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ABSTRACT 
 
 

 The role of antibiotics in human health is of significant importance in the 

advancement of the medical field. It has contributed to an improvement of the 

quality of life and the age expectancy of the population. Antibiotic resistance is an 

expected consequence of the use of antibiotics. Bacteria have developed 

biological mechanisms that would help them become resistant to antibiotics. The 

uncontrolled use of antibiotics is significantly contributing to the ability of bacteria 

to become resistant to those antibiotics. This study, using the model of the Socio-

Ecological Coupling of Antibiotic Resistance, explains how social and 

environmental factors interact and impact the social and natural cycle of antibiotic 

resistance. Using spatial analysis, the study describes how antibiotic sales in 

combination with other demographic factors contribute to the appearance of 

antibiotic sales hot spots. The expectation of antibiotic resistance in these hot 

spots is higher and the urgency for intervention with antibiotic stewardship 

programs at the community level is necessary. Experimentally, the study 

demonstrates how wastewater treatment plants, being the receptacle for most 

antibiotics consumed, can become a source of exposure to antibiotic resistant 

genes through bioaerosols. Lastly, using epidemiological methods, the study 

describes temporal trends of antibiotic sales and how these can be used as an 

indicator for population health.  
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CHAPTER 1: 

INTRODUCTION

 
 

The population of South Carolina has a higher morbidity and mortality rate 

than the United States average. In each of the top ten (10) conditions causing 

death compiled by the Center of Disease Control (CDC), the 2017South Carolina 

rates of deaths per person were above the national average. In most of the CDC 

categories, South Carolina’s rate ranked in the top 16 states.  (Table 1.1).  

Table 1.1. SC Leading Causes of Death, 2017.  
Condition Death

s 
Rate
* 

State 
Rank 

U.S. Rate* 

1.  Heart Disease 10,418 172 16th 165 
2. Cancer 10,356 162.7 14th 152.5 
3. Accidents 3,147 60.2 13th 49.4 
4. Chronic Lower Respiratory 
Diseases 

2,983 47.9 12th 40.9 

5. Stroke 2,691 44.9 4th 37.6 
6. Alzheimer’s disease 2,549 44.9 6th 31 
7. Diabetes 1,535 24.5 12th 21.5 
8. Kidney Disease 950 15.5 16th 13 
9. Septicemia 884 14.5 10th 10.6 
10. Suicide 838 16.3 25th (tie) 14 
*Age Adjusted 
Source: CDC/National Center for Health Statistics. 
https://www.cdc.gov/nchs/pressroom/states/southcarolina/southcarolina.htm 

 

The rate of prescriptions of antibiotics that were sold in South Carolina in 

2017 was also higher than the national average: South Carolina had 881 
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prescriptions sold per 1000 population, while the national rate was 794 per 1000 

population (Table 1.2). 

Table 1.2. Estimated Antibiotic Prescription Sales in the United States in 2017.  
State Prescriptions per 1000 

Population 
Alabama 1117 
Alaska 451 
Arizona 683 
Arkansas 1057 
California 526 
Colorado 525 
Connecticut 790 
Delaware 820 
Florida 784 
Georgia 898 
Hawaii 572 
Idaho 626 
Illinois 781 
Indiana 891 
Iowa 915 
Kansas 885 
Kentucky 1176 
Louisiana 1140 
Maine 658 
Maryland 720 
Massachusetts 701 
Michigan 857 
Minnesota 627 
Mississippi 1152 
Missouri 854 
Montana 606 
Nebraska 944 
Nevada 659 
New Hampshire 675 
New Jersey 848 
New Mexico 642 
New York 859 
North Carolina 834 
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North Dakota 742 
Ohio 903 
Oklahoma 858 
Oregon 488 
Pennsylvania 847 
Rhode Island 832 
South Carolina 881 
South Dakota 833 
Tennessee 1083 
Texas 805 
Utah 675 
Vermont 601 
Virginia 747 
Washington 516 
West Virginia 1228 
Wisconsin 663 
Wyoming 718 
United States Average 794 
 
Source: The Center for Disease Dynamics, Economics & Policy. Resistance Map: Use of All Antibiotics 2017. 2022. 
resistancemap.cddep.org/CountryPageSub.php?countryId=38&country=United+States. Accessed: January 2022. 
 
 

States that experienced a higher rate of antibiotic prescriptions sold, 

including South Carolina, also share (i) a higher rate of morbidity and mortality 

compared to the national average, (ii) an aging population, (iii) less restrictions 

on the prescription of antibiotics, and (iv) fewer antibiotic stewardship programs 

(County Health Rankings and The Center for Disease Dynamics Economics and 

Policy (CDDEP)). Although antibiotic use has not previously been used as an 

indicator for health status in the population, the following study shows that it can 

be valuable in environmental surveillance, provide an approximate measure for 

health behavior, and determine the effectiveness of stewardship programs and 

policy.   
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With a total population of 5,024,369 in 2017 (United States Census 

Bureau, 2022), most of the 46 counties in South Carolina could be considered 

rural counties with half of the population concentrated in seven (7) counties: 

Greenville (506,837), Richland (411,592), Charleston (401,438), Horry (333,268), 

Spartanburg (306,854), Lexington (290,642), and York (266,439) counties. Major 

hospitals and medical facilities, as well as major water treatment plants and 

wastewater treatment plants, are also situated in these main urban areas. The 

geography of the State varies from piedmont in the west to an almost 3,000-mile 

tidal coastline to the east (NOAA, 2019). Two of the major economic activities in 

South Carolina are agricultural and industrial, with a significant amount of 

concentrated animal and farming operations in the north-east of the State. 

According to the Department of Health and Environmental Control, thirty-three 

percent (33%) of the population in South Carolina live in rural areas and derive 

their livelihood from agricultural practices. (South Carolina Department of Health 

and Environmental Control, 2022). Activities for this population include 

subsistence fishing, use of unregulated drinking water systems, and active use of 

recreational waters (Burch et al., 2014). These activities present a higher risk of 

exposure to environmental pollutants that include emerging infectious diseases 

agents such as antibiotic resistant microorganisms.  

Antibiotic use has increased significantly since their discovery in 1928. 

Early use of antibiotics occurred only in hospitals and medical facilities, but with 

time, research, and familiarity, antibiotics were prescribed to be used by 

individuals at home. Currently, antibiotic prescriptions sold in outpatient settings 
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and used by individuals comprise more than 70% of the total antibiotic use for 

human health purposes (Sriram, 2021). The dataset utilized for the research in 

this study includes the total antibiotic prescriptions sold in outpatient settings 

from 1999 to 2017 per county in South Carolina. Table 1.3 describes an 

estimation of the rate per 1000 population of the total antibiotics sold per county 

in South Carolina during 2017. 

Table 1.3. Rate per 1000 population of Antibiotic Prescription Sales per County 
in South Carolina in 2017 
County Prescription sales per 1000 

population in 2017 
Abbeville 534 
Aiken 663 
Allendale 808 
Anderson 794 
Bamberg 561 
Barnwell 772 
Beaufort 726 
Berkeley 267 
Calhoun 78 
Charleston 1436 
Cherokee 650 
Chester 693 
Chesterfield 403 
Clarendon 625 
Colleton 844 
Darlington 1124 
Dillon 945 
Dorchester 709 
Edgefield 224 
Fairfield 347 
Florence 1401 
Georgetown 1264 
Greenville 1185 
Greenwood 1299 
Hampton 645 
Horry 954 
Jasper 951 
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Kershaw 724 
Lancaster 601 
Laurens 566 
Lee 205 
Lexington 807 
Marion 916 
Marlboro 501 
McCormick 198 
Newberry 550 
Oconee 718 
Orangeburg 743 
Pickens 721 
Richland 1005 
Saluda 333 
Spartanburg 962 
Sumter 843 
Union 534 
Williamsburg 532 
York 632 
 
Source: CDDEP. 

 
Clinically, there are different factors that lead to antibiotic use. The main 

purpose is to tackle bacterial infections. Most common infections are respiratory 

infections, urinary tract infections, and sexually transmitted infections. Patients 

with chronic health conditions, that have undergone an organ transplant, or will 

undergo a major surgery also depend on the use of antibiotics. During these 

situations, antibiotics could be may be used preventively as a bacterial infection 

for any of these patients would be fatal.  Additionally, bacterial infections have 

similar symptoms, and can be easily misinterpreted, as viral infections. In 

practice, physicians do not screen every patient to determine whether certain 

symptoms are caused by a bacterial or viral infection, and because bacterial 

infections are considered significantly more severe to viral infections, physicians 

prefer to prescribe antibiotics in most situations.  
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All of these practices for the use of antibiotics have accelerated the pace 

of the development of antibiotic resistant bacteria (ARB). The familiarity and the 

wide use of broad-spectrum antibiotics have increased the number of bacterial 

infections that are no longer susceptible to many antibiotics. The major 

consequence of the uncontrolled and indiscriminate use of antibiotics is ARB.   

The purpose of this research is to analyze the geographical and temporal 

trends of antibiotic use in South Carolina. Chapter 3 describes a spatial analysis 

of antibiotic use and the effect of population in South Carolina from 1999 to 2017. 

Chapter 4 is an experimental study of the aerosolization of ARB and the probable 

dispersion of antibiotic resistance genes from wastewater treatment plants. Lastly 

Chapter 5 is a seasonal and longitudinal analysis of antibiotic use and its 

possible impact on overall health in the population. 
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CHAPTER 2  

BACKGROUND AND SIGNIFICANCE

 

The use of antibiotics was one of the major breakthroughs in the twentieth 

century. It revolutionized the field of medicine and was one of the major factors in 

decreasing the mortality from communicable diseases (IOM, 2010). The ability to 

treat and cure infectious diseases allowed the health field to advance research in 

organ transplants, surgical procedures and public health surveillance. The control 

of bacterial pathogens with antibiotics was also introduced in the agriculture and 

the animal production industries (Drexler, 2010). Antibiotic use shifted farming 

practices by allowing higher yields in crops and less disease in animals with 

minimum loss in smaller production areas (NRC, 1980). Although antibiotics 

became a solution for a critical problem, the indiscriminate use that followed is 

now thought to have accelerated the rate at which bacteria are developing 

resistance (NRC, 2003; Colomer 2011; Spicknall, Foxman, Marrs, & Eisenberg, 

2013). 

When bacteria are exposed to minimum inhibitory concentrations (MIC) of 

antibiotics, a process similar to natural selection occurs (Drexler, 2010; Nesme et 

al., 2014). Bacteria genetically adapt to the presence of antibiotics by acquiring a 

method of resistance such as DNA point mutations and/or a horizontal gene 

transfer of resistance genes (Sidrach-Cardona, Hijosa-Valsero, Marti, Balcázar,
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& Becares, 2014). Those surviving bacteria, that have the antibiotic resistant 

genes (ARG), will have the capacity to pass along or exchange those ARG. This 

process of acquiring resistance occurs to a higher extent in the natural 

environment, but also through incorrect use in hospitals, food products, animals, 

and the human body (Colomer, 2011; Salipante, 2013).  For example, the 

amount and variety of antibiotics deposited in the environment through 

wastewater treatment plants and farming operations creates stressful conditions 

for bacteria. The low concentration of antibiotics will likely not eliminate the 

bacterial community completely, but will facilitate their adaptation to the new 

environmental conditions in the presence of the antibiotics (Summers, 2002). The 

large amount of antibiotics in the environment has accelerated a process that 

would have taken millions of years with natural occurring antibiotics, to one that 

has taken only decades or even years.  

 The rate of morbidity and mortality due to antibiotic resistance is 

increasing every year. The World Health Organization estimates that currently 

700,000 people die from antibiotic resistant infections a year worldwide (World 

Health Organization, 2019). It is predicted that if current conditions continue, the 

global death toll per year will be close to 10 million.  Clinics and hospitals are 

now experiencing challenges when treating infections that did not use to be life 

threatening. Broad spectrum antibiotics are not as effective as when they were 

first developed. Narrow spectrum antibiotics, which are significantly more 

expensive, are now being used more frequently. A major concern is that bacteria 

will acquire resistance to narrow spectrum antibiotics because of their current 
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wide use. Resistance to antibiotics is moving faster than the pharmaceutical 

development pipeline.  

Medical facilities present ideal conditions for bacteria to acquire antibiotic 

resistance, such as: 1) presence of a large number of antibiotics; 2) presence of 

immune deficient individuals; 3) increasing proximity and interaction between 

pathogens; and 4) not effective sanitizing behaviors. (Struelens, 1998; Agency 

for Healthcare Research and Quality, 2018). However, research has also 

demonstrated that exposure to ARB is not only occurring in hospital settings, but 

also at the community level (CDC, 2015, Colomer, 2011).  But while hospital 

acquired infections are monitored closely and specific stewardship programs 

have been developed to address them, the same cannot be said about 

community acquired infections (Goosens, 1998; Wunderink, 2016).   

The probability of an outbreak from an ARB infection in the community 

could have significant consequences. There is no current clinical solution to treat 

several infections caused by ARB, and if ARB growth is not contained, infectious 

diseases could once again become a major cause of mortality in the developed 

world and could become an even larger burden in low-income populations.  

One mechanism of control against ARB is antibiotic stewardship 

programs. Most of these programs promote better screening mechanisms of 

infectious diseases in hospitals to provide accurate diagnoses, targeted and 

appropriate use of antibiotics when they are needed, collection of unused 

antibiotics, and public education on the use of antibiotics. A second mechanism 

is environmental surveillance. Continuous monitoring of the natural environment 
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and recognizing any changes to ecosystems services can be useful in identifying 

trends to forecast the appearance of an outbreak, or in the case of this study, to 

learn when any changes could be setting off an alarm (i.e., increase in antibiotic 

sales can represent premature mortality in a population). 

An important tool to help with the identification of key locations for 

environmental surveillance is spatial analysis. With Geographical Informational 

Systems (GIS), it is possible to identify changes in diseases patterns within 

population in a geographical area and between geographical locations. These 

patterns cannot only be described as a snapshot, but also as a temporal trend. In 

conjunction with the concept of socio-ecological networks described in Chapter 4, 

particularly the socio-ecological coupling of antibiotic resistance (Figure 2.1), 

these tools can help identify the hot-spots for antibiotic resistance.  

Wastewater treatment plants (WWTPs) is one hot-spot location.  WWTPs 

can discharge into the environment low concentrations of antibiotics as well as 

antibiotic resistant genes from living and dead microbial cells, causing many 

ecosystems connected to the WWTP to potentially serve as reservoirs of 

antibiotic resistant microbes. These dynamics could cause a WWTP to be an 

augmenter of ARB. 
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Figure 2.1. Socio-Ecological Coupling of Antibiotic Resistance (Gaviria-
Figueroa, 2019). 

 

Socio-Ecological Coupling of Antibiotic Resistance (SECAR) is a 

representation of the interaction between social factors and environmental 

factors. The Sociological cycle includes human behaviors that have an impact on 

health and use of antibiotics. The Ecological cycle shows how antibiotics can be 

maintained and become part of the environment. In one direction, human activity 

is impacting the natural environment by the disposal of antibiotics through 

sewage, waste, and use in agriculture. In return, humans are experiencing 

environmental changes and an increase rate of disease from infections that are 

resistant to most or all known antibiotics. There is a wide gap in the knowledge of 

how the two cycles are connected. A hypothesis of the research described in this 

study is that antibiotic sales and usage are the engines making the cycles flow.  
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Human activity is increasing selective pressure on microorganisms, which 

is conducive for the emergence or re-emergence of pathogenic microorganisms. 

Identifying the hot-spots where there is a higher risk for antibiotic resistant gene 

exchange might contribute to preventing an ARB outbreak and can become an 

important component of antibiotic stewardship programs.  The research in this 

study shows how antibiotic sales and usage can be used to help identify these 

hot-spots.     
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CHAPTER 3: 

CLUSTER ANALYSIS OF THE AMOUNT OF ANTIBIOTICS SOLD PER 

COUNTY IN SOUTH CAROLINA DURING 1999 -2017

 
 

Studying a geographic region may contribute to health research when 

data is available about its population and a baseline can be defined so it can be 

compared through time. Geographical studies, specially those involving larger 

regions (i.e. a state) can be easily adapted to both urban and rural environments, 

which is important as factors related to consumption may vary significantly with 

population size and density, and multiple study sites may be necessary to 

account for this dynamic (Lancet, 2015). Identification of spatial and temporal 

trends is important to understand the epidemiology of antibiotic resistance. The 

identification of regions where consumption is high is necessary to determine if 

there is a higher probability for resistant infections to occur in those areas. For 

example, identification of geographical hotspots can provide a baseline for 

implementation of antibiotic stewardship programs and locations to establish 

environmental surveillance (Van Boeckel, 2014). 

The misuse and over use of antibiotics is the leading cause of occurrence 

of antibiotic resistance at the clinical setting, at the community level, and in the 

environment (Ventola, 2015). Parallel to increasing the selection for resistance, 

antibiotics also lose their effectiveness against pathogens. A known tendency is 
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that antibiotics are relied upon more heavily in areas with a weak public health 

infrastructure, and antibiotic resistance prevalence is higher when there is lack of 

sanitation (Aslam, et.al. 2018). The identification of clusters or hot-spots of high 

antibiotic use is an important finding for implementation of stewardship programs.  

The following spatial analysis describes the relationship between antibiotic use 

and populations changes within and between counties in South Carolina from 

1999 to 2017. Later in Chapter 5 the statistical analysis will go further in 

describing if antibiotic use and population changes can be an indicator for 

premature death. 

Methods 

The data for this study was provided by the Center for Disease Dynamics, 

Economics & Policy (CDDEP) through direct agreement with the University of 

South Carolina and the Molecular Microbial Ecology Lab at the Arnold School of 

Public Health. The data was collected and originally owned by IMS Health IQVIA 

MIDAS (IMS Health, Danbury, CT, USA).  With use of national sample surveys 

done by pharmaceutical sales distribution channels (i.e., from manufacturer to 

wholesaler to retailer), this database estimates antibiotic consumption from the 

volume of antibiotics sold in retail and hospital pharmacies. It includes more than 

70% of the total antibiotics sold in South Carolina. It does not include antibiotics 

that were prescribed and using in in-hospital patients, and not all used in 

animals.   In each sector, data are collected regularly to estimate direct sales 

from antibiotic drug manufacturers and indirect sales from wholesalers. The sales 

estimates from this sample are projected with the use of an algorithm developed 
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by IMS Health to approximate total volumes for sales and consumption. The 

algorithm uses regional factors and sectorial-specific and distribution-channel-

specific factors to project national estimates of antibiotic consumption. However, 

precise details of the algorithm are withheld for proprietary reasons (CDDEP, 

2017). The variables included in the analysis were total antibiotic prescription 

sales, total quantity of antibiotics, Defined Daily Dose value, and antibiotic class. 

All variables were stratified by month, year, and county from 1999 to 2017. 

Spatial analysis  

The data was analyzed using ArcGIS Pro Version 2.5 from Esri Inc. Maps 

were created to show the differences and variations of the variables from the 

data set in a temporal and geographic manner. The different colors were used to 

symbolize differences between population data (Census, 2022) and antibiotic use 

from CDDEP data in raster data publicly available. A cluster analysis using the 

spatial statistics time series tool provided in ArcGIS Pro was used to create the 

map highlighting the hot spots of antibiotic use. 

Results 

 The map using the rate per capita of antibiotic prescription sales in each 

county in South Carolina (Figure 3.1) describes the significant variance of 

antibiotic prescription sales between counties in South Carolina. It shows that 

three (3) of the seven (7) most populated counties mentioned in the Introduction 

(Charleston, Florence, and Greenville) are more than two (2) standard deviations 

above the mean of prescription sales in the State, another three (3) of those 
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seven (7) are 1.5 standard deviations above the mean (Richland, Horry, and 

Spartanburg), and one (1) of those seven (7) is only 0.5 standard deviations 

above the mean (Horry). Most importantly, all of those seven counties are above 

the mean prescription sales of the State. Of the remaining 39 counties, four (4) 

are significantly below the mean of the State, by more than 1.5 standard 

deviations, nine (9) are below the mean by -1.5 and -0.5 standard deviations, the 

majority of the counties, twenty-one (21) counties, are below or above the mean 

by 0.5 standard deviations, and the last five (5) counties are above the mean by 

1.5 standard deviations. 

By looking at those rates in the map, some clusters are evident. There 

seems to be a concentration of sales in the eastern and north eastern part of the 

State and a smaller cluster towards the north, north western part of the State. 

There is a strong correlation between the two variables (number of prescription 

and quantity of the antibiotics), showing very little difference between running the 

analysis with quantity of antibiotics and without.  As a result, it is concluded that 

only using prescription sales and population numbers describes the trends. 



18 
 

 

Figure 3.1: Map of South Carolina counties describing the rate of 
antibiotic prescription sales per 1000 using the standard deviation. 
 

Population Trends in South Carolina 

 An important factor to look at is at the population of the counties in 

South Carolina: not only at the current population numbers, but how those 
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numbers have changed in the last two decades. As a whole, the State has seen 

an increase in total population of almost 77% in the past 20 years.  The State 

population in 1999 was 3,885,736 and in 2017 it was 5,024,369. In comparison 

with the grown of other states during that time, it would appear that South 

Carolina’s population has increased significantly and that, subsequently antibiotic 

sales have increased.  

However, in reviewing the data at a granular level, it is apparent that 

conclusion is not so straightforward. By looking at the data in the map about 

population change (Figure 3.2), there are significant differences between 

counties in terms of population growth. The population increase in the last two 

decades seems to be concentrated in less than half of the counties (seventeen 

(17) counties) and in three (3) major areas: north west, middle and southeast. 

Those areas correspond to the major urban areas in the State. One thing to 

consider is that the biggest loss for any county was not more than 6,000 people 

(Williamsburg’s population in 1999 was 36,840 and in 2017 it was 31,133). The 

county with the biggest gain in population was Horry County with 154,718 

individuals (the population in 1999 was 178,550 and in 2017 it was 333,268).  
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Figure 3.2. Difference in total population per county in South Carolina 
between 1999 and 2017. 

 

Antibiotic Prescription Sales Differences 

 Using spatial analysis with GIS software permits the comparison of how 

different variables behave simultaneously in space. It gives an extra dimension to 

the statistical analysis.  In the analysis of antibiotic sales in the last eighteen (18) 
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years, counties can be broken in half: twenty-two (22) show a decrease in 

antibiotic sales, two (2) have remained within the same numbers, and the 

remaining twenty-two (22) show an increase in antibiotic sales.  

If we compare the map about population differences between counties 

from 1999 to 2017 (Figure 3.2) with the map about antibiotic sales differences 

during the same time (Figure 3.3), there is a distinct variation in color for many of 

the counties. For most of the counties that increased in population during those 

two decades, Figure 3.3 shows that antibiotic prescription sales also increased 

(although not for all of them). The same cannot be said for the counties that 

decreased in population or remained with similar population numbers. For those 

counties, there is a variation between whether there was an increase and 

decrease in antibiotic prescription sales.  The biggest differences between the 

two maps can be seen between the west, north-west counties and eastern 

counties.  It could be interesting to research further how the agricultural sector 

has influenced these two areas both in terms of population changes and in 

antibiotic sales. 
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Figure 3.3. Difference in total antibiotic prescription sales per county in 
South Carolina between 1999 and 2017. 

 

Time Series Analysis 

The result of the Emerging Hot Spot Analysis (ArcGis Pro, 2021) shows 

how using spatial analysis helps incorporate spatial as well as time related 
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factors in multi-level model analysis. The analysis takes into consideration time 

association, geographical proximity influences, and subject related factors. 

 

 Figure 3.4. Emerging Hot Spot Analysis in South Carolina from Antibiotic  
Prescription Sales Data from 1999 to 2017. 
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 The geographical locations that appear with different shades of red in the 

map in Figure 3.4, describe different trends for the antibiotic prescription sales 

identified. Other factors such as age of the population, immigration, and other 

demographic factors need to be looked closer. Interventions on antibiotic use are 

necessary for the two locations, but the difference in trends imply that a different 

approach is necessary. 

Conclusion 

With these series of maps, we can conclude that population is a decisive 

factor in determining the status of antibiotic prescription sales. Changes within 

short periods of time can provide a general image, but to avoid an ecological 

fallacy, the time period in this study is from data from significant period of time 

and at a granular geographical spectrum. Advances in GIS software allow a 

review of the data in three dimensions (data, place, and time). The cluster 

analysis is not only of a snapshot of the State at a particular time, but also 

describes the trends for the State. Environmental surveillance can be narrowed 

down to not only locations that were expected (dense urban areas) to have high 

antibiotic usage, but also to locations that are showing the larger differences in 

population and antibiotic sales in the last two decades. These locations could see 

bigger changes in the environment and higher antibiotic loading (Browne, et al, 

2021).  

Something that has not been included and could help give a clearer 

picture is adjusting for age in the population, although this has not been 

deterministic in the literature. It is expected that older individuals will be 
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consuming more antibiotics, but it mostly occurs at the hospital setting (Browne, 

et al, 2021). Research in children shows that the consumption of antibiotics is 

very high and because of the nature of the infections, most antibiotics are 

prescribed in outpatient settings (Browne, et al, 2021). Research has also shown 

that working adults are exposed to higher degrees of bacterial and viral infections 

and over the counter antibiotics seemed to be over prescribed for this age group 

(Reynolds, 2016). Adjusting for age could help analyze how the age of a 

population affects antibiotic usage in the various South Carolina counties 

(Browne, et. Al, 2021).  

In this Chapter, it has been shown that there is an association between 

population density, geographical location, and antibiotic sales. In an attempt to 

further the research and narrow the gap between the connection between 

antibiotic sales and overall population health, in Chapter 5, the longitudinal study 

describes how antibiotic sales can be linked to increase or decrease to 

premature death.  Chapter 4 is an experimental case scenario of how WWTP can 

impact neighboring areas and explain how antibiotic loading can affect dense 

populations in higher proportion. It is also an example of proposed environmental 

surveillance that could help control the dispersion of antibiotic resistant genes 

and consequently antibiotic resistant gene exchange. 
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CHAPTER 4: 

EMISSION AND DISPERSAL OF ANTIBIOTIC RESISTANCE GENES 

THROUGH BIOAEROSOLS GENERATED DURING THE TREATMENTS OF 

MUNICIPAL SEWAGE

 
 

Without the implementation of better control measures, it is estimated that the 

number of yearly global deaths related to antibiotic resistant infections 

will continue increasing, becoming widespread across many economic and public 

health sectors (O’Neill 2014; Pruden 2014; Berendonk et al., 2015). In an effort to 

reduce the spread of  ARB, it is important to understand the socio-ecological 

coupling of resistance (i.e., how antibiotics and ARB within social 

systems transmit to and cycle within environmental systems) and routes of 

potential human exposure within these coupled systems.   

In urban settings of developed and developing nations, wastewater 

treatment plants (WWTPs) act as socio-ecological couplers through the 

concentration, treatment, and subsequent environmental release of sewage 

collected from surrounding communities. Given that antibiotics, ARB, and, ARGs 

have been observed in municipal sewage, WWTPs are often considered a 

significant reservoir of antibiotic resistance (Uyaguari et al., 2011; Rizzo et al., 

2013; Yang et al., 2014; Mao et al., 2015; Xu et al., 2015; Zhang et al., 

2015; Guo et al., 2017). Additionally, it has been shown that the abundance of
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 antibiotic resistance genes may be higher in WWTP effluent than in raw sewage, 

suggesting that the treatment process could be selecting for more resistant 

bacteria. Studies have further shown that ARGs can be transferred from WWTPs 

into surrounding ecosystems through the release of treated effluent (Czekalski et 

al., 2012; Xu et al., 2015, Zhang et al., 2015; Chu et al., 2018). While studies 

have identified the release of ARB/ARGs in treated sewage, little is known about 

potential dispersal through wastewater bioaerosol (i.e., airborne particles of 

biological origin) emissions.     

It is generally accepted that exposure of wastewater workers to bioaerosols 

carries a risk of negative health outcomes. This thought is based on the fact that 

sewage is known to contain a range of potential pathogens (Feachem et al., 

1983; Rose 1986; Shuval et al., 1986; Wéry et al., 2008) and that some studies 

have suggested a correlation between exposure of WWTP bioaerosols and a 

range of respiratory and gastrointestinal symptoms (Rylander et al., 

1999; Douwes et al., 2003; Prażmo et al., 2003). Additionally, the transfer of 

bacteria from wastewater to the air has been shown to occur throughout the 

treatment process with the greatest transfer often occurring during the 

wastewater aeration step (Filipkowska et al, 2000; Pascual et al., 2003; 

Fernando and Fedorak, 2005; Sánchez-Monedero et al., 2008; Korzeniewska et 

al., 2009; Wang et al., 2018). While wastewater bioaerosols are considered a 

possible route of worker exposure to biohazards, little work has been done to 

understand the contribution of bioaerosols to the transmission and possible 

exposure to ARGs. Studies have shown that bioaerosols generated 



28 
 

within agricultural settings can aid in the dispersal of ARB/ARGs (Just et al., 

2012; McEachran et al., 2015) and one study showed the presence of a 

sulfonamide resistance gene (sul2) in bioaerosols generated during the sludge 

thickening stage of wastewater treatment (Li et al., 2016). Coupling these lines of 

evidence with the knowledge that WWTPs can harbor high concentrations of 

ARB, it is likely that bioaerosols generated during municipal wastewater 

treatment represent a significant route of disseminating ARGs into surrounding 

urban environments.   

The main goal of this work was to better define the contribution of WWTP 

bioaerosols to potential environmental distribution of ARGs. Replicate bioaerosol 

samples were collected immediately upwind and downwind from the aeration 

tanks of a municipal wastewater treatment plant that uses secondary treatment 

based on mixed coarse and fine bubble aeration of activated sludge. For source-

to-air comparison, replicate liquid sludge samples were obtained from the 

aeration tanks. For all samples, a combined culture-dependent and culture-

independent approach was used to test for the presence and quantity 

of 84 ARGs conferring resistance to a range of antibiotic classes and 

to characterize the taxonomic diversity of the microbial community. Results from 

these studies will further define the contribution of bioaerosols to antibiotic 

resistance gene distribution and provide a foundation for modeling the fate and 

transport of antibiotic resistance genes from a WWTP source into the 

surrounding environment.     
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Methods  

Sample site and meteorological conditions  

The WWTP site that was examined in this study is located in the southeast 

USA along the coast of South Carolina. This WWTP uses secondary 

treatment with coarse and fine bubble aeration of activated sludge and is capable 

of treating approximately 15 million liters of municipal waste per day (MLD). 

This site was chosen because it uses similar treatment technology as many 

existing WWTPs, the coastal location provides predictable wind patterns, and its 

small scale will limit model complexity. During sampling, the meteorological 

conditions were as follows: average temperature: 13°C, average wind 

speed: 13 km h-1 from north-northwest direction, average humidity: 70%, and 

zero precipitation.  

 Field sample collection  

To examine the dispersal of ARGs from activated sludge tanks, bioaerosol 

samples were collected immediately downwind from sludge aeration tanks 

(Figure 1). Bioaerosol samples were also collected upwind from all WWTP 

processes to provide an estimate of the background prevalence of ARGs. Due to 

the prevailing wind direction, the control site was located immediately adjacent to 

the northern boundary of the WWTP, providing a sampling area with minimal 

influence of any WWTP process. At both upwind and downwind sites, replicate 

bioaerosol samples were collected on polytetrafluoroethylene (PTFE) filters for 

culture-independent analysis and on gelatin membrane filters for culture-
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dependent analysis. For culture independent analysis of the microbial community 

taxonomic diversity and ARG prevalence, nine PTFE samples were 

collected simultaneously at both upwind and downwind locations for 90 mins with 

a flow rate of 56 L/min resulting in a volume of 5,040 L of air filtered per sample 

and 45,360 L of total air filtered at each location. Following sampling, PTFE filters 

were immediately placed in sterile 15 ml conical tubes containing 8ml 

of Qiagen AL buffer, stored on ice for transport to the 

laboratory, and subsequently stored at -80˚C until further processing. For culture-

dependent microbial community and ARG analysis, six samples were collected at 

both upwind and downwind locations on gelatin membrane filters using Sartorius 

MD8 Airscan air samplers at a flow rate of 125 L/min for 30 mins, resulting in 

3,750 L of filtered air per sample and 22,500 L of total filtered air at both 

locations. After sampling, gelatin membrane filters were individually 

stored in sterile bags and cooled for transport to the laboratory. To characterize 

the potential source of downwind bioaerosols, six samples of liquid activated 

sludge were collected directly from the surface of the sludge in sterile 50 ml 

conical tubes. The sludge was centrifuged for 10 min at 21,000 x g and the pellet 

resuspended in 8 ml of Qiagen AL buffer and stored at -80˚C for further 

processing.  
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Figure 4.1. Layout of the examined WWTP showing the sampling locations 
and prevailing wind direction. 
 

Isolation of culturable bacteria  

To isolate culturable bacteria from upwind and downwind 

samples, gelatin filters were incubated on 1% Luria-Bertani (LB) agar plates 

containing 0.0125 % of cycloheximide and incubated at 28˚C for 72 

hours. Following incubation, plates were washed twice with 1% LB and the 

wash collected in 15 mL centrifuge tubes. Four ml of each plate wash was 

combined with an equal amount of 50% glycerol and aliquoted into 2 ml freezer 

vials for long-term storage at -80˚C. The remaining wash was aliquoted into 15 

ml tubes and centrifuged for 10 min at 21,000 x g. The cell pellets 

were resuspended in 8 ml of Qiagen AL buffer and stored at -80˚C for further 

processing.  
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Nucleic acid extraction  

DNA extraction from PTFE filters, culture-based cell pellets, and liquid 

sludge pellets was performed using a combination of bead-beating, freeze-

thaw, and the Qiagen DNeasy Blood & Tissue DNA extraction kit. Briefly, a 2:1 

mixture of 1 mm and 0.1 mm DNase- and RNase-free silicon-

carbide beads (Biospec Products, Bartlesville, OK) was added to each sample 

followed by bead-beating for 10 min. Following bead-beating, samples were 

exposed to three freeze-thaw cycles with freezing in liquid nitrogen for 1 min and 

thawing at 70˚C for 5 minutes. Samples were then centrifuged for 10 min at 

8,000 x g and supernatant passed through the DNeasy mini spin column and 

DNA eluted with AE buffer following the manufacturer’s instructions. DNA quality 

and quantity was measured using a NanoDrop 

spectrophotometer and a Qubit fluorometer (ThermoFisher Scientific). Isolated 

DNA was then used for qPCR and DNA sequencing to examine the presence 

and quantity of ARGs and the microbial community composition, respectively.  

Microbial community antibiotic resistance gene identification  

The identification of ARGs in upwind and downwind bioaerosols, liquid 

sludge, and cultured cells was examined using the Antibiotic Resistance Genes 

Microbial DNA qPCR arrays (Qiagen, Valencia, CA, USA) according to the 

manufacturer’s instructions. These arrays provide high-throughput profiling of 

84 genes that represent major classes of ARGs (i.e., aminoglycoside, beta-

lactam, fluoroquinolone, macrolide-lincosamide-streptogramin B, tetracycline, 

vancomycin, and multidrug resistance classifications). Each 25 µl qPCR reaction 



33 
 

consisted of 12.5 µl of Microbial qPCR Mastermix (Qiagen) containing 

the HotStart DNA Polymerase, 5 ng of template DNA, and microbial DNA-free 

water. Reaction mixtures were added into each well of the 96-well ARG array 

plate containing primer-probe mixtures specific for each tested gene. Pan-

bacteria and PCR control wells provided positive controls to test for the presence 

of bacterial DNA and the absence of any PCR inhibitors. Thermal cycling was 

performed on an ABI 7900HT Fast Real-Time PCR System (Applied Biosystems, 

Foster City, CA) with the following conditions: Initial PCR activation at 95°C for 

10 mins followed by 40 cycles consisting of denaturation for 15 s at 95°C and 

annealing and extension for 2 min at 60°C. A threshold cycle (CT) value of 

37 was used and baselines were manually set for cycles 8-20 with 

a threshold fluorescence setting of 0.2. Dissociation curves were generated 

following reactions and qPCR amplicons were analyzed using gel 

electrophoresis to examine the specificity of each reaction. The ARGs within 

each sample were identified using the DCT method against a no-template control 

sample as outlined in the Excel Data Analysis Software (Qiagen). The Jaccard 

index of similarity based on the presence or absence of individual ARGs was 

used to examine the similarity in ARG profiles observed for each sample type.    

Microbial community antibiotic resistance gene quantitation  

Microbial DNA qPCR assays (QIAGEN) were used for quantitative 

comparison of each ARG identified in the downwind samples as compared to 

upwind and activated sludge samples. Each 25 µl qPCR reaction consisted of 

12.5 µl of Microbial qPCR Mastermix (Qiagen) containing the HotStart DNA 
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Polymerase, 1 µl of Microbial DNA qPCR Assay (contains primer-probe 

sets unique for each tested ARG), 5 ng of template DNA, and microbial DNA-free 

water. Thermal cycling was performed on an ABI 7900HT Fast Real-Time PCR 

System (Applied Biosystems, Foster City, CA) using the conditions and settings 

described in the previous section with dissociation curves and gel 

electrophoresis used to assess reaction specificity. For quantitation of ARG copy 

number a six-point CT standard curve for each gene was generated using 

triplicate wells of a positive control containing 0, 500, 1000, 2000, 4000, 8000 

copies of the tested gene. The CT values for replicate upwind, downwind, and 

activated sludge samples were then compared against the standard curve to 

determine the number of ARG copies for each sample. To minimize potential 

bias while comparing across different sample types (i.e., liquid and air), ARG 

copy numbers were normalized to ng of total DNA for each sample. ARG copy 

numbers were then log transformed and data visualized as grouped box plots 

generated using the ‘ggplot2’ package (Wickham, 2016) of the R software (R 

Core Team, 2018). Analysis of variance (ANOVA) and Tukey’s 

HST were performed using R software to analyze the effects of sample location 

(UW, AS, DW) on the abundance of each ARG and statistically significant 

differences were accepted at p < 0.05.   

Microbial community 16S rRNA gene profiling  

From the extracted nucleic acids, the V4 hypervariable region of the 16S 

rRNA gene was amplified from each sample using the 515F-Y forward primer (5'-

GTGYCAGCMGCCGCGGTAA) and the 926 reverse primer (5'-
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CCGYCAATTYMTTTRAGTTT) (Parada et al, 2015). Unique multiplex identifier 

(MIDs) tags were added to the reverse primer sequence to allow multiplexing of 

samples during Illumina Miseq runs. Triplicate 50 μl NEBNext® High-Fidelity 2X 

PCR Master Mix reaction mixtures contained 1 ng of DNA, 0.2 μM forward primer 

and 0.2 μM indexed reverse primer. Cycling conditions for all reactions included 

a 30 second incubation step at 98˚C, followed by 25 cycles of 98˚C for 10 

seconds, with an annealing temperature of 55˚C for 25 seconds and extension at 

72˚C for 10 seconds, and a final extension at 72˚C for 5 minutes. Amplicons were 

purified using the QIAquick PCR purification kit (Qiagen) and quantified with a 

Qubit 2.0 fluorometer (Life technologies, Grand Island, NY, USA). Indexed 

amplicons from all samples were combined on a 1:1 concentration ratio. The 

combined sample was analyzed using a Qubit fluorometer to measure 

concentration and an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa 

Clara, CA, USA) to measure amplicon size distribution. The final library was 

diluted to 17 pM and analyzed on an Illumina MiSeq DNA sequencer (Illumina, 

Inc., San Diego, CA, USA) using the MiSeq Reagent Kit v3 providing 2 x 

300 bp paired end reads. The resulting amplicon sequences 

were analyzed using mothur [v.1.33.0; (Schloss et al., 2009)] following a modified 

version of the MiSeq SOP (Kozich et al., 2013). After paired-end reads from all 

libraries were assembled, sequences not matching quality criteria (maximum 

ambiguities = 0, £ 8 homopolymers, ambiguous length ³ 300 or <700bp) were 

culled using the screen.seqs command. Non-chimeric sequences were 

dereplicated and aligned using Silva Archaea and Bacteria databases trimmed to 
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the V4 region. Sequences were assigned to operational taxonomic units (OTUs) 

with a sequence similarity threshold of 97% identity using 

the cluster.split command and subsequently classified. Heatmaps were used to 

visualize the relative abundance of classified sequences across samples and 

constructed using R software (R Core Team, 2018) with the heatmap2 command 

in gplot (Warnes et al., 2012). The Shannon and inverse Simpson indices 

of diversity, the Bray-Curtis dissimilarity coefficient (BC), and the shared Chao 

richness indicator were calculated at the 0.03 level 

using Mothur (v.1.33.0). The Bray-Curtis index and percent similarity of the 

microbial community profiles for the different samples was calculated by (1-

BC)*100. The Kruskal-Wallis rank sum test was used to assess differences in the 

alpha diversity of samples based on location and pairwise comparisons were 

made using the Wilcoxon rank sum test with FDR p-value 

correction. Permutational multivariate analysis of variance (PERMANOVA) was 

applied to Bray-Curtis distance matrices using R with the Vegan package 

(Oksanen et al., 2017) to test the differences between community diversity and 

sampling location.     

Antibiotic resistance gene dispersion  

The dispersion pattern of ARGs emitted from the WWTP was determined 

using an approach of coupling the wind rose at the site with the sampling data. 

The inputs to the model was meteorology data: the wind velocity and direction 

and emission rate of ARGs from the WWTP. The wind velocity and direction 

were based on the wind rose available for the location closest (70 m) to the 
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sampling site. ARG emission rate was calculated using total non-

transformed ARG copy numbers generated using qPCR quantitative assays 

of the DW bioaerosols per hour of sampling. ARGs that were identified in both 

UW and DW samples were not included in the emission rate as the source of 

these ARGs was inconclusive. Based on this approach, the emission rate was 

estimated to be ~10,620 total ARGs per hour. For the mathematical 

approach, the following assumptions were applied: 1) no deposition, 2) the 

terrain had no impact, 3) continuous emission over the time period under 

consideration and 4) the ARGs were conveyed by aerosols that acted as tracers 

(i.e. the flow dynamics controlled the dispersion pattern). The quantity 

or total abundance of the ARGs (GCN) and the distance traveled (D, km) by the 

genes was calculated using the equation: where ER = emission rate (total 

ARG abundance per hour), t = time (h), and WS = wind speed (km h-1). The 

calculations were done using Microsoft Excel and 

the openair (Carslaw and Ropkins, 2012) and plotrix (Lemon, 2006) packages 

of R.   

Results 

Identification of antibiotic resistance genes in WWTP sludge and 

bioaerosols  

A qPCR based array system was used to examine the presence of ARGs in 

WWTP activated sludge (AS) and bioaerosols collected upwind (UW) and 

downwind (DW) from the activated sludge aeration tanks. Out of the 84 

tested genes, AS showed the greatest frequency of ARG detection (50%; 42 
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ARGs) followed by the DW samples (20%; 17 ARGs) and the UW 

samples (7%; 6 ARGs). The beta-lactam resistance genes (BLA) were the most 

frequently detected ARGs, comprising 60% of genes identified in AS samples, 

54% in DW, and 34% in UW. Further analysis indicated that among the BLA 

genes, those encoding serine-utilizing hydrolases (Ambler classes A, C, and 

D) were the most prevalent with Ambler class B genes encoding metallo-utilizing 

hydrolases detected less frequently. Other frequently detected ARGs were those 

conferring resistance to fluoroquinolones (Fluoro), aminoglycosides (Aminogly), 

tetracyclines (Tetracyc), and macrolide/lincosamide/streptogramin (MLS).   

At the individual gene level, the Jaccard index of similarity showed that the 

activated sludge AR profile is most similar to that found in the DW samples (68% 

similar) as compared to UW samples (AS vs UW 13% similar) (Figure 3.2). The 

occurrence of ARGs across samples is listed below and separated by beta-

lactamase class or the antibiotic classes within which individual genes confer 

resistance.   

Beta-lactamases: Activated sludge samples showed the presence of a 

wide range of genes across beta-lactamase classes A and D encoding extended 

spectrum beta-lactamases (ESBLs) that have activity against late 

generation cephalosporin antibiotics. Among these genes, the plasmid 

mediated GES, TLA-1, VEB, OXA-10, OXA-2 ESBL-encoding genes were found 

in both AS and DW samples but not UW samples. Among these classes, one AR 

gene (OXA-60) was found in UW, DW, and AS samples. Among the class C 

(AmpC) beta-lactamases, six plasmid-encoded genes that are often associated 
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with Enterobacteriaceae and confer resistance to broad and extended spectrum 

cephalosporins were observed in the AS. Additionally, genes encoding the FOX-

type enzymes (FOX) that are especially active against cefoxitin and the 

constitutively expressed MIR genes were also observed in the DW air 

samples. No class C beta-lactamase genes were observed in the UW 

samples. Three genes encoding class B metallo-beta-lactamases were observed 

among all samples. The ccrA gene (also called cfiA) that is commonly 

associated with carbapenem resistance in Bacteroides fragilis was only observed 

in AS samples. The divergent integron-encoded IMP-12 gene conferring 

resistance to high levels of imipenem was observed in both AS and DW samples 

while the IMP-5 gene was only observed in the UW air samples.   

MLS: Among the macrolide, lincosamide, and streptogramin B (MLS) 

resistance genes, the rRNA methylase encoding ermB and ermC genes were 

observed in AS, DW, and UW samples while genes encoding efflux pumps 

(mefA and msrA) were only observed in AS and DW samples.   

Tetracyclines: Genes encoding efflux pumps that confer resistance to 

tetracyclines (tetA and tetB) were also only observed in AS and DW samples.   

Fluoroquinolones: Seven genes conferring resistance to fluoroquinolones 

(e.g., ciprofloxacin) were identified in the sludge and air samples. Four groups of 

the plasmid-mediated qnr genes (qnrA, qnrB, qnrD, and qnrS) encoding 

pentapeptide repeat proteins were observed in the AS samples with 

the qnrS gene also identified in DW samples and the qnrB-1 group identified 

in AS, DW, and UW samples. Additionally, the plasmid-mediated aac(6’)-lb-
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cr gene encoding a variant of the aminoglycoside acetyltransferase was also 

identified in the AS and DW samples.   

Aminoglycosides: The potential for aminoglycoside enzymatic inactivation 

by acetyltransferases (aacC1 and aaC2) was observed only in AS samples while 

genes encoding nucleotidyltransferases (aadA1) were identified in AS, DW, and 

UW samples.   

Vancomycin: Potential resistance to vancomycin was identified only in the 

AS samples by the presence of the vanB gene encoding a D-Ala-D-Ala ligase 

homolog that can synthesize D-Ala-D-Lac as an alternative substrate for 

peptidoglycan synthesis.  
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Figure 4.2. Heatmap of Relative abundance of bacterial DNA present in 
Upwind air samples (UW), Downwind air samples (DW), activated sludge 
(SL), Upwind cultured air samples (UWc), and Downwind cultured air 
samples (DWc).  
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 Figure 4.3. Identification of specific antibiotic resistant genes in WWTP 

upwind (UW), downwind (DW), activated sludge (AS), cells cultured from 
UW (UWc) and DW (DWc). 

 
Quantitation of antibiotic resistance genes in WWTP sludge and 

bioaerosols  

To better define the potential influence of sludge aeration on the antibiotic 

resistance profile of WWTP bioaerosols, the number of copies of 

each ARG identified in the DW air samples was compared to the number of 

copies found in liquid sludge samples and the UW control air samples . Analysis 

of variance indicated that the abundance of ARGs differed significantly (p < 0.05) 

based on sample location. Among the Class A BLA genes, the GES, TLA-1, 

and VEB genes were not identified in UW control samples but were present in 

DW (1.3, 2.1, and 3.2 copies, respectively) and in AS samples (1.7, 1.2, 

and 2.6 copies, respectively). While there was no significant difference (Tukey’s 

HST p > 0.05) in the abundance of the GES gene between the AS and 

DW samples, both the TLA-1 and VEB genes were significantly higher (p < 

0.05) in abundance in the DW samples. A similar trend was observed for the 
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class B IMP-12 gene with DW samples containing higher copy 

numbers (3.5 copies) compared to AS samples (1.9 copies). The class C BLA 

genes, MIR and FOX, were the lowest abundant ARGs detected, with 

abundances ranging from 0.2 to 0.6 copies in the AS and DW samples. The most 

abundant ARG identified was the class D-BLA OXA-60 gene which had an 

abundance of approximately 4.0 copies in UW and DW samples as compared 

to 1.9 copies in the AS samples. The OXA10 and OXA2 genes were higher in 

abundance in AS samples (3.0 and 2.7 copies, respectively) as compared to DW 

samples (2.5 and 1.3 copies, respectively). Among the MLS ARGs, 

the mefA gene was not present in UW samples but had similar abundances of 

approximately 2.3 copies in AS and DW samples. The ermB abundance was 

significantly different (p < 0.05) between the UW (1.1 copies) and DW 

(2.3 copies) air samples but both were not significantly different from 

the AS samples (1.7 copies). However, the ermC gene was significantly higher (p 

< 0.05) in both UW (2.8 copies) and DW (2.4 copies) air samples as compared to 

AS samples (0.4 copies). The tetracycline resistance gene (tetA) was most 

abundant in the AS samples (3.6 copies DNA) as compared to the DW samples 

(2.3 copies). Among the fluoroquinolone resistance genes, the AAC(6)-lb-cr gene 

had similar abundances within AS and DW samples (2.3 and 2.6 copies, 

respectively) while the QnrS gene was more abundant in DW samples 

(3.1 copies) as compared to AS samples (2.5 copies). Additionally, the 

abundance of the QnrB-5 gene was not significantly different between the UW 

(2.5 copies) and DW (1.5 copies) air samples but was significantly lower (p < 
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0.05) in abundance in the AS samples (0.4 copies). The aminoglycoside 

resistance gene, aadA1, was identified in all samples but was more abundant in 

DW and AS samples (approximately 2.3 copies) as compared to UW air samples 

(0.8 copies).  

 

 Figure 4.4. The concentration of antibiotic resistant genes identified in 
Upwind air samples (blue), Downwind air samples (red), and activated 
sludge (brown)   
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Microbial community analysis  

To examine the possible dispersal of bacteria from liquid sludge into 

surrounding air, microbial community 16S rRNA gene profiles were generated for 

UW control air samples, liquid AS, and DW air samples. Based on the Shannon 

and inverse Simpson indices, the AS community showed the greatest microbial 

diversity at the phylum level followed by the DW and UW communities. The most 

abundant phyla across the UW, AS, and DW samples were the Proteobacteria, 

Bacteroidetes, Actinobacteria, Firmicutes, Planctomycetes, Chloroflexi, 

Verrucomicrobia, Nitrospirae, Acidobacteria, and Chlorobi. At 

the genus level, samples showed high richness with most genera having a 

relative abundance less than 1%. However, 16 genera had a relative abundance 

greater 1% in some samples [listed in brackets] and were contained within 

the Betaproteobacteria (Zoogloea [AS, 

DW], unclassified_Comamonadaceae [AS, 

DW], Thauera [AS], Azospira [AS], Dechloromonas [AS], Chitinivorax [DW], Cand

idatus_Accumulibacter [AS], and Ralstonia [UW, DW]), 

the Alphaproteobacteria (Rhodobacter [AS]), the Gammaproteobacteria (Alkanin

diges [DW], Acinetobacter [DW], and Candidatus_Competibacter [AS]), the Bacte

roidetes (Flavobacterium [AS, DW], Ferruginibacter [AS], 

and Leadbetterella [AS], and the Nitrospirae (Nitrospira [AS]). Overall, 

the Shannon and inverse Simpson indices showed that the microbial diversity 

was significantly different based on sample location (Kruskal-Wallis rank sum test 

p < 0.05). Pairwise comparisons showed that the diversity for the UW, AS, and 
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DW sites were unique (Wilcoxon rank sum test p < 0.05) with the greatest 

microbial diversity found in the AS and DW samples followed by UW control air 

samples. Additionally, PERMANOVA test showed that the microbial community 

structure at each sample location was different (p < 0.05) and pairwise 

comparisons of the Bray Curtis index and shared Chao showed that the AS and 

DW communities were more similar (28.9% similar) as compared to the AS and 

UW communities (3.4% similar). The UW and DW communities were also 28.9% 

similar, suggesting that the DW samples are equally influenced by the UW and 

AS microbial communities. While direct links between specific bacteria and ARGs 

could not be determined, since the same DNA was used in 16S rRNA gene and 

ARG profiling, the overall ARG profile of each sample could be associated with 

its community composition.       

Comparison of culture-dependent and culture-independent bioaerosol 

analyses  

To explore the differences in the results of using culture-dependent versus 

culture-independent approaches to characterize the bioaerosol samples, 

culturable microbes were isolated from cellulose filters and the ARG and 

taxonomic profiles compared with those generated from the culture-independent 

analysis. The culture-independent analysis detected more ARGs than the 

culture-dependent analysis with 17 versus 5 ARGs detected in DW samples 

compared to DW cultures (DWc) and 6 versus 2 ARGs detected in UW samples 

as compared to UW cultures (UWc). Among the individual ARGs detected in 

cultured cells, the oxa-23, msrA, and the oprm genes were detected 
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in bioaerosols using the culture-based approach but not the culture-independent 

approach while the remaining genes were detected using both approaches 

(Figure 3.2). When analyzing microbial community alpha diversity, the Shannon 

and inverse Simpson indices indicate that the diversity of the culture-based 

samples (UWc and DWc) was significantly lower (Wilcoxon p < 0.05) than the 

culture-independent samples at the phyla and genera levels. The taxonomic 

profiles of the UWc and DWc show that the most abundant cultured microbes 

were affiliated with the Firmicutes and Proteobacteria phyla. At the genus level, 

genera within the Firmicutes (Bacillus and unclassified_Planococcaceae) and 

the Gammaproteobacteria (unclassified_Enterobacteriaceae and Pseudomonas, 

and Stenotrophomonas) were detected at lower abundances in bioaerosols using 

culture-independent methods (UW and DW) as compared to higher abundances 

found in the cultured samples (UWc and DWc). Overall, the Bray-Curtis and 

shared Chao indices indicate that the microbial community structure for 

the UWc and DWc samples were more similar (24%) to each other than to any of 

the culture-independent samples.  

Antibiotic resistance gene dispersion  

The potential dispersion pattern of ARGs emitted from the 

WWTP was modeled through coupling meteorological data (wind pattern) and 

ARG emission rate. The emission rate of ~10,620 total ARGs per hour was 

based on the abundance of ARGs found in DW bioaerosols but not 

UW control samples. Among the ARGs included in the emission rate, three 

genes (QnrS, IMP12, and VEB) comprised 83% of the estimated emissions while 
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an additional nine genes comprised the remaining 17% of ARG emissions. The 

wind rose at the sampling location showed that 60% of the wind was from the 

north flowing south towards the plant. Winds originated mainly from the north (N), 

north north west (NNW), north west (NW) and west (W). Maximum wind speeds 

between 16 to 20 km h-1 occurred about 2% of the sampling period. The 

dominant wind speed was between 8 to 12 km h-1 occurring nearly 40% of the 

duration from the N, 12% from the NNW, 25% from NW and 5% of the duration 

from the W. Wind speeds in the range of 4 to 8 km h-1 occurred only from the N 

and NNW directions. The lower half of the plot shows the frequency and total 

ARG abundance per hour for the wind conditions occurring during the period of 

sampling. The maximum hourly gene count, >3,000 ARGs was possible 7% of 

the time towards the south (S) while 1,800 to 2,400 ARGs spread towards the 

south (S) and south south east (SSE) at frequencies of 15 to 45% and 12 to 

25%, respectively. Towards the east (E) the frequency was 8% for 1,200 to 

1,800 ARGs and less than 5% frequency for the spread of 1,800 to 

2,400 ARGs. The possible spread of ARG emissions over a 24h time 

period based on wind velocity but independent of wind direction was also 

determined. These dispersion patterns were calculated based on minimum (5 km 

h-1), average (10 km h-1) and maximum (20 km h-1) wind speeds. At the minimum 

wind speed, the model suggests that after a 24 h time period, more than 220,000 

ARGs can be dispersed within a 10 km radius around the WWTP. At 80 km from 

the source the number of ARGs is more than 50,000 and decreases based on 

distance to the near emission rate of 10,000 ARGs at a distance of 120 
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km. Simulated increases in wind speed show concomitant increases in ARGs at 

all distances with greater than 100,000 and 200,000 ARGs occurring at 120 km 

at wind speeds of 10 and 20 km h-1, respectively.   

   

Figure 4.5. Wind rose and dispersion model. 

 

  

 



51 
 

Conclusions  

With global antibiotic consumption increasing (Van Boeckel et al., 

2014) and resistant infections becoming more prevalent, not only are more 

extensive antibiotic stewardship programs needed but also better knowledge 

and surveillance of areas of possible human exposure to ARB and ARGs. The 

primary finding of our study was that bioaerosols generated during the treatment 

of municipal sewage can be a potential source for the emission and dispersal of 

large numbers of a diverse range of clinically relevant ARB/ARGs. While studies 

are needed to further define the influence of meteorological, terrain, and 

process variability, our modeling showed that this dispersal may generate an 

area of localized high occupational human ARB/ARG exposure as well as more 

widespread deposition into surrounding communities and ecosystems. Lastly, the 

methods used during sewage treatment at the WWTP investigated in this 

study are routinely used at other sites, suggesting that similar patterns of 

bioaerosol ARB/ARG dispersal may be occurring at WWTPs across the 

developed and developing world and contributing to the trend of increasing global 

rates of antibiotic resistant infections. 
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CHAPTER 5: 

LONGITUDINAL ANALYSIS OF ANTIBIOTIC USE AND DESCRIPTION OF 

TWENTY-ONE CLASSES OF ANTIBIOTICS IN SOUTH CAROLINA BETWEEN 

2010 AND 2017

 
 

 
Statistical significance of antibiotic use and quantities 
 

The role of antibiotics in medicine in the last 75 years has been decisive in 

the developments of drugs used against communicable disease, surgical 

procedures and advances in immunology (Rodríguez-Rojas, Rodríguez-Beltrán, 

Couce, & Blázquez, 2013). The morbidity and mortality from infectious disease 

decreased considerably with the inception of penicillin (Ling et al., 2015). The 

dawn of antibiotics contributed in developing a mentality of conformism and 

familiarity within clinical practice in the treatment of infectious conditions 

(Andersson & Hughes, 2012) (Gould, 1999).  

An unintended consequence of the broad use of antibiotics was the rapid 

subsequent antibiotic resistance acquired by bacteria (Spicknall, Foxman, Marrs, 

& Eisenberg, 2013). Bacteria resistant to penicillin were isolated almost 

immediately after the first successful treatments with the antibiotic (Berendonk et 

al., 2015) (Grundmann et al., 2011). Resistance to antibiotics is a capability that 

bacteria have developed over millions of years of evolution (Martinez, Coque, & 
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Baquero, 2015)(von Wintersdorff et al., 2016).  It can be compared to a system of 

checks and balances that occurs naturally between microorganisms to maintain 

equilibrium in the environment (Cheng et al., 2016)(Summers, 2002)(Andersson 

& Hughes, 2012). 

Within the classes of antibiotics, there are broad spectrum or first line 

antibiotics and targeted antibiotics. Most antibiotics are prescribed for specific 

health conditions, although there are some that are more widely used. The 

development of new antibiotics has decreased in the last decades because 

pharmaceutical companies have noticed a low return on investment. Not long 

after a new antibiotic hits the market, clinicians start identifying antibiotic 

resistance to that antibiotic. As a result, antibiotics have started being used 

based on temporal trends (Raban, et al., 2021). The loss of efficacy of broad-

spectrum antibiotics has led to the use of more expensive and targeted 

antibiotics. The loss of efficacy also represents an increase in morbidity and 

mortality in developing countries and possibly rural areas. One important factor is 

the volume of consumption of antibiotics, independent of whether it is being used 

correctly (Van Boeckel, 2014). 

Antibiotic consumption increased 35% between 2000 and 2010, mainly in 

developing countries, although there was an increased consumption mostly of 

glycopeptides, carbapenems, polymyxins, and monobactams in many countries 

irrespective of their income. By contrast, increased cephalosporin and 

fluoroquinolone consumption was observed mainly in middle-income countries 

such as India and China. The changing patterns correspond with changes in the 
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global epidemiology of antibiotic resistance and to the increasing occurrence of 

some infections that are endemic in developing countries. These trends are 

suggesting that antibiotic consumption is affected by climate variations, 

geographical regions, and socio-economic status (Van Boeckel, 2014). 

The longitudinal analysis in this study looks at the possible association 

between antibiotic prescription sales and Years of Potential Life Lost (YPLL), 

which is a commonly used measure of overall health and is frequently collected 

at the county level. It also provides information on statistically significant 

differences within each South Carolina county and between counties, throughout 

the years in the analysis (2010-2017), which are the years where data is 

available. The model is used to test any variations throughout time and between 

the repeated measures. In vague terms, it can be described as running a logistic 

regression for each of the available measures for the group being studied. The 

null hypothesis to initially be tested is if there is a statistically significant trend in 

antibiotic prescription sales from 2010 to 2017 in the counties in South Carolina. 

Methods 

The data considered in the model is data from the CDDEP data described 

in the methods section in Chapter 3. In addition, publicly available data from the 

University of Wisconsin’s County Health Rankings project was included. A 

commonly used indicator for the overall health of a population is the YPLL. 

(County Health Rankings, 2022). This measure considers premature death as 

any death before the age of 65. It calculates the years a person could have lived 

and would have had productive years if it had not been because of their 
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premature death.  In an effort to estimate the role of antibiotics use and sales in a 

population, for the purpose of this study, YPLL is included as an independent 

variable in the longitudinal model describing the trend of antibiotic prescription 

sales from 2010 to 2017. 

The null hypothesis describes that there are no significant differences in 

the number of antibiotic prescriptions sold between the 46 counties in South 

Carolina from 2010 to 2017 and was tested using a longitudinal analysis with 

repeated measures and a fixed effect Using R (R Core Team, 2018) with the 

nlme package (Pinheiro, 2022). The variables included in this model were 

‘antibiotic prescription sales’ as the outcome variable, and ‘YPLL’, ‘quantity of 

antibiotics’, and ‘population’ as independent variables. Year was the variable 

used as time for the repeated measures, and included data for the 46 counties in 

South Carolina from 2010 to 2017.  

Missing data methods 

After cleaning the data from CDDEP and the publicly available data from 

County Health Rankings, it was clear that the data provided for YPLL for years 

2013 and 2014 was exactly the same. Such coincidence is not normal when 

working with these types of data, so it was better to replace the data completely 

for one of the years. To avoid losing one year in this situation, more specifically 

one year from the middle of the series, using the mean as a replacement for one 

of the years was plausible. The YPLL data has a normal distribution and using 

the mean was not going to create any outliers, but was going to reinforce 

whether the repeated measures had any trends. The method of replacing a 
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missing value with the mean is called imputation. In the case of this analysis 

using imputation would bring more benefits than limitations and it is a more 

favored method than completely eliminating one variable for one whole year from 

the model (Jakobsen, 2017). 

Results 

Longitudinal Analysis 

 The first step in developing the model is testing the null hypothesis with 

what is called the Unconditional Means Model. This model tests if there is any 

statistical significance or if the relationship between the data through the years 

within the counties is different from 0. The only variable included in this model is 

the outcome variable, without any other factors or a time series. 

R Code Model 1 

mod1 <- 
lme(Prescriptions~1,random=~1|Name,data=SC_Counties_pop_year_sum,method="ML") 
summary (mod1) 
intervals(mod1) 
plot (YPLL, Prescriptions) 
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R Output Model 1 

Linear mixed-effects model fit by maximum likelihood 
 Data: SC_Counties_pop_year_sum  
       AIC      BIC    logLik 
  8212.143 8223.868 -4103.072 
 
Random effects: 
 Formula: ~1 | Name 
        (Intercept) Residual 
StdDev:    133846.2 10784.61 
 
Fixed effects: Prescriptions ~ 1  
               Value Std.Error  DF  t-value p-value 
(Intercept) 95681.75  19769.43 322 4.839884       0 
 
Standardized Within-Group Residuals: 
       Min         Q1        Med         Q3        Max  
-7.1401424 -0.2485878 -0.0298026  0.1828655  5.2043247  
 
Number of Observations: 368 
Number of Groups: 46 
 

From this model, it can be determined that the null hypothesis is rejected: 

the p-value of 0 means that the mean is statistically significant and different from 

0. The scatterplot does show a possible linear association between the variables 

with a line that has a negative slope. The intraclass correlation coefficient (ICC) 

value does indicate that clustering is occurring. A high ICC value is an indicator 

that a repeated measures model (or multilevel model) is appropriate. 
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Figure 5.1. Scatterplot of Antibiotic Prescriptions sold and YPLL. 

  

 The results from Model 1 indicate that is necessary to determine if the 

model could use a Model 2 - fixed effect (different slope for each subject) or 

Model 3 - random effect (the same slope from all subjects). These models are 

also known as the Unconditional Growth Model. An XY plot of each county is 

useful to see a graphical representation of the model and determine its accuracy. 

R Code Models 2 and 3 

#Model with a fixed slope  
mod2 <- lme (Prescriptions~year, random=~1|Name, data=SC_Counties_pop_year_sum, 
method="ML") 
summary (mod2) 
intervals (mod2) 
#Model with a random slope 
mod3 <- lme (Prescriptions~year, random=~1|Name, data=SC_Counties_pop_year_sum, 
method="ML") 
summary (mod3) 
intervals (mod3) 
xyplot (YPLL ~ year | Name, data = SC_Counties_pop_year_sum, type = c("p","r")) 
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R Output Model 2 

Linear mixed-effects model fit by maximum likelihood 
 Data: SC_Counties_pop_year_sum  
       AIC      BIC   logLik 
  8213.461 8229.093 -4102.73 
 
Random effects: 
 Formula: ~1 | Name 
        (Intercept) Residual 
StdDev:    133846.3 10773.19 
 
Fixed effects: Prescriptions ~ year  
                 Value Std.Error  DF    t-value p-value 
(Intercept) -312290.66  495248.2 321 -0.6305740  0.5288 
year            202.62     245.8 321  0.8244325  0.4103 
 Correlation:  
     (Intr) 
year -0.999 
 
Standardized Within-Group Residuals: 
        Min          Q1         Med          Q3         Max  
-7.08196113 -0.22891994 -0.03875583  0.18208195  5.23800196  
 
Number of Observations: 368 
Number of Groups: 46 

 
 

R Output Model 3 

Linear mixed-effects model fit by maximum likelihood 
 Data: SC_Counties_pop_year_sum  
       AIC      BIC    logLik 
  8215.309 8238.758 -4101.655 
 
Random effects: 
 Formula: ~year | Name 
 Structure: General positive-definite, Log-Cholesky parametrization 
            StdDev       Corr   
(Intercept) 7.711591e-02 (Intr) 
year        6.647583e+01 0.994  
Residual    1.073722e+04        
 
Fixed effects: Prescriptions ~ year  
                 Value Std.Error  DF    t-value p-value 
(Intercept) -312290.66  493200.8 321 -0.6331917  0.5271 
year            202.62     245.1 321  0.8265288  0.4091 
 Correlation:  
     (Intr) 
year -0.999 
 
Standardized Within-Group Residuals: 
       Min         Q1        Med         Q3        Max  
-7.0346073 -0.2344969 -0.0374417  0.1841768  5.2804448  
 
Number of Observations: 368 
Number of Groups: 46  
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Figure 5.2. XY Plot of YPLL for all the counties (subjects) 

 The results from the models show that Model 2 is very similar to Model 1 

in explaining the relationship of antibiotic use sales though the years. A fixed 

slope fits the model but it doesn’t add a lot of information to the model. From the 

XY plot we can tell that most of the counties have a slight negative slope. The 
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results from Model 3 do not improve the results from Model 2. There is a 

variance-covariance message from the software that does not allow it to 

calculate the confidence interval. A random slope does not seem to be a good fit 

for the final model. 

 The following step in determining the association is to include the 

independent variables in the model. A repeated measures model also takes into 

account the interactions between the independent variables. Determining the 

most accurate model requires running a series of iterations including and 

excluding different combinations of the variables in the model. The name used 

for this model is the Conditional Growth Model. 

R Code – Model 4 

mod4 <- lme(Prescriptions~year + Quantity + YPLL + pop + YPLL*pop, random =~1|Name, data 
= SC_Counties_pop_year_sum, method = "ML") 
summary(mod4) 
intervals(mod4) 
 

R Output – Model 4 

Linear mixed-effects model fit by maximum likelihood 
 Data: SC_Counties_pop_year_sum  
       AIC      BIC    logLik 
  7458.941 7490.206 -3721.471 
 
Random effects: 
 Formula: ~1 | Name 
        (Intercept) Residual 
StdDev:    9210.268 4821.162 
 
Fixed effects: Prescriptions ~ year + Quantity + YPLL + pop + YPLL * 
pop  
                Value Std.Error  DF  t-value p-value 
(Intercept) -535563.2 274721.36 317 -1.94948  0.0521 
year            269.7    135.71 317  1.98709  0.0478 
Quantity          0.0      0.00 317 43.28317  0.0000 
YPLL             -0.7      0.41 317 -1.72164  0.0861 
pop              -0.1      0.04 317 -2.88927  0.0041 
YPLL:pop          0.0      0.00 317  5.14527  0.0000 
 Correlation:  
         (Intr) year   Quntty YPLL   pop    
year     -1.000                             
Quantity -0.119  0.122                      
YPLL     -0.335  0.322  0.003               



62 
 

pop       0.291 -0.300 -0.536  0.356        
YPLL:pop -0.285  0.290 -0.159 -0.346 -0.680 
 
Standardized Within-Group Residuals: 
         Min           Q1          Med           Q3          Max  
-6.571743464 -0.242966155  0.002456094  0.279698944  4.504117655  
 
Number of Observations: 368 
Number of Groups: 46  

 
Approximate 95% confidence intervals 
 
 Fixed effects: 
                    lower          est.         upper 
(Intercept) -1.071646e+06 -5.355632e+05  5.200111e+02 
year         4.847318e+00  2.696769e+02  5.345066e+02 
Quantity     2.385566e-02  2.498194e-02  2.610822e-02 
YPLL        -1.509557e+00 -7.075693e-01  9.441789e-02 
pop         -1.776171e-01 -1.060157e-01 -3.441436e-02 
YPLL:pop     1.245356e-05  2.006228e-05  2.767101e-05 

 
 

 The output from Model 4 shows an improvement in the ability of the model 

to explain the data from the previous models (Table 5.1). The overall p-value for 

the mean decreases, almost below the .05 value. Most importantly, three (3) of 

the covariates were statistically significant (p-value < 0.5) and the interaction 

between YPLL and population was also statistically significant. The value for the 

ICC (0.78) means that the model can explain 78% of the relationship between 

antibiotic prescriptions sold and the covariates included. The model is describing 

that there is an indirect relationship between antibiotic prescriptions sold and 

YPLL. On average, when antibiotic sales increase, YPLL or premature death, 

decreases, and it is adjusted for population numbers (increase or decrease). The 

model is strengthening the concept that an increase in antibiotics used should 

represent a decrease in deaths from preventable deaths due to bacterial 

infections.  

The ability to use different classes of antibiotics allows the medical field to 

prevent and cure these infections. Unfortunately, as it will be discussed in the 
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next chapter, the curve described in this study is starting to change in many parts 

of the world. Antibiotics are no longer being effective against common infections 

and the YPLL is increasing instead of decreasing (WHO, 2019). An important 

lesson and applicability from this analysis is knowing that increased surveillance 

is needed and that it is critical not to arrive to the point where the curve or slope 

between antibiotic prescriptions sold and YPLL starts shifting. 

Table 5.1. Comparison of models in the longitudinal analysis 

 Model 1 Model 2 Model 3 Model 4 
p-value 0 0.413 0.5271 0.0521 
logLik -4103.072 -4102.73 -4101.655 -3721.471 
ICC 0.9935496 0.9935632 0.9997765 0.7849261 
CI (9983.035, 

11650.556) 
(9972.457, 
11638.212) 

n/a See output 
list of CI for 
covariates 

 

Seasonal Trends 

In this portion of the study, data from CDDEP from 2010 to 2017 was also 

utilized. The plots of the number of antibiotic prescriptions sold per month for 

every year were created in Excel (2018). Figure 5.3 shows that there is a 

distinctive seasonal pattern in the sale of antibiotics occurring every year.  Sales 

of antibiotics are higher in the first months of the year, with a downward slope 

toward the summer months, and then the curve starts increasing until the last 

month of the year reaching similar number of sales as the beginning part of the 

year. It is important to highlight that antibiotic sales follow a seasonal pattern 

characteristic of influenza or other viral respiratory diseases (Polgreen, 2011; 

Peteranderl, 2016). Rates of infections from bacterial infectious diseases tend to 

increase during warmer months and seem to be steady in tropical areas. This 
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dynamic seen with antibiotic sales is responding possibly to misdiagnosis of 

disease or over prescription of antibiotics. These data in conjunction with hospital 

antibiograms can be compared to determine the effectiveness in prescribing 

antibiotics. It could provide a baseline for the development of antibiotic 

stewardship programs at the community level. 
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Figure 5.3. Seasonal trends of Antibiotic Sales in SC from 2010-2017. 
 

Description of Antibiotic Classes 

 The data from CDDEP from 1999 to 2017 is also stratified by antibiotic 

class. Because not all counties report all classes for every year and do not report 

all classes in the same manner, it was not possible to include the antibiotic class 

in the longitudinal analysis. Table 5.2 shows how the classes of antibiotics sold 

has changed through the years in total percentages. Most of the antibiotics sold 

include 10 classes (Figure 5.4). Sales of Aminopenicillin, Natural Penicillin, 

Cephalosporins, and Erythromycin have significantly decreased; sales of 

Macrolides and Quinolones have increased; and sales of Beta-Lactams, 

Sulfamethoxazole, and Tetracycline have remained in similar levels from 1999 to 

2017. For further research, it could be important to look at the rates and times of 

appearance of antibiotic resistance found in these classes of antibiotics and 

compare with the duration it takes for sales to decrease.  

The persistence in usage of one antibiotic class can lead to further 

antibiotic resistance for that antibiotic. The eighteen (18) years of information on 

antibiotic classes in this data provide significant information to understand when 
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some antibiotics were more frequently used than others, if there is a possible 

interaction that could be contributing to antibiotic resistance between the use of 

certain classes of antibiotics, and which antibiotics could be contributing at a 

higher level to antibiotic resistance. A limitation of only looking at usage data to 

identify antibiotic resistance is that there is also a possibility that an antibiotic was 

discontinued because of the implementation of policy or from a clinical 

advancement. By including antibiotic classes in the longitudinal analysis, it could 

be possible to determine if those factors affected equally or deferentially the use 

of certain antibiotic classes. In order to perform those types of analysis, a 

standardize way of reporting antibiotic classes is needed.  

 

Figure 5.4. Percentage of Antibiotic Class Prescribed from 1999 to 2017. 
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Table 5.2. List of classes of antibiotics and clinical use during the period of 
analysis 1999-2017 

Class Clinical Use Years 
When 
Reporting 
is 
Missing 

Number 
of 
Countie
s that 
did not 
Report 

AMINOGLYCOSIDE
S 
Krause, Kevin M et al. 
“Aminoglycosides: An 
Overview.” Cold Spring 
Harbor perspectives in 
medicine vol. 6,6 a027029. 1 
Jun. 2016 

Natural or semisynthetic broad-
spectrum antibiotics derived from 
actinomycetes. First line agents 
for antimicrobial chemotherapy, 
but replaced in the 1980s with 
cephalosporins, carbapenems, 
and fluoroquinolones. Recently 
re-introduced to use in 
combination with other classes.  

  

AMINOPENICILLINS 
LiverTox: Clinical and 
Research Information on 
Drug-Induced Liver Injury 
[Internet]. Bethesda (MD): 
National Institute of Diabetes 
and Digestive and Kidney 
Diseases; 2012-. Penicillins 
(3rd Generation) [Updated 
2020 Oct 20].  

Semisynthetic modifications of 
natural penicillin that have the 
advantage of a broader spectrum 
of activity. The aminopenicillins 
are widely used for therapy of 
mild-to-severe urinary, 
respiratory, gastrointestinal tract, 
skin, bone and joint infections. 

  

ANTI-STAPH 
PENICILLINS 
Loubet P, Burdet C, Vindrios 
W, Grall N, Wolff M, 
Yazdanpanah Y, Andremont 
A, Duval X, Lescure FX. 
Cefazolin versus anti-
staphylococcal penicillins for 
treatment of methicillin-
susceptible Staphylococcus 
aureus bacteraemia: a 
narrative review. Clin 
Microbiol Infect. 2018 
Feb;24(2):125-132.  

Recommended as first-line agents 
in methicillin-susceptible 
Staphylococcus aureus (MSSA) 
bacteraemia. They have started to 
be phased out by cefazolin due to 
concerns about their safety 
profile. 

  

ANTI-INFECTIVES 
BROAD/MED 
SPECTRUM, 
OTHER 

Class of antibiotics used to treat 
infections that are broad or mid 
spectrum and are not included in 
any other class of antibiotics here 
listed. 

  

ANTI-INFECTIVES 
SYSTEMIC, OTHER 

Class of antibiotics used to treat 
infections that are systemic or are 
targeted and are not included in 
any other class of antibiotics here 
listed. 

 5 



68 
 

B-LACTAM 
Pandey N, Cascella M. Beta 
Lactam Antibiotics. [Updated 
2021 Sep 30]. In: StatPearls 
[Internet]. Treasure Island 
(FL): StatPearls Publishing; 
2022 Jan-. 

Beta-lactam antibiotics are one of 
the most commonly prescribed 
drug classes with numerous 
clinical indications. Make up 65% 
of the total antibiotics market. 
Penicillin, Carbapenems, 
Monobactams, etc. 

  

CEPHALOSPORINS 
Bui T, Preuss CV. 
Cephalosporins. [Updated 
2021 Aug 31]. In: StatPearls 
[Internet]. Treasure Island 
(FL): StatPearls Publishing; 
2022 Jan-. 

Cephalosporins are beta-lactam 
antimicrobials used to manage a 
wide range of infections from 
gram-positive and gram-negative 
bacteria. The five generations of 
cephalosporins are useful against 
skin infection, resistant bacteria, 
meningitis, and other infections. 

  

CHLORAMPHENICO
L 
National Center for 
Biotechnology Information 
(2022). PubChem Compound 
Summary for CID 5959, 
Chloramphenicol.  

Semisynthetic, broad-spectrum 
antibiotic introduced into clinical 
practice in 1948, but which was 
subsequently shown to cause 
serious and fatal aplastic anemia 
and is now used rarely and 
reserved for severe, life-
threatening infections for which 
other antibiotics are not available. 

2008-
2017 

35 

ERYTHROMYCIN 
National Center for 
Biotechnology Information 
(2022). PubChem Compound 
Summary for CID 12560, 
Erythromycin.  

Is an oral broad-spectrum, 
macrolide antibiotic that has been 
in common use since the 1950s. 
Useful in the treatment of 
community-acquired respiratory 
infections. Use has phased out 
due to the availability of other 
more effective antibiotics with less 
side effects. 

  

EXTENDED 
SPECTRUM 
MACROLIDES 
Myers, Andrew G., Clark, 
Roger B. (2021). Discovery of 
Macrolide Antibiotics 
Effective against Multi-Drug 
Resistant Gram-Negative 
Pathogens. Accounts of 
Chemical Research 2021 
54(7), 1635-1645 

Fully synthetic broad-spectrum 
antibiotics. Are the most widely 
prescribed antibiotics in the US. 
With the increasing development 
of resistance to current therapies 
and the lack of safe, oral options 
to treat Gram-negative infections, 
extended-spectrum macrolides 
have the potential to provide 
valuable treatment options. 
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KETOLIDES 
Zhanel GG, Walters M, 
Noreddin A, Vercaigne LM, 
Wierzbowski A, Embil JM, Gin 
AS, Douthwaite S, Hoban DJ. 
The ketolides: a critical 
review. Drugs. 
2002;62(12):1771-804. 

Class of macrolides designed 
particularly to combat respiratory 
tract pathogens that have 
acquired resistance to macrolides. 
The ketolides are semi-synthetic 
derivatives of the 14-membered 
macrolide erythromycin A. 

2014-
2017 

 

MACROLIDES & 
RELATED, OTHER 

Macrolides and related that are 
not included in any other 
classification here listed. 

  

NATURAL 
PENICILLINS 
Louis S. Fishman, William L. 
Hewitt, 
The Natural Penicillins, 
Medical Clinics of North 
America, 
Volume 54, Issue 5, 
1970, 
Pages 1081-1099 

 

Antibiotics produced 
biosynthetically. Benzylpenicillin 
G and phenoxy-methyl penicillin, 
‘were’ the drugs of choice in 
treating infections due to 
susceptible organisms because of 
their proven effectiveness, low 
cost, ease of administration, 
readily manipulated dosage 
schedules, and relatively low 
incidence of side effects. 

  

OXAZOLIDINONES 
Bozdogan B, Appelbaum PC. 
Oxazolidinones: activity, 
mode of action, and 
mechanism of resistance. Int 
J Antimicrob Agents. 2004 
Feb;23(2):113-9. 

Synthetic antibiotics active 
against a large spectrum of Gram-
positive bacteria. Resistance to 
other protein synthesis inhibitors 
does not affect oxazolidinone 
activity. Linezolid was the first 
oxazolidinone used clinically in 
2003. 

 1 

PENICILLINS, 
OTHER 

Penicillins that are not included in 
any other classification here 
listed. 

2009, 
2010, 
2012-
2017 

7 
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QUINOLONES, 
SYSTEMIC 
Oliphant CM, Green GM. 
Quinolones: a comprehensive 
review. Am Fam Physician. 
2002 Feb 1;65(3):455-64. 

Can be classified into four 
generations. First-generation 
agents, which are used less often 
today, have moderate gram-
negative activity and minimal 
systemic distribution. Second-
generation have expanded gram-
negative activity and atypical 
pathogen coverage, but limited 
gram-positive activity. 
Ciprofloxacin remains the 
quinolone most active against 
Pseudomonas aeruginosa. Third-
generation quinolones retain 
expanded gram-negative and 
atypical intracellular activity but 
have improved gram-positive 
coverage. Fourth-generation 
agents improve gram-positive 
coverage, maintain gram-negative 
coverage, and gain anaerobic 
coverage. 

  

STREPTOMYCIN Considered an aminoglycoside, it 
was reported separately in some 
cases. Because of decrease 
susceptibility, it has slowly been 
phased out and possibly reported 
within the major group of 
aminoglycosides. Treatment for 
TB. 

2013-
2017 

42 

SULFAMETHOXAZO
LE & 
TRIMETHOPRIM 
COMBINED 
Kemnic TR, Coleman M. 
Trimethoprim 
Sulfamethoxazole. [Updated 
2021 Dec 8]. In: StatPearls 
[Internet]. Treasure Island 
(FL): StatPearls Publishing; 
2022 Jan- 

Antibiotic that is very cost 
affordable and used for many 
types of illnesses. When used 
alone, these drugs only act in a 
bacteriostatic manner. However, 
when used in the combination of 
sulfamethoxazole-trimethoprim, 
they block two steps in the 
bacterial biosynthesis of essential 
nucleic acids and proteins, thus 
can be bactericidal. 
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SULFONAMIDES, 
PLAIN 
LiverTox: Clinical and 
Research Information on 
Drug-Induced Liver Injury 
[Internet]. Bethesda (MD): 
National Institute of Diabetes 
and Digestive and Kidney 
Diseases; 2012–. 
Sulfonamides. 2017 Dec 5. 

Represent a large class of 
antibiotics that have multiple 
clinical uses. The sulfonamides 
were the first effective antibiotics 
to be introduced into clinical 
medicine and have been in use 
continuously since the 1930’s. 
bacterial resistance to 
sulfonamides is now common. 

 5 

TETRACYCLINE & 
CONGENERS 
Smilack JD. The tetracyclines. 
Mayo Clin Proc. 1999 
Jul;74(7):727-9. 

Among the first of the antibiotics 
to become available 50 years 
ago, remain widely used. 
Tetracyclines have bacteriostatic 
activity against a wide variety of 
pathogens that are responsible for 
many common and some exotic 
infections. Widely used in 
animals. 

  

TRIMETHOPRIM, 
PLAIN 
Huovinen P, Toivanen P. 
Trimethoprim resistance in 
Finland after five years' use of 
plain trimethoprim. Br Med J. 
1980;280(6207):72-74.  

Antibiotic approved since the 
1970’s mostly used for the 
treatment of urinary tract 
infections. 

 2 
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Conclusion 
 
 The use of a longitudinal analysis with repeated measures is useful when 

looking at data through different points in time and when the descriptive statistics 

seem to be varied for all subjects in the dataset. In this case, the counties in 

South Carolina have different trends in the sales of antibiotics, have different 

population dynamics, and represent different spectrums for rate of premature 

death. The results of the analysis also indicate that higher antibiotic use 

continues to reflect a benefit for the population.  

However, the seasonal analysis does reflect a change in behavior that is 

possibly not driven by bacterial infections, but by other factors unrelated to an 

appropriate use of antibiotics. If these trends continue, it is possible that those 

behaviors might contribute to antibiotic resistance. The different parts of this 

study may provide valuable information in the development and implementation 

of antibiotic stewardship programs that will be discussed in further detail in the 

next chapter. These analyses show how antibiotic use can certainly be the fuel 

for the Socio Ecological Coupling of Antibiotic Resistance. 
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CHAPTER 6: 

DISCUSSION 

 
 

Bacteria are able to acquire antibiotic resistance through natural processes and 

have done this throughout time in order to adapt to their changing environment. 

However over and incorrect use and disposal (such as in human waste, animal 

waste, or directly discharge) of antibiotics has contributed to the acceleration of 

bacteria of acquiring resistance.  Determining where there is existing, or 

emerging, over or incorrect use of antibiotics in certain areas could help combat 

this acceleration.  In the three parts of this study, different methods of 

understanding and researching antibiotic use and disposal are proposed. 

Antibiotic use is affected based on geographic regions and population. There is 

significant difference from urban and rural areas in terms of total antibiotic use.  

However, in locations where there is a high deviation from the mean when 

considering time, these hotspots could be considered locations of interest for 

intervention. Some limitations from this study include not considering an age 

adjusted population and missing data for antibiotic use in animal operations. 

These two factors would strengthen the study, but as proposed in the research, 

they are also all part of the socio ecological coupling of antibiotic resistance and 

could be studied independently. In fact, research has been proposed that would 

study both these factors both independently and, later, their interactions. 
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To better understand the risk of human exposure to ARB in the environment, studies 

are needed at the intersection of the ARB socio-ecological cycle, where there is an 

increased potential for human exposure to ARB. This study was aimed at examining the 

generation of bioaerosols during the treatment of municipal wastewater as a possible 

route of ARB emission and an area of potential human exposure. Similar methods of 

wastewater treatment are prominent in urban settings throughout the developed and 

developing world, but the dispersal of ARB through bioaerosol generation has not been 

fully characterized. In this study, we first identified 42 different clinically relevant ARGs 

capable of conferring resistance to a range of antibiotics in the liquid obtained from the 

WWTP sludge aeration tanks. The most abundant mode of resistance conferred by the 

identified ARGs corresponded to the most prominently prescribed antibiotic classes 

(beta-lactams and fluoroquinolones) at the time of sampling within the WWTP’s 

geographical location based on data from the CDDEP. 

As demonstrated in Chapter 4, environmental surveillance is the only method that would 

give a more precise result on antibiotics being disposed, quantity of antibiotics present 

in the environment and, subsequently, antibiotic gene exchange rates and presence of 

antibiotic resistant bacteria. This study shows that environmental surveillance is costly 

and time demanding. It becomes complicated to reach a wide geographic area.  In order 

to help reduce these demands and costs, more epidemiological studies are needed to 

develop a baseline and develop population focused indicators that could help target 

environmental surveillance.  
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As seen in Chapter 5, antibiotic use could be considered as an early indicator for 

premature death and quality of life in the population. The fact that there are seasonal 

cycles for antibiotic use demonstrates that there is a cause and a consequence of any 

difference in the number of prescriptions in a month or in a year; the difference will later 

be reflected in population health indicators. The epidemiological model presented 

shows a curve between antibiotic use and YPLL that is significantly affected by 

population. It also showed that this curve happens in every county in South Carolina 

independent of population changes. The results in Chapter 5 support the findings in 

Chapter 3, and add to the importance of mixed model studies, such as was done in this 

case by combining multilevel epidemiological methods with spatial analysis. These 

types of analysis are crucial support to environmental surveillance, to help identify 

hotspot locations for the type of research completed in Chapter 4.  

For future research and other studies, it could be important to consider the rate of 

bacterial infections in the State and include them in the longitudinal study. The 

conclusion from Chapter 5 shows a protective effect from the increased use of 

antibiotics, or that antibiotics are still effective in clinical use, but it would be important to 

narrow the focus of the resaerch and look specifically at bacterial infections. It would 

also be relevant to compare the susceptibility of bacteria to the antibiotics through time.  

 

Up for discussion is if these methods are part of antibiotic stewardship programs. The 

main goal of such stewardship programs is to protect patients from misdiagnoses, 

prevent the overuse of antibiotics, ensure the correct use of antibiotics, and effectively 

track antibiotic prescribing. Currently stewardship programs are becoming more 
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predominant, but are only part of major hospitals or health departments, not as part of 

broader public health policy. A stronger effort is necessary to reach the proposed goals 

by the Interagency Task Force for Combating Antibiotic-Resistant Bacteria created by 

CDC in 2013 (CDC, 2020). Data on antibiotic use should be more readily available and 

disclosure of effectiveness of antibiotics should be published. Antibiotics alone are 

clearly not the culprit in the cycle of antibiotic resistance. Less and less classes of 

antibiotics have been researched recently (Hutchings, et al. 2019) and stronger control 

on the misuse of antibiotics is necessary. All of this in an effort to prevent the antibiotic 

use vs. premature death curve (YPLL) to start shifting. 
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