameter is ~1.5 indicating that both Schottky lowering and 

Poole-Frenkel lowering are contributing to the net barrier lowering which could be due to 

EH6/7 becoming active as the temperature increases. 

 

 

Figure 4.11 Arrhenius plot of the emission rates for the spectrum in Figure 4.10. 
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Table 4.1 Defect parameters obtained from DLTS spectrum of the 150 µm detector. 

Defect Level 𝐸𝑐 − 𝐸𝑇 (eV) 𝜎𝑛 (cm2) 𝑁𝑡 (cm-3) 

Ti (c) 0.19 10-14 8.9 × 1011 

EH1 0.48 ~10-15 4.6 × 1010 

Z1/2 0.59 ~10-16-10-15 2.1 × 1011 

EH6/7 1.35 ~10-16 2.0 × 1011 

 

 

4.5 CONCLUSION 

 A 4H-SiC SBD radiation detector was fabricated on 150 µm epitaxial layers and 

characterized by I-V-T measurements to determine the current flow mechanisms at 

elevated temperatures in preparation for harsh environment applications. From preliminary 

C-V-T measurements, the detector had a nearly ideal average barrier height of 2.16 eV and 

carrier concentration of 2 × 1014 cm-3. The forward bias I-V-T characteristics revealed the 

presence of two linear regions. The low voltage region had a constant ideality factor of 

≈1.3 and corresponded to a low barrier patch—likely derived from a dislocation defect—

with a barrier height of 0.93 eV. The high voltage region showed a linear correlation 

between barrier height and ideality factor which implied that the main Schottky barrier was 

inhomogeneous. From the intersection of the linear fit and 𝑛 = 1, the average barrier height 

was extracted to be 2.11 eV which agrees with the C-V-T results.  

 The reverse bias leakage current was proven to be linear with the interfacial electric 

field at 400 K and above. Exponential fitting of the slopes of the individual I-V curves 

revealed an activation energy of 0.76 eV. When compared with the barrier lowering, it was 

determined that this activation energy was the result of the overlap between trap-assisted 

current through a neutrally charged trap with an activation energy less than 0.7 eV and the 
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low barrier patch revealed by the forward bias characteristics. DLTS results suggest that 

the neutrally charged trap is Z1/2 which corresponds to the (0|-1) transition of the carbon 

vacancy. At 600 K, the barrier lowering dipped below 2, implying transport becomes 

assisted by a charged trap such as EH6/7 at elevated temperatures.  The absence of barrier 

lowering at room temperature compared to the 250 µm detectors described in Sec. 2.3 could 

be attributed to the difference in composition of the Z1/2 peak which can potentially 

encompass additional defects other than carbon vacancies especially when the 

concentration is higher than the EH6/7 peak.  
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CHAPTER 5

NEUTRON IRRADIATED 4H-SIC EPITAXIAL LAYERS 

5.1 INTRODUCTION 

 One of the difficulties in developing radiation detectors for harsh environments is 

finding materials which can sustain continuous bombardment from heavy background 

irradiation fields. These fields can consist of high energy nuclear particles such as protons, 

neutrons, or gamma rays which are small enough to completely avoid collision with the 

electron cloud and directly scatter across the nucleus. If the energy of the incident particle 

is high enough, then it can either break the atom free from its crystalline position creating 

a point defect, or shatter the nucleus completely creating two radioactive atoms with the 

crystal structure, or will embed itself in the nucleus activating it [113]. At high energies, 

the probability of these events is reduced the lower the atomic numbers of the constituent 

atoms are. This makes 4H-SiC a material of high interest for application in harsh 

environments such as the reactor core or lunar surface.  

Irradiation studies are often employed to study the effect of high energy particle 

bombardment on a device or material. This usually involves correlation of device 

performance with irradiation dose and the introduced deep levels. Occasionally, irradiation 

is done deliberately to introduce defects with promising properties for optical or quantum 

computing applications [114, 115]. Irradiation studies on 4H-SiC have been performed 

with a wide variety of particles including electrons, protons, neutrons, and heavy ions [22, 

89, 112, 116-118]. However, very little has been done to correlate the effect of irradiations 
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on detector performance especially with modern, high quality epilayers as dealt in this 

dissertation.   

In this study, 4H-SiC samples from the same parent wafer as those described in 

Chapter 2 were exposed to neutron fluences up to 1013 cm-2. Detectors were then fabricated 

using these samples and characterized for their electronic and radiation detection 

properties. The variation in detection performance was correlated with defect levels using 

a wide variety of techniques including DLTS, current transient spectroscopy (CTS), and 

photoinduced current transient spectroscopy (PICTS).  

 

5.2 IRRADIATION PROCEDURE 

Four 250 µm 4H-SiC samples obtained from the same parent wafer as described in 

Chapter 2 were irradiated with cadmium-filtered neutrons at Kansas State University in the 

TRIGA Mark II nuclear reactor facility. Before irradiation, the samples were first loaded 

into 20 mm thick cadmium envelopes which shields the samples from thermal and 

epithermal neutrons with energies below 0.4 eV. The envelopes were then loaded into dry 

sample tubes or Intra-Reflector Irradiation System (IRIS) ports (Figure 5.1) which have 

thermal and fast (>1 MeV) neutron flux densities of 4.75 × 106 and 2.96 × 106 cm-2 s-1, 

respectively, and an estimated gamma dose rate of 1.06 × 102 rad s-1 for each watt of applied 

reactor power. To minimize the error in fluences, the reactor power was set such that the 

irradiation duration was at least 100 times the loading duration. The accumulated fluence 

for each sample was calculated from a power normalized flux density acquired in gold 

activation foils within the cadmium envelope and recorded in Table 1.  The estimated 

background gamma doses were between 400 Rad and 300 kRad and deemed minor 
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compared to the neutron dose. Upon return to UofSC, the samples were prepped and 

fabricated into radiation detectors according to the procedures described in Sec. 2.2.  

 

Table 5.1 Accumulated neutron dose of 250 µm 4H-SiC epitaxial layer samples. 

Detector ID 
Total Neutron Fluence (cm-2) Fast Neutron Fluence (cm-2) 

N1 (5.07±0.14) × 1010 (6.59±0.19) × 109 

N2 (4.46±0.13) × 1011 (5.79±0.17) × 1010 

N3 (4.89±0.14) × 1012 (6.36±0.19) × 1011 

N4 (4.75±0.14) × 1013 (6.17±0.19) × 1012 

 

 

Figure 5.1 The cadmium envelope (left) and the finished detector (right).  

 

5.3 DETECTOR CHARACTERIZATION  

 Figure 5.2 shows the forward and reverse characteristics of detectors fabricated on 

the neutron irradiated epitaxial layers. The first three detectors N1 (1010 cm-2), N2 (1011 

cm-2), and N3 (1012 cm-2) had typical SBD behavior with barrier heights ranging from 1.5 
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to 1.7, ideality factors from 1.1 to 1.5, and leakage currents from 0.3-0.5 nA with no 

apparent correlation between any of these three parameters and net dose. The only detector 

that expressed any behavior out of the ordinary was N4 (1013 cm-2) which manifested low 

forward bias current that appeared linear and symmetric with the reverse bias I-V profiles. 

This is linked to an increase in series resistance that has been observed in most neutron 

irradiated epilayers [118-120] and originates from donor compensation by introduced deep 

levels. Taking the linear fit of the forward bias regime suggests that the resistivity of the 

neutral region has grown to ~1012 Ω-cm.  

 

 

Figure 5.2 Forward and reverse bias I-V characteristics for detectors fabricated on neutron 

irradiated epilayers. 

 

 The Mott-Schottky plots attained from the C-V characteristics are presented in 

Figure 5.3. N1 and N2 exhibited typical junction capacitances for unirradiated 4H-SiC 

SBD radiation detectors corresponding to doping concentrations within the expected range 

for the parent wafer (1-2 × 1014 cm-3). N3 had a linear region which could be used to exact 
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a carrier concentration of 6.6 × 1013 cm-3—roughly half the previous two samples. 

However, even considering the reduction in carrier concentration, it had an abnormally low 

capacitance and a profile that indicated a large surface charge density. N4 had a constant 

capacitance of 4.86 pF suggesting that either the contact is ohmic or the carrier density has 

been compensated so severely that it is effectively fully depleted even at zero bias.  

 

 

Figure 5.3 Mott-Schottky plots for the detectors fabricated on neutron irradiated 4H-SiC 

epitaxial layers given in semi-log scale to show the difference in capacitance profiles 

between the lightly and heavily irradiated samples.  

 

Popelka et al. defined the donor removal rate as the differential change in net donor 

concentration with neutron fluence and calculated it to be 18.9 cm-1 for 1 MeV neutrons 

[118]. For neutrons greater than 1 MeV, it has been calculated to be as low as 9.7 [121].  

Using the resistivity of N4 and the >1 MeV neutron fluence of 6 × 1012 cm-2, the donor 

removal rate for the present irradiations is estimated to be ≈20 cm-1.  
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Figure 5.4 Optimal pulse height spectra obtained for the detectors (a) N1, (b) N2, (c) N3, 

and (d) N4, fabricated on neutron irradiated epilayers, when exposed to an 241Am alpha 

particle source. 

 

The optimal pulse height spectra were obtained for each of the detectors and 

presented in Figure 5.4. The two lightly irradiated samples N1 and N2 had resolutions of 

28 and 29 keV (~0.5%) FWHM for 5486 keV alpha particles, respectively, and 

demonstrated clearly resolved 5388 and 5443 keV peaks. To achieve the optimum energy 

resolution, detector N2 needed a slightly longer shaping time of 3 µs compared to 2 µs for 

N1. When the electronic noise peak broadening is negligible compared to detector peak 

broadening, longer shaping times can indicate more trapping and de-trapping from shallow 

or lower energy deep levels with ns to µs emission times (𝑒𝑛
−1), prolonging the rise time of 

the preamplifier output. Detector N3 had a similar optimal shaping time of 3 µs but required 
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a higher bias of -440 V, compared to -200 V for N1 and N2, to reach its optimal resolution 

of 42 keV (0.8%). The large operating bias suggested that hole trapping was severe even 

with the strong electric field of the space-charge region. The best resolution achieved for 

N4 was 76 keV (1.8 %) at -600 V and the maximum shaping time of 10 µs for the ORTEC 

572 shaping amplifier. It can be inferred from the significant rightward tailing of the peak 

that 10 µs is not a sufficiently long enough shaping time for maximum charge collection. 

Both the electrical and radiation detector properties of the devices are tabulated in Table 

5.2. 

 

Table 5.2 Summary of electrical and radiation detection properties of detectors fabricated 

on neutron irradiated 4H-SiC epitaxial layers.  

Det 

ID 
𝜙𝐵 

(eV) 
n 

𝑁𝑒𝑓𝑓  

(1014 cm-3) 

𝐼 @-

200V 

(pA) 

Bias 

(-V) 

Shaping 

Time 

(µs) 

Energy 

Resolution 

(keV (%)) 

𝐿𝑑 (µm) 

N1 1.60 1.44 1.32  272 200 2 28 (0.5) 10 

N2 1.69 1.69 1.39  187 200 3 29 (0.5) 5.9 

N3 1.58 1.58 0.66 506 440 3 42 (0.8) 2.6 

N4* - - - 249 600 10 76 (1.8) - 

*Not all parameters could be determined for N4 due to donor compensation.  

 

 More information on detector trapping can be interpreted from the variation in 

energy resolution as a function of the applied reverse bias. As shown in Figure 5.5, the 

energy resolution of detectors N1 and N2 improved as the bias increased until stabilizing 

at ~50 V which puts the depletion width just beyond the range of the alpha particles. 

However, on the lead up to 50 V, the resolution of N2 was lower than N1 and rose much 

more sharply. This could indicate that hole trapping during diffusion from the neutral 
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region is more severe than trapping in the space-charge region. On the other hand, the 

energy resolution of detector N3 does not saturate until 300 V implying that trapping has 

become more severe in the space-charge region. Due to the ohmic-type behavior of detector 

N4, the electric field will be distributed across the entire epilayer thickness. Since the range 

of the alpha particle is only 18.22 µm ≪ 250 µm, under reverse bias, greater than 90% of 

the radiation induced current will be derived from electron transport—possibly 100% if the 

hole properties are sufficiently diminished. Assuming the electric field distribution is 

approximately constant, electrons will reach saturation velocity at 500 V reverse bias. The 

implication is that even at saturation drift velocity and > 90% electron transport, the 

resolution has degraded compared to the three previous samples implying a clear decline 

in the electron trapping time. 

 

 

Figure 5.5 Detector resolution plotted against the applied reverse bias at the optimal 

shaping times on a log-log scale for better visibility. 
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Figure 5.6 Detector N1, N2, and N3 charge collected in channel number plotted against 

the applied reverse bias using optimal shaping times. The solid lines are the fit to the drift- 

diffusion model.  

 

Figure 5.6 shows the charge collected for the detectors plotted against the reverse 

bias for the three SBDs. Fitting the plot to the drift-diffusion model (Sec. 3.2) shows a clear 

decline in minority carrier diffusion length 𝐿𝑑 from 10 µm in N1 to 2.6 µm in N3 indicating 

a clear increase in hole trapping. Detector N3 also had a slightly lower amount of charge 

collected than N1 and N2. As is apparent in Figure 5.7, N4 only managed to collect ~80% 

the total charge (compared ~100 % for the three SBDs). This effect has been observed in 

GaAs detectors and is related to carrier trapping [122]. Exhibiting semi-insulating 

behavior, the drift-diffusion model cannot be applied to N4. However, because the range 

of the alpha particles 𝑥𝑟 is much shorter than the thickness of the epilayer 𝑑, charge 

collected can be modeled by a single interaction point approximately equal to 𝑥𝑟. 

Additionally, since the contact area is much larger than the thickness of the detector, the 

weighting potential will be the same as for a planar detector. Thus, the charge collected can 
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be modeled by the single charge carrier Hecht equation which after inserting the 

appropriate terms is given by, 

 
𝑄 ∝

𝜇𝑛𝜏𝑛(𝑉 − 𝑉0)

(𝑑2 − 𝑑𝑥𝑟)
[1 − 𝑒𝑥𝑝 (−

(𝑑2 − 𝑑𝑥𝑟)

𝜇𝑛𝜏𝑛(𝑉 − 𝑉0)
)]. 

 

5.1 

Here, 𝑉0 is an offset voltage to correct for any surface polarization from surface traps or 

the minor amount of charge collection expected from holes (< 10 %). After fitting the data 

in Figure 5.7 to Eqn. 5.1, 𝜏𝑛 was extracted to be 7.38 ns.  

 

 

Figure 5.7 Charge collected in channel number plotted against the applied reverse bias for 

detector N4. The solid line is the fit to Eqn. 5.1. CN refers to the channel number. 

 

5.4 ALTERNATIVE DEFECT CHARACTERIZATION METHODS: CTS AND PICTS 

 While DLTS is a powerful tool for the characterization of defect levels in rectifying 

devices such as SBDs and p-n junction diodes, it cannot be applied for devices with low 

background capacitance such as rectifying devices with low doping concentration or heavy 
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surface charging or insulating materials with invariant capacitance. The former can be 

resolved by using current transient spectroscopy (CTS) also known as I-DLTS [123]. In 

traditional capacitance DLTS, the capacitance transient is derived from the emission of 

trapped electrons back to the conduction wherein they are immediately swept up by the 

electric field and ejected to the neutral region producing a current. Under the high electric 

field, the current induced by the sweeping of these charges will be rate limited by the 

emission rate of traps and the net charge within the window Δ𝑥 can be described by the 

following, 

 

𝑄(𝑡) = 𝑒𝐴 ∫ 𝑁𝑒𝑓𝑓 − 𝑁𝑇 𝑒𝑥𝑝(−𝑒𝑛𝑡) 𝑑𝑥

𝛥𝑥

0

. 

 

5.2 

Essentially, the total charge equals the charge density of the region Δ𝑥 multiplied by the 

region’s volume. The emission current is then the first derivative with respect to time, 

 𝑖𝑇(𝑡) = 𝑒𝐴𝛥𝑥𝑁𝑇𝑒𝑛 𝑒𝑥𝑝(−𝑒𝑛𝑡). 
 

5.3 

Including the background DC current, this equation is nearly identical in form to the 

capacitance transient in Eqn. 3.16 and similarly the trap parameters can be derived from 

the difference spectrum. The main difference is that emission rate is outside the exponential 

which can slightly elongate the rightward tailing of the peaks. Furthermore, the additional 

current at the start of the transient does not depend on the steady-state current (unlike 

capacitance DLTS which depends on the steady-state capacitance) and will produce more 

reliable signals at lower background DC current. 

Resistive and insulating materials require optical methods to characterize the trap 

parameters such as photoinduced current transient spectroscopy (PICTS) [124]. As 

demonstrated in Figure 5.8, when light or any radiation is applied to a material, electron-
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hole pairs are generated at a point of interaction. Applying an electric field will cause these 

carriers to drift until they are captured by trapping centers. For electrons, the mean free 

path will be 𝜇𝑛𝜏𝑛|𝑉|/𝑑. After a sufficiently long enough time under illumination, trapping 

and de-trapping will reach steady state and all traps within a volume 𝜇𝑛𝜏𝑛|𝑉|𝐴/𝑑 (for 

electrons) will be filled. Upon removal of the light source, trapped charges in the volume 

will be emitted back to their respective bands and swept up by the electric field generating 

a current of the same form as Eqn. 5.3, 

 
𝑖𝑇(𝑡) =

𝑒𝐴𝜇𝑛𝜏𝑛𝑉𝑁𝑇

𝑑
𝑒𝑛 𝑒𝑥𝑝(−𝑒𝑛𝑡). 

 

5.4 

Through careful selection of the optical source and sign of the applied bias, the carrier type 

of the emission current can be controlled. 

 

 

Figure 5.8 Illustration of charge carrier trapping under illumination (a) and the emission 

of charge carriers once the light source is removed (b). 

 

 CTS is an available function of the DDS-12 system. In current mode, the rate 

window is defined as 1.93 times the initial delay which will slightly alter the positions of 

the trap levels compared to capacitance mode. During measurements, the output of the 
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Janis VPF 800 cryostat is connected to a CTS configured current meter through a separate 

BNC connection on DDS-12’s main panel.   

 

 

Figure 5.9 Photograph and diagram of the PICTS system designed and implemented at 

UofSC. 

 

 The DDS-12 does not have a built-in PICTS function. However, the preamplifier 

module does allow for external input and output signals for the design of homebrewed 

spectroscopic systems. At UofSC, a PICTS system has been developed consisting of a Janis 

VPF800 cryostat which uses the pulse out connection of the DDS-12 for biasing the 

detector. The output of the preamplifier was then fed into channel one of a GWINSTEK 

GDS-1062A digital oscilloscope for signal acquisition. The cryostat had four quartz 

windows at the base for applying optical signals to devices.  Depending on the device, 

either a directional LED or laser diode was aimed directly at the detector surface through 

one of these four windows. The optical source was controlled by a GWINSTEK AFG-2105 

arbitrary function generator which was connected in parallel to channel two of the 

oscilloscope to serve as the triggering signal. The digital waveforms from the oscilloscope 

were exported to a PC via USB for pulse processing and data acquisition in an in-house 
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developed LabVIEW waveform analysis program. A schematic diagram of the system is 

given in Figure 5.9. As in DLTS and CTS, the temperature was controlled through the 

Lakeshore LS335 temperature controller.  

 

 

Figure 5.10 Typical function generator output (a) and preamplifier output (b) observed in 

the oscilloscope during the PICTS measurements.  

 

Upon acquiring a waveform, the LabVIEW program first smooths the waveforms 

using a moving average filter. From the derivative of the filtered waveform, the program 

acquires both the initial rise and initial fall indices corresponding to the start of the 

photoinduced current and fall of the trap emission current. Using up to 37 different 𝑡1-𝑡2 

pairs, the program calculates the difference spectra and normalizes them to the steady-state 

photoinduced current to remove the 𝑒𝑛 term from the outside of the exponentials in the 

PICTS signal. For a single set temperature, the program allows for the collection of up to 
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a user set number of waveform which will have their individuals PICTS signals averaged 

together for the final recorded value.  

Figure 5.10 shows a typical PICTS waveform captured on the GDS-1062A 

oscilloscope. The slow rise in amplitude of the photoinduced current is due to trapping of 

charge carriers before reaching steady state. Once the optical source is turned off, the 

amplitude drops off rapidly as the photoinduced current vanishes leaving behind only the 

emission current from traps.     

 

5.5 DEEP LEVELS IN NEUTRON IRRADIATED EPILAYERS 

 The defects in the four detectors were characterized by DLTS, CTS, and PICTS 

depending on their device properties. N1 and N2, which showed normal C-V 

characteristics for 4H-SiC SBDs, were characterized by traditional capacitance DLTS from 

80-790 K using a -2 V steady-state bias and a 0 V filling pulse applied every second for 1 

ms. Detector N3 had an abnormally low capacitance, but still showed rectifying 

characteristics and low leakage current and, therefore, was chosen to be characterized by 

CTS over the same temperature range. Per Eqn. 5.3, the emission current is directly 

proportional to the width of the window Δ𝑥 defined as the difference between the depletion 

width at the steady-state bias and the depletion width during the filling pulse. Thus, the 

signal strength will be maximized at the highest possible steady-state reverse bias for the 

DDS-12 of -12 V and filling pulse equal to the built-in voltage 𝑉𝑏𝑖. However, applying a 

forward bias is considered risky—especially at elevated temperature—because the high 

forward bias current could damage the sensitive electronic components of the DDS-12 
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system. Thus, a 0 V, 1 ms filling pulse was selected in conjunction with the -12 V steady-

state bias corresponding to Δ𝑥 ≈ 10 µm. 

N4, which behaved as a semi-insulator, was characterized by PICTS using a 365 

nm wavelength ultraviolet directional LED pulsed for 2 ms at a 22 Hz frequency over the 

temperature range 80-700 K wherein the photoinduced current was generated with a -12 V 

applied bias. The attenuation length of 365 nm UV photons is >50 µm in 4H-SiC [125] 

ensuring that charge carrier generation occurs within the epitaxial layer. A limitation of the 

PICTS technique is that it cannot differentiate between electron and hole traps unless 

charge pairs are generated close to the surface of the detector limiting the volume that the 

opposite polarity charge carrier can occupy. Using 7.83 ns as the lifetime, the width of the 

volume containing the trapped electrons would be 36 µm allowing both electron and hole 

volumes to be fully filled. However, in 4H-SiC, 𝜇𝑛 is an order of magnitude greater than 

𝜇𝑝 which makes any measured peak more likely to be an electron trap than a hole trap. 

 

 

Figure 5.11 DLTS spectrum of neutron irradiated detector N1 fabricated on epilayers 

irradiated at fluences ~1010 cm-2. 
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Figure 5.12 Arrhenius plots for the DLTS spectrum of neutron irradiated detector N1 

fabricated on epilayers irradiated at neutron fluences ~1010 cm-2. 

  

Table 5.3 Trap parameters obtained from the DLTS measurements of detector N1. 

Peak 𝐸𝑐 − 𝐸𝑇 (eV) 𝜎𝑛 (cm2) 𝑁𝑡 (cm-3) Possible Trap 

Identity 

P1 0.15 1.2 × 10-15 4.6 × 1011 Ti (c) 

P2 0.68 9.2 × 10-15 1.2 × 1012 Z1/2 

P3 1.84 1.5 × 10-12 3.6 × 1011 Unidentified 

 

Figure 5.11 shows the DLTS spectrum of detector N1 which had 3 clearly 

resolvable peaks with parameters recorded in Table 5.3. The first two peaks are the titanium 

and Z1/2 peaks that appear in all as-grown epitaxial layers (Sec. 3.4). The Z1/2 center had a 

relatively typical trap concentration and capture cross-section of 1.2 × 1012 cm-3 and 10-15-

10-14 cm2, respectively, which explains why the detector resolution is unperturbed at a low 

neutron dose of 1010 cm-2. At first glance, the last peak appears to be EH6/7; however, the 

extracted energy level from the Arrhenius plot in Figure 5.12 was 1.84 eV below the 

conduction band edge. The energy is close to the EP2 level observed in electron beam 

irradiation p-type 4H-SiC [89] and was suspected of being an interstitial defect—particular 

a carbon interstitial—for it instability under low temperature annealing. However, its 
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capture cross-section (10-12 cm2) is two orders of magnitude larger than EP2. The large 

cross-section of 10-12 cm2 implies that the originating point defect has a high positive 

charge. 

 

  

Figure 5.13 DLTS spectrum of neutron irradiated detector N2 fabricated on epilayers 

irradiated at fluences ~1011 cm-2. 

 

N2 manifested two additional peaks in its DLTS spectra (Figure 5.13) compared to 

N1. The Arrhenius plots and the trap parameters are shown in Figure 5.14 and listed in 

Table 5.4, respectively. Ti (c) and Z1/2 showed no significant changes between the two 

detectors and appear unaffected by neutron fluence. The first of the new peaks at 0.76 eV 

is most likely the S2 center corresponding to the (-1|-2) transition of the silicon vacancy 

[126]. The second new peak at 1.23 eV is normally labeled as EH5 and is thought to 

correlate with carbon antisite-vacancy (CAV) complexes resulting from neighboring 

carbon atom migrating and occupying silicon vacancies [127, 128]. However, DFT 

calculations suggest that under n-type conditions, the silicon vacancy is the more 

metastable state between the two [128]. Proton irradiation studies imply that it could form 

more readily—especially at elevated temperatures—as introduced acceptors push down the 
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fermi level [129]. The unidentified deep level had a slightly larger capture cross-section 

and trap concentration than was seen in N1. If the unidentified peak was exclusively 

derived from the new peak formed by irradiation, its concentration would be expected to 

have increased by a full order of magnitude from 1010 cm-2 to 1011 cm-2. Since the peak is 

relatively broad, it is likely that it corresponds to the overlap of multiple peaks including 

the normally observed EH6/7. 

 

 

Figure 5.14 Arrhenius plots for the DLTS spectrum of neutron irradiated detector N2 

fabricated on epilayers irradiated at neutron fluences ~1011 cm-2. 

 

Table 5.4 Trap parameters obtained from the DLTS measurements of detector N2. 

Peak 𝐸𝑐 − 𝐸𝑇 (eV) 𝜎𝑛 (cm2) 𝑁𝑡 (cm-3) Possible Trap 

Identity 

P1 0.15 1.9 × 10-15 4.2 × 1011 Ti (c) 

P2 0.68 3.9 × 10-15 1.1 × 1012 Z1/2 

P3 0.76 3.8 × 10-15 1.9 × 1011 S2 

P4 1.23 3.4 × 10-11 2.4 × 1011 EH5, Ci1 

P5 1.90 7.7 × 10-12 5.7 × 1011 Unidentified 
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Figure 5.15 CTS spectrum of neutron irradiated detector N3 fabricated on epilayers 

irradiated at fluences ~1012 cm-2. 

 

 

Figure 5.16 Arrhenius plots for the CTS spectra of neutron irradiated detector N3 

fabricated on epilayers irradiated at neutron fluences ~1012 cm-2. 

 

The CTS spectra and Arrhenius plots for detector N3 are presented in Figures 5.15 

and 5.16, respectively, while the trap parameters are given in Table 5.5. The spectrum has 

all the same peaks as N2 except for the inclusion of an additional peak at 1.33 eV below 

the conduction band edge. Based on its capture cross-section and temperature position, this 

could be the EH6 component peak of EH6/7 or the Ci1 peak potentially derived from 

chlorine impurities introduced during CVD growth as byproduct of using dichlorosilylene 
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as the silicon precursor [130]. The trap concentrations of the S2 center, EH5, and 

unidentified center all grew by approximately one order of magnitude compared to N2.  

 

Table 5.5 Trap parameters obtained from the CTS measurements of detector N3. 

Peak 𝐸𝑐 − 𝐸𝑇 (eV) 𝜎𝑛 (cm2) 𝑁𝑡 (cm-3) Possible Trap 

Identity 

P1 0.17 4.1 × 10-16 6.5 × 1011 Ti (c) 

P2 0.69 6.7 × 10-15 1.1 × 1012 Z1/2 

P3 0.84 3.0 × 10-14 1.5 × 1012 S2 

P4 1.14 2.2 × 10-13 1.3 × 1012 EH5 

P5 1.79 3.6 × 10-9 2.1 × 1012 Unidentified 

P6 1.33 2.0 × 10-15 2.5 × 1012 EH6 

 

 Only two peaks (parameters recorded in Table 5.6) could be fully resolved from the 

spectrum of N4 shown in Figure 5.17. At first glance, both peaks appear to be the same 

trapping center; however, the Arrhenius plot in Figure 5.18 revealed the presence of two 

linear regions indicating two different trap levels being resolved at the same temperature 

range albeit with different correlators. The first linear region corresponded to Z1/2 and had 

a concentration of 1.5 × 1012 cm-3 whereas the second corresponded to the S2 center and 

had a concentration of 1.3 × 1013 cm-3.  Brodar et al. defined the defect introduction rate as 

the differential change in trap concentration with neutron flux [117]. For the present 

irradiations, this was calculated to be 0.27 cm-1 which is 3 times lower than reported in the 

previous study. However, based on just the fast neutron fluence, it was 2.08 cm-1.  To the 

left of the Z1/2 was a continuum of lower energy peaks that could not be resolved.  Based 

on the proton irradiation studies by Karsthof et al., these could be a continuum of CAV 

complexes which should produce four distinct energy levels ranging from 0.3-0.5 eV [129]. 
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At room temperature, these shallow levels would have emission times in the range of µs to 

ms which would correlate with the rightward tailing of detector N4’s 241Am pulse height 

spectrum.  

 

 

Figure 5.17 PICTS spectrum of neutron irradiated detector N4 fabricated on epilayers 

irradiated at fluences ~1013 cm-2 using 0.3 and 9 ms initial delays. 

 

 

Figure 5.18 Arrhenius plot for the PICTS spectrum of neutron irradiated detector N4 

fabricated on epilayers irradiated at neutron fluences ~1013 cm-2. 
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Table 5.6 Trap parameters obtained from the PICTS measurements of detector N4. 

Peak 𝐸𝑐 − 𝐸𝑇 (eV) 𝜎𝑛 (cm2) 𝑁𝑡 (cm-3) Possible Trap 

Identity 

P1 0.60 1.9 × 10-17 1.5 × 1012 Z1/2 

P2 0.78 2.2 × 10-15 1.3 × 1013 S2 

 

 Fast neutrons have energies greater 1 MeV which is sufficiently high enough to 

dislodge an atom upon collision regardless of its displacement energy, and therefore, the 

individual neutron cross-sections of the component atoms will determine which types of 

defects are more likely to form. Particles can scatter elastically (no energy loss), 

inelastically (partial energy loss), or non-elastically (complete energy loss).  Since no 

energy is lost during elastic scattering, the types of cross-sections that are most likely to 

cause displacements are inelastic and non-elastic scattering. According to the Evaluated 

Nuclear Data File (ENDF/B-VIII) available at Brookhaven National Laboratory (BNL) 

[131], silicon has in-elastic and non-elastic cross-sections of ~0.1 barn (10-25 cm2) at around 

1-3 MeV whereas carbon is ~ 10-5 barn in the same range.  Therefore, silicon displacement-

related defects are significantly more likely to form than carbon displacement-related 

defects.  

 Silicon displacement defects fall into three general categories of point defects. The 

most obvious two are the silicon interstitial and the silicon vacancy which correspond to 

the dislodged atom and the empty space it left behind, respectively. The third is the CAV 

center which forms when a neighboring carbon atom diffuses into a silicon vacancy. There 

are four of such defects corresponding to movement from the carbon hexagonal (h) or cubic 

(k) site into the silicon hexagonal (h) or cubic (k) site. Figure 5.19 shows the formation 
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energy phase diagram for these three types of defects calculated using hybrid density 

functionals and the FNV correction. More details on the computational methods can be 

found in Sec. 3.2. Silicon vacancies are well known to produce defect levels around 0-7-

0.8 eV (S2) centers and is the most likely identity of the similar defect observed in UofSC’s 

neutron irradiated epilayers [88, 129]. As reported elsewhere [128], under n-type doping 

conditions the formation energy of silicon vacancies is much lower than CAV complexes 

implying that the adjacent carbon atom prefers to remain in the silicon vacancy 

configuration than to migrate into unoccupied silicon site. Additionally, the computed 

energy levels of CAV centers are deeper than the typically reported values of EH5.  

 

 

Figure 5.19 Formation energies of silicon displacement-related defects in 4H-SiC using 

HSE06 hybrid pseudopotentials in C-rich conditions.  

 

Regardless, for any silicon vacancy or CAV center, there should be equal number 

of silicon interstitials. These defects will remain until they are annealed and reoccupy the 
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silicon sites effectively eliminating both sets of defects. From our calculations, the 

interstitial occupying the cubic site (Sii (k)) produces three deep levels and one shallow 

level with acceptor like characteristics. The first level at EV + 1.40 eV agrees with the 

reported value for the unidentified deep level and corresponds to a charge transition state 

of (+4|+3) which would explain the large capture cross-section of the level at EC – 1.8 eV. 

The (+3|+2) transition overlaps with the reported value of EH5 in the present studies. Like 

the unidentified level, EH5 had a large capture cross-section of 10-13 cm2 which could be 

explained by the +3 charge state.  The overall charge profile of the silicon interstitial 

suggests that it acts as an electron acceptor and could be one of the sources of donor 

compensation reported in neutron irradiated epilayers. 

 

Table 5.7 Transition levels of silicon displacement-related defects in 4H-SiC measured 

from the valence band maximum. 

Defect (+4|+3) (+3|+2) (+2|+1) (+1|0) (0|-1) (-1|-2) (-2|-3) 

VSi(k)    0.34 1.07 2.42 3.00 

VSi(h)    0.25 1.04 2.36 2.93 

CSiVC(hh)    1.52 2.65   

CSiVC(kk)   0.04 1.77 2.78   

CSiVC(hk)    1.68 2.33   

CSiVC(kh)   0.04 1.80 2.61   

Sii(k) 1.40 1.95 2.72 3.16    

 

 

5.6 CONCLUSION  

 Four 4H-SiC SBD radiation detectors have been fabricated on 4H-SiC epitaxial 

layers irradiated up to ~1013 cm-2. Radiation detection measurements showed consistent 
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energy resolutions of 28-29 keV (0.5%) for 5486 keV alpha particles for the detectors 

irradiated with the lowest dose (1010 and 1011 cm-2). The energy resolution marginally 

degraded to 42 keV for the detector irradiated at fluences of 1012 cm-2. Modeling the charge 

collected with the drift-diffusion model revealed a significant decline in the minority 

carrier diffusion length from 10 to 2.6 µm implying an increase in hole trapping centers. 

The most heavily irradiated detector (1013 cm-2) exhibited semi-insulating behavior which 

was correlated with donor compensation introduced by deep levels. Despite this, the 

detector was still able to achieve a resolution of 1.76%. Defects studies on the four 

detectors revealed the presence of three deep levels that do not appear in as-grown epitaxial 

layers. The levels showed increasing concentration with neutron dose which correlated 

well with the decline in the detector resolution. The first level at 0.7-0.8 eV was labeled as 

S2 corresponding to silicon vacancies formed from the displacement of a silicon atom from 

its crystalline lattice site. The second level was the EH5 peak at 1.1-1.2 eV and the third 

was an unidentified midgap level located 1.8 eV below the conduction band edge. EH5 is 

normally associated with CAV centers; however, comparison with ab initio calculations 

suggests that both EH5 and the unidentified defect may be two different charge states of 

the silicon interstitial which is guaranteed to form alongside silicon vacancies in a 

displacement event. Silicon interstitials also displayed acceptor like characteristics and 

could be the source of the donor compensation observed in the heavily irradiated detector.
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CHAPTER 6

CONCLUSION, DISSEMINATION OF WORK, AND FUTURE WORK  

6.1 FINAL CONCLUSIONS 

 Versatile radiation detectors which can detect a wide variety of both charged and 

neutral radioactive particles in environments with high or rapidly fluctuating temperatures 

and high background radiation fields are needed for NASA space missions, high energy 

physics experiments, nuclear waste safeguarding, and reactor core monitoring. 

Conventional radiation detectors such as HPGe, Si, or CZT are inoperable within these 

harsh environments due to their insufficient bandgaps and high atomic numbers. As a 

result, 4H-SiC Schottky barrier diodes (SBD) radiation detectors have become the top 

contender for harsh environment detection of charged radiation. However, 4H-SiC’s low 

atomic numbers—the very properties that make it resilient to radiation fields—also makes 

it nearly transparent to uncharged radiations such as gamma rays, a limitation which 

lessons the thicker the active volume of the device is. Developments in 4H-SiC epilayer 

technology in recent years has allowed for thicker epilayers up to 250 µm with low 

concentrations of intrinsic defects paving the way for the development of dynamic 4H-SiC 

detectors. 

 In this dissertation, Ni/4H-SiC SBD radiation detectors were fabricated on 

epilayers up to 250 µm thick—the thickest reported to date—and characterized for their 

room temperature electronic properties and radiation detection performance. The first set 
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of evaluated detectors had barrier heights > 1.3 eV, ideality factors < 1.1, and demonstrated 

consistently low leakage current density < 300 pA cm-2 even at 800 V reverse bias. Despite 

this, the current over the barrier was determined to be more than expected, and fitting  

ln 𝐽/𝐸𝑚 against the √𝐸𝑚 revealed the leakage current was mostly trap-assisted through 

Poole-Frenkel emission which could be significant at the full depletion biases of 5-10 kV. 

Radiation detection measurements were performed using a 241Am calibrated alpha source. 

Pulse height spectrometry measurements with 241Am represent the first step in the 

characterization of any radiation detector and serves as the main qualifier for detector 

performance. All three detectors demonstrated consistently high 5486 keV resolutions < 

0.5% FWHM and had clearly resolvable peaks for 5338 keV and 5442 keV. Although, the 

resolution was determined from noise measurements with a precision pulser to be limited 

by the detectors themselves. 

 When performance is limited by the detector, this mostly refers to trapping of 

charge carriers by point defects and can be quantified by how quickly these trapping centers 

can capture charges. In 4H-SiC, the most significant electron trapping center at room 

temperature is the Z1/2 defect with an energy level of 0.6-0.7 eV below the conduction band 

which mostly correlates with the (0|-1) charge state transition of the carbon vacancy. To 

demonstrate the effect of trapping on radiation detection performance, three new detectors 

were fabricated on epilayers of thickness 50, 150, and 250 µm which had optimal 

resolutions of 2.0 %, 0.8 %, and 0.63 %, respectively. Fitting the charge collected to a drift-

diffusion model revealed minority carrier diffusion lengths of 16, 10, and 9.2 µm, 

respectively, suggesting that the optimal resolution was not limited by minority carrier 

trapping. Rather, deep level transient spectroscopy (DLTS) measurements revealed that 
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detector energy resolution had a strong correlation with the trapping rate of Z1/2 which is 

proportional to the product of the trap concentration and trap cross-section. In summary, 

the detectors with lower Z1/2 trapping rates had better resolutions. 

 To investigate how detector performance might change under harsh environment 

conditions, temperature dependent current-voltage (I-V-T) measurements were conducted 

on a detector fabricated on 150 µm epilayers. This detector had promising electronic 

properties such as a high average barrier height of 2.16 eV and low room temperature 

leakage currents ~pA at 200 V reverse making it ideal for characterizing its current 

transport mechanisms. At 400 K, it was determined that the leakage current was 

predominantly trap-assisted by Z1/2. As a neutral trap, Z1/2 incurs no barrier lowering 

allowing for mild, linear current growth with the applied electric field. At 450 and 500 K, 

the current started to grow exponentially at high bias which was determined to be due to 

Schottky barrier lowering of a low barrier patch in the M-S interface. Low barrier patches 

are most likely derived from dislocation defects propagated from the substrate. At 600 K, 

the current transport mechanism approached Poole-Frenkel lowering potentially from the 

activation of positively charged EH6/7. Overall, this study showed how both deep levels 

and nonidealities in the surface barrier can result in excess detector leakage currents which 

will degrade detector signal-to-ratio at elevated temperatures. 

 Finally, the radiation tolerance of high quality 250 µm 4H-SiC SBD radiation 

detectors was investigated through irradiation studies with fast neutrons.  Detectors showed 

steady resolutions of 0.5% up to neutron fluences of 1011 cm-2 before degrading to 0.8% 

and 1.76% at 1012 and 1013, respectively. Combined DLTS and density functional theory 

studies revealed that this degradation originates from silicon displacement-related 
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defects—silicon vacancies and silicon interstitials—which form deep levels 0.7-0.8, 1.2, 

and 1.8 eV below the conduction band edge.  

 

6.2 DISSEMINATION OF WORK 

1. J. W. Kleppinger, S. K. Chaudhuri, O. Karadavut, R. Nag, D. L. P. Watson, D. S. 

McGregor, and K. C. Mandal, “Deep-level transient spectroscopy and radiation 

detection performance studies on neutron irradiated 250-µm thick 4H-SiC epitaxial 

layers,” IEEE Transactions on Nuclear Science, 2022 (Minor Revisions, 

Resubmitted 03/12/2022). 

2. O. Karadavut, S. K. Chaudhuri, J. W. Kleppinger, R. Nag, and K. C. Mandal, 

“Effect of oxide layer growth conditions on radiation detection performance of 

Ni/SiO2/epi-4H-SiC MOS capacitors,” Journal of Crystal Growth, vol. 584, pp. 

126566-1-7, 2022. 

3. J. W. Kleppinger, S. K. Chaudhuri, O. Karadavut, R. Nag, and K. C. Mandal, 

“Influence of carrier trapping on radiation detection properties in CVD grown 4H-

SiC epitaxial layers with varying thickness up to 250 µm,” Journal of Crystal 

Growth, vol. 583, pp. 126532-1-6, 2022. 

4. S. K. Chaudhuri, J. W. Kleppinger, O. Karadavut, R. Nag, R. Panta, F. Agostinelli, 

A. Sheth, U. N. Roy, R. B. James, and K. C. Mandal, “Synthesis of CdZnTeSe 

single crystals for room temperature radiation detector fabrication: mitigation of 

hole trapping effects using a convolutional neural network,” Journal of Materials 

Science: Materials in Electronics, vol. 33, pp. 1452-1463, 2022. 



 

110 

5. R. Nag, S. K. Chaudhuri, J. W. Kleppinger, O. Karadavut, and K. C. Mandal, 

"Characterization of vertical Bridgman grown Cd0.9Zn0.1Te0.97Se0.03 single crystal 

for room-temperature radiation detection," Journal of Materials Science: Materials 

in Electronics, vol. 32, pp. 26740-26749, 2021. 

6. S. K. Chaudhuri, O. Karadavut, J. W. Kleppinger, and K. C. Mandal, "High-

resolution radiation detection using Ni/SiO2/n-4H-SiC vertical metal-oxide-

semiconductor capacitor," Journal of Applied Physics, vol. 130, pp. 074501-1-9, 

2021. 

7. J. W. Kleppinger, S. K. Chaudhuri, O. Karadavut, and K. C. Mandal, "Role of deep 

levels and barrier height lowering in current-flow mechanism in 150 μm thick 

epitaxial n-type 4H–SiC Schottky barrier radiation detectors," Applied Physics 

Letters, vol. 119, pp. 063502-1-6, 2021. 

8. S. K. Chaudhuri, J. W. Kleppinger, O. Karadavuat, R. Nag, K. C. Mandal, 

“Quaternary Semiconductor Cd1-xZnxTe1-ySey for High-Resolution, Room-

Temperature Gamma-Ray Detection”, Crystals, vol. 11, pp. 827-1-22, 2021. 

9. Sandeep K. Chaudhuri, Joshua W. Kleppinger, Ritwik Nag, Kaushik Roy, Rojina 

Panta, Forest Agostinelli, Amit Sheth, Utpal N. Roy, Ralph B. James, and Krishna 

C. Mandal "A CdZnTeSe gamma spectrometer trained by deep convolutional 

neural network for radioisotope identification", Proc. SPIE, vol. 11838, pp. 

1183806-1-10, 2021. 

10. Joshua W. Kleppinger, Omerfaruk Karadavut, Ritwik Nag, Sandeep K. Chaudhuri, 

and Krishna C. Mandal "High-resolution 4H-SiC Schottky barrier radiation 



 

111 

detectors on 250 μm epitaxial layers for harsh environment applications", Proc. 

SPIE, vol. 11838, pp. 1183816-1-11, 2021. 

11. OmerFaruk Karadavut, Joshua W. Kleppinger, Ritwik Nag, Sandeep K. Chaudhuri, 

and Krishna C. Mandal "Observation of minority carrier traps using C-DLTS in 

Au/SiO2/n-4H-SiC vertical MOS capacitor", Proc. SPIE, vol. 11838, pp. 1183815-

1-8, 2021. 

12. J. W. Kleppinger, S. K. Chaudhuri, O. Karadavut, and K. C. Mandal, “Defect 

characterization and charge transport measurements in high-resolution Ni/n-4H-

SiC Schottky barrier radiation detectors fabricated on 250 μm epitaxial layers,” J. 

Appl. Phys., vol. 129, pp. 244501-1-10, 2021. 

13. J. W. Kleppinger, S. K. Chaudhuri, U. N. Roy, R. B. James and K. C. Mandal, 

"Growth of Cd0.9Zn0.1Te1-ySey single crystals for room-temperature gamma ray 

detection," in IEEE Transactions on Nuclear Science, vol. 68, pp. 2429-2434, 2021. 

14. S. K. Chaudhuri, J. W. Kleppinger, O. Karadavut and K. C. Mandal, "Behavioral 

contrast of electron and hole transport in high-resolution diamond detectors: a 

biparametric correlation study," IEEE Electron Device Letters, vol. 42, pp. 200-

203, 2021. 

15. J. W. Kleppinger, S. K. Chaudhuri, O. Karadavut and K. C. Mandal, "First principle 

defect analysis in 150 µm 4H-SiC epitaxial layer Schottky barrier detectors," 2020 

IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 

pp. 1-6, 2020. 

16. S. K. Chaudhuri, M. Sajjad, J. W. Kleppinger and K. C. Mandal, "Real-time pulse 

height spectroscopy using Cd0.9Zn0.1Te coplanar grid digital spectrometer," 2020 



 

112 

IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 

pp. 1-5, 2020. 

17. S. K. Chaudhuri, J. W. Kleppinger, and K. C. Mandal, “Radiation detection using 

fully depleted 50 μm thick Ni/n-4H-SiC epitaxial layer Schottky diodes with ultra-

low concentration of Z1/2 and EH6/7 deep defects”, Journal of Applied Physics, vol. 

128, pp. 114501-1-9, 2020. 

18. J. W. Kleppinger, S. K. Chaudhuri, and K. C. Mandal, “Thick 4H-SiC epitaxial 

detectors for high-resolution radiation detection in harsh environment", Proc. SPIE, 

vol. 11494, pp. 132-144, 2020.   

19. M. Sajjad, S. K. Chaudhuri, J. W. Kleppinger, O. Karadavut, and K. C. Mandal 

"Investigation on Cd0.9Zn0.1Te1-ySey single crystals grown by vertical Bridgman 

technique for high-energy gamma radiation detectors", Proc. SPIE, vol. 11494, pp. 

114941F-1-12, Aug. 2020.  

20. S. K. Chaudhuri, M. Sajjad, J. W. Kleppinger and K. C. Mandal, "Correlation of 

space charge limited current and γ-ray response of CdxZn1-xTe1-ySey room-

temperature radiation detectors," IEEE Electron Device Letters, vol. 41, pp. 1336-

1339, 2020. 

21. M. Sajjad, S. K. Chaudhuri, J. W. Kleppinger and K. C. Mandal, "Growth of large-

area Cd₀.₉Zn₀.₁Te single crystals and fabrication of pixelated guard-ring detector 

for room-temperature γ-ray detection," IEEE Transactions on Nuclear Science, vol. 

67, pp. 1946-1951, 2020. 



 

113 

22. S. K. Chaudhuri, M. Sajjad, J. W. Kleppinger and K. C. Mandal, "Charge transport 

properties in CdZnTeSe semiconductor room-temperature γ-ray detectors," Journal 

of Applied Physics, vol. 127, pp. 245706-1-8, 2020.  

23. K. C. Mandal, J. W. Kleppinger, S. K. Chaudhuri, “Advances in high-resolution 

radiation detection using 4H-SiC epitaxial layer devices”. Micromachines, vol. 11, 

254, 27 pages, 2020. 

24. J. W. Kleppinger, Y. Pershin, Z. Rak, and K. C. Mandal "Investigation on origin of 

Ru-induced deep-level defects in 4H-SiC epilayer based Schottky diodes by DLTS 

and theoretical calculations", Proc. SPIE, vol. 11114, pp. 111140T-1-11, 2019. 

25. K. C. Mandal, J. W. Kleppinger, and M. Sajjad "4H-SiC epitaxial Schottky 

detectors: deep-level transient spectroscopy (DLTS) and pulse height spectroscopy 

(PHS) measurements", Proc. SPIE, vol. 11114, pp. 111140N-1-9, 2019. 

26. M. Sajjad, J. W. Kleppinger, and K. C. Mandal "Crystal growth, characterization, 

and fabrication of large-area Cd0.9Zn0.1Te pixelated detectors for high-energy 

gamma-ray detectors", Proc. SPIE, vol. 11114, pp. 111141T-1-12, 2019. 

 

6.3 FUTURE WORK 

▪ The intent for using 250 µm epilayers is to be able to collect uncharged radiation 

such as gamma rays or x-rays. However, maximizing the gamma ray detection 

probability requires the detectors to be fully depleted requiring extremely high 

biases well exceeding 1000 Volts inducing large leakage currents which can 

degrade the SNR of the detector. A potential future study is to investigate how 

different passivation techniques or device structure may affect the leakage current 
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often observed in 4H-SiC detectors. Once the leakage current is effectively 

controlled, the next stage would be studying the device properties under full 

depletion followed by x-ray and low energy gamma spectroscopic measurements. 

▪ While the leakage current variation with temperature has been studied, 

spectroscopic measurements conducted at both high and low temperatures are also 

required.  

▪ The defects introduced by fast neutron irradiation are suspected to be related to 

silicon vacancies and silicon interstitials. Interstitial defects are almost always 

unstable and anneal out at relatively low temperatures. These silicon atoms ideally 

will diffuse back into their formally occupied sites effectively eliminating both 

defects. The annealing mechanism of these defect needs to be investigated through 

a combined isochronal annealing and DLTS study. 
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