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CHAPTER 1: INTRODUCTION

Concussion, a type of brain injury, has risen to the forefront of sports medicine 

research. An estimated 1.6 to 3.8 million sport and recreation concussion-related injuries 

occur annually in the United States1. This complex and often controversial injury has 

generated significant discourse regarding player safety and the rules by which sports are 

regulated. The National Football League and National Collegiate Athletics Association 

(NCAA) have attempted to protect players by implementing rule changes (e.g., penalties 

for targeting, helmet to helmet contact, etc.) and a concussion protocol, in which athletes 

are removed from play and evaluated following a suspected concussion. Since 2012 the 

NFL Foundation has dedicated nearly $500 million toward safety initiatives and research2, 

and the NCAA - Department of Defense (NCAA-DOD) Grand Alliance Concussion 

Assessment, Research and Education (CARE) Consortium has allocated over $50 million 

to produce research on concussion risks, treatment and management by studying how 

concussions evolve over time3, 4. Collectively, these events reflect the immediate need to 

increase our awareness and understanding of the factors that influence concussion.  

Concussion is the result of a biomechanical force to the head or body resulting in 

neurometabolic impairments which manifest in varying degrees of symptom severity. The 

most common symptoms following concussion are balance disturbances, headache, 

dizziness, fatigue, sleep disturbances, light and/or sound sensitivity, cognitive impairment, 

and mood disturbances5. Concussion has been called a transient injury (i.e., short-lived) 

because most clinical symptoms typically resolve within a month of injury5. However, this 
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view of concussion has undergone scrutiny as evidence accumulates suggesting deficits 

persist beyond clinical recovery6-14. These deficits are thought to reflect sub-clinical 

metabolic impairments which may increase the probability of subsequent re-injury 

following early RTP prior to complete metabolic recovery or permanent change in 

neurologic function which may lower the physiological threshold for concussive injuries15-

23. Accordingly, current consensus guidelines call for the identification of factors that may 

increase risk for concussion and negatively influence recovery to better inform 

management of concussion and maximize athlete health and safety24, 25. 

Attention Deficit Hyperactivity Disorder  

Attention deficit hyperactivity disorder (ADHD), a common neurodevelopmental 

disorder, is reported to be prevalent in up 10% of college athletes26, 27. Due to the 

heterogeneity of symptoms, an unitary pathology of ADHD remains unclear, however 

ADHD is believed to reflect structural, functional, and bioenergetics impairments, along 

with compensatory alterations28. ADHD is predominantly characterized by age or 

developmentally inappropriate degrees of inattention, hyperactivity, impulsivity, and risk 

taking behaviors29. These behavioral characteristics may contribute to the increased 

prevalence of negative outcomes such as anxiety or depression30-39, social impairments40, 

41, academic difficulty42, poor vocational performance43, vehicular accidents44, 45, and 

bodily injuries46 consistently observed in ADHD.  

ADHD and Concussion 

Research is beginning to reveal significant associations between concussion and 

ADHD. Recent evidence suggests athletes with ADHD are more likely to have greater 

history of single and multiple concussions, yet the literature regarding recovery remains 
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unclear 25, 26, 47-51. However, the degree to which the individual and combined influences of 

ADHD and concussion history contribute to the likelihood of future concussions remains 

unknown.  

Accumulating evidence suggests ADHD may negatively influence concussion 

recovery. A meta-analysis by Biederman et al.52 suggests that athletes with ADHD have 

greater symptom burden following concussion, which is consistent with other reports53. 

While greater symptomology does not necessarily result in prolonged recovery, greater 

initial symptoms is considered the strongest risk factor for slower recovery24. Interestingly 

however, athletes with ADHD without a history of concussion reported concussion-like 

symptoms at baseline such as: “problems learning”, “emotional lability”, “difficulty 

concentrating”, and “difficulty remembering”50, 54-56. These self-report measures are 

subjective and therefore subject to interpretation bias, however objective computerized 

neurocognitive testing (CNT) consistently reveals pronounced impairments in verbal 

memory, visual memory, visual motor speed, reaction time, and response inhibition among 

athletes with ADHD50, 57-61. These findings provide evidence suggesting antecedent 

ADHD, absent a history of concussion, mimics impairments induced by concussion. Thus, 

given the overlap in impairments the management of concussion may be more complicated 

in this population.  

Stimulant Medications 

Stimulant medications are the front-line treatment for ADHD and may further 

compound the management of concussion in athletes with ADHD62-64. These medications 

consistently demonstrate an ability to enhance executive functions (i.e., working memory, 
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inhibition, attentional focus) on neurocognitive test performance59, 63, 65-68, and functional 

outcomes of daily activities in both individuals with ADHD and healthy controls65, 69-73. 

Purpose 

Athletes with ADHD may be more vulnerable for incurring concussion due to 

behavioral or physiological impairments. Furthermore, these pre-existing features may 

negatively influence symptom severity and duration following concussion. Therefore, the 

purposes of this investigation are 1) to determine whether athletes with ADHD have greater 

likelihood of incurring a concussion than athletes without ADHD, and 2) to investigate 

whether pre-existing ADHD symptoms result in greater symptoms and delayed recovery 

following concussion. 

Rationale  

Expanding our understanding of the relationships between concussion and ADHD 

has important clinical and scientific implications. If ADHD is an antecedent risk factor 

for sustaining a first concussion, then it becomes vital to closely monitor these athletes 

and begin to develop prevention strategies. Additionally, if ADHD with concussion 

history further increases risk for future concussion, we can better identify athletes at 

greatest risk for injury. Furthermore, this knowledge may lead to early prevention 

strategies or the identification of ADHD specific characteristics that result in increased 

risk for concussion. Finally, if ADHD is found to complicate recovery, clarifying this 

relationship while considering medication status may lead to a more robust understanding 

of the difficulties in the management of concussion in athletes with ADHD.
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CHAPTER 2: REVIEW OF THE LITERATURE

To better understand why concussion may be more prevalent and more severe in 

athletes with ADHD, it is necessary to review existing literature on concussion and ADHD 

to establish the theoretical framework on which this investigation is based. First, we will 

provide an overview of concussion including the prevalence, definition and diagnosis, 

injury biomechanics, pathophysiology, risk factors, signs and symptoms, and management. 

Next, an analysis of ADHD including prevalence, definition and diagnosis, 

pathophysiology and impairments, and management will be discussed to provide a 

framework for understanding this unique population. Lastly, existing research regarding 

the complex relationship between concussion and ADHD symptoms, incidence, and 

recovery will be examined justify the proposed investigations. 

Concussion  

Prevalence 

The Centers for Disease Control and Prevention estimate up to 3.8 million 

concussions occur annually in sport and recreational activities74. However, surveillance 

methods likely underestimate actual prevalence as most are based on emergency 

department visits and do not account for concussions treated elsewhere74. Additional injury 

reports created by team medical personnel may not always account for concussions 

occurring outside of school-based sports75. Furthermore, athletes may fail to report 

concussions because they did not think the symptoms were severe enough20, 76, or they did 

not want to be removed from play77. Collectively, the prevalence of concussion likely 
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exceeds current estimates further emphasizing the need to increase our knowledge of 

factors that may predispose athletes for concussion. 

Definition and Diagnosis 

The most recent definition of concussion is “… a complex pathophysiological 

process affecting the brain, induced by traumatic biomechanical forces5.” The consensus 

further identifies common clinical, pathological, and biomechanical concepts useful for 

defining the nature of concussion: 

1. A direct blow to the head, face, neck or elsewhere on the body with an impulsive 

force transmitted to the head. 

2. Rapid onset of short-lived impairment of neurological function that resolves 

spontaneously, or in some cases evolve over minutes to hours. 

3. Acute clinical symptoms that represent primarily functional alterations, rather than 

structural injury 

4. Clinical signs and symptoms that may or may not involve loss of consciousness. 

Resolution of the clinical and cognitive features typically follows a sequential 

course, but in some cases prolonged recovery has been observed. 

While useful, this statement does not include standardized diagnostic criteria for 

clinical symptom-evaluation of concussion, although, most medical teams use common 

concussion inventories78, including the Head Injury Scale79, Graded Symptom Checklist 

(GSC)80, Balance Error Scoring System (BESS)81, 82, vestibular-ocular motor screening 

(VOMS), Standard Assessment of Concussion (SAC)83, Concussion Symptom Inventory84, 

and a collected version of these tests often called the Sport Concussion Assessment Tool 

85, 86. However, many assessments are subject to self-report symptoms or subjective 

interpretations. Unfortunately, concussion is a clinical diagnosis without an objective gold 
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standard and relies heavily on subjective interpretation potentially preventing accurate 

diagnosis and therefore management of concussion. 

Biomechanics of Concussion 

A concussion may occur when applied forces cause rapid changes to the velocity 

vector of the brain which can be categorized according to their characteristics. Impact 

forces are those forces which directly contact the head, whereas impulse forces are 

transmitted to the head without direct contact, such as a blow to the body or pressure wave 

87, 88. Additionally, blast-induced neurotrauma (BINT), or concussions induced by an 

explosions pressure wave are a major concern for U.S. military personnel whether actively 

deployed in a war zone or in training89, 90. Regardless of impact or impulse each force can 

be transferred to the brain and result in some degree of deformation91, 92. 

Following force transmission to the head, the brain may experience two types of 

movement: linear or rotational. Linear force is the application of force to the head’s center 

of gravity, whereas rotational force is the non-central application of force that creates 

rotational movement around the head’s center of gravity93. It has been suggested that linear 

force results in a localized injury due to transient intracranial pressure alterations within 

the brain and that rotational force induces diffuse injuries due to shearing force94, 95. While 

most research is dedicated to the role of linear acceleration96, evidence suggests that both 

linear and rotational forces occur in every concussion97 which may contribute to resultant 

neurometabolic impairments98.  

Acute Pathophysiology of Concussion 

Biomechanical energy transference causes mechanoporation of neuronal plasma 

membranes. This allows for excessive ionic fluctuation (i.e., potassium efflux, and sodium 

and calcium influx) and glutamate release resulting in a feedforward loop of depolarization 
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and hyper excitability followed by a hypoactive “spreading depression-like state”16, 98, 99. 

This subsequent hypoactive state may reflect neuronal refractory periods during which 

ATP-dependent Na+-K+ pumps are hyperactive, attempting to restore resting ionic 

concentrations. These Na+-K+ pumps require high levels of adenosine triphosphate (ATP) 

which is typically replenished in the mitochondria by the slow but highly efficient oxidative 

phosphorylation (i.e., 26 ATP per glucose). However, this period of Na+-K+ pump 

hyperactivity rapidly depletes intracellular ATP reserves and to meet immediate energy 

demands neurons revert to the rapid but inefficient glycolysis, which only produces 2 ATP 

per glucose. This bioenergetic deficiency is also compounded by excessive calcium influx 

and sequestration into the mitochondria100 further impairing oxidative phosphorylation101. 

This resultant energy crisis is concurrent with normal or reduced cerebral blood flow, and 

therefore no increase in solute delivery102, resulting in an uncoupling of energy supply and 

demand16. Overall, this period of glucose hyper metabolism appears to be relatively 

transient, lasting 30-minutes to several hours in animal models103. However, following the 

hyper-metabolism of glucose there is a period of impaired glucose metabolism that can last 

3 - 10 days and has been associated with behavioral and cognitive impairment104, 105.  

Concussion is primarily considered to be a functional injury, however there is 

evidence of structural alterations. Rapid acceleration changes to the brain apply shearing 

forces to a neuron106, 107. Shearing force often results in microstructural axonal damage 

called diffuse axonal injury (DAI), a well-established structural disruption post-injury and 

has been associated with cognitive impairments, headache, dizziness, and fatigue107-111. 

There are also reports of abnormal white matter integrity following concussion which has 

been associated with neurocognitive impairments112. While some evidence exists reporting 
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volumetric reductions in the frontal cortex, cerebellum, and hippocampus months after 

concussion113-116, other studies have failed to find similar differences115.  

Risk Factors for Concussion 

There are several factors that may increase the probability of incurring a concussion 

such as history of concussion, sport-type, sex, and preexisting disorders5. These may be 

direct behavioral mechanisms such as a lapse in attention during dynamic sport 

performance and being struck with an object, or a vulnerability factor such as the case in 

neurodevelopmental disorders with pre-existing alterations to brain function and 

bioenergetics which may decrease the threshold at which concussion occurs.  

Researchers have established that having a history of concussion appears to 

predispose athletes for future concussion. Multiple prospective studies have identified 

history of concussion as a risk factor for subsequent concussion117-120. Athletes with prior 

concussion demonstrated twice the likelihood of incurring a concussion, even when 

adjusting for demographic factors (i.e., body-mass index, age) and sport criteria (i.e., 

contact level). 

Sport-type is also considered a risk factor for concussion. Collision sports (i.e., 

football, ice hockey, rugby) have the highest rates of concussion for males at various levels 

of competition18, 22, 118, 121, whereas females have higher rates for concussion in soccer, 

basketball, and ice hockey at different levels of competition122. Interestingly, compared to 

males in ice hockey, females demonstrated significant greater injury rates, despite 

prohibition of body checking in female ice hockey122. 

The potential influence of sex characteristics on concussion incidence has expanded 

rapidly. When specifically examining similar sports (i.e., soccer, basketball, etc.) female 

athletes have greater risk for concussion than males122-124. Furthermore, female athletes 
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appear to report greater symptom burden following concussion125 as well as prolonged 

symptoms three months post-injury126, although when compared to males in the same 

sports recovery rates normalize127. The mechanisms of injury also appear different, males 

showed greater percentage of player contact concussions, whereas females showed greater 

percentage of concussion resulting from contact with the playing surface or ball122. These 

trends remain underexplored regarding biomechanical (e.g., joint angles), physiological 

(e.g., hormonal differences), and sociocultural (e.g., females may be more honest in 

reporting symptoms) factors which may elucidate potential sex differences61, to date 

however there is no consensus of the mechanisms by which sex modifies risk. 

Acute Signs and Symptoms 

Studies using advanced neuroimaging techniques have consistently demonstrated 

that structural and functional alterations are associated with a wide range of signs and 

symptoms following injury11, 98, 113, 128-133 that are most severe within the first week post-

injury5. Signs are objective and visible by some other individual (e.g. balance problems or 

loss of consciousness), whereas a symptom is some phenomenon experienced by the 

patient (e.g., headache or fatigue)134. Signs and symptoms of concussion are generally 

categorized as physical, cognitive, emotional, and sleep related, with some overlap135, we 

will refer to signs and symptoms collectively as ‘presentation’.  

 Physical presentation of concussion may include headache, nausea, vomiting, 

balance problems, dizziness, light/sound sensitivity, and fatigue. Among physical 

presentations, headache is the most commonly reported symptom, followed by balance 

problems, dizziness, and fatigue following concussion136. Cognitive presentation is often 

determined by a combination of athlete self-report, and computerized neurocognitive 

testing (CNT). Athletes often report feeling foggy or feeling slowed down (i.e., cognitive 
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processing speed), difficulty concentrating (i.e., attention), or problems remembering (i.e., 

memory)136. Emotional presentation is commonly reported as anxiety, depression, and 

other mood disruptions (e.g., anger)137. Sleep is considered a potential marker for 

predicting recovery138, 139, and athletes may report sleep disruptions such as difficulties 

falling asleep, staying asleep, sleeping more or less than usual140. Among all signs and 

symptoms of concussion, the most obvious indicator is a loss of consciousness (LOC), 

however, this event occurs in less than 10% of concussions141. Similarly, athletes may 

present varying degrees of retrograde or anterograde amnesia, both LOC and amnesia may 

be important indicators of more serious injury141. Whether injury localization plays a 

significant role in modulating the severity of signs and symptoms following concussion is 

a matter of some debate. However, the neurometabolic alterations in the acute phase are 

strongly correlated with symptom severity142. 

Acute Management 

Generally, mean symptom recovery occurs in about 14 days5, 143, and seems 

relatively consistent with the associated neurometabolic cascade and impairments 

following concussion16, 128. While this period is considered “normal recovery”, it is 

important to distinguish clinical symptomology from neurological recovery. McCrea et 

al.143 found that concussed athletes reported greater symptoms at 7-days post injury, 

relative to their own baseline symptoms, however, even at 90-days post-injury concussed 

players performed more poorly than controls on neurocognitive measures. However, Henry 

et al.144 examined 66 concussed athletes using similar measures and reported that total 

symptoms resolution occurred between 21 to 28 days after injury. Intriguingly, both studies 

report the greatest symptom improvement during the first two weeks, with domain-specific 

neurocognitive impairments lingering beyond clinical symptom resolution. Accordingly, 
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the transient view of concussion has undergone scrutiny as evidence of persisting sub-

clinical deficits accumulates6-14.  

The clinical evaluation of concussion has evolved beyond clinical measures to 

incorporate multi-modal assessments of cognitive, neurophysiological, and psychological 

function5 as the search for more objective biomarkers recovery continues145, 146. Research 

has grown exponentially in recent years regarding the nature of concussion, risk factors, 

outcomes, treatments, rule changes, and equipment related concerns147-150. Subsequently, 

experts agree the heterogeneous nature of concussion causality coupled with unique 

demographic characteristics of an athlete can synergistically alter the manifestation, 

severity, and duration of symptoms151-153. Among these characteristics, existing literature 

demonstrates that pre-existing conditions such as anxiety and depression154, migraine152, 

neurodevelopmental disorders26, 50, 61, 155, and concussion history5 can negatively influence 

outcomes following concussion.  

Attention Deficit Hyperactivity Disorder  

Prevalence 

Attention Deficit Hyperactivity Disorder (ADHD) is prevalent in 6% of children 

and adolescents156 and 5% of adults. While the prevalence of ADHD in college athletes 

has not been epidemiologically studied, some evidence exists to suggest ADHD occurs in 

7% - 10% of college athletes26, 50. 

Definition and Diagnosis  

ADHD is characterized by age or developmentally inappropriate levels of 

inattention, hyperactivity, impulsivity, and risk-taking behaviors29 that persist into 

adulthood for approximately 70% of cases, with varying degrees of severity157. ADHD is 
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typically observed during childhood as chronic impairments to attention and self-regulation 

during situations which require self-monitoring157-160. The hallmark triad—inattention, 

hyperactivity, and impulsivity—are chronic and relatively stable across the lifespan161. 

There is no dichotomous test for ADHD, rather clinicians must “rule in” the probability of 

ADHD based on self-, parent-, and observational report of symptoms29. To aid in the proper 

diagnosis of ADHD, as opposed to another disorder (e.g., oppositional defiant disorder), 

updated versions of the Diagnostic and Statistical Manual of Mental Disorders (DSM) 

contain commonly used criteria for defining and diagnosing ADHD in the United States29. 

ADHD is divided into subtypes categorized by the presence of six out of nine 

symptoms within one of two distinct lists, inattention, and hyperactivity-impulsivity. These 

symptoms must have been present for at least six months and at an inappropriate age or 

developmental level. In this way, individuals are categorized as either inattentive (ADHD-

I), hyperactive-impulsive (ADHD-HI), or a combined (ADHD-C) subtype. However, the 

design of DSM diagnostic criteria emerged from field trials with children and no adults 

were included162. Although, a recent systematic review demonstrates that an overall ADHD 

diagnosis (i.e., unspecified sub-type) in adults is reliable and consistent161.  

ADHD is considered an impairment of behavioral inhibition (i.e., disinhibition) and 

self-regulation 163 which suggests impaired executive functionality 164-166. Generally, it is 

agreed there are three core executive functions: inhibition (e.g., behavioral, and cognitive 

inhibition), working memory, and cognitive flexibility164, 167-169. Disinhibition may result 

in acting or responding before processing the appropriate contextual features of a situation. 

Behavioral disinhibition may manifest as hyperactivity (e.g., inability to wait for their turn) 

or impulsive actions (e.g., crossing the street without looking) consequently resulting in 



14 

risky behaviors. Cognitive disinhibition may manifest as inattentive behaviors (e.g., failing 

to attend to instructions), or impulsive responses (i.e., responding before thinking). 

Silverstein et al.170 reported that symptoms of ADHD were significantly correlated with 

executive dysfunction. Indeed, a plethora of studies have demonstrated that executive 

functions are impaired in individuals with ADHD resulting in poor cognitive 

performance42, 170-185. These overall reductions in executive function contributes to lifelong 

difficulties such as mood disorders (i.e., anxiety depression)30-39, social impairments40, 41, 

academic difficulty42, poor vocational performance43, vehicular accidents44, 45, and bodily 

injuries46 observed in ADHD. There is some data to suggest that males with ADHD may 

experience greater severity of and variance in symptoms than females with ADHD.55, 186 

Pathophysiology and impairments of ADHD 

Currently, a single underlying cause of ADHD has not been identified, and ADHD 

is most likely a confluence of genetic and environmental factors which synergistically 

contribute to clinical features of ADHD. This multifactorial etiology is reflected in the 

heterogeneity of symptoms, outcomes, and extensive comorbidities in individuals with 

ADHD. Though there is no single underlying etiology, there are several factors that are 

strongly associated with ADHD. ADHD is a heritable disorder with twenty twin studies 

demonstrate a 76% heritability rate187. Similarly, 25% of adults with ADHD reported 

having a parent also diagnosed with ADHD188. There are several genetic association studies 

with dissimilar findings and small sample sizes189 and attributing specific genes with 

causation is a somewhat controversial topic in ADHD research. However, genetic variants 

of dopamine receptors (i.e., D1, D2, D3, D4, D5 receptors) and dopamine transporters 

remain of great interest to researchers187. While independent genetic variants alone are 
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considered insufficient to be causative, however when combined with environmental 

factors the cumulative effect may reflect ADHD symptomology. For example, a genetic 

variant of the dopamine transport protein DAT1 combine with prenatal exposure to alcohol, 

and nicotine have been shown to increase risk for ADHD and common symptoms, such as 

hyperactivity and impulsivity 190-192.  

There are numerous studies demonstrating significant structural brain alterations in 

ADHD. The most common finding is a reduction in overall brain volume particularly in 

frontal regions and regional connectivity pathways 193-196. There are volumetric reductions 

throughout the frontal lobe particularly the prefrontal cortex (PFC) in ADHD 197-199. 

Furthermore, the dorsolateral prefrontal cortex (DLPFC) is reported to have reduced grey 

and white matter density, asymmetric activation200-204 and white matter tracts linking the 

prefrontal cortex to other brain areas is less organized and functional connectivity is 

reduced 205. 

ADHD related structural impairments may result in less effective prefrontal 

regulation of cortical and subcortical structures, resulting in diminished top-down self-

regulation and the hallmark characteristics of ADHD206-209. The PFC plays an integral role 

in cognitive processing related to reward, emotional processing, response inhibition, and 

attention. The PFC uses a network of interconnected pyramidal neurons that are self-

excitatory, that is they can excite each absent environmental stimulus, thus they may be 

considered a “mental sketch pad”210. Additionally, a vast network of projections to sensory 

association areas enable PFC to suppress processing of irrelevant stimuli (i.e., distractors) 

while enhancing attention to important yet boring stimuli211. Depending on task demands, 

the PFC can also sustain attention to a single task212 or rapidly shift attention for 
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multitasking 213. In addition to attention regulation, the PFC is also vital for regulating 

emotions and behaviors. The right inferior PFC is of particularly important for minimizing 

impulsive behaviors and inhibiting inappropriate actions214 while orbital and ventromedial 

PFC regulate emotions215. Furthermore, the medial PFC is a key node of the default mode 

network (DMN), an intrinsic network primarily signaling a state of rest reflecting a 

physiological baseline activity of the brain216-220. As cognitive loading or demand increase 

the DMN is attenuated by the task-positive network (TPN) of the dorsolateral prefrontal 

cortex (DLPFC)221. Therefore, structural alterations, reduced volume or activation of the 

DLPFC may result in failure of the TPN to sufficiently suppress the DMN, which interferes 

with task performance222, and result in slower reaction times and inaccurate attention 

control223.  

Beyond structural alterations, there is an 8.1% reduction in global glucose 

metabolism during an auditory-attention task in ADHD, with particular decrements in 

prefrontal (e.g., attention) and premotor (i.e., motor control) areas224. Also, Schweitzer et 

al.225, found reduced cerebral blood flow (CBF) in frontal areas during a working memory 

task among individuals with ADHD. This reduction in CBF suggests that there is reduced 

activation in frontal areas226, 227. 

Structural and metabolic impairments also modify aspects of neurotransmitter (NT) 

bioavailability, including regional activation and biosynthesis. Indeed, dysregulation of 

catecholaminergic (i.e., dopamine and norepinephrine) signaling is regularly reported in 

ADHD 228-230. Dopamine (DA) is a neurotransmitter (NT) believed to play important roles 

in regulating cognition, attention, movement, motivation, and reward231-234. 

Norepinephrine (NE) is another NT associated with arousal, set-shifting and sustained 
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attention235. Furthermore, DA is a precursor for NE, via mechanism of dopamine β-

hydroxylase, an enzyme which catalyzes the conversion of DA into NE and thus helps to 

balance DA and NE concentrations in the brain. Therefore, abnormalities in DA signaling 

or altering DA concentrations will subsequently increase NE concentrations236.  

Thus, the PFC environment is extremely sensitive to alterations in the 

neurochemical environment and require that catecholamine concentration levels are 

maintained at optimal levels for proper functioning further demonstrated by positive 

influence of increased dopamine in healthy controls237. PFC concentrations of these NTs 

are positively associated with arousal level. For example, during low arousal conditions, 

NT concentrations are low238, 239. Indeed, low levels of catecholamines are known to impair 

executive functions in the prefrontal cortex, to such a degree that they mimic most 

symptoms of ADHD240. Additionally, alterations to TPN/DMN synchronization modifies 

the basal arousal state, subsequently changing the availability of catecholamines, thus 

modifying PFC activity and therefore executive functions. Collectively, the evidence 

suggests that many behaviors and outcomes associated with executive dysfunction in 

ADHD result from a variety of structural, metabolic, and biochemical alterations.  

Management 

Currently, the most common approach to treating ADHD are psychostimulant 

medications241. These psychostimulant medications directly cause an increase in synaptic 

NT concentrations, resulting in increased neuronal activity and therefore activation of a 

circuit, or network. In sum, the magnitude of neuronal receptor activation depends on 1) 

the quantity of the NT (e.g., amount of NT released), 2) the duration the NT remains in the 

synaptic cleft (e.g., time until reuptake/degradation), and 3) receptor concentration for a 
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NT. Normally, specialized transport proteins actively transport NTs back into the cell to 

decrease synaptic concentrations so that 1) postsynaptic activation is limited and 2) NTs 

are recycled for homeostatic efficiency242. These are important considerations to consider 

because psychostimulant medications manipulate these processes to improve cognitive 

processing and attention in individuals with ADHD. 

Currently, the Food and Drug Administration (FDA) have only approved two 

psychostimulant molecules, amphetamine (AMPH), and methylphenidate (MPH)243. There 

are numerous brand names and preparations (e.g., Ritalin, Adderall, etc.) however, we will 

henceforth use the generic names AMPH and MPH. While both stimulants primarily act to 

enhance the effects of dopamine and/or norepinephrine, each operate via slightly different 

mechanisms.  

AMPH acts as a “reverse-transport” mechanism that is AMPH binds to dopamine 

active transport proteins (DAT) and they now actively carrying dopamine out of the 

cytoplasm and into the synaptic cleft244. Additionally AMPH inhibits vesicular packaging 

of dopamine, thus increasing cytoplasmic dopamine concentrations ready for “reverse 

transport”244. Thus, AMPH decreases dopamine reuptake and increases release, thereby 

increasing synaptic cleft concentrations, enhancing dopaminergic activation and 

functionality, particularly in the PFC. 

MPH actively blocks the reuptake of dopamine and norepinephrine from the 

synaptic cleft increasing the duration in which these NTs can act on their receptors, 

however unlike AMPH it does not interfere with vesicular packaging245. In addition to 

these direct catecholaminergic effects, MPH has been shown to improve the TPN/DMN 
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synchronization, that is oscillatory variations in activation patterns are normalized allowing 

more optimal cognitive functioning246, 247. 

Regardless of their mechanism of action, the catecholaminergic activity caused by 

these stimulant medications demonstrate a dose-effect response, that is too much or too 

little can be just as detrimental248. With appropriate dosing, medications which increase the 

availability of catecholamines optimize the neurochemical environment which enhances 

executive functions and therefore outcomes (e.g., academic performance, behaviors, etc.)73, 

249, 250.  

Concussion and ADHD 

Given the significant overlap of physiological impairments and symptoms between 

concussion and ADHD, the current consensus is to consider ADHD a modifier for 

increased risk for, and atypical recovery from concussion5. However, there is relatively 

sparse conformational evidence in adult athletes with ADHD as most research in this area 

has focused on children and adolescent athletes. In a retrospective study with a limited 

sample size, Alosco et al.26 reported college athletes with ADHD may have greater history 

of single and multiple concussions. Similarly, an aggregate study by Nelson et al.50 

reported that college athletes with ADHD have 2.93 (95% CI 2.05 – 4.19) times the 

prevalence of a history of three or more concussions, relative to controls. It important to 

note that this study was primarily male (97%) potentially neglecting concussion-related 

sex differences. In the general population, female athletes appear to have greater risk for 

incurring a concussion,122-124 however it remains unknown whether ADHD compounds or 

supersedes sex differences regarding risk for concussion. It is possible that the reported 

increased ADHD severity in males would result in a similar risk for concussion among 
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females with ADHD. Thus far, all findings have been cross-sectional. While these studies 

provide important information, without establishing temporality, no inferences regarding 

causation can be made. To date, no longitudinal studies regarding concussion likelihood in 

college athletes with ADHD exist.  

There is also evidence to suggest athletes with ADHD demonstrate concussion-like 

symptoms at baseline which reflect inherent characteristics of ADHD. Several studies have 

reported that college athletes absent a history of concussion, but with ADHD demonstrated 

concussion-like symptoms at baseline, such as “problems learning”, “emotional lability”, 

“difficulty concentrating”, and “difficulty remembering”50, 56. Of note, these symptoms 

share significant overlap with the inattentiveness among individuals with ADHD which 

commonly persists into adulthood251. The importance of this consideration cannot be 

overstated since most computerized cognitive tests (CNTs), and common clinical scales 

utilize normative data to determine levels of acceptable performance useful for determining 

clinical recovery. However, the Immediate Post-Concussion Assessment and Cognitive 

Testing battery (ImPACT) does provide a “special education” group for the total symptom 

score that may reflect average symptoms in populations with preexisting disorders, but the 

samples are heterogeneous and remain in the early phase of development. Furthermore, the 

ImPACT uses an algorithm to provide a marker for ‘invalid results’ that are determined by 

more impulsive responses, misunderstanding instructions, deliberate under-performance, 

or other factors. Among these factors, of major concern for athletes with ADHD are those 

of impulsive responses (i.e., poor response inhibition or inattention), and misunderstanding 

instructions (i.e., cognitive control or inattention). Therefore, it is possible that among 

athletes with ADHD, ‘invalid’ results may represent greater ADHD symptomology rather 
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than truly being ‘invalid’.252 Understanding the pre-injury profile of athletes with ADHD 

is of utmost importance when interpreting post-injury results due to potentially 

confounding pre-existing symptoms. 

Further compounding concussion management in athletes with ADHD is stimulant 

medications (i.e., Amphetamines and Methylphenidate), the front-line treatments for 

ADHD62-64. Research has consistently demonstrated that stimulant medications enhance 

executive functions (i.e., working memory, inhibition, attentional focus), and functional 

outcomes of daily activities in both individuals with ADHD and healthy controls65, 69-71. 

Stimulant medications are known to influence performance on neurocognitive test 

commonly used in the management of concussion59, 63, 65-68. Indeed, a recent study by Cook 

et al.54 reported that athletes with un-medicated ADHD had greater rates of invalid 

ImPACT results, compared to those with medicated ADHD on a pre-season baseline 

assessment. Furthermore, this study also demonstrated that athletes with medicated ADHD 

showed no differences either in rate of invalid results or in cognitive performance than 

controls. To date only one study has investigated the influence of stimulant medication pre- 

and post-concussion66. Unmedicated athletes with ADHD demonstrated poorer 

performance for verbal, and visual memory, visual motor speed, and slower reaction times 

than controls pre- and post-concussion, however, medicated athletes with ADHD 

demonstrated similar visual motor speed and reaction time to controls, pre- and post-

concussion. 

Collectively, the symptoms of concussion and ADHD have many similarities and 

some of these symptoms may share some physiological disruptions. However, prior to 

dedicating significant resources (i.e., financial, time, workforce) to investigating 
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underlying etiology, we must first unravel whether 1) there is a relationship between 

incidence of concussion and ADHD, and 2) whether the symptoms of concussion are 

compounded by the presence of ADHD. In so doing, we stand to further enhance our 

knowledge base regarding 1) whether athletes with ADHD are more likely to incur a 

concussion, and 2) the synergistic nature of concussion symptoms regarding the degree to 

which pre-injury concussion-like symptoms are exacerbated. 
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CHAPTER 3: AIMS & METHODS 

Specific aim 1: To determine the likelihood of having experienced a concussion among 

male and female athletes with ADHD. We hypothesize that: 

1. Hypothesis 1a: Athletes with ADHD will have greater odds of single and multiple 

concussions, relative to athletes without ADHD.  

2. Hypothesis 1b: Both male and female athletes with ADHD will have greater odds 

of single and multiple concussions, relative to biological sex specific athletes 

without ADHD. 

3. Hypothesis 1c: Female athletes with ADHD would not have greater odds of single 

or multiple concussions, relative to male athletes with ADHD. 

Specific aim 2: To determine the likelihood of incurring a concussion among male and 

female athletes with ADHD. We hypothesize that:  

1. Hypothesis 2a: Athletes with ADHD will have greater risk for incurring a 

concussion, irrespective of concussion history, relative to athletes without ADHD.  

2. Hypothesis 2b: Both male and female athletes with ADHD will have greater risk 

for incurring a concussion, irrespective of concussion history, relative to biological 

sex specific athletes without ADHD.  

3. Hypothesis 2c: Female athletes with ADHD will not have greater risk for incurring 

a concussion, irrespective of concussion history, relative to male athletes with 

ADHD. 
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Specific aim 3: To evaluate whether medication status influences concussion symptom 

profiles throughout recovery in athletes with ADHD. We hypothesize that: 

1. Hypothesis 3a: Athletes with un-medicated ADHD will perform worse on ImPACT 

measures and symptom reports at baseline than athletes with medicated ADHD, 

and athletes without ADHD. 

2. Hypothesis 3b: Athletes with un-medicated ADHD will perform worse on ImPACT 

measures and symptom reports at 24-48 hours post injury than athletes with 

medicated ADHD, and athletes without ADHD. 

3. Hypothesis 3c: Athletes with un-medicated ADHD will take longer to be cleared 

for unrestricted return-to-play than athletes with medicated ADHD, and athletes 

without ADHD. 

Methodology 

For all specific aims, a de-identified database was provided by the National 

Collegiate Athletic Association Department of Defense Grand Alliance (NCAA-DOD): 

Concussion Assessment, Research and Education (CARE) Consortium. The CARE 

Consortium enrolled over 34,000 unique athletes and military service academy members 

and consisted of multiyear multimodal assessment of the natural concussion history, 

described in detail elsewhere.253 All athletes and cadets signed a site-specific institutional 

review board approved consent form, also approved by the US Army Medical Research 

and Materiel Command Human Research Protection Office253. In brief, prior to the onset 

of specific sport-seasons or academic year all participants received a comprehensive 

demographics and health history questionnaire including questions regarding prior ADHD 

diagnoses and medications and completed a clinical concussion battery as baseline. 
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Concussions occurring after CARE enrollment were verified by team medical personnel 

using evidence-based DoD criteria254. These concussed athletes were reassessed at multiple 

time points across recovery: within 6-hours of injury, 24-48 hours post-injury, time when 

asymptomatic, time of unrestricted return-to-play, and six months post-injury.  

Participants 

We categorized according to their answers into control and ADHD groups. ADHD 

was a self-report of physician diagnosis. All athletes who reported another disorder (e.g., 

learning disability, autism spectrum disorder), brain surgery, history of migraines, severe 

brain injury, or psychological disorders (e.g., schizophrenia, bipolar disorders, etc.), or take 

psychological medications other than psychostimulants (e.g., anti-psychotics) will be 

excluded from analysis. Intramural athletes and military service academy cadets will be 

grouped as ‘non-NCAA’ athletes for NCAA contact category analyses, varsity athletes at 

the academies will be categorized into standard NCAA contact categories. Control athletes 

who reported no diagnoses of ADHD but repeated a year of school or reported prior 

individualized education program (IEP) or a 504 plan were excluded from analyses to 

control for possible undiagnosed or unreported ADHD. Additionally, for all aims, control 

athletes who reported taking psychostimulant medications were excluded from analysis. 

Specific aim 3 

Only for specific aim 3, athletes with ADHD were further stratified by whether they are 

taking psychostimulant medication (ADHD+Rx, or not taking medication (ADHD_uRx). 

We defined psychostimulant medications as any brand using Amphetamine or 

Methylphenidate, and athletes taking other prescription medications will be excluded from 
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analyses. Only concussed athletes with complete ImPACT performances at baseline, 24-

48 hours post-injury, and unrestricted return-to-play (uRTP) were included. 

Eligible participants were grouped into 1) controls, 2) ADHD+Rx, 3) ADHD_uRx). 

We used double-matched controls based on biological sex, age, body-mass index, and 

history of diagnosed concussion.  

Assessment Measures 

The ImPACT is a 25-minute computerized neurocognitive tests which evaluates 

impulse control, reaction time, total symptoms, verbal memory, visual memory, visual 

motor speed, and cognitive efficiency. We will examine performance in each measure at 

baseline, 24-48 hours post-injury, and at uRTP. uRTP was determined by medical staff 

clearance after completing all stages of a return-to-play progression.78, 255, 256 Herein, we 

define recovery as duration of symptoms as reported in the clinical battery and symptom 

inventory prior to uRTP. 

All significant outliers (± 2 times the standard deviation) were removed following 

within group analyses prior to final matching. A one-way analysis of variance (ANOVA) 

with Tukey post hoc correction revealed no statistically significant differences exist 

between groups for age, body-mass index, and concussion history.  

Statistical Analysis 

All analyses were performed using SPSS (Version 26; SPSS Inc., Chicago, IL). 

Specific aim 1: To determine the likelihood of having experienced a concussion among 

male and female athletes with ADHD.  

Retrospective odds ratios (ORs) with 95% confidence intervals (CIs) were 

calculated across three contexts: 1) Odds of having any concussion history prior to 
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enrollment, 2) odds of having had a single concussion prior to enrollment, and 3) odds of 

having a history of multiple concussions prior to enrollment. Each context was separately 

analyzed 1) by group relative to controls (i.e., ADHD vs controls), 2) within sexes (e.g., 

males with ADHD vs. males without ADHD), and 3) between sexes (e.g., females with 

ADHD vs. males with ADHD). 

To control for potential sport-contact type bias, we further stratified groups by 

similar sports by NCAA contact, NCAA limited-contact, NCAA non-contact sports, and 

non-NCAA and repeated analyses 1) by group, and 2) between sexes. 

Specific aim 2: To determine the likelihood of incurring a concussion among male and 

female athletes with ADHD.  

Prospective estimates of relative risk (RRs) with 95% CIs were calculated across 

three contexts: 1) Risk for incurring a concussion, 2) risk incurring a concussion with 

concussion history, and 3) risk for incurring a concussion absent concussion history. Each 

context will be separately analyzed 1) by group relative to controls (i.e., ADHD vs 

controls), 2) within sexes (e.g., males with ADHD vs. males without ADHD), and 3) 

between sexes (e.g., females with ADHD vs. males with ADHD). 

To control for potential sport-contact type bias, we further stratified groups by 

similar sports by NCAA contact, NCAA limited-contact, NCAA non-contact sports, and 

non-NCAA and repeated analyses 1) by group, and 2) between sexes. 

Specific aim 3: To evaluate whether medication status influences concussion symptom 

profiles throughout recovery in athletes with ADHD.  

Using our participant inclusion and grouping criteria for specific aim 3, a one-way 

ANOVA was used to identify baseline differences for all ImPACT measures (i.e., impulse 
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control, reaction time, total symptoms, verbal memory, visual memory, visual motor speed, 

and cognitive efficiency) between groups. A repeated measures ANOVA for all ImPACT 

measures was used as the within-subjects factor and group as the between-subjects factor 

will be performed to examine whether cognitive performance is different for each ImPACT 

measure throughout recovery. Significant interactions will be decomposed using a 

univariate ANOVA using baseline ImPACT values as a between groups covariate to 

account for pre-existing differences in ImPACT score/performance. 

A one-way ANOVA with Tukey post hoc correction was used to determine whether 

there were differences between groups for days between injury and: reporting the injury, 

being determined clinically asymptomatic, eligible for return-to-play, and symptom 

resolution.



29 

CHAPTER 4: RESULTS

Inclusion and exclusion criteria for aims 1 and 2 are provided in Figure 4.1. 

Specific Aim 1 

Final analyses included 32,635 athletes comprised of 31,122 controls and 1,513 

athletes with ADHD. Sample characteristics are provided in Table 4.1. Retrospective odds 

can be found in Tables 4.2 & 4.3. 

Overall odds: Analyses revealed that athletes with ADHD had greater odds of 

having a concussion history (Odds Ratio; OR = 1.915, 95%CI 1.72 – 2.14), and further 

investigation substantiated this finding for both single (OR = 1.699, 95%CI 1.51 - .1.92) 

and multiple prior concussions (OR = 1.914, 95%CI 1.60 – 2.29) relative to control 

athletes. 

Odds within sex: Analyses revealed that among female athletes, those with ADHD 

had greater odds of having a concussion history (OR = 1.931, 95%CI 1.52 – 2.21), and 

further investigation substantiated this finding for both single (OR = 1.742, 95%CI 1.42- 

2.14) and multiple prior concussions (OR = 1.592, 95%CI 1.17 – 2.18) relative to female 

control athletes. 

Analyses revealed that among male athletes, those with ADHD had greater odds of 

having a concussion history (OR = 1.956, 95%CI 1.71 – 2.24), and further investigation 

substantiated this finding for both single (OR = 1.670, 95%CI 1.44 – 1.93) and multiple 

prior concussions (OR = 2.120, 95%CI 1.71 – 2.63) relative to male control athletes. 
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Odds between sexes: An exploratory analysis between sexes among control athletes 

revealed that females had slightly reduced overall odds of concussion (OR = .940, 95%CI 

.889 – .995) relative to males. Further investigation revealed that while females had 

reduced odds of a single concussion (OR = .885, 95%CI .931 - .941), however females had 

greater odds of multiple prior concussions (OR = 1.132, 95%CI 1.023 - 1.253) relative to 

male athletes. 

No significant differences were found among athletes with ADHD when comparing 

female to male athletes’ odds of overall (OR = .880, 95% CI .704 – 1.100), single (OR = 

.923, 95% CI .723 – 1.178), or multiple prior concussions (OR = .850, 95% CI .589 – 

1.226). 

Overall odds by contact category: Analyses revealed that athletes with ADHD had 

greater odds of concussion in contact (OR = 1.727, 95%CI 1.478 – 2.019), limited contact 

(OR = 1.770, 95%CI 1.404 - 2.232), non-contact (OR = 1.720, 95%CI 1.286 – 2.301) and 

non-NCAA categories (OR = 2.030, 95%CI 1.473 – 2.797) relative to category specific 

controls. 

Odds by contact category between sexes: An exploratory analysis between sexes 

among control athletes revealed that females had greater overall odds of concussion history 

in contact (OR = 1.151, 95%CI 1.050 – 1.261) and non-contact categories (OR = 1.439, 

95%CI 1.208 – 1.715), but reduced odds of concussion history in the non-NCAA category 

(OR = .878, 95% CI .771 – 1.00), relative to category specific male controls. 

 Among athletes with ADHD in the non-contact category, females had greater odds 

of concussion (OR = 1.974, 95%CI 1.082 – 3.601) than male athletes. There were no 

significant differences were found between females and males with ADHD among contact 
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(OR = .959, 95% CI .676 – 1.358), limited contact (OR = .820, 95% CI .522 – 1.288), or 

non-NCAA categories (OR = 1.346, 95% CI .577 – 3.140). 

Specific Aim 2 

Sample characteristics are provided in Table 4.4. Prospective relative risk estimates can be 

found in Tables 4.5 & 4.6. 

Overall risk: Analyses revealed that athletes with ADHD had greater risk for 

concussion (Relative Risk Ratio; RR = 1.236, 95%CI 1.059 – 1.443). However, no 

significant differences were found among athletes with ADHD without history (RR = 

1.041, 95% CI .825 – 1.340) or with history of concussion (RR = 1.195, 95% CI .973 – 

1.47). 

Risk within sex: Analyses revealed that among female athletes, those with ADHD 

had greater risk of incurring a concussion history (RR = 1.044, 95% CI .797 – 1.369). 

Analyses failed to reveal significant differences between female athletes with ADHD 

without history (RR = .802, 95% CI .526 – 1.221), or with history of concussion (RR = 

1.096, 95% CI .776 – 1.547), relative to female controls. 

Analyses revealed that among male athletes, those with ADHD had greater risk for 

concussion (RR = 1.369, 95% CI 1.133 – 1.654) than male controls. However, no 

significant differences were found among male athletes with ADHD without history (RR 

= 1.204, 95% CI .911 – 1.592) or with history of concussion (RR = 1.272, 95% CI .985 – 

1.644). 

Risk between sexes: An exploratory analysis between sexes among control athletes 

revealed that female athletes had greater overall risk for concussion (RR = 1.194, 95% CI 
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1.107 – 1.287), without history (RR = 1.180, 95% CI 1.073 – 1.297), and with history of 

concussion (RR = 1.249, 95% CI 1.105 – 1.412) relative to male control athletes. 

Analyses failed to reveal significant differences among athletes with ADHD when 

comparing female to male athletes for overall risk for concussion (RR = .911, 95% CI .661 

– 1.255), without history (RR = 1.076, 95% CI .71 – 1.624), or without history of 

concussion (RR = .785, 95% CI .478 – 1.289). 

Risk by contact category: Analyses failed to reveal significant differences between 

athletes with ADHD and control for risk of concussion in any contact category (RR ranges 

= .931 – 1.396). 

Risk by contact category between sexes: An exploratory analysis between sexes 

among control athletes revealed that females had greater risk for concussion than male 

control athletes in limited contact (RR = 2.332, 95% CI 1.936 – 3.080), non-contact (RR = 

1.546, 95% CI 1.136 – 2.103), and non-NCAA (RR = 2.199, 95% CI 1.905 – 2.539)) 

categories. 

Analyses failed to reveal significant differences between female and male athletes 

with ADHD for risk of concussion in any contact category (RR ranges = 1.025 – 3.226). 

Specific Aim 3 

Inclusion and exclusion criteria for aim 3 are provided in Figure 4.2 Final analyses 

included 210 athletes comprised of 140 controls double-matched to 35 athletes with ADHD 

taking psychostimulant medications (ADHD+Rx), and 35 athletes with ADHD but not 

taking psychostimulant medications (ADHD_uRx). Sample characteristics and 

accompanying statistics are provided in Table 4.7. The ADHD_uRx group demonstrated a 

statistically significant larger BMI than controls. There were no significant differences 
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between groups for age at baseline, age at injury during the study, or for the age at which 

the athletes incurred their first ever concussion among athletes with a positive concussion 

history. The ADHD_uRx group reported significantly greater history of concussion (60%) 

than both controls (35.7%) and ADHD+Rx (28.6%). There were no differences between 

groups in the amount of time between the injury and reporting the injury, being 

programmatically determined to be asymptomatic, or being programmatically determined 

eligible for RTP (14-15 days). However, the ADHD_uRx reported a greater number of 

days with self-reported concussion related symptoms (9 days) than both controls (5 days) 

and ADHD+Rx (6 days).  

ANOVA post-hoc results for baseline and results for 24-48 hours post injury and 

uRTP post-hoc comparisons can be found in Table 4.9. Pairwise effect sizes suggest most 

effect sizes were small-to-medium (η2 from .01 to .101) suggesting caution may be needed 

for clinical or practical interpretation.257 

Baseline: Analyses revealed that the ADHD_uRx group performed significantly worse 

than controls for impulse control (7.343 vs. 4.686), reaction time (0.631 vs. 0.584), and 

visual motor speed (38.350 vs. 42.602). There were no statistically significant differences 

between ADHD+Rx and ADHD_uRx groups for any other baseline ImPACT measure. 

24-48hours post-injury: Analyses using baseline scores as a covariate revealed that the 

ADHD+Rx group performed worse than controls for impulse control (9.40 vs. 6.07). 

Additionally, the ADHD_uRx group performed significantly worse than controls for 

reaction time (.683 vs. .606), visual memory (69.5 vs. 75.3), and cognitive efficiency (.281 

vs. .367). Furthermore, the ADHD_uRx group performed worse than both controls and 

ADHD+Rx for visual motor speed (35.248 vs. 39.331 and 42.156), this was the only 
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difference between ADHD+Rx and ADHD_uRx for any 24-48hour post-injury ImPACT 

measure. 

Unrestricted return-to-play (uRTP): Analyses using baseline scores as a covariate revealed 

the ADHD+Rx group performed significantly worse than both controls and ADHD_uRx 

for impulse control (9.057 vs. 5.771 and 5.829). Also, the ADHD_uRX and ADHD+Rx 

groups reported greater total symptoms than controls (1.429 and 1.486 vs. .629). 

Additionally, the ADHD_uRx group performed significantly worse than controls for verbal 

memory (87.857 vs. 92.029), visual memory, and visual motor speed (41.877 vs. 44.974). 

Furthermore, the ADHD_uRx group performed worse than both controls and ADHD+Rx 

for reaction time (.608 vs. .567 and .565). There were no differences between groups for 

cognitive efficiency at uRTP. 

  



35 

Tables & Figures 

 

 

Figure 4.1. Selection Criteria for Specific Aims 1 & 2 

  

Excluded for other diagnosis (n = 752) 
Specific Learning Disorder (n = 429) 
 ADHD and Specific Learning Disorder (n = 323) 

Total Athletes = 47,444 

Excluded (n = 12,810) 
Year 2 (n = 11,218) 
Year 3 (n = 1,589) 
Year 4 (n = 3) 

Unique Athletes (n = 34,634) 

Controls (n = 32,369) 

Excluded (n = 1,247) 
Missing Sex (n = 8) 
Failed a year (n = 1,239) 

Controls (n = 31,122) ADHD (n = 1,513) 
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Table 4.1 Sample Characteristics for Aim 1. 

  Controls  ADHD 

 No History History No History History 

  n % n % n % n % 

Overall History (n = 7398) 24256 77.9 6866 22.1 981 64.8 532 35.2 

Female (n = 2681) 9205 78.6 2506 21.4 351 66.7 175 33.3 

Male (n = 4717) 15051 77.5 4360 22.5 630 63.8 357 36.2 

Concussion History by Quantity 

One Prior (n = 5607) - - 5221 93.1 - - 386 6.9 

Female (n = 1970) - - 1841 93.5 - - 129 6.5 

Male (n = 3637) - - 3380 92.9 - - 257 7.1 

Two + Prior (n = 1791) - - 1645 91.8 - - 146 8.2 

Female (n = 711) - - 665 93.5 - - 46 6.5 

Male (n = 1080) - - 980 90.7 - - 100 9.3 

Concussion History by Contact Category  

Contact (n = 3508) 7026 68.7 3204 31.3 386 55.9 304 44.1 

Female (n = 1043) 1923 66.5 969 33.5 97 56.7 74 43.3 

Male (n = 2465) 5103 69.5 2235 30.5 289 55.7 230 44.3 

Limited Contact (n = 1393) 5400 80.8 1284 19.2 259 70.4 109 29.6 

Female (n = 708) 2834 81.1 662 18.9 122 72.6 46 27.4 

Male (n = 685) 2566 80.5 622 19.5 137 68.5 63 31.5 

Non-Contact (n = 794) 4101 84.9 730 15.1 209 76.6 64 23.4 

Female (n = 576) 2664 83.4 531 16.6 114 71.7 45 28.3 

Male (n = 218) 1437 87.8 199 12.2 95 83.3 19 16.7 

Non-NCAA (n = 1704) 7728 82.4 1649 17.6 127 69.8 55 30.2 

Female (n = 354) 1784 83.8 344 16.2 18 64.3 10 35.7 

Male (n = 1350) 5944 82.0 1305 18.0 109 70.8 45 29.2 
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Table 4.2 Retrospective Odds Ratios 

 History of Concussion One Prior Concussion Two or More Concussions 

 OR 95% CI χ2 p OR 95% CI χ2 p OR 95% CI χ2 p 

Control 
0.940 0.889 - 0.995 4.845 < .05 0.885 0.931 - 0.941 14.987 < .01 1.132 1.023 - 1.253 5.786 < .05 

F/M 

ADHD 1.915 1.718 - 2.136 141.173 < .01 1.699 1.508 - 1.915 77.393 < .01 1.914 1.602 - 2.286 52.979 < .01 

Females 1.931 1.520 - 2.207 41.465 < .01 1.742 1.419 - 2.138 28.890 < .01 1.592 1.165 - 2.176 8.651 < .01 

Males 1.956 1.710 - 2.236 99.201 < .01 1.670 1.442 - 1.934 47.698 < .01 2.120 1.708 - 2.633 48.396 < .01 

F/M 0.880 0.704 - 1.100 1.266 
 

0.923 0.723 - 1.178 0.414 
 

0.850 0.589 - 1.226 0.757 
 

F/M designates females relative to males. 

ADHD odds ratios are relative to control athletes. 
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Table 4.3 Retrospective Odds Ratios by Contact Category 

  Contact  Limited Contact  
 

OR 95% CI χ2 p OR 95% CI χ2 p 

Controls 
1.151 1.050 - 1.261 8.961 < .01 0.964 0.853 - 1.088 0.355  

F/M 

ADHD 1.727 1.478 - 2.019 48.104 < .01 1.770 1.404 - 2.232 23.843 < .01 

F/M 0.959 0.676 - 1.358 0.057 
 

0.820 0.522 - 1.288 0.743 
 

 Non - Contact   Non - NCAA 

 OR 95% CI χ2 p OR 95% CI χ2 p 

Controls 
1.439 1.208 - 1.715 16.748 < .01 0.878 0.77 - 1.000 3.831 < .05 

F/M 

ADHD 1.720 1.286 - 2.301 13.657 < .01 2.030 1.47 - 2.797 19.455 < .01 

F/M 1.974 1.082 - 3.601 5.008 < .05 1.346 0.58 - 3.140 0.474 
 

F/M designates females relative to males. 

ADHD odds ratios are relative to control athletes. 
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Table 4.4 Sample Characteristics for Aim 2 

  Controls ADHD 

  No Cx Cx No Cx Cx 

  n % n % n % n % 

Overall Concussions 

(n = 2699) 
28576 91.8 2546 8.2 1360 89.9 153 10.1 

Female (n = 1116) 10645 90.9 1066 9.1 476 90.5 50 9.5 

Male (n = 1583) 17931 92.4 1480 7.6 884 89.6 103 10.4 

Incurred Concussion by History 

No History (n = 1708) 22617 93.2 1639 6.8 912 93.0 69 7.0 

Female (n = 708) 8518 92.5 687 7.5 330 94.0 21 6.0 

Male (n = 1000) 14099 93.7 952 6.3 582 92.4 48 7.6 

History (n = 991) 5959 86.8 907 13.2 448 84.2 84 15.8 

Female (n = 408) 2127 84.9 379 15.1 146 83.4 29 16.6 

Male (n = 583) 3832 87.9 528 12.1 302 84.6 55 15.4 

Incurred Concussion by Category 

Contact (n = 1365) - - 1266 92.7 - - 99 7.3 

Female (n = 393) - - 368 93.6 - - 25 6.4 

Male (n = 972) - - 898 92.4 - - 74 7.6 

Limited Contact (n = 394) - - 370 93.9 - - 24 6.1 

Female (n = 279) - - 266 95.3 - - 13 4.7 

Male (n = 115) - - 104 90.4 - - 11 9.6 

Non-Contact (n = 220) - - 209 95.0 - - 11 5.0 

Female (n = 166) - - 157 94.6 - - 9 5.4 

Male (n = 54) - - 52 96.3 - - 2 3.7 

Non-NCAA (n = 720) - - 701 97.4 - - 19 2.6 

Female (n = 278) - - 275 98.9 - - 3 1.1 

Male (n = 442) - - 426 96.4 - - 16 3.6 
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Table 4.5 Prospective Relative Risk Ratios 

 
 

Risk of Concussion Risk Without History Risk With History 

  RR 95% CI χ2 p RR 95% CI χ2 p RR 95% CI χ2 p 

Controls 
1.194 1.107 - 1.287 21.242 < .01 1.180 1.073 - 1.297 11.73 < .01 1.249 1.105 - 1.412 12.632 < .01 

F/M 

ADHD 1.236 1.059 - 1.443 7.097 < .01 1.041 0.825 - 1.340 0.11  1.195 0.973 - 1.468 2.836  

Females 1.044 0.797 - 1.369 0.099  0.802 0.526 - 1.221 1.08  1.096 0.776 - 1.547 0.266  

Males 1.369 1.133 - 1.654 10.369 < .01 1.204 0.911 - 1.592 1.69  1.272 0.985 - 1.644 3.316  

F/M 0.911 0.661 - 1.255 0.326  1.076 0.713 - 1.624 0.92  0.785 0.478 - 1.289 0.823  

F/M designates females relative to males. 

ADHD risk ratios relative to control athletes. 
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Table 4.6 Prospective Relative Risk Ratios by Contact Category 

  NCAA Contact NCAA Limited Contact 

  Risk 95% CI χ2 p Risk 95% CI χ2 p 

Controls 
1.040 0.928 - 1.165 0.454 

 
2.332 1.94 - 3.080 60.241 < .01 

F/M  

ADHD 1.159 0.959 - 1.401 0.299   1.178 0.790 - 1.756 0.643   

F/M 1.025 0.67 - 1.559 0.014   1.407 0.647 - 3.058 0.750   

  NCAA Non-Contact Non-NCAA 

  Risk 95% CI χ2 p Risk 95% CI χ2 p 

Controls 
1.546 1.140 - 2.103 7.873 < .01 2.199 1.905 - 2.539 118.085 < .01 

F/M 

ADHD 0.931 0.514 - 1.687 0.055   1.396 0.907 - 2.150 2.252   

F/M 3.226 0.710 - 14.652 * 0.09 1.031 0.322 - 3.308 * 0.588 

F/M designates females relative to males. All ADHD risk ratios relative to control athletes. 

* Indicates Fisher’s exact p-value is reported. 
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Figure 4.2 Selection Criteria for Specific Aim 3 

  

Unique athletes who experienced a single concussion during the study with complete ImPACT data at 
Baseline, 24-48hr post injury and at RTP  

 (pre-exclusion n = 1,227) 

Excluded (n = 358) 
• 6 reported moderate-to-severe TBI 
• 38 reported specific learning disorder, memory disorders, or psychiatric disorder (Bipolar, 

schizophrenia) 
• 314 missing data for either injury or demographic data 

Unique Eligible Athletes (n = 869)  

Matched ADHD+Rx  
 (n = 35) 

Double Matched Controls  
 (n = 140) 

Matched ADHD_uRx  
 (n = 35) 

Unique Athletes Eligible for Matching Criteria (n = 690) 

Excluded Controls (n = 155) 
• 46 failed a year of high 

school. 
• 75 taking medications 

with known cognitive 
effects. 

• 34 significant outliers 

Controls (pre-exclusion n = 771) 

Excluded ADHD_uRx (n = 14) 
• 8 Reported no Rx but 

listed a stimulant Rx 
name. 

• 6 Significant outliers on 
more than one data point 

ADHD_uRx (n = 52) 

Excluded ADHD+Rx (n = 10) 
• 6 Missing Rx name 
• 1 Non-stimulant Rx  
• 3 Significant Outlier on 

more than one data point 

ADHD+Rx (n = 46) 
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Table 4.7 Sample Characteristics for Aim 3 (Mean ± S.D.) 

 Controls ADHD+Rx ADHD_uRx    

Total Sample 140 35 35    

Male 100 26 24    

Female 40 9 11    

Characteristics    F p η2 

BMI 24.6 ± 4.6 24.7 ± 4.2 26.2 ± 2.9 * 4.001 .02 .038 

Age at Baseline 18.9 ± 1.5 19.2 ± 1.3 19.1 ± 1.4 1.018 .363 .010 

Age at Injury 20.4 ± 1.6 20.9 ± 1.6 21.1 ± 1. 1.586 .211 .040 

Years of Sport Participation 10.1 ± 3.5 10.9 ± 2.9 10.4 ± 4.0 .683 .506 .008 

Concussion History 50 (35.7%) 10 (28.6%) 21 (60%) ** 5.353 .005 .049 

One  39 (27.9%) 8 (22.9%) 15 (42.9%)    

Two or more 11 (7.9%) 2 (5.7%) 6 (17.1%)    

Age at first concussion 15.6 ± 2.8 15.8 ± 1.2 15.0 ± 2.6 .827 .441 .021 

Post-Concussion (Days from injury to time point)     

Injury reported 1.2 ± 2.2 1.7 ± 2.6 1.8 ± 4.1 1.099 .335 .011 

Symptom resolution 5.4 ± 3.5 6.2 ± 4.9 9.2 ± 6.9 ** 9.452 < .001 .084 

* Significant from controls only; ** Significant from all other groups     
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Table 4.8 ImPACT Scores (Mean ± S.D.) 

Control ADHD+Rx ADHD_uRx F p η2 

Impulse Control 
Composite 

Baseline 4.686 ± 0.342 6.486 ± 0.684 7.343 ± 0.684* 7.463 0.001 0.067 
24 - 48hr 6.071 ± 0.473 9.400 ± 0.946* 8.000 ± 0.946 5.689 0.004 0.052 
uRTP 5.771 ± 0.429 9.057 ± 0.858** 5.829 ± 0.858 6.074 0.003 0.055 

Reaction Time 
(seconds) 

Baseline 0.584 ± 0.007 0.581 ± 0.014 0.631 ± 0.014* 4.670 0.010 0.043 
24 - 48hr 0.606 ± 0.009 0.636 ± 0.018 0.683 ± 0.018* 7.403 0.001 0.067 
uRTP 0.567 ± 0.007 0.565 ± 0.014 0.608 ± 0.014** 3.817 0.024 0.036 

Total Symptom 
Score 

Baseline 7.257 ± 0.786 8.200 ± 1.571 7.543 ± 1.571 0.146 0.865 0.001 
24 - 48hr 18.507 ± 1.588 23.486 ± 3.176 22.771 ± 3.176 1.424 0.243 0.014 
uRTP 0.629 ± 0.151** 1.429 ± 0.302 1.486 ± 0.322 3.230 0.042 0.030 

Verbal Memory 
Composite 

Baseline 86.393 ± 0.897 84.571 ± 1.793 83.886 ± 1.793 3.010 0.051 0.028 
24 - 48hr 87.179 ± 1.115** 80.343 ± 2.229 78.743 ± 2.229 7.951 0.000 0.071 
uRTP 92.029 ± 0.702 91.400 ± 1.403 87.857 ± 1.403* 3.545 0.031 0.033 

Visual Memory 
Composite 

Baseline 78.364 ± 1.231 75.114 ± 2.463 71.971 ± 2.463 2.962 0.054 0.028 
24 - 48hr 75.300 ± 1.233 71.514 ± 2.466 69.514 ± 2.466* 2.675 0.071 0.025 
uRTP 79.036 ± 1.174 76.200 ± 2.348 71.514 ± 2.348* 4.239 0.016 0.039 

Visual Motor Speed 
Composite 

Baseline 42.602 ± 0.591 41.871 ± 1.181 38.350 ± 1.181* 5.184 0.006 0.048 
24 - 48hr 42.156 ± 0.654 39.331 ± 1.307 35.248 ± 1.307** 11.673 0.000 0.101 
uRTP 44.974 ± 0.566 42.813 ± 1.131 41.877 ± 1.131* 3.769 0.025 0.035 

Cognitive Efficiency 
Index 

Baseline 0.337 ± 0.012 0.313 ± 0.025 0.286 ± 0.025 1.816 0.165 0.017 
24 - 48hr 0.367 ± 0.012 0.313 ± 0.025 0.281 ± 0.025* 5.666 0.004 0.052 
uRTP 0.421 ± 0.013 0.416 ± 0.026 0.351 ± 0.026 3.010 0.051 0.028 

* Significant from controls only, ** Significant from all other groups
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CHAPTER 5: DISCUSSION

The primary aims of this study were to cross-sectionally and prospectively 

investigate the influence of ADHD on the 1) odds of concussion history, the 2) relative risk 

of incurring a concussion, and to 3) determine whether medication status influences 

recovery among college athletes with ADHD.  

Specific Aims 1 & 2 

Consistent with our hypotheses, we observed that both male and female athletes 

with self-reported diagnosis of ADHD had significantly greater odds of single and multiple 

concussions than controls, replicating prior results.26 Additionally, we observed the same 

pattern when stratifying by sport-contact category type, athletes with ADHD had 

significantly greater odds of single and multiple concussions than controls for contact, 

limited contact, non-contact, and non-NCAA categories. Interestingly, we observed that 

females with ADHD in the non-contact category had significantly greater odds of 

concussion than males with ADHD in the non-contact category. However, the reason 

behind this divergence is unclear. Thus, further investigation is needed regarding the 

confluence of sport-contact type and sex on concussion history.  

Consistent with our hypotheses, we prospectively observed that all athletes with 

ADHD had greater risk for incurring a concussion during the study period. However, 

females with ADHD did not have increased risk for concussion despite having increased 

odds, relative to female controls. Based on these findings, a dissociation appears to exist 

between females and males with ADHD regarding the confluence of ADHD and prior 
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concussion history on concussion risk, relative to sex specific controls. There are several 

possible explanations for these findings, such as objective sex differences or varying 

degrees of aggressive styles of play between males and females. Additionally, it is possible 

that various sports males and females participate in have various levels of “contact” and 

differing rule sets, for example female ice hockey is a “no checking” sport, whereas male 

ice hockey allows full contact. Owing to the lack of comprehensive physiological data, any 

causally mechanistic discussion is speculative, however we will highlight features that are 

believed to contribute to our findings. 

Specific Aim 3 

Baseline 

We hypothesized a priori differences between medicated and unmedicated athletes 

in terms of clinical symptoms and cognition. We observed that unmedicated athletes with 

ADHD performed worse on measures of impulse control, reaction time, and visual motor 

speed. These findings are consistent with previous findings from ADHD and concussion 

studies50, 57-61. However, while some results are statistically significant, we feel it is 

important to mention that this may not be a clinically meaningful difference (i.e., reaction 

time differences between 567 and 608ms).  

24 – 48 hours post injury 

In accordance with our hypotheses, we observed group differences at 24-48 hours 

post-injury while using baseline values as covariate. The unmedicated ADHD group 

performed worse than controls, but not the medicated ADHD group, for reaction time, 

visual memory, and cognitive efficiency. However, the unmedicated ADHD group 

performed worse than both medicated ADHD and controls for visual motor speed. 
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Interestingly, the medicated ADHD group performed worse than controls, but not 

unmedicated ADHD, for impulse control, suggesting a reemergence of self-regulatory 

difficulties for medicated ADHD. 

Unrestricted Return-to-play 

 As hypothesized, there were some differences at uRTP between groups. The 

unmedicated ADHD group performed worse for reaction time than both controls and 

medicated ADHD. Controls also reported fewer total symptoms than either medicated or 

unmedicated. Additionally, the unmedicated ADHD group performed worse than 

controls, but not medicated ADHD for verbal memory, visual memory, and visual motor 

speed.  

The unmedicated ADHD group reported greater duration of symptoms than either 

controls or medicated ADHD.  

Interestingly, the three most closely related composites are impulse control, 

reaction time, and visual motor speed. For example, delayed reaction time and response 

speed suggest inefficient inhibition of a response or movement based on rule sets or 

decision making. Accordingly, there were differences between the medicated and 

unmedicated ADHD group, but no differences between the medicated ADHD group and 

controls for impulse control, reaction speed, and visual motor speed. This suggests that 

medications are working as expected given their abilities to regulate impulse control in 

those with ADHD. These findings appear to replicate previously reported effects of these 

stimulant medications on neurocognitive test performance.59, 63, 65-68 Acknowledging these 

preexisting differences reinforces the potential importance for ADHD medicated and 

unmedicated specific normative data for use when pre-season baseline testing is not 
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available or not a viable option. However, the only available normative data is non-ADHD 

specific as it includes any learning problems, special education needs, and is from 2003 

using a limited sample size (total n = 256). Thus, the individual baseline analysis and 

inclusion as a covariate is an important feature of our study. 

Potential Mechanisms  

While this investigation did not employ any physiological measures, it is still 

important to mention mechanisms by which the presence of ADHD contribute to 

concussion (aims 1 & 2) as well as how ADHD medication may influence concussion 

symptoms (aim 3).  

That all athletes with ADHD had greater odds for multiple prior concussions poses 

interesting questions regarding mechanisms (aims 1 & 2). Currently, it is not feasible to 

ascertain the underlying causative mechanisms for increased susceptibility for recurrent 

concussions, however we can speculate based on existing knowledge. First, it is widely 

acknowledged that a history of concussion is a probable risk factor for recurrent 

concussion20, 22, 79, 118, 120. It is possible that structural and physiological alterations often 

observed in athletes with ADHD, such as reductions in axonal integrity, glucose 

metabolism, cerebral blood flow, and catecholamine levels, render these athletes more 

susceptible. Thus the “threshold at which concussion occurs” (i.e., velocity, impact ratings 

etc.) may be lessened in these athletes resulting in a greater incidence and risk for 

concussive injuries; however, to our knowledge no physiological or kinematic data exists 

in athletes with ADHD. There is some data suggesting there are motor control alterations 

which linger for weeks to years after concussion 258-262. Taken in consideration with 

reported motor control deficits commonly reported in ADHD, it is also possible that 
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increased rate of concussions in athletes with ADHD is partially a result of pre-injury motor 

deficits being exacerbated by concussion.  

Although the physiology is likely complex, neuro-behavioral mechanism may be 

involved in the observed increased occurrence of concussion. ADHD is widely 

acknowledged to be a disorder of executive functions, particularly those of inhibition (i.e., 

impulse control) and attentional focus. Any deficits in inhibition and/or attentional focus 

represent a concern for athletes in sport environments. 

Inhibition deficits in athletes may manifest as unnecessary risk taking, ignoring the 

potential outcomes of negative or dangerous actions, or heightened distractibility. Athletes 

with ADHD, due to lack of inhibitory control in the moment, may be placing themselves 

in potentially dangerous situations, such as head-to-head contact when unintended. Also, 

inhibition may result in the inability to filter out irrelevant information, resulting in 

distraction and a potentially hazardous situation. These situations may contribute to the 

observed increased prevalence of concussions among athletes with ADHD. 

Similarly, any failure to attend to surrounding features, including the position, 

and/or intention of an opponent during active play could result in an impact related blow. 

If an athlete has ADHD, they may not be attending to the spatial position of these cues and 

place themselves at risk for concussive impacts or fall. Further, attending to a non-relevant 

cue in the environment may act as a distractor from potential hazards. Thus, behavioral 

lapses in attention to environment cues may also contribute to increased concussion 

occurrence in athletes with ADHD. However, this level of inattention during sport is most 

likely to be observed in children or adolescents and not observed as often in elite-level 

athletes as those most often seen in college. 
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Current evidence suggests that symptom severity is correlated with the degree to 

which metabolism is impaired 17, 98, 133, 142, 144. Accordingly, the deficits in neurocognitive 

performance observed in those with ADHD may be partly explained by a detrimental 

interaction between impairments inherent to ADHD and impairments induced by 

concussion. A possible consideration is the direct influence of stimulant medications, both 

AMPH (amphetamine) and MPH (methylphenidate) result in enhanced availability and/or 

activity of dopamine and, by extension, norepinephrine. Each of these neurotransmitters 

acts on key areas of the brain, particularly the areas involved in vigilance, impulse control, 

fine motor control, coordination, and reaction time263, 264. Enhancing neurotransmitter 

signaling by using these medications may lead to improved metabolic activity, such as 

relatively normalizing glucose metabolism, leading to increased ATP production by the 

mitochondria, mitigating some of the acute effects of the neurometabolic cascade following 

concussion.  

 Healthy mitochondrial function includes a dynamic lifecycle called mitochondrial 

dynamics and is regulated by diverse complex mechanisms. However, this cycle can be 

simplified into 1) fusing with other mitochondria (fusion) and 2) dividing into separate 

mitochondria (fission). Fusion is a beneficial mechanism for consolidating multiple 

damaged organelles into a single organelle, and the subsequent fission into a healthy 

organelle and an organelle marked for autophagy. Mitochondrial dynamics are vital for 

axonal transport (i.e., anterograde and retrograde) to neuronal regions with the greatest 

energy requirements and is thought to be regulated by both the local metabolic state as well 

as the distribution of other mitochondria265. Mitochondria localized to synapses are 

necessary to manage the energetic requirements of ATP-depended processes and regulate 
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Ca2+ concentrations during periods of intense activation266-268. Additionally, this cycle is a 

particularly important facilitator of apoptosis during periods of increased cellular stress, 

such as the period following concussion.  

In the concussion literature, several studies have reported that following an initial 

injury there exists a period following injury during which mitochondrial fission and 

autophagy exceeds mitochondrial fusion269-273. This lag time appears to reflect the acute 

bioenergetic impairments that accompany concussion. Given the importance of 

mitochondrial function to homeostasis and meeting bioenergetic needs, this suggests that 

there is a period during which the neuron may be biochemically, metabolically, and perhaps 

even structurally attenuated due to mitochondrial dysfunction274. Following a concussion 

there is increased demand for ATP in order restore ionic concentrations15, 16, 98. This 

increased demand requires excessive ATP production which is accompanied by increased 

production of reactive oxygen species (ROS), a natural byproduct. However, if the quantity 

of oxidants exceeds the buffering abilities of cellular antioxidants, then ROS toxicity may 

occur. ROS toxicity impairs glucose uptake and metabolism275, cellular membrane 

damage, cause genetic mutations, and/or result in apoptosis 276, all of which may be 

collectively referred to as oxidative stress (OxS).  

The healthy brain may be particularly vulnerable to OxS due to increased energy 

demands and therefore dependency on mitochondria, thus with various injuries or disorders 

increased OxS may be increasingly detrimental. Indeed, OxS has been implicated in 

neurodegenerative diseases such as Alzheimer’s disease277, 278, Parkinson’s disease279, 

amyotrophic lateral sclerosis280, 281, acute neurodegeneration resulting from cerebral 

ischemia,282 and traumatic brain injury283-285. Several studies have reported that individuals 
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with ADHD have abnormally elevated levels of oxidative stress 286-292. Furthermore, it has 

been demonstrated that in ADHD, absent history of brain injury, there is an insufficient 

antioxidant response to increases in ROS, which activates intracellular signaling thereby 

modulating glucose uptake and metabolism and resulting in bioenergetic impairment. 

Collectively, it is plausible that increased ROS production may be a hallmark of 

mitochondrial dysfunction in ADHD and following concussion 293, 294. While evidence 

regarding mitochondrial bioenergetics in ADHD pathogenesis is limited, there is some 

evidence that OxS is a characteristic in ADHD295.  

In summary, mitochondria help regulate Ca2+ concentrations and produce ATP via 

cellular respiration using glucose and oxygen. In individuals with ADHD there are existing 

glucose deficits, reduced cerebral blood flow resulting in reduced oxygen availability, and 

increased OxS, particularly when not taking medication296. Incurring a concussion 

exacerbates these deficits via the neurometabolic cascade and subsequent energy deficits 

as previously discussed. As seen in nearly all measures, individuals with medicated ADHD 

appeared to perform better than unmedicated ADHD. Physiologically, it is therefore 

plausible that psychostimulant medications mitigate some of these underlying ADHD 

specific deficits. For example, MPH not only regulates catecholamine uptake but also 

stimulates glycolysis and increases creatine kinase activity297 which may further help to 

mitigate energy deficiencies and therefore reduce suspected physiological underpinnings 

of ADHD. Indeed, early in the concussion treatment literature physicians were prescribing 

psychostimulants to treat concussion symptoms298, however that practice has been called 

into question as more data on concussion is gathered.  
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The effects of psychostimulant medications are largely noticeable in the prefrontal 

cortex, striatum, and nucleus accumbens, areas closely associated with cognitive functions. 

Thus, these medications serve to enhance metabolic activity, neurotransmitter availability 

and activity, resulting in a net increase in cognitive functions. Further evidence suggesting 

these medications (i.e., MPH and AMPH) may enhance cognitive processes is reflected in 

the few studies demonstrating that athletes without a neurodevelopmental disorder taking 

these medications perform better on cognitive tasks than when not taking these medications 

(i.e., within subjects) absent concussion65. Collectively, this may be a possible explanation 

why the medicated groups’ cognitive scores were more comparable to controls than to the 

unmedicated groups following concussion.  

Limitations 

These investigations have several methodological limitations. For Aims 1 & 2 we 

were unable to include exposure rates in our analysis. Of note, this sample contains sports 

in which there were disproportionate representations of a single sex and is therefore 

possible some findings are subject to sample bias. For Aim 1, the cross-sectional nature of 

retrospective self-reported ADHD diagnoses and prior concussions history prevents any 

determinations of temporality for concussion odds. However, since most ADHD diagnoses 

are made during early childhood it is likely they received a diagnosis before sustaining a 

concussion, although secondary ADHD following a moderate or severe brain injury has 

been reported previously.49 Additionally, diagnosis of ADHD was self-reported, therefore 

it is possible that some athletes did not report their diagnosis due to concern of stigma 

associated with ADHD. Furthermore, we did not exclude athletes with an IEP or 504-plan 

as there are many ways in which these may be provided to students without ADHD. 
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However, we excluded all participants who did not report ADHD but repeated a grade to 

control for this possibility. Furthermore, the rates of ADHD are relatively consistent with 

previous studies of collegiate athletes.30, 50, 55  

For Aims 1 & 2 we included athletes who did and did not take psycho-stimulant 

medications for their diagnoses to accurately represent the overall body of athletes with 

NDs. It is possible that differences exist between medicated and un-medicated athletes, or 

potential changes to medications during the study could influence injury odds and risk. 

However, there were no statistically significant differences in an exploratory analysis 

examining odds and risk by psycho-stimulant medication status within the ADHD group.  

For aim 3 we feel it is important to note that impulsivity is often considered a 

marker of validity, rather than a cognitive-behavioral indices, additional the cognitive 

efficiency index has been removed from the ImPACT output as of version 4.0. We included 

self-report diagnosis of ADHD, as well as self-reported psychostimulant medications. 

While it is plausible that athletes or others involved were unaware of what constitutes a 

psychostimulant, we excluded all medications other than verifiable formulations of 

amphetamine and methylphenidate (i.e., Vyvanse, Ritalin, etc.). Additionally, we excluded 

athletes taking a combination of stimulant and non-stimulant medications. Thus, our 

sample may be biased towards higher performers in that we excluded mediations for 

anxiety and depression, which are very common among athletes, individuals with ADHD, 

and following concussion.299 Furthermore, we have no way of knowing if the athletes were 

consistent in their medication usage, dosage, or whether they continued taking their 

medications post-injury. Lastly, many psychostimulant medications are used to treat 

multiple conditions and not just ADHD, for example most psychostimulants may be used 
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to treat narcolepsy. However, we only included medicated individuals reporting ADHD 

which minimizes the likelihood of a prescription based on unknown or unreported 

diagnoses. Admittedly, we were unable to account for athletes who surreptitiously used 

these medications without a diagnosis or without a prescription. 

Conclusion 

In summary, this is the largest study to date to examine the influences of ADHD on 

concussion and concussion outcomes. Our findings for aims 1 and 2 further the existing 

literature by detailing the confluence of sex, neurodevelopment, and sport-contact type 

with concussion history and risk for incurring a future concussion. Our findings for aim 3 

suggest there are some differences between athletes with ADHD control athletes, 

particularly regarding medication status. Athletes with medicated ADHD appear to have 

normalized baseline performance relative to unmedicated athletes with ADHD.  

To our knowledge, these are the first findings of its kind and reinforces both the 

need to further examine the differential factors that predispose male and female athletes to 

concussion and the need for longitudinal investigation of concussion recovery, particularly 

regarding medications in athletes with ADHD. It is our hope that these results aid sport 

medical teams in determining “at-risk” athletes who may be more susceptible for 

concussive injury and potentially poorer injury outcomes.
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