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Abstract

Building confidence/credible intervals for the high-dimensional (p >> n) linear mod-

els have been the subject of exploration for many years. In this paper, we explore

three specific setups. First, we look at the Bayesian paradigm for the LASSO model.

A double-exponential prior has been applied to the regression coefficient and from

that, a posterior distribution is derived to get the necessary quantiles to calculate the

credible intervals for the regression coefficients. Second, we explore the de-sparsified

LASSO estimates, and using its asymptotic normality, we calculate the confidence in-

tervals for the model coefficients. Finally, we incorporate an adaptive LASSO model.

To calculate the confidence intervals, we have used the residual and perturbation

bootstrap methods and obtained the necessary quantiles. All three methods have

been put through a simulation study to compare the interval coverage of the true co-

efficient values. The width of the intervals is also compared. We make n, the sample

size fixed, and explore the cases where we put a set of correlated covariates as true

values. The considered number of covariates, p includes 200, 500, and 1000. We also

compare the time it takes to complete 10 runs of each setup on a personal computer.

We assume two kinds of correlation structures for data. We call the first one AR-1

and the second one is known as compound symmetry. For AR-1 cases, when p >> n,

the Bayesian LASSO provides better coverage for true non-zero coefficient, especially

if the correlation is close to 0.9 and 0.5. For compound symmetry cases, the de-

sparsified LASSO seems to provide closer to the nominal coverage regardless of the

value of correlation coefficient, ρ. However, the coverage is around 0.90 for p = 1000.

This better coverage comes with the cost of getting wider intervals for highly corre-
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lated cases. For the moderate correlation, the intervals by de-sparsified LASSO are

even smaller for the true non-zero coefficients. The bootstrap generated intervals for

adaptive LASSO tend to provide coverage around 0.90, in the uncorrelated cases, re-

gardless of the number of covariates in the model. But they appear to suffer when the

predictors are highly correlated. If the correlation is low and the number of predictors

is not too much greater than the sample size, perturbation bootstrap provides close

to nominal coverage. In addition, the adaptive LASSO with perturbation bootstrap

typically achieves faster calculation time in most cases of our simulation setup. In

conjunction with the simulation study, we illustrate the aforementioned methods for

building confidence/credible intervals on two real datasets.
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Chapter 1

Introduction

In the classical linear regression model, we have the response variable, e.g. Y re-

gressed on one or more covariates or predictor variables denoted by X1, . . . , Xp. The

corresponding regression coefficients for these variables are denoted by β1, . . . , βp.

We observe n realizations of Y and X1, . . . , Xp based on which we wish to estimate

β1, ..., βp. Let, Yi represent the value of the response variable Y for realization i, and

xij the value of Xj for realization i, for j = 1, . . . , p and i = 1, . . . , n .

Define the response vector Y = (Y1, . . . , Yn)T , the matrix containing the predictors

X = [x1, . . . , xp] (where each xj = (x1j, . . . , xnj)T is a column entry), and the

coefficient vector β = (β1, . . . , βp)T . We assume that the columns of X and the

response values are centered so that ∑n
i=1 xij = 0 and ∑n

i=1 Yi = 0. Then, define the

classical regression model:

Y = Xβ + ϵ (1.1)

where ϵ = (ϵ1, . . . , ϵn)T is the error term vector; they are independent and non-

zero and each of them are identically distributed with zero mean and fixed variance.

Therefore, the ordinary least squares (OLS) estimates are given by the estimator:

argmin
β∈Rp

||Y −
p∑

j=1
βjxj||2


In the matrix notation, the estimator can be written as:

argmin
β∈Rp

[(Y − Xβ)T (Y − Xβ)]

1



In the ordinary least square (OLS) case where the number of observations is

greater than the number of predictors (n > p), the solution for the predictor vector

β is (XT X)−1XT Y .

The motivation for this endeavour stems from the difficulty in building the con-

fidence interval for model coefficients (βj’s) in linear regression models when the

number of predictors p is greater than the number of observations n i.e. p > n. The

problem with this setup in classical linear regression is that we do not have unique

solutions to the least squares estimates of βj anymore. This is because if we apply

the ordinary least square solution β̂OLS = (XT X)−1XT Y in the p > n setting, the

matrix (XT X) is not non-singular anymore.

In order to deal with this problem, we resort to some modern regression estimators.

This class of estimators are called penalized regression estimators where we want to

penalize the OLS estimators of β1, . . . , βp. This way, we could address the problem

of singularity of the matrix (XT X). But in doing so, the estimators become biased

as a side-effect.

LASSO (Least Absolute Shrinkage and Selection Operator) and Ridge are some

of the most well-known estimators which operate in the aforementioned way. We will

particularly focus on LASSO due to the fact that it has the property of setting some

of the coefficient estimates to exactly zero. Thus, we have a way towards achieving

a more interpretable model, especially in p > n cases where we might want to know

which covariates are significantly associated with the response. This leads to a parsi-

monious model. Simultaneously, it also aids us with the ability of selecting relevant

variables in the model.

In this paper, we will look at some special ways for performing inference based on

the LASSO estimators e.g. through Bayesian methods, de-sparsified LASSO methods,

and using bootstrap methods for adaptive LASSO. But before going there, let’s have

a primer on the LASSO in general.
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LASSO was first introduced by Robert Tibshirani in 1994 ( Tibshirani (1994)).

We define the LASSO estimator β̂L of β as the solution to the minimization

problem:

minimize {
n∑

i=1
(Yi −

p∑
j=1

βjxij)2}

subject to ∑p
j=1 |βj| ≤ t

where t ≥ 0 is a tuning parameter.

It can be equivalently written in Lagrangian form ( Gill, Murray, and Wright

(1981)) ( Hastie, Tibshirani, and Friedman (2009) ) as:

β̂L(λ) = argmin
β∈Rp

1
2

n∑
i=1

(Yi −
p∑

j=1
βjxij)2

+ λ
p∑

j=1
|βj|

 , (1.2)

where λ > 0 is a shrinkage parameter. The value of λ is chosen using cross-

validation for which the resulting λ gives out the lowest prediction error.

When we choose λ = 0, which we can only do in p < n cases, β̂L becomes β̂OLS

which is the ordinary least squares estimate.

We do not have a closed form solution of the LASSO estimates.

3



Chapter 2

LASSO Estimates and Building Their CIs

Since the LASSO minimization problem does not have a closed form solution, we

have to resort to some iterative methods to minimize the objective function in (1.2)

to obtain the LASSO estimates. Some of the most efficient algorithms to compute

the estimates are LARS and Coordinate Descent. We will discuss them briefly about

them before moving on to the question of building the confidence intervals based on

the estimates.

2.1 LARS

LARS (Least Angle Regression) was proposed as a model selection algorithm by

Efron, Hastie, Johnstone, and Tibshirani (2004). In that paper, they showed that

this algorithm was able to calculate the LASSO estimates more efficiently than the

previously popular forward selection methods. This algorithm requires only p steps

to solve a LASSO problem. It starts by standardizing the predictors and then all

the predictor coefficients βjs are set to zero. At this point, residuals are calculated

and are kept track of. Then the predictor xj most correlated with the response is

calculated. Then, the largest step possible in the direction of this predictor is taken

until some other predictor, say xk, is found which has as much correlation with the

current residual. Afterwards, these two coefficients are moved towards the direction

defined by their joint least squares coefficient of the current residuals on the model

fitted by these two predictors (xj, xk), until some other competing variable xl comes

in. In moving, if a non-zero coefficient hits zero, it is dropped and the current joint

4



least squares direction is recomputed. This is done for until p steps to arrive at the

full LASSO solution.

2.2 Coordinate Descent

Coordinate wise descent is another fast popular method of calculating LASSO esti-

mates. According to Friedman, Hastie, and Tibshirani (2010), this algorithm only

updates one variable in each step while the rest of the predictors are regarded as con-

stant. Since, the objective function in (1.2) is not differentiable with respect to βj,

this algorithm uses subdifferentials to calculate the solutions. For the jth and the kth

covariates, we could re-write the cost function in equation (1.2) after differentiation

with respect to βj as:

−
n∑

i=1
xij

Yi −
p∑

k ̸=j

βkxik

+ βj

n∑
i=1

(xij)2 + ∂βj
λ|βj|, (2.1)

where ∂βj
is the subdifferential with respect to βj and thus

∂βj
λ|βj| ∈



{−λ} if βj < 0

[−λ, λ] if βj = 0

{λ} if βj > 0.

Let ρj = ∑n
i=1 xij[Yi −∑p

k ̸=j βkxik] and zj = ∑n
i=1(xij)2.

Finally, equating (2.1) to 0 and solving for βj, we can obtain

β̂j
L(λ) =



ρj+λ

zj
if ρj < −λ

0 if −λ ≤ ρj ≤ λ

ρj−λ

zj
if ρj > λ.

This is called soft thresholding in the literature. Therefore, we could summarize

the coordinate descent update rule as follows. We start with all p covariates. Then

5



we initialize with some value of β which we could call β0. Based on that, we compute

the ρ, zj that will lead us to calculate β̂j. We repeat this for all p covariates. Thus

we populate β1 for the first iteration. We repeat this process until tth iteration until

convergence. The explanation of this part is largely based on Sicotte (2018).

2.3 Problems with Building CIs

Now that we have an idea about the LASSO estimator and how it is computed, we

shift our focus to some of the ways we could make inference about the regression

coefficients based on the LASSO estimates.

We are particularly interested in exploring ways to construct confidence or credi-

ble intervals based on the LASSO estimates. The problem is LASSO-type estimators

typically do not have a “nice looking" asymptotic distribution based on which confi-

dence intervals could be made. In other words, we do not have a Normal distribution

for these estimates in contrast to the least square estimates where we could have the

property

√
n(β̂j

OLS − βj)
σ̂
√

[(XT X)−1]jj

∼ tn−p,

when σ̂2 = 1
n−p

∑n
i=1(Yi −∑p

j=1 β̂j
OLSxij)2, and when p < n and β̂j

OLS is the jth entry

of (XT X)−1XT Y and when ϵ1, . . . , ϵn are iid N (0, σ2).

Fu and Knight (2000) showed an asymptotic distribution for the LASSO estimates

which is not Normal, and therefore it is difficult to compute intervals for the estimates

based on that distribution.

We will discuss three methods mentioned earlier to construct confidence/credible

intervals in high-dimensional setting and then set up a simulation study to compare

the width and the coverage of those intervals generated by them. Then we illustrate

the application of those methods on two real datasets.
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Chapter 3

Bayesian LASSO

In Tibshirani (1994), there was a mention of LASSO as a Bayes estimate. He con-

sidered that the jth covariate of the model, |βj| was proportional to the (minus) log-

density of the double-exponential distribution. Exploiting this, the LASSO estimate

could be derived as the Bayes posterior mode under independent double-exponential

priors for the βjs, given by

f(βj) = 1
2τ

exp
(

−|βj|
τ

)
,

with τ = 1
λ
.

In that article, the LASSO estimate was found to be the maximizer of the posterior

mode with the penalty term being 2τσ2 where τ > 0 and σ2 > 0.

The Park and Casella (2008) article discussed about the possibility of Gibbs sam-

pling from the posterior distribution of the regression parameters. In that paper,

prior distributions on τ and σ2 were considered as well as β; for β the article also

considered independent Laplace (double-exponential) prior. Similar to the Tibshi-

rani (1994) setting, they used the median of the posterior distribution to calculate

the point estimates of β.

The Hans (2009) paper introduced a direct derivation of the posterior distribution

p(β|Y , τ, σ2). With the use of a Gibbs sampler, this method provided a process to

provide a way to sample from the posterior distribution.

In this paper, we will recreate the derivation of the posterior for β and outline

the details of the Gibbs sampler following Hans (2009).

7



3.1 LASSO Estimator of β

In matrix notation, the Bayesian LASSO estimate can be defined as a minimizer of

the following form.

β̂L(λ) = argmin
β∈Rp

(Y − Xβ)T (Y − Xβ) + λ||β||1 (3.1)

where λ > 0

3.2 Bayesian Setup of Hans (2009)

We assume the response vector Y has the distribution such that

P (Y |β, τ, σ2) = ( 1√
2π

)n( 1
σ2 )n/2 exp[− 1

2σ2 (Y − Xβ)T (Y − Xβ)],

and we put a double-exponential prior on β, i.e.

P (β|τ, σ2) = ( τ

2σ
)p exp( τ

2σ
||β||1)

The posterior distribution can then be derived from the conditional distribution

property as follows. Using

f(x|y) = f(x, y)
f(y) ,

we can write

P (β|Y , σ2, τ) = P (Y |β, σ2, τ)P (β|σ2, τ)∫
P (Y |β, σ2, τ)P (β|σ2, τ) dβ︸ ︷︷ ︸

P (Y |σ2, τ) which can be treated as a constant.

∝ P (Y |β, τ, σ2)P (β|τ, σ2)

= ( 1√
2π

)n( 1
σ2 )n/2 exp[− 1

2σ2 (Y − Xβ)T (Y − Xβ)]( τ

2σ
)p exp( τ

2σ
||β||1)

∝ exp[− 1
2σ2 (Y − Xβ)T (Y − Xβ) − τ

σ
||β||1]
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The mode of P (β|Y , τ, σ2), that is the posterior mode, is β̂L(λ = 2τσ) for the

Bayes rule under the zero-one loss function, according to the discussion by Hans

(2009).

Using a Gibbs sampler Casella and George (1992), we sample β from this posterior

distribution and eventually calculate the 2.5th and 97.5th percentiles of the posterior

marginal distribution of each βj to construct the credible intervals for each regression

coefficient.

We created a Gibbs Sampler using the process mentioned in Hans (2009) and the

codes are included in the Appendix.
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Chapter 4

De-sparsified LASSO

Geer, Bühlmann, Ritov, and Dezeure (2014) proposed an estimator which they called

the de-sparsified LASSO for the p > n regression setting. Under some conditions, they

showed that their proposed estimator of each regression coefficient attains asymptot-

ically normal distribution allowing the construction of confidence intervals. At the

same time, Zhang and Zhang (2014) proposed the same kind of estimator indepen-

dently which was developed based on a relaxed covariance matrix; this estimators

also had an asymptotic normal distribution. Here, we will discuss the development

of the estimator proposed by Geer et al. (2014) briefly.

Considering the notations described for (1.1), let Θ̂ be a “relaxed form“ of an

inverse of the observed covariance matrix Σ̂ = 1
n
XT X. First, they obtained the

biased estimator β̃ by replacing the inverse of 1
n
XT X with Θ̂ in the OLS estimator.

So the biased estimate can be obtained as follows.

β̃ = 1
n

Θ̂XT Y

= 1
n

Θ̂XT (Xβ + ϵ)

= Θ̂Σ̂β + 1
n

Θ̂XT ϵ

= β + (Θ̂Σ̂ − I)β + 1
n

Θ̂XT ϵ

Next, the de-sparsified estimate of β, β̂desp is obtained by using β̂L to modify β̂

as follows. Here, the term (Θ̂Σ̂ − I)β̂L is considered as an estimate of the bias.
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β̂desp = β̃ − (Θ̂Σ̂ − I)β̂L

= β + (Θ̂Σ̂ − I)(β − β̂L) + 1
n

(Θ̂Σ̂ − I)XT ϵ

In this form at the right-hand side, (Θ̂Σ̂ − I)(β − β̂L) can be considered the bias

term and 1
n
(Θ̂Σ̂ − I)XT ϵ can be considered as the variance term.

Geer et al. (2014) showed that the jth component of β̂desp, that is β̂j
desp has an

asymptotic normal distribution by writing

√
n(ej

T β̂desp − ej
T β) =

√
neT

j (Θ̂Σ̂ − I)(β − β̂L) + 1√
n

ej
T Θ̂XT ϵ

and giving conditions under which the bias term becomes negligible as n → ∞.

Afterwards, the asymptotic distribution is derived to be:

√
n(β̂j

desp − βj)∼̇N (0,
1
n

ej
T Θ̂XT σ2InXΘ̂ej)

Using an estimate of this variance as σ̂2(Θ̂[ 1
n
XT X]Θ̂)jj, where σ̂ is the estimate of

σ, we could build a (1 − α)100% confidence interval based on this asymptotic normal

distribution in the form:

β̂j
desp ± Zα/2

σ̂√
n

√
(Θ̂Σ̂Θ̂)jj

where Zα/2 is the upper α/2 quantile of the standard normal distribution and (Θ̂Σ̂Θ̂)jj

is the entry in the jth row and jth column of the Θ̂Σ̂Θ̂ matrix.

This property allows us to build confidence intervals for each of the coefficents i.e.

for each βj.

11



Chapter 5

Adaptive LASSO with Bootstrap

The adaptive LASSO provides the estimates and active variable selection simulta-

neously. Zou (2006) showed that assigning different weights to penalize different

coefficients leads to obtaining adaptive LASSO estimators. Considering ŵj = 1
|β̃L

j | ,

the estimator defined by

argmin
β∈Rp

||Y −
p∑

j=1
βjxj||2 + λn

p∑
j=1

ŵj|βj|

 (5.1)

The adaptive LASSO estimates of the non-zero coefficients has the asymptotic prop-

erty of converging to the normal distribution but usually the convergence is slow.

Hence, we used the bootstrap method to derive the necessary intervals.

We could build the intervals for the adaptive LASSO estimates using (i) residual

bootstrap and (ii) perturbation bootstrap methods using the following steps.

First, we calculate the adaptive LASSO estimate, β̃AL. Estimating adaptive

LASSO estimate is a two-step process. We need an initial calculation of LASSO

estimate. For that, we have to calculate λ through cross-validation. Thus, initial β̃L
j s

are obtained. This completes the first step. After that, using the weights, ŵj = 1
|β̃L

j | ,

the β̃AL
j s are estimated by choosing appropriate λ again through cross-validation us-

ing the aforementioned objective function. This completes the second step and thus

we obtain the adaptive LASSO estimate β̃AL
j . Then we obtain the estimated residu-

als, ϵ̂i = Yi −
∑p

j=1 xijβ̃
AL
j where i = 1, . . . , n. These estimated residuals are employed

in two ways to obtain the bootstrap samples. For (i) the residual bootstrap samples,

the estimated residuals ϵ̂is are resampled to generate ϵ̂∗
i s the bootstrapped residual
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samples. For (ii) perturbation bootstrap samples, we set ϵ̂∗
i = ϵ̂i ∗ 4(Ui − 1/4) where

Ui ∼ Beta(1/2, 3/2); i = 1, . . . , n according to Das, Gregory, and Lahiri (2019).

The next steps of calculating the intervals are same for both the residual and

perturbation bootstrap methods.

Therefore, using ϵ̂∗
i s, we compute new bootstrapped residual generated response

values such as: Y ∗
i = ∑p

j=1 xijβ̃
AL
j + ϵ̂∗

i . Finally, replacing Y with the vector of

bootstraps response vectors Y ∗ = (Y ∗
1 , . . . , Y ∗

n )T , we can obtain β̃AL∗ the same way

mentioned above. Repeating this, we get the necessary bootstrap samples β̃AL∗s

which let us build the intervals using the 2.5th and 97.5th percentile.
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Chapter 6

Simulation Study

6.1 Overview

The goal of this study is to use simulated scenarios to compare the performance

of the three methods — Bayesian LASSO, de-sparsified LASSO, and the residual

and perturbation bootstrap for the adaptive LASSO — for constructing confidence

intervals of the regression coefficients of a high-dimensional linear regression model.

We consider two sets of true coefficient vectors for the simulation setups. In the

first cases, the true coefficient vector β was set up having the first three values as

1 and the rest 0 i.e. βT = [1, 1, 1, 0, . . . , 0]. In the second cases, the true coefficient

vector β was set up having the first five values as 5, −4, 3, −2, 1 and the rest 0 i.e.

βT = [5, −4, 3, −2, 1, 0, . . . , 0]. Apart from this, we needed three other components

for our each run of the simulations for each method. We required the design matrix

X and the error vector ϵ to be generated first and then using the following formula,

we would generate the response vector, Y .

Y = Xβ + ϵ (6.1)

Let, p be the number of independent covariates, and n be the number of observations.

For the design matrix X, we randomly generated n ∗ p observations from a stan-

dard normal distribution to initially populate an n × p matrix. Then the matrix

was column-centered, i.e. the centering on the matrix was done by subtracting the

column means from their corresponding column elements. But we wanted to intro-
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duce a specified correlation among the variables (columns) of our ultimate design

matrix. To do so, we took the Cholesky root of the covariance matrix generated by

(i) Σ = (ρ|i−j|)1≤i,j≥p, and by (ii) Σ = (ρI(i ̸=j)1≤i,j≥p and matrix-multiplied Σ to the

column-centered X matrix. For the rest of this paper, we will call setting (i) to have

a covariance of type AR-1. In case of setting (ii), the data is assumed to have com-

pound symmetry and we will call this setting to have CS. Setting up the covariance

matrices in this way led us to generate an n×p design matrix where we could control

the magnitude of correlation among the variables with just changing the value of ρ.

The error terms vector was generated following ϵ ∼ N (0n×1, In) and were cen-

tered by subtracting the mean.

We went through 500 simulated datasets under each combination of p and ρ setting

p = 200, 500, 1000 and setting ρ = 0, 0.5, 0.9. These settings were considered for the

true values βT = [1, 1, 1, 0, . . . , 0] and βT = [5, −4, 3, −2, 1, 0, . . . , 0] with them having

AR-1 structure. This process was done for Bayesian LASSO, de-sparsified LASSO,

and adaptive LASSO methods. Then, for true value of βT = [5, −4, 3, −2, 1, 0, . . . , 0]

having CS structure, we went through 500 simulated datasets under each combina-

tions of p − ρ setting p = 200, 500, 1000 and setting ρ = 0.5, 0.9. ρ = 0 under CS was

not considered here because it would be a similar setup to ρ = 0 under AR-1.

In terms of correlations, ρ = 0 signified that the variables for the simulations were

uncorrelated and ρ = 0.9 indicated a high correlation. The number of observations n

was fixed to be 100 for every dataset.

6.2 Bayesian LASSO

Although we had developed a Gibbs Sampler with our own R-scripts to calculate

the Bayesian LASSO-generated credible intervals, for efficiency, we implemented the

blasso function from the monomvn R package (Gramacy and Fortran contributions

from Cleve Moler as updated by Berwin A. Turlach (qpgen2/quadprog) (2019)). The
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package-default for the penalty parameter (λ) was 1 and with that, 1000 MCMC

(Markov Chain Monte Carlo) samples were generated. Calculating the 2.5th and

97.5th percentile of these samples gave us a CI for the underlying simulated dataset

in this iteration.

6.3 De-sparsified LASSO

For de-sparsified LASSO, we considered the lasso.proj function from the hdi R

package (Dezeure, Bühlmann, Meier, and Meinshausen (2015)). Since this estimates

of β derived by this method had an asymptotic normal distribution, we were able to

obtain a 95% CI for the regression coefficients for the underlying simulated dataset.

6.4 Adaptive LASSO

For the adaptive LASSO method, we used the hidbootreg R package (Gregory

(2020)). We calcualted 1000 Monte Carlo resamples and used the residual and per-

turbation bootstrap methods to generate 95% confidence intervals from the resamples

for the underlying simulated dataset. The hidbootreg package used another package

called ncvreg which provided relatively faster result for the cross-validation proce-

dure to calculate the initial values of the penalty parameters.

6.5 Calculation of the Coverage

The datasets comprising Y, X, β, ϵ — where Y was formulated by Y = Xβ + ϵ

— were simulated 500 times for each setting of p − ρ combination mentioned at the

end of chapter 6.1 and each time the width of the coverage was measured along with

whether it was able to capture the values of the true regression coefficients under

each method. We then calculated in how many (fraction of) simulated datasets,

the confidence/credible intervals were able to capture the true values of regression
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coefficients. We also measured the average width of the intervals as a metric to gauge

how good the CIs were in comparison with the other methods.

6.6 Computation Hardware

The main bulk of the computation for Bayesian LASSO and de-sparsified LASSO

was performed using University of South Carolina’s Hyperion supercomputer. The

computation for adaptive LASSO was done using a personal laptop computer which

ran a 8th generation Intel processor (i5-8250U) with 8GB memory capacity.

Furthermore, to compare the computation time, 10 runs of each setting were

performed with the same personal computer setup and the elapsed time (in minutes)

have been reported.
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Chapter 7

Simulation Study Results

7.1 AR-1 with True βT = [1, 1, 1, 0, . . . , 0]

Under AR-1 for Σ, Table 7.1 and Table 7.2 were generated by considering sample size

n = 100 and number of covariates, p = 200. Table 7.1 gives the simulated coverage

probabilities and Table 7.2 gives the average width of the intervals.

Table 7.1. Coverage Comparison for 200 Covariates

ρ = 0 ρ = 0.5 ρ = 0.9
βj BL DL AB APB BL DL AB APB BL DL AB APB
1 0.77 0.94 0.93 0.90 0.90 0.92 0.92 0.92 0.95 0.87 0.53 0.59
1 0.79 0.95 0.95 0.94 0.95 0.80 0.96 0.96 0.97 0.75 0.40 0.43
1 0.77 0.95 0.94 0.91 0.91 0.91 0.93 0.92 0.94 0.86 0.52 0.54
0 0.99 0.97 0.99 0.99 1.00 0.93 1.00 1.00 0.98 0.89 0.99 1.00
0 1.00 0.97 0.99 1.00 1.00 0.96 1.00 1.00 1.00 0.94 1.00 1.00
0 1.00 0.95 0.99 1.00 0.99 0.94 1.00 1.00 1.00 0.93 1.00 1.00
0 1.00 0.97 0.99 0.99 1.00 0.96 1.00 1.00 1.00 0.92 1.00 1.00
0 1.00 0.96 0.99 1.00 1.00 0.95 1.00 1.00 1.00 0.96 1.00 1.00
0 1.00 0.95 0.99 1.00 1.00 0.97 1.00 1.00 1.00 0.94 1.00 1.00
0 0.99 0.96 1.00 1.00 1.00 0.97 1.00 1.00 1.00 0.97 1.00 1.00

*Coverages for the first 10 regression coefficients are shown here.
*BL = Bayesian LASSO, DL = De-sparsified LASSO, AB = Adaptive LASSO with
Residual Bootstrap, APB = Adaptive LASSO with Perturbation Bootstrap
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Table 7.2. Average Interval Width Comparison for 200 Covariates

ρ = 0 ρ = 0.5 ρ = 0.9
βj BL DL AB APB BL DL AB APB BL DL AB APB
1 0.51 0.45 0.49 0.45 0.57 0.47 0.61 0.57 1.07 0.77 0.80 0.87
1 0.51 0.45 0.48 0.46 0.63 0.48 0.75 0.69 1.42 0.85 1.00 1.04
1 0.51 0.44 0.49 0.45 0.59 0.49 0.62 0.58 1.20 0.85 0.82 0.83
0 0.27 0.44 0.00 0.00 0.31 0.48 0.00 0.00 0.57 0.85 0.00 0.01
0 0.26 0.45 0.00 0.00 0.29 0.48 0.00 0.00 0.46 0.85 0.00 0.00
0 0.27 0.45 0.00 0.00 0.28 0.48 0.00 0.00 0.41 0.85 0.00 0.00
0 0.27 0.45 0.00 0.00 0.28 0.48 0.00 0.00 0.40 0.85 0.00 0.00
0 0.26 0.45 0.00 0.00 0.28 0.48 0.00 0.00 0.38 0.85 0.00 0.00
0 0.26 0.45 0.00 0.00 0.28 0.48 0.00 0.00 0.38 0.85 0.00 0.00
0 0.26 0.45 0.00 0.00 0.28 0.48 0.00 0.00 0.38 0.85 0.00 0.00

*Average widths for the first 10 regression coefficients are shown here.
*BL = Bayesian LASSO, DL = De-sparsified LASSO, AB = Adaptive LASSO with
Residual Bootstrap, APB = Adaptive LASSO with Perturbation Bootstrap

Similarly, for AR-1, Table 7.3 and Table 7.4 give the simulated coverage probabil-

ities and the average width of the intervals respectively under n = 100 and p = 500

for true coefficients βT = [1, 1, 1, 0, . . . , 0].

Table 7.3. Coverage Comparison for 500 Covariates

ρ = 0 ρ = 0.5 ρ = 0.9
βj BL DL AB APB BL DL AB APB BL DL AB APB
1 0.76 0.93 0.89 0.88 0.90 0.92 0.92 0.91 0.95 0.87 0.53 0.59
1 0.77 0.95 0.92 0.90 0.97 0.78 0.94 0.94 0.97 0.69 0.44 0.46
1 0.77 0.93 0.91 0.88 0.92 0.90 0.89 0.90 0.92 0.80 0.54 0.51
0 0.97 0.96 0.99 1.00 0.95 0.92 1.00 1.00 0.90 0.87 0.98 0.99
0 0.97 0.95 1.00 1.00 0.97 0.94 1.00 1.00 0.97 0.93 1.00 0.99
0 0.98 0.94 1.00 1.00 0.97 0.96 1.00 1.00 0.98 0.92 1.00 1.00
0 0.96 0.94 1.00 0.99 0.98 0.96 1.00 1.00 0.98 0.92 1.00 1.00
0 0.96 0.96 1.00 1.00 0.98 0.95 1.00 1.00 1.00 0.93 1.00 1.00
0 0.97 0.96 1.00 1.00 0.98 0.96 1.00 1.00 1.00 0.93 1.00 1.00
0 0.98 0.96 1.00 1.00 0.97 0.96 1.00 1.00 1.00 0.94 1.00 1.00

*Coverages for the first 10 regression coefficients are shown here.
*BL = Bayesian LASSO, DL = De-sparsified LASSO, AB = Adaptive LASSO with
Residual Bootstrap, APB = Adaptive LASSO with Perturbation Bootstrap
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Table 7.4. Average Interval Width Comparison for 500 Covariates

ρ = 0 ρ = 0.5 ρ = 0.9
βj BL DL AB APB BL DL AB APB BL DL AB APB
1 0.77 0.45 0.47 0.43 0.84 0.47 0.60 0.56 1.30 0.74 0.78 0.86
1 0.80 0.45 0.48 0.44 0.93 0.48 0.72 0.67 1.69 0.81 1.05 1.05
1 0.79 0.46 0.48 0.44 0.85 0.48 0.61 0.56 1.35 0.81 0.81 0.80
0 0.17 0.46 0.00 0.00 0.24 0.48 0.00 0.00 0.54 0.81 0.02 0.01
0 0.17 0.46 0.00 0.00 0.19 0.48 0.00 0.00 0.33 0.80 0.00 0.01
0 0.17 0.45 0.00 0.00 0.18 0.48 0.00 0.00 0.28 0.81 0.00 0.00
0 0.17 0.46 0.00 0.00 0.17 0.48 0.00 0.00 0.25 0.81 0.00 0.00
0 0.18 0.46 0.00 0.00 0.18 0.48 0.00 0.00 0.24 0.80 0.00 0.00
0 0.17 0.45 0.00 0.00 0.18 0.48 0.00 0.00 0.23 0.80 0.00 0.00
0 0.17 0.46 0.00 0.00 0.18 0.48 0.00 0.00 0.23 0.80 0.00 0.00

*Average widths for the first 10 regression coefficients are shown here.
*BL = Bayesian LASSO, DL = De-sparsified LASSO, AB = Adaptive LASSO with
Residual Bootstrap, APB = Adaptive LASSO with Perturbation Bootstrap

Lastly, Table 7.5 and Table 7.6 give the simulated coverage probabilities and the

average width of the intervals respectively under n = 100 and p = 1000 for true

coefficients βT = [1, 1, 1, 0, . . . , 0].

Table 7.5. Coverage Comparison for 1000 Covariates

ρ = 0 ρ = 0.5 ρ = 0.9
βj BL DL AB APB BL DL AB APB BL DL AB APB
1 0.74 0.94 0.90 0.88 0.93 0.91 0.91 0.89 0.94 0.87 0.55 0.50
1 0.74 0.94 0.90 0.85 0.96 0.70 0.94 0.91 0.98 0.69 0.43 0.41
1 0.70 0.95 0.90 0.87 0.93 0.89 0.90 0.90 0.95 0.85 0.53 0.48
0 0.56 0.97 1.00 1.00 0.54 0.88 1.00 0.99 0.42 0.85 0.99 0.99
0 0.57 0.95 1.00 1.00 0.51 0.96 1.00 1.00 0.51 0.89 0.99 0.99
0 0.54 0.96 1.00 0.99 0.54 0.95 1.00 1.00 0.60 0.90 1.00 1.00
0 0.58 0.95 1.00 1.00 0.59 0.94 1.00 1.00 0.56 0.93 1.00 1.00
0 0.56 0.97 1.00 1.00 0.59 0.95 1.00 1.00 0.63 0.90 1.00 1.00
0 0.57 0.95 1.00 1.00 0.50 0.94 1.00 1.00 0.63 0.94 1.00 1.00
0 0.59 0.94 1.00 1.00 0.50 0.96 1.00 1.00 0.61 0.93 1.00 1.00

*Coverages for the first 10 regression coefficients are shown here.
*BL = Bayesian LASSO, DL = De-sparsified LASSO, AB = Adaptive LASSO with
Residual Bootstrap, APB = Adaptive LASSO with Perturbation Bootstrap
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Table 7.6. Average Interval Width Comparison for 1000 Covariates

ρ = 0 ρ = 0.5 ρ = 0.9
βj BL DL AB APB BL DL AB APB BL DL AB APB
1 0.99 0.46 0.49 0.44 1.13 0.47 0.58 0.56 1.54 0.72 0.83 0.74
1 1.01 0.46 0.47 0.43 1.31 0.48 0.72 0.66 1.95 0.78 1.04 0.95
1 1.01 0.46 0.47 0.43 1.14 0.48 0.60 0.56 1.64 0.78 0.81 0.72
0 0.09 0.46 0.00 0.00 0.20 0.48 0.00 0.00 0.75 0.78 0.01 0.01
0 0.09 0.46 0.00 0.00 0.10 0.48 0.00 0.00 0.40 0.78 0.00 0.00
0 0.09 0.46 0.00 0.00 0.09 0.48 0.00 0.00 0.25 0.78 0.00 0.00
0 0.09 0.46 0.00 0.00 0.10 0.48 0.00 0.00 0.19 0.78 0.00 0.00
0 0.09 0.46 0.00 0.00 0.10 0.48 0.00 0.00 0.15 0.78 0.00 0.00
0 0.09 0.46 0.00 0.00 0.10 0.48 0.00 0.00 0.15 0.78 0.00 0.00
0 0.10 0.46 0.00 0.00 0.09 0.48 0.00 0.00 0.13 0.78 0.00 0.00

*Average widths for the first 10 regression coefficients are shown here.
*BL = Bayesian LASSO, DL = De-sparsified LASSO, AB = Adaptive LASSO with
Residual Bootstrap, APB = Adaptive LASSO with Perturbation Bootstrap

Table 7.7 shows the time it takes to complete 10 runs of simulations under each

setup.

Table 7.7. Time Comparison of 10 runs (in minutes)

ρ = 0 ρ = 0.5 ρ = 0.9
#p ↓ BL DL AB APB BL DL AB APB BL DL AB APB

200 34.89 6.45 0.48 0.21 34.91 5.64 0.50 0.18 35.13 3.38 0.71 0.25
500 43.61 24.29 0.67 0.33 43.63 22.55 0.77 0.34 44.33 15.04 0.73 0.37

1000 45.94 51.20 1.40 0.63 45.69 48.98 1.56 0.65 44.16 42.98 1.46 0.62

*Time comparison for for true βT = [1, 1, 1, 0, . . . , 0]
*BL = Bayesian LASSO, DL = De-sparsified LASSO, AB = Adaptive LASSO with
Residual Bootstrap, APB = Adaptive LASSO with Perturbation Bootstrap
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7.2 AR-1 with True βT = [5, −4, 3, −2, 1, 0, . . . , 0]

Under AR-1 for Σ, and for true coefficients βT = [5, −4, 3, −2, 1, 0, . . . , 0], Table 7.8

and Table 7.9 were generated by considering sample size n = 100 and number of

covariates, p = 200. Table 7.8 gives the simulated coverage probabilities and Table

7.9 gives the average width of the intervals.

Table 7.8. Coverage Comparison for 200 Covariates

ρ = 0 ρ = 0.5 ρ = 0.9
βj BL DL AB APB BL DL AB APB BL DL AB APB
5 0.94 0.92 0.92 0.89 0.88 0.71 0.89 0.84 0.26 0.39 0.73 0.71

-4 0.93 0.93 0.93 0.90 0.81 0.45 0.85 0.82 0.11 0.03 0.68 0.67
3 0.94 0.94 0.95 0.88 0.82 0.44 0.86 0.83 0.10 0.04 0.51 0.46

-2 0.94 0.94 0.93 0.89 0.80 0.41 0.86 0.86 0.08 0.08 0.24 0.24
1 0.94 0.94 0.92 0.92 0.89 0.70 0.87 0.88 0.18 0.49 0.10 0.12
0 0.99 0.95 0.99 0.99 0.98 0.95 0.98 0.99 1.00 0.94 0.92 0.92
0 0.98 0.96 0.99 1.00 0.99 0.95 0.98 0.97 1.00 0.94 0.97 0.96
0 0.98 0.96 0.99 1.00 0.99 0.96 0.98 0.98 1.00 0.95 0.97 0.96
0 0.99 0.97 0.99 1.00 0.98 0.97 0.98 0.99 1.00 0.96 0.98 0.97
0 0.98 0.97 0.99 0.99 1.00 0.95 0.99 0.97 1.00 0.95 0.98 0.96

*Coverages for the first 10 regression coefficients are shown here.
*BL = Bayesian LASSO, DL = De-sparsified LASSO, AB = Adaptive LASSO with
Residual Bootstrap, APB = Adaptive LASSO with Perturbation Bootstrap
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Table 7.9. Average Interval Width Comparison for 200 Covariates

ρ = 0 ρ = 0.5 ρ = 0.9
βj BL DL AB APB BL DL AB APB BL DL AB APB
5 0.59 0.46 0.39 0.36 0.72 0.51 0.46 0.41 2.05 0.95 1.13 0.98

-4 0.59 0.46 0.39 0.37 0.81 0.53 0.51 0.46 2.68 1.05 1.46 1.26
3 0.59 0.46 0.39 0.37 0.81 0.53 0.52 0.47 1.93 1.05 1.17 1.01

-2 0.59 0.46 0.41 0.38 0.82 0.53 0.57 0.51 1.23 1.05 0.45 0.43
1 0.60 0.46 0.47 0.44 0.77 0.53 0.55 0.50 0.86 1.05 0.16 0.17
0 0.37 0.46 0.00 0.00 0.45 0.53 0.02 0.02 0.69 1.05 0.06 0.05
0 0.36 0.46 0.00 0.00 0.42 0.53 0.01 0.01 0.63 1.05 0.03 0.02
0 0.37 0.46 0.00 0.00 0.41 0.53 0.01 0.01 0.62 1.05 0.01 0.03
0 0.36 0.46 0.00 0.00 0.41 0.53 0.00 0.00 0.61 1.05 0.01 0.02
0 0.37 0.46 0.00 0.00 0.42 0.53 0.01 0.01 0.60 1.05 0.02 0.02

*Average widths for the first 10 regression coefficients are shown here.
*BL = Bayesian LASSO, DL = De-sparsified LASSO, AB = Adaptive LASSO with
Residual Bootstrap, APB = Adaptive LASSO with Perturbation Bootstrap

And under AR-1 for Σ, and for true coefficients βT = [5, −4, 3, −2, 1, 0, . . . , 0],

Table 7.10 and Table 7.11 were generated by considering sample size n = 100 and

number of covariates, p = 500. Table 7.10 gives the simulated coverage probabilities

and Table 7.11 gives the average width of the intervals.

Table 7.10. Coverage Comparison for 500 Covariates

ρ = 0 ρ = 0.5 ρ = 0.9
βj BL DL AB APB BL DL AB APB BL DL AB APB
5 0.95 0.93 0.89 0.88 0.86 0.51 0.76 0.66 0.03 0.31 0.08 0.05

-4 0.96 0.90 0.86 0.88 0.73 0.15 0.68 0.61 0.01 0.00 0.05 0.03
3 0.95 0.91 0.92 0.85 0.72 0.17 0.65 0.58 0.00 0.05 0.02 0.00

-2 0.97 0.93 0.89 0.87 0.70 0.19 0.66 0.59 0.00 0.09 0.00 0.00
1 0.96 0.92 0.88 0.86 0.84 0.47 0.73 0.69 0.02 0.81 0.01 0.01
0 0.97 0.96 1.00 1.00 0.98 0.95 0.99 0.96 0.98 0.94 0.99 0.99
0 0.98 0.97 0.99 0.99 0.98 0.97 0.99 0.98 0.99 0.93 1.00 0.99
0 0.98 0.96 1.00 1.00 0.99 0.96 0.99 0.99 0.99 0.93 1.00 1.00
0 0.98 0.96 1.00 0.99 0.98 0.96 0.99 0.98 1.00 0.94 1.00 1.00
0 0.96 0.96 0.99 0.99 0.99 0.97 0.99 1.00 0.99 0.95 0.99 0.99

*Coverages for the first 10 regression coefficients are shown here.
*BL = Bayesian LASSO, DL = De-sparsified LASSO, AB = Adaptive LASSO with
Residual Bootstrap, APB = Adaptive LASSO with Perturbation Bootstrap
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Table 7.11. Average Interval Width Comparison for 500 Covariates

ρ = 0 ρ = 0.5 ρ = 0.9
βj BL DL AB APB BL DL AB APB BL DL AB APB
5 2.78 0.47 0.39 0.36 2.99 0.55 0.46 0.40 2.56 1.26 0.99 0.94

-4 2.55 0.47 0.39 0.36 3.28 0.57 0.53 0.47 1.63 1.36 0.19 0.11
3 2.18 0.47 0.39 0.36 2.74 0.57 0.54 0.48 1.11 1.36 0.11 0.05

-2 1.79 0.47 0.40 0.37 1.98 0.57 0.59 0.51 0.48 1.37 0.00 0.00
1 1.13 0.47 0.46 0.42 1.12 0.57 0.53 0.44 0.47 1.37 0.02 0.01
0 0.28 0.47 0.00 0.00 0.35 0.57 0.02 0.02 0.40 1.37 0.01 0.00
0 0.28 0.47 0.00 0.00 0.31 0.57 0.01 0.01 0.37 1.37 0.00 0.00
0 0.28 0.47 0.00 0.00 0.30 0.57 0.00 0.00 0.34 1.37 0.00 0.00
0 0.28 0.47 0.00 0.00 0.29 0.57 0.01 0.01 0.33 1.37 0.00 0.00
0 0.28 0.47 0.00 0.00 0.30 0.57 0.01 0.00 0.33 1.37 0.00 0.00

*Average widths for the first 10 regression coefficients are shown here.
*BL = Bayesian LASSO, DL = De-sparsified LASSO, AB = Adaptive LASSO with
Residual Bootstrap, APB = Adaptive LASSO with Perturbation Bootstrap

Lastly, under AR-1 for Σ, and for true coefficients βT = [5, −4, 3, −2, 1, 0, . . . , 0],

Table 7.12 and Table 7.13 were generated by considering sample size n = 100 and

number of covariates, p = 1000. Table 7.12 gives the simulated coverage probabilities

and Table 7.13 gives the average width of the intervals.

Table 7.12. Coverage Comparison for 1000 Covariates

ρ = 0 ρ = 0.5 ρ = 0.9
βj BL DL AB APB BL DL AB APB BL DL AB APB
5 0.93 0.91 0.86 0.82 0.71 0.38 0.56 0.50 0.02 0.29 0.00 0.00

-4 0.93 0.89 0.85 0.84 0.49 0.08 0.46 0.42 0.00 0.00 0.00 0.00
3 0.93 0.92 0.85 0.83 0.46 0.07 0.45 0.44 0.00 0.05 0.00 0.00

-2 0.91 0.90 0.85 0.84 0.40 0.09 0.40 0.36 0.00 0.07 0.00 0.00
1 0.86 0.92 0.85 0.83 0.55 0.35 0.42 0.42 0.07 0.91 0.00 0.00
0 0.54 0.95 1.00 1.00 0.56 0.95 0.98 0.97 0.59 0.92 0.99 1.00
0 0.62 0.97 0.99 1.00 0.57 0.98 0.98 1.00 0.61 0.93 1.00 1.00
0 0.58 0.96 1.00 1.00 0.58 0.98 1.00 1.00 0.65 0.94 1.00 1.00
0 0.61 0.98 1.00 0.99 0.58 0.99 0.99 0.99 0.65 0.94 1.00 1.00
0 0.59 0.95 1.00 0.99 0.60 0.98 0.99 0.99 0.65 0.95 1.00 1.00

*Coverages for the first 10 regression coefficients are shown here.
*BL = Bayesian LASSO, DL = De-sparsified LASSO, AB = Adaptive LASSO with
Residual Bootstrap, APB = Adaptive LASSO with Perturbation Bootstrap
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Table 7.13. Average Interval Width Comparison for 1000 Covariates

ρ = 0 ρ = 0.5 ρ = 0.9
βj BL DL AB APB BL DL AB APB BL DL AB APB
5 4.49 0.48 0.38 0.36 4.51 0.64 0.50 0.42 2.94 1.26 0.98 0.95

-4 3.85 0.48 0.38 0.36 3.83 0.66 0.60 0.51 1.24 1.36 0.00 0.00
3 3.05 0.48 0.38 0.36 2.85 0.66 0.63 0.52 1.07 1.36 0.00 0.01

-2 2.17 0.49 0.40 0.36 1.81 0.66 0.63 0.52 0.34 1.36 0.00 0.00
1 1.16 0.49 0.43 0.41 0.95 0.66 0.37 0.34 0.38 1.36 0.00 0.00
0 0.20 0.49 0.00 0.00 0.26 0.66 0.02 0.02 0.27 1.36 0.00 0.00
0 0.21 0.48 0.00 0.00 0.19 0.66 0.01 0.00 0.22 1.36 0.00 0.00
0 0.18 0.49 0.00 0.00 0.20 0.66 0.00 0.00 0.20 1.36 0.00 0.00
0 0.20 0.49 0.00 0.00 0.19 0.66 0.00 0.00 0.19 1.36 0.00 0.00
0 0.19 0.49 0.00 0.00 0.18 0.66 0.00 0.01 0.17 1.36 0.00 0.00

*Average widths for the first 10 regression coefficients are shown here.
*BL = Bayesian LASSO, DL = De-sparsified LASSO, AB = Adaptive LASSO with
Residual Bootstrap, APB = Adaptive LASSO with Perturbation Bootstrap

Table 7.14 shows the time it takes to complete 10 runs of simulations under each

setup.

Table 7.14. Time Comparison of 10 runs (in minutes)

ρ = 0 ρ = 0.5 ρ = 0.9
#p ↓ BL DL AB APB BL DL AB APB BL DL AB APB

200 22.92 6.20 0.18 0.18 25.02 5.60 0.29 0.27 38.20 3.37 0.62 0.82
500 44.71 23.92 0.33 0.33 43.37 22.16 0.61 0.56 43.74 15.00 0.46 0.36

1000 44.22 50.25 0.66 0.62 44.30 48.73 1.17 1.14 44.36 43.23 0.64 0.61

*Time comparison for for true βT = [5, −4, 3, −2, 1, 0, . . . , 0]
*BL = Bayesian LASSO, DL = De-sparsified LASSO, AB = Adaptive LASSO with
Residual Bootstrap, APB = Adaptive LASSO with Perturbation Bootstrap

7.3 Compound Symmetry

Under compound symmetry (CS) for Σ, we got the following tables. We note that we

don’t have to consider the case where ρ = 0 under this setting, since it has already

been considered in the aforementioned tables. First, for p = 200, we have Tables 7.15

and 7.16 respectively for the coverage and width.
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Table 7.15. Coverage Comparison for 200 Covariates under Compound Symmetry

ρ = 0.5 ρ = 0.9
βj BL DL AB APB BL DL AB APB
1 0.71 0.94 0.94 0.92 0.25 0.92 0.37 0.36
1 0.73 0.94 0.93 0.92 0.25 0.92 0.35 0.38
1 0.69 0.93 0.93 0.94 0.27 0.91 0.37 0.35
0 1.00 0.94 0.99 0.99 1.00 0.97 1.00 0.99
0 0.99 0.96 1.00 1.00 1.00 0.97 1.00 1.00
0 0.99 0.96 1.00 1.00 1.00 0.96 1.00 1.00
0 1.00 0.95 1.00 0.99 1.00 0.97 0.99 1.00
0 0.99 0.96 0.99 1.00 1.00 0.96 1.00 0.99
0 1.00 0.95 1.00 1.00 1.00 0.96 1.00 0.99
0 1.00 0.96 1.00 1.00 1.00 0.96 0.99 1.00

*Coverages for the first 10 regression coefficients are shown here.
*BL = Bayesian LASSO, DL = De-sparsified LASSO, AB = Adaptive LASSO with
Residual Bootstrap, APB = Adaptive LASSO with Perturbation Bootstrap

Table 7.16. Average Interval Width Comparison for 200 Covariates under Com-
pound Symmetry

ρ = 0.5 ρ = 0.9
βj BL DL AB APB BL DL AB APB
1 0.70 0.58 0.73 0.69 0.86 1.23 0.80 0.81
1 0.70 0.58 0.73 0.68 0.85 1.24 0.75 0.83
1 0.70 0.58 0.73 0.70 0.86 1.24 0.82 0.76
0 0.33 0.58 0.00 0.00 0.46 1.23 0.00 0.00
0 0.33 0.58 0.00 0.00 0.46 1.23 0.01 0.01
0 0.33 0.58 0.00 0.00 0.46 1.24 0.02 0.00
0 0.33 0.58 0.00 0.00 0.46 1.24 0.00 0.01
0 0.33 0.58 0.00 0.00 0.47 1.24 0.01 0.01
0 0.33 0.58 0.00 0.00 0.46 1.24 0.00 0.00
0 0.33 0.58 0.00 0.00 0.46 1.24 0.00 0.00

*Average widths for the first 10 regression coefficients are shown here.
*BL = Bayesian LASSO, DL = De-sparsified LASSO, AB = Adaptive LASSO with
Residual Bootstrap, APB = Adaptive LASSO with Perturbation Bootstrap

Under compound symmetry, for p = 500, we have Tables 7.17 and 7.18 respectively

for the coverage and width.
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Table 7.17. Coverage Comparison for 500 Covariates under Compound Symmetry

ρ = 0.5 ρ = 0.9
βj BL DL AB APB BL DL AB APB
1 0.68 0.92 0.91 0.91 0.19 0.90 0.32 0.28
1 0.71 0.92 0.91 0.92 0.21 0.89 0.34 0.29
1 0.71 0.93 0.94 0.92 0.19 0.89 0.29 0.30
0 0.98 0.96 1.00 1.00 1.00 0.98 0.99 1.00
0 0.97 0.94 1.00 1.00 1.00 0.98 1.00 1.00
0 0.98 0.97 1.00 1.00 1.00 0.98 1.00 1.00
0 0.98 0.95 1.00 1.00 0.99 0.97 0.99 1.00
0 0.98 0.98 1.00 1.00 1.00 0.97 1.00 1.00
0 0.97 0.95 1.00 1.00 1.00 0.97 1.00 1.00
0 0.98 0.96 1.00 1.00 1.00 0.97 1.00 1.00

*Coverages for the first 10 regression coefficients are shown here.
*BL = Bayesian LASSO, DL = De-sparsified LASSO, AB = Adaptive LASSO with
Residual Bootstrap, APB = Adaptive LASSO with Perturbation Bootstrap

Table 7.18. Average Interval Width Comparison for 500 Covariates under Com-
pound Symmetry

ρ = 0.5 ρ = 0.9
βj BL DL AB APB BL DL AB APB
1 0.88 0.58 0.74 0.68 0.73 1.22 0.75 0.59
1 0.89 0.58 0.72 0.68 0.74 1.23 0.75 0.68
1 0.88 0.58 0.75 0.69 0.71 1.23 0.65 0.66
0 0.22 0.58 0.00 0.00 0.29 1.23 0.01 0.00
0 0.22 0.58 0.00 0.00 0.28 1.22 0.00 0.00
0 0.21 0.58 0.00 0.00 0.28 1.22 0.00 0.00
0 0.22 0.58 0.00 0.00 0.27 1.22 0.01 0.00
0 0.22 0.58 0.00 0.00 0.29 1.23 0.00 0.01
0 0.22 0.58 0.00 0.00 0.28 1.22 0.00 0.01
0 0.21 0.58 0.00 0.00 0.28 1.22 0.00 0.01

*Average widths for the first 10 regression coefficients are shown here.
*BL = Bayesian LASSO, DL = De-sparsified LASSO, AB = Adaptive LASSO with
Residual Bootstrap, APB = Adaptive LASSO with Perturbation Bootstrap

Finally, considering p = 1000 we get the following tables (Tables 7.19 and 7.20 )

under compound symmetry.
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Table 7.19. Coverage Comparison for 1000 Covariates under Compound Symmetry

ρ = 0.5 ρ = 0.9
βj BL DL AB APB BL DL AB APB
1 0.71 0.90 0.94 0.91 0.15 0.90 0.28 0.26
1 0.70 0.90 0.90 0.90 0.14 0.89 0.27 0.25
1 0.70 0.90 0.92 0.91 0.15 0.89 0.26 0.25
0 0.59 0.96 1.00 1.00 0.71 0.98 1.00 1.00
0 0.57 0.96 1.00 1.00 0.68 0.97 1.00 1.00
0 0.59 0.95 1.00 1.00 0.69 0.97 1.00 1.00
0 0.54 0.95 1.00 1.00 0.69 0.98 1.00 1.00
0 0.54 0.96 1.00 1.00 0.65 0.99 1.00 0.99
0 0.56 0.96 1.00 1.00 0.68 0.97 1.00 1.00
0 0.52 0.97 1.00 1.00 0.67 0.96 1.00 1.00

*Coverages for the first 10 regression coefficients are shown here.
*BL = Bayesian LASSO, DL = De-sparsified LASSO, AB = Adaptive LASSO with
Residual Bootstrap, APB = Adaptive LASSO with Perturbation Bootstrap

Table 7.20. Average Interval Width Comparison for 1000 Covariates under Com-
pound Symmetry

ρ = 0.5 ρ = 0.9
βj BL DL AB APB BL DL AB APB
1 1.02 0.58 0.75 0.69 0.57 1.21 0.65 0.61
1 1.02 0.58 0.74 0.69 0.53 1.21 0.60 0.54
1 1.02 0.58 0.75 0.68 0.59 1.21 0.57 0.57
0 0.11 0.58 0.00 0.00 0.13 1.21 0.00 0.00
0 0.11 0.58 0.00 0.00 0.13 1.21 0.01 0.00
0 0.11 0.58 0.00 0.00 0.13 1.21 0.00 0.00
0 0.10 0.58 0.00 0.00 0.14 1.21 0.00 0.01
0 0.12 0.58 0.00 0.00 0.12 1.21 0.00 0.00
0 0.11 0.58 0.00 0.00 0.13 1.21 0.00 0.01
0 0.10 0.58 0.00 0.00 0.14 1.21 0.00 0.00

*Average widths for the first 10 regression coefficients are shown here.
*BL = Bayesian LASSO, DL = De-sparsified LASSO, AB = Adaptive LASSO with
Residual Bootstrap, APB = Adaptive LASSO with Perturbation Bootstrap

Table 7.14 shows the time it takes to complete 10 runs of simulations under each

setup for compound symmetry.
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Table 7.21. Time Comparison of 10 runs (in minutes)

ρ = 0.5 ρ = 0.9
#p ↓ BL DL AB APB BL DL AB APB

200 38.34 6.79 0.26 0.30 39.65 4.01 0.56 0.70
500 46.20 29.09 0.45 0.47 44.10 22.32 1.05 0.87

1000 44.64 69.85 0.82 0.85 44.63 97.29 1.43 1.40

*Time comparison for for true βT = [1, 1, 1, 0, . . . , 0] under Compund Symmetry
*BL = Bayesian LASSO, DL = De-sparsified LASSO, AB = Adaptive LASSO with
Residual Bootstrap, APB = Adaptive LASSO with Perturbation Bootstrap
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Chapter 8

Discussion

The simulation study of the three methods, Bayesian LASSO, de-sparsified LASSO,

and the residual/perturbation bootstrap for the adaptive LASSO, under high dimen-

sional datasets yielded some interesting results. The discussion is divided into a few

segments.

8.1 Setting: True βT = [1, 1, 1, 0, . . . , 0] with AR-1

When the covariates are highly correlated with ρ = 0.9, the Bayesian LASSO-

generated credible intervals are providing coverage almost close to 0.95 for βj = 1

(last four columns of Tables 7.3 and 7.1). This is a somewhat desirable result since it

is the nominal coverage. But they show bigger width according to the first three rows

of the last four columns of Tables 7.4 and 7.2. In these cases, adaptive LASSO gener-

ated intervals seem to be doing worse (but with smaller intervals) while de-sparsified

LASSO coverage is around 0.8 with smaller average width than Bayesian LASSO. In

the cases of βj = 0, Bayesian LASSO is providing coverages close to 1 (over-coverage)

with very narrow intervals in p = 200and500 cases. For p = 1000 cases, however, the

coverage is poor with approximately 0.50-0.60. The de-sparsified LASSO-generated

intervals are doing moderately fine having captured the true coefficients around 0.90-

0.95 fractions of the datasets.

The adaptive LASSO generated bootstrap intervals whether they are generated by

residual bootstrap or perturbation bootstrap, exhibit similar kind of results through-

out this section.
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For adaptive LASSO, the coverage for the intervals for zero-coefficients are (al-

most) always 1 due to the fact that the method throws out those coefficients in each

of the iterations and hence we did not make any intervals to begin with. This is a

prevalent pattern in Tables 7.3 and 7.1 for any correlation structure. Sometimes, we

see 0.99 coverage but that could be attributed to misidentification of those covariates

as non-zeros. For the same reason, the average width for βj = 0 is almost always 0,

as we can see in rows 4-10 of columns 3,4,7,8,11 and 12 of Tables 7.2, 7.4, and 7.6.

When the covariates are moderately correlated with ρ = 0.5, for non-zero co-

efficients (in the middle four columns of Tables 7.5, 7.3, and 7.1), the coverage is

— almost of the same nature for three methods — revolving around 0.9. The de-

sparsified LASSO has the smallest average interval width. In zero coefficient cases,

the interval widths for de-sparsified LASSO remain the same but for Bayesian, they

get very narrow while getting better coverage (around 0.97) than de-sparsified LASSO

in p = 200and500 cases. For p = 1000 cases, again, the coverage is poor with ap-

proximately 0.50-0.60. As usual, adaptive LASSO has coverage 1 having thrown out

those coefficients in the beginning.

In the cases where the predictors were uncorrelated i.e ρ = 0, for non-zero co-

efficients, the coverage is around 0.77 which is lower (with wider intervals too) than

both the other methods, according to the first three rows of the first four columns of

Tables 7.5, 7.3, and 7.1. De-sparsified LASSO is having coverage close to nominal 0.95

while adaptive LASSO coverages are around 0.9. Both these methods have almost

the same average width. For zero coefficients under ρ = 0, the Bayesian is producing

higher coverage (close to 0.98) with narrower intervals in p = 200and500 cases. For

p = 1000 cases, again, the coverage is poor with approximately 0.50-0.60. The de-

sparsified LASSO is hitting the nominal coverage with average width the same as the

ones from βj = 0.

In both the uncorrelated and the moderately correlated cases as in ρ = 0, 0.5 (from
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Tables 7.2, 7.4 and 7.6, columns 2 and 6), we could also see that the average width

for de-sparsified LASSO revolves around 0.45 to 0.50, regardless of the coefficients’

true values.

In summary, the de-sparsified LASSO is producing coverage close to 0.95 overall

regardless of the correlation. The same kind of coverage is achieved by Bayesian

LASSO under moderate and high correlation although the width is larger than de-

sparsified LASSO. In a particular setup, the average width for zero and non-zero

coefficients under de-sparsified LASSO remain almost the same. Regardless of the

correlation, the Bayesian LASSO is getting narrower intervals for the zero-coefficients.

For p = 1000 cases though, the coverage for the zero true coeffcients under Bayesian

setup is poor (0.50-0.60). Adaptive LASSO provides close to nominal coverage in

moderately correlated cases for non-zero coefficients with wider intervals than de-

sparsified LASSO.

As for time comparison, after running 10 iterations or each setup, adaptive LASSO

with perturbation bootstrap achieves the fastest time - slightly faster than adaptive

LASSO with residual bootstrap. Compared to these two, Bayesian LASSO and de-

sparsified LASSO are much slower. While most of the time, de-sparsified LASSO

takes less time, under no correlation and moderate correlation cases for p = 1000,

de-sparsified LASSO is actually slower, according to Table 7.7.

8.2 Setting: True βT = [5, −4, 3, −2, 1, 0, . . . , 0] with AR-1

First, we look at the high correlation i.e. ρ = 0.9 settings for the predictors. For

true zero coefficients, the Bayesian LASSO-generated intervals are getting coverage

close to 1 for p = 200, 500 settings in Tables 7.8 and 7.10. But when p = 1000,

the intervals are getting coverage around 0.59-0.65 in the last 5 rows of column 9

of Table 7.12. Regardless of the size of p, the width of these intervals are smaller

than those from the de-sparsified LASSO (Tables 7.9, 7.11, 7.13). The de-sparsified
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LASSO-generated intervals for these cases are getting close to nominal coverage 0.95.

Also, regardless of the size of p, the adaptive LASSO-generated intervals have width

almost close to zero if not zero. That means they did not generate an interval to

begin with similar to the previous AR-1 setups. The result is validated by the fact

that coverage for the zero coefficients is almost close to one if not one. This result

for adaptive LASSO is even more pronounced for p = 1000 cases (Table 7.13).

For the non-zero coefficients under high correlation setting, in bigger p i.e p =

500, 1000 setting, the coverage for the adaptive LASSO-generated intervals is very

close to zero or exactly zero (Tables 7.10, 7.12). But in p = 200 cases, the coverage

seems to be more if the size of the true coefficient value is bigger and vice-versa

(Columns 11 and 12 in Table 7.8). For the de-sparsified LASSO-generated intervals,

the coverage for the true coefficients 1 seem to increase from 0.49 to 0.91 with the

increase in size for p. For β = 5, the coverage lurks between 0.29-039. For the

rest of the true non-zero coefficients (−4, 3, −2) the coverage seemed to be small and

very close to zero under each p. The average width of the covariates for each p for

this method is almost the same regardless of the true coefficient value, except for

true coefficient value 5, but whose width turned out to be slightly different. The

coverage gets poorer and gets to almost zero for the non-zero coefficents under the

Bayesian LASSO-generated intervals with the increase in the size of p. For p = 200,

the coverage was small but by the time we got to p = 1000, the coverage for four

of the five non-zero true coefficients got to zero.In all three setting of p, the average

width gets smaller with the size of the absolute true coefficient value getting smaller

and for true zero coefficients, the average width appear to be almost the same under

each p (Tables 7.13, 7.11, 7.9).

For ρ = 0.5 setting, the coverage for the adaptive LASSO-generated intervals for

the true zero coefficients were close to 1 with average width close to 0, according

to columns 7 and 8 in Tables 7.13, 7.11, 7.9. For the non-zero true coefficients,
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the coverage seemed to get smaller as the size of p increased. In case for p = 200,

the coverage is moderately good at 0.80-0.89 but for p = 1000, it gets poor and

ranges among 0.42-.56. The perturbation bootstrap generated smaller intervals with

smaller coverage than those of residual bootstrap regardless of the size of p. For the

true zero coefficients under de-sparsified LASSO, the intervals were very close to zero

and sometimes zero and for the zero coefficients, the intervals give almost close to

nominal coverage. For the non-zero true coefficients, the pattern follows the same

as the highly correlated cases. The coverage gets poorer with the increase of the

size of p. The average width remained almost the same regardless of the the true

coefficient under each p. Under Bayesian LASSO, the coverage for the non-zero true

coefficient is actually decent, above 0.80. It got a poorer with the increase of the size

of p although the coverage for true coefficient values 5, 1 remain decent for p = 1000.

Again, the magnitude of the true β affected the width of the intervals with the bigger

absolute value of β got bigger intervals.

Under the uncorrelated cases i.e. ρ = 0, (column 1 in Tables 7.12, 7.10, 7.8)

the Bayesian LASSO-generated intervals for true non-zero coefficients produce good

coverage, close to the nominal 0.95 mark although for p = 1000 cases. The average

width increase with the size of p for these true coefficients. True zero coefficients

enjoy coverage close to 1 for p = 200, 500 cases but decline dramatically for p = 1000

cases to around 0.60. Their width seem to be decreasing with the increase of p. For

Bayesian LASSO, the average width is the biggest among the four methods for true

non-zero coefficients but appear to be smaller than de-sparsified LASSO-generated

intervals for true zero coefficient values. Under ρ = 0, for the adaptive LASSO

methods, the residual bootstrap generated intervals for the true non-zero coefficients

provide coverage closer to 0.95 for p = 200, closer to 0.9 for p = 500, and closer

to 0.85 for p = 1000; the perturbation bootstrap-generated coverage is very slightly

smaller than that by residual bootstrap. For true zero coefficients, the coverage is as
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usual close to one since this method do not select zero coefficients in its estimation

and selection. For the de-sparsified LASSO, and for the true zero coefficients, the

intervals range from 0.95-0.98 which is more than our nominal coverage in most cases.

For true non-zero coefficients, the intervals tend to give less than nominal coverage

but it is still greater than 0.90 in most cases. The average width remained almost

the same regardless of the the true coefficient under each p. This is a result similar

to the one from rho = 0.5 for de-sparsified LASSO.

According to Table 7.14, the time comparison results are similar to the previous

AR-1 setup. The Bayesian LASSO is the slowest succeeded by de-sparsified LASSO,

adaptive LASSO with residual bootstrap, and perturbation bootstrap with the ex-

ception as follows. Under p = 1000 cases for no correlation and moderate correlation,

Bayesian LASSO is faster than the de-sparsified LASSO.

8.3 Setting: True βT = [1, 1, 1, 0, . . . , 0] with Compound Symmetry

For ρ = 0.9, the adaptive LASSO generated intervals provided coverage close to zero

for the true zero coefficients for the reasons stated in the previous sections. The

coverage seemed to get worse with the increase in the size of p. The coverage in

these cases ranged from 0.38 to 0.25 (columns 7 and 8 in Tables 7.15, 7.17, and

7.19 ). The true zero coefficients got coverage close to one. There seemed to be

no distinguishable differences for the coverage provided by residual and perturbation

bootstrap methods;however, the width were smaller for the intervals generated by the

perturbation bootstrap in p = 500, 100 settings (Tables 7.18, and 7.20).

For ρ = 0.9, the de-sparsified LASSO-generated intervals for the true zero coeffi-

cients are getting coverage greater than the nominal coverage consistently. For the

true non-zero coefficients, the coverage was found to be greater than 0.9 for p = 200

(in column 6 in Table 7.15), but ranged from 0.89-0.9 for p = 500, 1000 (in column 6

in Tables 7.17 and 7.19). Regardless of the true coefficient size, these intervals are
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the widest among the four kinds of intervals.

For For ρ = 0.9, under Bayesian LASSO, the non-zero true coefficients provdied

very poor coverage, around 0.26 for p = 200 and seemed to get worse as the size of p

increased. For the true zero coefficients, this method yielded coverage ranging from

0.67 to 0.71 for p = 1000 setting (Table 7.19). Interestingly, for p = 200, 500, the

coverage seemed to be close to one for this method (column 5 in (Tables 7.17, 7.15).

The width were smaller for the true zero coefficients.

For ρ = 0.5, the adaptive LASSO generated intervals provided coverage around

0.90-0.94 ( in columns 3 and 4 in Tables 7.15, 7.17, and 7.19) . We could not see

clear distinction among the coverage by residual and perturbation bootstrap methods;

however, the perturbation bootstrap generated intervals were narrower (in columns

3 and 4 in Tables 7.16, 7.18, and 7.20).

For this moderate correlation, the de-sparsified LASSO-generated intervals for the

true zero coefficients were close to the nominal coverage while the coverage for the

true non-zero coefficients were between 0.90-0.94. The coverage seemed to be around

0.90 under p = 1000 (in columns 2 in Table 7.5). The average width remains the same

regardless of the size of the true coefficients across different p for this method. These

width were, however, greater than those from Bayesian LASSO-generated intervals.

For Bayesian LASSO, the coverage for the true non-zero coefficients were between

0.69-0.71 (column 1 in Tables 7.15, 7.17, and 7.19 ) with wider intervals than the

true zero coefficient values. Interestingly, for the true zero coefficients, the intervals

provided coverage close to one for p = 200, around 0.97-0.98 for p = 500, but around

0.52-0.59 for p = 1000.

According to Table 7.21, the time comparison results are slightly different. The

Bayesian LASSO is the slowest succeeded by de-sparsified LASSO with the exception

for p = 1000 cases, where Bayesian LASSO is significantly faster. In this compund

symmetry setup, it is found that adaptive LASSO with perturbation bootstrap is
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typically slower than the adaptive LASSO with residual bootstrap.

8.4 Recommendation

For AR-1 cases, when p >> n, we should consider Bayesian LASSO, as it provided

better coverage for true non-zero coefficient, specially if we could somehow determine

that the correlation is close to 0.9 and 0.5. But for uncorrelated cases, we should use

de-sparsified LASSO when the true βT = [1, 1, 1, 0, . . . , 0].

For compound symmetry cases, the de-sparsified LASSO seemed to provide cov-

erage closer to the nominal coverage regardless of the value of ρ = 0. However, the

coverage was around 0.90 for p = 1000 that is truly high-dimensional case. This bet-

ter coverage comes with the cost of getting wider intervals for highly correlated cases.

For the moderate correlation, the intervals by de-sparsified LASSO is even smaller

for the true non-zero coefficients. So, in compound symmetry cases, de-sparsified

LASSO would be my recommendation.

But we need to be mindful of the fact that typically Bayesian LASSO and de-

sparsified LASSO take significantly longer to compute.

The bootstrap generated intervals tend to provide decent coverage, around 0.90,

in the uncorrelated cases, regardless of the number of covariates in the model. But

they appear to suffer when the predictors are highly correlated. For p = 200 though,

they did well under moderate correlation with the perturbation bootstrap providing

narrower intervals leading us to the conclusion that with low correlation and number

of predictors not too much greater than the sample size, perturbation bootstrap could

provide close to nominal coverage.

If we take into account that the adaptive LASSO with perturbation bootstrap

typically achieves faster time in most cases, then the trade-off for time with accuracy

makes it an appealing choice.
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Chapter 9

Application on Real Data

The aforementioned three methods were applied on two real datasets. The first one

is the riboflavin dataset and the second one is the Eyedata.

While analyzing the datasets, for the Bayesian LASSO method, we will proceed

on selecting predictor if the posterior median of the predictor is non-zero. In this way,

for large values of τ i.e. putting strong penalization towards sparsity, the posterior

median tends to be exactly zero.

9.1 Riboflavin Data

This dataset is publicly available in the hdi R package. This is a dataset of riboflavin

production by Bacillus subtilis containing n = 71 observations of p = 4088 predic-

tors (gene expressions) and a one-dimensional response (riboflavin production). The

responses as well as the predictors are numeric.

Since the de-sparsified LASSO is not a sparse estimator, we only get variable

selection through the Bayesian LASSO and the adaptive LASSO methods. Also, it

appears that the Bayesian LASSO put strong penalization on the covariates to induce

sparsity. Hence a large number of covariates gets their posterior means as exactly

zero and do not get selected through this method.

In total, 17 variables were selected by these two methods where Bayesian LASSO

methods selected only 5 of them whereas adaptive LASSO chose 11 predictors. We

used residual and perturbation bootstrap on two occasions to build confidence in-

tervals for the estimates of the selected variables by adaptive LASSO. Interestingly,
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while performing the calculation for estimating and subsequently building CI using

residual bootstrap, the 11 chosen variables would not quite match with the ones that

later got generated by using perturbation bootstrap. Two variables were mismatched

for these two methods of estimation. Table 9.2 shows the CIs of these 17 variables.

But before that, we will look at the empirical correlation structure of the selected

covariates by Bayesian LASSO.

Table 9.1. Observed Correlation of the Selected Predictors from Eyedata by
Bayesian LASSO Estimator

Index ↓ → 825 1285 3024 3026 3995
825 1.00 -0.22 0.56 0.51 -0.27

1285 -0.22 1.00 0.05 -0.27 -0.25
3024 0.56 0.05 1.00 0.27 -0.42
3026 0.51 -0.27 0.27 1.00 0.30
3995 -0.27 -0.25 -0.42 0.30 1.00

Table 9.1 suggests that the predictors selected by Bayesian LASSO have mild to

moderate correlations.

39



Table 9.2. CIs of the Selected Predictors from Riboflavin Dataset by Bayesian and
Adaptive LASSO methods

Methods → BL DL AB APB
Variable # ↓ L U L U L U L U

825 -0.71 0.04 -0.36 0.28 0.00 0.00 0.00 0.00
1285 -0.00 0.49 -0.18 0.32 0.00 0.00 0.00 0.00
3024 -0.72 0.10 -0.69 0.12 0.00 0.00 0.00 0.00
3026 -0.72 0.11 -0.43 0.29 0.00 0.00 0.00 0.00
3995 -0.63 0.17 -0.53 0.40 0.00 0.00 0.00 0.00
69 0.00 0.00 -0.37 0.05 -0.50 -0.06 -0.44 -0.10
87 0.00 0.00 -0.41 0.22 -0.46 -0.03 -0.50 -0.04
974 0.00 0.00 -0.27 0.11 -0.34 0.10 -0.29 0.09
1278 0.00 0.00 -0.21 0.21 -0.32 0.08 0.00 0.00
1303 0.00 0.00 -0.10 0.28 0.09 0.46 0.12 0.48
1436 0.00 0.00 -0.30 0.20 -0.27 0.26 -0.18 0.29
1478 0.00 0.00 -0.19 0.05 -0.37 -0.06 -0.36 -0.09
1502 0.00 0.00 -0.23 0.13 -0.35 0.04 -0.38 0.06
3288 0.00 0.00 -0.08 0.29 0.06 0.50 0.08 0.53
3310 0.00 0.00 -0.15 0.20 -0.07 -0.06 -0.02 -0.01
4002 0.00 0.00 -0.17 0.19 -0.45 -0.02 -0.44 -0.09
69 0.00 0.00 -0.37 0.05 -0.50 -0.06 -0.44 -0.10
87 0.00 0.00 -0.41 0.22 -0.46 -0.03 -0.50 -0.04
974 0.00 0.00 -0.27 0.11 -0.34 0.10 -0.29 0.09
1303 0.00 0.00 -0.10 0.28 0.09 0.46 0.12 0.48
1436 0.00 0.00 -0.30 0.20 -0.27 0.26 -0.18 0.29
1478 0.00 0.00 -0.19 0.05 -0.37 -0.06 -0.36 -0.09
1502 0.00 0.00 -0.23 0.13 -0.35 0.04 -0.38 0.06
3288 0.00 0.00 -0.08 0.29 0.06 0.50 0.08 0.53
3310 0.00 0.00 -0.15 0.20 -0.07 -0.06 -0.02 -0.01
4002 0.00 0.00 -0.17 0.19 -0.45 -0.02 -0.44 -0.09
4003 0.00 0.00 -0.52 -0.17 0.00 0.00 -0.03 0.18

*Showing only 17 credible/confidence intervals selected by Bayesian and adaptive
LASSO methods
*BL = Bayesian LASSO, DL = De-sparsified LASSO, AB = Adaptive LASSO with
Residual Bootstrap, APB = Adaptive LASSO with Perturbation Bootstrap

We could see from Table 9.2 that all of the confidence intervals generated via

de-sparsified LASSO estimates contained zero except for covariate #4003. The de-

sparsified LASSO method did generate coefficients for all the covariates and 47 of

them had p-value less than 0.05. But only one (#4003) of these 47 predictors matched
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the ones selected by the Bayesian and adaptive LASSO methods.

Also, we would like to look at the average width of these intervals through Table

9.3.

Table 9.3. Average Width of the CIs of the Selected Predictors from Riboflavin
Dataset by Bayesian and Adaptive LASSO methods

Variable # ↓ BL DL AB APB
825 0.75 0.64 0.00 0.00

1285 0.49 0.50 0.00 0.00
3024 0.82 0.81 0.00 0.00
3026 0.83 0.73 0.00 0.00
3995 0.80 0.93 0.00 0.00

69 0.00 0.43 0.44 0.34
87 0.00 0.63 0.43 0.46

974 0.00 0.37 0.44 0.38
1278 0.00 0.42 0.40 0.00
1303 0.00 0.38 0.38 0.36
1436 0.00 0.50 0.53 0.47
1478 0.00 0.24 0.31 0.27
1502 0.00 0.37 0.39 0.44
3288 0.00 0.37 0.44 0.44
3310 0.00 0.36 0.02 0.00
4002 0.00 0.35 0.43 0.34

69 0.00 0.43 0.44 0.34
87 0.00 0.63 0.43 0.46

974 0.00 0.37 0.44 0.38
1303 0.00 0.38 0.38 0.36
1436 0.00 0.50 0.53 0.47
1478 0.00 0.24 0.31 0.27
1502 0.00 0.37 0.39 0.44
3288 0.00 0.37 0.44 0.44
3310 0.00 0.36 0.02 0.00
4002 0.00 0.35 0.43 0.34
4003 0.00 0.35 0.00 0.20

*Showing the width of the 17 credible/confidence intervals selected by Bayesian and
adaptive LASSO methods respectively
**BL = Bayesian LASSO, DL = De-sparsified LASSO, AB = Adaptive LASSO with
Residual Bootstrap, APB = Adaptive LASSO with Perturbation Bootstrap

Another important thing to notice is the runtimes of three methods.

The reason as to why de-sparsified LASSO took this long might be due to the fact
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Table 9.4. Runtime Comparison for the Methods (in minutes)

Bayesian De-Sparsified ALASSO-RB ALASSO-PB
2.08 51.63 4.54 9.36

that this method had to conduct node-wise regression where it ran cross-validation to

tune p number of penalty parameters in order to calculate Θ̂ as well as it had to tune

the penalty parameter to calculate the β̂L. And it had to do this for each covariate.

9.2 Eyedata

This dataset is available in picasso R package (Ge, Li, Jiang, Wang, Zhang, Liu, and

Zhao (2019)). This is a dataset of gene expression data from the microarray experi-

ments of mammalian eye tissue samples. There are 200 predictors of 120 observations

containing the data of 120 rats with 200 gene probes and the response represents the

expression level of TRIM32 gene of 120 rats. Therefore, it is a n = 120, p = 200

setting. The responses and predictors are both numeric.

The analysis shows that Bayesian LASSO selected 11 predictors while adaptive

LASSO while using residual bootstrap selected 14, but while using perturbation boot-

strap, it selected 16. There is one match from the Bayesian LASSO and adaptive

LASSO (with residual bootstrap) selected covariates, that is covariate #62. For adap-

tive LASSO (with perturbation bootstrap) and Bayesian LASSO, we also have the

same match – Covariate #62. Except for covariate #38, all the covariates selected

by adaptive LASSO while using residual bootstrap would match the covariates se-

lected by adaptive LASSO while using perturbation bootstrap. Only covariate #62

is selected in the three processes. So in total, 26 covariates are selected.

Since de-sparsified LASSO is not a sparse estimator, we did not get any variable

selection from it. But through this estimator, we obtained eight predictors which

were statistically significant with p-value < 0:05. From those eight, 6 predictors have

been matched with the ones selected by Bayesian LASSO and adaptive LASSO. They

42



are covariates #50, #62, #76, #87, #174, and #185.

First we look at the empirical correlation structure of the covariates. We will

observe the covariates selected by the Bayesian LASSO in this case.

Table 9.5. Observed Correlation of the Selected Predictors from Eyedata by
Bayesian LASSO Estimator

Index ↓ → 50 62 76 87 140 153 155 180 185 187 200
50 1.00 0.54 -0.73 0.66 -0.43 -0.58 -0.52 -0.53 0.54 0.63 0.55
62 0.54 1.00 -0.57 0.50 -0.53 -0.60 -0.53 -0.58 0.36 0.38 0.33
76 -0.73 -0.57 1.00 -0.60 0.63 0.65 0.70 0.73 -0.47 -0.46 -0.50
87 0.66 0.50 -0.60 1.00 -0.50 -0.63 -0.42 -0.50 0.55 0.53 0.51

140 -0.43 -0.53 0.63 -0.50 1.00 0.72 0.57 0.57 -0.31 -0.27 -0.41
153 -0.58 -0.60 0.65 -0.63 0.72 1.00 0.70 0.64 -0.40 -0.42 -0.45
155 -0.52 -0.53 0.70 -0.42 0.57 0.70 1.00 0.72 -0.36 -0.44 -0.39
180 -0.53 -0.58 0.73 -0.50 0.57 0.64 0.72 1.00 -0.29 -0.40 -0.42
185 0.54 0.36 -0.47 0.55 -0.31 -0.40 -0.36 -0.29 1.00 0.60 0.52
187 0.63 0.38 -0.46 0.53 -0.27 -0.42 -0.44 -0.40 0.60 1.00 0.56
200 0.55 0.33 -0.50 0.51 -0.41 -0.45 -0.39 -0.42 0.52 0.56 1.00

It appears that from Table 9.5 the empirical correlation among these variables are

mostly of moderate nature.

Table 9.6. CIs of the Selected Predictors from Eyedata by Bayesian LASSO Esti-
mator

Methods → BL DL AB APB
Variable # ↓ L U L U L U L U

50 -0.01 0.09 0.04 0.21 0.00 0.00 0.00 0.00
62 -0.09 0.01 -0.14 -0.01 -0.25 -0.05 -0.31 -0.08
76 -0.10 0.01 -0.17 -0.02 0.00 0.00 0.00 0.00
87 -0.15 0.01 -0.23 -0.03 0.00 0.00 0.00 0.00

140 -0.02 0.19 -0.01 0.28 0.00 0.00 0.00 0.00
153 -0.00 0.21 0.10 0.35 0.00 0.00 0.00 0.00
155 -0.01 0.09 -0.01 0.15 0.00 0.00 0.00 0.00
180 -0.01 0.14 0.01 0.22 0.00 0.00 0.00 0.00
185 -0.16 0.01 -0.28 -0.00 0.00 0.00 0.00 0.00
187 -0.13 0.03 -0.23 0.02 0.00 0.00 0.00 0.00
200 -0.13 0.02 -0.20 0.01 0.00 0.00 0.00 0.00

*BL = Bayesian LASSO, DL = De-sparsified LASSO, AB = Adaptive LASSO w/
Residual Bootstrap, APB = Adaptive LASSO w/ Perturbation Bootstrap
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Similar to the Riboflavin dataset, the Bayesian LASSO put strong penalization

on the covariates to induce sparsity. Hence a large number of covariates gets their

posterior means as exactly zero and do not get selected through this method.

Table 9.7. CIs of the Selected Predictors from Eyedata by Adaptive LASSO Esti-
mator with Residual Bootstrap Process

Methods → BL DL AB APB
Variable # ↓ L U L U L U L U

2 -0.05 0.02 -0.12 0.05 -0.14 0.29 -0.15 0.35
3 -0.02 0.04 -0.04 0.10 0.21 0.50 0.35 0.57
4 -0.03 0.04 -0.05 0.11 -0.00 0.16 0.05 0.24
5 -0.05 0.03 -0.11 0.07 0.39 0.64 0.37 0.60
7 -0.04 0.02 -0.11 0.04 0.18 0.45 0.15 0.39
9 -0.03 0.04 -0.09 0.08 0.03 0.04 0.04 0.05

10 -0.03 0.03 -0.10 0.05 0.10 0.37 0.10 0.27
17 -0.02 0.03 -0.08 0.06 -0.35 -0.05 -0.37 -0.12
58 -0.02 0.04 -0.04 0.09 0.07 0.47 0.12 0.41

62 65 -0.02 0.04 -0.06 0.08 0.02 0.20 0.06 0.26
83 -0.03 0.04 -0.05 0.12 -0.35 0.04 -0.42 -0.04
85 -0.02 0.05 -0.09 0.09 -0.11 0.15 -0.10 0.13

109 -0.06 0.02 -0.11 0.10 -0.12 0.03 -0.12 -0.01

*BL = Bayesian LASSO, DL = De-sparsified LASSO, AB = Adaptive LASSO w/
Residual Bootstrap, APB = Adaptive LASSO w/ Perturbation Bootstrap
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Table 9.8. CIs of the Selected Predictors from Eyedata by Adaptive LASSO Esti-
mator with Perturbation Bootstrap Process

Methods → BL DL AB APB
Variable # ↓ L U L U L U L U

2 -0.05 0.02 -0.12 0.05 -0.14 0.29 -0.15 0.35
3 -0.02 0.04 -0.04 0.10 0.21 0.50 0.35 0.57
4 -0.03 0.04 -0.05 0.11 -0.00 0.16 0.05 0.24
5 -0.05 0.03 -0.11 0.07 0.39 0.64 0.37 0.60
7 -0.04 0.02 -0.11 0.04 0.18 0.45 0.15 0.39
9 -0.03 0.04 -0.09 0.08 0.03 0.04 0.04 0.05

10 -0.03 0.03 -0.10 0.05 0.10 0.37 0.10 0.27
17 -0.02 0.03 -0.08 0.06 -0.35 -0.05 -0.37 -0.12
38 -0.03 0.04 -0.08 0.09 0.00 0.00 0.04 0.04
58 -0.02 0.04 -0.04 0.09 0.07 0.47 0.12 0.41
62 -0.09 0.01 -0.14 -0.01 -0.25 -0.05 -0.31 -0.08
65 -0.02 0.04 -0.06 0.08 0.02 0.20 0.06 0.26
83 -0.03 0.04 -0.05 0.12 -0.35 0.04 -0.42 -0.04
85 -0.02 0.05 -0.09 0.09 -0.11 0.15 -0.10 0.13

109 -0.06 0.02 -0.11 0.10 -0.12 0.03 -0.12 -0.01
169 -0.03 0.05 -0.06 0.10 0.00 0.00 -0.00 -0.00

*BL = Bayesian LASSO, DL = De-sparsified LASSO, AB = Adaptive LASSO w/
Residual Bootstrap, APB = Adaptive LASSO w/ Perturbation Bootstrap

Tables 9.6, 9.7, and 9.8 show that covariate #62 is selected by both estimators

in all three occasions. Interestingly, Bayesian LASSO provided with the intervals for

all the predictors regardless of whether the predictor was selected by this method or

not. But all of these intervals seem to contain 0 inside them.

In Table 9.6, 7 of the predictors selected by Bayesian LASSO are significant

for the de-sparsified LASSO according to the confidence intervals while for adaptive

LASSO, only one is significant for both the residual bootstrap-generated intervals

and the perturbation bootstrap-generated intervals.

In Table 9.7, one variable is significant by de-sparsified LASSO generated in-

tervals among the predictors selected by adaptive LASSO (with residual bootstrap

method). Among those selected variables, 9 variables are found significant according

to the residual bootstrap-generated intervals and 12, according to the perturbation
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bootstrap intervals.

Table 9.7 shows the intervals for the predictors selected by adaptive LASSO

estimators while calculating perturbation bootstrap intervals. According to those

perturbation bootstrap-generated intervals, 14 of the selected predictors are signifi-

cant while de-sparsified LASSO-generated intervals indicate only one and adaptive

LASSO (in calculating residual bootstrap intervals) indicate 9 significant predictors.
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Table 9.9. Average Width of the CIs of the Selected Predictors from Eyedata by
Bayesian and Adaptive LASSO methods

Variable # ↓ BL DL AB APB
50 0.10 0.17 0.00 0.00
62 0.10 0.13 0.20 0.23
76 0.11 0.15 0.00 0.00
87 0.16 0.19 0.00 0.00

140 0.20 0.29 0.00 0.00
153 0.22 0.25 0.00 0.00
155 0.10 0.16 0.00 0.00
180 0.15 0.21 0.00 0.00
185 0.17 0.28 0.00 0.00
187 0.16 0.25 0.00 0.00
200 0.14 0.21 0.00 0.00

2 0.07 0.16 0.43 0.50
3 0.07 0.14 0.29 0.22
4 0.06 0.16 0.16 0.19
5 0.07 0.18 0.24 0.22
7 0.06 0.16 0.27 0.24
9 0.07 0.17 0.00 0.02

10 0.06 0.15 0.27 0.16
17 0.06 0.14 0.31 0.25
58 0.06 0.14 0.40 0.29
62 0.10 0.13 0.20 0.23
65 0.06 0.14 0.19 0.19
83 0.07 0.17 0.39 0.38
85 0.07 0.18 0.26 0.23

109 0.09 0.21 0.15 0.10
2 0.07 0.16 0.43 0.50
3 0.07 0.14 0.29 0.22
4 0.06 0.16 0.16 0.19
5 0.07 0.18 0.24 0.22
7 0.06 0.16 0.27 0.24
9 0.07 0.17 0.00 0.02

10 0.06 0.15 0.27 0.16
17 0.06 0.14 0.31 0.25
38 0.07 0.17 0.00 0.01
58 0.06 0.14 0.40 0.29
62 0.10 0.13 0.20 0.23
65 0.06 0.14 0.19 0.19
83 0.07 0.17 0.39 0.38
85 0.07 0.18 0.26 0.23

109 0.09 0.21 0.15 0.10
169 0.08 0.16 0.00 0.00

*BL = Bayesian LASSO, DL = De-sparsified LASSO, AB = Adaptive LASSO w/
Residual Bootstrap, APB = Adaptive LASSO w/ Perturbation Bootstrap47



Table 9.9 shows the average width of the intervals of the predictors. It seems that

the Bayesian LASSO generated intervals are smaller than the other three types. The

perturbation bootstrap generated intervals are narrower than the ones generated by

the residual bootstrap generated ones.

Table 9.10 shows the runtime to estimate and calculate the intervals under these

methods.

Table 9.10. Runtime Comparison for the Methods (in minutes)

Bayesian De-Sparsified ALASSO-RB ALASSO-PB

6.06 0.74 1.12 0.94

In contrast to the Riboflavin dataset analysis results (Table 9.4), Bayesian LASSO

took the longest to complete the calculation for this dataset.
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Appendix A

R Codes for the Gibbs Sampler

R codes to build the Gibbs Sampler based on Hans (2009) without imposing any prior

on τ and σ.

sigma <- 1

tau <- 0.5

p <- 10

s <- 3

n <- 100

beta0 <- c(rep(1,s),rep(0,p-s))

Sigma <- .5^abs(outer(1:p,1:p,"-"))

Z <- scale(matrix(rnorm(n*p),n,p),center=TRUE,scale= FALSE)

x <- Z %*% chol(Sigma)

error <- rnorm(n,0,sigma)

y <- as.numeric(x %*% beta0 + error - mean(error))

ols <- lm(y ~ 0 + x)

summary(ols) #checkin the OLS

#beta_ols<-sapply(1:p,

function(x) {ols$coefficients[[x]]})

beta_ols<- ols$coefficients
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#note on this ols$coefficients

tau = 0.5

sigma = 1

set.seed(2020)

#initial beta_j;

#beta = beta_ols*runif(5,min=0, max=5)

iter=10000

#Initializing beta-storage matrix for ith batch

beta_store = matrix( NA , iter, p)

beta = rep(0, p)

for(i in 1:iter){

for(j in 1:p){

#square root of L-2 norm

sxj = sqrt(sum(x[,j]^2))

#positive truncated

mu_j_plus = beta_ols[j] + (1/ (sxj^2) ) *

as.numeric( t(x[,j]) %*% (x[,-j] %*%

(beta_ols[-j] - beta[-j])) ) - tau*sigma/(sxj^2)

#negative truncated
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mu_j_minus = beta_ols[j] + (1/ (sxj^2)) *

as.numeric( t(x[,j]) %*% (x[,-j] %*%

(beta_ols[-j] - beta[-j])) ) + tau*sigma/(sxj^2)

a_j = ( 1 - pnorm( - mu_j_plus/ (sigma/sxj) ) )/

dnorm( - mu_j_plus/ ( sigma/sxj ) )

b_j = pnorm( - mu_j_minus/ (sigma/sxj) )/

dnorm( - mu_j_minus/ (sigma/sxj) )

w_j = a_j/(a_j + b_j)

z_j = sample( c(-1,1),size=1, prob = c(w_j, 1-w_j) )

#We’re taking "-1" for the first statement in the next line.

if(z_j == -1){

#the positive truncated normal

beta[j] = mu_j_plus + (sigma/sxj) *

qnorm( (1-pnorm(- mu_j_plus/ (sigma/sxj) ) ) *

runif(1) )

} else if(z_j == 1) {

#negative truncated normal

beta[j] = mu_j_minus + (sigma/sxj) *

qnorm( (pnorm(-mu_j_minus/ (sigma/sxj) ) ) *

runif(1) )

}

#beta_j changed to beta[j].
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}

beta_store[i,] = beta

}

beta_store = beta_store[-(1:2000),]

#discarding burn-in period

head(beta_store)

tail(beta_store)

#beta_post_mean = sapply(1:p,

function(x){mean(beta_store[,x])} )

apply(beta_store,2,mean)

apply(beta_store,2, median)
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