Mathematical Model for SEI Growth Under Open-Circuit Conditions

Wei Shang

Follow this and additional works at: https://scholarcommons.sc.edu/etd

Part of the Chemical Engineering Commons

Recommended Citation
MATHEMATICAL MODEL FOR SEI GROWTH UNDER OPEN-CIRCUIT CONDITIONS

by

Wei Shang

Bachelor of Engineering
Shenyang Aerospace University, 2018

Submitted in Partial Fulfillment of the Requirements

For the Degree of Master of Science in

Chemical Engineering

College of Engineering and Computing

University of South Carolina

2021

Accepted by:

Ralph White, Director of Thesis
Melissa Moss, Reader
Edward Gatzke, Reader
James Ritter, Reader

Tracey L. Weldon, Interim Vice Provost and Dean of the Graduate School
ACKNOWLEDGMENT

I would like to acknowledge Dr. White for his consistent leadership. I appreciate that I learned a lot from his course. I also greatly appreciate my fellow research group members, Dr. Coman, Dr. Niloofar, Shiv Krishna Madi Reddy, Dave, and Dani. Without their help and support along the way, it is hard for me to finish this project.

I would also like to thank my committee members: Dr. Melissa Moss, Dr. James Ritter and Dr. Edward Gatzke for their insightful comments and encouragement.

I am very thankful to my friend, Cheng Yu. He helps me some technical problems. My roommates, Weiguang Jia, he is graduated student and helps me some knowledge about how to work on thesis. Besides, Yibing Zhang, although she is not here, she gave me a lot of suggestions when I met trouble on the project.
ABSTRACT

An irreversible capacity loss will take place in lithium ions batteries due to the solid electrolyte interface (SEI) creating, which consumes the active lithium and reduces solvent. SEI is either good since it can prevent further electrolyte decomposition or bad for lessening batteries' lifetime. Mathematical modeling of SEI formation is done within a porous electrode to model an empirical battery in the x-direction.

A solid electrolyte interphase (SEI) growth model is developed in a mixed mode which contains solvent diffusion through the SEI layer and its corresponding kinetics of solvent reduction at the electrode surface. The governing equations are numerically solved by the Landau transformation, which makes the moving layer fixed and predicts the open circuit potential, SEI film thickness, and capacity loss. The estimated parameters fitted with experimental data in the literature are computed by COMSOL and MATLAB in this work. Results show that the mixed mode model predicts less capacity loss and thinner SEI thickness due to the growth of the SEI film under open circuit conditions than previously reported by others.

Keywords: SEI layer, mixed-mode, open circuit, mathematical simulation, Landau transformation
TABLE OF CONTENT

Acknowledgements .. iii

Abstract .. iv

List of Tables .. vii

List of Figures ... viii

List of Symbols .. ix

List of Abbreviations ... xi

CHAPTER 1 INTRODUCTION ..1

1.1 SEI mechanism and properties ...1

1.2 Open circuit voltage (OCV) storage ...3

1.3 Mathematical modeling ...4

CHAPTER 2 LITERATURE REVIEW ..6

CHAPTER 3 MODEL DEVELOPMENT ...10

3.1 System geometry and physical assumptions ...10

3.2 Electrochemical SEI reaction kinetics ...11

3.3 Solvent diffusion ..12

3.4 Surface film thickness ...13

3.5 Numerical solution technique ...14

3.6 Parameter estimation ..15

CHAPTER 4 RESULTS AND DISCUSSION ...19
4.1 Connection of model with experiment .. 19
4.2 Diffusion coefficient and kinetic rate constant parametric study 20
4.3 Solvent concentration .. 21
4.4 SEI thickness .. 21
4.5 Capacity loss .. 23

CHAPTER 5 CONCLUSION ... 33
5.1 Summary .. 33
5.2 Future work .. 34

REFERENCES ... 35

APPENDIX A OPEN-CIRCUIT FUNCTION ... 40

APPENDIX B CHANGE OF COORDINATES AND APPLICATION OF LANDAU TRANSFORMS ... 41

APPENDIX C COMPUTATION IN COMSOL .. 44

APPENDIX D COMPUTATION IN MATLAB ... 71
LIST OF TABLES

Table 3.1 Base-Case Values for Parameters used in the Modeling of SEI growth18

Table 4.1 Model parameters for the 1D cell simulation model24
LIST OF FIGURES

Figure 1.1 Schematic of SEI layer formation upon all elements [17]. Solvent molecules will react with lithium ions and electrons at the surface of electrode to form a new SEI layer...5

Figure 3.1. (a) Schematic illustration of the side reaction at the anode particle. (b) The right schematic is a one-dimensional SEI layer which is the projection from the particle..16

Figure 3.2. The OCP curves from solutions with different grid spacing h.................17

Figure 4.1 Data for the SONY 18650 cell stored at 100% SOC over 365 days (o). The lines are from the numerical solution of our mixed mode model (—) and kinetic limited model [46] (- -) for OCP of negative electrode as a function of time in days. ...25

Figure 4.2 Measured (O) and simulated (—) capacity loss as function of time for different diffusion coefficient D_{eff} Values. ...26

Figure 4.3 Measured (O) and simulated (—) capacity loss as function of time for different reaction rate constant k_{SEI} Values...27

Figure 4.4 Solvent concentration versus SEI thickness in mixed mode model over 365 days...28

Figure 4.5 Effect of solvent diffusion coefficient on SEI growth..........................29

Figure 4.6 Effect of kinetic reaction rate constant on SEI growth. Higher reaction rate causing thicker SEI thickness. ...30

Figure 4.7 SEI thickness as a function of time in our mixed mode model (—) and reproduced solutions from reference Ramasamy et al. [46] (- -). Ramasamy et al.’s Eq.13 with the rate constant of k_{SEI} = 1.5 \times 10^{-18} \text{ m/s} greatly deviates from our model. ...31

Figure 4.8 Capacity loss as a function of time in our mixed mode model (—) and reproduced solutions from reference Ramasamy et al. [46] (- -). Ramasamy et al.’s Eq.10 with the rate constant of k_{SEI} = 1.5 \times 10^{-18} \text{ m/s} greatly deviates from our model. ...32
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>Specific surface area</td>
</tr>
<tr>
<td>(c_{\text{Li}})</td>
<td>Lithium ions concentration (mol/m³)</td>
</tr>
<tr>
<td>(c_{\text{Li,max}})</td>
<td>Maximum lithium ions concentration (mol/m³)</td>
</tr>
<tr>
<td>(c_s)</td>
<td>Solvent concentration in the SEI layer (mol/m³)</td>
</tr>
<tr>
<td>(c_{s,\text{bulk}})</td>
<td>Bulk solution of solvent (mol/m³)</td>
</tr>
<tr>
<td>(c_p)</td>
<td>Concentration of product (mol/m³)</td>
</tr>
<tr>
<td>(D_s)</td>
<td>Diffusion coefficient of solvent (m²/s)</td>
</tr>
<tr>
<td>(D_{\text{eff}})</td>
<td>Effective diffusion coefficient of solid lithium (m²/s)</td>
</tr>
<tr>
<td>(F)</td>
<td>Faraday’s constant 96485 C/mol</td>
</tr>
<tr>
<td>(J_{\text{SEI}})</td>
<td>Current density of SEI formation (A/m²)</td>
</tr>
<tr>
<td>(k_{\text{SEI}})</td>
<td>Reaction rate of SEI formation (m/s)</td>
</tr>
<tr>
<td>(L)</td>
<td>SEI thickness (nm)</td>
</tr>
<tr>
<td>(n)</td>
<td>The number of transferred electrons</td>
</tr>
<tr>
<td>(Q)</td>
<td>Capacity loss (µAh/cm²)</td>
</tr>
<tr>
<td>(R)</td>
<td>Gas constant, 8.314 J/mol K</td>
</tr>
<tr>
<td>(T)</td>
<td>Absolute temperature (K)</td>
</tr>
<tr>
<td>(U^{\text{OCP}})</td>
<td>Equilibrium potential of negative electrode (V)</td>
</tr>
<tr>
<td>(U_{\text{SEI}})</td>
<td>Equilibrium potential of the solvent reduction reaction (V)</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>Transfer coefficient for solvent reduction reaction</td>
</tr>
</tbody>
</table>
\(\varepsilon_{SEI} \) Porosity of the SEI layer

\(\eta_{SEI} \) Overpotential for solvent reduction reaction (V)
LIST OF ABBREVIATIONS

AM ... Active Material
DEC.. Diethyl carbonate
DMC .. Dimethyl carbonate
EC .. Ethylene carbonate
ICL .. Irreversible capacity loss
LIB .. Lithium ions batteries
OCV .. Open circuit voltage
RCL .. Reversible capacity loss
SEI .. Solid electrolyte interface
SOC .. State of charge
CHAPTER 1
INTRODUCTION

Lithium ions batteries (LIB) are widely used in smartphones, laptops, electric vehicles since its high energy density. LIB's safety by applying graphite as the negative electrode is increasing, whose capacity is much lower than Li metal[1], carbon material might induce side reaction because it is a place where electrons and lithium ions are combined and then stored through intercalation. During the first charge of a lithium-ion battery, the electrolyte undergoes a reduction on the negative graphite electrode's surface. This reduction is supposed to cease LIB's performance as a passivating layer generates on the negative electrode[2-7]. Peled[5] named it a solid electrolyte interface (SEI). Around SEI, I will elaborate on this project.

1.1 SEI mechanism and properties

During the lithiation of the graphite electrode of lithium ions battery, the potential of the electrode will decrease, then the electrolyte decomposition product are forming an SEI layer[3]. This new phase grows between the electrode and electrolyte. The growth of SEI layer relies on the solvent reduction reaction with deintercalated lithium ions from negative graphite electrode and electrons. Yang et al.[8] investigated only ethylene carbonate (EC) decompose in EC/ diethyl carbonate (DEC) or EC/ dimethyl carbonate (DMC) binary solvent. Generally, EC is usually used as a predominate solvent, where its
reduction product will be regarded as the main component of SEI. Lithium ethylene
decarbonate ((CH\textsubscript{2}OCO\textsubscript{2}Li\textsubscript{2})\textsubscript{2}) is produced when the concentration of EC is high; in
contrast, LiCO\textsubscript{3} will be produced with a low concentration of EC[2, 9-12]. The choice of
graphite can supply good calendar life for commercial LIB. If the electrode material is Si,
low Coulombic efficiency occurs due to its high capacity making SEI destroyed and
unstable[6, 13, 14].

The quality of SEI affects the performance and cycle life of LIB[15]. The
formation of SEI will be against further electrolyte decomposition since it prevents the
transportation of electron. However, it still allows lithium ions through so that lithium
could intercalate into the electrode to maintain long-term cycling life[1, 3, 7, 13, 16]. SEI
forms due to the active lithium with its roughness and dendrites[13]. Therefore, an ideal
SEI or a "good" SEI; it should be flexible and elastic with features: electronically
insulating, maximum Li+ conducting[1, 7, 13] and prevents unforeseen parasitic
reactions[13]. Additionally, high resistance, high permeability of cations, and much
thinner thickness about a few nanometers, these properties attribute to an ideal SEI as
well[6].

SEI layer will form on the surface of active material AM (usually carbon
compound), electrolyte can transport through the surface of AM to react with lithium and
electrons[17], which leads to loss of AM. Zhang et al.[18] studied the mechanism of
capacity fade, and there are two regimes; in their second regime, they concluded loss of
AM is dominating. Besides, solvent reduction consumes lithium ions irreversibly. Losing
active lithium is more severe, especially cycling life. Broussely et al.[19] show that the
consumption of lithium leads to aging performance. The final consequence is that irreversible capacity loss (ICL) induced by SEI[6, 7, 15] reduces LIB’s calendar life. ICL usually occurs in the first cycle if the electrode is carbon[20]. Matsumura et al.[20] studied ICL by electrochemical methods and analytic techniques. They concluded that ICL not only on the decomposition of electrolyte but also on the status and amount of lithium. As depositing on the negative electrode at the lithiation process, the SEI layer prefers growing as a potential drop on the negative electrode[6]. Keil et al.[21] show that higher capacity loss and SEI growth can attribute to the lower potential of the negative electrode and high SOC. In Fig.5 in their literature, the potential reaches lowest at 60% SOC of NMC cell and 70% SOC of LFP cell; the corresponding capacity loss had also reached a large extent. As a passivation layer covering the surface of the negative electrode, SEI initially protects the electrode at the higher negative potential, but capacity fade occurs subsequently[3, 17, 22]. Other factors could modify SEI performance, such as kinetic reaction rate, species diffusion properties, temperature, etc. Thus, the SEI eventually becomes an essential factor to be considered upon the capacity fade in LIBs.

1.2 Open circuit voltage (OCV) storage

Self-discharge refers to the battery voltage drop that occurs spontaneously when the battery runs still under open-circuit conditions. There are two types of capacity loss[15]: reversible capacity loss (RCL) and ICL mentioned above. RCL can be recovered upon the charging process; however, ICL will not. So RCL will not be considered general in research and simulations. Johnson et al.[23] show that there is greater than 97% of initial capacity in 30 days under open circuit condition and conclude self-discharge is insignificant compared with the cycling life.
A charged LIB can self-discharge by coupling the solvent reduction reaction with a lithium deintercalation reaction without any driving force since there is no net current. The rate of self-discharge is limited by the rate of solvent reduction[15, 24]. Yazami et al.[25] presented a metastable electron-ion-electrolyte complex, which is formed and adsorbed on graphite during OCV storage. The complex is stable when the cell is charging after storage; it accounts for the capacity loss; the complex is unstable since absorbed electrons would transfer to an electrolyte. There is an irreversible reduction so that it accounts for ICL. ICL under OCV storage can be elaborated by the SEI layer growth covering the surface of the graphite electrode. There are no driving forces in our view, but the reactivity of lithium induces the deintercalation of lithium ions so that there is a range of potential where cause overpotential between SEI layer and electrode then driving force presents. The consumption of lithium to produce SEI, which causes lithium loss, also performs the SEI features mentioned above.

1.3 Mathematical modeling

The mathematical modeling method can make up the experiments' limitations especially thermodynamic and kinetics properties[13] and help understand battery science deeply; it can predict the range from electrons and the entire battery system[13]. As mentioned above, SEI may be harmless and cause ICL during storage; we might also regard solvent reduction reaction as the primary source of ICL and simulate the influence and growth of SEI when only the negative electrode is considered. The growth of SEI
might be controlled by diffusion of species and electrochemical kinetics; there will be various researchers done in the literature showing in chapter 2.

Figure 1.1 Schematic of SEI layer formation upon all elements[17]. Solvent molecules will react with lithium ions and electrons at the surface of electrode to form a new SEI layer.
CHAPTER 2
LITERATURE REVIEW

Capacity fade occurs during storage of lithium-ion battery cells. Several processes cause this capacity loss of lithium-ion batteries, including loss of active electrode material, loss of cyclable lithium ions and electrolyte decomposition due to parasitic electrochemical reactions on the electrode surface [26, 27]. The growth of solid electrolyte interface (SEI), which is a product from the parasitic reactions, inhibits further electrolyte decomposition[5]. In the literature, researchers have suggested that the growth of the SEI layer dominants the aging mechanism [17, 19, 28-55].

Zhang et al.[54] developed a single particle model to simulate the loss of lithium ions and listed various stages of capacity fade during the constant voltage storage, they calibrated against experimental data to obtain estimated parameters and proposed that the first stage of capacity loss is relevant with SEI. Ning et al.[40] developed a charge-discharge cycling model which regards solvent reduction reaction inducing loss of active lithium so that the process cause capacity fade. The exchange current density of parasitic reaction plays a role in capacity loss. Christensen et al.[29] and Colclasure et al.[30] utilize charged species transportation balance which dominates the growth of SEI to simulate in different coordinates; they listed many electrochemical reactions which are probably taking place in SEI and inducing growth of SEI with the corresponding kinetic
expressions, but they did not validate with the experimental data. The transportation of lithium ions in the layer also induces the formation of SEI[41, 51].

Based on the assumption that the diffusion of electrons through the SEI layer is rate-determining, the parabolic law models were developed by Peled et al.[5] and Broussely et al.[19], where the side reactions were assumed to occur on the interface between SEI layer and electrolyte. But Peled et al.[5] are not supported with any experimental data. Instead of assuming electron diffusion as rate-determining, Ploehn et al.[42]. proposed an SEI formation model by considering the solvent diffusion through the SEI porous layer as the rate-determining step, and the numerical results match with the experimental observations reasonably well. Yoshida et al.[53] tested the capacity fade and the thickness of SEI layer under 392 days storage upon the solvent diffusion assumption they built, and they proposed the aging of lithium ions batteries due to the growth of the SEI layer but they did not get a good agreement with experimental data of the thickness of SEI layer.

Sankarabramanian et al.[49] assumed the linear diffusion of the solvent through the SEI layer and used first order kinetics to describe side reactions; Deshpande et al.[32] extended Phul et al.[41] by adding the diffusion of the solvent but they did not get an agreement with the experimental data. Pinson et al.[17] used first-order kinetics and linear diffusion of solvent through SEI to express side reaction in the single-particle model by losing the lithium to show the formation of SEI on the negative electrode, and they applied Butler-Volmer kinetics and charged species conservation as an alternative way to describe the side reaction and simulated the SEI layer growth in the porous electrode model.
Lamorgese et al. [36], Ashwin et al. [28], Fu et al. [33], and Lin et al. [38] set up a pseudo-two-dimensional (P2D) model to simulate the SEI formation by applying porous electrode theory and the current density of side reaction which follows Tafel kinetics. Liu et al. [39] and Zhao et al. [55] added the solvent diffusion which follows Fick’s second law through the SEI layer in their P2D simulation. Jin et al. [34] used a reduced-order approach to simplify the P2D model which contains solvent diffusion and Tafel kinetics, and they get good results with the experimental results. Kamyab et al. [35] extended Ploehn et al.’s [42] work by adding the Tafel kinetics within the film growth to mixed mode. They also assume the linear diffusion problem but with Tafel kinetics to solve an analytical solution of SEI film's thickness and capacity loss to compare with the experimental data under trickle charge storage. Rahamian et al. [44] listed the kinetics-limited and diffusion-limited processes under extreme conditions to reveal that the growth of SEI is linear in the kinetic-limited region initially then the thickness is a function of the square root of time in the diffusion-limited region. Safari et al. [48] in 2008 proposed the diffusion of solvent and Tafel kinetics in a single-particle model under various conditions. They concluded that the growth of the film would be more controlled by diffusion; besides, under OCV storage, the values of the diffusion coefficient and reaction rate adjusted by them are relatively large. Safari et al. [47] in 2011 refined their equations and parameters to simulate their model again; they ignored the change of the open-circuit voltage and the influence of the initial SOC; after the improvement, they concluded that both diffusion and kinetics control the growth of the SEI film, and the growth of the film is maximized when the initial SOC is 100%.
The diffusion of a solvent through the film mixed with the electrochemical kinetics will describe the film growth. Ramasamy et al. [46] simulated zero-dimensional SEI growth and capacity loss under open-circuit conditions by using Tafel kinetics only; an ordinary differential equation is listed as to how lithium is consumed in the side reaction. In this work, we extend their model; by establishing a one-dimensional SEI film, the diffusion of the solvent in the film is added, which follows Fick’s second law; electrochemistry reaction occurs at the interface between the SEI and the electrode. The reaction rate constant continues to follow, but the solvent concentration will be expressed as dependent variables in the exchange current density term. Besides, according to the theory of moving SEI film mentioned by Kamyab et al. [35] and Plohen et al. [42], the growth rate of SEI is obtained. The governing equations would predict the OCV value of electrode, SOC dropping, the SEI layer thickness, and the capacity loss. The OCV value prediction of the negative electrode is fitted to experimental data from a SONY 18650 lithium ions battery [56, 57]. Ramasamy et al. [46] plotted the OCV in their work. The effective diffusion coefficient of the solvent (D_{seff}) and the kinetic reaction rate of the SEI side reaction (k_{SEI}) are obtained from curve fitting to the experimental data. Additionally, we developed an alternative approach to solving nonlinear partial differential equation with Landau transformation. Making a moving boundary to be fixed, we can simulate the governing equations and boundary conditions in an easier sight and optimize the best-estimated parameters. The derivation process is shown in Appendix B.
CHAPTER 3
MODEL DEVELOPMENT

3.1 System geometry and physical assumptions

The solvent (S) and lithium ions (Li+) diffuse through the SEI layer and react with the electrons on the electrode surface, which results in the formation of an insoluble product (P) at the electrode/SEI interface. The SEI growth on the electrode is shown schematically in Figure 3.1. In the present study, the model is developed to analyze the behavior of critical aging mechanisms and their impact on the capacity fade in the negative electrode. The following assumptions have been applied in the modeling of SEI growth under open circuit conditions.

1. Two components are in the system: porous domain of solvent (c_s) and lithium ions (Li+) at the electrode surface.

2. We assume a porous structure for the SEI layer, the liquid electrolyte fills the pores of the SEI and reaches the electrode surface.

3. Diffusion of the solvent occurs only in the x direction; thus, the growth of the SEI is uniform in the y and z directions.

4. The overall self-discharge rate is so slow that it is not limited by diffusion of lithium ions out of the carbon electrode.
3.2 Electrochemical SEI reaction kinetics

The electrochemical reaction for SEI formation at the solid/electrolyte interface can be expressed as:

\[2\text{Li}^+ + \text{S} + 2\text{e}^- \rightarrow \text{P} \]

(1)

A schematic of the electrode-SEI-electrolyte interface is shown in Figure 3.1. For an SEI layer much smaller in thickness than a typical particle of active material, the particle surface can be assumed to have zero curvature and is modeled in 1D cartesian coordinates. \(\text{P} \) represents the main inorganic component of solid electrolyte interphase (SEI). Christensen et al.[29] and Colclasure et al.[30] listed their reactions and utilized \(\text{Li}_2\text{CO}_3 \) as the main product. The releasing of flammable hydrocarbon methane gas is ignored in this work for simplicity. The rate of SEI formation reaction is affected by the mass transport of solvent and the kinetics. A Tafel expression is used to describe the kinetics of the irreversible formation reaction of the product \(\text{(P)} \) as:

\[J_{\text{SEI}} = -nFk_{\text{SEI}}c_s \frac{c_{\text{Li}}}{c_{\text{Li,max}}} \exp \left(-\frac{\alpha nF\eta_{\text{SEI}}}{RT} \right) \]

(2)

where \(k_{\text{SEI}} \) is the kinetic reaction rate constant and \(c_s \) is the solvent concentration in the SEI porous layer. The overpotential \(\eta_{\text{SEI}} \) is defined as

\[\eta_{\text{SEI}} = U^{\text{OCP}} - U_s^{\text{SEI}} \]

(3)
where \(U^{OCP} \) is the open-circuit potential of the anode, which is a function of SoC, as given in Appendix A; \(U_{SEI}^{s} \) is the irreversible open circuit potential for solvent reduction.

The solvent concentration is shown in the exchange current density term because the maximum solvent concentration is reduced; thus, solvent concentration to maximum solvent concentration disappears. Side reactions consume not only solvent but also active lithium. The consumption of lithium ions will be expressed by an ordinary differential equation since there is no net current. Therefore, the consumption of lithium is proportional to the current density of the side reaction.

\[
\frac{1}{a} \frac{dc_{Li}}{dt} = \frac{J_{SEI}}{nF}
\]

(4)

where \(a \) is a specific surface area whose value is listed in Table 3.1.

3.3 Solvent diffusion

Fick’s second law obtains a linear diffusion equation representing the solvent diffusion in the SEI layer in a moving boundary system.

\[
\frac{\partial c_s}{\partial t} = D_{s}^{eff} \frac{\partial^2 c_s}{\partial x^2}
\]

(5)

where \(c_s \) is the concentration of the solvent and \(D_{s}^{eff} \) is the effective diffusivity of the solvent.

\[
D_{s}^{eff} = D_s \times \varepsilon_{SEI}^{1.5}
\]

(6)
where D_s is the free stream diffusion coefficient of the solvent and ε_{SEI} is the SEI porosity. The above equation is valid in the region $x = 0$ to $x = L(t)$, where $L(t)$ represents the length of the SEI layer (SEI-electrode interface, see Figure 3.1).

The corresponding initial and boundary conditions are as follows. At the interface between the SEI and the electrolyte, the concentration is given by

$$c_s = \varepsilon_{SEI}c_{s,\text{bulk}} \text{ at } x = 0 \tag{7}$$

At the boundary between the SEI and the electrode, the solvent flux matches the side reaction current, which gives

$$-D_s^{\text{eff}} \frac{\partial c_s}{\partial x} = -\frac{J_{SEI}}{nF} \text{ at } x = L \tag{8}$$

where $c_{s,\text{bulk}}$ is the solvent concentration in the bulk of the electrolyte. Initially, the solvent concentration $c_s = \varepsilon_{SEI}c_{s,\text{bulk}}$ in the SEI layer.

3.4 Surface film thickness

SEI layers constitute the surface film covering the graphite electrode. In the model, the growth rate of SEI will be associated with the flux at the electrode/SEI interface, which is derived by Kamyab et al.[35]

$$\frac{dL}{dt} = -D_s^{\text{eff}} \frac{M_p}{\rho_p} \frac{dc_s}{dx} \bigg|_{x=L} \tag{9}$$
where M_p and ρ_p are molar weights and densities for the SEI layer. The ratio of the thickness to the molar weight corresponds to constant concentration for the SEI layer formed on negative electrodes, and they are given as c_p in Table 3.1.

3.5 Numerical solution technique

The mathematical model for the SEI growth under open-circuit conditions has two governing equations (Eqs. 5 and 6), which need to be solved simultaneously. These nonlinear partial differential equations are coupled with changing the thickness of the system due to the formation of the SEI (Eq. 10). This moving boundary problem can be transformed into a fixed boundary problem by introducing new space coordinates and applying the Landau transform. The transformations in the porous SEI medium $0 < x < L(t)$ is given by the following equation.

$$\xi = \frac{x}{L(t)}$$ \hspace{1cm} (10)

where ξ is the dimensionless spatial positions in the SEI layer vary between 0 and 1. Applying this transformation results in a modification of the governing equations and boundary conditions. The change of coordinates and application of Landau transforms are described in Appendix B.

The modified equations were solved by using a commercial finite element package, COMSOL Multiphysics (version 5.6), and by using a fully implicit backward time centered space finite difference method in MATLAB. This converts the differential equations into nonlinear and linear equations, which were solved using MATLAB’s stiff
solver ode 15s. The OCP versus time curves from solutions for decreasing values of the grid spacing, h, is presented in Figure 3.2. The results from both the methods are consistent. All the simulations in this paper are performed on a PC with a 3.80 GHz processor and 64 GB RAM (running Windows 10).

3.6 Parameter estimation

To check the agreement of the mathematical model with the experimental data obtained on the SONY 18650 lithium-ion cell, the values of certain parameters in this model need to be estimated. Parameter estimation is a useful approach to find kinetic and transport parameters from the experimental data. Therefore, we used two methods in this work: the optimization module in COMSOL and a multi-parameter least square curve fitting procedure in MATLAB to interpret the data. Such techniques are typically formulated to minimize the sum-of-squared differences between the model outputs and their experimentally measured values.

\[
\text{Obj} = \min_p \left\{ \sum_{i=1}^{N} \left(\text{OCP}_{i}^{\text{mod}}(t_i, p) - \text{OCP}_{i}^{\exp}(t_i) \right)^2 \right\} : p^l \leq p \leq p^u \quad (11)
\]

where subscripts mod and exp represent model and experimental results, and \(p^l, p^u \) are the lower and upper bounds for the parameters, respectively; \(N \) represents the number of time steps simulated. The nonlinear regression is performed using the Levenberg-Marquardt optimization algorithm in COMSOL Multiphysics and the least squares subroutine in MATLAB (LSQNONLIN). Therefore, by fitting the OCP curves, two parameters are estimated simultaneously with 95% confidence intervals: the kinetic reaction rate constant of side reaction and the effective diffusion coefficient of solvent.
Figure 3.1. (a) Schematic illustration of the side reaction at the anode particle. (b) The right schematic is a one-dimensional SEI layer which is the projection from the particle.
Figure 3.2. The OCP curves from solutions with different grid spacing h.
Table 3.1 Base-Case Values for Parameters used in the Modeling of SEI growth

<table>
<thead>
<tr>
<th>Symbol (Unit)</th>
<th>Description</th>
<th>Value (ref)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a(\text{m}^{-1}))</td>
<td>Specific surface area of the electrode</td>
<td>(3 \times 10^6[46])</td>
</tr>
<tr>
<td>(c_{\text{Li, max}}(\text{mol/m}^3))</td>
<td>Maximum lithium concentration in the electrode</td>
<td>(3.056 \times 10^4[46])</td>
</tr>
<tr>
<td>(c_{\text{s,bulk}}(\text{mol/m}^3))</td>
<td>Bulk solution of EC</td>
<td>4541[48]</td>
</tr>
</tbody>
</table>

Parameters of SEI layer

<table>
<thead>
<tr>
<th>Symbol (Unit)</th>
<th>Description</th>
<th>Value (ref)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_0(\text{nm}))</td>
<td>Initial SEI film thickness</td>
<td>0.001*</td>
</tr>
<tr>
<td>(U_{\text{SEI}}(\text{V}))</td>
<td>SEI formation equilibrium potential</td>
<td>0.4[35, 46]</td>
</tr>
<tr>
<td>(\varepsilon_{\text{SEI}})</td>
<td>Porosity of SEI film</td>
<td>0.05[35, 48]</td>
</tr>
<tr>
<td>(c_p(\text{mol/m}^3))</td>
<td>Constant concentration of SEI layer</td>
<td>28556[35]</td>
</tr>
</tbody>
</table>

* assumed
CHAPTER 4

RESULTS AND DISCUSSION

4.1 Connection of model with experiment

The OCV of the SONY 18650 lithium-ion cell as a function of time is reported in the literature by Ramasamy et al.[46]. Table 3.1 summarizes the design specifications and a list of characteristics of this cell. The OCP, SEI thickness, and capacity loss provide a better understanding of how different parameters such as D_s^{eff}, k_{SEI}, and ε_{SEI} are correlated with each other to obtain a certain OCP value and how a variation may affect the output.

The OCV vs. t data points for the SONY 18650 cell and the mixed mode model fit is shown in Figure 4.1. The kinetic limited model by Ramasamy et al.[46] is reproduced by assuming that the SEI growth occurs at the kinetic limited rate (i.e., the concentration of the solvent is present in excess at the anode/SEI film interface). Ramasamy et al.[46] assumed the SEI layer to be a non-porous solid phase and predicted that the capacity loss caused by the SEI growth changes linearly with the square root of time. As shown in Figure 4.1 here and in Figure 3 in Ref. 24, in which they fit their kinetic limited model predictions to their experimental data, it can be seen that the kinetic-limited model is only an approximate model. Also, the kinetic rate constant extracted from their fit is one order
of magnitude smaller \((1.5 \times 10^{-18} \text{ m/s}) \) than the kinetic rate constant in our mixed model.

As shown in Figure 3.1, the overall quality of the mixed mode model predictions of the OCP data for the SONY 18650 cell demonstrates that the mixed mode model provides a satisfactory description of the OCP due to the growth of the SEI, which is valid for the entire time period that the lithium-ion cells were stored under open-circuit conditions.

The kinetic rate constant \((k_{SEI}) \) and the effective diffusion coefficient \((D_{eff}^s) \) extracted from the curve fitting to the experimental data points for the SONY 18650 cell, and the SEI parameters used in the model are listed in Tables 3.1 and 4.1. In addition, confidence intervals were obtained to provide an accuracy range for the estimated parameters. As the values in Table 4.1 indicate, the kinetics and effective diffusion parameters based on the two numerical approaches (finite element and finite difference methods) are reasonably close to each other, demonstrating the credibility of the mixed mode model to simulate the growth of the SEI layer. Diffusion coefficients are calculated according to Eq. 6 without any confidence intervals are listed in Table 4.1.

4.2 Diffusion coefficient and kinetic rate constant parametric study

The chemical kinetics and transport properties of the SEI growth model, such as the kinetic rate constant of the solvent reduction reaction and diffusion coefficient of the solvent, are critical in estimating open circuit potential, SEI thickness, and capacity loss. To investigate the effect of the diffusion coefficient of the solvent, OCP predictions for different diffusion coefficient values are shown in Figure 4.2 for the SONY 18650 cell. As shown in Figure 4.2, the higher diffusion coefficient of the solvent results in a higher
OCP value due to faster diffusion of the solvent. In other words, the film growth rate at the negative electrode is greater for the higher diffusion coefficients.

A similar parametric study was conducted to evaluate the effect of the kinetic rate constant of the solvent reduction reaction on the OCP and OCP predictions for different \(k_{SEI} \) values are shown in Figure 4.3 for the SONY 18650 cell. The solid curves fitted to the measurement data points are the simulation result for \(k_{SEI} = 1.6434 \times 10^{-17} \) m/s. As Figure 4.3 illustrates, OCP value increases more rapidly with time for higher \(k_{SEI} \) value due to a higher rate of SEI formation. The dependency of the OCP on the kinetic rate constant of the solvent reduction reaction can be explained through the correlation between the Tafel kinetics and the growth rate of the SEI layer shown in Eqs. 2 and 9.

4.3 Solvent concentration

The current model equations have been evaluated for concentration profiles in the SEI layer for 365 days. Figure 4.4 shows the plots for the variation of concentration with time at the electrode/SEI interface of the SONY 18650 cell. Initially, solvent consumption is expected to be higher, manifested in the faster rate of SEI formation or the moving boundary velocity. Under these circumstances, the diffusion of solvent ions reaches a steady state, and the SEI layer grows faster and thicker. As the time increases, the concentration profile drops and rises as the interface shifts towards higher solvent concentrations. The drop in concentration occurs as the \(\text{Li}^+ \) ions at the interface are depleted. The rise occurs as the diffusion occurs, increasing the solvent concentration at the interface as it moves.
4.4 SEI thickness

It is important to understand the relationship among diffusivity, side reaction rate, and SEI layer growth characteristics. When the diffusion coefficient is small, the system becomes diffusion limited. Figure 4.5 shows the SEI layer growth with different diffusion coefficients for the solvent in the SEI layer. On the other hand, with a large diffusion coefficient, the system becomes more kinetics limited. For example, with the diffusion coefficients varied by two orders of magnitude, the SEI layer grows two times thick. This is because the solvent diffuses through the porous SEI layer more easily to reach the electrode surface with a higher diffusion coefficient. Therefore, the SEI layer grows faster and thicker.

The SEI layer growth also depends on the kinetics of the side reaction. Figure 4.6 shows the effect of the side reaction rate constant on SEI growth. The reaction rate is varied by two orders of magnitude. The SEI layer grows faster and thicker with a faster reaction rate. The overall trend is that the SEI layer grows quickly initially. This is because the initial growth of SEI is diffusion limited. Then, the growth rate gradually slows down due to the rising resistance from the layer thickness, making the system shift toward kinetic limited.

Ramasamy et al. [46] derived their expression for the SEI thickness using a kinetic limited model that increases continuously over time due to the solvent reduction reaction (see Eq. 13 in Ref. 24). In addition, they assumed the solvent is present in excess at the electrode/SEI film interface and thus do not limit the reduction reaction rate and the rate constant for the side reaction, k_{SEI} to be 1.5×10^{-18} m/s (see Figure 3 caption in Ref. 24).
Figure 4.7 shows their model prediction for the SEI thickness, which greatly deviates (almost 1.5 times more) from our mixed mode model prediction.

4.5 Capacity loss

The capacity loss is proportional to the current density of the side reaction. Therefore, the loss of active lithium-ions per unit surface area during storage was estimated using the following equation:

\[
\text{Capacity loss} = \int_0^{t_{\text{final}}} |J_{\text{SEI}}| \, dt
\]

(12)

Figure 4.8 shows the capacity loss due to SEI growth from our mixed-mode model and comparison with Ramasamy et al.’s[46] kinetic limited model that increases continuously over time due to the solvent reduction reaction (see Eq. 10 in Ref. 24). Their model prediction for the capacity loss greatly deviates (almost 1.5 times more)
Table 4.1 Model parameters for the 1D cell simulation model

<table>
<thead>
<tr>
<th>Parameters</th>
<th>COMSOL</th>
<th>MATLAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{SEI} (m/s)</td>
<td>$1.6434 \times 10^{-17} \pm 4.3424 \times 10^{-18}$</td>
<td>$1.6545 \times 10^{-17} \pm 4.6825 \times 10^{-18}$</td>
</tr>
<tr>
<td>D_{eff} (m2/s)</td>
<td>$1.4029 \times 10^{-19} \pm 4.3755 \times 10^{-20}$</td>
<td>$1.4213 \times 10^{-19} \pm 4.7289 \times 10^{-20}$</td>
</tr>
<tr>
<td>D_s (m2/s) = $D_{\text{eff}} \times \varepsilon_{SEI}^{-1.5}$</td>
<td>1.2548×10^{-17}</td>
<td>1.2712×10^{-17}</td>
</tr>
</tbody>
</table>
Figure 4.1 Data for the SONY 18650 cell stored at 100% SOC over 365 days (o). The lines are from the numerical solution of our mixed mode model (—) and kinetic limited model [46] (- - -) for OCP of negative electrode as a function of time in days.
Figure 4.2 Measured (O) and simulated (—) capacity loss as function of time for different diffusion coefficient D_{eff} Values.
Figure 4.3 Measured (O) and simulated (—) capacity loss as function of time for different reaction rate constant k_{SEI} Values.
Figure 4.4 Solvent concentration versus SEI thickness in mixed mode model over 365 days.
Figure 4.5 Effect of solvent diffusion coefficient on SEI growth.
Figure 4.6 Effect of kinetic reaction rate constant on SEI growth. Higher reaction rate causing thicker SEI thickness.
Figure 4.7 SEI thickness as a function of time in our mixed mode model (—) and reproduced solutions from reference Ramasamy et al. [46] (−). Ramasamy et al.’s Eq.13 with the rate constant of $k_{SEI} = 1.5 \times 10^{-18}$ m/s greatly deviates from our model.
Figure 4.8 Capacity loss as a function of time in our mixed mode model (——) and reproduced solutions from reference Ramasamy et al. [46] (- -). Ramasamy et al.’s Eq.10 with the rate constant of $k_{SEI} = 1.5 \times 10^{-18}$ m/s greatly deviates from our model.
CHAPTER 5

CONCLUSION

5.1 Summary

In this study, the SEI layer growth was modeled as a side reaction of solvent reduction at the anode under open-circuit conditions. The SEI layer grows depending on the diffusion of solvent through SEI layer and its corresponding reaction Tafel kinetics with the deintercalated lithium ions where it is associated with current density of side reaction at the electrode/SEI interface. The experimental data for OCV storage from the literature is fitted and results present the mixed mode simulation displaying less capacity loss and thinner SEI thickness due to the growth of the SEI film under open circuit condition than previous results presented by others[46]. In the OCV storage process, lithium ions will de-intercalate from the negative electrode, then the decreasing of the SOC induces the rise of OCV value of the negative electrode. The different magnitude of effective diffusion coefficient of solvent and side reaction rate both play roles in affecting SEI growth. An alternative approach, for solving partial differential equations, which fixes moving boundary problem, is computed by COMSOL and MATLAB to get accurate estimated parameters and confidence intervals. These two methods are finite elements method and finite difference method, the result are consistent so that it is convinced to simulate. The estimated parameters using in this work are validated with the experimental data in literatures.
5.2 Future work

There is a self-discharge process under 1D SEI model with Fick’s law, Tafel kinetics which is shown in this thesis. Works of literature show that SEI layer growth and other properties under various conditions. The simulation aims to keep the lifetime of batteries to avoid external and internal factors. However, we did not contain the influence of temperature. In future work, we should add the temperature conservation in the SEI layer and the Arrhenius equations to describe how temperature affects the diffusion coefficient of solvent the side reaction rate constant[44, 55]. There will be another essential work to research on various storage for the battery for lessening the capacity loss in the future.
REFERENCES

APPENDIX A

OPEN-CIRCUIT FUNCTION

The OCV of carbon electrode is a function of SOC[35, 45, 46, 48]:

\[
U_{eq} = \left(0.7222 + 0.1387\text{SoC} + 0.029\text{SoC}^{0.5} - 0.0172\text{SoC}^{-1} + 0.0019\text{SoC}^{-1.5} \right) + 0.2802\exp(0.9 - 15\text{SoC}) - 0.7984\exp(0.4465\text{SoC} - 0.4108) \right) \ (V) \quad [A1]
\]
APPENDIX B

CHANGE OF COORDINATES AND APPLICATION OF LANDAU TRANSFORMS

The moving boundary problem can be converted into a fixed boundary problem by introducing new spatial coordinates in dimensionless form through the application of Landau transforms. Consider \(f \) as a variable to replace \(c_s \), which is a function of spatial direction \((x)\) and time \((t)\), and \(L \) is a function of time \((t)\). By transforming the original system of equations into a new system, based on Eqs.5 and 10, \(f \) becomes a function of time \((t)\) and the dimensionless spatial variable \((\xi)\).

According to the chain rule, the derivatives of \(f \) in the original, moving boundary (mov) coordinates, and new, fixed boundary (fix) coordinates are related as

\[
\frac{\partial f}{\partial t}_{\text{mov}} = \frac{\partial f}{\partial t}_{\text{fix}} + \frac{\partial f}{\partial \xi}_{\text{fix}} \frac{\partial \xi}{\partial t}_{\text{fix}} + \frac{\partial f}{\partial \xi}_{\text{fix}} \frac{\partial \xi}{\partial t}_{\text{fix}} \quad \text{[B1]}
\]

\[
\frac{\partial f}{\partial x}_{\text{mov}} = \frac{\partial f}{\partial t}_{\text{fix}} \frac{\partial t}{\partial x} + \left(\frac{\partial^2 f}{\partial \xi^2} \right)_{\text{fix}} \frac{\partial \xi}{\partial x} \quad \text{[B2]}
\]

\[
\frac{\partial^2 f}{\partial x^2}_{\text{mov}} = \left(\frac{\partial^2 f}{\partial \xi^2} \right)_{\text{fix}}^2 \left(\frac{\partial \xi}{\partial x} \right)^2 \quad \text{[B3]}
\]
Substituting the derivatives of the dimensionless spatial position ξ into the governing equations in the SEI layer, we have

$$\left(\frac{\partial f}{\partial t} \right)_{\text{mov}} = \left(\frac{\partial f}{\partial t} \right)_{\text{fix}} - \frac{\xi}{L} \frac{\partial L}{\partial t} \frac{\partial f}{\partial \xi}$$ \hspace{1cm} \text{[B4]}$$

$$\left(\frac{\partial f}{\partial x} \right)_{\text{mov}} = \frac{1}{L} \left(\frac{\partial f}{\partial \xi} \right)_{\text{fix}}$$ \hspace{1cm} \text{[B5]}$$

$$\left(\frac{\partial^2 f}{\partial x^2} \right)_{\text{mov}} = \frac{1}{L^2} \left(\frac{\partial^2 f}{\partial \xi^2} \right)_{\text{fix}}$$ \hspace{1cm} \text{[B6]}$$

Therefore, by applying the Landau transformation (Eqs. B4 to B6), the governing Eq. 5 is transformed to

$$\frac{\partial c_s}{\partial t} = \frac{D_{s}^{\text{eff}}}{L^2} \frac{\partial^2 c_s}{\partial \xi^2} + \frac{\xi}{L} \frac{\partial L}{\partial t} \frac{\partial c_s}{\partial \xi}$$ \hspace{1cm} \text{[B7]}$$

Further, the velocity of the moving interface is expressed as

$$\frac{\partial L}{\partial t} = -D_{s}^{\text{eff}} \frac{M_p}{\rho_p} \frac{1}{L} \frac{\partial c_s}{\partial \xi}_{\xi=1}$$ \hspace{1cm} \text{[B8]}$$

The boundary conditions for Eq. B7 are transformed to

$$c_s = \xi_{\text{SEI}} c_{s,\text{bulk}} \hspace{0.5cm} \text{at} \hspace{0.5cm} \xi = 0$$ \hspace{1cm} \text{[B9a]}$$

$$-D_{s}^{\text{eff}} \frac{1}{L} \frac{\partial c_s}{\partial \xi} = -\frac{J_{\text{SEI}}}{nF} \hspace{0.5cm} \text{at} \hspace{0.5cm} \xi = 1$$ \hspace{1cm} \text{[B9b]}$$

The partial differential equations (PDEs) for concentration and velocity within the porous SEI layer obtained after Landau transformation, Eqs. B7 and B8, were discretized using finite difference method. Eqs. B10 and B11 show the discretized form for the transformed PDEs.
\[
\frac{\partial c_{s,i}}{\partial t} = \frac{D_s^{\text{eff}}}{L^2} \left(c_{s,i-1} - 2c_{s,i} + c_{s,i+1} \right) + \frac{1}{2} \frac{\partial L}{\partial t} \frac{ih}{L} \left(c_{s,i-1} - c_{s,i+1} \right) \quad \text{[B10]}
\]

\[
\frac{\partial L}{\partial t} = -D_s^{\text{eff}} \frac{M_p}{\rho_p} \frac{1}{L} \left(c_{s,N-1} - 4c_{s,N} + 3c_{s,N+1} \right) \bigg|_{\xi = 1}
\quad \text{[B11]}
\]

where \(i \) ranges from 1 to \(N = 101 \). The discretized boundary conditions for \(c_s \) are also written below.

\[
c_s = \varepsilon_{\text{SEI}} c_{s,\text{bulk}} \text{ at } \xi = 0 \quad \text{[B12a]}
\]

\[
-\frac{D_s^{\text{eff}}}{L} \frac{1}{2h} \left(c_{s,N-1} - 4c_{s,N} + 3c_{s,N+1} \right) = -\frac{J_{\text{SEI}}}{nF} \text{ at } \xi = 1 \quad \text{[B12b]}
\]

43
APPENDIX C

COMPUTATION IN COMSOL

The governing equations are transformed as an alternative form by using Landau transformation where is shown in Appendix B. The equations are solved in commercial finite elements package, COMSOL Multiphysics, and by using a finite difference method in MATLAB.

Finite elements are numerically solved by COMSOL, and its brief report is shown. Because we use the dimensionless independent variable, all parameters are also without their units to compute.
1 Global Definitions

1.1 PARAMETERS

<table>
<thead>
<tr>
<th>Name</th>
<th>Expression</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceq</td>
<td>4541</td>
<td>4541</td>
<td></td>
</tr>
<tr>
<td>cp</td>
<td>28556</td>
<td>28556</td>
<td></td>
</tr>
<tr>
<td>Ds0</td>
<td>1.2e-19</td>
<td>1.2E−19</td>
<td></td>
</tr>
<tr>
<td>L0</td>
<td>1e-12</td>
<td>1E−12</td>
<td></td>
</tr>
<tr>
<td>k0_SEI0</td>
<td>6e-17</td>
<td>6E−17</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>96485</td>
<td>96485</td>
<td></td>
</tr>
<tr>
<td>U_SEI</td>
<td>0.4</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>8.3145</td>
<td>8.3145</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>298.15</td>
<td>298.15</td>
<td></td>
</tr>
<tr>
<td>epsilonSEI</td>
<td>0.05</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>3e6</td>
<td>3E6</td>
<td></td>
</tr>
<tr>
<td>cLimax</td>
<td>3.056e4</td>
<td>30560</td>
<td></td>
</tr>
<tr>
<td>xi</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>kp</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

2 Component 1

SETTINGS

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit system</td>
<td>Same as global system</td>
</tr>
</tbody>
</table>

2.1 DEFINITIONS
2.1.1 Variables

Variables 1

<table>
<thead>
<tr>
<th>Name</th>
<th>Expression</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_SEI</td>
<td>(-i_0^*(\text{soc}N)^{2}\exp(-0.5^F^\eta{SEI}^*n/R/T))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i0</td>
<td>(n^*F^*k_{0_SEI}\text{cs})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\text{soc}_N</td>
<td>(\text{cLi}/\text{cLimax})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\eta_{SEI}</td>
<td>(U - U_{SEI})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>(\text{Un(soc}_N))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ds</td>
<td>(Ds_0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\text{k0_SEI}</td>
<td>(k_{0_SEI0})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.1.2 Functions

Analytic 1

<table>
<thead>
<tr>
<th>Function name</th>
<th>Un</th>
<th>Function type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Analytic</td>
</tr>
</tbody>
</table>

Analytic 1

DEFINITION
<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expression</td>
<td>$0.7222 + 0.1387 \cdot \text{soc}_N + 0.029 \cdot \text{soc}_N^{(1/2)} - 0.0172/\text{soc}_N + 0.0019/\text{soc}_N^{1.5} + 0.2802 \cdot \exp(0.9 - 15 \cdot \text{soc}_N) - 0.7984 \cdot \exp(0.4465 \cdot \text{soc}_N - 0.4108)$</td>
</tr>
<tr>
<td>Arguments</td>
<td>soc_N</td>
</tr>
</tbody>
</table>

UNITS

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arguments</td>
<td>1</td>
</tr>
<tr>
<td>Function</td>
<td>1</td>
</tr>
</tbody>
</table>

2.1.3 Nonlocal Couplings

Integration 1

<table>
<thead>
<tr>
<th>Coupling type</th>
<th>Integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator name</td>
<td>intop1</td>
</tr>
</tbody>
</table>

SELECTION

<table>
<thead>
<tr>
<th>Geometric entity level</th>
<th>Boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>Geometry geom1: Dimension 0: Boundary 1</td>
</tr>
</tbody>
</table>
Integration 2

<table>
<thead>
<tr>
<th>Coupling type</th>
<th>Integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator name</td>
<td>intop2</td>
</tr>
</tbody>
</table>

SELECTION

<table>
<thead>
<tr>
<th>Geometric entity level</th>
<th>Boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>Geometry geom1: Dimension 0: Boundary 2</td>
</tr>
</tbody>
</table>

2.2 GEOMETRY 1
UNITS

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length unit</td>
<td>m</td>
</tr>
<tr>
<td>Angular unit</td>
<td>deg</td>
</tr>
</tbody>
</table>

GEOMETRY STATISTICS

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space dimension</td>
<td>1</td>
</tr>
<tr>
<td>Number of domains</td>
<td>1</td>
</tr>
<tr>
<td>Number of boundaries</td>
<td>2</td>
</tr>
</tbody>
</table>

2.2.1 Interval 1 (i1)

INTERVAL

<table>
<thead>
<tr>
<th>Coordinates (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

2.3 GENERAL FORM PDE

USED PRODUCTS

| COMSOL Multiphysics |

General Form PDE

SELECTION

<table>
<thead>
<tr>
<th>Geometric entity level</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>Geometry geom1: Dimension 1: All domains</td>
</tr>
</tbody>
</table>
2.3.1 Interface settings

Discretization

| SETTINGS |
|-----------------|-----------------|
| Description | Value |
| Shape function type | Lagrange |
| Element order | Quadratic |
| Frame | Spatial |

Units

<table>
<thead>
<tr>
<th>Dependent variable quantity</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensionless</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source term quantity</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Custom unit</td>
<td>1</td>
</tr>
</tbody>
</table>

2.3.2 Variables

<table>
<thead>
<tr>
<th>Name</th>
<th>Expression</th>
<th>Unit</th>
<th>Description</th>
<th>Selection</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.nx</td>
<td>nx</td>
<td></td>
<td>Normal vector, x component</td>
<td>Boundaries 1–2</td>
<td>Meta</td>
</tr>
<tr>
<td>g.ny</td>
<td>root.ny</td>
<td></td>
<td>Normal vector, y component</td>
<td>Boundaries 1–2</td>
<td>Meta</td>
</tr>
<tr>
<td>g.nz</td>
<td>root.nz</td>
<td></td>
<td>Normal vector, z component</td>
<td>Boundaries 1–2</td>
<td>Meta</td>
</tr>
<tr>
<td>g.nxmesh</td>
<td>nxmesh</td>
<td></td>
<td>Normal vector (mesh), x component</td>
<td>Boundaries 1–2</td>
<td>Meta</td>
</tr>
<tr>
<td>g.nymesh</td>
<td>root.nymesh</td>
<td></td>
<td>Normal vector (mesh), y component</td>
<td>Boundaries 1–2</td>
<td>Meta</td>
</tr>
<tr>
<td>g.nzmesh</td>
<td>root.nzmesh</td>
<td></td>
<td>Normal vector (mesh), z component</td>
<td>Boundaries 1–2</td>
<td>Meta</td>
</tr>
</tbody>
</table>
2.3.3 General Form PDE 1

General Form PDE 1

![Graph](image)

SELECTION

<table>
<thead>
<tr>
<th>Geometric entity level</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>Geometry geom1: Dimension 1: All domains</td>
</tr>
</tbody>
</table>

EQUATIONS

\[
e_s \frac{\partial^2 cs}{\partial t^2} + d_s \frac{\partial cs}{\partial t} + \nabla \cdot \Gamma = f
\]

\[
\nabla = \frac{\partial}{\partial x}
\]

SETTINGS

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source term</td>
<td>((x \times l_t) \times d(l_t, t) \times csx)</td>
</tr>
<tr>
<td>Conservative flux</td>
<td>(-D_s \times csx)</td>
</tr>
<tr>
<td>Mass coefficient</td>
<td>0</td>
</tr>
<tr>
<td>Damping or mass coefficient</td>
<td>(l_t^2)</td>
</tr>
</tbody>
</table>

Variables

<table>
<thead>
<tr>
<th>Name</th>
<th>Expression</th>
<th>Unit</th>
<th>Description</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>domflux.csx</td>
<td>-D_s csx</td>
<td>1/m</td>
<td>Domain flux, x component</td>
<td>Domain 1</td>
</tr>
</tbody>
</table>
Shape functions

<table>
<thead>
<tr>
<th>Name</th>
<th>Shape function</th>
<th>Unit</th>
<th>Description</th>
<th>Shape frame</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>cs</td>
<td>Lagrange (Quadratic)</td>
<td>1</td>
<td>Dependent variable cs</td>
<td>Spatial</td>
<td>Domain 1</td>
</tr>
</tbody>
</table>

2.3.4 Zero Flux 1

Zero Flux 1

SELECTION

<table>
<thead>
<tr>
<th>Geometric entity level</th>
<th>Boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>Geometry geom1: Dimension 0: All boundaries</td>
</tr>
</tbody>
</table>

EQUATIONS

\[-\mathbf{n} \cdot \Gamma = 0\]
2.3.5 Initial Values 1

SELECTION

<table>
<thead>
<tr>
<th>Geometric entity level</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>Geometry geom1: Dimension 1: All domains</td>
</tr>
</tbody>
</table>

SETTINGS

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial value for cs</td>
<td>(C_{eq}\epsilon_{SEI})</td>
</tr>
<tr>
<td>Initial time derivative of cs</td>
<td>0</td>
</tr>
</tbody>
</table>
2.3.6 Dirichlet Boundary Condition 1

SELECTION

<table>
<thead>
<tr>
<th>Geometric entity level</th>
<th>Boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>Geometry geom1: Dimension 0: Boundary 1</td>
</tr>
</tbody>
</table>

EQUATIONS

\[
\begin{align*}
\text{cs} &= r \\
\text{reaction} &= -\mu
\end{align*}
\]

SETTINGS

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value on boundary</td>
<td>Ceq*epsilonSEI</td>
</tr>
<tr>
<td>Prescribed value of cs</td>
<td>On</td>
</tr>
</tbody>
</table>

Constraints

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Constraint force</th>
<th>Shape function</th>
<th>Selection</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceq*epsilonSEI-cs</td>
<td>-test(cs)</td>
<td>Lagrange</td>
<td>Boundary 1</td>
<td>Elemental</td>
</tr>
</tbody>
</table>
2.3.7 Flux/Source 1

SELECTION

<table>
<thead>
<tr>
<th>Geometric entity level</th>
<th>Boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>Geometry geom1: Dimension 0: Boundary 2</td>
</tr>
</tbody>
</table>

EQUATIONS

\[-\mathbf{n} \cdot \mathbf{\Gamma} = g \cdot q_c s\]

SETTINGS

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boundary absorption/impedance term</td>
<td>0</td>
</tr>
<tr>
<td>Boundary flux/source</td>
<td>J_{SEI}/n/F^*It</td>
</tr>
</tbody>
</table>

Variables

<table>
<thead>
<tr>
<th>Name</th>
<th>Expression</th>
<th>Unit</th>
<th>Description</th>
<th>Selection</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.g_cs</td>
<td>J_{SEI}^It/(nF)</td>
<td>m</td>
<td>Boundary flux/source</td>
<td>Boundary 2</td>
<td>+ operation</td>
</tr>
</tbody>
</table>

2.4 GLOBAL ODES AND DAES

USED PRODUCTS

- COMSOL Multiphysics

SELECTION
Global equations

<table>
<thead>
<tr>
<th>Name</th>
<th>(f(u,ut,utt,t))</th>
<th>Initial value ((u_0))</th>
<th>Initial value ((u_t0))</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cLi</td>
<td>(d(cLi,t)-\text{intop2}(a\cdot J_{SEI}/n/F))</td>
<td>(xi\cdot cLimax)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Units

<table>
<thead>
<tr>
<th>Dependent variable quantity</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensionless</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source term quantity</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensionless</td>
<td>1</td>
</tr>
</tbody>
</table>

Shape functions

<table>
<thead>
<tr>
<th>Name</th>
<th>Shape function</th>
<th>Unit</th>
<th>Description</th>
<th>Shape frame</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>cLi</td>
<td>ODE</td>
<td>1</td>
<td>State variable cLi</td>
<td>Global</td>
<td></td>
</tr>
</tbody>
</table>

2.5 GLOBAL ODES AND DAES 2

USED PRODUCTS
COMSOL Multiphysics

SELECTION
Geometric entity level | Entire model
Global equation

<table>
<thead>
<tr>
<th>Name</th>
<th>f(u,ut,utt,t)</th>
<th>Initial value (u_0)</th>
<th>Initial value (u_t0)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lt</td>
<td>d(lt,t)+(intop2(Ds*csx/cp)/lt)</td>
<td>L0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Units

<table>
<thead>
<tr>
<th>Dependent variable quantity</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensionless</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source term quantity</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensionless</td>
<td>1</td>
</tr>
</tbody>
</table>

Shape functions

<table>
<thead>
<tr>
<th>Name</th>
<th>Shape function</th>
<th>Unit</th>
<th>Description</th>
<th>Shape frame</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>lt</td>
<td>ODE</td>
<td>1</td>
<td>State variable lt</td>
<td>Global</td>
<td></td>
</tr>
</tbody>
</table>

2.6 OPTIMIZATION

USED PRODUCTS

<table>
<thead>
<tr>
<th>COMSOL Multiphysics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimization Module</td>
</tr>
</tbody>
</table>
Optimization

SELECTION

<table>
<thead>
<tr>
<th>Geometric entity level</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>Geometry geom1: Dimension 1: No domains</td>
</tr>
</tbody>
</table>

2.6.1 Global Least-Squares Objective 1

SELECTION

<table>
<thead>
<tr>
<th>Geometric entity level</th>
<th>Entire model</th>
</tr>
</thead>
</table>

Experimental data

SETTINGS

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source</td>
<td>Result table</td>
</tr>
<tr>
<td>Result table</td>
<td>Table 1</td>
</tr>
<tr>
<td>Parameter type</td>
<td>Time</td>
</tr>
<tr>
<td>Time unit</td>
<td>d</td>
</tr>
<tr>
<td>Time column</td>
<td>Column 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Use</th>
<th>Data column</th>
<th>Unit</th>
<th>Model expression</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Column 2</td>
<td></td>
<td>comp1.U</td>
<td>1</td>
</tr>
</tbody>
</table>

2.7 MESH 1
2.7.1 Size (size)

SETTINGS

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum element size</td>
<td>0.01</td>
</tr>
<tr>
<td>Minimum element size</td>
<td>2.0E-5</td>
</tr>
<tr>
<td>Curvature factor</td>
<td>0.2</td>
</tr>
<tr>
<td>Predefined size</td>
<td>Extremely fine</td>
</tr>
</tbody>
</table>

2.7.2 Edge 1 (edg1)

SELECTION

<table>
<thead>
<tr>
<th>Geometric entity level</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>Remaining</td>
</tr>
</tbody>
</table>
3 Study 1

COMPUTATION INFORMATION

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computation time</td>
<td>31 s</td>
</tr>
<tr>
<td>CPU</td>
<td>Intel64 Family 6 Model 158 Stepping 9, 4 cores</td>
</tr>
<tr>
<td>Operating system</td>
<td>Windows 10</td>
</tr>
</tbody>
</table>

3.1 OPTIMIZATION

OPTIMIZATION SOLVER

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Levenberg - Marquardt</td>
</tr>
<tr>
<td>Study step</td>
<td>Time Dependent</td>
</tr>
</tbody>
</table>

CONTROL VARIABLES AND PARAMETERS

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Initial value</th>
<th>Scale</th>
<th>Lower bound</th>
<th>Upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ds0</td>
<td>4e-19</td>
<td></td>
<td>1e-19</td>
<td></td>
</tr>
<tr>
<td>k0_SEI0</td>
<td>4e-17</td>
<td></td>
<td>1e-17</td>
<td></td>
</tr>
</tbody>
</table>

MESH SELECTION

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Mesh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometry 1 (geom1)</td>
<td>nomesh</td>
</tr>
</tbody>
</table>

3.2 TIME DEPENDENT
<table>
<thead>
<tr>
<th>Times</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>range(0,5,365)</td>
<td>d</td>
</tr>
</tbody>
</table>

STUDY SETTINGS

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Include geometric nonlinearity</td>
<td>Off</td>
</tr>
</tbody>
</table>

STUDY SETTINGS

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time unit</td>
<td>d</td>
</tr>
</tbody>
</table>

PHYSICS AND VARIABLES SELECTION

<table>
<thead>
<tr>
<th>Physics interface</th>
<th>Discretization</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Form PDE (g)</td>
<td>physics</td>
</tr>
<tr>
<td>Global ODEs and DAEs (ge)</td>
<td>physics</td>
</tr>
<tr>
<td>Global ODEs and DAEs 2 (ge2)</td>
<td>physics</td>
</tr>
<tr>
<td>Optimization (opt)</td>
<td>physics</td>
</tr>
</tbody>
</table>

MESH SELECTION

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Mesh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometry 1 (geom1)</td>
<td>mesh1</td>
</tr>
</tbody>
</table>

3.3 SOLVER CONFIGURATIONS

3.3.1 Solution 1

Compile Equations: Time Dependent (st1)

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use study</td>
<td>Study 1</td>
</tr>
<tr>
<td>Use study step</td>
<td>Time Dependent</td>
</tr>
</tbody>
</table>
Dependent Variables 1 (v1)

GENERAL

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defined by study step</td>
<td>Time Dependent</td>
</tr>
</tbody>
</table>

RESIDUAL SCALING

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Manual</td>
</tr>
</tbody>
</table>

INITIAL VALUE CALCULATION CONSTANTS

<table>
<thead>
<tr>
<th>Constant name</th>
<th>Initial value source</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>range(0,5,365)</td>
</tr>
<tr>
<td>timestep</td>
<td>0.365[d]</td>
</tr>
</tbody>
</table>

Dependent variable cs (comp1.cs) (comp1_cs)

GENERAL

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field components</td>
<td>comp1.cs</td>
</tr>
<tr>
<td>Internal variables</td>
<td>{comp1.uflux.cs, comp1.dflux.cs}</td>
</tr>
</tbody>
</table>

Control parameter Ds0 (conpar2) (conpar2)

GENERAL

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>State components</td>
<td>Ds0</td>
</tr>
</tbody>
</table>

SCALING

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Manual</td>
</tr>
<tr>
<td>Scale</td>
<td>1.0E-19</td>
</tr>
</tbody>
</table>

Control parameter k0_SEI0 (conpar4) (conpar4)
GENERAL

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>State components</td>
<td>k0_SEI0</td>
</tr>
</tbody>
</table>

SCALING

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Manual</td>
</tr>
<tr>
<td>Scale</td>
<td>1.0E-17</td>
</tr>
</tbody>
</table>

State variable cLi (comp1.ODE1) (comp1_ODE1)

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>State components</td>
<td>comp1.cLi</td>
</tr>
</tbody>
</table>

State variable lt (comp1.ODE2) (comp1_ODE2)

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>State components</td>
<td>comp1.lt</td>
</tr>
</tbody>
</table>

Optimization Solver 1 (o1)

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defined by study step</td>
<td>Optimization</td>
</tr>
</tbody>
</table>

OPTIMIZATION SOLVER

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Levenberg - Marquardt</td>
</tr>
</tbody>
</table>

RESULTS WHILE SOLVING

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot</td>
<td>On</td>
</tr>
</tbody>
</table>
Plot group

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot group</td>
<td>1D Plot Group 4</td>
</tr>
</tbody>
</table>

Time-Dependent Solver 1 (t1)

GENERAL

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defined by study step</td>
<td>Time Dependent</td>
</tr>
<tr>
<td>Time unit</td>
<td>d</td>
</tr>
</tbody>
</table>

RESULTS WHILE SOLVING

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probes</td>
<td>None</td>
</tr>
</tbody>
</table>

LEAST-SQUARES DATA

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Times</td>
<td>[166834.68360398075, 168731.8004075036, 353086.91566755227, 476511.1030026704, 849461.9475541757, 1159361.5571650453, 1406656.3122596391, 1903031.4441462629, 2523165.3486862713, 2894888.647070791, 3391040.4887452326, 3701163.2885682806, 4197761.510667083, 4880835.155041638, 5191181.145076865, 5439368.661020178, 6060060.641090635, 6494723.579309699, 7177908.818790341, 7861094.058270985, 8606437.771843547, 9414051.554614116, 9973143.036123103, 1.0843138483197767E7, 1.152632722678414E7, 1.2582906187134914E7, 1.345256684889132E7, 1.4446990839255903E7, 1.5006193915870987E7, 1.5565396992486056E7, 1.6186758543193057E7, 1.6932325446977979E7, 1.774027401506663E7, 1.8361635567736262E7, 1.9107425659770545E7, 1.9604358667187616E7, 2.041219564017036E7, 2.1033557190877356E7, 2.1530824983612694E7, 2.2276503482503522E7, 2.3022181981394358E7, 2.376808367049737E7, 2.4762619255968045E7, 2.5446250875873047E7, 2.5756708461014368E7, 2.6377846821509182E7, 2.7061143656095907E7, 2.7496252974739335E7, 2.8179772999538247E7, 2.873897607153323E7, 2.948443138843198E7, 2.9794773748672057E7, 2.9794773748672057E7]</td>
</tr>
</tbody>
</table>
Fully Coupled 1 (fc1)

GENERAL

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear solver</td>
<td>Direct</td>
</tr>
</tbody>
</table>

4 Results

4.1 DATASETS

4.1.1 Study 1/Solution 1

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution</td>
<td>Solution 1</td>
</tr>
<tr>
<td>Component</td>
<td>Save Point Geometry 1</td>
</tr>
</tbody>
</table>
4.2 DERIVED VALUES

4.2.1 Global Evaluation 1

DATA

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dataset</td>
<td>Study 1/Solution 1</td>
</tr>
</tbody>
</table>

EXPRESSIONS

<table>
<thead>
<tr>
<th>Expression</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cLi</td>
<td>1</td>
<td>State variable cLi</td>
</tr>
</tbody>
</table>

4.2.2 Global Evaluation 2

DATA

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dataset</td>
<td>Study 1/Solution 1</td>
</tr>
</tbody>
</table>

EXPRESSIONS

<table>
<thead>
<tr>
<th>Expression</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lt</td>
<td>1</td>
<td>State variable lt</td>
</tr>
</tbody>
</table>
4.3 TABLES

4.3.1 Table 1

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9310</td>
<td>0.048520</td>
</tr>
<tr>
<td>1.9529</td>
<td>0.052027</td>
</tr>
<tr>
<td>4.0867</td>
<td>0.058165</td>
</tr>
<tr>
<td>5.5152</td>
<td>0.060749</td>
</tr>
<tr>
<td>9.8317</td>
<td>0.060746</td>
</tr>
<tr>
<td>13.419</td>
<td>0.063328</td>
</tr>
<tr>
<td>16.281</td>
<td>0.067204</td>
</tr>
<tr>
<td>22.026</td>
<td>0.069784</td>
</tr>
<tr>
<td>29.203</td>
<td>0.073979</td>
</tr>
<tr>
<td>33.506</td>
<td>0.077531</td>
</tr>
<tr>
<td>39.248</td>
<td>0.080758</td>
</tr>
<tr>
<td>42.838</td>
<td>0.082694</td>
</tr>
<tr>
<td>48.585</td>
<td>0.084628</td>
</tr>
<tr>
<td>56.491</td>
<td>0.086561</td>
</tr>
<tr>
<td>60.083</td>
<td>0.087850</td>
</tr>
<tr>
<td>62.956</td>
<td>0.089141</td>
</tr>
<tr>
<td>70.140</td>
<td>0.091720</td>
</tr>
<tr>
<td>75.170</td>
<td>0.093009</td>
</tr>
<tr>
<td>83.078</td>
<td>0.094618</td>
</tr>
<tr>
<td>90.985</td>
<td>0.096228</td>
</tr>
<tr>
<td>99.612</td>
<td>0.097836</td>
</tr>
<tr>
<td>108.96</td>
<td>0.099121</td>
</tr>
<tr>
<td>115.43</td>
<td>0.10009</td>
</tr>
<tr>
<td>125.50</td>
<td>0.10072</td>
</tr>
<tr>
<td>133.41</td>
<td>0.10233</td>
</tr>
<tr>
<td>145.64</td>
<td>0.10265</td>
</tr>
<tr>
<td>155.70</td>
<td>0.10425</td>
</tr>
<tr>
<td>167.21</td>
<td>0.10457</td>
</tr>
<tr>
<td>173.68</td>
<td>0.10521</td>
</tr>
<tr>
<td>180.16</td>
<td>0.10585</td>
</tr>
<tr>
<td>187.35</td>
<td>0.10649</td>
</tr>
<tr>
<td>195.98</td>
<td>0.10745</td>
</tr>
<tr>
<td>205.33</td>
<td>0.10777</td>
</tr>
<tr>
<td>212.52</td>
<td>0.10841</td>
</tr>
<tr>
<td>221.15</td>
<td>0.10873</td>
</tr>
<tr>
<td>226.90</td>
<td>0.10969</td>
</tr>
<tr>
<td>236.25</td>
<td>0.11033</td>
</tr>
<tr>
<td>243.44</td>
<td>0.11097</td>
</tr>
<tr>
<td>249.20</td>
<td>0.11097</td>
</tr>
<tr>
<td>257.83</td>
<td>0.11160</td>
</tr>
<tr>
<td>Column 1</td>
<td>Column 2</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>266.46</td>
<td>0.11224</td>
</tr>
<tr>
<td>275.09</td>
<td>0.11224</td>
</tr>
<tr>
<td>286.60</td>
<td>0.11223</td>
</tr>
<tr>
<td>294.52</td>
<td>0.11254</td>
</tr>
<tr>
<td>298.11</td>
<td>0.11351</td>
</tr>
<tr>
<td>305.30</td>
<td>0.11480</td>
</tr>
<tr>
<td>313.21</td>
<td>0.11608</td>
</tr>
<tr>
<td>318.24</td>
<td>0.11608</td>
</tr>
<tr>
<td>326.15</td>
<td>0.11672</td>
</tr>
<tr>
<td>332.63</td>
<td>0.11736</td>
</tr>
<tr>
<td>341.25</td>
<td>0.11865</td>
</tr>
<tr>
<td>344.85</td>
<td>0.11994</td>
</tr>
<tr>
<td>349.88</td>
<td>0.11993</td>
</tr>
<tr>
<td>357.07</td>
<td>0.12090</td>
</tr>
<tr>
<td>361.39</td>
<td>0.12122</td>
</tr>
</tbody>
</table>

4.3.2 Objective Probe Table 2

<table>
<thead>
<tr>
<th>Iteration number</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0000</td>
<td>1.0525E-4</td>
</tr>
<tr>
<td>2.0000</td>
<td>9.8185E-5</td>
</tr>
<tr>
<td>3.0000</td>
<td>9.1829E-5</td>
</tr>
<tr>
<td>4.0000</td>
<td>9.0184E-5</td>
</tr>
<tr>
<td>5.0000</td>
<td>8.1913E-5</td>
</tr>
<tr>
<td>6.0000</td>
<td>8.1899E-5</td>
</tr>
<tr>
<td>7.0000</td>
<td>8.1899E-5</td>
</tr>
</tbody>
</table>

4.3.3 Confidence Intervals Table 3

<table>
<thead>
<tr>
<th>Parameter value</th>
<th>Variance</th>
<th>Standard deviation</th>
<th>Confidence (+/-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4029E-19</td>
<td>4.7588E-40</td>
<td>2.1815E-20</td>
<td>4.3755E-20</td>
</tr>
<tr>
<td>1.6434E-17</td>
<td>4.6872E-36</td>
<td>2.1650E-18</td>
<td>4.3424E-18</td>
</tr>
</tbody>
</table>

4.4 PLOT GROUPS
4.4.1 1D Plot Group 1

Line Graph: Dependent variable cs (1)

4.4.2 1D Plot Group 2

Global: (1)
4.4.3 1D Plot Group 3

![Graph 1](image1)

Global: (1)

4.4.4 1D Plot Group 4

![Graph 2](image2)

Point Graph: (1)
Finite difference method is numerically solved by MATLAB. We discrete a domain into several elements so that there is an ordinary differential equation in every element. Making it easier to simulate and getting estimated parameters with experimental data.

The MATLAB codes are shown below.

MATLAB Code:

clear

clearvars

clear all;

close all

format short g

tic

global xbest Fobjbest ii

Fobjbest =1e5;

iter= 0;

x0 = log([1e-21 1e-17]);

lb = log([1e-22 1e-20]);

ub = log([1e-16 1e-13]);
% options = optimset('display','iter','MaxFunEvals',1000,'TolX',1e-2,'MaxIter',20);
% options = optimset('Display','iter','TolFun',1e-12,'MaxIter',100,'TolX',1e-16,'FinDiffRelStep',1e-16,'MaxFunEvals',300);
% options = optimset('Display','iter','TolFun',1e-12,'MaxIter',50,'TolX',1e-12,'MaxFunEvals',200,'FinDiffRelStep',1e-16);
% options = optimoptions('lsqnonlin','Display','iter','OptimalityTolerance', 1e-10,'StepTolerance', 1e-10,'FunctionTolerance', 1e-10);
% options = optimset('display','iter','MaxFunEvals',1000,'TolX',1e-3,'FinDiffRelStep',1e-2,'MaxIter',10);
options= optimset('display','iter','MaxFunEvals',1000,'TolFun',1.e-12,'TolX',1.e-12,'MaxFunEvals',200,'FinDiffRelStep',1.e-8,'MaxIter',200);
% options=optimset('MaxIter',200,'TolFun',1.e-10,'TolX',1.e-10,'Algorithm','trust-region-reflective',...
% 'MaxFunEvals',200,'Display','iter');
[x,resnorm,residual,exitflag,output,lambda,jacobian] =
lsqnonlin(@ObjFunc,x0,lb,ub,options);

x= exp(x)

% J=full(jacobian);
% residual=(residual)';
% CI=ParaCI(x,residual,J,0.95);
RunE = load('OCV experimental.txt');
tData = RunE(:,1);
OCV_data = RunE(:,2);
[tModel, Curr_mod] = Main_FDM(x(1),x(2));
toc

%%% PLOT EXP and SIM Results

figure()

plot(tData,OCV_data,'ob',tModel,Curr_mod,'-r','linewidth',2)

xlabel('time d','fontsize',16)
ylabel('OCV V','fontsize',16)

legend('Experimental','Model')
title(['D = ' num2str(x(1)) ', k = ' num2str(x(2))],'fontsize',16)

function [tmodel, Ocvmodel] = Main_FDM(D,k)

%%% parameters

p.Ds0= D;
p.k0_SEI0 = k;
p.Ceq = 4541;
p.cp= 28556;
p.L0= 1e-12;
p.F = 96485;
p.U_SEI=; 0.4
p.R= 8.3145;
p.T = 298.15;
p.epsilonSEI = 0.05;
p.n= 2;
p.a = 3e6;

p.cLimax = 3.056e4;

p.cs0 = p.Ceq * p.epsilonSEI;

p.n_tot = 100;

p.h = 1/(p.n_tot - 1);

p.Ds = p.Ds0;

p.k0_SEI = p.k0_SEI0;

p.csmax = p.Ceq;

%%% IC's and mass matrix

y0 = [p.cs0 * ones(1, p.n_tot), p.cLimax, p.L0];

M = eye(p.n_tot + 2, p.n_tot + 2);

M(1, 1) = 0;

M(p.n_tot, p.n_tot) = 0;

%%% tsp = 3600 * 365 * 24;

%%% tspane = [0:3600 * 24 * 3:tspe];

RunE = load('OCV experimental.txt');

tspan = 3600 * 24 * RunE(:, 1);

options = odeset('Mass', M, 'RelTol', 1e-10, 'AbsTol', 1e-10);

[t, Y] = ode15s(@(t, y) MBEQS(t, y, p), tspan, y0, options);

%%% post processing

tmodel = t/3600/24;

Ocvmodel = Un(Y(:, p.n_tot + 1) / p.cLimax);
function [eqs]= MBEQS(t,y,p)
 soc_N= y(p.n_tot+1)/p.cLimax;
 U= Un(soc_N);
 eta_SEI= U - p.U_SEI;
 J_SEI= -p.n*p.F*p.k0_SEI*y(p.n_tot)*soc_N^2*exp(-0.5*p.F*eta_SEI*p.n/p.R/p.T);
 dldt= (-p.Ds/y(p.n_tot+2)/p.cp)*(3*y(p.n_tot)-4*y(p.n_tot-1)+y(p.n_tot-2))/2/p.h);
 dydt(1) = y(1)-p.cs0;
 for i=2:p.n_tot-1
 dydt(i)= p.Ds*(y(i-1)-2*y(i)+y(i+1))/(y(p.n_tot+2)*p.h)^2 +((i-1)/y(p.n_tot+2))*dldt*(y(i-1)-y(i+1))/2;
 end
 dydt(p.n_tot)= (3*y(p.n_tot) - 4*y(p.n_tot-1) + y(p.n_tot-2))/(2*p.h) -
 J_SEI*y(p.n_tot+2)/(p.Ds*p.n*p.F);
dydt(p.n_tot+1) = p.a*J_SEI/p.n/p.F;

dydt(p.n_tot+2) = -(p.Ds/y(p.n_tot+2)/p.cp)*(3*y(p.n_tot)-4*y(p.n_tot-1)+y(p.n_tot-
2))/2/p.h;
eqs= dydt';
end

function ResT = ObjFunc(x)
global xbest Fobjbest
D= exp(x(1));
k= exp(x(2));

%% Run COMSOL Model
[t, Ocvmodel] = Main_FDM(D,k);

%% Load SIMULATION Results
tModel= t;
OCV_mod= Ocvmodel;

%% Load EXPERIMENTAL Data
RunE= load('OCV experimental.txt');
tData= 3600*24*RunE(:,1);
OCV_data= RunE(:,2);

% OCV_exp= @(t)spline(tData,OCV_data,t);
% OCVexp= OCV_exp(tModel);

%% Calculate RESIDUALS
Res= (OCV_mod-OCV_data);
$\text{ResT} = \text{Res}(\cdot);$

$F_{\text{obj}} = \text{sum}(\text{ResT}.^2);$

if $F_{\text{obj}} < F_{\text{objbest}}$

$x_{\text{best}} = x;$

$F_{\text{objbest}} = F_{\text{obj}};$

save('last_res','xbest','Fobjbest')

end

end

MATLAB result: